
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

11-8-2016 12:00 AM

Towards Comprehensive Parametric Code Generation Targeting Towards Comprehensive Parametric Code Generation Targeting

Graphics Processing Units in Support of Scientific Computation Graphics Processing Units in Support of Scientific Computation

Ning Xie
The University of Western Ontario

Supervisor

Marc Moreno Maza

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Ning Xie 2016

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Numerical Analysis and Scientific Computing Commons, and the Programming Languages

and Compilers Commons

Recommended Citation Recommended Citation
Xie, Ning, "Towards Comprehensive Parametric Code Generation Targeting Graphics Processing Units in
Support of Scientific Computation" (2016). Electronic Thesis and Dissertation Repository. 4257.
https://ir.lib.uwo.ca/etd/4257

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ir.lib.uwo.ca%2Fetd%2F4257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ir.lib.uwo.ca%2Fetd%2F4257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ir.lib.uwo.ca%2Fetd%2F4257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4257?utm_source=ir.lib.uwo.ca%2Fetd%2F4257&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
The most popular multithreaded languages based on the fork-join concurrency model (Cilk-
Plus, OpenMP) are currently being extended to support other forms of parallelism (vectoriza-
tion, pipelining and single-instruction-multiple-data (SIMD)). In the SIMD case, the objective
is to execute the corresponding code on a many-core device, like a GPGPU, for which the CUDA
language is a natural choice. Since the programming concepts of CilkPlus and OpenMP are
very different from those of CUDA, it is desirable to automatically generate optimized CUDA-like
code from CilkPlus or OpenMP.

In this thesis, we propose an accelerator model for annotated C/C++ code together with an
implementation that allows the automatic generation of CUDA code. One of the key features of
this CUDA code generator is that it supports the generation of CUDA kernel code where program
parameters (like number of threads per block) and machine parameters (like shared memory
size) are treated as unknown symbols. Hence, these parameters need not to be known at code-
generation-time: machine parameters and program parameters can be respectively determined
when the generated code is installed on the target machine.

In addition, we show how these parametric CUDA programs can be optimized at compile-
time in the form of a case discussion, where cases depend on the values of machine parame-
ters (e.g. hardware resource limits) and program parameters (e.g. dimension sizes of thread-
blocks).

This generation of parametric CUDA kernels requires to deal with non-linear polynomial
expressions during the dependence analysis and tiling phase of the input code. To achieve these
algebraic calculations, we take advantage of techniques from computer algebra, in particular
in the RegularChains library of Maple. Various illustrative examples are provided together
with performance evaluation. Our preliminary implementation uses LLVM, Maple and PPCG;
moreover, it successfully processes a variety of standard test-examples.

Keywords: Many-core machine model; Parametric CUDA code generation; Polynomial
arithmetic; Compiler optimization

i

Acknowledgements

With your greatest help, I become who I am today. With your enlightenment, I achieve what I
have today.

Special thanks sincerely for the insightful guidance from Prof. Marc Moreno Maza and
the great collaboration with Prof. Robert M. Corless, Dr. Changbo Chen, Dr. Yuzhen Xie,
Dr. Sardar A. Haque, Svyatoslav Covanov, Farnam Mansouri, Robert H.C. Moir and Xiaohui
Chen. Many thanks to industry partners: Dr. Jürgen Gerhard from Maplesoft R&D department,
and Wang Chen, Abdoul-Kader Keita and Jeeva Paudel from IBM compiler group for making
this research work have practical uses.

Big thanks to the supervisory committees: Prof. Mark Daley and Prof. Yuri Boykov for
advices and comments. It is my honor to have Dr. Matteo Frigo, Prof. Robert M. Corless,
Prof. Michael Bauer and Prof. Roberto Solis-Oba as the examiners. I would like to express
my gratitude for their comments and questions. With all my heart, I appreciate the continued
support of my parents, colleagues, friends, the ORCCA laboratory and the Computer Science
Department of The University of Western Ontario.

The work was supported by NSERC of Canada, MITACS, Maplesoft Inc. and IBM Corp..

Dream my life, live my dream. To a better self.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vi

List of Tables x

List of Algorithms xii

List of Appendices xiii

1 Introduction 1
1.1 Contributions of this thesis . 5
1.2 Outline of this thesis . 6

2 Background 10
2.1 Models of computation . 10

2.1.1 Fork-join model . 10
2.1.2 PRAM model . 11

2.2 General-purpose GPU computing . 13
2.2.1 The Compute Unified Device Architecture (CUDA) 14
2.2.2 Modern GPU architectures . 15

2.3 Dense arithmetic over finite fields with the CUMODP library 16
2.4 The MetaFork language . 17
2.5 Automatic parallelization in the polyhedral model 19

2.5.1 Z-polyhedron . 20
2.5.2 Polyhedral iteration domain . 21
2.5.3 Data dependence graph . 21
2.5.4 Dependence polyhedron . 22
2.5.5 Affine transformation . 23
2.5.6 Farkas multipliers . 24
2.5.7 Feautrier’s algorithm . 24
2.5.8 PLUTO’s algorithm . 25

2.6 Solving systems of polynomial equations and inequalities 26

3 The Basic Polynomial Algebra Subprograms 30

iii

3.1 Design and specification . 30
3.2 User interface . 31
3.3 Implementation techniques . 34
3.4 Experimental evaluation . 35
3.5 Application . 37

4 A Many-Core Machine Model 41
4.1 Introduction . 41
4.2 A many-core machine model . 43

4.2.1 Characteristics of the abstract many-core machines 43
4.2.2 Many-core machine programs . 46
4.2.3 Complexity measures for the many-core machine model 46
4.2.4 A Graham-Brent theorem with parallelism overhead 47

4.3 The Euclidean algorithm . 48
4.4 Fast Fourier Transform . 52

4.4.1 Cooley & Tukey algorithm . 52
4.4.2 Stockham algorithm . 53
4.4.3 Comparison of running time estimates 54

4.5 Polynomial multiplication . 55
4.5.1 Plain multiplication . 55
4.5.2 FFT-based multiplication . 58
4.5.3 Comparison of running time estimates 59

4.6 Radix sort . 60
4.7 Conclusion . 62

5 MetaFork-to-CUDA: Generation of Parametric CUDA Kernels 63
5.1 Optimizing CUDA kernels depending on program parameters 64
5.2 Automatic parametric CUDA kernel generation 65
5.3 The MetaFork-to-CUDA code generator . 67
5.4 Experimentation . 73
5.5 Conclusion . 80

6 Generation of Optimized CUDA Kernel Code 84
6.1 Case study: matrix multiplication . 84
6.2 Experimentation . 90
6.3 Conclusion . 94

7 Towards Comprehensive Parametric CUDA Kernel Generation 96
7.1 Comprehensive optimization . 99

7.1.1 Hypotheses on the input code fragment 100
7.1.2 Hardware resource limits and performance measures 100
7.1.3 Evaluation of resource and performance counters 102
7.1.4 Optimization strategies . 102
7.1.5 Comprehensive optimization . 103
7.1.6 Data-structures . 104

iv

7.1.7 The algorithm . 104
7.2 Comprehensive translation of an annotated C program into CUDA kernels 109

7.2.1 Input MetaFork code fragment . 110
7.2.2 Comprehensive translation into parametric CUDA kernels 111

7.3 Implementation details . 111
7.4 Experimentation . 113
7.5 Conclusion . 121

8 Conclusion and Future Work 123

Bibliography 125

A Sample Code in the BPAS Library 135
A.1 Adaptive algorithms . 135
A.2 User interfaces . 136

B Theoretical Analysis of Fundamental Algorithms Using the MCM Model 139

C Documentation for MetaFork-to-CUDA Code Generator 181
C.1 Assumptions on the sytax of MetaFork statements 181
C.2 Schedule tree for MetaFork and parametric CUDA code 183

D Examples Generated by PPCG 188

E The Implementation for Generating Comprehensive MetaFork Programs 193

Curriculum Vitae 196

v

List of Figures

1.1 A C program for reversing a one-dimensional array 2
1.2 The CUDA program for reversing a one-dimensional array 3
1.3 Parametric CUDA kernel for reversing a one-dimensional array 4
1.4 Two CUDA kernels based on possible values of machine and program parame-

ters for reversing a one-dimensional array, where Z is the maximum number
of shared memory words per processor supported by the hardware architec-
ture and R is the maximum number of registers per thread supported by the
hardware architecture . 6

1.5 Overview of the thesis . 8

2.1 An example of computation DAG: Fourth Fibonacci 11
2.2 Matrix multiplication written in CilkPlus . 12
2.3 Overview of a hybrid CPU-GPU system . 13
2.4 Execution of a CUDA program . 14
2.5 Using MetaFork to translate a given CilkPlus program into a OpenMP program 18
2.6 Using MetaFork to translate a given OpenMP program into a CilkPlus program 18
2.7 Using MetaFork to translate a given OpenMP program into a CilkPlus program 19
2.8 For-loop nest in the polyhedral model . 20
2.9 An example of the data dependence graph of the source program 22
2.10 The transformed code based on time and processor coordinates 24
2.11 A triangular decomposition into semi-algebraic systems computed with the

RealTriangularize command . 28
2.12 Output of the RealTriangularize command for the EVE surface 28

3.1 A subset of BPAS algebraic data structures . 32
3.2 Another subset of BPAS algebraic data structures 33
3.3 A snapshot of BPAS code . 33
3.4 Multiplication scheme for dense univariate integer polynomials 35
3.5 Dense integer polynomial multiplication: BPAS vs FLINT vs Maple 36
3.6 The htop screenshot of multiplying two large integer polynomials in BPAS . . . 37
3.7 An example of matchable interval lists . 39
3.8 A sample output of realSymbolicNumericIntegrate 40

4.1 Overview of an abstract many-core machine 44
4.2 Overview of a many-core machine program 44
4.3 An example of a thread-block DAG . 48

vi

4.4 Illustration of reads and writes by a thread-block in either ping-ping or ping-
pong phase of the Euclidean algorithm . 50

4.5 Running time on GeForce GTX 670 of our multithreaded Euclidean algorithm
for univariate polynomials of sizes n and m over Z/pZ, where p is a 30-bit
prime, whereas the program parameter takes values s = 1 and s = 256 52

4.6 Multiplication phase: illustration of a thread-block reading coefficients from a,
b and writing to the auxiliary array M . 57

4.7 Addition phase: illustration of a thread-block reading and writing to the auxil-
iary array M . 57

4.8 Running time of the plain polynomial multiplication algorithm with polynomi-
als a (deg(a) = n − 1) and b (deg(b) = m − 1) and the parameter s on GeForce
GTX 670 . 59

4.9 Running time of the plain and FFT-based multiplication algorithms with the
input size n on GeForce GTX 670 . 60

5.1 Overview of the implementation of the MetaFork-to-CUDA code generator . . . 69
5.2 One-dimensional stencil computation, namely Jacobi, written in C 70
5.3 1D Jacobi written in MetaFork . 70
5.4 Generated parametric CUDA kernel for 1D Jacobi 71
5.5 Generated host code for 1D Jacobi . 72
5.6 Serial code, MetaFork code and generated parametric CUDA kernel for array

reversal . 74
5.7 Serial code, MetaFork code and generated parametric CUDA kernel for 2D Jacobi 76
5.8 Serial code, MetaFork code and generated parametric CUDA kernel for LU de-

composition . 78
5.9 Serial code, MetaFork code and generated parametric CUDA kernel for matrix

transpose . 79
5.10 Serial code, MetaFork code and generated parametric CUDA kernel for matrix

addition . 80
5.11 Serial code, MetaFork code and generated parametric CUDA kernel for matrix

vector multiplication . 81
5.12 Post-processing CUDA kernel with coalesced accesses for matrix vector multi-

plication . 82
5.13 Serial code, MetaFork code and generated parametric CUDA kernel for matrix

matrix multiplication . 83

6.1 Multiplication of two matrices . 84
6.2 The MetaFork code with the granularity loop and good data alignment for

matrix multiplication . 85
6.3 Post-processing the generated CUDA kernel code for matrix multiplication with

the granularity loop . 87
6.4 CUDA kernel with unrolling the granularity loop for matrix multiplication 89
6.5 The serial C code with good data locality for matrix multiplication 90
6.6 The MetaFork code and its kernel code with the granularity loop for reversing

a one-dimensional array . 92

vii

6.7 The MetaFork code and its kernel code with the granularity loop for 1D Jacobi 93
6.8 The MetaFork code and its kernel code with the granularity loop for matrix

addition . 93
6.9 The MetaFork code and its kernel code with the granularity loop for matrix

transpose . 94
6.10 The MetaFork code and its kernel code with the granularity loop for matrix

vector multiplication . 95

7.1 Matrix addition written in C (the left-hand portion) and in MetaFork (the right-
hand portion) with a meta for loop nest, respectively 97

7.2 Comprehensive translation of MetaFork code to two kernels for matrix addition 98
7.3 The decision tree for comprehensive parametric CUDA kernels of matrix addition 99
7.4 Matrix vector multiplication written in C (the left-hand portion) and in Meta-

Fork (the right-hand portion), respectively . 102
7.5 The decision subtree for resource or performance counters 108
7.6 The serial elision of the MetaFork program for matrix vector multiplication . . 111
7.7 The software tools involved for the implementation 112
7.8 Computing the amount of words required per thread-block for reversing a 1D

array . 113
7.9 The first case of the optimized MetaFork code for array reversal 114
7.10 The second case of the optimized MetaFork code for array reversal 115
7.11 The third case of the optimized MetaFork code for array reversal 115
7.12 The first case of the optimized MetaFork code for matrix vector multiplication 115
7.13 The second case of the optimized MetaFork code for matrix vector multiplication116
7.14 The third case of the optimized MetaFork code for matrix vector multiplication 116
7.15 The MetaFork source code for 1D Jacobi . 117
7.16 The first case of the optimized MetaFork code for 1D Jacobi 117
7.17 The second case of the optimized MetaFork code for 1D Jacobi 118
7.18 The third case of the optimized MetaFork code for 1D Jacobi 118
7.19 The first case of the optimized MetaFork code for matrix addition 119
7.20 The second case of the optimized MetaFork code for matrix addition 119
7.21 The third case of the optimized MetaFork code for matrix addition 119
7.22 The first case of the optimized MetaFork code for matrix transpose 120
7.23 The second case of the optimized MetaFork code for matrix transpose 120
7.24 The third case of the optimized MetaFork code for matrix transpose 120
7.25 The first case of the optimized MetaFork code for matrix matrix multiplication 121
7.26 The second case of the optimized MetaFork code for matrix matrix multiplication121
7.27 The third case of the optimized MetaFork code for matrix matrix multiplication 122

C.1 An example of the meta schedule statement 182

D.1 PPCG code and generated CUDA kernel for array reversal 188
D.2 PPCG code and generated CUDA kernel for matrix addition 188
D.3 PPCG code and generated CUDA kernel for 1D Jacobi 189
D.4 PPCG code and generated CUDA kernel for 2D Jacobi 189

viii

D.5 PPCG code and generated CUDA kernel for LU decomposition 190
D.6 PPCG code and generated CUDA kernel for matrix vector multiplication 191
D.7 PPCG code and generated CUDA kernel for matrix transpose 191
D.8 PPCG code and generated CUDA kernel for matrix matrix multiplication 192

ix

List of Tables

3.1 One-dimensional modular FFTs: Modpn vs BPAS 34
3.2 Cilkview analysis of BPAS and KS (∗ shows the number of instructions) 37
3.3 Univariate real root isolation running times (in secs.) for four examples 38
3.4 Running times (in secs.) of multivariate real root isolation: BPAS vs Maple 17

RealRootIsolate vs C (with Maple 17 interface) Isolate 40

4.1 Running time (in secs) of the Cooley & Tukey and Stockham FFT algorithms
with the input size n on GeForce GTX 670 . 55

5.1 Speedup comparison of reversing a one-dimensional array between PPCG and
MetaFork kernel code . 74

5.2 Speedup comparison of 1D Jacobi between PPCG and MetaFork kernel code . . 75
5.3 Speedup comparison of 2D Jacobi between PPCG and MetaFork kernel code . . 75
5.4 Speedup comparison of LU decomposition between PPCG and MetaFork ker-

nel code . 77
5.5 Speedup comparison of matrix transpose between PPCG and MetaFork kernel

code . 77
5.6 Speedup comparison of matrix addition between PPCG and MetaFork kernel

code . 79
5.7 Speedup comparison of matrix vector multiplication among PPCG kernel code,

MetaFork kernel code and MetaFork kernel code with post-processing 80
5.8 Speedup comparison of matrix multiplication between PPCG and MetaFork

kernel code . 81
5.9 Timings (in sec.) of quantifier elimination for eight examples 82

6.1 Experimental results of matrix multiplication for the CUDA kernel with the
shared memory for the output matrix and the granularity of threads 86

6.2 Experimental results of matrix multiplication for the CUDA kernel with the local
memory for the output matrix and the granularity of threads 88

6.3 For input matrices of order 210, speedup factors of the matrix multiplication
kernel unrolling the computation . 88

6.4 For input matrices of order 210, speedup factors of the matrix multiplication
kernel unrolling the copy-in, computation and copy-out phases with a compi-
lation flag --maxrregcount=40 . 90

6.5 Speedup factors obtained with kernels generated by PPCG and MetaFork with
post-processing, respectively, w.r.t. the serial C code with good data locality
for matrix multiplicationm . 91

x

6.6 Speedup factors of reversing a one-dimensional array for input vector of length
225 . 91

6.7 Speedup factors of 1D Jacobi for time iteration 4 and input vector of length 215+2 92
6.8 Speedup factors of matrix addition for input matrix of order 212 92
6.9 Speedup factors of matrix transpose for input matrix of order 214 94
6.10 Speedup factors of matrix vector multiplication for input matrix of order 213

and input vector of length 213 (An error indicates that the total amount of re-
quired shared memory exceeds the hardware limit.) 94

7.1 Optimization strategies with their codes . 114

xi

List of Algorithms

1 OptGcdKer(a, b, s, da, db) . 49
2 PlainMultiplicationGPU(a, b, s) . 56
3 MulKer(a, b,M, n,m, s) . 56
4 AddKer(M, f , y, s, x, i) . 57

5 ComprehensiveOptimization (Q(S)) . 105
6 Optimize . 106

7 MultiParametricCodeOptimizer(f ileName) . 193
8 Optimize(plan, task) . 194
9 Optimize(plan, task) . 195

xii

List of Appendices

Appendix A Sample Code in the BPAS Library . 135
Appendix B Theoretical Analysis of Fundamental Algorithms Using the MCM Model . . 139
Appendix C Documentation for MetaFork-to-CUDA Code Generator 181
Appendix D Examples Generated by PPCG . 188
Appendix E The Implementation for Generating Comprehensive MetaFork Programs . . 193

xiii

Chapter 1

Introduction

It is well known that the impact of the high-performance software for both numerical and ex-
act linear algebra on engineering and scientific computing is tremendous, worthy of the great
efforts that have been put for more than thirty years. The most significant results are software
projects like BLAS [76], LAPACK [3], ATLAS [121] and LinBox [43]. The same remark
should be extended to the processing of linear transforms, in particular, Fast Fourier Trans-
forms, where notable works are the SPIRAL [98] and FFTW [48] projects, as well as to com-
puter algebra, see the recent proceedings of the international workshop on parallel symbolic
computation (PASCO) [44, 88, 89].

The successful techniques employed in those software projects include implementation
of highly efficient algorithms for basic routines, block-based algorithms for better exploiting
the memory hierarchies, parallel and distributed processing, as well as automatically optimiz-
ing and tuning code on different platforms. This trend has been stimulated by the advent
of hardware acceleration technologies (multicore processors, cell processors, general-purpose
graphics processing units (GPGPUs), field programmable gate arrays (FPGAs)) provide vast
opportunities for innovation in computing. In particular, GPGPUs combined with low-level
heterogeneous programming models, such as CUDA (the Compute Unified Device Architecture,
see [95, 73]), brought super-computing to the level of the desktop computer.

However, these low-level programming models carry notable challenges, even to expert
programmers. Indeed, fully exploiting the power of hardware accelerators by writing CUDA
code often requires significant code optimization efforts. While such efforts can yield high
performance, it is desirable for many programmers to avoid the explicit management of the
hardware accelerator, e.g. data transfer between the host (or CPU) and the device (or GPGPU)
or between memory levels of the device. For this reason, the most popular multithreaded
languages, in particular CilkPlus [10, 79] and OpenMP [41, 13, 9], are based on the fork-join
concurrency model targeting multi-core architectures rather than GPGPUs. Currently, these
multithreaded languages are being extended to support other forms of parallelism, such as
vectorization, pipe-lining and single-instruction-multiple-data (SIMD). In the SIMD case, the
case we are interested in this thesis, the objective is to execute the corresponding code on a
many-core GPGPU, for which the CUDA language is a natural choice.

To overcome the challenge of developing software targeting many-core GPGPUs, high-
level models for accelerator programming, notably OpenMP and OpenACC [113, 56], have be-
come an important research direction. With these models, programmers only need to annotate

1

2 Chapter 1. Introduction

their C/C++ (or FORTRAN) code to indicate which portion of code is to be executed on the
device, and how data is mapped between the host and the device.

In OpenMP and OpenACC, the work distributed among the processors of the device can be
expressed in a loose manner or even ignored. This implies that code optimization techniques
must be applied in order to derive efficient CUDA code. Moreover, existing software packages
(e.g. PPCG [115], C-to-CUDA [6], hiCUDA [57], CUDA-CHiLL [101]) for generating CUDA code
from annotated C/C++ programs, either let the user choose, or make assumptions on the char-
acteristics of the targeted hardware and on how the work is divided among the processors of
that device. These choices and assumptions limit code portability as well as opportunities for
code optimization. This latter fact will be illustrated with the following example for reversing
a one-dimensional array.

Example 1 Consider the C program on Figure 1.1 for reversing a one-dimensional array,
where each element of the input vector In is moved to the appropriate position of the out-
put vector Out. Figure 1.2 gives a corresponding CUDA program, where the host code, shown
on Figure 1.2(a), launches a kernel on the device, shown on Figure 1.2(b). Note that the kernel
code makes a few assumptions:

(1) The array length N is less than the maximum number of threads that the hardware archi-
tecture supports.

(2) 32 divides N.
In order to launch a kernel function, one must specify the grid and thread-block formats (in-
troduced in Section 2.2). In our example of Figure 1.2 32 threads per thread-block and N/32
thread-blocks per grid are specified for kernel0. Observe also that the program explicitly han-
dles the data placement on the device, for instance, on Figure 1.2, allocating shared memory
for array In and using the global memory for array Out.

int N, In[N], Out[N];

// Initializing

for (int i = 0; i < N; i++)

In[i] = i+1;

// Reversing the array In

for(int i = 0; i < N; i++)

Out[N-1-i] = In[i];

Figure 1.1: A C program for reversing a one-dimensional array

The C-to-CUDA code generation introduced in [6] is known to be the first source-to-source
polyhedral framework (see Section 2.5 for the term polyhedral) that translates serial C pro-
grams into CUDA programs. However, manual post-processing, such as placing synchronization
statements in the kernel code, is required for generating a compilable CUDA kernel.
PPCG [115] automatically generates CUDA code from a given serial C program. In particular,

Feautrier’s and PLUTO’s algorithms, respectively presented in [46] and [15], are adopted by the
PPCG designers for exploring parallelization opportunities in serial programs.

3

int N, In[N], Out[N];

// Initializing

for (int i = 0; i < N; i++)

In[i] = i+1;

int *dev_In, *dev_Out;

// Allocating memory spaces on the device

cudaMalloc((void **) &dev_In, (N)*sizeof(int));

cudaMalloc((void **) &dev_Out, (N)*sizeof(int));

// Copying the data from host to device

cudaMemcpy(dev_In, In, (N)*sizeof(int), cudaMemcpyHostToDevice);

cudaMemcpy(dev_Out, Out, (N)*sizeof(int), cudaMemcpyHostToDevice);

// Launching the kernel

dim3 dimBlock(32);

dim3 dimGrid(N/32);

kernel0 <<<dimGrid, dimBlock>>> (dev_In, dev_Out, N);

// Copying the data from device to host

cudaMemcpy(Out, dev_Out, (N)*sizeof(int), cudaMemcpyDeviceToHost);

// Freeing the memory spaces on the device

cudaFree(dev_In);

cudaFree(dev_Out);

(a) The host code

__global__ void kernel0(int *In, int *Out, int N) {

int idx = blockIdx.x * 32 + threadIdx.x;

__shared__ int shared_In[32];

if (idx < N) {

shared_In[threadIdx.x] = In[idx];

__syncthreads();

Out[N-1-idx] = shared_In[threadIdx.x];

}

}

(b) The device code

Figure 1.2: The CUDA program for reversing a one-dimensional array

However, by default, PPCG uses 32 (resp. 16 × 32) as the thread-block format in the gener-
ated one-dimensional (resp. two-dimensional) kernels; meanwhile, PPCG also allows the user
to pass a numerical value as the thread-block format.
hiCUDA (acronym for high-level CUDA) [57] is defined as a directive-based language for

generating CUDA programs from C programs. To be precise, hiCUDA relies on the pragma
mechanism provided by the C/C++ standards to indicate how the work is distributed among

4 Chapter 1. Introduction

threads and how the data is mapped on the device. However, the grid and thread-block formats
of a kernel must be specified as integer expressions.
CUDA-CHiLL [101] presents a script-based compiler framework for transforming annotated

C programs to CUDA programs. Moreover, in [72], a transformation strategy generator is intro-
duced with CUDA-CHiLL, such that several candidate CUDA kernels are generated, by varying
data placement (shared memory or register) and numerical values of parameters (like thread-
block sizes). Then, empirical evaluation of those candidate CUDA kernels is performed so as to
select the CUDA kernel with the best performance by the end.

In summary, for those CUDA kernels generated by PPCG, C-to-CUDA, hiCUDA and CUDA-CHiLL,
the program parameters (e.g. the number of threads per thread-block) and the machine param-
eters (e.g. the shared memory size) are numerical values instead of unknown symbols.

In this thesis, we propose an accelerator model for annotated C/C++ code, together with an
implementation, that allows the automatic generation of CUDA code. One of the key features of
this CUDA code generator is that it supports the generation of CUDA kernel code where program
parameters (like number of threads per block) and machine parameters (like shared memory
size) are treated as unknown symbols. Thus, machine parameters can be specialized to actual
values when the generated CUDA code is compiled on the targeted hardware. The program pa-
rameters can be either optimized by techniques developed in this thesis or automatically tuned
at run-time. As an illustration, following up on Example 1, a CUDA kernel code depending on
one program parameter, along with a kernel function call from the host, is shown in Figure 1.3
where the variable B specifies the thread-block format. Observe that kernel1 takes the pro-
gram parameter B as an argument, whereas the kernel0 in Figure 1.2 takes data parameters
In, Out and N only.

__global__ void kernel1(int *In, int *Out, int N, int B) {

int idx = blockIdx.x * B + threadIdx.x;

// BLOCK_0 should be pre-defined as a constant

// and be equal to B

__shared__ int shared_In[BLOCK_0];

if (idx < N) {

shared_In[threadIdx.x] = In[idx];

__syncthreads();

Out[N-1-idx] = shared_In[threadIdx.x];

}

}

// The kernel function call from the host

dim3 dimBlock(B);

dim3 dimGrid(N/B);

kernel1 <<<dimGrid, dimBlock>>> (dev_In, dev_Out, N, B);

Figure 1.3: Parametric CUDA kernel for reversing a one-dimensional array

Furthermore, given machine parameters represented as unknown symbols as well, we aim
at optimizing CUDA kernels, such that for each possible value of the machine and program

1.1. Contributions of this thesis 5

parameters, we provide a correspondingly optimal CUDA kernel. Of course, the meaning of
optimal has to be clearly defined, which will be done in Chapter 7.

To continue with our example, consider two machine parameters for the targeted GPGPU
device:

Z: the maximum number of shared memory words per processor supported by the hardware
architecture,

R: the maximum number of registers per thread supported by the hardware architecture.
For the C program in Example 1, we generate two CUDA kernels based on the possible values
of the machine and program parameters, see Figure 1.4.

Observe that each thread in kernel2 moves two elements of array In to the corresponding
positions of array Out, whereas kernel1 is identical to the kernel in Figure 1.3. By doing so,
kernel2 increases arithmetic intensity so as to hide the data transfer time between the global
and shared memories for array In; however, this increases both register usage (from 6 to 8) and
shared memory usage (from B to 2*B) machine words. Therefore, kernel2 works correctly
and is optimal under the system of the constraints C2 but not under the system of the constraints
C1.

1.1 Contributions of this thesis
One of main objectives of this thesis is to generate CUDA kernels with program and machine
parameters represented by unknown symbols. We call such kernels parametric. These param-
eters need not be known at code-generation time. Machine parameters (e.g. shared memory
size) and program parameters (e.g. number of threads per thread-block) can be, respectively,
determined when the generated CUDA code is installed on the targeted hardware. The challenge
here is that any manipulation of non-linear expressions to be generated in the CUDA kernel
requires specific code generation techniques relying on algebraic computation.

A second objective is to optimize parametric CUDA programs at compile-time, in the form
of a case discussion, where cases depend on the possible values of machine parameters and
program parameters. This leads us to the concept of comprehensive parametric CUDA kernels.
To be more precise, given an input annotated C code., this is a decision tree, where each edge
holds a Boolean expression (given by polynomial constraints) and each leaf is either a CUDA
program such that for each leaf K we have:

1. K works correctly under the conjunction of the Boolean expressions located between the
root node and the leaf, and

2. K is semantically equivalent to C.
In each Boolean expression, the unknown variables represent machine parameters and program
parameters. This case discussion can be handled by techniques from symbolic computation.
Automatic parametric kernel code generation can, then, be achieved by means of combining
an optimizing compiler and a computer algebra system.

A third objective of this thesis is to measure the performance of parametric algorithms or
programs targeting many-core devices like GPGPUs. To this end, a model of multithreaded
computation targeting many-core architectures is introduced, such that one can either tune a
program parameter to determine a value range minimizing parallelism overheads, or compare
different multi-threaded algorithms solving the same problem.

6 Chapter 1. Introduction

C1 :
{

B ≤ Z < 2 B

∪
{

6 ≤ R < 8

__global__ void kernel1(int *In, int *Out, int N, int B)

{

int idx = blockIdx.x * B + threadIdx.x;

// BLOCK_0 should be pre-defined as a constant

// and be equal to B

__shared__ int shared_In[BLOCK_0];

if (idx < N) {

shared_In[threadIdx.x] = In[idx];

__syncthreads();

Out[N-1-idx] = shared_In[threadIdx.x];

}

}

dim3 dimBlock(B);

dim3 dimGrid(N/B);

kernel1 <<<dimGrid, dimBlock>>> (dev_In, dev_Out, N, B);

C2 :
{

2 B ≤ Z
8 ≤ R

__global__ void kernel2(int *In, int *Out, int N, int B)

{

int even_idx = blockIdx.x * 2 * B + 2 * threadIdx.x;

int odd_idx = blockIdx.x * 2 * B + 2 * threadIdx.x + 1;

// BLOCK_0 should be pre-defined as a constant

// and be equal to B

__shared__ int shared_In[2*BLOCK_0];

if (even_idx < N && odd_idx < N) {

shared_In[2*threadIdx.x] = In[even_idx];

shared_In[2*threadIdx.x+1] = In[odd_idx];

__syncthreads();

Out[N-1-even_idx] = shared_In[2*threadIdx.x];

Out[N-1-odd_idx] = shared_In[2*threadIdx.x+1];

}

}

dim3 dimBlock(B);

dim3 dimGrid(N/(2*B));

kernel2 <<<dimGrid, dimBlock>>> (dev_In, dev_Out, N, B);

Figure 1.4: Two CUDA kernels based on possible values of machine and program parameters
for reversing a one-dimensional array, where Z is the maximum number of shared memory
words per processor supported by the hardware architecture and R is the maximum number of
registers per thread supported by the hardware architecture

We observe that classical models of parallel computation, namely the fork-join concurrency
model [11] and the parallel random access machine (PRAM) model [110, 51], do not distin-
guish between the task-based and data-based parallelism. Thus, those models are too simplistic
for analyzing algorithms targeting GPGPUs.

1.2 Outline of this thesis

In Chapter 2, various topics related to our work are reviewed. We first discuss briefly classical
models of computation for concurrency platforms. In particular, we review the CUDA pro-
gramming model and some important features of modern GPU architectures [36, 37]. We also

1.2. Outline of this thesis 7

review the MetaFork language [29], which is a linguistic extension of C/C++ with high-level
parallel programming constructs. Similarly to OpenMP and OpenACC, the MetaFork language
offers a high-level model for accelerator programming. We stress the fact that this thesis does
not deal with dependence analysis and the computation of schedules in automatic paralleliza-
tion; this can be done via the polyhedral model [46, 15] that we briefly review in Chapter 2. Fi-
nally, in that same chapter, we give an overview of the algorithmic tools [4, 25, 23, 24, 112, 22]
for dealing with systems of non-linear polynomial equations and inequalities.

In Chapter 3, we present the Basic Polynomial Algebra Subprograms (BPAS) library for
arithmetic operations with univariate and multivariate polynomials, dense or sparse. The BPAS
library is written in CilkPlus targeting multi-core architectures. The original goal of this the-
sis was to investigate how to integrate code targeting GPGPUs (for instance, from the CUMODP
library) within the BPAS library. These two libraries, BPAS and CUMODP, are developed in our
research group; moreover, this leads us to the idea of developing frameworks, such as Meta-
Fork, for translating programs between different concurrency platforms. We also note that, the
BPAS library, as a computer algebra library targeting high-performance, could also be used, in
the future, for improving the efficiency of our algebraic tools for generating parametric CUDA
kernels. The work reported in Chapter 3 is an extended version of [20] as well as a joint project
with Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Robert Moir, Marc Moreno Maza
and Yuzhen Xie. Appendix A lists sample codes from the BPAS library.

Chapter 4 presents a model of multithreaded computation with an emphasis on estimating
the parallelism overheads of programs targeting many-core machines. To evaluate the perfor-
mance of a given CUDA-like program, we consider three complexity measures, namely work,
span and parallelism overhead. We also extend the Graham-Brent theorem so as to estimate
the running time of a CUDA-like program on a given number of streaming multiprocessors. We
evaluate the benefits of our model on six fundamental algorithms, including the Euclidean al-
gorithm for univariate polynomial GCDs, two fast Fourier transform algorithms, the plain and
FFT-based univariate polynomial multiplication algorithms, and radix sort [103]. Each studied
algorithm is either implemented in the CUMODP library or reported in [103]. We observe that
experimentation is coherent with the theoretical analysis based on our model. The work in
Chapter 4 is an extended version of [61] as well as a joint project with Sardar Anisul Haque
and Marc Moreno Maza.

Chapter 5 reports on a preliminary implementation of the C-to-CUDA code generator dis-
cussed above. Generating parametric CUDA kernels implies dealing with non-linear polynomial
expressions, particularly during the tiling phase. To achieve these algebraic calculations, we
take advantage of quantifier elimination (QE) and its implementation of the RegularChains
library of Maple [27]. In order to illustrate the merits of parametric CUDA kernels, we use our
code generator on eight test cases: array reversal, 1D Jacobi, 2D Jacobi, LU decomposition,
matrix transposition, matrix addition, matrix vector multiplication and matrix matrix multipli-
cation. The performance evaluation of the generated CUDA programs of each test case is pro-
vided as well. Chapter 5 is related to [19] and is joint work with Changbo Chen, Xiaohui Chen
and Marc Moreno Maza. Appendix C provides documentation of our MetaFork-to-CUDA code
generator, while Appendix D collects the generated CUDA programs by PPCG for those same
eight test cases.

In Chapter 6, based on the experimental results conducted in Chapter 5, we study advanced
optimization techniques, such as the controlling granularity of threads and loop unrolling, We

8 Chapter 1. Introduction

use six test cases so as to verify whether these techniques can, in general, further improve the
performance of parametric CUDA kernels. For each test case, since we use the MetaFork lan-
guage as the high-level accelerator programming model, the portion of the code that should
be translated into CUDA kernels is annotated manually. Along with the previous chapter, ex-
perimentation shows that the generation of parametric CUDA kernels can lead to significant
performance improvement w.r.t. approaches based on the generation of CUDA kernels that are
not parametric. Moreover, for certain test cases, our experimental results show that the optimal
choices for program parameters may depend on the problem size.

