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i	

ABSTRACT  

Mouse F9 cells differentiate into primitive endoderm (PrE) when treated with retinoic 

acid (RA). During PrE differentiation the canonical Wnt signaling pathway plays an 

integral role in the process, along with implications of the involvement of the Hedgehog 

(Hh) pathway. Previous results show the Indian Hedgehog (Ihh) gene is upregulated 

during RA-induced differentiation; however details of Hh signaling during PrE 

differentiation remain undiscovered. A Gli-luciferase construct indicated that Hh 

signaling increases during RA-induced differentiation, implicating Hh involvement in 

PrE formation. Inhibiting Hh signaling impeded RA-induced differentiation, revealing 

that Hh is required for PrE differentiation. Despite being required, Hh signaling alone 

was unable to facilitate differentiation. Overexpression of Gata6, a master regulator of 

PrE, was found to increase expression of Ihh and Gli activity; furthering the involvement 

of the Hh pathway during development. Additionally, I found that there is signaling 

crosstalk between the Hh and Wnt pathways. Induced Wnt signaling was found to 

increase the activity of Gli, while inhibition of Hh impeded the ability of RA to increase 

Wnt signaling. Together, these results indicate that the Hh signaling pathway plays an 

important role in embryogenesis. 
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Chapter 1 

Introduction 

 

1.1 Early Mouse Development and Extraembryonic endoderm formation 

The development of the mouse embryo involves a series of regulated cellular 

divisions of the single-celled zygote. Successive divisions lead to the formation of the 

morula, which undergoes compaction when there is an 8-cell to 16-cell mass of 

blastomeres [1]. The majority of cells of the morula begin to establish cell polarity, a key 

step in the first lineage differentiation as the blastocyst develops [1]. The blastocyst, in 

preparation for implantation, is made up of three cell types: the epithelial trophectoderm 

(TE), which contributes to the formation of the placenta; the pluripotent, non-polarized 

cells of the inner cell mass (ICM), that are committed to becoming the embryo proper; 

and the cells of the primitive endoderm (PrE), which is the initial cell type in the 

extraembryonic endoderm (ExE) cell lineage [2]. ExE formation begins during the initial 

implantation phase of the blastocyst, where pluripotent cells in the ICM differentiate to 

become PrE [3]. PrE cells will continue to differentiate, giving rise to two cell types, 

parietal endoderm (PE) and visceral endoderm (VE), which give rise to the parietal and 

visceral yolk sacs, respectively (Figure 1.1) [4]. Both yolk sacs are essential for proper 

embryonic development, as they are involved in nutrient absorption as well as protection 

against mechanical damage to the embryo proper [5].  
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Figure 1.1. Extraembryonic Endoderm Formation. The early embryo is made up of 
three distinct cell types: the epiblast, the primitive endoderm and the trophoectoderm. 
During the time of implantation, the tissues of the extraembryonic endoderm (primitive, 
parietal, and visceral endoderm) are derived from embryonic stem cells present in the 
inner cell mass. The tissues of the extraembyronic endoderm are necessary for correct 
development of the growing embryo. Modified from Tam, P., and Rossant, J. 2003. 
Development 1309(25): 6155-63.   
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1.2 Utilizing the F9 Teratocarcinoma Cell Line as a Model for Extraembryonic 

Endoderm Differentiation 

In mammalian embryos, one of the earliest epithelial-to-mesenchymal transitions 

(EMT) results in the establishment of the ExE [6]. An EMT is a phenotypic change that 

takes place during tissue remodeling, wound healing, tumour invasion/metastasis and 

embryonic development [7]. The transition itself involves epithelial cells losing their 

apical-basal polarity, various cellular junctional complexes and becoming more loosely 

organized within the three-dimensional extracellular matrix similar to motile 

mesenchymal cells [8]. Studying how the ExE forms, and the associated EMTs, in a live 

embryo is difficult, not only due to the fact that mammalian development generally 

occurs in utero, but also because ExE differentiation occurs very early in development, 

when the embryo is typically no larger than 100um. Due to these and other constraints, 

some investigators have turned to the F9 teratocarcinoma cell line to study ExE 

development. The F9 cell line was established from a teratocarcinoma that formed after 

investigators implanted a 6-day old male mouse embryo into the testes of a 129/Sv adult 

mouse [9]. When F9 cells are cultured in vitro they adopt a homogenous morphology, 

growing into clumped and compacted colonies [11]. These cells can be chemically 

induced to differentiate into ExE-like cell types following treatment with retinoic acid 

(RA) [10]. RA-induced PrE cells are further induced to differentiate into PE by 

subsequent treatment with dibutyryl cyclic adenosine monophosphate (db-cAMP), which 

activates PKA activity necessary to inhibit the MAPK signaling regulated initially by 

RA. These chemically-induced differentiated states of PrE and PE mimic events seen in 

the developing mouse embryo, thus making the F9 cell line an excellent model for 
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studying the development of mammalian ExE [11]. 

Although details regarding differentiation and investigations with the F9 cell 

model over the last 35 years have been exhaustive, a complete understanding as to the 

mechanism(s) as to how an EMT is responsible for patterning the ExE remain largely 

unknown. Previous work conducted in our lab has shown that the canonical Wnt signal 

transduction pathway plays an integral role in the process [12], and data in the present 

study would indicate that Hedgehog signaling is also involved. 