In Chapter 7, we propose an algorithm for comprehensive optimization of an annotated C
program, depending on parameters treated as symbols at compile-time. We use this algorithm
to generate optimized parametric CUDA kernels in the form of a case discussion based on the
possible values of the machine and program parameters. In our preliminary implementation
of the comprehensive optimization algorithm, we consider two machine parameters: register
usage per thread and required shared memory per thread-block; meanwhile, we apply four
code optimization strategies: caching data in local or shared memory, reducing register usage
per thread, controlling thread granularity and eliminating common sub-expressions. This is a
proof-of-concept implementation written in Maple and dedicated to the comprehensive gener-
ation of optimized MetaFork programs from an input MetaFork program. For each of the
six test cases: array reversal, matrix vector multiplication, 1D Jacobi, matrix addition, matrix
transpose and matrix matrix multiplication, three optimized MetaFork programs are generated
with systems of constraints. Chapter 7 is joint work with Xiaohui Chen and Marc Moreno
Maza. Appendix E provides the pseudo-codes of the implemented algorithms.

Chapter 1
Introduction

Chapter 3
BPAS

Chapter 2
Background

Chapter 4
Many-Core Machine Model

Chapter 5
Parametric Code Generation

Chapter 6
Optimized Kernel Code

Chapter 7
Comprehensive Optimization

RegularChains
of MapleA

lgebraic calculatio n

F
ut

ur
e

Figure 1.5: Overview of the thesis

To summarize, Figure 1.5 gives an overview of this thesis. The BPAS library is freely

1.2. Outline of this thesis 9

available in source at http://www.bpaslib.org, and the MetaFork-to-CUDA code generator
is freely available in source at http://www.metafork.org.

In the future, we plan to apply our MetaFork-to-CUDA code generator to efficiency-critical
routines of the BPAS library code. Meanwhile, we plan to improve the run-time performance
of our MetaFork-to-CUDA code generator by using BPAS instead of Maple for dealing with the
non-linear expressions arising in the generation of parametric CUDA code.

http://www.bpaslib.org
http://www.metafork.org

Chapter 2

Background

In this chapter, we review background materials related to our work. Section 2.1 is dedicated to
classical models of parallel computation. Section 2.2 discusses briefly the features of modern
GPU architectures and the programming model CUDA. Section 2.3 gives an overview of the
CUMODP library, which is used in the experimentation reported in Chapter 4. In Section 2.4, we
present the MetaFork language, which serves as a high-level parallel programming model for
automatic CUDA code generation in Chapters 5, 6 and 7. In Section 2.5, we study Feautrier’s and
PLUTO’s algorithms in the so-called polyhedral model. Finally, Section 2.6 is an overview of
the algorithmic tools used for dealing with systems of polynomial equations and inequalities.

2.1 Models of computation

Based on Flynn’s taxonomy [47], single instruction multiple data (SIMD) is defined as one of
the categories of parallel computers, where multiple processing units execute the same instruc-
tions on multiple data sets. In this scheme, data is distributed across different processing units
so as to achieve data parallelism. In contrast, task parallelism distributes tasks (or functions)
to different processing units.

As mentioned before, with the pervasive ubiquity of many-core processors, in particular
GPUs, models of computation must take into account both task-based and data-based paral-
lelism. In fact, popular concurrency platforms (such as CilkPlus [10, 79], CUDA [95, 73] and
OpenCL [111]) offer both forms of parallelism, with parallel constructs specific to each case.

Hereafter, we review two classical models of parallel computation, the fork-join model in
Section 2.1.1 and the parallel RAM (PRAM) model in Section 2.1.2. Those models do not
distinguish between task-based parallelism and data-based parallelism; thus, those models are
too simplistic for analyzing algorithms targeting many-cores.

2.1.1 Fork-join model

In the fork-join model [11], one can consider a multithreaded program (see Chapter 27 in [34])
as a directed acyclic graph G = (V, E), called computation DAG. Figure 2.1 shows the compu-
tation DAG for calculating the 5-th Fibonacci number, namely F4, where Fn = Fn−1 + Fn−2 if

10

2.1. Models of computation 11

n ≥ 2 and F0 = F1 = 1 otherwise. In a multithreaded program, we call a strand a sequence of
consecutive instructions without parallel constructs.

Figure 2.1: An example of computation DAG: Fourth Fibonacci

This model defines two complexity measures:
1. the work T1 of a multithreaded computation is the total time to execute the entire com-

putation on one processor, and
2. the span T∞ is the longest time to execute the strands along any path in the DAG.

Assuming that each strand executes in unit time, the work is the number of vertices, and the
span equals the number of vertices on a longest path or critical path in the computation DAG.

Those two measures, work and span, and one machine parameter, the number P of pro-
cessors, can be combined in results like the Graham-Brent theorem ([11, 53]) or the Blumofe-
Leiserson theorem (Theorems 13 & 14 in [12]) in order to give running time estimates. We
recall that the Graham-Brent theorem states that the running time TP on P processors satisfies
TP ≤ T1/P + T∞. A refinement of this latter theorem actually supports the implementation (on
multi-core architectures) of the parallel performance analyzer, called Cilkview [63]. In this
context, the running time TP is bounded in expectation by T1/P + 2δT̂∞, where δ is a constant
(called the span coefficient) and T̂∞ is the so-called burdened span.

The fork-join model has become popular with the development of the concurrency plat-
form CilkPlus [10, 79] targeting multi-core architectures. An example of code written in
CilkPlus is given in Figure 2.2 for computing matrix multiplication. This CilkPlus code
is implemented with a divide & conquer method and the blocking strategy reported in [49] by
Frigo, Leiserson, Prokop and Ramachandran.

2.1.2 PRAM model
The PRAM model [110, 51] is defined as a synchronous model of parallel computation. The
PRAM machine consists of a number of processors, each of which is a RAM with a private
local memory, and a shared memory that processors communicate with. Since the amount of
shared memory is limited, it restricts the amount of data that can be communicated between
processors in one step.

Moreover, the PRAM model defines four types of accesses to the same shared memory cell
with respect to read and write operations. These four types are exclusive read exclusive write

12 Chapter 2. Background

/**

* Square matrices A, B, C of order N

* The base case size is set to X

* Call to parallel_dandc(0, N, 0, N, 0, N, A, B, C, N, X);

**/

void parallel_dandc(int i0, int i1, int j0, int j1, int k0, int k1, int* A,

int* B, int* C, int N, int X) {

int di = i1 - i0;

int dj = j1 - j0;

int dk = k1 - k0;

if (di >= dj && di >= dk && di >= X) {

int mi = i0 + di / 2;

cilk_spawn parallel_dandc(i0, mi, j0, j1, k0, k1, A, B, C, N, X);

parallel_dandc(mi, i1, j0, j1, k0, k1, A, B, C, N, X);

cilk_sync;

}

else if (dj >= dk && dj >= X) {

int mj = j0 + dj / 2;

cilk_spawn parallel_dandc(i0, i1, j0, mj, k0, k1, A, B, C, N, X);

parallel_dandc(i0, i1, mj, j1, k0, k1, A, B, C, N, X);

cilk_sync;

}

else if (dk >= X) {

int mk = k0 + dk / 2;

parallel_dandc(i0, i1, j0, j1, k0, mk, A, B, C, N, X);

parallel_dandc(i0, i1, j0, j1, mk, k1, A, B, C, N, X);

}

else {

// The base case using the serial, naive matrix multiplication

for (int i = i0; i < i1; ++i)

for (int j = j0; j < j1; ++j)

for (int k = k0; k < k1; ++k)

C[i * N + j] += A[i * N + k] * B[k * N + j];

}

}

Figure 2.2: Matrix multiplication written in CilkPlus

(EREW), concurrent read exclusive write (CREW), exclusive read concurrent write (ERCW)
and concurrent read concurrent write (CRCW). At one step, “exclusive” indicates that at most
one processor can read from or write to the same memory cell, while “concurrent” indicates
that processors can simultaneously read from or write to the same memory cell. The advantage
of the PRAM model is that it focuses on designing efficient parallel algorithms in terms of
arithmetic operations while ignoring communication issues. In addition, all memory accesses
are assumed to take place in constant time. Unfortunately, concrete machines cannot currently
scale to large numbers of processors while preserving uniformly fast access time to the shared
memory.

An attempt to integrate memory contention into the PRAM model has been made with the
queue read queue write (QRQW) PRAM, defined in [52]. This model enhances the Graham-
Brent theorem with memory access time. However, both time spent in arithmetic operations

2.2. General-purpose GPU computing 13

and time spent in read/write accesses are conflated in a single quantity. We believe that this
unification is not appropriate for recent many-core processors, such as NVIDIA GPUs, for
which the ratio between one global memory read/write access and one floating point operation
can be in the 100’s.

A more practical PRAM model is proposed in [51] called asynchronous PRAM. Unlike
the PRAM model, the processors of an asynchronous PRAM run asynchronously, that is, each
processor executing its instructions independently without interrupting others. It considers
subset independent synchronization and fixed communication delays for global reads/writes.
However, this family of PRAM is not suitable to modern GPUs, since it is trivial to consider a
machine parameter for synchronization, which is not an issue for modern GPUs.

2.2 General-purpose GPU computing

Figure 2.3: Overview of a hybrid CPU-GPU system

General-purpose GPU computing has evolved from graphics processors to massively par-
allel many-core multiprocessors with the adoption of co-processing between the CPU and the
GPU. In such a hybrid CPU-GPU system, GPUs can be used to accelerate a portion of sequen-
tial code by employing task-parallelism and data-parallelism. Figure 2.3 shows an overview of
a typical CPU-GPU system architecture. One of the main differences between the CPU and the
GPU is the number of cores that are designed for different types of execution. Indeed, a GPU
device consists of several streaming multiprocessors (SMs); meanwhile, each SM consists of a
large number of processing cores. For this reason, these cores are particularly designed to take
advantage of parallel execution in the SIMD (single instruction multiple data) manner. While
memory coherence is maintained by the CPU, the programmer needs to explicitly deal with
data management on the GPU. Section 2.2.1 introduces the programming model, the Com-
pute Unified Device Architecture (CUDA). In Section 2.2.2, we summarize the characteristics of
modern GPU architectures.

14 Chapter 2. Background

2.2.1 The Compute Unified Device Architecture (CUDA)

CUDA is the programming model introduced to implement parallel algorithms on NVIDIA GPU
devices [95, 73]. A CUDA program consists of one or more blocks of code that are executed on
either the host (CPU) or the device (GPU). On the host, the code is implemented with little or
no parallelism, while on the device, the code is designed to exhibit a rich amount of task or
data parallelism, in particular, in a SIMD fashion.

Figure 2.4: Execution of a CUDA program

The execution of a typical CUDA program is shown in Figure 2.4. It starts with the se-
rial C/C++ code and then launches a kernel on the device to execute the parallel code. Upon
the completion of the kernel, the process resumes to the execution of serial code on the host.
When a kernel function is invoked, the number of thread-blocks and the number of threads per
thread-block are specified, according to the problem size, by the programmer. The syntax for
launching a kernel from the host code extends that of a C function call with kernel execution
configuration parameters surrounded by <<< and >>>, where the execution configuration pa-
rameters define the dimensions of the grid and the dimensions of each thread-block. All the
threads comprising a kernel during an invocation are collectively called a grid.

In addition, the programmer needs to allocate the problem size on the device memory using
the keyword cudaMalloc and free the device memory after computation using the keyword
cudaFree. To transfer pertinent data between the host and allocated device memories, one can
use the keyword cudaMemcpy, with cudaMemcpyHostToDevice and cudaMemcpyDeviceTo-
Host specifying where the data is copied from and to. The function type qualifier global 1,
written prior to a function declaration, indicates that the function is a kernel; meanwhile, on the
host, this kernel is called to generate a grid of threads on the device. Moreover, threadIdx,

1See http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html for CUDA C program-
ming guide.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

2.2. General-purpose GPU computing 15

blockIdx and blockDim are built-in variables to identify the thread index, the thread-block
index and the thread-block dimension, respectively.

2.2.2 Modern GPU architectures

Unlike CPUs optimized for low latency access to memory systems, modern GPUs are designed
for data-parallel, throughput computation and tolerance of memory latency. A GPU typically
consists of a global memory (dynamic random-access memory (DRAM)), a number of stream-
ing multiprocessors (SMs) and a global scheduler. Each SM contains a number of cores, a
shared memory and a thread scheduler.

Apart from the evolution of graphic techniques on GPUs, we summarize key features of
modern GPU architectures with respect to general-purpose GPU computing as below.

1. Hardware thread scheduling. Based on the documentation of NVIDIA Fermi [36] and
Kepler [37] architectures, there is a two-level, distributed thread scheduler, such that
thread-blocks from the same or different kernels are scheduled to various SMs and warps
of 32 threads of a thread-block are distributed to execute concurrently.

2. Memory hierarchy. This hierarchy offers the benefits of the on-chip local memory for
each thread, the on-chip shared memory shared among threads in an SM with low latency,
and the global memory for sharing across the GPU with high throughput. In order to
declare an array allocated in the shared memory of the SM, one shall use the shared

qualifier prior to the declaration of the array (see Figure 1.3 for an example). Moreover,
when a warp of threads accesses consecutive memory locations to the global memory,
the hardware coalesces its memory accesses into a consolidated access.

3. Data parallelism. This is implemented as SIMD processors or in a single instruction
multiple thread (SIMT) fashion.

4. Task parallelism. This type of parallelism, also called dynamic parallelism, can launch
a new kernel from a thread, synchronize on the results and control the scheduling via
the hardware paths; moreover, these operations are done independently of the CPU. This
allows data-dependent and recursive code to execute in parallel on GPUs.

5. Latency hidden. This is done via computation by SIMT (instead of cache). Based on the
concept of fast context switching, active warps of threads that wait for memory accesses
are switched to those whose data are available. Typically, 128 threads per SM occupy an
SM during the computation to hide the global memory access latency.

6. Synchronization. Threads are independent of each other, such that there are no synchro-
nization issues among thread-blocks per grid, while threads with a thread-block can be
synchronized by issuing syncthreads(). Additionally, synchronization of task par-
allelism is explicitly managed prior to launching a (child) kernel to ensure that all data is
ready. If thread divergence occurs, both sides of the branch execute within a warp, and
idle threads in a warp wait for others to complete.

To be consistent with the programming framework, a thread-block is mapped to one SM,
such that threads within a thread-block communicate via the shared memory with low latency
and low throughput. Thread-blocks mapped to different SMs communicate via the global mem-
ory with high latency and high throughput.

16 Chapter 2. Background

2.3 Dense arithmetic over finite fields with the CUMODP li-
brary

CUMODP [59] is a CUDA library for exact computations with dense polynomials over finite
fields. A variety of operations, like multiplication, division, computation of subresultants,
multi-point evaluation, interpolation and many others, are provided. These routines are pri-
marily designed to offer GPU support to polynomial system solvers and a bivariate system
solver is part of the library. Algorithms combine FFT-based and plain arithmetic, while the
implementation strategy emphasizes reducing parallelism overheads and optimizing hardware
usage.

Polynomial multiplication and matrix multiplication are at the core of many algorithms in
symbolic computation. Expressing, in terms of multiplication time, the algebraic complex-
ity of an operation like univariate polynomial division or the computation of a characteristic
polynomial is a standard practice, see for instance the landmark book [120]. At the software
level, the motto “reducing everything to multiplication”2 is also common, see for instance the
computer algebra systems Magma [16], NTL [108] or FLINT [62].

With the advent of hardware accelerator technologies, multi-core processors and Graph-
ics Processing Units (GPUs), this reduction to multiplication is, of course, still desirable, but
becomes more complex since both algebraic complexity and parallelism need to be consid-
ered when selecting and implementing a multiplication algorithm. In fact, other performance
factors, such as cache usage or CPU pipeline optimization, should be taken into account on
modern computers, even on single-core processors. These observations guide the developers
of projects like SPIRAL [98] or FFTW [48].

The CUMODP library provides arithmetic operations for matrices and polynomials (in a dense
representation) primarily with modular integer coefficients, targeting many-core GPUs. Some
operations are available for integer or floating point coefficients as well. A large portion of
the CUMODP library code is devoted to polynomial multiplication and the integration of that
operation into higher-level algorithms.

Typical CUMODP operations are matrix determinant computation, polynomial multiplica-
tion (both plain and FFT-based), univariate polynomial division, the Euclidean algorithm for
univariate polynomial GCDs, subproduct tree techniques for multi-point evaluation and in-
terpolation, subresultant chain computation for multivariate polynomials and bivariate system
solving. The CUMODP library is written in CUDA [95, 73] and its source code is publicly available
at www.cumodp.org.

This work is reported in [59] and is a joint project with Sardar Anisul Haque, Xin Li,
Farnam Mansouri, Marc Moreno Maza and Wei Pan.

2Quoting a talk title by Allan Steel, from the Magma Project.

www.cumodp.org

2.4. The MetaFork language 17

2.4 The MetaFork language

MetaFork [29] is a high-level programming language extending C/C++, which combines
several models of concurrency, including fork-join and pipelining parallelisms. MetaFork is
also a compilation framework, which aims at facilitating the design and implementation of
concurrent programs through three key features:

1. Perform automatic code translation between concurrency platforms targeting both multi-
core and many-core GPU architectures.

2. Provide a high-level language for expressing concurrency as in the fork-join model, the
SIMD (single instruction multiple data) paradigm and the pipelining parallelism.

3. Generate parallel code from serial code with an emphasis on code depending on machine
or program parameters (e.g. cache size, number of processors, number of threads per
thread-block).

As of today, the publicly available and latest release of MetaFork, see www.metafork.
org, offers the second feature stated above, a preliminary implementation of the third feature
as well as the multi-core and many-core portions of the first one. To be more specific, Meta-
Fork is a meta-language for concurrency platforms based on the fork-join model, pipelining
parallelism and the SIMD paradigm. This meta-language forms a bridge between actual multi-
threaded programming languages, and we use it to perform automatic code translation between
those languages.

In an earlier work [29], MetaFork was introduced as an extension of both the C and C++

languages into a multithreaded language based on the fork-join concurrency model [11]. Thus,
concurrent execution is obtained by a parent thread creating and launching one or more children
threads, so that the parent and its children execute a so-called parallel region. An important ex-
ample of parallel regions are for-loop bodies. MetaFork has four parallel constructs dedicated
to the fork-join model: function call spawn, block spawn, parallel for-loop and synchroniza-
tion barrier. The first two use the keyword meta fork, while the other two use, respectively,
the keywords meta for and meta join. Similar to the CilkPlus specifications, the paral-
lel constructs of MetaFork grant permission for concurrent execution but do not command it.
Hence, a MetaFork program can execute on a single core machine. We emphasize the fact that
meta fork allows the programmer to spawn a function call (like in CilkPlus [10, 79, 35])
as well as a block (like in OpenMP [41, 13, 9]). Using the same examples from [29], Fig-
ures 2.5, 2.6 and 2.7 illustrate automatic code translation between the OpenMP program and the
CilkPlus program via the MetaFork language.

On the other hand, stencil computations are a major pattern in scientific computing. Sten-
cil codes perform a sequence of sweeps (called time-steps) through a given array, and each
sweep can be seen as the execution of a pipeline. When expressed with concurrency platforms
based on, and limited by, the fork-join model, parallel stencil computations incur excessive

www.metafork.org
www.metafork.org

18 Chapter 2. Background

long fib(long n) {

long x, y;

if (n<2) { return n; }

else if (n<BASE)

return fib_serial(n);

else {

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return (x+y);

}

}

(a) A given CilkPlus program

long fib(long n) {

long x, y;

if (n<2) { return n; }

else if (n<BASE)

return fib_serial(n);

else {

x = meta_fork fib(n-1);

y = fib(n-2);

meta_join;

return (x+y);

}

}

(b) The intermediate MetaFork
program

long fib(long n) {

long x, y;

if (n<2) { return n; }

else if (n<BASE)

return fib_serial(n);

else {

#pragma omp task shared(x)

x = fib(n-1);

y = fib(n-2);

#pragma omp taskwait

return (x+y);

}

}

(c) The translated OpenMP program

Figure 2.5: Using MetaFork to translate a given CilkPlus program into a OpenMP program

int main() {

int a[N];

int b = 0;

#pragma omp parallel

#pragma omp for private(b)

for (int i=0;i<N;i++)

{

b = i ;

a[i] = b;

}

}

(a) A given OpenMP program

int main() {

int a[N];

int b = 0;

meta_for (int i=0;i<N;i++)

{

int b;

b = i ;

a[i] = b;

}

}

(b) The intermediate MetaFork
program

int main() {

int a[N];

int b = 0;

cilk_for (int i=0;i<N;i++)

{

int b;

b = i ;

a[i] = b;

}

}

(c) The translated CilkPlus
program

Figure 2.6: Using MetaFork to translate a given OpenMP program into a CilkPlus program

parallelism overheads. This problem is studied by Shirako, Unnikrishnan, Chatterjee, Li and
Sarkar [107] together with a solution in the context of OpenMP by proposing new synchroniza-
tion constructs to enable do-across parallelism. These observations have motivated a first ex-
tension of the MetaFork language with three constructs to express pipelining parallelism:
meta pipe, meta wait and meta continue. Recall that a pipeline is a linear sequence of
processing stages through which data items flow from the first stage to the last stage. If each
stage can process only one data item at a time, then the pipeline is said to be serial and can be
depicted by a (directed) path in the sense of graph theory. If a stage can process more than one
data item at a time, then the pipeline is said to be parallel and can be depicted by a directed
acyclic graph (DAG), where each parallel stage is represented by an independent set, that is, a
set of vertices of which no pair is adjacent.

In order to generate efficient CUDA code from an input MetaFork program, we introduced
a tenth keyword, namely meta schedule, in [19]. This keyword allows its body to be sched-
uled on a device, such as the NVIDIA GPU, to execute in a SIMD fashion. In Chapter 5 as
well as Appendix C, we depict the MetaFork-to-CUDA code generator, which is capable of

2.5. Automatic parallelization in the polyhedral model 19

int main() {

int sum_a = 0, sum_b = 0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

{

for(int i=0; i<5; i++)

sum_a += a[i];

}

#pragma omp section

{

for(int i=0; i<5; i++)

sum_b += b[i];

}

}

}

}

(a) A given OpenMP program

int main() {

int sum_a = 0, sum_b = 0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

meta_fork shared(sum_a) {

for(int i=0; i<5; i++)

sum_a += a[i];

}

meta_fork shared(sum_b) {

for(int i=0; i<5; i++)

sum_b += b[i];

}

meta_join;

}

(b) The intermediate MetaFork program

void fork_func0(int* sum_a,int* a) {

for(int i=0; i<5; i++)

(*sum_a) += a[i];

}

void fork_func1(int* sum_b,int* b) {

for(int i=0; i<5; i++)

(*sum_b) += b[i];

}

int main() {

int sum_a = 0, sum_b = 0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

cilk_spawn fork_func0(&sum_a,a);

cilk_spawn fork_func1(&sum_b,b);

cilk_sync;

}

(c) The translated CilkPlus program

Figure 2.7: Using MetaFork to translate a given OpenMP program into a CilkPlus program

automatically generating compilable CUDA programs with program parameters (like number
of threads per thread-block) and machine parameters (like shared memory size) allowed at
code-generation-time.

This work is summarized in [19].

2.5 Automatic parallelization in the polyhedral model
Automatic parallelization deals mainly with the transformation of for-loop nests so as to ex-
pose parallelism, that is, being able to execute one or more for-loops in a parallel fashion.
By executing a for-loop in a parallel fashion, we mean that all iterations of that loop can be
executed concurrently without changing the semantics of that loop. For the sake of simplicity,
we shall make the following assumption in the sequel of this section.

20 Chapter 2. Background

Hypothesis 1 We consider for-loop nests having the format shown on Figure 2.8. Note that

for (i_1 = 0; i_1 < N_1; i_1++)

.

.

.

for (i_e = 0; i_e < N_e; i_e++) {

// for-loop nest body

}

Figure 2.8: For-loop nest in the polyhedral model

Figure 2.8 suggests that the for-loop nest is perfect, that is, only the innermost loop may have
statements other than a for-loop.

In fact, imperfect for-loop nests can be reduced to perfect for-loop nests [71] without change
of semantics but with possible loss of efficiency in terms of consumption of computer resources
(time and space).

Paul Feautrier’s [46] and PLUTO’s [15] algorithms are two procedures for generating parallel
code from serial C code automatically. The two procedures focus on parallelizing for-loop
nests (including imperfect ones) under the following assumption.

Hypothesis 2 Referring to the notations introduced in Figure 2.8, in every array reference
(e.g. i 1 * N 1 + i 2 in a[i 1 * N 1 + i 2]) in the for-loop nest body,

(i) the index is an arithmetic expression linear in the vector (i 1, ..., i e, N 1, ...,
N e), where

(ii) each of N 1, ..., N e is an arithmetic expression linear in all the variables occurring
in that expression.

Note that i 1 * N 1 + i 2 is linear in each of the variables i 1, N 1, i 2, but not in the
vector (i 1, i 2, N 1).

Hypothesis 2 implies that the iterations of the for-loop nest can be represented by the in-
teger points of a polyhedron. For that reason, Feautrier’s and PLUTO’s algorithms are said to be
based on the polyhedral model. Before giving a sketch of those algorithms in Sections 2.5.7
and 2.5.8, we review the concepts of a Z-polyhedron in Section 2.5.1, a polyhedral iteration do-
main in Section 2.5.2, a data dependence graph in Section 2.5.3, the dependence polyhedron in
Section 2.5.4, an affine transformation in Section 2.5.5 and Farkas multipliers in Section 2.5.6.

2.5.1 Z-polyhedron
Let Z be the ring of the integer numbers and m be a positive integer. The set of all vectors
~x ∈ Zm where h.~x = k with h ∈ Zm and k ∈ Z is an affine Z-hyperplane. The set of all vectors
~x ∈ Zm where A ~x + ~c ≥ 0 with an p × m integer matrix A (for p > 0) and ~c ∈ Zm defines a
Z-polyhedron. A Z-polytope is a bounded Z-polyhedron.

2.5. Automatic parallelization in the polyhedral model 21

2.5.2 Polyhedral iteration domain
We observe that every for-loop nest in the format shown on Figure 2.8 naturally defines a
Z-polytope D in Ze, called iteration domain of the for-loop nest; moreover, the points of D
are called iteration vectors. Let ~I = (I1, . . . , Ie) and ~J = (J1, . . . , Je) be two iteration vectors in
D. We write ~J ≺lex ~I whenever ~I is lexicographically greater than ~J. We write ~J �lex ~I if either
~J ≺lex ~I or ~J = ~I holds. We call defining system ofD the system of linear inequalities:

0 ≤ i1 < N1
...

0 ≤ ie < Ne

Let ~I = (I1, . . . , Ie) and S be respectively an iteration vector of D and a statement of the body
of our perfect loop nest. We denote by S (~I) the execution of S during the ~I-th iteration of the
for-loop nest.

2.5.3 Data dependence graph
The following definition is restricted to our context of a perfect for-loop nest, while it could
be stated for an arbitrary program. Let ~I and ~J be two iteration vectors in D. Let S s and S t be
two statements of the for-loop nest body. We say that there is a data dependence from S s(~I)
to S t(~J) (alternatively, we say that S t(~J) depends on S s(~I)), and we write S s(~I) =⇒ S t(~J),
whenever the following conditions hold simultaneously:

(1) both S s(~I) and S t(~J) access the same memory location and at least one of them stores
data into this memory location, and

(2) we have ~I ≺lex ~J.
The data dependence graph (DDG) G = (V, E) is a labelled directed-graph, where

(1) the set V of the vertices is the set of the statements of the for-loop nest body,
(2) (S s, S t) is an edge if there exist two iteration vectors ~I and ~J such that we have S s(~I) =⇒

S t(~J),
(3) each edge (S s, S t) is labelled with the set of the pairs (~I, ~J) of iteration vectors such that

we have S s(~I) =⇒ S t(~J).
We classify the data dependence from statement S s(~I) to statement S t(~J) into three categories,
based on the sequences of read and write operations to the same memory location X:

- True dependence (also known as a flow dependence): X is written in S s before it is read
in S t.

S s : X = . . .
S t : . . . = X

- Anti-dependence: X is read in S s before it is written in S t.

S s : . . . = X
S t : X = . . .

- Output dependence: X is written in S s before it is written in S t.

S s : X = . . .
S t : X = . . .

22 Chapter 2. Background

Example 2 Consider the source program given below:

for (int i = 0; i < N; ++i)

for (int j = 1; j < N; ++j)

S: A[i][j] = A[j][i] + A[i][j-1];

Figure 2.9 shows the data dependence graph of the source program in Example 2. Observe
that data dependence occurs for each of the following:

- from A[i][j-1] in statement S to A[i’][j’] in statement S when i’ = i, j’ = j
- 1 (flow dependence),

- from A[j][i] in statement S to A[i’][j’] in statement S when i’ = j, j’ = i, i
< j (flow dependence),

- from A[i][j] in statement S to A[j’][i’] in statement S when j’ = i, i’ = j, j
< i (anti-dependence),

where (i, j) and (i’, j’) are two iteration vectors of the for-loop nest; thus, i, j, i’,
j’ are non-negative integers satisfying i < N, 0 < j, j < N, i’ < N, 0 < j’, j’ <
N.

Figure 2.9: An example of the data dependence graph of the source program

2.5.4 Dependence polyhedron

Let e := (S s, S t) be an edge of the data dependence graph. Let ~I and ~J be two iteration vectors
such that we have S s(~I) =⇒ S t(~J). We call dependence polyhedron associated with e the
Z-polyhedron defined by the conjunction of the inequalities on ~I, ~J expressing the fact that the
following conditions hold simultaneously:

(i) ~I ∈ D,
(ii) ~J ∈ D,
(ii) S s(~I) =⇒ S t(~J).

2.5. Automatic parallelization in the polyhedral model 23

In Example 2, for the flow dependence from A[i][j-1] to A[i’][j’] in Figure 2.9, we
observe that the dependence polyhedron is

1 0 0 0 0 0
−1 0 0 0 1 −1
0 1 0 0 0 −1
0 −1 0 0 1 −1
0 0 1 0 0 0
0 0 −1 0 1 −1
0 0 0 1 0 −1
0 0 0 −1 1 −1
1 0 −1 0 0 0
0 1 0 −1 0 −1





i
j
i′

j′

N
1

 ≥ 0

= 0

(2.1)

2.5.5 Affine transformation

Consider a for-loop nest and a statement S in the body of this loop nest. Let x1, . . . , xms be
the loop iteration counters occurring in the indices of the array references in the statement S ;
we write ~x = [x1 · · · xms]. By definition, a one-dimensional affine transformation for the
statement S maps ~x to φS (~x) defined by

φS (~x) =
[
t1 · · · tms

] (
~x
)

+ t0,

where t0 ∈ Z and
[
t1 · · · tms

]
is a row-vector over Z. In the literature, the map φS is sometimes

referred as an affine hyperplane. An n-dimensional affine transformation for statement S is
given by

φS (~x) = T
(
~x
)

+ ~t,

where T is a constant matrix with n rows (and mS columns) and ~t is a constant vector of size
n, the coefficients of both T and ~t belonging to Z. In the literature, the map φs is also called a
scattering function.

In the polyhedral model, the notions of one-dimensional affine transformations and n-
dimensional affine transformation are used to perform an affine change of coordinate system
for the loop iteration counters so as to exhibit for-loop nests whose iterations can be executed
concurrently. Note that, because of the inequality constraints that appear in the polyhedron, this
cannot simply be done via linear algebra and requires polyhedral operations, like projection,
which can be done by the Fourier-Motzkin elimination algorithm3 [122].

To be more precise, one-dimensional affine transformations and n-dimensional affine trans-
formations are meant to be used as time coordinates and any other other coordinates are re-
garded as space coordinates. A tuple of space coordinates can be interpreted as a processor
and the transformed for-loop can be interpreted as a schedule for each processor. Therefore, if
such one-dimensional affine transformations exist, it can be understood as a way of executing
the original for-loop in a parallel manner. In the sequel, we will call parallelization such a
one-dimensional affine transformation.

3https://en.wikipedia.org/wiki/Fourier-Motzkin_elimination

https://en.wikipedia.org/wiki/Fourier-Motzkin_elimination

24 Chapter 2. Background

For the source program of Example 2, one can obtain such new coordinates: t = i + j and
p = i, where t and p represent time and processor, respectively. The transformed code is shown
in Figure 2.10 where each iteration of the p-loop can be executed concurrently.

// 1 <= t = i + j < 2N

for (int t = 1; t < 2*N; t++)

// 0 <= p = i < N & 1 <= t - p = j < N

parallel for (int p = max(0, t-N-1), p < min(t-2, N); p++)

S’: A[p][t-p] = A[t-p][p] + A[p][t-p-1];

Figure 2.10: The transformed code based on time and processor coordinates

2.5.6 Farkas multipliers
LetD ⊂ Zm be a nonempty Z-polyhedron defined by p affine inequalities:

Ak ~x + bk ≥ 0, 1 ≤ k ≤ p,

where Ak ∈ Z
m and bk ∈ Z. It follows from Farkas’ Lemma [46, 105] that an affine form

φ : ~x ∈ Zm 7−→ φ(~x) ∈ Z is non-negative inD iff there exist non-negative integers µ0, µ1, . . . , µp,
called Farkas multipliers, such that for all ~x ∈ Zm we have:

φ(~x) = µ0 +

p∑
k=0

µk(Ak ~x + bk).

2.5.7 Feautrier’s algorithm
In [46], Paul Feautrier introduced an algorithm, based on Farkas’ Lemma, that, given a for-
loop nest, determines a parallelization of that for-loop nest, if such affine transformation exists.
We give a brief sketch of Feautrier’s algorithm.

Consider a for-loop nest. Let us call program parameter any scalar variable read but not
written in that for-loop nest. Write ~n = (n1, . . . , nd) a vector of all those program parameters.
Typically, ~n includes for-loop upper bounds, dimension sizes of arrays, etc. Consider a state-
ment S i in this loop nest and denote by ~x a vector of the loop iteration counters occurring in
the indices of the array references in S i. Then, the iteration domain DS i for S i is given by a
system of p linear inequalities of the following form:

AS i,k

(
~x
~n

)
+ bS i,k ≥ 0, 1 ≤ k ≤ p,

where AS i,k is a row-vector over Z and bS i,k ∈ Z holds. Applying Farkas’ lemma, an one-
dimensional affine transformation ~x 7−→ φS i(~x) is non-negative in the domainDS i iff there exist
non-negative integers µS ik with 0 ≤ k ≤ p, such that

φS i(~x) = µS i0 +
∑

k

µS ik

(
AS i,k

(
~x
~n

)
+ bS i,k

)
. (2.2)

2.5. Automatic parallelization in the polyhedral model 25

In the sequel, we view φ as a function that, given a statement S i and an iteration vector ~x (of all
the loop iteration counters occurring in the indices of the array references in S j), maps (S i, ~x)
to a φS i(~x), where φS i is a one-dimensional affine transformation.

We say that φ is a schedule whenever for all statements S i, S j and all iteration vectors ~x
(resp. ~y) of S i (resp. S j) such that S i(~x)⇒ S j(~y) holds, we have:

φS j(~y) ≥ φS i(~x) + 1.

One can interpret the number 1 as the time unit for executing a statement.
We associate each edge e := (S i, S j) of the DDG with a delay denoted by ∆e and defined

by
∆e = φS j(~y) − φS i(~x) − 1 ≥ 0.

Recall that the dependence polyhedron associated with e (see Section 2.5.4) is a system of q
linear inequalities of the form:

Ce,k

 ~x~y
~n

 + de,k ≥ 0, 1 ≤ k ≤ q,

where Ce,k is a row-vector over Z and de,k ∈ Z.
Due to the fact that a schedule does exist, we can find Farkas multipliers λek for the delay

∆e such that we have

φS j(~y) − φS i(~x) − 1 = λe0 +
∑

k

λek

Ce,k

 ~x~y
~n

 + de,k

 . (2.3)

Equations 2.2 and 2.3 yield a system of linear equations and inequalities including the fact
all µ’s and λ’s are non-negative integers. Using techniques from integer programming, in
particular from the landmark paper [45] of P. Feautrier, one can compute values for the µ’s and
finally deduce φS i(~x).

2.5.8 PLUTO’s algorithm
In [15], Bondhugula, Hartono, Ramanujam and Sadayappan proposed PLUTO’s algorithm for
automatically generating the OpenMP [41, 13, 9] code from a given serial C program target-
ing multi-cores. We describe PLUTO’s algorithm as the following. Consider a loop nest with
statements S 1, . . . , S `. Let φS i be a one-dimensional affine transformation for statement S i,
for i = 1 · · · `. The sequence {φS 1 , φS 2 , . . . , φS `

} is called a tiling hyperplane. We say that
{φS 1 , φS 2 , . . . , φS `

} is legal (or statement-wise) if the following holds for each dependence edge
e from statement S i to statement S j:

φs j(~t) − φsi(~s) ≥ 0, (2.4)

where ~s and ~t are the vectors of loop iteration counters occurring in the indices of array refer-
ences in S i and S j, respectively. A cost function for the dependence edge e is defined as the
following affine form:

δe(~s,~t) = φS j(~t) − φS i(~s).

26 Chapter 2. Background

Since the loop iteration counters themselves can be bounded by the affine functions of the
parameters, one can always find an affine form v(~n) in the program parameters ~n, that is, v(~n) =

u.~n + w, where u is a row-vector over Z and w ∈ Z. Thus, for all ~s,~t, we have

δe(~s,~t) ≤ v(~n). (2.5)

Given a statement S and its iteration counters ~x, we define the affine transformation φS (~x) =

c.~x+c0, where c is a row-vector over Z and c0 ∈ Z. Our unknowns are u,w, c0, c. We determine
them as the solution of a minimization problem defined as follows.

Assume that the polyhedron associated with the dependence edge e having p linear in-

equalities is given by Ae,k

 ~s~t
~n

 + be,k ≥ 0, where Ae,k is a row-vector over Z and be,k ∈ Z for

1 ≤ k ≤ p. Then, applying the Farkas Lemma, we rewrite the legality in Equation 2.4 as

φs j(~t) − φsi(~s) = µe0 +
∑

k

µek

Ae,k

 ~s~t
~n

 + be,k

 , 1 ≤ k ≤ p,

where µe0, . . . , µep are the Farkas multipliers, and the cost function in Equation 2.5 as

v(~n) − δe(~s,~t) = vλe0 +
∑

k

λek

Ae,k

 ~s~t
~n

 + be,k

 , 1 ≤ k ≤ p,

where λe0, . . . , λep are the Farkas multipliers.
We obtain constraints on u,w, c0, c, from a process of identification between the multipli-

ers µ and λ. Then, the best solution for the dependence edge e is the lexicographic minimal
solution:

minimize≺{u,w, c0, c}.

Recall that given two posets A and B, the lexicographical order on the Cartesian product A× B
is defined as (a, b) � (a′, b′) iff a ≺ a′ or (a = a′ and b � b′). Solving this minimization
problem can be handled by the parametric integer programming (PIP) [84] software.

Due to the fact that v(~n) gives a maximum delay to schedule the original program, if we
could find an affine form with u = 0 and w > 0, then we have a small delay to execute the
statement. In the case u = 0 and w = 0, there is no dependence in the transformed loop nest;
thus the transformed loop nest can be executed in parallel. Once solutions of c and c0 to the
affine transformation φ are obtained by PLUTO’s algorithm, one can parallelize the for-loops
iff u = 0 and w ≥ 0.

2.6 Solving systems of polynomial equations and inequalities
This section is an overview of the algorithmic tools used in this thesis for dealing with systems
of polynomial equations and inequalities. We rely on the theory of regular chains and its
implementation in the RegularChains library.

2.6. Solving systems of polynomial equations and inequalities 27

The notion of a regular chain (introduced independently in [70] by Kalkbrener, and in [82]
by Yang & Zhang) is closely related to that of a triangular decomposition of a polynomial
system. Broadly speaking, a triangular decomposition4 [22] of a polynomial system S is a set
of simpler (in a precise sense) polynomial systems S 1, . . . , S e such that

p is a solution of S ⇔ ∃i : p is a solution of S i. (2.6)

When the purpose is to describe all the solutions of S , whether their coordinates are real num-
bers or not, in which case S is said to be algebraic, those simpler systems are required to be
regular chains5. If the coefficients of S are real numbers and if only the real solutions are
required, in which case S is said to be semi-algebraic, then those real solutions can be ob-
tained by a triangular decomposition into so-called regular semi-algebraic systems, a notion
introduced in [22]. In both cases, each of these simpler systems has a triangular shape and
remarkable properties, which justifies the terminology. We refer to [4, 25] for a formal pre-
sentation on the concepts of a regular chain and a triangular decomposition of a polynomial
system. We recall, however, the concept of a regular semi-algebraic system since it is at the
core of the present paper. A regular semi-algebraic system is a triple [T,Q, P] where T is a
regular chain, Q is a quantifier-free formula involving only the free variables of T and P is a
set of polynomial inequalities; moreover [T,Q, P] must satisfy the following properties.

(i) Q defines a non-empty open set in the space of the free variables of T ,
(ii) [T, P] specializes well at any point6 defined by Q,

(iii) At any point α defined by Q, the specialized system [Tα, Pα] admits at least one real
solution β, in the sense that every polynomial in Tα is zero at β, and every polynomial in
Pα is positive at β.

Consider semi-algebraic systems [T1,Q1, P1], . . . , [Te,Qe, Pe] forming a triangular decomposi-
tion of the polynomial system S . A consequence of the above relation (2.6) is that, if all the Ti

have the same free variables, i.e. parameters, then the disjunction Q1 ∨ · · · ∨ Qe defines the set
of the parameter values for which the input system possesses real solutions. However, it is not
necessary for all the Ti to have the same free variables and the example below given by (2.7)
illustrates this fact.

An important property of any regular semi-algebraic system [T,Q, P] is the fact that it is a
parametrization of its zero set. Therefore, a triangular decomposition of a semi-algebraic sys-
tem S decomposes the zero set of S into components, with each of them given by a parametric
representation. This type of representation of the solutions of S is very useful to compute
geometrical quantities such as dimension. As a first illustration let us consider the following
semi-algebraic system {

(x − 1)(y2 + t2) + (x − 2)(y2 − t) = 0
(x − 1)(x − 2) = 0, (2.7)

and solve it with RealTriangularize command of the RegularChains library, leading to the
computations on Figure 2.11.

4http://en.wikipedia.org/wiki/Triangular_decomposition
5 More generally, a triangular decomposition into regular chains of a polynomial system S with coefficients in

an arbitrary field K describes the solutions of S whose coordinates are in the algebraic closure of K.
6This means that at any point u defined by Q, the specialized set T (u) is a squarefree regular chain with the

same rank as T and each specialized polynomial Pi(u) is invertible modulo 〈T (u)〉.

http://en.wikipedia.org/wiki/Triangular_decomposition

28 Chapter 2. Background

Figure 2.11: A triangular decomposition into semi-algebraic systems computed with the
RealTriangularize command

The above triangular decomposition consists of three regular semi-algebraic systems. Let
us denote them respectively by [T1,Q1, P1], [T2,Q2, P2], [T3,Q3, P3]. The first and the third
ones consist simply of a regular chain, thus we have P1 = P3 = ∅ and Q1 = Q3 = true.
In fact each of [T1,Q1, P1], [T3,Q3, P3] simply encodes a point, that is, a zero-dimensional
component. For the second one, we have P2 = ∅ and Q2 = 0 < t, thus T2 = {y2 − t, x − 1}.
Therefore, [T2,Q2, P2], is a parametrization of one-dimensional component.

Figure 2.12: Output of the RealTriangularize command for the EVE surface

Figure 2.12 contains a second and more advanced example, where the purpose of the Maple
session is to obtain a description of the real points of the hypersurface EVE from the Algebraic
Surface Gallery7 and whose equation is

5x2 + 2xz2 + 5y6 + 15y4 + 5z2 − 15y5 − 5y3 = 0.
7 This is a collection of algebraic surfaces, well-known in the mathematical literature and available at http:

//www.freigeist.cc/gallery.html

http://www.freigeist.cc/gallery.html
http://www.freigeist.cc/gallery.html

2.6. Solving systems of polynomial equations and inequalities 29

The solutions of the above are all (x, y, z) where x, y, z are complex numbers satisfying this
equation. The output of RealTriangularize consists of 9 regular semi-algebraic systems for
which the variables are ordered as x > y > z. The first regular semi-algebraic system represents
a two-dimensional component. Indeed, it defines x as the solution of a parametric equation
of degree 2, where y, z are regarded as parameters subject to an inequality (defined by the
discriminant of the equation) which ensures the existence of two x-values for each valid (y, z)-
value. The second regular semi-algebraic system represents a one-dimensional component: the
two equations define (x, y) as functions of z, which is subject to various inequalities. Each of
the other 7 regular semi-algebraic systems encodes a zero-dimensional component, that is, a
finite set of points.

Triangular decompositions into regular semi-algebraic systems are an interesting represen-
tation of semi-algebraic sets for the following reasons. First, triangular decompositions into
regular chains are a space-efficient encoding of algebraic sets. This fact is formally established
in [42] and experimentally verified with the RegularChains library in [25]. Secondly, trian-
gular decompositions into regular chains (or regular semi-algebraic systems) reveal important
geometrical properties (dimensions of the irreducible components, fibration structure, etc.) of
the input algebraic sets (or semi-algebraic sets), as illustrated by the previous examples. These
can be used to design efficient algorithms for the operations manipulating (semi-)algebraic sets.
For instance, performing set-theoretic operations (in particular, set theoretic difference) can be
done very efficiently on both constructible sets and semi-algebraic sets as reported in [24] and
[23], respectively. Last but not least, triangular decompositions and related techniques, such as
dynamic evaluation, are well suited for supporting weaker solving specifications. Two exam-
ples of that are triangular decomposition of algebraic systems in the sense of Kalkbrener [70]
and lazy triangular decomposition of semi-algebraic systems [22]. These types of decom-
positions provide a description of the “generic solutions” plus a continuation mechanism for
obtaining the other solutions, if necessary. One major supporting argument for those decompo-
sitions is the existence of favorable algebraic complexity estimates. Both of them can indeed
be computed in singly exponential time with respect to the number of variables, as established
in [112] and [22], respectively.

Chapter 3

The Basic Polynomial Algebra
Subprograms

The Basic Polynomial Algebra Subprograms (BPAS) provide arithmetic operations (multiplica-
tion, division, root isolation, etc.) for univariate and multivariate polynomials over prime fields
or with integer, rational number or complex rational number coefficients. The code is mainly
written in CilkPlus [10, 79] targeting multi-core processors. The current distribution focuses
on dense polynomials and the sparse case is work in progress. A strong emphasis is put on
adaptive algorithms as the library aims at supporting a wide variety of situations in terms of
problem sizes and available computing resources. One of the purposes of the BPAS project is
to take advantage of hardware accelerators in the development of polynomial system solvers.
The BPAS library is publicly available in source at www.bpaslib.org.

We describe the design and specification in Section 3.1. In Section 3.2, we introduce the
user interface of our library. In Sections 3.3 and 3.4, we demonstrate the core algorithms, like
FFT and polynomial multiplication, and the experimental results, respectively. Applications
to solve real root isolation and symbolic-numeric integration are summerized in Section 3.5.
Appendix A shows sample code in the BPAS library.

This chapter is an extended version of [20] and contains joint work with Changbo Chen,
Svyatoslav Covanov, Farnam Mansouri, Robert Moir, Marc Moreno Maza and Yuzhen Xie.

3.1 Design and specification
Inspired by the Basic Linear Algebra Subprograms (BLAS) [77], BPAS functionalities are or-
ganized into three levels. At Level 1, one finds basic arithmetic operations that are specific to a
polynomial representation or specific to a coefficient ring. Examples of Level-1 operations are

30

www.bpaslib.org

3.2. User interface 31

multi-dimensional FFTs/TFTs and univariate real root isolation. At Level 2, arithmetic opera-
tions are implemented for all types of coefficients rings that BPAS supports (prime fields, ring
of integers, field of rational numbers). Level 3 gathers advanced arithmetic operations taking
as input a zero-dimensional regular chain, e.g. normal form of a polynomial, multivariate real
root isolation.

Level 1 functions are highly optimized in terms of data locality and parallelism. In par-
ticular, the underlying algorithms are nearly optimal in terms of cache complexity [49]. This
is the case, for instance, for our modular multi-dimensional FFTs/TFTs [94], modular dense
polynomial arithmetic [93] and Taylor shift [28] algorithms.

At Level 2, users can choose between algorithms that either minimize work (at the pos-
sible expense of decreasing parallelism) or maximizes parallelism (at the possible expense of
increasing work). For instance, five different integer polynomial multiplication algorithms are
available, namely: Schönhage-Strassen [104], 8-way Toom-Cook [14], 4-way Toom-Cook [14],
divide-and-conquer plain multiplication and the two-convolution method [21]. The first one
has optimal work (i.e. algebraic complexity) but is purely serial due to the difficulties of paral-
lelizing 1D FFTs on multi-core processors. The next three algorithms are parallelized but their
parallelism is static, that is, independent of the input data size; these algorithms are practically
efficient when both the input data size and the number of available cores are small, see [87] for
details. The fifth algorithm relies on modular 2D FFTs which are computed by means of the
row-column scheme; this algorithm delivers high scalability and can fully utilize the hardware
on fat multi-core nodes.

Another example of Level 2 functionality is parallel Taylor shift computation for which four
different algorithms are available: the two plain algorithms presented in [28], Algorithm (E)
of [119] and an optimized version of Algorithm (F) of [119]. The first two are highly effective
when both the input data size and the number of available cores are small. The third algorithm
creates parallelism by means of a divide-and-conquer procedure and relies on polynomial mul-
tiplication; this approach is effective when 8-way Toom-Cook multiplication is selected. The
fourth algorithm reduces a Taylor shift computation to a single polynomial multiplication; this
latter approach outperforms the other three, as soon as the two-convolution multiplication dom-
inates its counterparts, that is, when either input data size and the number of available cores
become large.

This variety of parallel solutions leads, at Level 3, to adaptive algorithms which select
appropriate Level 2 functions depending on available resources (number of cores, input data
size). An example is parallel real root isolation. Many procedures for this purpose are based
on a subdivision scheme. However, on many examples, this scheme exposes only a limited
amount of opportunities for concurrent execution, see [28]. It is, therefore, essential to extract
as much as parallelism from the underlying routines, such as Taylor shift computations.

3.2 User interface
Inspired by computer algebra systems like AXIOM [69] and Magma [16], the BPAS library makes
use of type constructors [96] so as to provide genericity. For instance, SparseUnivariatePoly-
nomial (SUP) can be instantiated over any BPAS ring. On the other hand, for efficiency consid-
eration, certain polynomial type constructors, like DistributedDenseMultivariateMod-

32 Chapter 3. The Basic Polynomial Algebra Subprograms

ularPolynomial (DDMMP), are only available over finite fields in order to ensure that the data
encoding a DDMMP polynomial consists only of consecutive memory cells. For the same effi-
ciency consideration, the most frequently used polynomial rings, like DenseUnivariateInte-
gerPolynomial (DUZP) and DenseUnivariateRationalNumberPolynomial (DUQP) are
primitive types. Consequently, DUZP and SUP<Integer> implement the same functionali-
ties; however, the implementation of the former is further optimized. Figure 3.1 shows a subset
of BPAS’s tree of algebraic data structures. Each class with its name starting with “BPAS” is
defined as an abstract class, while others are defined as concrete classes. Abstract classes are
used to indicate the public members that their children must implement. Each concrete derived
class overrides the pure virtual member functions of its parent(s).

Figure 3.1: A subset of BPAS algebraic data structures

With the support of C++ operator overloading, we define the basic arithmetic operations
‘+’, ‘-’, ‘*’ and ‘/’ for each BPAS polynomial to execute addition, subtraction, multiplication
and exact division, respectively. In addition, the insertion (‘<<’) operator for output streams
(to the screen and files) is overloaded for each BPAS polynomial as well as each BPAS field.
Particularly for BPAS univariate polynomials, we redefine shift operators ‘<<’ and ‘>>’ to
represent multiplying and dividing, respectively, by a power of the variable. Several member
functions, such as monicDivide, pseudoDivide, squareFree and gcd, are extended for
BPAS univariate polynomials as well.

While the concrete class Integer (resp. RationalNumber) inherits from BPASRing and
mpz class (resp. mpq class) (from the GMP library), arithmetic operations (addition, sub-
traction, multiplication and division) rely on the GMP library. Since the sparse univariate or
multivariate polynomial can take an arbitrary ring as the coefficient ring, the programmer shall
realize the coefficient ring with the pure virtual functions defined by BPAS ring class, such as
isZero() and zero(). In order to identify the type of the coefficient ring in the sparse uni-
variate polynomial, we add static attributes, such as characteristic and isPrimeField, to
each BPAS ring, so that SUP<Ring> (and later SMP<Ring>) can invoke an efficient implemen-
tation of the functionality from those polynomial classes in a dense representation.

3.2. User interface 33

Moreover, we implement a ComplexRationalNumber class based on two rational num-
bers from the GMP library to represent the real part and the imaginary part, respectively. With
this support as well as the definition of the BPAS field, we expand the BPAS ring with a uni-
variate rational function so as to solve symbolic numeric integration. Moreover, the conversion
between BPAS univariate polynomials, Integer, RationalNumber and ComplexRational-
Number can be done via the construction of each concrete class.

Figure 3.2: Another subset of BPAS algebraic data structures

Last but not least, BPAS is capable of isolating real roots given a regular chain over Q.
Figure 3.2 shows another subset of BPAS data structures to support triangular sets and regular
chains of polynomial systems. BPAS also counts other classes, for instance, Intervals.

#include <bpas.h>

int main(int argc, char *argv[]) {

int d = 4095;

/* Univariate Integer Polynomial Multiplication */

DUZP a(d+1), b(d+1);

a.read("a_input.dat"); b.read("b_input.dat");

DUZP c = a * b;

std::cout << "c = " << c << std::endl;

/* Real Root Isolation */

DUQP p;

p = (p + mpq_class(1) << d) + mpq_class(d); // Cn,d(x) = xˆd + d

Intervals boxes = p.realRootIsolate(mpq_class(1, 20));

std::cout << "boxes = " << boxes << std::endl;

/* Symbolic Numeric Integration */

SparseUnivariatePolynomial<RationalNumber> f, g;

f.one(); f.setVariableName("x");

g = (polymomialParser("1+2*x+2*xˆ2"))ˆ4;

UnivariateRationalFunction<SparseUnivariatePolynomial<RationalNumber>,

RationalNumber> h (f, g);

h.realSymbolicNumericIntegrate(53);

return 0;

}

Figure 3.3: A snapshot of BPAS code

The snapshot of the BPAS code in Figure 3.3 first shows how two dense univariate polyno-
mials over Z are read from files and how their product is computed. Then, on the same code

34 Chapter 3. The Basic Polynomial Algebra Subprograms

fragment, a dense univariate polynomial over Q is assigned by operators ‘+’ and ‘<<’ and
its real roots are isolated. Finally, it has a polynomial parser of SUP<RationalNumber> and
symbolic numeric integration of a univariate rational function.

3.3 Implementation techniques
Modular FFTs are at the core of asymptotically fast algorithms for dense polynomial arith-
metic operations. A substantial body of code of the BPAS library is, therefore, devoted to the
computation of one-dimensional and multi-dimensional FFTs over finite fields. In the current
release, the characteristic of those fields is of machine word size, while larger characteristics
are a work in progress.

The techniques used for the multi-dimensional FFTs are described in [94, 93] while those
for one-dimensional FFTs are inspired by the design of the FFTW [48].
BPAS’ one-dimensional FFTs code is optimized in terms of cache complexity and register

usage. To achieve this, the FFT of a vector of size n is computed in a divide-and-conquer
manner until the vector size is smaller than a threshold, at which point FFTs are computed
using a tiling strategy [124]. This threshold can be specified by the user through an environment
variable HTHRESHOLD or determined automatically when installing the library. At compile time,
this threshold is used to generate and optimize the code. For instance, the code of all FFTs
of size less than or equal to HTHRESHOLD is decomposed into blocks (typically performing
FFTs on 8 or 16 points) for which straight-line program (SLP) [5] machine code is generated.
Instruction level parallelism (ILP) is carefully considered: vectorized instructions are explicitly
used (SSE2, SSE4) and instruction pipeline usage is highly optimized. Other environment
variables are available for the user to control different parameters in the code generation.

Table 3.1: One-dimensional modular FFTs: Modpn vs BPAS
Input size Modpn BPAS Speedup
16777216 6.232 1.391 4.48
33554432 12.987 2.957 4.392
67108864 26.783 6.266 4.274
134217728 55.329 13.235 4.181
268435456 113.8 27.901 4.079

Table 3.1 compares running times (in sec. on Intel Xeon 5650) of one-dimensional modular
FFTs computed by the Modpn library [80] and BPAS, both using serial C code in this case. The
first column of Table 3.1 gives the size of the input vector; coefficients are in a prime field
whose characteristic is a 57-bit prime.

Modular FFTs support the implementation of several algorithms performing dense polyno-
mial arithmetic. As an example, we consider parallel multiplication of dense polynomials with
integer coefficients by means of the two-convolution method [21] and which is illustrated on
Figure 3.4. Given two univariate polynomials a(y), b(y) with integer coefficients, their product
c(y) is computed as follows.

(S1) Convert a(y), b(y) to bivariate integer polynomials A(x, y), B(x, y) s.t. a(y) = A(β, y) and

3.4. Experimental evaluation 35

b(y) = B(β, y) hold at β = 2M, K = deg(A, x) = deg(B, x), where M is essentially the
maximum bit size of a coefficient in a and b.

(S2) Consider C+(x, y) ≡ A(x, y) B(x, y) mod 〈xK + 1〉 and C−(x, y) ≡ A(x, y) B(x, y) mod
〈xK − 1〉. Compute C+(x, y) and C−(x, y) modulo machine-word primes so as to use
modular 2D FFTs.

(S3) Consider C(x, y) =
C+(x,y)

2 (xK − 1) +
C−(x,y)

2 (xK + 1) and evaluate C(x, y) at x = β, which
finally gives c(y) = a(y) b(y).

Figure 3.4: Multiplication scheme for dense univariate integer polynomials

The conversions from the univariate polynomials a(y), b(y) to the bivariate polynomials
A(x, y), B(x, y) in Step (S1) as well as the conversions from the bivariate polynomials C+(x, y)
and C−(x, y) in Step (S3) require only additions and shift operations on machine words. More-
over, the polynomials C+(x, y) and C−(x, y) are reconstructed from their modular images (in
practice two modular images are sufficient) within Step (S3). Consequently, the data produced
by 2D FFT computations is converted in a single pass into the final result c(y). Similarly the
bivariate polynomials A(x, y), B(x, y) are obtained from a(y), b(y) (here again by means of
additions and shift operations on machine words) in a single pass. Since BPAS’ 2D FFT com-
putations are optimal in terms of cache complexity [93], the whole multiplication procedure is
optimal for that same complexity measure. Last but not least, BPAS’ 2D FFTs are computed
by the row-column scheme which provides lots of parallelism with limited overheads on multi-
core architectures. As a result, our multiplication code, based on this two-convolution method
scales well on multi-cores as illustrated hereafter.

3.4 Experimental evaluation
As mentioned above, one of the main purposes of the BPAS library is to take advantage of
hardware accelerators and support the implementation of polynomial system solvers. With this

36 Chapter 3. The Basic Polynomial Algebra Subprograms

goal, polynomial multiplication plays a central role. Moreover, both sparse and dense represen-
tations are important. Indeed, input polynomial systems are often sparse while many algebraic
transactions, like substitution, tend to densify data. Parallel sparse polynomial arithmetic has
been studied by Gastineau and Laskar in [50] and by Monagan and Pearce in [91].

Figure 3.5: Dense integer polynomial multiplication: BPAS vs FLINT vs Maple

To the best of our knowledge, BPAS is the first publicly available library for parallel dense
integer polynomial arithmetic. For this reason, we compare BPAS’ parallel dense polynomial
multiplication against its state-of-the-art counterpart implementation in FLINT 2.5.2 and Maple
2015. In Figure 3.5, the input of each test case is a pair of polynomials of degree d where each
coefficient has bit size N. Two plots are provided: one for which d = N holds and one for
which d is much smaller than N.

The BPAS library is implemented with the multithreaded language CilkPlus [79] and we
compile our code with the CilkPlus branch of GCC1. Our experimental results were obtained
on an 48-core AMD Opteron 6168, running at 900Mhz with 256 GB of RAM and 512KB of
L2 cache. Figure 3.6 shows that using an interactive process viewer for Unix systems, namely
htop, BPAS can use all available cores when multiplying two large integer polynomials.

1http://gcc.gnu.org/svn/gcc/branches/cilkplus/

http://gcc.gnu.org/svn/gcc/branches/cilkplus/

3.5. Application 37

Figure 3.6: The htop screenshot of multiplying two large integer polynomials in BPAS

Table 3.2 shows that the work overhead (measured by Cilkview, the performance analysis
tool of CilkPlus) of the BPAS method w.r.t. to a method based on Schönhage & Strassen
algorithm (KS) is only around 2, whereas BPAS provides a large amount of parallelism, see the
last column.

Table 3.2: Cilkview analysis of BPAS and KS (∗ shows the number of instructions)
Size Work(KS)∗ Work(BPAS)∗ Span(BPAS)∗ Work(BPAS)

Span(BPAS)
Work(BPAS)
Work(KS)

2048 795,549,545 1,364,160,088 41,143,119 33.16 1.715
4096 4,302,927,423 5,663,423,709 96,032,325 58.97 1.316
8192 16,782,031,611 23,827,123,688 292,735,521 81.39 1.420

16384 63,573,232,166 100,688,072,711 1,017,726,160 98.93 1.584
32768 269,887,534,779 425,149,529,176 3,804,178,563 111.76 1.575

3.5 Application

Turning to parallel univariate real root isolation, given a squarefree univariate polynomial
f (x) = ad xd + · · · + a1 x + a0 ∈ Q[x], we compute the real roots of f (x) = 0. We repre-
sent real roots as a list of pairwise disjoint intervals [a1, b1], . . . , [ae, be] with rational number
endpoints, such that (1) each [ai, bi] contains one and only one real root of f (x); (2) if ai = bi,
the real root xi = ai (bi); (3) otherwise, the real root ai < xi < bi (f (x) does not vanish at either
endpoint).

In [28], Chen, Moreno Maza and Xie presents a parallel algorithm (CMY) directly using
the Vincent-Collins-Akritas (VCA) [32] algorithm for univariate real root isolation targeting
multi-cores. Authors observe that the most consuming time is the operation of so-called Taylor
shift [119], that is, the map f (x) 7−→ f (x + 1). Among six classic Taylor shift algorithms
reported in [119], the authors in [28] parallelize the Horner’s method, which represents the
computation in a Pascal’s triangle. This method has an optimal cache complexity [49] but runs
in quadratic time.
BPAS performs the Taylor shift operation by means of a divide and conquer method, that

is, the Algorithm (E) in [119]. It reduces calculations to integer polynomial multiplications
in large degrees and continues to use the algorithm of [28] in small degrees. This adaptive

38 Chapter 3. The Basic Polynomial Algebra Subprograms

Taylor shift algorithm combines FFT-based arithmetic (via Algorithm (E)) and plain arithmetic
(via [28]).

We run two parallel univariate real root algorithms, BPAS and CMY [28], which are both
implemented in CilkPlus, against Maple 18 serial realroot command. Table 3.3 shows the
running times (in sec.) of four well-known test problems, including Cnd, Chebycheff, Laguerre
and Wilkinson. Moreover, for each test problem, the degree of the input polynomial varies in
a range. The results reported in Table 3.3 show that integrating parallel integer polynomial
multiplication into our real root isolation code has substantially improved the performance of
the latter.

Table 3.3: Univariate real root isolation running times (in secs.) for four examples
Size BPAS CMY [28] realroot #Roots

Cnd 32768 18.141 125.902 816.134 1
65536 66.436 664.438 7,526.428 1

Chebycheff 2048 608.738 594.82 1,378.444 2047
4096 8,194.06 10,014 35,880.069 4095

Laguerre 2048 1,336.14 1,324.33 3,706.749 2047
4096 20,727.9 23,605.7 91,668.577 4095

Wilkinson 2048 630.481 614.94 1,031.36 2047
4096 9,359.25 10,733.3 26,496.979 4095

Consider a system of n-variable polynomials over Q with n equations:
f1(x1, x2, . . . , xn) = 0,
f2(x1, x2, . . . , xn) = 0,

...
fn(x1, x2, . . . , xn) = 0.

We compute the common real roots of fi(x1, x2, . . . , xn) = 0 for each 1 ≤ i ≤ n. In this case,
each real root is the Cartesian product of n intervals (one for each of the coordinates x1, . . . , xn)
with two endpoints [a, b] ∈ Q.

After applying the Triangularize algorithm [25] to the above system, one obtains a
description of the solution set in the form of a list of regular chains. A regular chain is a
particular type of polynomial systems with a triangular shape:

gn(x1, x2, . . . , xn) = 0,
...

g2(x1, x2) = 0,
g1(x1) = 0.

(3.1)

In addition, for all 2 ≤ i ≤ n, the leading coefficient of gi does not vanish at any root
(x1, . . . , xi−1) of g1 = · · · = gi−1 = 0.

One can write each multivariate polynomial as

gi = h`(x1, . . . , xi−1) x`i + · · · + h1(x1, . . . , xi−1) xi + h0(x1, . . . , xi−1),

3.5. Application 39

where h`, h`−1, . . . , h1, h0 ∈ Q[x1, . . . , xi−1] hold and ` is the degree of gi w.r.t. its leading
variable xi.

For each isolation box X = ([a1, b1], . . . , [ai−1, bi−1]) of a real root of g1 = · · · = gi−1 = 0,
where [a j, b j] ∈ Q for 1 ≤ j ≤ i− 1, we evaluate gi by h`(X) x`i + · · ·+ h0(X), using the interval
arithmetic [126]: [α, β] + [γ, δ] = [α + γ, β + δ] and [α, β] × [γ, δ] = [min(θ),max(θ)], where
θ = {α γ, α δ, β γ, β δ} and [α, β], [γ, δ] are intervals.

Then we obtain

gi(X, xi) = [c`, d`] x`i + · · · + [c0, d0], where [c j, d j] ∈ Q, for 0 ≤ j ≤ `.

Univariate polynomials g
i

= c`x`i + · · · + c0, and gi = d`x`i + · · · + d0 are defined as the sleeve
bound polynomials [83] of gi in X. For xi > 0, we have

g
i
(xi) ≤ gi(X, xi) ≤ gi(xi).

Now, we can apply the univariate real root isolation routine to compute the real roots of
g

i
(xi) and gi(xi), so as to obtain two lists of real root intervals, namely List1 and List2, respec-

tively. The sequence of the intervals from List1 and List2 is matchable, with respect to a range
value defined by the user, whenever both the following conditions are satisfied (see Figure 3.7
for an example):

1. The sequence of the real root intervals from List1 and List2 takes one of the following
forms (‘1’ denotes an interval belonging to List1 and ‘2’ denotes an interval of List2):

(a) 1, 2, 2, 1, 1, 2, 2, 1, . . . , 1, 2, 2, 1;
(b) 1, 2, 2, 1, 1, 2, 2, 1, . . . , 1, 2, 2, 1, 1, 2;
(c) 2, 1, 1, 2, 2, 1, 1, 2, . . . , 2, 1, 1, 2;
(d) 2, 1, 1, 2, 2, 1, 1, 2, . . . , 2, 1, 1, 2, 2, 1.

2. In each interval from List1 and List2, the considered polynomial gi(X, xi) is monotonic.
Once such a matchable sequence of intervals is obtained, we say the real roots of gi are found.

Figure 3.7: An example of matchable interval lists

For each real root isolation box X = x1, . . . , xi−1, we parallelize the computation of isolating
xi of gi(X, xi) by using the algorithm described above. In general, after Triangularize an
n-variable polynomial system, a list of regular chains is obtained. Thus, we can parallelize
the real root isolation for each regular chain. Given a regular chain following the format of
Equation 3.1, one can use realRootIsolate from the RationalRegularChain class in the
BPAS library to isolate real roots of polynomial systems.

We compare our implementation with Maple 17 RealRootIsolate and Isolate written
in C. In Table 3.4, we collect the running times (in secs.) and speedup factors. We observe that
for 12 of 17 examples, BPAS outperforms the others and that the speedup factor varies from 1
to 16. To the best of our knowledge, this is the first parallel implementation of multivariate real
root isolation.

40 Chapter 3. The Basic Polynomial Algebra Subprograms

Table 3.4: Running times (in secs.) of multivariate real root isolation: BPAS vs Maple 17
RealRootIsolate vs C (with Maple 17 interface) Isolate

Example BPAS RealRootIsolate Isolate Speedup
(CilkPlus) (RegularChains, Maple) (Gröbner bases, C) factors

4-Body-Homog 0.402 0.608 0.382
Arnborg-Lazard 0.146 0.299 0.066

Caprasse 0.018 0.14 0.154 7.778
Circles 0.051 0.894 0.814 15.961

Cyclic-5 0.021 0.147 0.206 9.810
Czapor-Geddes-Wang 0.2 0.135 0.184

D2v10 0.029 0.075 177.999 2.586
D4v5 0.037 0.044 49.09 1.189

Fabfaux 0.192 0.231 0.071
Katsura-4 0.171 0.416 0.044

L-3 0.02 0.252 0.12 6.0
Neural-Network 0.029 0.332 0.131 4.517

R-6 0.014 0.048 20.612 3.429
Rose 0.026 0.336 0.599 12.923

Takeuchi-Lu 0.027 0.16 0.031 1.148
Wilkinsonxy 0.023 0.165 0.046 2.0

Nld-10-3 1.249 8.993 707.334 7.20

Furthermore, for symbolic-numeric integration of symbolic functions focusing on rational
functions, we rely on BPAS polynomial arithmetic operations (multiplication, division, root
isolation, etc.) for univariate polynomials with integer, rational number or complex rational
number coefficients. Our method proceeds by using the Lazard-Rioboo-Trager algorithm [78],
while it relies on efficient numerical computation of isolating polynomial roots followed by
symbolic post-processing. The symbolic computation is done within BPAS, while the numerical
computation is done via using a highly optimized multiprecision rootfinding package, namely
MPSolve.

The implementation of our algorithm is integrated in the BPAS library; it can be called
through the realSymbolicNumericIntegrate method of the UnivariateRationalFunc-
tion template class. The following output formats are available: approximate (either floating
point number or rational number) and symbolic expression (in either Maple or Matlab syntax);
see Figure 3.8 for a combination of floating point and Maple output formats.

Figure 3.8: A sample output of realSymbolicNumericIntegrate

Chapter 4

A Many-Core Machine Model for
Designing Algorithms with Minimum
Parallelism Overheads

We present a model of multithreaded computation with an emphasis on estimating the par-
allelism overheads of programs written for modern many-core architectures. We establish a
Graham-Brent theorem so as to estimate execution time of programs running on a given num-
ber of streaming multiprocessors. We evaluate the benefits of our model on fundamental algo-
rithms from scientific computing. For three case studies, our model is used to minimize par-
allelism overheads by determining an appropriate value range for a given program parameter.
For other cases, our model is used to compare different algorithms solving the same problem.
In each case, the studied algorithms were implemented and the results of their experimental
comparison are coherent with the theoretical analysis based on our model.

This chapter is an extended version of [61] and contains joint work with Sardar Anisul
Haque and Marc Moreno Maza.

4.1 Introduction
Designing efficient algorithms targeting hardware accelerators (multi-core processors, graph-
ics processing units (GPUs) and field-programmable gate arrays) creates major challenges for
computer scientists. A first difficulty is to define models of computation retaining the computer
hardware characteristics that have a dominant impact on program performance. In addition
to specifying the appropriate complexity measures, those models must consider the relevant
parameters characterizing the abstract machine executing the algorithms to be analyzed. A
second difficulty is, for a given model of computation, to combine its complexity measures so
as to determine the “best” algorithm among different possible solutions to a given algorithmic
problem.

In the fork-join concurrency model [11], two complexity measures, the work T1 and the
span T∞, and one machine parameter, the number P of processors, are combined into a running
time estimate, namely the Graham-Brent theorem [11, 53], which states that the running time
TP on P processors satisfies TP ≤ T1/P+T∞. A refinement of this theorem supports the imple-

41

42 Chapter 4. A Many-CoreMachineModel

mentation (on multi-core architectures) of the parallel performance analyzer Cilkview [63].
In this context, the running time TP is bounded in expectation by T1/P + 2δT̂∞, where δ is a
constant (called the span coefficient) and T̂∞ is the burdened span, which captures parallelism
overheads due to scheduling and synchronization.

The well-known PRAM (parallel random-access machine) model [110, 51] has also been
enhanced [1] so as to integrate communication delay into the computation time. However, a
PRAM abstract machine consists of an unbounded collection of RAM processors, whereas a
many-core GPU holds a collection of streaming multiprocessors (SMs). Hence, applying the
PRAM model to GPU programs fails to capture all the features (and thus the impact) of data
transfer between the SMs and the global memory of the device.

Ma, Agrawal and Chamberlain [85] introduce the TMM (Threaded Many-core Memory)
model, which retains many important characteristics of GPU-type architectures as machine
parameters, like memory access bandwidth and hardware limit on the number of threads per
core. In TMM analysis, the running time of an algorithm is estimated by choosing the max-
imum quantity among work, span and the number of memory accesses. Such running time
estimates depend on the machine parameters. Hong and Kim [67] present an analytical model
to predict the execution time of an actual GPU program. No abstract machine is defined in
this case. Instead, a few metrics are used to estimate the CPI (cycles per instruction) of the
considered program.

Many works, such as [86, 81], targeting code optimization and performance prediction of
GPU programs are related to our work. However, these papers do not define an abstract model
in support of the analysis of algorithms.