 

1.3 Wnt signaling pathways 

Wnt signaling pathways play an integral role in many different vertebrate and 

invertebrate developmental events. Wnt signaling is able to regulate cell proliferation, 

cell survival, cell behavior, and cell fate decisions in both embryos and adults [13]. There 

are nineteen unique vertebrate Wnt genes that encode for specific ligands that will use 

members of the Frizzled family of receptors and other co-receptors to initiate cellular 

signaling [14]. Wnt ligands signal and activate at least three different pathways: the 

canonical-β-catenin, the planar cell polarity (PCP) and the Wnt-Ca2+-cGMP pathways 

[12]. In the case of the vertebrate canonical-β-catenin pathway, initiation occurs when 

Wnt binds to one of several Frizzled receptors and low-density lipoporotein related 

protein (LRP), which recruit Dishevelled and G proteins to disassemble a multimeric 

protein destruction complex [15]. The destruction complex is made up of five different 

proteins: Axin, adenomatous polyposis coli (APC) tumour suppressor protein, casein 

kinase 1-α (CK1), gylcogen synthase kinase-3β (GSK-3β), and β-catenin [15]. The 

disassembly of this destruction complex allows for β-catenin to accumulate in the 
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cytoplasm and eventually translocate into the nucleus. In the nucleus, β-catenin is able to 

interact with the transcription factors lymphoid-enhancing factors (LEF) and T cell 

factors (TCF), in order to initiation the transcription of Wnt target genes [13]. In the 

absence of a Wnt ligand, however, the destruction complex leads to the ubiquitination 

and degradation of β-catenin lowering the steady state levels of β-catenin and preventing 

the regulation of Wnt target genes. [13] (Figure 1.2).  

Signaling through the canonical β-catenin pathway is implicated in many cell fate 

decisions during early development [14]. In F9 cells, increased Wnt6 activity leads to the 

stabilization of β-catenin, which promotes the translocation of the latter to the nucleus 

[14]. In the nucleus and again in conjunction with TCF-LEF, β-catenin regulates the 

expression of target genes required for PrE formation [16]. Together, these results 

demonstrate the importance of the Wnt signaling pathway in PrE formation, but other 

pathways are involved and understanding those additional pathways was a goal of this 

thesis.  One of the potential pathways investigated was the Hedgehog (Hh) signaling 

pathway. 
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Figure 1.2. Canonical Wnt/Beta-Catenin signaling pathway. (a) In the absence of a 
Wnt ligand the proteins Axin, adenomatous polyposis coli (APC), casein kinase 1-α 
(CK1), and gylocgen synthase kinase-3β (GSK-3β) form a destruction complex enclosing 
the Wnt signaling transcription factor β-catenin. The destruction complex causes the 
ubiquitination of the β-catenin protein, leading to its degradation in the proteasome, 
effectively preventing the activation of Wnt target genes. (b) When a Wnt ligand is 
present, the ligand will bind to the Frizzled receptor and the co-receptor lipoprotein-
related protein 5/6. This interaction causes the recruitment and activation of the 
Dishevelled protein, which acts to disassemble the destruction complex. This allows β-
catenin to translocate to the nucleus, where it interacts with T-cell/lymphoid enhancing 
factor family transcription factors to activate expression of Wnt target genes. Modified 
from Luo, J. et al. 2007. Laboratory Investigation 87, 97-103. 
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1.4 Hedgehog signaling pathway 

 The Hh signaling pathway plays a key role in tissue and organ development in 

several different invertebrate and vertebrate species [17]. In mammals there are 3 Hh 

lignads, Sonic (Shh), Indian (Ihh) and Desert (Dhh) [18], and elucidating how these 

ligands perform a multitude of duties in embryogenesis is complicated by the fact that 

they can act as morphogens, function as mitogens, or serve as inducible factors [19]. 

Despite this complexity, the signaling pathway activated by Hh has been characterized 

extensively [20]. The pathway consists primarily of a series of repressive interactions, 

which start with the patched (Ptc) protein [19]. Ptc is a 12-pass transmembrane receptor 

that represses target gene expression when the Hh ligand is absent [20]. Ptc does this by 

inhibiting the function of smoothened (Smo), a 7-pass transmembrane protein [20]. Ptc 

inhibition in the presence of Hh, through an unknown mechanism, allows Smo to become 

activated [18]. Once active, Smo inhibits another negative regulator of the Hh pathway, 

Suppressor of Fused (SuFu), which in turn and working through the activation of three 

Gli transcription factors, Gli 1, 2, and 3, leads to the subsequent activation of Hh-specific 

target genes [18] (Figure 1.3).  
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Figure 1.3. Mammalian Hedgehog Signaling Pathway. (a) The Hedgehog signaling 
pathway is kept inactive through a series of protein repression events. With no ligand 
present, the Patched protein (PTCH) is active and causes the repression of the 
Smoothened protein (SMO). With SMO repressed the Suppressor of Fused protein keeps 
the GLI proteins inactive, essentially halting the transcription of Hedgehog target genes.  
(b) In the pathway’s active form, a Hedgehog ligand binds and inactivates the PTCH 
protein, eventually causing its lysosomal degradation. With PTCH degraded, active SMO 
is able to negatively regulate SUFU, disassembling and degrading the SUFU protein. 
This event frees the GLI proteins from negative regulation and allows them to activate 
the transcription of Hedgehog target genes.  Modified from Amakye, D., Jagani, Z., and 
Dorsch, M. 2013. Nat Med 19(11): 1410-22.  
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In vitro studies would suggest that in the mouse embryo, Hh signaling plays a role 

in the differentiation events leading to ExE [21]. These studies reported that when F9 

cells are treated with RA, the expression of the Ihh ligand increases as the cells 

differentiate into a PrE state [21]. This correlative evidence suggests that Ihh may 

function in a regulatory manner when F9 cells begin to differentiate into the ExE lineage. 