In this chapter, we propose a many-core machine (MCM) model with two objectives: (1)
tuning program parameters to minimize parallelism overheads of algorithms targeting GPU-
like architectures, and (2) comparing different algorithms independently of the targeted hard-
ware device. In the design of this model, we insist on the following features:

1. Two-level DAG programs. Defined in Section 4.2, they capture the two levels of paral-
lelism (fork-join and single instruction, multiple data) of heterogeneous programs (like
a CilkPlus program using #pragma simd [100] or a CUDA program with the so-called
dynamic parallelism [37]).

2. Parallelism overhead. We introduce this complexity measure in Section 4.2.3 with the
objective of capturing communication and synchronization costs.

3. A Graham-Brent theorem. We combine three complexity measures (work, span and
parallelism overhead) and one machine parameter (data transfer throughput) in order
to estimate the running time of an MCM program on P streaming multiprocessors, see
Theorem 4.2.1. However, as we shall see through a case study series, this machine
parameter has no influence on the comparison of algorithms.

Our model extends both the fork-join concurrency and PRAM models, with an emphasis on
parallelism overheads resulting from communication and synchronization.

We sketch below how, in practice, we use this model to tune a program parameter so as to
minimize parallelism overheads of programs targeting many-core GPUs. Consider an MCM
program P, that is, an algorithm expressed in the MCM model. Assume that a program param-
eter s (like the number of threads per thread-block running on an SM) can be arbitrarily chosen
within some range S while preserving the specifications of P. Let s0 be a particular value of s

4.2. A many-core machine model 43

that corresponds to an instance P0 of P, which, in practice, is seen as an initial version of the
algorithm to be optimized.

We consider the ratios of work, span and parallelism overhead given by WP0/WP, SP0/SP
and OP0/OP. Assume that, when s varies within S, the work and span ratios stay within O(s)
(in fact, Θ(1) is often the case), but the ratio of the parallelism overhead reduces by a factor
in Θ(s). Thereby, we determine a value smin ∈ S maximizing the parallelism overhead ratio.
Next, we use our version of the Graham-Brent theorem (more precisely, Corollary 4.2.2) to
check whether the upper bound for the running time of P(smin) is less than that of P(so). If
this holds, we view P(smin) as a solution of our problem of algorithm optimization (in terms of
parallelism overheads).

To evaluate the benefits of our model, we applied it successfully to six fundamental algo-
rithms in scientific computing, see Sections 4.3 to 4.6. These six algorithms are the Euclidean
algorithm, the Cooley & Tukey and Stockham fast Fourier transform algorithms, the plain and
FFT-based univariate polynomial multiplication algorithms, and radix sort [103]. The former
five algorithms are implemented in CUDA and publicly available with benchmarking scripts
from http://www.cumodp.org/.

Following the strategy described above for algorithm optimization, our model is used to
tune a program parameter in the case of the Euclidean algorithm, the plain multiplication al-
gorithm and radix sort. Next, our model is used to compare the two fast Fourier transform
algorithms and then the two univariate polynomial multiplication algorithms. In each case,
work, span and parallelism overhead are evaluated so as to obtain running time estimates via
our version of the Graham-Brent theorem and then select a proper algorithm.

4.2 A many-core machine model
The model of parallel computations presented in this Chapter aims at capturing communication
and synchronization overheads of programs written for modern many-core architectures. One
of our objectives is to optimize algorithms by techniques like reducing redundant memory
accesses. The reason for this optimization is that, on actual GPUs, global memory latency is
approximately 400 to 800 clock cycles. This memory latency, when not properly taken into
account, may have a dramatically negative impact on program performance. Another objective
of our model is to compare different algorithms targeting implementation on GPUs without
taking hardware parameters into account.

As specified in Sections 4.2.1 and 4.2.2, our many-core machine (MCM) model retains
many of the characteristics of modern GPU architectures and programming models, like CUDA
or OpenCL. However, in order to support algorithm analysis with an emphasis on parallelism
overheads, as defined in Section 4.2.3 and 4.2.4, the MCM abstract machines admit a few
simplifications and limitations with respect to actual many-core devices.

4.2.1 Characteristics of the abstract many-core machines

Architecture. An MCM abstract machine shown in Figure 4.1 possesses an unbounded number
of streaming multiprocessors (SMs), which are all identical. Each SM has a finite number of
processing cores and a fixed-size private memory. An MCM machine has a two-level memory

http://www.cumodp.org/

44 Chapter 4. A Many-CoreMachineModel

hierarchy, comprising an unbounded global memory with high latency and low throughput and
fixed size private memories with low latency and high throughput.

Figure 4.1: Overview of an abstract many-core machine

Programs. An MCM program is a directed acyclic graph (DAG), whose vertices are kernels
(defined hereafter) and edges indicate serial dependencies; moreover, this DAG is similar to
the instruction stream DAGs of the fork-join concurrency model. A kernel is an SIMD (single
instruction, multiple data) program capable of branches and decomposed into a number of
thread-blocks. Each thread-block is executed by a single SM, and each SM executes a single
thread-block at a time. Similar to a CUDA program, an MCM program specifies for each kernel
the number of thread-blocks and the number of threads per thread-block. Figure 4.2 depicts
the different types of components of an MCM program.

Figure 4.2: Overview of a many-core machine program

Scheduling and synchronization. At run time, an MCM machine schedules thread-blocks (from
the same or different kernels) onto SMs, based on the dependencies specified by the edges of the
DAG and the hardware resources required by each thread-block. Threads within a thread-block
can cooperate with each other via the private memory of the SM running the thread-block.

4.2. A many-core machine model 45

Meanwhile, thread-blocks interact with each other via the global memory. In addition, threads
within a thread-block are executed physically in parallel by an SM. Moreover, the programmer
cannot make any assumptions on the order in which thread-blocks of a given kernel are mapped
to the SMs. Hence, an MCM program runs correctly on any fixed number of SMs.
Memory access policy. All threads of a given thread-block can access simultaneously any mem-
ory cell of the private memory or the global memory: read/write conflicts are handled by the
CREW (concurrent read, exclusive write) policy. However, we assume that read/write requests
to the global memory by two different thread-blocks cannot be executed simultaneously. In
case of simultaneous requests, one thread-block is chosen randomly and served first, then the
other is served.

Toward analyzing program performance, we define two machine parameters:
U: time (expressed in clock cycles) to transfer one machine word between the global mem-

ory and the private memory of any SM; hence, we have U > 0, and
Z: size (expressed in machine words) of the private memory of any SM, which sets up an

upper bound on several program parameters.
The private memory size Z sets several characteristics and limitations of an SM and, thus, of
a thread-block. Indeed, each of the following quantities is at most equal to Z: the number of
threads of a thread-block and the number of words in a data transfer between the global memory
and the private memory. The quantity 1/U is a throughput measure and has the following
property. If α and β are the maximum numbers of words, respectively, read and written to the
global memory by one thread of a thread-block B, and ` is the number of threads per thread-
block, then the total time TD spent in data transfer between the global memory and the private
memory of an SM executing B satisfies:

TD ≤ (α + β) U, if coalesced accesses occur, or
` (α + β) U, otherwise. (4.1)

On actual GPU devices, some hardware characteristics may reduce data transfer time, for in-
stance, fast context switching between warps executed by an SM. Other hardware character-
istics, like partition camping [102], may increase data transfer time. As an abstract machine,
the MCM aims at capturing either the best or the worst scenario for data transfer time of a
thread-block, which leads us to Relation (4.1).

Relation (4.1) calls for another comment. One could expect the introduction of a third
machine parameter, say V , which would be the time to execute one local operation (arithmetic
operation, read/write in the private memory), such that, if σ is the maximum number of local
operations performed by one thread of a thread-block B, then the total time TA spent in local
operations by an SM executing B would satisfy

TA ≤ σV. (4.2)

Therefore, for the total running time T of the thread-block B, we would have

T = TA + TD ≤ σV + ε (α + β) U,

where ε is either 1 or `. Instead of introducing this third machine parameter V , we let V = 1.
Thus, U can be understood as the ratio of the time to transfer a machine word to the time to
execute a local operation.

46 Chapter 4. A Many-CoreMachineModel

4.2.2 Many-core machine programs

Recall that each MCM program P is a DAG (K ,E), called the kernel DAG of P, where each
node K ∈ K represents a kernel, and each edge E ∈ E records the fact that a kernel call
must precede another kernel call. In other words, a kernel call can be executed once all its
predecessors in the DAG (K ,E) have completed their execution.

Synchronization costs. Recall that each kernel decomposes into thread-blocks and that all
threads within a given kernel execute the same serial program, but with possibly different input
data. In addition, all threads within a thread-block are executed physically in parallel by an
SM. It follows that the MCM kernel code needs no synchronization statement. Consequently,
the only form of synchronization taking place among the threads executing a given thread-
block is implied by code divergence [58]. This latter phenomenon can be seen as parallelism
overhead. Furthermore, an MCM machine handles code divergence by eliminating the corre-
sponding conditional branches via code replication [106]; thereby, the corresponding cost will
be captured by the complexity measures (work, span and parallelism overhead) of the MCM
model.

Scheduling costs. Since an MCM abstract machine has infinitely many SMs and since the
kernel DAG defining an MCM program P is assumed to be known when P starts to execute,
scheduling P’s kernels onto the SMs can be done in time O(Γ), where Γ is the total length
of P’s kernel code. Thus, we neglect those costs in comparison to the costs of data transfer
between SMs’ private memories and the global memory. We also note that assuming that the
kernel DAG is known when P starts to execute allows us to focus on parallelism overheads
resulting from this data transfer.

Extending MCM machines to program DAGs unfolding dynamically at run time and in-
tegrating the resulting scheduling costs are a work in progress. This key observation helps
understand the complexity measures introduced in Section 4.2.3.

Thread-block DAG. Since each kernel of the program P decomposes into finitely many thread-
blocks, we map P to a second graph, called the thread-block DAG of P, whose vertex set B(P)
consists of all thread-blocks of the kernels of P, such that (B1, B2) is an edge if B1 is a thread-
block of a kernel preceding the kernel of the thread-block B2 in P. This second graph defines
two important quantities:

N(P): number of vertices in the thread-block DAG of P, and
L(P): critical path length (where length of a path is the number of edges in that path) in the

thread-block DAG of P.

4.2.3 Complexity measures for the many-core machine model

Consider an MCM program P given by its kernel DAG (K ,E). Let K ∈ K be a kernel of P
and B be a thread-block of K. We define the work of B, denoted by W(B), as the total number
of local operations performed by all threads of B. We define the span of B, denoted by S(B), as
the maximum number of local operations performed by a thread of B. As before, let α and β be
the maximum numbers of words read and written (from the global memory) by a thread of B,
and ` be the number of threads per thread-block. Then, we define the overhead of B, denoted

4.2. A many-core machine model 47

by O(B), as
(α + β) U, if memory accesses can be coalesced or
` (α + β) U, otherwise. (4.3)

Next, the work (resp. overhead) W(K) (resp. O(K)) of the kernel K is the sum of the works
(resp. overheads) of its thread-blocks, while the span S(K) of the kernel K is the maximum of
the spans of its thread-blocks. We consider now the entire program P. The work W(P) of P is
defined as the total work of all its kernels.

W(P) =
∑
K∈K

W(K).

Regarding the graph (K ,E) as a weighted-vertex graph, where the weight of a vertex K ∈ K
is its span S(K), we define the weight S(γ) of any path γ from the first executing kernel to
a terminal kernel (that is, a kernel with no successors in P) as S(γ) =

∑
K∈γ S(K). Then, we

define the span S(P) of P as
S(P) = max

γ
S(γ),

the longest path, counting the weight (span) of each vertex (kernel), in the kernel DAG. Finally,
we define the overhead O(P) of the program P as the total overhead of all its kernels.

O(P) =
∑
K∈K

O(K).

Observe that, according to Mirsky’s theorem [90], the number π of parallel steps in P (which
form a partition of K into anti-chains in the DAG (K ,E) regarded as a partially ordered set) is
greater or equal to the maximum length of a path in (K ,E) from the first executing kernel to a
terminal kernel.

4.2.4 A Graham-Brent theorem with parallelism overhead
Theorem 4.2.1 The running time TP of the programP executed on P SMs satisfies the inequal-
ity: TP ≤ (N(P)/P + L(P))C(P), where C(P) = maxB∈B(P) (S(B) + O(B)).

The proof is similar to that of the original result [11, 53], while the proof of the following
corollary follows from Theorem 4.2.1 and from the fact that costs of scheduling thread-blocks
onto SMs are neglected.

Corollary 4.2.2 Let K be the maximum number of thread-blocks along an anti-chain of the
thread-block DAG of P. Then the running time TP of the program P satisfies:

TP ≤ (N(P)/K + L(P))C(P). (4.4)

The analysis of the running time estimate is based on the thread-block DAG. In Figure 4.3, we
show an example of a thread-block DAG with the assumption that each kernel executes in a
coalesced manner.

As we shall see in Sections 4.3 through 4.5, Corollary 4.2.2 allows us to estimate the run-
ning time of an MCM program as a function of the number ` of threads per thread-block, the
single machine parameter U and the thread-block DAG of P. However, the dependence on
the machine parameter Z (the size of a private memory) is only through inequalities specify-
ing upper bounds for `. In addition, in each of the case studies, there is no need to make any
assumptions (like inequality constraints) on the machine parameter U.

48 Chapter 4. A Many-CoreMachineModel

Figure 4.3: An example of a thread-block DAG

4.3 The Euclidean algorithm
Our first application of the MCM model deals with a multithreaded algorithm for computing
the greatest common divisor (GCD) of two univariate polynomials. To specify notations, let K
be a field of coefficients (like the finite field Z/pZ of prime characteristic p) and K[X] be the
set of all univariate polynomials with coefficients in K.

Our approach is based on the Euclidean algorithm, which can be reviewed in Chapter 4
of [74]. Given a positive integer s, we proceed by repeatedly calling a subroutine, see Algo-
rithm 1. This subroutine takes as input a pair (a, b) of polynomials in K[X] with deg(a) ≥
deg(b) > 0 and returns another pair (a′, b′) of polynomials in K[X], such that gcd(a, b) =

gcd(a′, b′) and, either b′ = 0 (in which case we have gcd(a, b) = a′), or we have deg(a′) +

deg(b′) ≤ deg(a) + deg(b)− s. We will take advantage of our MCM model to tune the program
parameter s in order to obtain an optimized multithreaded version of the Euclidean algorithm.

Let n and m be positive integers such that deg(a) = n − 1 and deg(b) = m − 1, assuming
n ≥ m. We use a dense representation for encoding the polynomials a and b. Thus, n and
m are the number of coefficients (zero or not) of a and b, respectively. Algorithm 1 uses two
one-dimensional arrays of size n and m, respectively, to represent a and b, where the coefficient
of the term of a (resp. b) in degree i is stored in a[i] (resp. b[i]). Observe that Algorithm 1
updates a and b. We denote by da and db the degrees of these updated polynomials, while we
reserve n and m for the initial values of the sizes of a and b.

Algorithm 1 is implemented as a kernel, which proceeds as follows. While da ≥ db holds,
the polynomial a is replaced by a− cXdb, where c is the leading coefficient of a divided by that
of b and d = da − db. If this process reduces a to zero, or decreases da by s, in case da ≥ db still
holds, then the updated pair (a, b) is returned. If the condition da ≥ db becomes false before da

can decrease by s, then the roles of a and b are exchanged; thus, a becomes the divisor.
Hence, each call to this kernel either computes the GCD of its input polynomials, or makes

the sum of their degrees decreased at least by s. Since this may require performing s division

4.3. The Euclidean algorithm 49

Algorithm 1: OptGcdKer(a, b, s, da, db)
Input: a, b ∈ K[X], an integer s ≥ 1 and da, db store the current degrees of a and b respectively.
Output: Either one of a, b was set to gcd(a, b) (and the other to 0), or da + db reduced at least by s.

1 Let Alc, Blc, A, B be arrays of size s, s, ` + s, ` + s respectively with coefficients in K, allocated
on the private memory of the device; local integers u = v = w = e = 0;

2 j =blockID·blockDim + threadID; t = threadID;
/* copying from global memory */

3 if t < s then
4 Alc[t] = a[da−t]; Blc[t] = b[db−t];

5 if t ≥ s then
6 A[t − s] = a[da−s blockID−t]; B[t − s] = b[db−s blockID−t];

/* computing next remainders */

7 for (k = 0; k < s; k = k + 1) do
8 if (da≥ db and db≥ 0) then
9 if (u + t < s) and (v + t < s) then

10 Alc[u + t] -= Blc[v + t]·Alc[u]·Blc[v]−1;

11 if (u + t ≥ s) and (v + t ≥ s) then
12 A[w + t − s] -= B[e + t − s]·Alc[u]·Blc[v]−1;

13 if t == 0 then
14 while Alc[u] = 0 do
15 u = u + 1; w = w + 1; da = da−1;

16 if (db≥ da) and (da≥ 0) then
17 if (u + t < s) and (v + t < s) then
18 Blc[v + t] -= Alc[u + t]·Blc[v]·Alc[u]−1;

19 if (u + t ≥ s) and (v + t ≥ s) then
20 B[e + t − s] -= A[w + t − s]·Blc[v]·Alc[u]−1;

21 if t == 0 then
22 while Blc[v] = 0 do
23 v = v + 1; e = e + 1; db = db−1;

24 if t ≥ s then
/* writing to global memory */

25 a[da−s blockID−t] = A[t − s];
26 b[db−s blockID−t] = B[t − s] ;

27 if j == min(da, db) then
28 Update da, db with the new degrees of a and b;

steps (using either a or b as divisor), each thread-block must compute the leading coefficients
of a and b at each division step.

From the specifications of Algorithm 1, it follows that computing gcd(a, b) requires at most
d n+m

s e kernel calls. With the goal of optimizing the use of computing resources and sharpening
the analysis of our multithreaded GCD computation, we observe that these kernel calls can be

50 Chapter 4. A Many-CoreMachineModel

separated into two computational phases, which we call ping-ping and ping-pong. During the
ping-ping phase, the inequality da ≥ db remains true, and thus this phase amounts to at most
d n−m

s e kernel calls. The subsequent kernel calls form the ping-pong phase, during which the
role of the divisor alternates between a and b; thus, there are at most d2 m

s e kernel calls in this
second phase.

Figure 4.4: Illustration of reads and writes by a thread-block in either ping-ping or ping-pong
phase of the Euclidean algorithm

Denoting by ` the number of threads per thread-block, we observe that each kernel call
requires dm

`
e thread-blocks in the ping-ping phase. During the ping-pong phase, for a kernel

called on polynomials with current degrees da and db, the number of required thread-blocks
becomes min(d da+1

`
e, d db+1

`
e).

After executing a kernel call in the ping-ping phase, the s largest-degree coefficients of
a have been set to zero; meanwhile, b is left unchanged. Each thread-block updates ` other
coefficients of a. After executing a kernel call in the ping-pong phase, s largest-degree coef-
ficients among a and b have been set to zero; meanwhile, each thread-block has updated 2 `
other coefficients of a and b. See Figure 4.4 for an illustration of both scenarios.

To ensure that every kernel call (in either ping-ping or ping-pong phase) can perform (at
most) s division steps correctly, each thread-block reads the s largest-degree coefficients from
both a and b, as well as `+ s other consecutive coefficients from both a and b. Thereby, 4 s+2 `
coefficients must fit into the private memory of each streaming multiprocessor; hence, we have
4 s + 2 ` ≤ Z.

We note that two consecutive thread-blocks have s common coefficients of both a and b.
Moreover, all thread-blocks of a given kernel call read the s largest-degree coefficient of both a
and b. Despite this duplication of data access and the corresponding duplication of work, this

4.3. The Euclidean algorithm 51

multithreaded GCD algorithm is practically effective and is optimized for a relatively large s,
as we shall see.

The work, span and parallelism overhead are given1 respectively, by

Ws = 3 m2 + 6 n m + 3 s +
3 (5 m s+4 n s+14 m+4 n+3 s2+6 s)

8 ` ,
Ss = 3 n + 3 m and
Os =

4 m U (2 n+m+s)
s ` .

To determine a value range for s that minimizes the parallelism overhead of our multi-
threaded algorithm, we choose s = 1 as a starting point. Let W1, S1 and O1 be the work, span
and parallelism overhead at s = 1. The work ratio W1/Ws is asymptotically equivalent to

(16 ` + 8) n + (8 ` + 19) m
(16 ` + 4 s + 4) n + (8 ` + 5 s + 14) m

,

when n (and thus m) escapes to infinity. The span ratio S1/Ss is 1, and the parallelism overhead
ratio O1/Os is

(2 n + m + 1) s
2 n + m + s

.

We observe that when s ∈ Θ(`), the work is increased only by a constant factor, while the
parallelism overhead is reduced by a factor in Θ(s).

Hence, choosing s ∈ Θ(`) seems a good choice. To verify this, we apply Corollary 4.2.2.
One can easily check that the quantities characterizing the thread-block DAG of the computa-
tion are

Ns =
2 n m + m2 + m s

2 s `
, Ls =

n + m
s

and Cs = 3 s + 8 U.

Then, applying Corollary 4.2.2, we estimate the running time on Θ(m
`
) SMs as

Ts =
4 n + 3 m + s

2 s
(3 s + 8 U).

Denoting by T1 the estimated running time when s = 1, the running time ratio R = T1/Ts on
Θ(m

`
) SMs is given by

(4 n + 3 m + 1) (3 + 8 U) s
(4 n + 3 m + s) (3 s + 8 U)

.

When n and m escape to infinity, the latter ratio asymptotically becomes

(3 + 8 U) s
3 s + 8 U

,

which is greater than 1 if and only if s > 1. Thus, the algorithm with s = Θ(`) performs better
than that with s = 1. Figure 4.5 shows the experimental results with s = ` = 256 and s = 1 on
an NVIDIA Kepler architecture, which confirms our theoretical analysis.

1See the detailed analysis in the form of executable Maple worksheets of all applications: http://www.csd.
uwo.ca/˜nxie6/projects/mcm/ or the PDF version of these worksheets in Appendix B.

http://www.csd.uwo.ca/~nxie6/projects/mcm/
http://www.csd.uwo.ca/~nxie6/projects/mcm/

52 Chapter 4. A Many-CoreMachineModel

Figure 4.5: Running time on GeForce GTX 670 of our multithreaded Euclidean algorithm for
univariate polynomials of sizes n and m over Z/pZ, where p is a 30-bit prime, whereas the
program parameter takes values s = 1 and s = 256

4.4 Fast Fourier Transform
Let f be a univariate polynomial over the prime field of characteristic p, namely Fp := Z/pZ,
where p is a prime number greater than 2. Let n be the smallest power of 2, such that the
degree of f is less than n, that is, n = min{2e | deg(f) < 2e and e ∈ N}. We assume that n
divides p − 1, which guarantees that the field Fp admits an n-th primitive root of unity. Hence,
let ω ∈ Fp such that ωn = 1 holds, while for all 0 ≤ i < n, we have ωi , 1. The n-point Discrete
Fourier Transform (DFT) at ω is the linear map from the Fp-vector space Fp

n to itself, defined
by x 7−→ DFTn x with the n-th DFT matrix given by

DFTn = [ωi j]0≤i, j<n. (4.5)

Since ω is an n-th primitive root of unity, this map is invertible and its inverse is 1/n times the
DFT at ω′, where ω′ is the inverse of ω in Fp.

A fast Fourier transform (FFT) is an algorithm to compute the DFT and its inverse. Two
algorithms of the most commonly used FFTs’ are that of Cooley & Tukey [33] and that of
Stockham [109]. Before reviewing and analyzing those algorithms on an MCM machine, we
introduce a few notations. Given an input vector v of length n m, we define the stride permu-
tation Ln m

m as the permutation that maps the entry of v at position i n + j to position j m + i for
0 ≤ j ≤ (m−1) and 0 ≤ i ≤ (n−1). We denote by Ix the identity matrix of order x. The symbols⊕

and ⊗ are used for the direct sum and Kronecker product2 [120] of matrices. We define the
twiddle matrix Dx,y as the diagonal matrix of order x y given by

⊕x−1
j=0 diag(1,w j, . . . ,w j (y−1)).

4.4.1 Cooley & Tukey algorithm
Let k = log2(n) and fix r for 0 < r < k. Define m = 2r and thus m divides n. The algorithm of
Cooley & Tukey is based on the following factorization3 of the matrix DFTn

DFTn = Mk,r M′
k,r M′′

k,r, (4.6)
2https://en.wikipedia.org/wiki/Kronecker_product
3Matrix multiplications are not commutative. Throughout, the product

∏s
i=1 Mi stands for M1M2 · · ·Ms, while∏1

i=s Mi means MsMs−1 · · ·M1.

https://en.wikipedia.org/wiki/Kronecker_product

4.4. Fast Fourier Transform 53

where Mk,r =
∏k−r−1

i=0 (I2i ⊗ DFT2 ⊗ I2k−i−1)(I2i ⊗ D2,2k−i−1), M′
k,r = I2k−r ⊗ DFTm and M′′

k,r =∏0
i=k−r−1 I2i ⊗ L2k−i

2 . Each of Mk,r,M′
k,r,M′′

k,r is a structured square matrix of order n represent-
ing a computational step of the algorithm.

As we shall see, the multiplications by the matrices M′′
k,r and Mk,r are difficult to implement

on a GPU-like architecture. Each factor of the matrix M′′
k,r is a Kronecker product of the

form I2i ⊗ L2k−i

2 , that is, a diagonal matrix, which has order 2i and is a permutation matrix.
One may assume that, for a kernel implementing the multiplication by I2i ⊗ L2k−i

2 , all thread-
blocks perform coalesced reads. But, for a small enough i, several non-coalesced memory
accesses to the global memory may occur when writing back within one thread-block. Turning
our attention now to the multiplication by Mk,r, we notice that, when the matrix I2i−1 ⊗ D2,2k−i

operates on a sub-vector of length 2k−i+1, the powers {1, ω2i
, (ω2i

)2, . . . , (ω2i
)2k−i−1} need to be

computed. A thread-block operating on a sub-vector of size x may need to compute x of
those consecutive powers, which can be done in time O(log2(x)). Finally, multiplication by
M′

k,r causes no difficulty as long as m is large enough so as to avoid non-coalesced memory
accesses. In our implementation, m = 16 is appropriate.

Let ` be the number of threads per thread-block, then Mk,r and M′′
k,r are computed by

log2(n) − log2(m) kernel calls, respectively, requiring n
`

thread-blocks per kernel, and M′
k,r is

computed by one kernel with n
m `

thread-blocks.
We compute the work, span and parallelism overhead, respectively, as

Wct = n (34 log2(n) log2(`) + 47 log2(n) + 32 m + 9 − 34 log2(m) log2(`) − 47 log2(m)),
Sct = 34 log2(n) log2(`) + 47 log2(n) + 32 m log2(m) + 30 m + 11 − 34 log2(`) log2(m)

−79 log2(m) and
Oct = 2 n U

`
(4 log2(n) + ` log2(`) + 1 − log2(`) − 4 log2(m)).

To apply Corollary 4.2.2, one can easily check that those three quantities characterizing the
thread-block DAG are

Nct = n
m `

(2 m log2(n) + 1 − 2 m log2(m)),
Lct = 2 log2(n) − 2 log2(m) + 1 and
Cct = 2 U ` + 34 log2(`) + 2 U + 27.

Thus, we estimate that the running time on Θ(n
`
) streaming multiprocessors is

Tct = (4 log2(n) + 1 + 1
m − 4 log2(m))

(
2 U ` + 34 log2(`) + 2 U + 27

)
.

4.4.2 Stockham algorithm
The Stockham algorithm is based on the following factorization of the matrix DFTn

DFTn =

k−1∏
i=0

(DFT2 ⊗ I2k−1)(D2,2k−i−1 ⊗ I2i)(L2k−i

2 ⊗ I2i),

where k = log2(n) as before. For each 0 ≤ i < k, one performs three matrix-vector multiplica-
tions:

Ak,i : x 7−→
(
L2k−i

2 ⊗ I2i

)
x, A′k,i : x 7−→

(
D2,2k−i−1 ⊗ I2i

)
x, and A′′k,i : x 7−→ (DFT2 ⊗ I2k−1) x.

54 Chapter 4. A Many-CoreMachineModel

Thus, the Stockham algorithm can be implemented as log2(n) calls to a kernel performing
successively the matrix-vector multiplications defined by Ak,i, A′k,i and A′′k,i. Each of the cor-
responding matrices has a structure permitting coalesced read/write memory accesses. Indeed,
for each of these matrices, all coefficients are null except along a few segments parallel to the
diagonal. See [92] for details.

Let ` be the number of threads per thread-block; thus, each kernel requires n
`

thread-blocks.
We compute the work, span and parallelism overhead, respectively, as

Wsh = n 43 log2(n) + n
4 ` + 12 ` + 1 − 30 n,

Ssh = 43 log2(n) + 16 log2(`) + 3 and
Osh =

5 n U log2(n)
`

+ 5 n U
4 ` .

Applying Corollary 4.2.2, the quantities characterizing the thread-block DAG are

Nsh =
n (8 log2(n) − 5)

4 `
, Lsh = 3 log2(n) + 1 and Csh = 8 log2(`) + 4 U + 17.

Hence, the running time estimate on Θ(n
`
) SMs is

Tsh = log2(n) (40 log2(`) + 20 U + 85) − 2 log2(`) − U −
17
4
.

4.4.3 Comparison of running time estimates
The work ratio Wct/Wsh is asymptotically equivalent to

4 n (47 log2(n) ` + 34 log2(n) ` log2(`))
172 n log2(n) ` + n + 48 `2 ,

when n escapes to infinity. Since ` ∈ O(Z), the quantity ` is bounded over on a given machine.
Thus, the work ratio is asymptotically equivalent to log2(`) when n escapes to infinity, while
the span ratio Sct/Ssh is asymptotically equivalent to

34 log2(n) log2(`) + 47 log2(n)
43 log2(n) + 16 log2(`)

,

which is also in Θ(log2(`)). In other words, both the work and span of the algorithm of Cooley
& Tukey are increased by Θ(log2(`)) factor w.r.t their counterparts in the Stockham algorithm.
Next, we compute the parallelism overhead ratio Oct/Osh as

8 n (4 log2(n) + ` log2(`) − log2(`) − 15)
20 n log2(n) + 5 n − 4 `

.

Applying Corollary 4.2.2, we obtain the running time ratio R = Tct/Tsh on Θ(n
`
) SMs as

R ∼
log2(n)(2 U ` + 34 log2(`) + 2 U)

5 log2(n) (U + 2 log2(`))
,

when n escapes to infinity. This latter ratio is greater than 1 if and only if ` > 1.
Hence, the Stockham algorithm outperforms the Cooley & Tukey algorithm on an MCM

machine. Table 4.1 shows the experimental results comparing the Cooley & Tukey and Stock-
ham algorithms with ` = 128 on an NVIDIA Kepler architecture. The experimentation con-
firms our theoretical analysis.

4.5. Polynomial multiplication 55

Table 4.1: Running time (in secs) of the Cooley & Tukey and Stockham FFT algorithms with
the input size n on GeForce GTX 670

n Cooley & Tukey Stockham
214 0.583296 0.666496
215 0.826784 0.7624
216 1.19542 0.929632
217 2.07514 1.24928
218 4.66762 1.86458
219 9.11498 3.04365
220 16.8699 5.38781

4.5 Polynomial multiplication
Multithreaded algorithms for polynomial multiplication are our third application of the MCM
model. As in Section 4.3, we denote by a and b two univariate polynomials with coefficients in
the prime field Fp, and we write their degrees deg(a) = n−1 and deg(b) = m−1, for two positive
integers n ≥ m. We compute the product f = a × b in two ways: plain multiplication and FFT-
based multiplication. We describe the plain multiplication approach in Section 4.5.1; moreover,
we analyze it so as to tune a program parameter s and thus obtain an optimized algorithm.
In Section 4.5.2, we analyze an FFT-based multiplication algorithm that uses the Stockham
FFT algorithm. Finally, we compare the plain and FFT-based multiplication algorithms in
Section 4.5.3 via the MCM model and experimentally.

4.5.1 Plain multiplication
Our first multithreaded polynomial multiplication algorithm is based on the well-known long
multiplication4 [120] and consists of two phases. During the multiplication phase, every co-
efficient of a is multiplied with every coefficient of b, and the resulting coefficient products
are accumulated in an auxiliary array M. Then, during the addition phase, these accumulated
products are added together to form the polynomial f . The top level algorithm shown in Al-
gorithm 2 performs the multiplication phase once via Algorithm 3, and the addition phase by
repeated calls to Algorithm 4. We consider as a program parameter the number s > 0 of coef-
ficients that each thread writes back to the global memory at the end of each (multiplication or
addition) phase.

We denote by ` the number of threads per thread-block. In the multiplication phase, each
thread-block reads s ` + s − 1 coefficients of a and s coefficients of b, and then computes ` s2

products followed by ` s (s− 1) additions. Thus, each thread-block contributes s ` partial sums
to a two-dimensional array M, whose format is x · y with x = m

s and y = n + s − 1. This
multiplication phase, illustrated by Figure 4.6, loads s ` + s − 1 coefficients of a to guarantee
the correctness of the results in M. Thereby, 2 s ` + 2 s − 1 coefficients must fit into the private
memory, that is, 2 s ` + 2 s − 1 ≤ Z, and the kernel requires x y

` s =
(n+s−1) m

` s2 thread-blocks.
In the addition phase, the x rows of the auxiliary array M are added pairwise in log2(x)

parallel steps. After each step, the number of rows in M is reduced by half, until we obtain

4http://en.wikipedia.org/wiki/Multiplication_algorithm

http://en.wikipedia.org/wiki/Multiplication_algorithm

56 Chapter 4. A Many-CoreMachineModel

Algorithm 2: PlainMultiplicationGPU(a, b, s)
Input: a, b ∈ Fp[X] with n := deg(a) + 1 and m := deg(b) + 1 and an integer s ≥ 1.
Output: f ∈ Fp[X] and f = a × b.

1 y = n + s − 1; x = m/s;
2 Let M be an array of size x · y;
3 ` is the number of threads per block;
4 MulKer≪ x · y/(s · `), `≫ (a, b,M, n,m, s);
5 for (i = 0; i < log2 x; i = i + 1) do
6 AddKer≪ x · y/(2i+1 s · `), `≫ (M, f , y, s, x, i);

7 return f ;

Algorithm 3: MulKer(a, b,M, n,m, s)
Input: a, b,M ∈ Fp[X] and an integer s ≥ 1.

1 ` = blockDim; t = threadID; j =blockID·` + t;
2 Let B and A be two arrays of size s and ` · s + s − 1 respectively, allocated on the private memory

of the device;
/* copying from global */

3 i = s · bs · j/(n + s − 1)c + t;
4 if i < m and t < s then
5 B[t] = b[i];

6 i = s · (j mod n+s−1
s);

7 for (k = 0; k < s; k = k + 1) do
8 if i + k · ` + t < n then
9 A[k · ` + t] = a[i + k · ` + t];

10 if i − s + t > 0 and t < s − 1 then
11 A[` · s + t] = a[i − s + t];

12 else if t < s − 1 then
13 A[` · s + t] = 0;

14 for (e = 0; e < s; e = e + 1) do
/* accumulating products */

15 h = 0;
16 for (k = 0; k < s; k = k + 1) do
17 h += A[e · ` + k] · B[k];

/* writing to global memory */

18 M[s · j + e] = h;

only one row, that is, f = a × b. To be more specific, at a parallel step k (0 ≤ k < log2(x)),
adding rows i and j (for i < j) as shown in Figure 4.7, the kernel requires x y

2k+1 ` s =
(n+s−1) m
2k+1 ` s2

thread-blocks, while each thread-block loads s ` elements of M[i] and M[j], respectively, and
then adds M[j] to M[i].

We compute the work, span and parallelism overhead of the plain multiplication with an

4.5. Polynomial multiplication 57

Algorithm 4: AddKer(M, f , y, s, x, i)
Input: M, f , ∈ Fp[X] and y, s, x, i are positive integers.

1 j =blockID·blockDim + threadID;
2 h = s · j mod y;
3 k = 2i − 1 + 2i+1 bs · j/yc;
4 if h < 2i s then
5 for (e = 0; e < s; e = e + 1) do
6 f [k · s + h + e] += M[k · x + h + e];

7 else
8 for (e = 0; e < s; e = e + 1) do
9 M[(k + 2i) · x + h − 2i s + e] += M[k · x + h + e];

Figure 4.6: Multiplication phase: illustration of a thread-block reading coefficients from a, b
and writing to the auxiliary array M

Figure 4.7: Addition phase: illustration of a thread-block reading and writing to the auxiliary
array M

arbitrary s, respectively, as

Ws = (2 m−
1
2

) (n+s−1), Ss = 2 s2+s log2
m
s
−s and Os =

(n + s − 1) (5 m s + 2 m − 3 s2) U
s2 `

.

We also obtain the quantities characterizing the thread-block DAG that are required in order to
apply Corollary 4.2.2:

Ns =
(n + s − 1) (2 m − s)

s2 `
, Ls = log2(

m
s

) + 1 and Cs = s (2 s − 1) + 2 U (s + 1).

58 Chapter 4. A Many-CoreMachineModel

We set s = 1 in the above two phases, and denote its work, span and parallelism overhead
as W1, S1 and O1, respectively. The work ratio

W1

Ws
=

n
n + s − 1

is asymptotically constant as n escapes to infinity. The span ratio

S1

Ss
=

log2(m) + 1
s (log2 (m/s) + 2 s − 1)

shows that S s grows asymptotically with s. The parallelism overhead ratio is

O1

Os
=

n s2 (7 m − 3)
(n + s − 1) (5 m s + 2 m − 3 s2)

.

We observe that, as n and m escape to infinity, this latter ratio is asymptotically equivalent to s.
Applying Corollary 4.2.2, the estimated running time on Θ((n+s−1) m

` s2) SMs is

Ts =

(
2 m − s

m
+ log2(

m
s

) + 1
)

(2 U s + 2 s2 + 2 U − s).

Let R be the ratio of the running time estimate between the algorithm with s = 1 and that for
an arbitrary s, we obtain

R =
(m log2(m) + 3 m − 1) (1 + 4 U)

(m log2(m
s) + 3 m − s) (2 U s + 2 U + 2 s2 − s)

,

which is asymptotically equivalent to

2 U log2(m)
s (s + U) log2 (m/s)

.

This latter ratio is smaller than 1 for s > 1. In other words, increasing s worsens the algorithm
performance. In practice, as shown in Figure 4.8, setting s = 4 (where ` = 256) performs best,
while with larger s, the running time becomes slower. This practical observation is coherent
with our theoretical analysis.

4.5.2 FFT-based multiplication
Let ω be an n-th root primitive of unity w, as defined in Section 4.4. We assume that the
successive powers {1,w,w2, . . . ,wn−1} are pre-computed via a parallel prefix sum. The product
f = a × b is computed as follows:

(i) FFT computations: a′ = DFTw(a) and b′ = DFTw(b);
(ii) Point-wise multiplication: f ′ = a′ × b′;

(iii) FFT computation: f ′ = DFTw−1(f ′);
(iv) Scale the vector: f = 1

n f ′ and return f ;

4.5. Polynomial multiplication 59

Figure 4.8: Running time of the plain polynomial multiplication algorithm with polynomials a
(deg(a) = n − 1) and b (deg(b) = m − 1) and the parameter s on GeForce GTX 670

A kernel for computing the Stockham FFT algorithm has been described in Section 4.4. Two
other kernels perform, respectively, the point-wise multiplication and vector scaling.

Let ` be the number of threads per thread-block. The analysis of the Stockham FFT al-
gorithm is described in Section 4.4.3. To compute the point-wise multiplication, the kernel
requires n

`
thread-blocks with each thread reading two data items and writing one data item

back to the global memory. The final kernel, for vector scaling, also requires n
`

thread-blocks
with each thread moving one data item between the global memory and the private memory.
Hence, data movement in each kernel call is coalesced.

We compute the work, span and parallelism overhead of the overall FFT-based polynomial
multiplication, respectively, as

W f f t = 129 n log2(n) − 94 n, S f f t = 129 log2(n) − 94 and O f f t =
n U (15 log2(n) − 4)

`
.

Applying Corollary 4.2.2, we obtain the quantities characterizing the thread-block DAG:

N f f t =
12 n log2(n) − 5

2 `
, L f f t = 9 log2(n) − 4 and C f f t = 4 U + 25.

Thus, the running time estimate on Θ(n
`
) SMs is

T f f t = (15 log2(n) −
13
2

) (4 U + 25).

4.5.3 Comparison of running time estimates
Back to the plain multiplication, using s = 4 obtained from experimental results and setting
m = n, we compute

Wplain = 2 n2 +
11
2

n −
3
2
, Splain = 4 log2(n) + 20 and Oplain =

U (n + 3) (11 n − 24)
8 `

.

We observe that Wplain/W f f t is in O(n
log2(n)), Splain/S f f t is asymptotically constant, and Oplain/O f f t

is in O(n
log2(n)). Next, the estimated running time of the plain multiplication on Θ(n (n+3)

16 `) SMs is

Tplain =

(
2 (n − 2)

n
+ log2(n) − 1

)
(10 U + 28).

60 Chapter 4. A Many-CoreMachineModel

The estimated running time ratio Tplain/T f f t is essentially constant when n escapes to infinity,
while the plain multiplication performs more work and parallelism overhead.

However, the estimated running time of the plain multiplication on Θ(n
`
) SMs, in the case

that we have limited resources, is

T ′plain =

(
(n + 3) (n − 2)

8 n
+ log2(n) − 1

)
(10 U + 28),

whereas the estimated running time of the FFT-based multiplication is also based on Θ(n
`
) SMs.

Thus, when n escapes to infinity, the estimated running time ratio T ′plain/T f f t on Θ(n
`
) SMs is

asymptotically equivalent to
5 U (n + 8 log2(n))

240 U log2(n)
,

and thus in Θ(n). Hence, the FFT-based multiplication outperforms the plain multiplication for
a large enough n.

Figure 4.9 shows the experimental results comparing the plain and FFT-based multiplica-
tion algorithms with ` = 256 on an NVIDIA Kepler architecture. We observe that for relatively
small n, the plain multiplication performs better, but with n growing, the FFT-based multipli-
cation becomes faster. Both phenomena were predicted by our theoretical analysis.

Figure 4.9: Running time of the plain and FFT-based multiplication algorithms with the input
size n on GeForce GTX 670

4.6 Radix sort
In [103], Satish, Harris and Garland present a CUDA implementation of the radix sort algorithm.
Assuming that all entries are non-negative integers of bit-size c, this CUDA implementation sorts
n entries by performing c

s passes, where s is a program parameter. In each pass, each thread-
block first loads and sorts its tile using s iterations of 1-bit split, and writes back its 2s-entry
digit histogram and sorted data. Then, it performs a prefix sum over the histogram stored
in a column-major order. Finally, each thread-block copies its elements to the correct output
position.

Let ` be the number of threads per thread-block. Following [103], we assume that each
thread deals with 4 elements. Then, for each thread-block, 4 ` original elements, 4 ` sorted
elements and a 2s-entry digit histogram must fit into the private memory; hence, 8 ` + 2s ≤ Z.

4.6. Radix sort 61

Thus, the maximum parallelism overhead per thread-block is 9 U (loading 4 elements, writing
back 4 sorted elements and 1 value of the histogram).

We compute the work, span and parallelism overhead, respectively, as

Ws = c
(

22 s `+s+12
4 s ` + 2s+20 2s `

16 s `2 + 1
)

n +
c (16+192 `)

16 s ,

S s = c
(
8 log2(`) + 16

s log2(`) + 41 + 54
s

)
and

Os = c U
(

9
2 s ` n + 17 2s

16 s `2 n − 1
s

)
.

We view the case s = 1 as a naive radix sort algorithm, with the work, span and parallelism
overhead given by W1, S 1 and O1, respectively. Letting n escaping to infinity, the work ratio
W1/Ws is asymptotically equivalent to:

W1

Ws
∼

104 s `2 + 92 s ` + 2 s
88 s `2 + 16 `2 + 20 2s ` + 4 s ` + 48 ` + 2s .

Similarly, the span ratio
S 1

S s
=

s (24 log2(`) + 95)
(8 s + 16) log2(`) + 41 s + 54

is asymptotically constant; meanwhile, the parallelism overhead ratio is asymptotically equiv-
alent to:

O1

Os
∼

s (72 ` + 34)
72 ` + 17 2s .

We notice that if 2s = Θ(`) holds, we can reduce the parallelism overhead by a factor of s,
while increasing the work only by a constant factor. However, with 2s = Θ(`2), we increase
both the work and the parallelism overhead by a non-constant factor. In this latter scenario, we
could not optimize the naive algorithm in any sense.

To apply Corollary 4.2.2, we compute the three quantities characterizing the thread-block
DAG:

Ns =
c
s

(
1

2 `
+

2s

8 `2

)
n, Ls =

5 c
s

and Cs = s
(
41 + 8 log2(`)

)
+ 12 + 9 U.

We also denote these three quantities N1, L1 and C1 for the naive algorithm when s = 1. Then,
the ratio R of the running time estimates on Θ(n

4 `) SMs between the naive algorithm with s = 1
and that for an arbitrary s is:

R =
(14 ` + 2) (8 log2(`) + 9 U + 53) s

(14 ` + 2s) (8 s log2(`) + 41 s + 9 U + 12)
.

We then replace s by log2(`), since, in this case, we would like to determine whether the
estimated overall running time is better or worse. The quotient of the leading terms of ` log2(`)
in R becomes

112 log2(`) + 126 U + 742
120 log2(`) + 615

.

This ratio is greater than 1 for ` < 215.75 U+15.875, which is realistic since U > 0. Therefore,
letting 2s = Θ(`), the data transfer overhead can be reduced by a factor of s and lead to an
optimized algorithm. This is consistent with the empirical results of [103].

62 Chapter 4. A Many-CoreMachineModel

4.7 Conclusion
We have presented a model of multithreaded computation combining the fork-join and SIMD
parallelisms, with an emphasis on estimating parallelism overheads of GPU programs, so as
to reduce communication and synchronization costs in GPU programs. In practice, our model
determines a trade-off among work, span and parallelism overhead by checking the estimated
overall running time so as to either (1) tune a program parameter or, (2) compare different
algorithms independently of the hardware details.

Several applications illustrate the effectiveness of our model. With the Euclidean algorithm,
plain multiplication and radix sort, we determine a range of values for a program parameter in
order to optimize the corresponding algorithm in terms of parallelism overheads. Particularly
for the Euclidean algorithm, our running time estimate matches that obtained with the systolic
VLSI array model [17]. Moreover, our CUDA code in [60] implementing this optimized Eu-
clidean algorithm runs in linear time w.r.t to the input polynomials up to degree 10,000. With
FFT algorithms and polynomial multiplication algorithms, our model successfully compares,
in each case, two different algorithms to determine the trend of their running time when the
input data size grows. In all cases, experimentation validates the model analysis.

Chapter 5

MetaFork-to-CUDA: Generation of
Parametric CUDA Kernels

In the past decade, the introduction of low-level heterogeneous programming models, in par-
ticular CUDA, has brought supercomputing to the level of the desktop computer. However,
these models bring notable challenges, even to expert programmers. Indeed, fully exploiting
the power of hardware accelerators with CUDA-like code often requires significant code opti-
mization efforts. While this development can indeed yield high performance, it is desirable for
some programmers to avoid the explicit management of device initialization and data transfer
between memory levels. To this end, high-level models for accelerator programming have be-
come an important research direction. With these models, programmers only need to annotate
their C/C++ code to indicate which code portion is to be executed on the device and how data
maps between host and device.

As of today, OpenMP [41, 13, 9] and OpenACC [113, 56] are among the most developed
accelerator programming models. Both OpenMP and OpenACC are built on a host-centric exe-
cution model. The execution of the program starts on the host and may offload target regions
to the device for execution. The device may have a separated memory space or may share
memory with the host, so that memory coherence is not guaranteed and must be handled by the
programmer. In OpenMP and OpenACC, the division of the work between thread-blocks within
a grid and between threads within a thread-block can be expressed in a loose manner or even
be ignored. This implies that code optimization techniques can be applied in order to derive
efficient CUDA [95, 73]-like code.

In this chapter, we present the accelerator model of MetaFork (introduced in Section 2.4)
together with the software framework that allows automatic generation of CUDA code from
annotated C/C++ programs. One of the key properties of this CUDA code generator is that it
supports the generation of CUDA kernel code where program parameters (like number of threads
per thread-block) and machine parameters (like shared memory size) are allowed. These pa-
rameters need not to be known at code-generation-time: machine parameters and program pa-
rameters can be, respectively, determined and optimized when the generated code is installed
on the targeted hardware.

The need for CUDA programs (more precisely, kernels) depending on program parameters
and machine parameters is argued in Section 5.1. In Section 5.2, following the work reported
in [55], we observe that generating parametric CUDA kernels requires the manipulation of sys-

63

64 Chapter 5. MetaFork-to-CUDA: Generation of Parametric CUDA Kernels

tems of non-linear polynomial equations and the use of techniques like quantifier elimina-
tion (QE). To this end, we take advantage of the RegularChains library of Maple [27] and its
QuantifierElimination command, which has been designed to efficiently support the non-linear
polynomial systems coming from automatic parallelization.

Section 5.3 reports a preliminary implementation of parametric CUDA kernel code gener-
ation by the MetaFork compilation framework extending PPCG [115]. Finally, Section 5.4
gathers experimental data demonstrating the performance of our generated parametric CUDA
code. These results show not only that the generation of parametric CUDA kernels helps opti-
mize code independently of the values of the machine parameters of the targeted hardware, but
also that automatic generation of parametric CUDA kernels can discover better values for the
program parameters than those computed by a tool generating non-parametric CUDA kernels.

This chapter is related to the work reported in [19] and contains joint work with Changbo
Chen, Xiaohui Chen and Marc Moreno Maza.

5.1 Optimizing CUDA kernels depending on program param-
eters

In Chapter 4, we propose a many-core machine (MCM) model for multithreaded computation
combining the fork-join and SIMD parallelisms; meanwhile, a driving motivation in this work
is to estimate the parallelism overheads (data communication and synchronization costs) of
GPU programs. In practice, the MCM model determines a trade-off among work, span and
parallelism overhead by checking the estimated overall running time so as to either (1) tune a
program parameter or, (2) compare different algorithms independently of the hardware details.

The MCM model retains many of the characteristics of modern GPU architectures and
programming models, like CUDA [95, 73] and OpenCL [111]. However, in order to support
algorithm analysis with an emphasis on parallelism overheads, the MCM abstract machines
admit a few simplifications and limitations with respect to actual many-core devices.

To further discuss CUDA kernel performance, let us consider now the programming model
of CUDA itself and its differences w.r.t. the MCM model. In CUDA, instructions are issued per
warp, and a warp consists of a fixed number S warp of threads. Typically, S warp is 32; thus,
executing a thread-block on an SM means executing several warps in turn. If an operand of
an executing instruction is not ready, then the corresponding warp stalls and context switching
happens between warps running on the same SM.

Registers and shared memory are allocated for a thread-block as long as that thread-block
is active. Once a thread-block is active, it stays active until all threads in that thread-block have
completed. Context switching is very fast because registers and shared memory do not need to
be saved and restored. The intention is to hide the latency (of data transfer between the global
memory and the private memory of an SM) by having more memory transactions in fly. There
is, of course, a hardware limitation to this, characterized by (at least) two numbers:

1. The maximum number of active warps per SM, denoted here by Mwarp; a typical value for
Mwarp is 48 on a Fermi NVIDIA GPU card, leading to a maximum number of 32 × 48 =

1536 active threads per SM.
2. The maximum number of active thread-blocks per SM, denoted here by Mblock; a typical

5.2. Automatic parametric CUDA kernel generation 65

value for Mblock is 8 on a Fermi NVIDIA GPU card.
One can now define a popular performance counter of CUDA kernels, the occupancy of an SM,
given by Awarp/Mwarp, where Awarp is the number of active warps on that SM. Since resources
(registers, shared memory, thread slots) are allocated for an entire thread-block (as long as that
thread-block is active), there are three potential limitations to occupancy: register usage, shared
memory usage and thread-block size.

As in our discussion of the MCM model, we denote the thread-block size by `. Regarding
the possible values of `, we observe that (1) the total number of active threads is bounded over
by ` Mblock; hence, a small value for ` may limit occupancy, and that (2) a larger value for
` reduces the number of registers and shared memory words available per thread; thus, this
may limit data reuse within a thread-block and potentially increase the amount of data transfer
between global memory and the private memory of an SM. Overall, this suggests again that
generating the kernel code with ` and other program parameters considered as input arguments
is a desirable goal. With such parametric code at hand, one can optimize, at run-time, the
values of those program parameters (like `), once the machine parameters (like S warp, Mwarp,
Mblock, Z (private memory size) and the size of the register file) are known.

5.2 Automatic parametric CUDA kernel generation
The general purpose of automatic parallelization is to convert sequential computer programs
into multithreaded or vectorized code. Following the discussion of Section 5.1, we are inter-
ested here in the following more specific question.

Given a theoretically good parallel algorithm (e.g. divide-and-conquer matrix multiplica-
tion) and given a type of hardware that depends on various parameters (e.g. a GPGPU with
Z words of private memory per SM and a maximum number Mwarp of warps supported by
an SM, etc.), we aim at automatically generating CUDA kernels that depend on the hardware
parameters (Z, Mwarp, etc.) as well as program parameters (e.g. the number ` of threads per
thread-block). Thus, (1) those parameters need not to be known at compile-time, and (2) are
encoded as symbols in the generated kernel code. For this reason, we call such CUDA kernels
parametric.

In contrast, current technology requires that machine and program parameters are special-
ized to numerical values at the time of generating the GPGPU code, see [57, 6, 66, 115]. The
polyhedron model [7] described in Section 2.5 is a powerful geometrical tool for analyzing
the relation (w.r.t. data locality or parallelization) between the iterations of nested for-loops.
Once the polyhedron representing the iteration space of a loop nest is calculated, techniques of
linear algebra and linear programming can transform this polyhedron into another polyhedron
encoding the loop steps into a coordinate system based on time and space (processors). From
there, a parallel program can be generated.

For example, for the following code computing the product of two univariate polynomials
a and b, both of degree n, and writing the result to c,

for(int i = 0; i <= n; i++) { c[i] = 0; c[i+n] = 0; }

for(int i = 0; i <= n; i++) {

for(int j = 0; j <= n; j++)

66 Chapter 5. MetaFork-to-CUDA: Generation of Parametric CUDA Kernels

c[i+j] += a[i] * b[j];

}

elementary dependence analysis [55] suggests to set t(i, j) = n− j and p(i, j) = i+ j, where t and
p represent time and processor, respectively. Using Fourier-Motzkin elimination, projecting all
constraints on the (t, p)-plane yields the following asynchronous schedule of the above code:

parallel_for (int p = 0; p <= 2*n; p++) {

c[p]=0;

for (int t = max(0, n-p); t <= min(n, 2*n-p); t++)

c[p] += a[t+p-n] * b[n-t];

}

To be practically efficient, one should avoid a fine-grained parallelization, and this is achieved
by grouping loop steps into so-called tiles, which are generally trapezoids [65]. It is also
desirable for the generated code to depend on parameters such as tile, cache sizes and number
of processors, etc. These extensions lead, however, to the manipulation of systems of non-
linear polynomial equations and the use of techniques like quantifier elimination (QE). This
was noticed by Größlinger, Griebl and Lengauer in [55] who also observed that work remained
to be done for adapting QE tools to the needs of automatic parallelization.

To illustrate these observations, we return to the above example and use a tiling approach:
we consider a one-dimensional grid of thread-blocks where each thread-block is in charge of
updating at most B coefficients of the polynomial c. Therefore, we introduce three variables
B, b and u, where the latter two represent a thread-block index and a thread index (within a
thread-block). This brings the following additional relations:

0 ≤ b
0 ≤ u < B

p = bB + u,
(5.1)

to the previous system 
0 < n

0 ≤ i ≤ n
0 ≤ j ≤ n
t = n − j
p = i + j.

(5.2)

To determine the target program, one needs to eliminate the variables i and j. In this case,
Fourier-Motzkin elimination (FME) does not apply any more, due to the presence of non-linear
constraints. If all the non-linear constraints appearing in a system of relations are polynomial
constraints, the set of real solutions of such a system is a semi-algebraic set. The celebrated
Tarski theorem [8] tells us that there always exists a quantifier elimination algorithm to project
a semi-algebraic set of Rn to a semi-algebraic set of Rm, m ≤ n. The most popular method
for conducting quantifier elimination (QE) of a semi-algebraic set is through cylindrical alge-
braic decomposition (CAD) [31]. Implementation of QE and CAD can be found in software
such as Qepcad [18], Reduce [64], Mathematica [125] as well as the RegularChains library of

5.3. The MetaFork-to-CUDA code generator 67

Maple [27]. Using the function QuantifierElimination (with options ‘precondition’=‘AP’, ‘out-
put’=‘rootof’, ‘simplification’=‘L4’) in the RegularChains library, we obtain the following:

B > 0
n > 0

0 ≤ b ≤ 2n/B
0 ≤ u < B

0 ≤ u ≤ 2n − Bb
p = bB + u,
0 ≤ t ≤ n,

n − p ≤ t ≤ 2n − p,

(5.3)

from where we derive the following program:

for (int p = 0; p <= 2*n; p++) { c[p]=0; }

parallel_for (int b = 0; b <= 2*n/B; b++) {

for (int u = 0; u <= min(B-1, 2*n-B*b); u++) {

int p = b * B + u;

for (int t = max(0, n-p); t <= min(n, 2*n-p); t++)

c[p] += a[t+p-n] * b[n-t];

}

}

An equivalent CUDA kernel to the parallel for part is as below:

int b = blockIdx.x;

int u = threadIdx.x;

if (u <= 2 * n - B * b) {

int p = b * B + u;

for (int t = max(0, n-p); t <= min(n, 2*n-p); t++)

c[p] += a[t+p-n] * b[n-t];

}

We remark that the polynomial system defined by (5.1) and (5.2) has some special structure.
In [54], Größlinger, Griebl and Lengauer have exploited this structure to deduce a special
algorithm to solve it and similar problems by implementing some parametric FME. Although
the system (5.3) can be directly processed by QuantifierElimination, we figure out that it is
much more efficient to use the following special QE procedure. We replace the product bB in
system (5.1) by a new variable c, and thus obtain a system of linear constraints. We then apply
FME to eliminate the variables i, j, t, p, u in a sequential order. Now we obtain a system of
linear constraints in variables c, b, n, B. Next we replace c by bB and have again a system of
non-linear constraints in variables b, n, B. We then call QuantifierElimination to eliminate the
variables b, n, B. The correctness of the procedure is easy to verify.

5.3 The MetaFork-to-CUDA code generator
With the goal to generate efficient CUDA code from an input MetaFork program, the keyword
meta schedule is introduced to the MetaFork language such that one can annotate the Meta-

68 Chapter 5. MetaFork-to-CUDA: Generation of Parametric CUDA Kernels

Fork code targeting many-cores in a precise manner. The semantic of the meta schedule
statement is an indication to the MetaFork-to-CUDA code generator that every meta for-loop
nest of the meta schedule statement must translate to a CUDA kernel call. In Section 5.2, we
illustrated the process of parametric CUDA kernel generation from a sequential C program using
MetaFork as an intermediate language. In this section, we assume that, from a C program, one
has generated a MetaFork program, which contains one or more meta schedule statements.

A meta schedule statement generating a one-dimensional grid with one-dimensional thread-
blocks has the following structure

meta_schedule {

// only for loops are supported here

meta_for (int i = 0; i < gridDim.x; i++)

// only for loops are supported here

meta_for (int j = 0; j < blockDim.x; j++) {

... // nested for-loop body

}

}

where the grid (resp. thread-block) dimension size is extracted from the outer (resp. inner)
meta for loop upper bound. Similarly, a meta schedule statement generating a two-dimen-
sional grid with two-dimensional thread-blocks has the following structure

meta_schedule {

// only for loops are supported here

meta_for (int u = 0; u < gridDim.y; u++)

meta_for (int i = 0; i < gridDim.x; i++)

// only for loops are supported here

meta_for (int v = 0; v < blockDim.y; v++)

meta_for (int j = 0; j < blockDim.x; j++) {

... // nested for-loop body

}

}

where the first two outer meta for loops correspond to the grid and the inner meta for loops
to the thread-blocks.

To generate those parametric CUDA kernels, we rely on PPCG [115], a C-to-CUDA compila-
tion framework, which we have modified, in order to generate compilable CUDA kernels. Fig-
ure 5.1 illustrates the software architecture of our C-to-CUDA code generator, based on PPCG.
As shown in Figure 5.1, one can write a tiled MetaFork program directly or use QE to tile
each loop nest in the MetaFork code. After that, one shall pass this tiled MetaFork code to
our code generator, in particular, taking advantage of the sophisticated CUDA code generator in
PPCG.

The original PPCG framework generates CUDA kernels with the number of threads per
thread-block specified as a constant, explicitly given either by the user or by default using
32 for a one-dimensional kernel or 16 × 32 for a two-dimensional kernel. Our code generator
focuses on generating parametric CUDA kernels and extends to support identifying meta for

5.3. The MetaFork-to-CUDA code generator 69

Figure 5.1: Overview of the implementation of the MetaFork-to-CUDA code generator

loops, such that CUDA code generation is fully automatic for using the global memory as well
as, under some assumptions (demonstrated in Appendix C.1), for using the shared memory
in the kernel code. Note that, for both data dependence and memory accessing pattern cases,
the analysis involving non-linear expressions is not performed by PPCG or MetaFork. Conse-
quently, either the programmer avoids such analysis by writing a proper MetaFork program,
or a post-processing phase may be required.

Since the MetaFork code is obtained after computing affine transformation and tiling (via
quantifier elimination), we have to bypass the process of computing affine transformation and
tiling that PPCG performs. Thus, we modify the internal data structure, namely the schedule tree
[117], which is used to represent the execution order of the input code in the polyhedral model
and can be converted to the abstract syntax tree (AST). When we pass the MetaFork code
to the software PET (polyhedral extraction tool) [116] for parsing, a schedule tree is initiated
with the iteration space; however, we mark each meta for as “permutable,” which indicates
that later, it corresponds to a thread index or a thread-block index. More details on how we
use the schedule tree to represent MetaFork and parametric CUDA programs are described in
Appendix C.2. Furthermore, to generate the parametric variables, such as the grid and thread-
block sizes, as symbols, we extend relevant data structures of PPCG to store those variable
symbols so as to pass them from the schedule tree to the AST for CUDA code generation. Last
but not least, we assign the thread-block indices to variables b0, b1 and the thread indices to
variables t0, t1.

Consider an example, a one-dimensional stencil computation, namely Jacobi. The orig-
inal (and naive) C version is shown in Figure 5.2, where initialization statements have been

70 Chapter 5. MetaFork-to-CUDA: Generation of Parametric CUDA Kernels

for (int t = 0; t < T; ++t) {

for (int i = 1; i < N-1; ++i)

b[i] = (a[i-1] + a[i] + a[i+1]) / 3;

for (int i = 1; i < N-1; ++i)

a[i] = b[i];

}

Figure 5.2: One-dimensional stencil computation, namely Jacobi, written in C

removed. From this C code fragment, we apply the tiling techniques mentioned in Section 5.2
and obtain the MetaFork code shown in Figure 5.3. Observe that the meta schedule state-
ment has two meta for loop nests yielding two CUDA kernels.

int ub_v = (N - 2) / B;

meta_schedule {

for (int t = 0; t < T; ++t) {

meta_for (int v = 0; v < ub_v; v++) {

meta_for (int u = 0; u < B; u++) {

int p = v * B + u;

b[p+1] = (a[p] + a[p+1] + a[p+2]) / 3;

}

}

meta_for (int v = 0; v < ub_v; v++) {

meta_for (int u = 0; u < B; u++) {

int w = v * B + u;

a[w+1] = b[w+1];

}

}

}

}

Figure 5.3: 1D Jacobi written in MetaFork

Our MetaFork-to-CUDA code generator produces two kernel functions, a header file (for
those two kernels) and a host code file where those kernels are called. Those two kernel func-
tions are shown in Figure 5.4. In each kernel, we use the shared memory for those arrays read
and use the global memory for those arrays written only once. Observe that kernel0 and
kernel1 take a program parameter, the thread-block format B, as an argument, whereas non-
parametric CUDA kernels usually take parameters a, b, c,N,T, c0 only. Correspondingly, the
generated host code replacing meta schedule and its body is shown in Figure 5.5. Data trans-
fers between the CPU and GPU global memories are done before those two kernels launched
and after those two kernels completed, respectively. In the case that the number of thread-
blocks per grid, aka ub v in the MetaFork code, exceeds the hardware limit, which is 32768
shown in the host code, each kernel uses 32768 as the grid dimension size, while inside the
kernel code, the amount of work per thread-block is incremented via a serial loop.

5.3. The MetaFork-to-CUDA code generator 71

__global__ void kernel0(int *a, int *b, int N, int T, int ub_v,

int B, int c0) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private_p;

__shared__ int shared_a[BLOCK_0+2]; // BLOCK_0 = B

for (int c1 = b0; c1 < ub_v; c1 += 32768) {

for (int c2 = t0; c2 <= min(B + 1, N - B * c1 - 1); c2 += B)

shared_a[c2] = a[B * c1 + c2];

__syncthreads();

private_p = (((c1) * (B)) + (t0));

b[private_p + 1] = (((shared_a[private_p - B * c1] +

shared_a[private_p - B * c1 + 1]) +

shared_a[private_p - B * c1 + 2]) / 3);

__syncthreads();

}

}

__global__ void kernel1(int *a, int *b, int N, int T, int ub_v,

int B, int c0) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private_w;

__shared__ int shared_b[BLOCK_0]; // BLOCK_0 = B

for (int c1 = b0; c1 < ub_v; c1 += 32768) {

if (N >= t0 + B * c1 + 2)

shared_b[t0] = b[t0 + B * c1 + 1];

__syncthreads();

private_w = (((c1) * (B)) + (t0));

a[private_w + 1] = shared_b[private_w - B * c1];

__syncthreads();

}

}

Figure 5.4: Generated parametric CUDA kernel for 1D Jacobi

In order to enable using the shared memory, we enforce PPCG to declare arrays in the
shared memory anyway, while PPCG could decide not to use the shared memory because it
fails to analyze non-linear expressions. However, this causes another issue, that is, how to
calculate the index expressions of these arrays allocated in the shared memory. Recall that the
generated kernel code should first copy the data from the global memory to its shared memory
counterpart, and then use this shared memory counterpart to compute. In other words, to
generate a copy statement, we shall insert into the schedule tree new nodes with the tiling size
and affine transformation; however, these new nodes should be inserted to the schedule tree
prior to where is the node referring to the statement with the arrays for computation. Using

72 Chapter 5. MetaFork-to-CUDA: Generation of Parametric CUDA Kernels

if (T >= 1 && ub_v >= 1 && B >= 0) {

#define cudaCheckReturn(ret) \

do { \

cudaError_t cudaCheckReturn_e = (ret); \

if (cudaCheckReturn_e != cudaSuccess) { \

fprintf(stderr, "CUDA error: %s\n", \

cudaGetErrorString(cudaCheckReturn_e)); \

fflush(stderr); \

} \

assert(cudaCheckReturn_e == cudaSuccess); \

} while(0)

#define cudaCheckKernel() \

do { \

cudaCheckReturn(cudaGetLastError()); \

} while(0)

int *dev_a;

int *dev_b;

cudaCheckReturn(cudaMalloc((void **) &dev_a, (N) * sizeof(int)));

cudaCheckReturn(cudaMalloc((void **) &dev_b, (N) * sizeof(int)));

if (N >= 1) {

cudaCheckReturn(cudaMemcpy(dev_a, a, (N) * sizeof(int),

cudaMemcpyHostToDevice));

cudaCheckReturn(cudaMemcpy(dev_b, b, (N) * sizeof(int),

cudaMemcpyHostToDevice));

}

for (int c0 = 0; c0 < T; c0 += 1) {

dim3 k0_dimBlock(B);

dim3 k0_dimGrid(ub_v <= 32767 ? ub_v : 32768);

kernel0 <<<k0_dimGrid, k0_dimBlock>>> (dev_a,dev_b,N,T,ub_v,B,c0);

cudaCheckKernel();

dim3 k1_dimBlock(B);

dim3 k1_dimGrid(ub_v <= 32767 ? ub_v : 32768);

kernel1 <<<k1_dimGrid, k1_dimBlock>>> (dev_a,dev_b,N,T,ub_v,B,c0);

cudaCheckKernel();

}

if (N >= 1) {

cudaCheckReturn(cudaMemcpy(a, dev_a, (N) * sizeof(int),

cudaMemcpyDeviceToHost));

cudaCheckReturn(cudaMemcpy(b, dev_b, (N) * sizeof(int),

cudaMemcpyDeviceToHost));

}

cudaCheckReturn(cudaFree(dev_a));

cudaCheckReturn(cudaFree(dev_b));

}

Figure 5.5: Generated host code for 1D Jacobi

5.4. Experimentation 73

the 1D Jacobi code shown in Figure 5.3 as an example, we would like to insert a node in
the schedule tree with the non-linear expression v * B + u, where the program parameter B
specifies the thread-block format, so as to generate the copy statement shared a[c2] = a[B
* c1 + c2] or shared b[t0] = b[t0 + B * c1 + 1] shown in Figure 5.4.

However, all basic data structures of PPCG do not support any non-linear expressions. For
instance, one can use a data structure called isl aff to store the affine transformation, such
as i * 32 + j, while the pair (i, j) is stored by an internal data structure called isl space
and the pair (32, 1) is stored by another internal data structure called isl set, representing
a vector of integers. Our solution to represent the non-linear expression:

v * B + u

is via a linear expression:

B + v * 1024 + u,

using a constant 1024 as the tile size but adding the program parameter B, such that the para-
metric information, especially the number B of threads per thread-block, is stored and passed
to AST generation. Note that one can distinguish between the iteration counters, such as v and
u, of loops and the program parameters, such as B, in the schedule tree. Next, during the phase
of translating the AST to the CUDA code, whenever we recognize that particular format of linear
expressions, we replace 1024 by B and remove B. By doing this, our prototype MetaFork-to-
CUDA code generator admits the limitation to deal with other formats of non-linear expressions,
which explains why post-processing is necessary for certain cases. Of course, improving this
design is a work in progress so as to completely avoid post-processing.

5.4 Experimentation
In this section, we present experimental results on an NVIDIA Tesla M2050. Most of them
were obtained by running times of CUDA programs generated with our preliminary implementa-
tion of our MetaFork-to-CUDA code generator described in Section 5.3, and the original version
of the PPCG C-to-CUDA code generator [115]. We use eight simple test cases: array reversal
(Figure5.6, Table 5.1), 1D Jacobi (Table 5.2), 2D Jacobi (Figure 5.7, Table 5.3), LU decom-
position (Figure 5.8, Table 5.4), matrix transposition (Figure 5.9, Table 5.5), matrix addition
(Figure 5.10, Table 5.6), matrix vector multiplication (Figure 5.11, Table 5.7) and matrix ma-
trix multiplication (Figure 5.13, Table 5.8). In all cases, we use dense representations for our
matrices and vectors.

For both the PPCG C-to-CUDA and our MetaFork-to-CUDA code generators, Tables 5.1, 5.2,
5.3, 5.4 5.5, 5.6, 5.7 and 5.8 give the speedup factors of the generated code, as the timing
ratio of the generated code to their untiled C code. Since PPCG determines a thread-block
format, the timings in those tables corresponding to PPCG depend only on the input data size.
Meanwhile, since the CUDA kernels generated by MetaFork are parametric, the MetaFork
timings are obtained for various formats of thread-blocks and various input data sizes. Indeed,
recall that our generated CUDA code admits parameters for the dimension sizes of the thread-
blocks. This generated parametric code is then specialized with the thread-block formats listed
in the first column of those tables.

74 Chapter 5. MetaFork-to-CUDA: Generation of Parametric CUDA Kernels

Figures 5.6, 5.3 (with 5.2 and 5.4), 5.7, 5.8, 5.9, 5.10, 5.11 and 5.13 show the MetaFork
code of eight examples with their untiled serial C programs and automatically generated CUDA
kernels. In order to allocate unit sizes of shared memory in the kernel code, we predefine
BLOCK 0 and BLOCK 1 (if applicable) as macros and specify their values at compile time. The
tiled code for each MetaFork program is done by the quantifier elimination (QE) from the
RegularChains library of Maple. These eight examples generated by PPCG are shown in Ap-
pendix D.

Array reversal. Both MetaFork and PPCG generate CUDA code that uses a one-dimensional
kernel grid and the shared memory. We specialize the MetaFork generated parametric code
successively to the thread-block size B = 16, 32, 64, 128, 256, 512; meanwhile, PPCG by de-
fault chooses 32 as the thread-block size. As we can see in Table 5.1, based on the generated
parametric CUDA kernel, one can tune the thread-block size to be 256 to obtain the best perfor-
mance.