Furthermore, through the use of in silico analysis, our lab discovered that the promoter 

region for the Ihh gene has a putative binding site for GATA6 (Figure 1.4) (unpublished 

observation), a major transcriptional regulator of embryonic and extraembryonic 

endoderm [22]. Gata6 is up-regulated during RA-induced differentiation of F9 cells and 

it is known to regulate the expression of Wnt6 [12]. Thus, like Wnt6, Ihh signaling is 

linked to PrE formation, but whether or not the two pathways are linked through 

signaling crosstalk remains to be determined. Thus, elucidating how Hh signals during 

PrE formation may provide a better understanding of the already complex network that 

regulates ExE differentiation. 
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Figure 1.4. Sequence Identity Gata6 binding sites in human and mouse Ihh 
promoters. The Ihh promoter sequences of human (a) and mouse (b) were analyzed 
using the QIAGEN Champion ChIP Transcription Factor Search portal based on 
SABiosciences’ database DECODE. The green line marks Gata6 binding sites and 
binding sequences are stated. 
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Gata-6	Binding	Sequence:	
TCCTTATCTGC 

a 

b 

Gata-6	Binding	Sequence:		
GCAGATAAGG 
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1.5 Wnt and Hedgehog Signaling Crosstalk 

 Crosstalk within cell signaling cascades allows for greater regulation, 

maintenance, and control of specific developmental events. The Hh and Wnt signaling 

pathways have been both found to play key individual roles in embryonic development 

[23]. However, the potential for crosstalk between these two major pathways during 

development has yet to be thoroughly investigated, especially during ExE differentiation. 

Evidence for signaling crosstalk between the Hh and Wnt pathways is known in the 

developing neural tube [24], where the inhibition of Hh signaling leads to a reduction in 

Wnt-mediated transcriptional activation [24]. When the Hh pathway is inactive, the Gli3 

protein, a transcriptional regulator, takes on its repressor form, Gli3R which is an amino-

terminal fragment of the full-length Gli3 protein; and this leads to the repression of Hh-

regulated target genes [25]. Gli3R specifically causes this reduction in Wnt signaling by 

physically interacting with the carboxy-terminal domain of β-catenin, which directly 

antagonizes the active form of β-catenin [24]. Thus, Wnt-target genes cannot be activated 

under these conditions. 

 Signaling crosstalk between the Wnt and Hh pathways also has a major role in 

cancer metastasis involving EMTs. In hepatocellular carcinomas (HCC), cellular 

metastasis hinges on the joint activation of both the Wnt and Hh signaling pathways [26]. 

More specifically, an EMT driven by aberrant TGFβ signaling leads to the activation of 

the Hh pathway via Shh. In this case, activation leads to increased Gli activity, which in 

turn activates the Wnt-β-catenin pathway [26]. Once active, feedback from the Wnt 

pathway signals back to the Hh pathway through TCF/LEF, establishing crosstalk activity 

that leads to the stabilization of active Gli [26]. Through the activation of both pathways, 
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HCC cell lines then undergo EMT, producing cells exhibiting mesenchymal-like 

characteristics [26]. This ability of interconnected and interdependent signaling between 

two or more pathways, found to promote and stabilize EMT in HCC cells, is just another 

example lending precedence that a similar form of crosstalk may influence the EMT in 

ExE formation. 

 

1.6 Objectives of Study and Hypothesis 

One goal of this study was to determine if the Hh signaling pathway is necessary 

and/or sufficient to induce ExE differentiation. Another goal was to determine if this 

signaling impacts on the canonical Wnt/β-catenin pathway that is obligatory for PrE 

formation. Given the in silico analysis of the Ihh promoter region (Figure 1.4), implying 

that the gene may be regulated by GATA6, a master regulator of ExE formation, and the 

fact that the Ihh gene is up-regulated in response to RA [21], I hypothesize that the Hh 

signaling pathway is necessary for the formation of the ExE, particularly when 

transitioning to the PrE state. Experiments were also designed to test whether or not 

activating the Hh pathway was sufficient to induce ExE. Finally, with the preexisting 

information that Wnt signaling plays a major role in ExE formation [16] and is able to 

interact with several components of the Hh pathway [24], I hypothesize that both the Wnt 

and Hh signaling pathways act in a network to regulate and influence the formation of the 

ExE.  
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Chapter 2 

Materials and Methods 

 

2.1 Cell Culture, Transfection, and Treatment 

 Mouse F9 teratocarcinoma cells (ATCC) were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM; Lonza) enriched with 10% fetal bovine serum (FBS; Gibco) 

and 1% penicillin-streptomycin antibiotic (PS; Lonza). The cells were seeded in tissue 

culture (TC) treated 60mm plates (BD Falcon) for subsequent protein isolation. When 

cells were approximately 40% confluent they were treated with either 10-7M retinoic acid 

(RA; Sigma) or with 2.5-10µM Cyclopamine (Cyc; EMD Millipore) overnight and then 

subsequently treated with 10-7M RA. Control and treated cells were incubated at 37°C 

and 5% CO2 for 4 days.  

Cyc is a plant-derived steroidal alkaloid that binds directly and specifically to the 

smoothened protein in the Hh signaling pathway, and inhibits its function; effectively 

inhibiting all Hh signaling in cells treated with the chemical [28]. 

 Cells were transfected with empty vector, pcDNA3.1-Gata6, pcDNA-Foxa2, 

pGL3-BARL, pGL3-Gli, and pRL-TK constructs, respectively, using Lipofectamine2000 

according to the manufacturer’s recommendations (ThermoFisher Scientific). Briefly, 

10µL of Lipofectamine2000 was mixed with a total of 4µg of expression constructs to 

transfect cells grown to 60% confluence in 35mm tissue culture treated plates (BD 

Falcon); for co-transfection experiments, equal amounts of each construct were used with 

Lipofectamine2000 to DNA ratio of 10:4. Transfected cells were then passaged 24hr later 
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to 60mm TC dishes. Cells were treated with 0.05% Dimethyl sulfoxide (DMSO) (vehicle 

control), 10-7M RA, 7.5µM Cyc, 5nM-0.5µM 6-Bromoindirubin-3ʹ-oxime (BIO, Sigma-

Aldrich), 5nM-10nM Smoothened Agonist (SAG, EMD Millipore), 7.5µM Cyc and 10-

7M RA, or 5nM-0.5µM BIO and 10-7M RA. All cells were incubated at 37°C and 5% 

CO2. 

 SAG is a synthetic small molecule activator that binds directly to the smoothened 

protein and causes its activation, thereby activating the Hh signaling pathway within cells 

[36]. 

 BIO is a pharmacological inhibitor that specifically inactivates GSK3 protein 

activity, and in doing so facilitates efficient Wnt pathway activation within treated cells 

[33]. 