Table 5.1: Speedup comparison of reversing a one-dimensional array between PPCG and Meta-
Fork kernel code

Speedup (kernel) Input size
Thread-block size 223 224 225

PPCG

32 8.312 8.121 8.204
MetaFork

16 4.035 3.794 3.568
32 7.612 7.326 7.473
64 13.183 13.110 13.058
128 19.357 19.694 20.195
256 20.451 21.614 22.965
512 18.768 18.291 19.512

Serial code

for (int i = 0; i < N; i++)

Out[N - 1 - i] = In[i];

MetaFork code

int ub_v = N / B;

meta_schedule {

meta_for (int v = 0; v < ub_v; v++)

meta_for (int u = 0; u < B; u++) {

int inoffset = v * B + u;

int outoffset = N - 1 - inoffset;

Out[outoffset] = In[inoffset];

}

}

__global__ void kernel0(int *In, int *Out, int N, int ub_v, int B)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private_inoffset;

int private_outoffset;

__shared__ int shared_In[BLOCK_0]; // BLOCK_0 = B

for (int c0 = b0; c0 < ub_v; c0 += 32768) {

if (N >= t0 + B * c0 + 1)

shared_In[t0] = In[t0 + B * c0];

__syncthreads();

private_inoffset = (((c0) * (B)) + (t0));

private_outoffset = (((N) - 1) - private_inoffset);

Out[private_outoffset] = shared_In[private_inoffset - B * c0];

__syncthreads();

}

}

Figure 5.6: Serial code, MetaFork code and generated parametric CUDA kernel for array rever-
sal

1D Jacobi. Our second example is a one-dimensional stencil computation, namely 1D
Jacobi. The kernel generated by MetaFork uses a 1D kernel grid and the shared memory,

5.4. Experimentation 75

while the kernel generated by PPCG uses a 1D kernel grid and the global memory. PPCG by
default chooses a thread-block format of 32, while MetaFork preferred format is 64.

Table 5.2: Speedup comparison of 1D Jacobi between PPCG and MetaFork kernel code
Speedup (kernel) Input size
Thread-block size
kernel0, kernel1 213 + 2 214 + 2 215 + 2

PPCG using the global memory
32, 32 1.416 2.424 5.035

MetaFork

16, 16 1.274 2.660 2.462
32, 32 1.967 3.386 5.268
64, 64 2.122 4.020 7.309

128, 128 1.787 3.234 6.168
256, 256 1.789 3.516 6.218
512, 512 2.193 3.518 6.070

2D Jacobi. Our next example is a two-dimensional stencil computation, namely 2D Jacobi.
Both the CUDA kernels generated by MetaFork and PPCG use a 2D kernel grid and the global
memory. PPCG by default chooses a thread-block format of 16×32, while MetaFork preferred
format varies based on input size.

Table 5.3: Speedup comparison of 2D Jacobi between PPCG and MetaFork kernel code
Speedup (kernel) Input size
Thread-block size (212 + 2)2 (213 + 2)2 (214 + 2)2

PPCG

16 * 32 11.230 11.303 9.785
MetaFork

8 * 4 5.000 5.256 4.666
16 * 4 7.867 8.724 7.962
32 * 4 11.607 11.143 9.726
8 * 8 7.209 7.776 6.704

16 * 8 10.499 10.502 7.442
32 * 8 12.236 11.487 9.182
8 * 16 8.859 8.825 5.637

16 * 16 10.774 10.709 7.694
32 * 16 11.969 11.442 10.469

LU decomposition. MetaFork and PPCG both generate two CUDA kernels: one with a 1D
grid and one with a 2D grid, both using the shared memory. The default selected thread-block
formats for PPCG are 32 and 16 × 32; meanwhile, the preferred formats by MetaFork are 128
and 16 × 16. Tuning the number of threads per thread-block in our parametric code allows
MetaFork to outperform PPCG.

Matrix transpose. Both the CUDA kernels generated by MetaFork and PPCG use a 2D
grid and the shared memory. PPCG by default chooses a thread-block format of 16 × 32, while

76 Chapter 5. MetaFork-to-CUDA: Generation of Parametric CUDA Kernels

Serial code

for (int t = 0; t < T; t++) {

for (int i = 1; i < N-1; i++)

for (int j = 1; j < N-1; j++)

b[i][j] = (a[i-1][j] + a[i+1][j]

+ a[i][j-1] + a[i][j+1]) / 4;

for (int i = 1; i < N-1; ++i)

for (int j = 1; j < N-1; j++)

a[i][j] = b[i][j];

}

MetaFork code

int dim0 = (N-2)/B0, dim1 = (N-2)/B1;

meta_schedule {

for (int t = 0; t < T; t++) {

meta_for (int v0=0; v0<dim0; v0++)

meta_for (int v1= 0; v1<dim1; v1++)

meta_for (int u0=0; u0<B0; u0++)

meta_for (int u1=0; u1<B1; u1++)

{

int p = v0 * B0 + u0;

int w = v1 * B1 + u1;

b[p+1][w+1] = (a[p][w+1] +

a[p+2][w+1] + a[p+1][w] +

a[p+1][w+2]) / 4;

}

meta_for (int v0=0; v0<dim0; v0++)

meta_for (int v1=0; v1<dim1; v1++)

meta_for (int u0=0; u0<B0; u0++)

meta_for (int u1=0; u1<B1; u1++)

{

int i = v0 * B0 + u0;

int j = v1 * B1 + u1;

a[i+1][j+1] = b[i+1][j+1];

}

}

}

__global__ void kernel0(int *a, int *b, int N, int T, int dim0,

int dim1, int B0, int B1, int c0) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private_p;

int private_w;

for (int c1 = b0; c1 < dim0; c1 += 256)

for (int c2 = b1; c2 < dim1; c2 += 256) {

private_p = (((c1) * (B0)) + (t0));

private_w = (((c2) * (B1)) + (t1));

b[(private_p + 1) * N + (private_w + 1)] =

((((a[private_p * N + (private_w + 1)] +

a[(private_p + 2) * N + (private_w + 1)])

+ a[(private_p + 1) * N + private_w]) +

a[(private_p + 1) * N + (private_w + 2)]) / 4);

__syncthreads();

}

}

__global__ void kernel1(int *a, int *b, int N, int T, int dim0,

int dim1, int B0, int B1, int c0) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private_i;

int private_j;

for (int c1 = b0; c1 < dim0; c1 += 256)

for (int c2 = b1; c2 < dim1; c2 += 256) {

private_i = (((c1) * (B0)) + (t0));

private_j = (((c2) * (B1)) + (t1));

a[(private_i + 1) * N + (private_j + 1)] =

b[(private_i + 1) * N + (private_j + 1)];

__syncthreads();

}

}

Figure 5.7: Serial code, MetaFork code and generated parametric CUDA kernel for 2D Jacobi

MetaFork preferred format is 8×32. For MetaFork, the allocation unit size of shared memory
for the input matrix is the same as thread-block format. However, for PPCG, the allocation unit
size of shared memory for the input matrix is 32×32, while the thread-block format is 16×32.
Thus, PPCG code transposes two coefficients of the matrix within each thread.

Matrix addition. Both the CUDA kernels generated by MetaFork and PPCG use a 2D grid
and the global memory. The default chosen thread-block format for PPCG is 16 × 32, while
MetaFork preferred format is 32 × 8.

Matrix vector multiplication. For both MetaFork and PPCG, the generated kernels use a
1D grid and the shared memory. The thread-block size chosen by PPCG is 32, while MetaFork
preferred thread-block size varies based on different input sizes. PPCG has a slight advantage
due to its ability here to analyze shared and local memory usage for the 2D array in a 1D
kernel. For MetaFork, to enhance some components of the PPCG infrastructure with symbolic
computation is required, which is a work in progress.

Within the current framework, we post-process the kernel code, such that coalesced ac-
cesses occur for copying the 2D array from the global memory to the shared memory. Fig-

5.4. Experimentation 77

Table 5.4: Speedup comparison of LU decomposition between PPCG and MetaFork kernel
code

Speedup (kernel) Input size
Thread-block size
kernel0, kernel1 210 ∗ 210 211 ∗ 211

PPCG

32, 16 * 32 10.712 30.329
MetaFork

128, 4 * 4 3.063 15.512
256, 4 * 4 3.077 15.532
512, 4 * 4 3.095 15.572
32, 8 * 8 10.721 37.727
64, 8 * 8 10.604 37.861

128, 8 * 8 10.463 37.936
256, 8 * 8 10.831 37.398
512, 8 * 8 10.416 37.840
32, 16 * 16 14.533 54.121
64, 16 * 16 14.457 54.034

128, 16 * 16 14.877 54.447
256, 16 * 16 14.803 53.662
512, 16 * 16 14.479 53.077

Table 5.5: Speedup comparison of matrix transpose between PPCG and MetaFork kernel code
Speedup (kernel) Input size
Thread-block size 213 ∗ 213 214 ∗ 214

PPCG

16 * 32 62.656 103.703
MetaFork

8 * 4 28.626 37.681
16 * 4 40.381 41.403
32 * 4 28.728 30.329
8 * 8 51.889 58.789

16 * 8 44.759 52.137
32 * 8 37.586 43.696
8 * 16 70.716 76.781

16 * 16 64.812 73.657
32 * 16 36.109 59.613
8 * 32 77.327 93.051

16 * 32 62.268 77.399

ure 5.12 shows the post-processed CUDA kernel code. On line 16 for copying the input matrix
from the global memory to the array, namely shared a, allocated in the shared memory, we
exchanged the row index with the column index of this array shared a, so that threads within
a warp access to the corresponding global memory in a coalesced manner. Table 5.7 shows the
speedup factors obtained with the kernels generated by PPCG, MetaFork and MetaFork with

78 Chapter 5. MetaFork-to-CUDA: Generation of Parametric CUDA Kernels

Serial code

for (int k = 0; k < n; ++k) {

for (int i = 0; i < n-k-1; i++) {

// column major representation

// of L and U

int p = i + k + 1;

L[k][p] = U[k][p] / U[k][k];

for (int j = k; j < n; j++)

U[j][p] -= L[k][p] * U[j][k];

}

}

MetaFork code

int ub = n / B, ut = n / Sqrt_T;

meta_schedule {

for (int k = 0; k < n-1; k++) {

meta_for (int bx = 0; bx < ub; bx++)

meta_for (int ux = 0; ux < B; ux++)

if ((k + 1 - bx * B < B) &&

(-B * bx + k < ux) &&

(ux < n - bx * B)) {

int l = bx * B + ux;

L[k][l] = U[k][l] / U[k][k];

}

meta_for (int bx = 0; bx < ut; bx++)

meta_for (int by = 0; by < ut; by++)

meta_for (int ux = 0; ux < Sqrt_T;

ux++)

meta_for (int uy = 0;

uy < Sqrt_T; uy++) {

int i = by * Sqrt_T + uy;

if (i < n - k - 1) {

int j = bx * Sqrt_T + ux;

if (j < n - k) {

U[j+k][i+k+1] -=

L[k][i+k+1] * U[j+k][k];

}

}

}

}

__global__ void kernel0(double *L, double *U, int n, int ut,

int Sqrt_T, int ub, int B, int c0) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private_l;

__shared__ double shared_U_1[1][1];

{

if (t0 == 0)

shared_U_1[0][0] = U[c0 * n + c0];

__syncthreads();

for (int c1 = b0; c1 < ub; c1 += 32768) {

if ((((((c0) + 1) - ((c1) * (B))) < (B)) &&

((((-(B)) * (c1)) + (c0)) < (t0))) &&

((t0) < ((n) - ((c1) * (B))))) {

private_l = ((c1) * (B)) + (t0);

L[c0 * n + private_l] =

(U[c0 * n + private_l] / shared_U_1[0][0]);

}

__syncthreads();

}

}

}

__global__ void kernel1(double *L, double *U, int n, int ut,

int Sqrt_T, int ub, int B, int c0) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private_i;

int private_j;

// BLOCK_0 = BLOCK_1 = Sqrt_T

__shared__ double shared_L[1][BLOCK_1];

__shared__ double shared_U_1[BLOCK_0][1];

for (int c1 = b0; c1 < ut; c1 += 256) {

if (t1 == 0 && n >= t0 + c0 + Sqrt_T * c1 + 1)

shared_U_1[t0][0] = U[(t0 + c0 + Sqrt_T * c1) * n + c0];

for (int c2 = b1; c2 < ut; c2 += 256) {

if (t0 == 0 && n >= t1 + c0 + Sqrt_T * c2 + 2)

shared_L[0][t1] =

L[c0 * n + (t1 + c0 + Sqrt_T * c2 + 1)];

__syncthreads();

private_i = (((c2) * (Sqrt_T)) + (t1));

if (private_i < (((n) - (c0)) - 1)) {

private_j = ((c1) * (Sqrt_T)) + (t0);

if (private_j < ((n) - (c0))) {

U[(private_j + c0) * n + (private_i + c0 + 1)] -=

(shared_L[0][private_i - Sqrt_T * c2] *

shared_U_1[private_j - Sqrt_T * c1][0]);

}

}

__syncthreads();

}

}

}

Figure 5.8: Serial code, MetaFork code and generated parametric CUDA kernel for LU decom-
position

post-processing, respectively. One can see that the performance of the parametric kernel with
coalesced accesses is twice as good as that of the automatically generated kernels by MetaFork
and PPCG.

Matrix matrix multiplication. For both MetaFork and PPCG, the generated kernels use a
2D grid and the shared memory. The thread-block size chosen by PPCG is 16×32, while Meta-

5.4. Experimentation 79

Serial code

for (int v0 = 0; v0 < n; v0++)

for (int v1 = 0; v1 < n; v1++)

c[v0][v1] = a[v1][v0];

MetaFork code

int dim0 = n / B0, dim1 = n / B1;

meta_schedule {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

{

int i = u0 + v0 * B0;

int j = u1 + v1 * B1;

c[j][i] = a[i][j];

}

}

__global__ void kernel0(int *a, int *c, int n, int dim0,

int dim1, int B0, int B1) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private_i;

int private_j;

// BLOCK_0 = B0, BLOCK_1 = B1

__shared__ int shared_a[BLOCK_0][BLOCK_1];

for (int c0 = b0; c0 < dim0; c0 += 256)

for (int c1 = b1; c1 < dim1; c1 += 256) {

if (n >= t0 + B0 * c0 + 1 && n >= t1 + B1 * c1 + 1)

shared_a[t0][t1] =

a[(t0 + B0 * c0) * n + (t1 + B1 * c1)];

__syncthreads();

private_i = ((t0) + ((c0) * (B0)));

private_j = ((t1) + ((c1) * (B1)));

c[private_j * n + private_i] =

shared_a[private_i - B0 * c0][private_j - B1 * c1];

__syncthreads();

}

}

Figure 5.9: Serial code, MetaFork code and generated parametric CUDA kernel for matrix
transpose

Table 5.6: Speedup comparison of matrix addition between PPCG and MetaFork kernel code
Speedup (kernel) Input size
Thread-block size 212 213

PPCG

16 * 32 13.024 9.750
MetaFork

8 * 4 19.520 20.329
16 * 4 32.971 35.227
32 * 4 54.233 49.734

8 * 8 28.186 30.221
16 * 8 44.783 42.008
32 * 8 56.650 50.547

8 * 16 33.936 32.793
16 * 16 45.015 41.606
32 * 16 54.426 47.930

Fork preferred thread-block size varies based on input sizes. For MetaFork, the allocation unit
size of shared memory for each input matrix is the same as thread-block format. However, for
PPCG, the allocation unit size of shared memory for each input matrix is 32 × 32, while the
thread-block format is 16 × 32. In fact, PPCG code computes two coefficients of the output
matrix within each thread, thus increasing index arithmetic amortization and occupancy.

We conclude this section with timings (in seconds) for the quantifier elimination (QE) re-
quired to generate MetaFork tiled code, see Table 5.9. Our tests are based on the latest version
of the RegularChains library of Maple, available at www.regularchains.org. These results
show that the use of QE is not a bottleneck in our C-to-CUDA code translation process, despite
the theoretically high algebraic complexity of quantifier elimination.

www.regularchains.org

80 Chapter 5. MetaFork-to-CUDA: Generation of Parametric CUDA Kernels

Serial code

for (int v0 = 0; v0 < n; v0++)

for (int v1 = 0; v1 < n; v1++)

c[v0][v1] = a[v0][v1] + b[v0][v1];

MetaFork code

int dim0 = n / B0, dim1 = n / B1;

meta_schedule {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

{

int i = u0 + v0 * B0;

int j = u1 + v1 * B1;

c[i][j] = a[i][j] + b[i][j];

}

}

__global__ void kernel0(int *a, int *b, int *c, int n,

int dim0, int dim1, int B0, int B1) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private_i;

int private_j;

for (int c0 = b0; c0 < dim0; c0 += 256)

for (int c1 = b1; c1 < dim1; c1 += 256) {

private_i = ((t0) + ((c0) * (B0)));

private_j = ((t1) + ((c1) * (B1)));

c[private_i * n + private_j] =

(a[private_i * n + private_j] +

b[private_i * n + private_j]);

__syncthreads();

}

}

Figure 5.10: Serial code, MetaFork code and generated parametric CUDA kernel for matrix
addition

Table 5.7: Speedup comparison of matrix vector multiplication among PPCG kernel code,
MetaFork kernel code and MetaFork kernel code with post-processing

Speedup (kernel) Input size
Thread-block size 211 212 213

PPCG

32 3.954 3.977 5.270
MetaFork

16 3.108 3.535 3.856
32 4.116 3.550 3.782
64 2.955 3.744 2.996
128 2.658 2.582 2.491
256 2.215 1.599 1.813
MetaFork with post-processing

16 4.976 6.260 7.794
32 8.698 6.911 10.340
64 4.260 5.567 6.683

5.5 Conclusion
In this chapter, we have presented enhancements of the MetaFork language so as to provide
the model of concurrency for SIMD on GPUs. Our objective is to facilitate automatic code
translation of high-level programming models supporting hardware accelerator (like OpenMP
and OpenACC) to low-level heterogeneous programming models (like CUDA).

As illustrated in Sections 5.3, MetaFork has language constructs to help generate efficient
CUDA code. Moreover, the MetaFork framework relies on advanced techniques (quantifier
elimination in non-linear polynomial expressions) for code optimization, in particular tiling.
The experimentation reported in Section 5.4 shows the benefits of generating parametric CUDA
kernels. Not only does this feature provide more portability, but it also helps to improve per-

5.5. Conclusion 81

Serial code

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

c[i] += a[i][j] * b[j];

MetaFork code

int dim = n / B;

meta_schedule {

meta_for (int v = 0; v < dim; v++)

for (int i = 0; i < n / 16; ++i)

meta_for (int u = 0; u < B; u++)

for (int j = 0; j < 16; ++j) {

int p = v * B + u;

c[p] += a[p][i*16+j]*b[i*16+j];

}

}

__global__ void kernel0(int *a, int *b, int *c, int n, int dim,

int B) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private_p;

// BLOCK_0 = B

__shared__ int shared_a[BLOCK_0][16];

__shared__ int shared_b[16];

__shared__ int shared_c[BLOCK_0];

for (int c0 = b0; c0 < dim; c0 += 32768) {

if (n >= t0 + B * c0 + 1)

shared_c[t0] = c[t0 + B * c0];

for (int c1 = 0; c1 < n / 16; c1 += 1) {

if (n >= t0 + B * c0 + 1)

for (int c3 = 0; c3 <= 15; c3 += 1)

shared_a[t0][c3] =

a[(t0 + B * c0) * n + (16 * c1 + c3)];

if (t0 <= 15)

shared_b[t0] = b[t0 + 16 * c1];

__syncthreads();

for (int c3 = 0; c3 <= 15; c3 += 1) {

private_p = (((c0) * (B)) + (t0));

shared_c[private_p - B * c0] +=

(shared_a[private_p - B * c0][c3] * shared_b[c3]);

}

__syncthreads();

}

if (n >= t0 + B * c0 + 1)

c[t0 + B * c0] = shared_c[t0];

__syncthreads();

}

}

Figure 5.11: Serial code, MetaFork code and generated parametric CUDA kernel for matrix
vector multiplication

Table 5.8: Speedup comparison of matrix multiplication between PPCG and MetaFork kernel
code

Speedup (kernel) Input size
Thread-block size 210 ∗ 210 211 ∗ 211

PPCG

16 * 32 129.853 393.851
MetaFork

8 * 4 32.157 96.652
16 * 4 54.578 171.621
32 * 4 53.399 156.493
8 * 8 60.358 182.557

16 * 8 87.919 287.002
32 * 8 84.057 289.930
8 * 16 100.521 299.228

16 * 16 100.264 330.965
32 * 16 85.928 247.220

formance with automatically generated code.

82 Chapter 5. MetaFork-to-CUDA: Generation of Parametric CUDA Kernels

1 __global__ void kernel0(int *a, int *b, int *c, int n, int dim, int B) {

2 int b0 = blockIdx.x;

3 int t0 = threadIdx.x;

4 int private_p;

5 // BLOCK_0 = B

6 __shared__ int shared_a[BLOCK_0][BLOCK_0];

7 __shared__ int shared_b[BLOCK_0];

8 __shared__ int shared_c[BLOCK_0];

9

10 for (int c0 = b0; c0 < dim; c0 += 32768) {

11 if (n >= t0 + B * c0 + 1)

12 shared_c[t0] = c[t0 + B * c0];

13 for (int c1 = 0; c1 < n / BLOCK_0; c1 += 1) {

14 if (n >= t0 + B * c0 + 1)

15 for (int c3 = 0; c3 < BLOCK_0; c3 += 1)

16 shared_a[c3][t0] = a[(c3 + B * c0) * n + (B * c1 + t0)];

17 shared_b[t0] = b[t0 + B * c1];

18 __syncthreads();

19 for (int c3 = 0; c3 < BLOCK_0; c3 += 1) {

20 private_p = (((c0) * (B)) + (t0));

21 shared_c[private_p - B * c0] +=

22 (shared_a[private_p - B * c0][c3] * shared_b[c3]);

23 }

24 __syncthreads();

25 }

26 if (n >= t0 + B * c0 + 1)

27 c[t0 + B * c0] = shared_c[t0];

28 __syncthreads();

29 }

30 }

Figure 5.12: Post-processing CUDA kernel with coalesced accesses for matrix vector multipli-
cation

Table 5.9: Timings (in sec.) of quantifier elimination for eight examples
Example Timing

Array reversal 0.072
1D Jacobi 0.948
2D Jacobi 7.735

LU decomposition 4.416
matrix transposition 1.314

matrix addition 1.314
matrix vector multiplication 0.072
matrix matrix multiplication 2.849

5.5. Conclusion 83

Serial code

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

for (int k = 0; k < n; ++k)

c[i][j] += a[i][k] * b[k][j];

MetaFork code

int dim0 = n / B0, dim1 = n / B1;

meta_schedule {

meta_for (int i = 0; i < dim0; i++)

meta_for (int j = 0; j < dim1; j++)

for (int k = 0; k < n/4; k++)

meta_for (int v = 0; v < B0; v++)

meta_for (int u = 0; u < B1; u++)

{

int p = i * B0 + v;

int w = j * B1 + u;

for (int z = 0; z < 4; z++)

c[p][w] +=

a[p][4*k+z] * b[4*k+z][w];

}

}

__global__ void kernel0(int *a, int *b, int *c, int n, int dim0,

int dim1, int B0, int B1) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private_p;

int private_w;

// BLOCK_0 = B0, BLOCK_1 = B1

__shared__ int shared_a[BLOCK_0][4];

__shared__ int shared_b[4][BLOCK_1];

__shared__ int shared_c[BLOCK_0][BLOCK_1];

for (int c0 = b0; c0 < dim0; c0 += 256)

for (int c1 = b1; c1 < dim1; c1 += 256) {

if (n >= t0 + B0 * c0 + 1 && n >= t1 + B1 * c1 + 1)

shared_c[t0][t1] =

c[(t0 + B0 * c0) * n + (t1 + B1 * c1)];

for (int c2 = 0; c2 < n / 4; c2 += 1) {

if (t1 <= 3 && n >= t0 + B0 * c0 + 1)

shared_a[t0][t1] =

a[(t0 + B0 * c0) * n + (t1 + 4 * c2)];

if (t0 <= 3 && n >= t1 + B1 * c1 + 1)

shared_b[t0][t1] =

b[(t0 + 4 * c2) * n + (t1 + B1 * c1)];

__syncthreads();

private_p = (((c0) * (B0)) + (t0));

private_w = (((c1) * (B1)) + (t1));

for (int c5 = 0; c5 <= 3; c5 += 1)

shared_c[private_p - B0 * c0][private_w - B1 * c1] +=

(shared_a[private_p - B0 * c0][c5] *

shared_b[c5][private_w - B1 * c1]);

__syncthreads();

}

if (n >= t0 + B0 * c0 + 1 && n >= t1 + B1 * c1 + 1)

c[(t0 + B0 * c0) * n + (t1 + B1 * c1)] =

shared_c[t0][t1];

__syncthreads();

}

}

Figure 5.13: Serial code, MetaFork code and generated parametric CUDA kernel for matrix
matrix multiplication

Chapter 6

Generation of Optimized CUDA Kernel
Code

In the previous chapter, we observed that, for several test cases, such as matrix multiplica-
tion and matrix transposition, the parametric CUDA kernels generated by MetaFork could not
outperform those that are generated by PPCG, for which thread-block formats are given by nu-
merical values. This observation motivates the work reported in this chapter. In Section 6.1,
we revisit a particular test case, matrix multiplication, by exploring various optimization tech-
niques, such as controlling the granularity of threads and using the local memory of the device.
Since accessing shared (resp. local) memory has low latency, one can consider to declare an
array allocated in the shared (resp. local) memory for temporarily storing the corresponding
elements of the array in the global memory. In the sequel of this chapter, we refer such an array
allocated in the shared (resp. local) memory as the shared (resp. local) memory counterpart
of the array in the global memory. Furthermore, we apply those optimization techniques to
five additional test cases in Section 6.2, so as to evaluate the benefits of those optimization
techniques. All experimental results are collected on an NVIDIA Tesla M2050.

6.1 Case study: matrix multiplication

Figure 6.1: Multiplication of two matrices

The MetaFork code for matrix multiplication, shown in Figure 5.13 of Chapter 5, follows
the naive implementation described in [73]. To be more precise, each thread-block computes

84

6.1. Case study: matrix multiplication 85

a block of the output matrix, while each thread computes one element of the output matrix.
Figure 6.1 shows the formula to calculate the multiplication of two matrices with each block of
size 1. Recall that when each input matrix is of order 210, the best speedup factor that Meta-
Fork achieves is 100.521 for the thread-block format of size 8 × 16, while PPCG achieves the
speedup factor of 129.853 for the thread-block format of size 16 × 32. Our generated kernel
code uses the shared memory for each of the input and output matrices. However, we observe
that PPCG generates a local memory counterpart of size 2 for the output matrix and two shared
memory counterparts, each of size 32×32, for input matrices. This means that for each thread,
the kernel code generated by PPCG computes two elements of the output matrix.

Some studies [73, 118] demonstrate that better performance can be obtained, when one
tunes the granularity of threads to increase the arithmetic intensity and hide the data transfer
time. This suggests that the amount of work that each thread executes can become a program
parameter. We can tune this parameter as we do with the thread-block format parameters. Thus,
we introduce a granularity loop into the original MetaFork code as shown in Figure 6.2, where
the w-loop on Line (13) increases the work per thread by a parameter s. Let each thread-block
of the original MetaFork code compute B0 × B1 elements of the output matrix. Then, for the
new code with the granularity loop, each thread-block computes the same number of elements
of the output matrix, while each thread computes s elements and the number of threads per
thread-block reduces to B0 × B1/s (that is, B0 × ub1 as shown in Figure 6.2). In addition, we
guarantee that the data, which threads access to, has a good alignment during each iteration of
the w-loop, such that coalesced accesses from a warp of threads occur.

1 // n * n matrices

2 // Program parameters: B0, ub1, s

3 assert(BLOCK == min(B0, ub1 * s));

4 int dim0 = n / B0, dim1 = n / (ub1 * s);

5

6 meta schedule {

7 meta for (int i = 0; i < dim0; i++)

8 meta for (int j = 0; j < dim1; j++)

9 for (int k = 0; k < n / BLOCK; ++k)

10 meta for (int v = 0; v < B0; v++)

11 meta for (int u = 0; u < ub1; u++)

12 // Each thread computes BLOCK*s outputs

13 for (int w = 0; w < s; ++w) {

14 int p = i * B0 + v;

15 int q = j * ub1 * s + w * ub1 + u;

16 for (int z = 0; z < BLOCK; z++)

17 c[p][q] += a[p][BLOCK*k+z] * b[BLOCK*k+z][q];

18 }

19 }

Figure 6.2: The MetaFork code with the granularity loop and good data alignment for matrix
multiplication

Introducing the granularity loop leads to a non-linear expression

j * ub1 * s + w * ub1 + u

86 Chapter 6. Generation of Optimized CUDA Kernel Code

on Line (15) in Figure 6.2, which is used as a column index of the two-dimensional arrays b
and c. The current MetaFork-to-CUDA code generator does not support this format of non-
linear expressions yet. In order to see the benefits of using the granularity loop with good
data alignment, we manually process the generated kernel code to obtain the new kernel code
shown in Figure 6.3. In the first scenario, we continue to use the shared memory for input and
output matrices in the generated kernel code. During the post-processing phase, we modify the
indices of arrays allocated in the global and shared memories, respectively. Then we collect
the speedup factors and achieved occupancies in Table 6.1, for various values of the number
of threads per thread-block and the granularity of threads. For the best case, when the thread-
block format is 8 × 32 and the granularity of threads is 4, the kernel code uses 23 registers and
8448 bytes of shared memory. We observe that this kernel achieves better performance, when
compared to those kernels automatically generated by PPCG and MetaFork.

Table 6.1: Experimental results of matrix multiplication for the CUDA kernel with the shared
memory for the output matrix and the granularity of threads

(a) speedup factors
Thread-block \ Granularity 2 4 8

(8, 8) 99.422 92.612 100.406
(16, 8) 130.053 143.995 130.213
(32, 8) 138.445 152.369 106.153
(64, 8) 124.984 128.164 84.301

(b) achieved occupancies
Thread-block \ Granularity 2 4 8

(8, 8) 0.332 0.330 0.326
(16, 8) 0.660 0.654 0.407
(32, 8) 0.823 0.813 0.332
(64, 8) 0.662 0.658 0.333

Input size 210 ∗ 210

In the second scenario, we use the local memory, instead of the shared memory, for the
output matrix. Thereby, we replace the code

shared int shared c[BLOCK 0][BLOCK 1]

on Line (11) in Figure 6.3 by

int private c [1][STRIDE],

where STRIDE is predefined as a macro and is equal to s. For the array references

shared c[t0][c5*ub1+t1],

which appeared at Lines (19), (30) and (38) on Figure 6.3, we replace each array reference by

private c[0][c5].

6.1. Case study: matrix multiplication 87

1 __global__ void kernel0(int *a, int *b, int *c, int n, int dim0, int dim1,

2 int B0, int ub1, int s) {

3 int b0 = blockIdx.y, b1 = blockIdx.x;

4 int t0 = threadIdx.y, t1 = threadIdx.x;

5 int private p;

6 int private q;

7 assert (BLOCK == min(B0, ub1 * s));

8 assert (BLOCK 0 == B0); assert (BLOCK 1 == ub1 * s);

9 shared int shared a[BLOCK 0][BLOCK];

10 shared int shared b[BLOCK][BLOCK 1];

11 shared int shared c[BLOCK 0][BLOCK 1];

12

13 for (int c0 = b0; c0 < dim0; c0 += 256)

14 for (int c1 = b1; c1 < dim1; c1 += 256) {

15 private p = ((c0) * (B0)) + (t0);

16 private_q = (c1) * (ub1 * s) + (t1);

17 for (int c5 = 0; c5 < s; c5 += 1)

18 if (n >= private_p + 1 && n >= private_q + (c5) * (ub1) + 1)

19 shared_c[t0][c5*ub1+t1] =

20 c[(private_p) * n + (private_q + (c5) * (ub1))];

21 for (int c2 = 0; c2 < n / BLOCK; c2 += 1) {

22 if (t1 < BLOCK && n >= private_p + 1)

23 shared_a[t0][t1] = a[(private_p) * n + (t1 + BLOCK * c2)];

24 for (int c5 = 0; c5 < s; c5 += 1) {

25 if (t0 < BLOCK && n >= private_q + (c5) * (ub1) + 1)

26 shared_b[t0][(c5) * (ub1) + t1] =

27 b[(t0 + BLOCK * c2) * n + (private_q + (c5) * (ub1))];

28 __syncthreads();

29 for (int c6 = 0; c6 < BLOCK; c6 += 1)

30 shared_c[t0][c5*ub1+t1] +=

31 (shared_a[t0][c6] * shared_b[c6][c5 * ub1 + t1]);

32 }

33 __syncthreads();

34 }

35 for (int c5 = 0; c5 < s; c5 += 1)

36 if (n >= private_p + 1 && n >= private_q + (c5) * (ub1) + 1)

37 c[(private_p) * n + (private_q + (c5) * (ub1))] =

38 shared_c[t0][c5*ub1+t1];

39 __syncthreads();

40 }

41 }

Figure 6.3: Post-processing the generated CUDA kernel code for matrix multiplication with the
granularity loop

We collect the experimental results in Table 6.2, which contains the speedup factors and
achieved occupancies for various values of the number of threads per thread-block and the
granularity of threads. For the best case, when the thread-block format is 8× 32 and the granu-
larity of threads is 4, the kernel code uses 16 bytes of stack frame, 22 registers and 2176 bytes
of shared memory. However, the performance is worse than that of the kernel using the shared
memory for the output matrix.

88 Chapter 6. Generation of Optimized CUDA Kernel Code

Table 6.2: Experimental results of matrix multiplication for the CUDA kernel with the local
memory for the output matrix and the granularity of threads

(a) speedup factors
Thread-block \ Granularity 2 4 8

(8, 8) 87.652 93.717 95.032
(16, 8) 127.22 133.620 127.204
(32, 8) 133.312 142.351 125.563
(64, 8) 114.836 124.092 116.646

(b) achieved occupancies
Thread-block \ Granularity 2 4 8

(8, 8) 0.332 0.331 0.327
(16, 8) 0.661 0.655 0.647
(32, 8) 0.824 0.815 0.804
(64, 8) 0.662 0.658 0.651

Input size 210 ∗ 210

One key reason explaining the relatively low performance of our kernel code using the
local memory is the fact that the upper bound of the granularity loop is a variable instead of a
constant. Indeed, this prevents the compiler from applying loop unrolling, which is an essential
trick for exposing instruction level parallelism (ILP). Hence, we shall use a constant as the w-
loop’s upper bound at Line (13) on Figure 6.2. Correspondingly, we modify the generated
kernel code at Line (24) on Figure 6.3 by changing the variable s to the constant STRIDE.
Note that STRIDE, BLOCK 0 and BLOCK 1 are constants that are passed by the compilation flags
-DSTRIDE, -DBLOCK 0 and -DBLOCK 1, respectively. Then we collect the speedup factors for
various values of the granularity size and the thread-block format in Table 6.3. Due to the
loop unrolling, the usage of registers per thread increases from 22 to 27. At this point, the
performance of the modified kernel has been further improved, compared to the kernel in the
first scenario, that is, using the shared memory for the output matrix.

Table 6.3: For input matrices of order 210, speedup factors of the matrix multiplication kernel
unrolling the computation

Thread-block \ Granularity 2 4 Resource usage
(16, 4) 79.038 89.233
(32, 4) 104.898 123.262 26 registers, 2112 bytes of shared memory
(64, 4) 106.147 111.481
(8, 8) 116.090 137.318

(16, 8) 165.192 194.326 27 registers, 2304 bytes of shared memory
(32, 8) 166.310 180.835
(64, 8) 137.937 161.536

With the intention to maximize ILP, we unroll the loop for the copy-in and copy-out phases
of the data transfer between the global memory and the local memory. Then, we modify the
upper bounds on Lines (17) and (35) by changing the variable s to the constant STRIDE, so as to
obtain the final modified kernel code as shown in Figure 6.4. Then we collect the experimental
results in Table 6.4 for various values of the granularity size and the thread-block format. We

6.1. Case study: matrix multiplication 89

__global__ void kernel0(int *a, int *b, int *c, int n, int dim0, int dim1,

int B0, int ub1, int s) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private_p;

int private_q;

assert (BLOCK == min(B0, ub1 * s));

assert (BLOCK 0 == B0); assert (BLOCK 1 == ub1 * s);

assert (STRIDE == s);

__shared__ int shared_a[BLOCK_0][BLOCK];

__shared__ int shared_b[BLOCK][BLOCK_1];

int private_c[1][STRIDE];

for (int c0 = b0; c0 < dim0; c0 += 256)

for (int c1 = b1; c1 < dim1; c1 += 256) {

private_p = (c0) * (B0) + (t0);

private_q = (c1) * (ub1 * s) + (t1);

for (int c5 = 0; c5 < STRIDE; c5 += 1)

if (n >= private_p + 1 && n >= private_q + (c5) * (ub1) + 1)

private_c[0][c5] =

c[(private_p) * n + (private_q + (c5) * (ub1))];

for (int c2 = 0; c2 < n / BLOCK; c2 += 1) {

if (t1 < BLOCK && n >= private_p + 1)

shared_a[t0][t1] = a[(private_p) * n + (t1 + BLOCK * c2)];

for (int c5 = 0; c5 < s; c5 += 1)

if (t0 < BLOCK && n >= private_q + (c5) * (ub1) + 1)

shared_b[t0][(c5) * (ub1) + t1] =

b[(t0 + BLOCK * c2) * n + (private_q + (c5) * (ub1))];

__syncthreads();

for (int c6 = 0; c6 < BLOCK; c6 += 1)

for (int c5 = 0; c5 < STRIDE; c5 += 1)

private_c[0][c5] +=

(shared_a[t0][c6] * shared_b[c6][c5 * ub1 + t1]);

__syncthreads();

}

for (int c5 = 0; c5 < STRIDE; c5 += 1)

if (n >= private_p + 1 && n >= private_q + (c5) * (ub1) + 1)

c[(private_p) * n + (private_q + (c5) * (ub1))] =

private_c[0][c5];

__syncthreads();

}

}

Figure 6.4: CUDA kernel with unrolling the granularity loop for matrix multiplication

observe that each thread, based on the value of B0, uses 38 or 34 registers, which are more
than the default allowance, that is, 32 per thread, set by the compiler. In this case, register
spilling [95] occurs, which causes the data to be accessed in the L2 cache, and slows down the
execution time. Meanwhile, the nvcc [38] compiler for CUDA programs allows the programmer
to set a number for the number of registers that each thread can use, as long as this number
does not exceed the hardware limit (which is 64 on the NVIDIA Tesla M2050). Thus, we pass

90 Chapter 6. Generation of Optimized CUDA Kernel Code

a compilation flag --maxrregcount=40 to allow each thread to use 40 registers. In the end, we
obtain a significant improvement in performance.

Table 6.4: For input matrices of order 210, speedup factors of the matrix multiplication
kernel unrolling the copy-in, computation and copy-out phases with a compilation flag
--maxrregcount=40

Thread-block \ Granularity 2 4 Resource usage
(16, 4) 117.032 151.667
(32, 4) 151.555 184.812 38 registers, 2112 bytes of shared memory
(64, 4) 132.588 171.805
(8, 8) 145.972 178.111

(16, 8) 196.625 230.870 34 registers, 2304 bytes of shared memory
(32, 8) 193.753 226.934
(64, 8) 111.214 169.528

Moreover, we realize that we compared our kernel code with the naive, serial matrix mul-
tiplication (shown in Figure 5.13 of Chapter 5), which lacks good data locality. Thus, using
a blocking strategy, we implement the version of the serial C code as shown in Figure 6.5,
which has a nearly optimal cache complexity. Finally, we collect speedup factors for the two
kernels generated by PPCG and MetaFork against this latter C code. Of course, the MetaFork-
generated kernel is the one described above. In particular, a post-processing phase is required
for unrolling the granularity loop and using the local memory. Experimental results are col-
lected in Table 6.5. For the best case, the MetaFork-generated kernel outperforms by a factor
of 1.7 (resp. 1.9) the PPCG-generated kernel for matrices of order 210 (resp. 211).

for (int i = 0; i < n; i += 32)

for (int j = 0; j < n; j += 32)

for (int k = 0; k < n; k += 32)

for (int i0 = i; i0 < min(i + 32, n); i0++)

for (int j0 = j; j0 < min(j + 32, n); j0++)

for (int k0 = k; k0 < min(k + 32, n); k0++)

c[i0][j0] += a[i0][k0] * b[k0][j0];

Figure 6.5: The serial C code with good data locality for matrix multiplication

6.2 Experimentation
In this section, we experiment with the granularity loop on the MetaFork code of five simple
test cases: array reversal (Figure 6.6, Table 6.6), 1D Jacobi (Figure 6.7, Table 6.7), matrix
addition (Figure 6.8, Table 6.8), matrix transposition (Figure 6.9, Table 6.9) and matrix vector
multiplication (Figure 6.10, Table 6.10). For each test case, we compare the kernel code with
the granularity loop against the kernel code without the granularity loop, that is, the code
automatically generated in Chapter 5.

For matrix addition, the kernel uses the global memory for the input and output matrices.
For matrix vector multiplication, we generate a local memory counterpart for the output vector

6.2. Experimentation 91

Table 6.5: Speedup factors obtained with kernels generated by PPCG and MetaFork with post-
processing, respectively, w.r.t. the serial C code with good data locality for matrix multiplica-
tionm

Speedup (kernel) Input size
Thread-block size 210 ∗ 210 211 ∗ 211

PPCG

(16, 32) 109 105
MetaFork with post-processing

Granularity
2 4 2 4

(16, 4) 95 128 90 119
(32, 4) 128 157 125 144
(64, 4) 111 145 105 132
(8, 8) 131 151 126 146
(16, 8) 164 194 159 188
(32, 8) 163 187 158 202
(64, 8) 94 143 104 135

and two shared memory counterparts for both the input matrix and the input vector. For the
other test cases, we generate shared memory counterparts for the input vectors or matrices and
continue to use the global memory for the output. In the case that vectors or matrices are
required to copy from/to the arrays allocated in the shared or local memory, post-processing is
required. Figures 6.6, 6.7, 6.8, 6.9 and 6.10 show the MetaFork code and its kernel code for
each test case. Tables 6.6, 6.7, 6.8 6.9 and 6.10 collect the speedup factors for various values
of one thread-block dimension and its granularity of threads.

Array reversal. For the input vector of length 225, the kernel code generated in Chapter 5
achieves the best speedup factor of 22.965 for the thread-block format of size 256, while for
the same thread-block format but with the granularity 4, the kernel with the granularity loop
performs slightly better.

Table 6.6: Speedup factors of reversing a one-dimensional array for input vector of length 225

Thread-block \ Granularity 2 4 8
16 5.239 5.561 5.743
32 7.867 7.959 8.176
64 13.814 13.987 14.232
128 20.354 20.872 21.036
256 23.554 24.511

1D Jacobi. For the input vector of length 215 +2, the parametric kernels generated in Chap-
ter 5 achieve the best speedup factor of 7.309 with the thread-block format of size 64, while
for the thread-block format of size 128 and the granularity 2, the kernels with the granularity
loop perform slightly better.

Matrix addition. For the input matrix of order 212, the kernel code generated in Chapter 5
achieves the best speedup factor of 56.650 for the thread-block format of size 32 × 8, while

92 Chapter 6. Generation of Optimized CUDA Kernel Code

// Array with of size N

// Program parameters: B, s

int ub v = N / B, ub u = B / s;

meta schedule {

meta for (int v = 0; v < ub v; v++)

meta for (int u = 0; u < ub u; u++)

for (int w = 0; w < s; ++w) {

int x = v * B + w * ub u + u;

int y = N - 1 - x;

Out[y] = In[x];

}

}

global void kernel0(int *In, int *Out, int N, int ub v,

int ub u, int s, int B) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private x;

int private y;

shared int shared In[BLOCK 0]; // BLOCK 0 = B

for (int c0 = b0; c0 < ub v; c0 += 32768) {

for (int c2 = 0; c2 < s; c2 += 1) {

private x = (c0) * (B) + (c2) * (ub u) + (t0);

if (N >= private x + 1)

shared In[(c2) * (ub u) + t0] = In[private x];

syncthreads();

private y = (((N) - 1) - private x);

Out[private y] = shared In[(c2) * (ub u) + t0];

}

syncthreads();

}

}

Figure 6.6: The MetaFork code and its kernel code with the granularity loop for reversing a
one-dimensional array

Table 6.7: Speedup factors of 1D Jacobi for time iteration 4 and input vector of length 215+2
Thread-block \ Granularity 2 4 8

16 3.340 4.357 4.975
32 4.785 5.252 5.206
64 5.927 6.264 6.412
128 10.400 8.952 5.793
256 6.859 6.246

for the thread-block format of size 64 × 8 and the granularity 2, the kernel with the granularity
loop performs almost the same.

Table 6.8: Speedup factors of matrix addition for input matrix of order 212

Thread-block \ Granularity 2 4 8
(4, 8) 21.561 23.844
(8, 8) 34.144 37.196 34.187
(16, 8) 45.906 43.287 41.956
(32, 8) 55.219 52.543 51.304
(64, 8) 56.815 55.843 54.402

(128, 8) 39.128 44.819

Matrix transpose. For the input matrix of order 214, the kernel code generated in Chapter 5
achieves the best speedup factor of 93.051 for the thread-block format of size 8× 32, while for
the same thread-block format but with the granularity 2, the kernel with the granularity loop
outperforms those two kernels automatically generated by PPCG and MetaFork.

Matrix vector multiplication. For the input matrix of order 213 and the input vector of
length 213, the kernel code generated in Chapter 5 achieves the best speedup factor of 10.340
for the thread-block format of size 32. In this test case, since we use the local memory for the
output vector, a constant is used as the upper bound of the granularity loop so as to allow loop

6.2. Experimentation 93

// Array with of size N + 2

// Program parameters: B, s

int ub v = (N - 2) / B, ub u = B / s;

meta schedule {

for (int t = 0; t < T; ++t) {

meta for (int v = 0; v < ub v; v++)

meta for (int u = 0; u < ub u; u++)

for (int i = 0; i < s; ++i) {

int p = v * B + i * ub u + u;

b[p+1] = (a[p]+a[p+1]+a[p+2])/3;

}

meta_for (int v = 0; v < ub v; v++)

meta_for (int u = 0; u < B; u++) {

int w = v * B + u;

a[w+1] = b[w+1];

}

}

}

global void kernel0(int *a, int *b, int N, int T, int ub v,

int B, int ub u, int s, int c0) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private p;

shared int shared a[BLOCK 0+2]; // BLOCK 0 = B

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c1 = b0; c1 < ub v; c1 += 32768) {

for (int c2 = t0; c2 <= min(B + 1, N - B * c1 - 1);

c2 += ub u)

shared a[c2] = a[B * c1 + c2];

syncthreads();

private p = (c1) * (B) + t0;

for (int c3 = 0; c3 < s; c3 += 1) {

b[private p + (c3) * (ub u) + 1] =

(((shared a[(c3) * (ub u) + t0]

+ shared a[(c3) * (ub u) + t0 + 1])

+ shared a[(c3) * (ub u) + t0 + 2]) / 3);

}

syncthreads();

}

}

global void kernel1(int *a, int *b, int N, int T, int ub v,

int B, int ub u, int s, int c0) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

int private w;

for (int c1 = b0; c1 < ub v; c1 += 32768) {

private w = (((c1) * (B)) + (t0));

a[private w + 1] = b[private w + 1];

syncthreads();

}

}

Figure 6.7: The MetaFork code and its kernel code with the granularity loop for 1D Jacobi

// n * n matrices

// Program parameters: B0, ub u1, s

int dim0 = n/B0, dim1 = n/B1, ub u1 = B1/s;

meta schedule {

meta for (int v0 = 0; v0 < dim0; v0++)

meta for (int v1 = 0; v1 < dim1; v1++)

meta for (int u0 = 0; u0 < B0; u0++)

meta for (int u1=0; u1<ub u1; u1++)

for (int w = 0; w < s; ++w) {

int i = v0 * B0 + u0;

int j = v1 * B1 + w*ub u1 + u1;

c[i][j] = a[i][j] + b[i][j];

}

}

global void kernel0(int *a, int *b, int *c, int n, int dim0,

int dim1, int B0, int ub u1, int s, int B1) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private i;

int private j;

for (int c0 = b0; c0 < dim0; c0 += 256)

for (int c1 = b1; c1 < dim1; c1 += 256) {

for (int c4 = 0; c4 < s; c4 += 1) {

private i = ((t0) + ((c0) * (B0)));

private j = ((((c1) * (B1)) + ((c4) * (ub u1))) + (t1));

c[private i * n + private j] =

(a[private i * n + private j] +

b[private i * n + private j]);

}

syncthreads();

}

}

Figure 6.8: The MetaFork code and its kernel code with the granularity loop for matrix addi-
tion

unrolling for the copy-in, computation and copy-out phases. For the thread-block format of size
32 and the granularity 2, this kernel uses 22 registers and 8320 bytes of shared memory, while
for the same thread-block format but without the granularity loop, the kernel automatically

94 Chapter 6. Generation of Optimized CUDA Kernel Code

Table 6.9: Speedup factors of matrix transpose for input matrix of order 214

Thread-block \ Granularity 2 4 8
(4, 32) 103.281 96.284 75.211
(8, 32) 111.971 90.625 85.422
(16, 32) 78.476 68.894 48.822
(32, 32) 45.084 46.425 32.824

// n * n matrices

// Program parameters: B0, ub u1, s

int dim0 = n/B0, dim1 = n/B1, ub u1 = B1/s;

meta schedule {

meta for (int v0 = 0; v0 < dim0; v0++)

meta for (int v1 = 0; v1 < dim1; v1++)

meta for (int u0 = 0; u0 < B0; u0++)

meta for (int u1=0; u1<ub u1; u1++)

for (int w = 0; w < s; ++w) {

int i = v0 * B0 + u0;

int j = v1 * B1 + w * ub u1 + u1;

c[j][i] = a[i][j];

}

}

global void kernel0(int *a, int *c, int n, int dim0,

int dim1, int B0, int ub u1, int s, int B1) {

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

int private i;

int private j;

// BLOCK 0 = B0, BLOCK 1 = B1

shared int shared a[BLOCK 0][BLOCK 1];

for (int c0 = b0; c0 < dim0; c0 += 256)

for (int c1 = b1; c1 < dim1; c1 += 256) {

private i = (((c0) * (B0)) + (t0));

if (n >= t0 + B0 * c0 + 1 && n >= t1 + B1 * c1 + 1)

for (int c4 = 0; c4 < s; c4 += 1)

shared a[t0][t1+(c4)*(ub u1)] =

a[(private i) * n + (t1 + c4 * ub u1 + B1 * c1)];

syncthreads();

for (int c4 = 0; c4 < s; c4 += 1) {

private j = ((c1) * (B1)) + ((c4) * (ub u1)) + (t1);

c[private j * n + private i] =

shared a[private i - B0 * c0][private j - B1 * c1];

}

syncthreads();

}

}

Figure 6.9: The MetaFork code and its kernel code with the granularity loop for matrix trans-
pose

generated by MetaFork uses 29 registers and 4352 bytes of shared memory. However, the
kernel with the granularity loop performs worse.

Table 6.10: Speedup factors of matrix vector multiplication for input matrix of order 213 and
input vector of length 213 (An error indicates that the total amount of required shared memory
exceeds the hardware limit.)

Thread-block \ Granularity 2 4 8
8 2.975 2.677 1.974
16 4.281 3.424 3.377
32 5.477 1.916 0.988
64 2.286 Error Error

6.3 Conclusion
We have experimented with thread granularity control for six test cases. For two of these test
cases, matrix multiplication and matrix vector multiplication, we use the local memory for the

6.3. Conclusion 95

// N * N matrix and N vector

// Program parameters: B, s

// BLOCK = B / s, STRIDE = s

int ub v = N / B, ub u = B / s;

meta schedule {

meta for (int v = 0; v < ub v; v++)

for (int i = 0; i < n / BLOCK; ++i)

meta_for (int u = 0; u < ub u; u++)

for (int j = 0; j < BLOCK; ++j)

for (int w = 0; w < STRIDE; ++w)

{

int p = v * B + w * ub u + u;

c[p] += a[p][i*BLOCK+j] *

b[i*BLOCK+j];

}

}

global void kernel0(int *a, int *b, int *c, int N, int ub v,

int ub u, int s, int B) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

// BLOCK 0 = B0, STRIDE = s

shared int shared_a[BLOCK 0][BLOCK 0/STRIDE];

shared int shared b[BLOCK 0/STRIDE];

int private c[STRIDE];

for (int c0 = b0; c0 < ub v; c0 += 32768) {

for (int c4 = 0; c4 < STRIDE; c4 += 1)

private c[c4] = c[ub u * c4 + c0 * B + t0];

for (int c1 = 0; c1 < N / ub u; c1 += 1) {

for (int c4 = 0; c4 < s; c4 += 1)

for (int c3 = 0; c3 < ub u; c3 += 1)

shared a[c4 * ub u + c3][t0] =

a[(ub u * c4 + c0 * B + c3) * N + (ub u * c1 + t0)];

shared_b[t0] = b[t0 + ub u * c1];

syncthreads();

for (int c3 = 0; c3 < ub u; c3 += 1)

for (int c4 = 0; c4 < STRIDE; c4 += 1)

private c[c4] +=

(shared a[c4 * ub u + t0][c3] * shared b[c3]);

syncthreads();

}

for (int c4 = 0; c4 < STRIDE; c4 += 1)

c[ub u * c4 + c0 * B + t0] = private c[c4];

syncthreads();

}

}

Figure 6.10: The MetaFork code and its kernel code with the granularity loop for matrix vector
multiplication

output matrix or vector in order to expose ILP by helping the compiler to apply loop unrolling.
We believe that these techniques could help the performance of CUDA kernels. Although matrix
transposition and matrix multiplication show a significant improvement, matrix vector multi-
plication performs worse, and other test cases behave slightly better or almost the same as the
original kernel without the granularity loop control. The question whether we should apply
those techniques in process of automatic code generation remains unanswered. This leads to
the next chapter where we discuss an algorithm to generate a case distinction depending on
available hardware resources.

However, adding a granularity loop in the MetaFork code violates those assumptions listed
in Appendix C. Thus, for using the shared memory, post-processing is required to obtain correct
index expressions of the shared memory counterparts. This manual modification is difficult
and painful, especially for non-CUDA experts. To fully support any non-linear expressions in
the current MetaFork-to-CUDA code generator, simply hacking into PPCG source code is not
enough to solve the issue. We leave it to future work.

Moreover, our automatic code generator described in Chapter 5 does not support using the
local memory. We could extend our code generator to allow the user to choose whether to use
the local memory in the kernel code. Alternatively, we could automatically detect the situations
when the local memory should be used. To be more specific, based on those test cases that we
experienced, we can use the local memory for the output array when each element in this array
is accessed more than once by each thread.

Chapter 7

Towards Comprehensive Parametric CUDA
Kernel Generation

In Chapter 5, we demonstrated that, from an annotated C code, it was possible to generate
CUDA kernels that depend on program parameters considered unknown at compile-time. Our
experimental results in Chapters 5 and 6 suggest that those parametric CUDA kernels could help
with increasing portability and performance of CUDA code.

In the present chapter, we enhance this strategy as follows. First, we propose an algorithm
for comprehensive optimization allowing us to optimize C code (and in particular CUDA code)
depending on unknown machine and program parameters. Then, we use this algorithm to
generate optimized parametric CUDA kernels, in the form of a case distinction based on the
possible values of the machine and program parameters. We call comprehensive parametric
CUDA kernels the resulting CUDA kernels, see Section 7.2.

In broad terms, this is a decision tree, where each edge holds a Boolean expression, given
by a conjunction of polynomial constraints, and each leaf is either a CUDA kernel or the symbol
∅, such that for each leaf K, with K , ∅, we have:

1. K works correctly under the conjunction of the Boolean expressions located between the
root node and the leaf, and

2. K is semantically equivalent to a common input annotated C code P.
In each Boolean expression, the unknown variables represent machine parameters (like hard-
ware resource limits), program parameters (like dimension sizes of thread-blocks) or data pa-
rameters (like input data size). The symbol ∅ is used to denote a situation (in fact, value ranges
for the machine and program parameters) where no CUDA kernel equivalent to P is provided.

The intention, with the concept of comprehensive parametric CUDA kernels, is to automat-
ically generate optimized CUDA kernels from an annotated C code without knowing the nu-
merical values of some, or all, of the machine and program parameters. This naturally yields
a case distinction depending on the values of those parameters. Indeed, some optimization
techniques (like loop unrolling) can only be applied when enough computing resources are
available, while other optimization techniques (like common sub-expression elimination) can
be applied to reduce computing resource consumption. These case distinctions can be han-
dled by techniques from symbolic computation, for which software libraries are available, in
particular, the RegularChains library freely available at www.regularchains.org.

Let us illustrate, with an example, the notion of comprehensive parametric CUDA kernels,

96

www.regularchains.org

97

along with a procedure to generate them. For computing the sum of two matrices a and b of
order N, our input is the meta for-loop nest within the meta schedule statement on the right-
hand portion of Figure 7.1, whereas the serial code without tiling is provided on the left-hand
portion of Figure 7.1.

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

c[i][j] = a[i][j] + b[i][j];

(a) Before tiling, the C program

int dim0 = N/B0, dim1 = N/(2*B1);

meta_schedule {

meta_for (int v = 0; v < dim0; v++)

meta_for (int p = 0; p < dim1; p++)

meta_for (int u = 0; u < B0; u++)

meta_for (int q = 0; q < B1; q++)

{

int i = v * B0 + u;

int j = p * B1 + q;

if (i < N && j < N/2) {

c[i][j] = a[i][j] + b[i][j];

c[i][j+N/2] =

a[i][j+N/2] + b[i][j+N/2];

}

}

}

(b) After tiling, the MetaFork program

Figure 7.1: Matrix addition written in C (the left-hand portion) and in MetaFork (the right-
hand portion) with a meta for loop nest, respectively

We make the following simplistic assumptions for the translation of this meta for-loop
nest to a CUDA program.

1. The target machine has two parameters: the maximum number R1 of registers per thread,
and the maximum number R2 of threads per thread-block; moreover, all other hardware
limits are ignored.

2. The generated kernels depend on two program parameters, B0 and B1, which define the
format of a 2D thread-block.

3. The optimization strategy (w.r.t. register usage per thread) consists in reducing the work
per thread via removing the 2-way loop unrolling [123].

The possible comprehensive parametric CUDA kernels are given by the pairs (C1,K1) and (C2,K2),
where C1,C2 are two sets of algebraic constraints on the machine and program parameters and
K1,K2 are two CUDA kernels that are optimized under the constraints, respectively, given by
C1,C2, see Figure 7.2. The following computational steps yield the pairs (C1,K1) and (C2,K2).
(S1) Tiling techniques, based on quantifier elimination (QE), are applied to the meta for

loop nest of Figure 7.1 in order to decompose the matrices into tiles of format B0 × B1,
see [19] for details.

(S2) The tiled MetaFork code is mapped to an intermediate representation (IR) say that of
LLVM1, or alternatively, to PTX2 code.

1 Quoting Wikipedia: “The LLVM compiler infrastructure project (formerly Low Level Virtual Machine [75,
9]) is a framework for developing compiler front ends and back ends”.

2The Parallel Thread Execution (PTX) [39] is the pseudo-assembly language to which CUDA programs are

98 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

(S3) Using this IR (or PTX) code, one can estimate the number of registers that a thread
requires; thus, using LLVM IR on this example, we obtain an estimate of 14.

(S4) Next, we apply the optimization strategy, yielding a new IR (or PTX) code, for which
register pressure reduces to 10. Since no other optimization techniques are considered,
the procedure stops with the result shown in Figure 7.2.

Based on the above steps, Figure 7.3 shows the decision tree for generating these two pairs,
each of them consisting of a system of polynomial constraints and a CUDA kernel for matrix
addition. Note that, strictly speaking, the kernels K1 and K2 on Figure 7.2 should be given by
PTX code. But for simplicity, we are presenting them by the CUDA code counterpart.

C1 :
{

B0 × B1 ≤ R1
14 ≤ R2

__global__ void K1(int *a, int *b, int *c, int N,

int B0, int B1) {

int i = blockIdx.y * B0 + threadIdx.y;

int j = blockIdx.x * B1 + threadIdx.x;

if (i < N && j < N/2) {

a[i*N+j] = b[i*N+j] + c[i*N+j];

a[i*N+j+N/2] = b[i*N+j+N/2] + c[i*N+j+N/2];

}

}

dim3 dimBlock(B1, B0);

dim3 dimGrid(N/(2*B1), N/B0);

K1 <<<dimGrid, dimBlock>>> (a, b, c, N, B0, B1);

C2 :
{

B0 × B1 ≤ R1
10 ≤ R2 < 14

__global__ void K2(int *a, int *b, int *c, int N,

int B0, int B1) {

int i = blockIdx.y * B0 + threadIdx.y;

int j = blockIdx.x * B1 + threadIdx.x;

if (i < N && j < N)

a[i*N+j] = b[i*N+j] + c[i*N+j];

}

dim3 dimBlock(B1, B0);

dim3 dimGrid(N/B1, N/B0);

K2 <<<dimGrid, dimBlock>>> (a, b, c, N, B0, B1);

Figure 7.2: Comprehensive translation of MetaFork code to two kernels for matrix addition

One can observe that loop unrolling is applied to K1 so as to increase arithmetic intensity.
This code transformation increases register pressure, which is possible under the constraints of
C1 but not under those of C2.

In general, to achieve a comprehensive translation of the annotated C program P into CUDA
kernels, one could be tempted to proceed as follows:
(S1) Perform a comprehensive optimization of P, as a MetaFork program, by applying the

comprehensive optimization algorithm demonstrated in Section 7.1.
(S2) Apply the MetaFork-to-CUDA code generator introduced in Chapter 5 to each MetaFork

program generated in the first step.
However, since the system of polynomial constraints associated with each optimized Meta-
Fork program is determined by an IR representation of that program, this system would not be
accurate for the CUDA code generated by a source-to-source MetaFork-to-CUDA code generator.

compiled by NVIDIA’s nvcc compiler. PTX code can also be generated from (enhanced) LLVM IR, using nvptx
back-end [68], following the work of [99].

7.1. Comprehensive optimization 99

K2

K1

R1<B0×B1 B0×B1⩽R1

14⩽R2R2<14

10⩽R2R2<10

Figure 7.3: The decision tree for comprehensive parametric CUDA kernels of matrix addition

In fact, if PTX is used as IR in Step (S1) then Step (S2) is no longer necessary. However,
Step (S2) will produce code readable by a human being that will give her/him some sense of
the source code transformations performed at Step (S1).

The reason that we choose MetaFork programs as our input programs is because the Meta-
Fork language can be used to write both “high-level” (in the spirit of OpenMP [41, 13, 9])
and “lower-level” (closer to CUDA) parallel programs. Indeed, MetaFork is another high-level
heterogeneous programming model like OpenMP and OpenACC [113, 56]. Hence, turning an
unoptimized MetaFork program into optimized MetaFork programs can be seen as a first
approximation of our final goal, that is, generating optimized parametric CUDA kernels from in-
put unoptimized annotated C programs. The presented comprehensive optimization algorithm
combined with our previous work in Chapters 5 and 6 can be used to complete a comprehensive
translation of a MetaFork program into parametric CUDA kernels.

Section 7.1 proposes a comprehensive optimization algorithm for optimizing an input code
fragment depending on unknown machine and program parameters. In Section 7.2, we de-
scribe the procedure of comprehensive translation of an annotated C program, namely Meta-
Fork, into parametric CUDA kernels. An implementation of the comprehensive optimization
algorithm is presented in Section 7.3 so as to generate optimized MetaFork programs from
a given MetaFork program. We conduct the experimentation in Section 7.4 for optimizing
six simple test cases: array reversal, matrix vector multiplication, 1D Jacobi, matrix addition,
matrix transpose and matrix matrix multiplication.

This work is a joint project with Xiaohui Chen and Marc Moreno Maza.

7.1 Comprehensive optimization
We consider a code fragment written in the C language or in one of its linguistic extensions
targeting a computer device, which can be, for instance, a hardware accelerator or a desktop
CPU. We assume that some, or all, of the hardware characteristics of this device are unknown
at compile time. However, we would like to optimize our input code fragment w.r.t prescribed
resource counters (e.g. memory usage) and performance counters (e.g. clock-cycle per instruc-
tion). To this end, we treat the hardware characteristics of this device as symbols and generate
polynomial constraints (with those symbols as indeterminate variables) ensuring when such

100 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

and such code transformation is valid.
Section 7.1.1 states the hypotheses made on the input code fragment. Section 7.1.2 specifies

the notations for the hardware characteristics of the targeted device. In Section 7.1.3, we
describes the evaluation of resource and performance counters. In Section 7.1.4, we define
the optimization strategies that can reduce resource counters or increase performance counters.
Section 7.1.5 formally gives the definition of comprehensive optimization of an input code
fragment. Section 7.1.6 specifies the data structures that are used in our algorithm. Finally, in
Section 7.1.7, we demonstrate our algorithm for comprehensive optimization.

7.1.1 Hypotheses on the input code fragment
We consider a sequence S of statements from the C programming language and introduce the
following.

Definition 1 We call parameter of S any scalar variable that is
(i) read in S at least once and

(ii) never written in S.
We call data of S any non-scalar variable (e.g. array) that is not initialized but possibly over-
written within S. If a parameter of S gives a dimension size of a data of S, then this parameter
is called a data parameter; otherwise, it is simply called a program parameter.

Notation 1 We denote by D1, . . . ,Du and E1, . . . , Ev the data parameters and program param-
eters of S, respectively.

Hypothesis 3 We make the following assumptions on S.
(H1) All parameters are assumed to be non-negative integers.
(H2) We assume that S can be viewed as the body of a valid C function having the parameters

and data of S as unique arguments.

Example 3 S can be the body of a kernel function in CUDA. Recall that the kernel code for
computing matrix vector multiplication in Figure 5.12 of Chapter 5. This kernel code multiplies
a square matrix a of order n with a vector b of length n and stores the result to a vector c of
length n. We note that a, b and c are the data, and that n is the data parameter. Moreover, the
grid and thread-block dimensions of this kernel are specified as dim and B, respectively, which
are then the program parameters.

7.1.2 Hardware resource limits and performance measures
We denote by R1, . . . ,Rs the hardware resource limits of the targeted hardware device. Exam-
ples of these quantities for the NVIDIA Kepler micro-architecture are:

- the maximum number of registers to be allocated per thread,
- the maximum number of shared memory words to be allocated per thread-block,
- the maximum number of threads in a thread-block.

We denote by P1, . . . , Pt the performance measures of a program running on the device. These
are dimensionless quantities typically defined as percentages. Examples of these quantities for
the NVIDIA Kepler micro-architecture are:

7.1. Comprehensive optimization 101

- the ratio of the actual to the maximum number of words that can be read or written per
unit of time from the global memory,

- the ratio of the actual to the maximum number of floating point operations that can be
performed per unit of time by all streaming processors (SMs),

- the SM occupancy, that is, the ratio of active warps to the maximum number of active
warps,

- the cache hit rate in an SM.
For a given hardware device, R1, . . . ,Rs are positive integers, and each of them is the maxi-
mum value of a hardware resource. Meanwhile, P1, . . . , Pt are rational numbers between 0 and
1. However, for the purpose of writing code portable across a variety of devices with similar
characteristics, the quantities R1, . . . ,Rs and P1, . . . , Pt will be treated as unknown and inde-
pendent variables. These hardware resource limits and performance measures will be called
the machine parameters.

Each function K (and, in particular, our input code fragment S) written in the C language
for the targeted hardware device has resource counters r1, . . . , rs and performance counters
p1, . . . , pt corresponding, respectively, to R1, . . . ,Rs and P1, . . . , Pt. In other words, the quan-
tities r1, . . . , rs are the amounts of resources, corresponding to R1, . . . ,Rs, respectively, that K
requires for executing. Similarly, the quantities p1, . . . , pt are the performance measures, corre-
sponding to P1, . . . , Pt, respectively, that K exhibits when executing. Therefore, the inequalities
0 ≤ r1 ≤ R1, . . . , 0 ≤ rs ≤ Rs must hold for the function K to execute correctly. Similarly,
0 ≤ p1 ≤ 1, . . . , 0 ≤ pt ≤ 1 are satisfied by the definition of the performance measures.

Remark 1 We note that r1, . . . , rs, p1, . . . , pt may be numerical values, which we can assume
to be non-negative rational numbers. This will be the case, for instance, for the minimum num-
ber of registers required per thread in a thread-block. The resource counters r1, . . . , rs may also
be polynomial expressions whose indeterminate variables can be program parameters (like
the dimension sizes of a thread-block or grid) or data parameters (like the input data sizes).
Meanwhile, the performance counters p1, . . . , pt may further depend on the hardware resource
limits (like the maximum number of active warps supported by an SM). To summarize, we
observe that r1, . . . , rs are polynomials in Q[D1, . . . ,Du, E1, . . . , Ev] and p1, . . . , pt are ratio-
nal functions where numerators and denominators are in Q[D1, . . . ,Du, E1, . . . , Ev,R1, . . . ,Rs].
Moreover, we can assume that the denominators of those rational functuons are positive.

Example 4 For computing the product of a dense square matrix of order N by a dense vector of
length N, consider the serial C code on the left-hand portion of Figure 7.4 and the corresponding
MetaFork code on the right-hand portion of Figure 7.4. The meta schedule statement yields
the CUDA kernel shown in Figure 5.12 of Chapter 5. The grid of this kernel is one-dimensional
of size dim, and its thread-blocks are also one-dimensional, each counting B threads.

Observe that, in the process of generating this CUDA kernel, some optimization techniques
(like using the shared memory for arrays a, b and c in Figure 5.12 of Chapter 5) are applied,
while other optimization techniques remain to be applied (like the granularity of threads as used
in Figure 6.10 of Chapter 6). If R2 and R3 are two machine parameters that define, respectively,
the maximum number of threads in a thread-block and the maximum number of shared memory
words per thread-block, then the following constraints must hold:

B ≤ R2 and B2 + 2B ≤ R3.

102 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

for (int p = 0; p < N; p++)

for (int q = 0; q < N; q++)

c[p] += a[p][q] * b[q];

(a) Before tiling, the C program

int dim = N / B;

meta_schedule {

meta_for (int v = 0; v < dim; v++)

for (int i = 0; i < dim; ++i)

meta_for (int u = 0; u < B; u++)

for (int j = 0; j < B; ++j) {

int p = v * B + u;

int q = i * B + j;

c[p] += a[p][q] * b[q];

}

}

(b) After tiling, the MetaFork program

Figure 7.4: Matrix vector multiplication written in C (the left-hand portion) and in MetaFork
(the right-hand portion), respectively

Note that, in Figure 5.12 of Chapter 5, each thread-block allocates a unit size B2 of shared
memory words for the array a, and a unit size B of shared memory words, respectively, for
each of arrays b and c. Thus, this leads to the inequality B2 + 2B ≤ R3.

7.1.3 Evaluation of resource and performance counters

Let GC(S) be the control flow graph (CFG) [123] of S. Hence, the statements in the basic
blocks of GC(S) are C statements, and we call such a CFG the source CFG. We also map S
to an intermediate representation, which, itself, is encoded in the form of a CFG, denoted by
GL(S), and we call it the IR CFG. Here, we refer to the landmark textbook [2] for the notion
of the control flow graph and that of intermediate representation.

We observe that S can trivially be reconstructed from GC(S); hence, the knowledge of S
and that of GC(S) can be regarded as equivalent. In contrast, GL(S) depends not only on S but
also on the optimization strategies that are applied to the IR of S.

Equipped with GC(S) and GL(S), we assume that we can estimate each of the resource
counters r1, . . . , rs (resp. performance counters p1, . . . , pt) by applying functions f1, . . . , fs

(resp. g1, . . . , gt) to either GC(S) or GL(S). We call f1, . . . , fs (resp. g1, . . . , gt) the resource
(resp. performance) evaluation functions.

For instance, when S is the body of a CUDA kernel and S reads (resp. writes) a given
array, computing the total amount of elements read (resp. written) by one thread-block can
be determined from GC(S). Meanwhile, computing the minimum number of registers to be
allocated to a thread executing S requires the knowledge of GL(S).

7.1.4 Optimization strategies

In order to reduce the consumption of hardware resources and increase performance counters,
we assume that we have w optimization procedures O1, . . . ,Ow, each of them mapping either a
source CFG to another source CFG, or an IR CFG to another IR CFG. Of course, we assume
the code transformations performed by O1, . . . ,Ow preserve semantics.

7.1. Comprehensive optimization 103

We associate each resource counter ri, for i = 1 · · · s, with a non-empty subset σ(ri) of
{O1, . . . ,Ow}, such that we have

fi(O(S)) ≤ fi(S) for O ∈ σ(ri). (7.1)

Hence, σ(ri) is a subset of the optimization strategies among O1, . . . ,Ow that have the potential
to reduce ri. Of course, the intention is that for at least one O ∈ σ(ri), we have fi(O(S)) < fi(S).
A reason for not finding such O would be that S cannot be further optimized w.r.t. ri. We also
make a natural idempotence assumption:

fi(O(O(S))) = fi(O(S)) for O ∈ σ(ri). (7.2)

Similarly, we associate each performance counter pi, for i = 1 · · · t, with a non-empty subset
σ(pi) of {O1, . . . ,Ow}, such that we have

gi(O(S)) ≥ gi(S) and gi(O(O(S))) = gi(O(S)) for O ∈ σ(pi). (7.3)

Hence, σ(pi) is a subset of the optimization strategies among O1, . . . ,Ow that have the potential
to increase pi. The intention is, again, that for at least one O ∈ σ(pi), we have gi(O(S)) >
gi(S).