 

2.2 Reverse-Transcription PCR  

 Oligodeoxynucleotide primers were designed to the mouse Shh (Accession # 

NM009170), Dhh (Accession # NM007857), Ihh (Accession # NM010544), Gata6 

(Accession # AK142381) and Foxa2 (Accession # AL845297) nucleotide sequences. Shh 

sense (5’ CCA CTG TTC TGT GAA AGC AGA G) and antisense (5’ CAG CGT CTC 

GAT CAC GTA GAA G), Dhh sense (5’ AGC CGG ATT CGA CTG GGT CTA C) and 

antisense (5’ GGT CCA GGA AGA GCA GCA CTG), Ihh sense (5’ TAT CAC CAC 

CTC AGA CCG TGA C) and antisense (5’ ACC CGG TCT CCT GGC TTT ACA G), 

Gata6 sense (5’ CTC TGC ACG CTT TCC CTA CT) and antisense (5’ GTA GGT CGG 

GTG ATG GTG AT), and Foxa2 sense (5’ ACC TGA GTC CGA TGA GC) and 

antisense (5’ CAT GGT GAT GAG CGA GAT GT) primers were designed to amplify 
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Shh, Dhh, Ihh, Gata6, and Foxa2 cDNAs. RNA was isolated from treated or transfected 

F9 cells and converted into first strand cDNA using SuperScript II reverse transcriptase 

(Invitrogen). PCR was conducted with the cDNAs as templates under the following 

reaction conditions: Shh, Dhh, and Ihh – 35 cycles of 30s at 94°C, 30s at 57°C, and 30s at 

72°C. Gata6 – 35 cycles of 30 s at 94°C, 30 s at 55°C, and 30s at 72°C; Foxa2 – 35 

cycles of 30 s at 94°C, 30 s at 58°C, and 30 s at 72°C. Primers to constitutively expressed 

ribosomal gene L14, sense (5’ GGG AGA GGT GGC CTC GGA CGC) and antisense (5; 

GGC TGG CTT CAC TCA AAG GCC) were used as controls. PCR amplified samples 

were run on 1% agarose gels containing RedSafe (FroggaBio) nucleic acid staining 

solution and visualized using the FluorChem 8900 gel imaging station (Alpha Innotech).  

 

2.3 Immunoblot Analysis 

Cells were lysed in 300µL of 1% sodium dodecyl sulfate (SDS) buffer containing 

62.5mM Tris-HCL pH 6.8, 10% glycerol, 5% Mercapto-2-ethanol, and 1X Halt Protease 

Inhibitor Cocktail (Thermo Scientific). Protein concentrations of lysates were measured 

using a Bradford assay (Bio-Rad) and equivalent amounts were separated on denaturing 

10% polyacrylamide gels and transferred to nitrocellulose membranes (Biotrace; Pall 

Corp.). Membranes were blocked in 5% skim milk and then probed with primary 

antibodies directed against TROMA-1 (1:50; Developmental Studies Hybridoma Bank), 

and β-actin (1:10,000; Pierce). After extensive washes, membranes were probed with the 

appropriate secondary antibodies, washed and then signals detected using the 

SuperSignal West Pico Chemiluminescent Kit (Pierce).  
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2.4 TCF/LEF and Gli Reporter Assay 

 Cells transfected with either pGL3-BARL or pGL3-Gli and then treated with 

0.05% DMSO (vehicle control), 10-7M RA, 7.5µM Cyc, 5nM-0.5µM BIO or 5nM-10nM 

SAG, or 7.5µM Cyc and 10-7M RA, or 5nM-0.5µM BIO and 10-7M RA were prepared 

48hr after treatment using the Dual Luciferase Assay Kit as per manufacturer’s 

instructions (Promega). Cells transfected with either pGL3-BARL or pGL3-Gli and then 

co-transfected with pcDNA3.1 (empty vector control), pcDNA3.1-Gata6, or pcDNA3.1-

Foxa2 were also prepared 48hr post-transfection using the Dual Luciferase Assay Kit. 

Luciferase expression was quantified using the GloMax Multi Detection System 

(Promega). Cells were also co-transfected with pRL-TK to normalize luciferase levels. 

 

2.5 Statistical Analysis 

 Data from all experiments are representative of at least three independent 

biological replicates performed on separate occasions. Data comparisons between the 

control and treated groups were performed using a Student’s t-Test assuming unequal 

variances. P values were one-sided and considered statistically significant at the 0.05 

value. 
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CHAPTER 3 

RESULTS 

 

3.1 Hedgehog gene expression during RA-induced Primitive Endoderm Differentiation 

 

Mouse F9 teratorcarcinoma cells treated with RA differentiate into PrE [27], and 

this is accompanied by an increase in the expression of the Indian Hedgehog (Ihh) gene 

[21]. For my study, the expression profiles of all three Hh genes, Indian (Ihh), Sonic 

(Shh), and Desert Hedgehog (Dhh) were examined during PrE induction. Towards that 

end, total RNA was collected from cells treated with dimethyl sulfoxide (DMSO) 

(vehicle control) or with RA (10-7M). RNA was reverse transcribed into first strand 

cDNA and used for PCR amplification using primers specific for each Hh gene (Fig. 3.1). 

No Hh amplicons were present in the DMSO treated controls. Transcript signals were 

detected using the Ihh primer set, confirming previous results [21] (Fig. 3.1). Expression 

of Shh and Dhh, was not detected in either DMSO-treated or RA-treated cells. Transcript 

signals corresponding to the amplification of the constitutively expressed L14 ribosomal 

gene were seen at equal levels within all samples (Fig. 3.1). These results would indicate 

that Ihh is the only Hh gene that is expressed in response to RA addition and strongly 

supports the idea that Ihh is the ligand involved in the differentiation of PrE.  

 

 

 

 



G. Deol  22   
 

 

Figure 3.1 Ihh mRNA is upregulated in response to Retinoic Acid induced PrE 
differentiation.  Total RNA was extracted from F9 cells treated with retinoic acid (RA) 
to induce primitive endoderm. An amplicon corresponding to Ihh was only seen in cells 
treated with RA. Primers designed to the constitutively expressed ribosomal L14 (300BP) 
gene amplified a product in the control and treated cells. Data are representative of three 
independent experiments.   
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After confirming that Ihh expression is up regulated in response to RA during the 

differentiation of PrE, I tested whether this increase in gene activity resulted in the 

subsequent activation of a Hh signaling cascade. To investigate this, changes in Gli-

mediated transcriptional activity were examined in a reporter assay. A pGL3-Gli 

luciferase reporter and a Renilla luciferase construct (pRL-TK) were co-transfected into 

F9 cells and then subsequently treated with DMSO (vehicle control) or RA. Treatment of 

RA led to a significant 5.56-fold increase in luciferase activity relative to the controls 

(DMSO) (Fig. 3.2). Cells were also treated with SAG, a smoothened-agonist that would 

activate Hh signaling [28], and function as a positive control for the Gli luciferase 

reporter. Treatments with SAG led to a 4.47–fold increase in luciferase activity, an 

increase that was significantly different from the DMSO control (Fig 3.2). Experiments 

were repeated with Cyc to block Hh signaling and ensure that this RA-induced increased 

in Gli activity was due to activation of the Hh pathway itself. Cyc binds to and inhibits 

the heptahelical Smo protein thereby blocking the Hh pathway [28]. Treating F9 cells 

with Cyc, followed by RA resulted in only a 0.95-fold increase in luciferase activity 

relative to controls cells [Fig. 3.2]. That Cyc was able to attenuate the RA-induced 

increase in Gli reporter activity would indicate that RA activates the Hh pathway in cells 

destined to form PrE. Together these results provide evidence for Ihh and the Hh pathway 

in the RA induction of extraembryonic endoderm. 
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Figure 3.2 Retinoic acid increases Gli-mediated transcriptional activity through 
canonical Hedgehog signaling. Lysates collected from F9 cells transfected with pGL3-
Gli and subsequently treated with DMSO, Smoothened Agonist (SAG), retinoic acid 
(RA), Cyclopamine (Cyc), or RA and Cyc, were collected 48 hours after treatment. Cells 
treated with RA had a 5.56-fold increase (P = 0.038) in luciferase activity relative to the 
control (DMSO-treated cells). Cells treated with SAG had a 4.47-fold increase (P = 
0.038) in luciferase activity, again a value significantly different from the DMSO control. 
F9 cells treated with Cyc had a 0.31-fold increase in luciferase activity relative to the 
control, while those treated with RA and Cyc had a 0.95-fold increase in luciferase 
activity relative to the control. Data are representative of three independent experiments. 
Bars represent mean fold changes in relative light units (RLU) ± S.E., normalized against 
Renilla luciferase activity. * = P<0.05.  
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3.2 Hedgehog signaling is necessary, but not sufficient for Primitive Endoderm 

Differentiation 

 

That Ihh expression and Gli activity increased during RA-induced PrE formation, 

and that activity was attenuated by Cyc indicated the involvement of the Hh pathway in 

PrE formation, but more importantly it intimated that this pathway as being necessary for 

differentiation. To confirm the necessity of a functioning Hh pathway during 

differentiation, cells were treated with RA, RA and Cyc, and DMSO (control), and then 

protein was isolated and processed for immunoblot analysis using the TROMA-1 

antibody to detect cytokeratin 8, an intermediate filament protein expressed in ExE [29]. 

While immunoblot analysis with the TROMA-1 antibody revealed a protein signal in 

cells treated with RA, no signals were seen in cells treated with Cyc and RA (Fig. 3.3). 

Thus, the data would suggest that inhibiting Hh signaling had blocked the ability of RA 

to induce F9 cells to differentiate, support the hypothesis that active Hh signaling is 

necessary for PrE differentiation. 

 Since the data pointed to active Hh signaling being required during the induction 

of PrE, the next question was to determine if the pathway was sufficient to induce F9 

cells to differentiation into the ExE lineage. Previous reports from our lab [14, 16] and 

others [27, 30] have demonstrated the role of canonical Wnt/b-catenin in this process, but 

no evidence exists that it also requires active Hh signaling. To test for sufficiency, F9 

cells were treated with the Smo agonist, SAG, at either 5nM or 10nM and protein lysates 

collected for immunoblot analysis to detect the TROMA-1 marker.  
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Figure 3.3 Hedgehog signaling is required for RA-induced primitive endoderm 
differentiation. Protein lysates were collected from F9 cells treated with cyclopamine or 
retinoic acid (RA) and Cyclopamine, and then processed for immunoblot analysis with 
antibodies to TROMA-1. An anti-β-actin antibody was used to ensure equal loading. 
TROMA-1 signals were not detected in cells treated with Cyc alone; however, they were 
seen in the RA positive control and in cells treated with RA and 2.5 uM Cyc. Higher 
concentrations of Cyc blocked the TROMA-1 signal despite the cells having been treated 
with RA. Data are representative of three independent experiments.   
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Unexpectedly, however, and unlike the RA positive control, SAG was unable to 

produce TROMA-1 signals (Fig. 3.4). This was not because SAG had lost its activity 

because subsequent experiments found that, at the concentrations used, it activated Gli-

mediated transcription (Fig. 3.2). Thus, the data would suggest that the activation of Hh 

signaling, by itself, is not sufficient to induce embryonic cells to differentiate to PrE. 

 

3.3 Overexpression of Gata6 upregulates Indian Hedgehog and activates Hh Signaling 

 

Gata6 and Foxa2 encode transcription factors that are master regulators of 

embryonic and extraembryonic endoderm differentiation [22, 31, 32].  Previous work 

from our lab has shown that Gata6 is a direct target of RA signaling and Foxa2 is up-

regulated in response to increased GATA6 [12]. Furthermore, the overexpression of each 

gene in F9 cells is sufficient to induce PrE via Wnt6 activation of the canonical Wnt-b-

catenin pathway [12]. Considering the involvement of GATA6 and FOXA2 in PrE 

formation, and the identification of a putative GATA6 binding site in the Ihh promoter 

(this study, Fig. 1.4), it was hypothesized that the overexpression of Gata6 and Foxa2 

would increase Ihh expression. In order to investigate the hypothesis that Gata6 and 

Foxa2 overexpression increases Ihh expression, F9 cells were transfected with pcDNA3.1 

(empty vector control), pcDNA3.1-Gata6, or pcDNA3.1-Foxa2, and 48hrs later total 

mRNA was collected and reverse transcribed into cDNA for PCR analysis with L14 and 

Ihh primers. Results showed that Ihh expression was increased in cells transfected with 

the pcDNA3.1-Gata6 overexpression vector, while cells transfected with either the empty  
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Figure 3.4 Hedgehog signaling is unable to induce primitive endoderm 
differentiation. F9 cells were treated with DMSO (vehicle control), retinoic acid (RA), 
or smoothened agonist (SAG), and protein lysates were collected for immunoblot 
analysis. Antibodies against TROMA-1 and β-actin were used to detect differentiation of 
F9 cells to a primitive endoderm state, and as a loading control, respectively. TROMA-1 
signals were only detected in cells treated with RA. Data are representative of three 
independent experiments.  
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vector or pcDNA3.1-Foxa2 vector had no detectable changes in Ihh expression (Fig. 3.5; 

qRT-PCR completed by T.N. Cuthbert). These results, although indicating that GATA6 

signaling is able to directly or indirectly regulate the expression of Ihh, do not address 

whether this increase in expression translates into activation of the Hh pathway. To test 

this, F9 cells were co-transfected with pcDNA3.1 (empty vector control), or pcDNA3.1-

Gata6, and the Gli and pRL-TK luciferase reporter construct described above. Despite 

Ihh not being induced by the Foxa2 construct, cells were also transfected with the 

reporter constructs and pcDNA3.1-Foxa2 to determine if the Hh pathway could be 

activated downstream of the ligand. Lysates were collected 48hrs post transfection and 

the luciferase activity was analyzed and compared between treatments. Results showed 

that the pcDNA3.1-Gata6 plasmid caused a 2.29–fold change in the Gli reporter activity, 

which was significantly different when compared to the change seen in the empty vector 

control. Transcription of the pcDNA3.1-Foxa2 vector caused a no significant change in 

Gli luciferase activity (Fig. 3.6). Together, these results show that increased Gata6 

expression, and not Foxa2 expression, serves to up-regulate the Ihh gene, and thus results 

in the increase in Gli-dependent transcription.  
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Figure 3.5 Overexpression of Gata6 up-regulates Ihh expression. F9 cells were 
transfected with empty vector (control), pcDNA3.1-Gata6, or pcDNA3.1-Foxa2. Total 
RNA was collected 48hrs later and analyzed by PCR using primers designed to amplify 
Ihh cDNA. Amplicons (209bp) were only detected in cells transfected with pcDNA3.1-
Gata6. Primers designed to the L14 gene (300bp) were utilized in the PCR to ensure 
equal loading between treatments. 
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Figure 3.6 Gata6, but not Foxa2, overexpression alters Gli Reporter activity. F9 cells 
co-transfected with pGL3-Gli and either the empty vector control, pcDNA3.1-Foxa2 or 
pcDNA3.1-Gata6 were collected 48hrs post transfection and lysates processed to 
measure Gli-dependent luciferase activity. Cells transfected with the Foxa2 vector 
showed a 0.76-fold increase in activity relative to the control (empty vector), which was 
not statistically significant from the empty vector control. Gata6 overexpression, 
however, produced a 2.29-fold increase (P = 0.013) in luciferase activity that was 
significantly different from that seen in the empty vector control. Data are representative 
of three independent experiments. Bars represent mean fold changes in relative light units 
(RLU) ± S.E., normalized against Renilla luciferase activity. * = P<0.05. 
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3.4 Wnt Signaling Impacts the Hedgehog Pathway during Extraembryonic Endoderm 

Differentiation 

 Hh, like Wnt signaling, is involved in PrE differentiation and messages encoding 

both ligands in their respective signaling pathways are up-regulated in response to Gata6 

over-expression [this study; 12]. Given these relationships, we next wanted to examine if 

the pathways were working independent of each other, or if there was crosstalk between 

them. Previous work has established that both pathways form integrative signaling webs, 

however, the specifics of signaling crosstalk is poorly understood [24, 26]. To address the 

possible crosstalk between the two pathways, cells were transfected with either pGL3-Gli 

or pGL3-BARL reporter constructs, readouts indicative of active Hh and Wnt signaling, 

respectively, and with a Renilla luciferase construct to normalize the luciferase data. To 

determine if the Hh pathway was able to signal to the Wnt pathway, F9 cells were 

transfected with the pGL3-BARL construct and treated with DMSO (vehicle control), RA, 

or with 5nM or 10nM SAG. Cells were also treated with BIO, a GSK-3β inhibitor [33], 

which acted as a positive control for the TCF/LEF reporter construct. Results indicated 

that the 5nM and 10nM concentration of SAG only caused no significant increase in 

BARL activity compared to the DMSO vehicle control (Fig. 3.7). Interestingly, results 

showed that when F9 cells were treated with Cyc and then treated subsequently with RA, 

there was no significant increase in luciferase activity compared to control treatments 

(Fig. 3.8), in contrast to the significant increase in reporter activity caused by the RA 

treatment alone (Fig. 3.8).  
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Figure 3.7 Activation of the Hedgehog pathway does not affect TCF/LEF 
transcriptional activity. F9 cells were transfected with pGL3-BARL and then treated 
with either DMSO, BIO, retinoic acid (RA), or 5nM or 10nM SAG, and lysates collected 
48hrs later to measure luciferase activity. Treatment with BIO caused a significant 8.05-
fold increase (P = 0.002) in luciferase activity relative to DMSO treated cells. As 
expected, RA caused a significant increase (8.62-fold (P = 0.014)) in luciferase activity 
compared to the control (DMSO). In contrast, neither SAG treatment affected the 
TCF/LEF reporter, having only caused 1.23 and 1.20-fold, respectively, increases relative 
to the control. Data are representative of three independent experiments. Bars represent 
mean fold changes in relative light units (RLU) ± S.E., normalized against Renilla 
luciferase activity. * = P<0.05.   
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Figure 3.8 Inhibiting the Hedgehog pathway prevents the RA-dependent increase in 
TCF/LEF transcriptional activity. F9 cells were transfected with pGL3-BARL and then 
treated with DMSO, BIO, retinoic acid (RA), Cyclopamine (Cyc), or RA and Cyc, and 
lysates collected 48hrs post treatment to measure luciferase activity. Treatment with BIO 
induced a 11.66-fold increase (P = 0.013) in luciferase activity, whereas RA treatment 
caused a 8.7-fold increase (P = 0.049), both of which were significantly different 
compared to the control (DMSO). Cyc treatment had little effect on TCF/LEF activity, 
causing only a 0.45-fold increase. Interestingly, when cells were treated with Cyc and 
RA, there was only a 1.14-fold increase in reporter activity. Data are representative of 
three independent experiments. Bars represent mean fold changes in relative light units 
(RLU) ± S.E., normalized against Renilla luciferase activity. * = P<0.05.   
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These results would suggest that while active Hh signaling alone did not increase 

TCF/LEF transcriptional activity, Smoothened must not be inhibited in order for RA to 

increase this activity.   

Converse experiments tested whether or not the inhibition of GSK3, which stems 

from the activation of the canonical Wnt-b-catenin pathway, had any effect on the 

canonical Hh pathway. F9 cells were transfected with the pGL3-Gli reporter construct 

and then treated with DMSO (vehicle control), SAG (positive control), RA, or with 5nM 

BIO or 10nM BIO, a GSK-3β inhibitor [33]. SAG treatment caused no significant 

increase in Gli transcription activity (Fig. 3.9). Interestingly, the 5nM and 10nM BIO 

treatments caused a significant increase in Gli-dependent activity, compared to the 

DMSO vehicle control (Fig. 3.9). Together, these results indicate that while activating the 

Hh pathway has no detectable effect on b-catenin-dependent transcription, inhibiting 

GSK3b, which normally accompanies the activation of the canonical Wnt pathway, 

impacts positively on the activity of Gli-mediated transcription.  
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Figure 3.9 Inhibition of GSK3 activity increases Gli-mediated transcription. F9 cells 
were co-transfected with pGL3-Gli and Renilla luciferase vectors. After transfection, 
cells were treated with either DMSO, Smoothened Agonist (SAG), retinoic acid (RA), 
5nM or 10nM of BIO and lysates collected 48hrs later. RA treatment caused a 5.52-fold 
increase (P = 0.015) relative to the control (DMSO). Treatment with SAG also caused a 
significant increase (4.41-fold (P = 0.008)) in luciferase activity compared to DMSO 
treated cells. Interestingly, 5nM and 10nM BIO caused a 4.69–fold (P = 0.033) and 5.02–
fold (P = 0.0001) increase, respectively, compared to the control. Results from the RA, 
SAG, and BIO treatments were significantly different from the control samples. Data are 
representative of three independent experiments. Bars represent mean fold changes in 
relative light units (RLU) ± S.E., normalized against Renilla luciferase activity. * = 
P<0.05.   
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Chapter 4 

Discussion 

 

In the mouse embryo several signaling pathways play major roles in regulating 

different developmental processes and events; one of those pathways involves the 

Hedgehog morphogen [17]. Hedgehog (Hh) signaling plays a regulatory role in the 

formation of early developmental structures such as the notochord, neural tube, lung bud, 

hindgut, and limb buds [34]. Despite the many studies documenting these events, little is 

known of the involvement Hh has in extraembryonic endoderm (ExE) differentiation. My 

study was designed towards better understanding the role of Hh signaling during these 

events of ExE differentiation. By utilizing the F9 teratocarcinoma cell line, which models 

ExE differentiation to primitive endoderm (PrE) through chemical treatment with retinoic 

acid (RA), my study extended from those of previous studies showing Indian Hedgehog 

involvement in PrE formation [21] (Fig. 3.1). That no detectable changes in the 

expression of the other two Hh genes encoding the Sonic and Desert ligands, would 

indicate that Ihh has the potential to be involved in ExE differentiation (Fig. 3.1). To 

further solidify the importance of these results, a fellow student within the Kelly lab, 

Nicole Cuthbert, conducted a real-time quantitative PCR analysis of the expression 

patterns of each Hh ligand. Her results showed that Ihh expression significantly increased 

in F9 cells after RA treatment; also it was the only Hh isoform to show this increase, 

therefore corroborating the initial results of this study. Further investigation into Hh 

signaling in response to RA treatment led me to show that RA activates the Hh signaling 
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cascade through the increase in Gli-dependent transcriptional activity (Fig. 3.2). 

Antagonizing the pathway with cyclopamine confirmed that the RA-induced changes in 

this Gli-dependent activity were specific to the Hh pathway (Fig. 3.2). Thus, this study 

has established that RA-induced ExE differentiation is accompanied by an increase in Ihh 

expression and the subsequent activation of the canonical Hh signaling cascade.  

Once I established a link between the Hh signaling cascade and PrE formation, I 

demonstrated that cyclopamine treatment effectively blocked the ability of RA to induce 

the differentiation of F9 cells into the PrE state (Fig. 3.3). Surprisingly, however, and 

despite this requirement, activating the Hh pathway was not sufficient to induce 

differentiation (Fig 3.4). Together, this study has provided evidence that a functional Hh 

signaling pathway is required for proper ExE development to occur, and adds to the 

overwhelming evidence that Hh plays numerous roles in development and is essential for 

the survival of an embryo [35]. In fact, this data may indicate the earliest time point in 

mouse development when the Hh pathway requiring a Hh ligand is required. The 

importance of this pathway to embryonic development is underscored by studies showing 

that it interacts with other signaling networks [24, 25, 26], and in the final part of this 

study, I provide evidence for such crosstalk in ExE formation. Specifically, I discovered 

an involvement between Hh and Wnt signaling, which is linked to GATA6 and FOXA2. 

GATA6 and FOXA2 are transcription factors that are master regulators of embryonic and 

extraembryonic endoderm [22, 31, 32]. Gata6 expression increases directly in response to 

RA, and precedes the up-regulation in Foxa2, which is linked to increased GATA6 

activity [12]. Therefore, investigating the effects of increased Gata6 and Foxa2 

expression on the Ihh gene was examined. Using an in silco analysis, I found that the Ihh 
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promoter contains GATA6 binding sites, suggesting that GATA6 regulates directly or 

indirectly the expression of Ihh (Fig 1.4). To test this, F9 cells were transfected with 

either Gata6 or Foxa2 vectors to overexpress the protein, and when PCR analysis was 

conducted with primers designed to amplify Ihh cDNA, results showed that expression 

increased only in response to the Gata6 vector (Fig. 3.5). Subsequent experiments using 

cells co-transfected with Gata6 and a Gli luciferase reporter were done to test if increased 

Gata6 expression could activate the Hh pathway, specifically in relation to Gli-dependent 

transcriptional activation. Results shows that overexpression of Gata6 led to a significant 

increase in Gli reporter activity (Fig. 3.6), which now places GATA6 in the signaling 

hierarchy upstream of Hh signaling in ExE formation. Together, this study is the first to 

show that GATA6 plays a role in modulating the Hh pathway required for PrE formation.  

The behaviour and characteristics of the Hh pathway during ExE differentiation 

are similar in part to the Wnt signaling pathway. Akin to the canonical Hh pathway, 

messages that encode the Wnt6 ligand are increased in response to RA [16], and to 

increases in Gata6, where regulation of the former is direct since GATA6 binds directly 

to the Wnt6 promoter [12]. How Hh signaling impacts on Wnt signaling was tested using 

chemical activators for each pathway. Results showed that while active Wnt signaling 

increased the transcriptional activity of a Gli reporter construct (Fig. 3.9), active Hh 

signaling at the level of Smoothened was unable to change TCF/LEF reporter activity 

(Fig. 3.7). Interestingly, inhibiting the Hh pathway, also at the level of Smoothened, 

diminished the ability of RA to increase TCF/LEF reporter activity (Fig 3.8). These 

results would suggest that RA activates Wnt and Hh signaling, but blocking the latter 

affects the ability of both pathways to signal to the Gli transcription factors. The question 
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remains as to the node of intersection between the two pathways and for that reason, 

given the data with BIO (Figs. 3.8 and 3.9), I hypothesize it is at the level of GSK3β. As 

described earlier, GSK3β is a constitutively active kinase of the destruction complex 

present in the canonical Wnt/b-catenin pathway. When active, GSK3b ensures b-catenin 

is phosphorylated and primed for ubiquitination and subsequent proteasomal degradation, 

thereby reducing levels of the latter to a point where it cannot function as a co-

transcriptional activator of Wnt target genes. GSK3b is also able to regulate the activity 

of the Gli proteins within the Hh pathway, either indirectly to influence the ability of b-

catenin to bind to Gli3, or directly as it can phosphorylate Gli transcription factors to 

influence post-translational modifications that determine if Gli will become an activator 

(Gli2) or repressor (Gli3) [24]. Unfortunately, I have no evidence from my thesis to test 

this hypothesis, but my work has set the stage and is being continued in the Kelly lab. 

My research builds on the results of several studies that have shown the 

importance of Wnt signaling during PrE differentiation, along with studies that have 

demonstrated the ability of GATA6 to act as a regulator during early extraemrbyonic 

development [12, 14, 16]. Towards that end I propose a model for PrE differentiation that 

incorporates the predicted crosstalk between the Hh and Wnt pathways (Fig 4.1). These 

novel findings are the first step towards understanding how complex the crosstalk is 

between these pathways in ExE formation.  

Further investigation is required in order to pinpoint the node(s) as to where and 

how these pathways communicate during these early events in development, and if in fact 

one pathway (Wnt) is more dominant than the other (Hh). More specifically, to determine 

the checks and balances each pathway imposes on each other. To that end a possible 
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ChIP analysis can be conducted in order to determine whether GATA6 directly binds to 

the Ihh promoter, confirming the initial findings of their interaction within this study. 

Along with this further investigation into the importance of the Hh signalling pathway in 

early embryonic differentiation is required; therefore avenues of future research could 

look into the ability of the specific GLI proteins, GLI 1, 2, and 3, and determine the 

particular effects these proteins have in changing the signalling environment.  

Finally one of the big leads that can be followed from this investigation is the 

importance of GSK3-β as signalling node between both the Hh and Wnt signalling 

pathways. By chemically inhibiting GSK3-β through the use of BIO, this study has 

shown that both Hh and Wnt signalling are significantly affected, therefore further 

investigation into how and where GSK3-β specifically interacts in the ExE signalling 

network will provide valuable information on understanding embryonic development. 

The novel findings in this study have provided the initial steps into thoroughly 

understanding the complex crosstalk network involved in ExE differentiation.   
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Figure 4.1. A model for primitive endoderm differentiation in F9 cells. Retinoic acid 
induces the expression of Gata6, a transcription factor that up-regulates the Wnt6 gene 
through the up-regulation of the Foxa2 and Ihh genes. After transcription and translation 
of the gene products of the Ihh and Wnt6 genes, their respective ligands, Ihh and Wnt6, 
signal to and activate their particular pathways. Once active, both pathways signal 
downstream, which culminates in the respective transcription factors of each pathway 
translocating to the nucleus, and activating (or repressing) genes required for primitive 
endoderm (PrE) differentiation. Dashed lines represent possible crosstalk interactions 
between the two pathways. 
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