7.1.5 Comprehensive optimization
Let C1, . . . ,Ce be semi-algebraic systems with P1, . . . , Pt, R1, . . . ,Rs, D1, . . . ,Du, E1, . . . , Ev as
indeterminate variables. Let S1, . . . ,Se be fragments of C programs such that the parameters
of each of them are among D1, . . . ,Du, E1, . . . , Ev.

Definition 2 We say that the sequence of pairs (C1,S1), . . . , (Ce,Se) is a comprehensive opti-
mization of S w.r.t.

- the resource evaluation functions f1, . . . , fs,
- the performance evaluation functions g1, . . . , gt and
- the optimization strategies O1, . . . ,Ow

if the following conditions hold:
(i) [constraint soundness] Each of the semi-algebraic systems C1, . . . ,Ce is consistent, that

is, admits at least one real solution.
(ii) [code soundness] For all real values h1, . . . , ht, x1, . . . , xs, y1, . . . , yu, z1, . . . , zv of P1, . . . , Pt,

R1, . . . ,Rs, D1, . . . ,Du, E1, . . . , Ev respectively, for all i ∈ {1, . . . , e} such that (h1, . . . , ht,
x1 . . . , xs, y1, . . . , yu, z1, . . . , zv) is a solution of Ci, then the code fragment Si produces
the same output as S on any data that makes S execute correctly.

(iii) [coverage] For all real values y1, . . . , yu, z1, . . . , zv of D1, . . . ,Du, E1, . . . , Ev, respec-
tively, there exist i ∈ {1, . . . , e} and real values h1, . . . , ht, x1, . . . , xs of P1, . . . , Pt, R1, . . . ,Rs,
such that (h1, . . . , ht, x1, . . . , xs, y1, . . . , yu, z1, . . . , zv) is a solution of Ci and Si produces
the same output as S on any data that makes S execute correctly.

(iv) [optimality] For every i ∈ {1, . . . , s} (resp. {1, . . . , t}), there exists ` ∈ {1, . . . , e} such that
for all O ∈ σ(ri) (resp. σ(pi)) we have fi(O(S`)) = fi(S`) (resp. gi(O(S`)) = gi(S`)).

To summarize Definition 2 in non technical terms:

104 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

- Condition (i) states that each system of constraints is meaningful.
- Condition (ii) states that as long as the machine, program and data parameters satisfy Ci,

the code fragment Si produces the same output as S on whichever data that makes S
execute correctly.

- Condition (iii) states that as long as S executes correctly on a given set of parameters
and data, there exists a code fragment Si, for suitable values of the machine parameters,
such that Si produces the same output as S on that set of parameters and data.

- Condition (iv) states that for each resource counter ri (performance counter pi), there
exists at least one code fragment S` for which this counter is optimal in the sense that it
cannot be further optimized by the optimization strategies from σ(ri) (resp. σ(pi)).

7.1.6 Data-structures
The algorithm presented in Section 7.1.7 computes a comprehensive optimization of S w.r.t.
the evaluation functions f1, . . . , fs, g1, . . . , gt and optimization strategies O1, . . . ,Ow.

Hereafter, we define the main data-structure used during the course of the algorithm. We
associate S with what we call a quintuple, denoted by Q(S) and defined as follows:

Q(S) = (GC(S), λ(S), ω(S), γ(S),C(S))

where
1. λ(S) is the sequence of the optimization procedures among O1, . . . ,Ow that have already

been applied to the IR of S; hence, GC(S) together with λ(S) defines GL(S); initially,
λ(S) is empty,

2. ω(S) is the sequence of the optimization procedures among O1, . . . ,Ow that have not
been applied so far to either GC(S) or GL(S); initially, ω(S) is O1, . . . ,Ow,

3. γ(S) is the sequence of resource and performance counters that remain to be evaluated
on S; initially, γ(S) is r1, . . . , rs, p1, . . . , pt,

4. C(S) is the sequence of the constraints (polynomial equations and inequalities) on P1, . . . , Pt,
R1, . . . ,Rs, D1, . . . ,Du, E1, . . . , Ev that have been computed so far; initially, C(S) is
1 ≥ P1 ≥ 0, . . . , 1 ≥ Pt ≥ 0, R1 ≥ 0, . . . ,Rs ≥ 0, D1 ≥ 0, . . . ,Du ≥ 0, E1 ≥ 0, . . . , Ev ≥ 0.

We say that the quintuple Q(S) is processed whenever γ(S) is empty; otherwise, we say that
the quintuple Q(S) is in-process.

Remark 2 For the above Q(S), each of the sequences λ(S), ω(S), γ(S) and C(S) is imple-
mented as a stack in Algorithms 5 and 6. Hence, we need to specify how operations on a
sequence are performed on the corresponding stack. Let s1, s2, . . . , sN is a sequence.

- Popping one element out of this sequence returns s1 and leaves that sequence with
s2, . . . , sN ,

- Pushing an element t1 on s1, s2, . . . , sN will update that sequence to t1, s1, s2, . . . , sN .
- Pushing a sequence of elements t1, t2, . . . , tM on s1, s2, . . . , sN will update that sequence

to tM, . . . , t2, t1, s1, s2, . . . , sN .

7.1.7 The algorithm
Algorithm 5 is the top-level procedure. If its input is a processed quintuple Q(S), then it returns
the pair (GC(S), λ(S)) (such that, after optimizing S with the optimization strategies in λ(S),

7.1. Comprehensive optimization 105

one can generate the IR of the optimized S) together with the system of constraints C(S).
Otherwise, Algorithm 5 is called recursively on each quintuple returned by Optimize(Q(S)).
The pseudo-code of the Optimize routine is given by Algorithm 6.

Algorithm 5: ComprehensiveOptimization (Q(S))
Input: The quintuple Q(S)
Output: A comprehensive optimization of S w.r.t. the resource evaluation functions f1, . . . , fs, the

performance evaluation functions g1, . . . , gt and the optimization strategies O1, . . . ,Ow

1 if γ(S) is empty then
2 return ((GC(S), λ(S)),C(S));

3 The output stack is initially empty;
4 for each Q(S′) ∈ Optimize(Q(S)) do
5 Push ComprehensiveOptimization(Q(S′) on the output stack;

6 return the output stack;

Remark 3 We make a few observations about Algorithm 6.
(R1) Observe that at Line (5), a deep copy of the input Q(S′) is made, and this copy is called

Q(S′′). This duplication allows the computations to fork. Note that at Line (6), Q(S′) is
modified.

(R2) In this forking process, we call Q(S′) the accept branch and Q(S′′) the refuse branch. In
the former case, the relation 0 ≤ vi ≤ Ri holds thus implying that enough Ri-resources are
available for executing the code fragment S′. In the latter case, the relation Ri < vi holds
thus implying that not enough Ri-resources are available for executing the code fragment
S′′.

(R3) Observe that vi is either a numerical value, a polynomial in Q[D1, . . . ,Du, E1, . . . , Ev] or
a rational function where its numerator and denominator are in Q[D1, . . . ,Du, E1, . . . , Ev,
R1, . . . ,Rs].

(R4) At Lines (18-20), a similar forking process occurs. Here again, we call Q(S′) the ac-
cept branch and Q(S′′) the refuse branch. In the former case, the relation 0 ≤ vi ≤ Pi

implies that the Pi-performance counter may have reached its maximum ratio; hence, no
optimization strategies are applied to improve this counter. In the latter case, the rela-
tion Pi < vi ≤ 1 holds thus implying that the Pi-performance counter has not reached
its maximum value; hence, optimization strategies are applied to improve this counter if
such optimization strategies are available. Observe that if this optimization strategy does
make the estimated value of Pi larger then an algebraic contradiction would happen and
the branch will be discarded.

(R5) Line (30) in Algorithm 6 requires non-trivial computations with polynomial equations
and inequalities. The necessary algorithms can be found in [22] and are implemented in
the RegularChains library of Maple.

Remark 4 We make a few remarks about the handling of algebraic computation during the
execution of Algorithm 6:
(R6) Each system of algebraic constraints C is updated by adding a polynomial inequality to

it at either Lines (6), (7), (19) or (20). This incremental process can be performed by the
RealTriangularize algorithm [22] and implemented in the RegularChains library.

106 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

Algorithm 6: Optimize
Input: A quintuple Q(S′)
Output: A stack of quintuples

1 Initialize an empty stack, called result;
2 Take out from γ(S′) the next resource or performance counter to be evaluated, say c;
3 Evaluate c on S′ (using the appropriate functions among f1, . . . , fs, g1, . . . , gt) thus obtaining a

value vi, which can be either a numerical value, a polynomial in Q[D1, . . . ,Du, E1, . . . , Ev] or a
rational function where its numerator and denominator are in Q[D1, . . . ,Du, E1, . . . , Ev,

R1, . . . ,Rs];
4 if c is a resource counter ri then
5 Make a deep copy Q(S′′) of Q(S′), since we are going to split the computation into two

branches: Ri < vi and 0 ≤ vi ≤ Ri;
6 Add the constraint 0 ≤ vi ≤ Ri to C(S′) and push Q(S′) onto result;
7 Add the constraint Ri < vi to C(S′′) and search ω(S′′) for an optimization strategy of σ(ri);
8 if no such optimization strategy exists then
9 return result;

10 else
11 Apply such an optimization strategy to Q(S′′) yielding Q(S′′′);
12 Remove this optimization strategy from ω(S′′′);
13 if this optimization strategy is applied to the IR of S′′ then
14 Add it to λ(S′′′);

15 Push r1, . . . , ri−1, ri onto γ(S′′′);
16 Make a recursive call to Optimize on Q(S′′′) and push the returned quintuples onto

result;

17 if c is a performance counter pi then
18 Make a deep copy Q(S′′) of Q(S′), since we are going to split the computation into two

branches: 0 ≤ vi ≤ Pi and Pi < vi ≤ 1 ;
19 Add the constraint 0 ≤ vi ≤ Pi to C(S′) and push Q(S′) onto result;
20 Add the constraint Pi < vi ≤ 1 to C(S′′) and search ω(S′′) for an optimization strategy of

σ(pi);
21 if no such optimization strategy exists then
22 return result;

23 else
24 Apply such an optimization strategy to Q(S′′) yielding Q(S′′′);
25 Remove this optimization strategy from ω(S′′′);
26 if this optimization strategy is applied to the IR of S′′ then
27 Add it to λ(S′′′);

28 Push r1, . . . , rs, pi onto γ(S′′′);
29 Make a recursive call to Optimize on Q(S′′′) and push the returned quintuples onto

result;

30 Remove from result any quintuple with an inconsistent system of constraints;
31 return result;

7.1. Comprehensive optimization 107

(R7) Each of these inequalities can be either strict (using >) or large (using ≤); the left-hand
side is a polynomial of either Q[D1, . . . ,Du, E1, . . . , Ev] or Q[D1, . . . ,Du, E1, . . . , Ev,
R1, . . . ,Rs], and the right-hand side is either one of the variables R1, . . . ,Rs or a poly-
nomial of Q[D1, . . . ,Du, E1, . . . , Ev, R1, . . . ,Rs] times one of the variables P1, . . . , Pt.

(R8) Because of the recursive calls at Lines (16) and (29) several inequalities involving the
same variable among R1, . . . ,Rs, P1, . . . , Pt may be added to a given system C. As a
result, C may become inconsistent. For instance if 10 ≤ R1 and R1 < 10 are both
added to the same system C. Note that inconstancy is automatically detected by the
RealTriangularize algorithm.

(R9) When using RealTriangularize, variables should be ordered. We choose a variable
ordering such that

- any of P1, . . . , Pt is greater than any of the other variables,
- any of R1, . . . ,Rs is greater than any of D1, . . . ,Du, E1, . . . , Ev.

(R10) Then, the RealTriangularize represents the solution of C as the union of the solution
sets of finitely many regular semi-algebraic systems. Each such regular semi-algebraic
system Υ consists of

- polynomial constraints involving D1, . . . ,Du, E1, . . . , Ev only,
- polynomial constraints involving D1, . . . ,Du, E1, . . . , Ev, R1, . . . ,Rs only and of

positive degree in at least one of R1, . . . ,Rs,
- constraints that are linear in P1, . . . , Pt and polynomial in D1, . . . ,Du, E1, . . . , Ev,

R1, . . . ,Rs.
Let us denote by ΥD,E, ΥD,E,R and ΥD,E,R,P these three sets of polynomial constraints,
respectively. It follows from the properties of regular semi-algebraic systems that

(a) ΥD,E is consistent,
(b) for all real values y1, . . . , yu, z1, . . . , zv of D1, . . . ,Du, E1, . . . , Ev such that (y1, . . . , yu,

z1, . . . , zv) solves ΥD,E, there exists real values x1, . . . , xs of R1, . . . ,Rs such that
(y1, . . . , yu, z1, . . . , zv, x1, . . . , xs) solves ΥD,E,R and real values h1, . . . , ht of P1, . . . , Pt

such that (y1, . . . , yu, z1, . . . , zv, x1, . . . , xs, h1, . . . , ht) solves ΥD,E,R,P.

Notation 2 We associate the execution of Algorithm 5, applied to Q(S), with a tree denoted by
T (Q(S)) and where both nodes and edges of T (Q(S)) are labelled. We use the same notations
as in Algorithm 6. We define T (Q(S)) recursively as follows:
(T1) We label the root of T (Q(S)) with Q(S).
(T2) If γ(S) is empty, then T (Q(S)) has no children; otherwise, two cases arise:

(T2.1) If no optimization strategy is to be applied for optimizing the counter c, then
T (Q(S)) has a single subtree, which is that associated with Optimize(Q(S′)) where
Q(S′) is obtained from Q(S) by augmenting C(S) either with 0 ≤ vi ≤ Ri if c is a
resource counter or with 0 ≤ vi ≤ Pi otherwise.

(T2.2) If an optimization strategy is applied, then T (Q(S)) has two subtrees:
(T2.2.1) The first one is the tree associated with Optimize(Q(S′)) (where Q(S′) is de-

fined as above) and is connected to its parent node by the accept edge, labelled
with either 0 ≤ vi ≤ Ri or 0 ≤ vi ≤ Pi; see Figure 7.5.

(T2.2.2) The second one is the tree associated with Optimize(Q(S′′′)) (where Q(S′′′) is
obtained by applying the optimization strategy to the deep copy of the input

108 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

Q(S(2k+1))

Updated Q(S(2k+1))Q(S(2k+3))

Updated Q(S(2k+3))Q(S(2k+5))

...

Q(S(2k+1))

Q(S(2k+2))

Q(S(2k+3))

Deep copy

O∈σ (r i)

Ri<r i
(1) 0⩽ri

(1)⩽R i

Ri<r i
(2)

0⩽ri
(2)

⩽Ri

(a) The decision subtree for resource counter ri

Q(S(2k+1))

Updated Q(S(2k+1))Q(S(2k+3))

Updated Q(S(2k+3))Q(S(2k+5))

...

Q(S(2k+1))

Q(S(2k+2))

Q(S(2k+3))

Deep copy

O∈σ (p i)

Pi< pi
(1)

⩽1 0⩽pi
(1)⩽Pi

Pi< pi
(2)

⩽1 0⩽pi
(2)

⩽P i

(b) The decision subtree for performance counter pi

Figure 7.5: The decision subtree for resource or performance counters

quintuple Q(S)) and is connected to its parent node by the refuse edge, labelled
with either Ri < vi or Pi < vi ≤ 1; see Figure 7.5.

Observe that every node of T (Q(S)) is labelled with a quintuple and every edge is labelled
with an inequality constraint.

Remark 5 Figure 7.5 illustrates how Algorithm 6, applied to Q(S′), generates the associated
tree T (Q(S′)). The cases for a resource counter and a performance counter are distinguished
in the sub-figures (a) and (b), respectively. Observe that, in both cases, the accept edges go
south-east, while the refuse edges go south-west.

Lemma 7.1.1 The height of the tree T (Q(S)) is at most w(s + t). Therefore, Algorithm 5
terminates.

Proof Consider a path Γ from the root of T (Q(S)) to any node N of T (Q(S)). Observe
that Γ counts at most w refuse edges. Indeed, following a refuse edge decreases by one the
number of optimization strategies to be used. Observe also that the length of every sequence
of consecutive accept edges is at most s + t. Indeed, following an accept edge decreases by one
the number of resource and performance counters to be evaluated. Therefore, the number of
edges in Γ is at most w (s + t).

Lemma 7.1.2 Let U := {U1, . . . ,Uz} be a subset of {O1, . . . ,Ow}. There exists a path from the
root of T (Q(S)) to a leaf of T (Q(S)) along which the optimization strategies being applied
are exactly those of U.

7.2. Comprehensive translation of an annotated C program into CUDA kernels 109

Proof Let us start at the root of T (Q(S)) and apply the following procedure:
1. follow the refuse edge if it uses an optimization strategy from {U1, . . . ,Uz},
2. follow the accept edge, otherwise.

This creates a path from the root of T (Q(S)) to a leaf with the desired property.

Definition 3 Let i ∈ {1, . . . , s} (resp. {1, . . . , t}). Let N be a node of T (Q(S)) and Q(SN) be
the quintuple labelling this node. We say that ri (resp. pi) is optimal at N w.r.t. the evaluation
function fi (resp. gi) and the subsetσ(ri) (resp. σ(pi)) of the optimization strategies O1, . . . ,Ow,
whenever for all O ∈ σ(ri) (resp. σ(pi)) we have fi(O(SN)) = fi(SN) (resp. gi(O(SN)) =

gi(SN)).

Lemma 7.1.3 Let i ∈ {1, . . . , s} (resp. {1, . . . , t}). There exists at least one leaf L of T (Q(S))
such that ri (resp. pi) is optimal at L w.r.t. the evaluation function fi (resp. gi) and the subset
σ(ri) (resp. σ(pi)) of the optimization strategies O1, . . . ,Ow.

Proof Apply Lemma 7.1.2 with U = σ(ri) (resp. U = σ(pi)).

Lemma 7.1.4 Algorithm 5 satisfies its output specifications.

Proof From Lemma 7.1.1, we know that Algorithm 5 terminates. So let (C1,S1), . . . , (Ce,Se)
be its output. We shall prove (C1,S1), . . . , (Ce,Se) satisfies the conditions (i) to (iv) of Defini-
tion 2. Condition (i) is satisfied by the properties of the RealTriangularize algorithm, see
Section 2.6. Condition (ii) follows clearly from the assumption that the code transformations
performed by O1, . . . ,Ow preserve semantics. Observe that each time a polynomial inequality
is added to a system of constraints, the negation of this inequality is also to the same system
in another branch of the computations. By using a simple induction on s + t, we deduce that
Condition (iii) is satisfied. Finally, we prove Condition (iv) by using Lemma 7.1.3.

7.2 Comprehensive translation of an annotated C program
into CUDA kernels

Given a high-level model for accelerator programming (like OpenCL [111], OpenMP [41, 13, 9],
OpenACC [113, 56] or MetaFork [29]), we consider the problem of translating a program
written for such a high-level model into a programming model for GPGPU devices, such as
CUDA [95, 73]. We assume that the numerical values of some, or all, of the hardware char-
acteristics of the targeted GPGPU device are unknown. Hence, these quantities are treated as
symbols. Similarly, we would like that some, or all, of the program parameters remain symbols
in the generated code.

In our implementation, we focus on one high-level model for accelerator programming,
namely MetaFork. However, we believe that an adaptation to another high-level model for
accelerator programming would not be difficult. One supporting reason for that claim is the
fact that automatic code translation between the MetaFork and OpenMP languages can already
be done within the MetaFork compilation framework, see [29].

The hardware characteristics of the GPGPU device can be the maximum number of regis-
ters to be allocated per thread in a thread-block and the maximum number of shared memory

110 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

words to be allocated per thread in a thread-block. Similarly, the program parameters can be
the number of threads per thread-block and the granularity of threads. For the generated code
to be valid, hardware characteristics and program parameters need to satisfy constraints in the
form of polynomial equations and inequalities. Moreover, applying code transformation (like
optimization techniques) requires a case distinction based on the values of those symbols, as
we saw with the example in the introduction.

In Section 7.2.1, we specify the required properties of the input code fragment S from the
given MetaFork program, so that the comprehensive optimization algorithm, demonstrated
in Section 7.1, can handle this MetaFork program. Section 7.2.2 discusses the procedure
of comprehensive translation of the MetaFork program into parametric CUDA kernels, which
yields the definition of comprehensive parametric CUDA kernels.

7.2.1 Input MetaFork code fragment

Consider a meta schedule statement M and its surrounding MetaFork program P. In this
process of code analysis and transformation, we focus on the meta schedule statement M
and assume that the rest of the program P is serial C code. Hence, our examples, like the
matrix vector multiplication and matrix addition examples, consist simply of a meta schedule
statementM together with a few (possibly none) statements located beforeM and initializing
variables used inM.

Consider the meta schedule statementM, that is, a statement of the form

meta schedule A

where A is a compound statement of the form {A0A1 · · · A`} and each of A0, A1, . . . , A` is a
for-loop nest, such that:

1. each for-loop nest contains 2 or 4 meta for loops; hence, it can be executed in a parallel
fashion,

2. the body of the innermost loop can be any valid sequence of C statements; in particular,
such a statement can be a for-loop, and

In practice, a parameter (in the sense of Definition 1) of the meta schedule statement M
is either a data parameter (that is, related to data being processed, like a number of rows or
columns in a matrix) or a program parameter (that is, related to the division of the work among
the threads executing the parallel for-loops). In Example 4, the variable N is a data parameter,
whereas the variables dim and B are the program parameters.

Moreover, for the sake of clarity, we shall assume that the meta schedule statement M
counts a single meta for loop nest A. Extending the present section to the case where M
counts several meta for loop nests can be done by existing techniques as we briefly explain
now. Indeed, each meta for loop nest can be handled separately. Then, “merging” the corre-
sponding results can be done by techniques from symbolic computation, see [26, 27]. There-
fore, we consider the serial elision (as defined in [29]) of A in M as the code fragment S.
Turning our attention back to Example 4, Figure 7.6 shows the serial elision of the MetaFork
program on the right-hand portion of Figure 7.4.

7.3. Implementation details 111

int dim = N / B, v, u;

// v is corresponding to the thread-block index

// u is corresponding to the thread index in a thread-block

// The following code is the serial elision

for (int i = 0; i < dim; ++i)

for (int j = 0; j < B; ++j) {

int p = v * B + u;

int q = i * B + j;

c[p] += a[p][q] * b[q];

}

Figure 7.6: The serial elision of the MetaFork program for matrix vector multiplication

7.2.2 Comprehensive translation into parametric CUDA kernels

Now, applying the comprehensive optimization algorithm (described in Section 7.1) on the se-
rial elision S of the meta schedule statementM (with prescribed resource evaluation func-
tions, performance evaluation functions and optimization strategies), we obtain a sequence of
processed quintuples of meta schedule statements Q1(M),Q2(M), . . . ,Q`(M), which forms
a comprehensive optimization in the sense of Definition 2.

If, as mentioned in the introduction of this chapter, PTX is used as intermediate represen-
tation (IR) then, for each i = 1, . . . , `, under the constraints defined by the polynomial system
associated with Qi(M), the IR code associated with Qi(M) is the translation in assembly lan-
guage of a CUDA counterpart of M. In our implementation, we also translate to CUDA source
code the MetaFork code in each Qi(M), since this is easier to read for a human being.

Therefore, in broad terms, a comprehensive translation of the meta schedule statement
M into parametric CUDA kernels is a decision tree, where each edge holds a Boolean expression
(given by a polynomial constraint) and each leaf is either a CUDA program in PTX form, or the
symbol ∅, such that for each leaf K, with K , ∅, we have:

1. K works correctly under the conjunction of the Boolean expressions located between the
root node and the leaf, and

2. K is semantically equivalent to P.
The symbol ∅ is used to denote a situation (in fact, value ranges for the machine and program
parameters) where no CUDA program equivalent to P is provided.

7.3 Implementation details

In this section, we present a preliminary implementation of the comprehensive optimization al-
gorithm demonstrated in Section 7.1. This implementation takes a given MetaFork program as
input and is dedicated to the optimization of meta schedule statements in view of generating
parametric CUDA kernels.

For the algorithm stated in Section 7.1.7 to satisfy its specifications, one should use the
PTX language for the IR. However, for simplicity, in our proof-of-concept implementation

112 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

here, we use the IR of the LLVM compiler infrastructure [75], since the MetaFork compilation
framework is based on Clang [30].

Two hardware resource counters are considered: register usage per thread and local/shared
memory allocated per thread-block. No performance counters are specified; however, by de-
sign, the algorithm tries to minimize the usage of hardware resources. Four optimization strate-
gies are used: (i) reducing register pressure, (ii) controlling thread granularity, (iii) common
sub-expression elimination (CSE), and (iv) caching3 data in local/shared memory. Details are
given hereafter.

Figure 7.7 gives an overview of the software tools that are used for our implementation.
Appendix E shows the implemented algorithms with these two resource counters and these
three optimization strategies.

Clang
MetaFork

Code
Source

CFG

Source
CFG

in
Maple

LLVM
IR

CFG

PET RegularChains

Thread
Granularity

Register
Pressure

Cache
Amount

CSE

Figure 7.7: The software tools involved for the implementation

Conversion between source code and CFG. Clang [30] is used as the front-end for pars-
ing the MetaFork source code and generating the source CFG. This latter is converted into a
Maple DAG in order to take advantage of Maple’s capabilities for algebraic computation. Con-
versely, given a Maple version of a CFG, we can generate the corresponding MetaFork code
by traversing this CFG.

Register pressure. Given the MetaFork source code, we use LLVM to generate the low-
level machine instructions in the intermediate representation (IR), which are in a static single
assignment (SSA) form [40]. A benefit of using the SSA form is that one can calculate the live-
ness sets4 [123] without data flow analysis [123]. Once the lifetime information is computed,
we use the classical linear scan algorithm [97] to estimate the register usage.

Thread granularity. A common method to improve arithmetic intensity and instruction
level parallelism (ILP) is through controlling the granularity of threads [114], that is, each
thread computing more than one of the output results. One can achieve this goal by adding a
serial for loop within a thread. However, this method may increase the register usage as well as
the amount of required shared memory (see the matrix multiplication example in Section 6.1).

3In the MetaFork language, the keyword cache is used to indicate that every thread accessing a specified
array a must copy in local/shared memory the data it accesses in a.

4https://en.wikipedia.org/wiki/Live_variable_analysis

https://en.wikipedia.org/wiki/Live_variable_analysis

7.4. Experimentation 113

In the case that adding the granularity loop causes the needed resources to exceed the hardware
limits, our algorithm applies an optimized strategy, “Granularity set to 1,” to remove that serial
loop from the generated kernel code. We implement this strategy during the translation phase
from the CFG to the MetaFork code by not generating this loop.

Common sub-expression elimination (CSE). For each basic block in the CFG, built from
the MetaFork source code, we consider the basic blocks with more than one statement. Then,
we use the codegen[optimize] package of Maple, such that CSE is applied to those state-
ments and a sequence of new statements is generated. Finally, we update each basic block with
those new statements. Moreover, the optimization technique has two levels: one using Maple’s
default CSE algorithm and the other using the try-harder option of codegen[optimize].

Cache amount. We take advantage of the PET (polyhedral extraction tool) [116] to collect
information related to the index expression of an array: occurring program parameters (defined
as in Section 7.2), loop iteration counters and inequalities (that give the lower and upper bounds
of those loop iteration counters). We now illustrate with an example for computing the amount
of words that a thread-block requires. Consider the MetaFork program with the granularity
for reversing a 1D array as shown on the left-hand portion of Figure 7.8. Note that w.r.t the
MetaFork code, iteration counters i, j and k of for- (and meta for-) loops are counted
as neither program nor data parameters; thus, we shall consider them as bounded variables.
However, in order to calculate the amount of words required per thread-block in the Regular-
Chains library of Maple, we treat the iteration counter i, which indicates the thread-block index
of the CUDA kernel, as a program parameter. The function call ValueRangeWithConstra-
intsAndParameters to the RegularChains library, as shown on the right-hand portion of
Figure 7.8, is used to calculate the required words per thread-block for vector c. As a result, a
range [1, s*B+1] is returned, such that we can determine that vector c accesses s*B words
per thread-block.

// Data parameters: a, c, N

// Program parameters: B, s

int dim = N / (B * s);

meta schedule {

meta for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++)

for (int k = 0; k < s; ++k) {

int x = v * B * s + k * B + u;

int y = N - 1 - x

c[y] = a[x];

}

}

(a) MetaFork program with the granularity

lowerBound := [];

upperBound := [];

fixedVars := [];

boundedVars := [j , k];

params := [i , s , B , N];

x := ((((i)*(B))*(s))+((k)*(B)))+(j);

y := ((N)-(1))-(x);

S := [j >= 0 , j <= -1 + B , k >= 0 , k <= -1 + s];

i0 := y;

bounds := ValueRangeWithConstraintsAndParameters

(i0, S, lowerBound, upperBound, fixedVars,

boundedVars, params);

(b) function call to RegularChains library

Figure 7.8: Computing the amount of words required per thread-block for reversing a 1D array

7.4 Experimentation
We present experimental results for the implementation described in Section 7.3. We consider
six simple test cases: array reversal, matrix vector multiplication, 1D Jacobi, matrix addi-
tion, matrix transpose and matrix matrix multiplication. Recall that we consider two machine

114 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

parameters: the amount ZB of shared memory per streaming multiprocessor (SM) and the max-
imum number RB of registers per thread in a thread-block.

Three scenarios of optimized MetaFork programs based on different systems of constraints
are generated by our implementation of the comprehensive optimization algorithm.The first
case of optimized MetaFork programs uses the shared memory and a granularity parameter s.
The second case uses the shared memory but sets the granularity parameter s to 1. The third
case removes the cache5 keyword and sets s to 1. In this latter case, the amount of words read
and written per thread-block is more than the maximum amount ZB of shared memory per SM.
However, the cache keyword is not implemented in the MetaFork compilation framework yet,
so that we manually process editing for this keyword. For each of these optimization strategies,
we use a shortened code shown in Table 7.1.

Table 7.1: Optimization strategies with their codes
Strategy name Its code Strategy name Its code
“Accept register pressure” (1) “CSE applied” (2)
“No granularity reduction” (3a) “Granularity set to 1” (3b)
“Accept caching” (4a) “Refuse caching” (4b)

Array reversal. Our comprehensive optimization algorithm applies to the source code the
following optimization strategy codes (1) (4a) (3a) (2) (2). For the first case, it generates the
optimized MetaFork code shown in Figure 7.9.

Constraints:{
2sB ≤ ZB

4 ≤ RB

strategies (1) (4a) (3a) (2) (2) applied

int N, s, B, dim = N/(s*B);

int a[N], c[N];

meta_schedule cache(a, c) {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++)

for (int k = 0; k < s; ++k) {

int x = (i*s+k)*B+j;

int y = N-1-x;

c[y] = a[x];

}

}

Figure 7.9: The first case of the optimized MetaFork code for array reversal

Applying optimization strategy codes in a sequence either (1) (3b) (4a) (3a) (2) (2) or
(2) (2) (3b) (1) (4a) (3a), the second case generates the optimized MetaFork code shown in
Figure 7.10.

Applying optimization strategy codes in a sequence either (1) (3b) (2) (2) (4b) or (2) (2)
(3b) (1) (4b), the third case generates the optimized MetaFork code shown in Figure 7.11.

Matrix vector multiplication. Applying optimization strategy codes in a sequence either
(1) (4a) (3a) (2) (2) or (2) (1) (4a) (3a) (2), the first case generates the optimized MetaFork
code shown in Figure 7.12.

5 In the MetaFork language, the intention of using the keyword cache is to indicate that every thread accessing
a specified array a must copy in local/shared memory the data it accesses in a.

7.4. Experimentation 115

Constraints:{
2B ≤ ZB < 2sB
3 ≤ RB

strategies (1) (3b) (4a) (3a) (2) (2) applied
or{

2B ≤ ZB < 2sB
3 ≤ RB < 4

strategies (2) (2) (3b) (1) (4a) (3a) applied

int N, s = 1, B, dim = N/(s*B);

int a[N], c[N];

meta_schedule cache(a, c) {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++) {

int x = i*B+j;

int y = N-1-x;

c[y] = a[x];

}

}

Figure 7.10: The second case of the optimized MetaFork code for array reversal

Constraints:{
ZB < 2B
3 ≤ RB

strategies (1) (3b) (2) (2) (4b) applied
or{

ZB < 2B
3 ≤ RB < 4

strategies (2) (2) (3b) (1) (4b) applied

int N, s = 1, B, dim = N/(s*B);

int a[N], c[N];

meta_schedule {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++) {

int x = i*B+j;

int y = N-1-x;

c[y] = a[x];

}

}

Figure 7.11: The third case of the optimized MetaFork code for array reversal

Constraints:{
sB2 + sB + B ≤ ZB

8 ≤ RB

strategies (1) (4a) (3a) (2) (2) applied
or{

sB2 + sB + B ≤ ZB

8 ≤ RB < 9

strategies (2) (1) (4a) (3a) (2) applied

int N, s, B, dim0 = N/(s*B), dim1 = N/B;

int a[N][N], b[N], c[N];

meta_schedule cache(a, b, c) {

meta_for (int v = 0; v < dim0; v++)

for (int i = 0; i < dim1; i++)

meta_for (int u = 0; u < B; u++)

for (int j = 0; j < B; ++j)

for (int k = 0; k < s; ++k) {

int p = (v*s+k)*B+u;

int q = i*B+j;

c[p] = a[p][q]*b[q]+c[p];

}

}

Figure 7.12: The first case of the optimized MetaFork code for matrix vector multiplication

Applying the optimization strategy codes in a sequence either (1) (3b) (4a) (3b) (2) (2),
(2) (1) (3b) (4a) (3a) (2) or (2) (2) (3b) (1) (4a) (3a), the second case generates the optimized
MetaFork code shown in Figure 7.13.

Applying the optimization strategy codes in a sequence either (1) (3b) (2) (2) (4b), (2) (1)
(3b) (2) (4b) or (2) (2) (3b) (1) (4b), the third case generates the optimized MetaFork code
shown in Figure 7.14.

1D Jacobi. Given 1D Jacobi source code written in MetaFork, shown in Figure 7.15,
the CSE strategy is applied successfully for all cases of optimized MetaFork programs. This
example requires post-processing for calculating the total amount of required shared memory

116 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

Constraints:{
B2 + 2B ≤ ZB < sB2 + sB + B
7 ≤ RB

strategies (1) (3b) (4a) (3a) (2) (2) applied
or{

B2 + 2B ≤ ZB < sB2 + sB + B
7 ≤ RB < 9

strategies (2) (1) (3b) (4a) (3a) (2) applied
or{

B2 + 2B ≤ ZB < sB2 + sB + B
7 ≤ RB < 8

strategies (2) (2) (3b) (1) (4a) (3a) applied

int N, s = 1, B, dim0 = N/(s*B), dim1 = N/B;

int a[N][N], b[N], c[N];

meta_schedule cache(a, b, c) {

meta_for (int v = 0; v < dim0; v++)

for (int i = 0; i < dim1; i++)

meta_for (int u = 0; u < B; u++)

for (int j = 0; j < B; ++j) {

int p = v*B+u;

int q = i*B+j;

c[p] = a[p][q]*b[q]+c[p];

}

}

Figure 7.13: The second case of the optimized MetaFork code for matrix vector multiplication

Constraints:{
ZB < B2 + 2B
7 ≤ RB

strategies (1) (3b) (2) (2) (4b) applied
or{

ZB < B2 + 2B
7 ≤ RB < 9

strategies (2) (1) (3b) (2) (4b) applied
or{

ZB < B2 + 2B
7 ≤ RB < 8

strategies (2) (2) (3b) (1) (4b) applied

int N, s = 1, B, dim0 = N/(s*B), dim1 = N/B;

int a[N][N], b[N], c[N];

meta_schedule {

meta_for (int v = 0; v < dim0; v++)

for (int i = 0; i < dim1; i++)

meta_for (int u = 0; u < B; u++)

for (int j = 0; j < B; ++j) {

int p = v*B+u;

int q = i*B+j;

c[p] = a[p][q]*b[q]+c[p];

}

}

Figure 7.14: The third case of the optimized MetaFork code for matrix vector multiplication

per thread-block, due to the fact that array a has multiple accesses and that each access has a
different index.

Applying the optimization strategy codes in a sequence (1) (4a) (3a) (2) (2), the first case
generates the optimized MetaFork code shown in Figure 7.16.

Applying the optimization strategy codes in a sequence (1) (3b) (4a) (3a) (2) (2), the second
case generates the optimized MetaFork code shown in Figure 7.17.

Applying the optimization strategy codes in a sequence (1) (3b) (2) (2) (4b), the third case
generates the optimized MetaFork code shown in Figure 7.18.

Matrix addition. Due to the limitation in the codegen[optimize] package of Maple, the
CSE optimizer could not handle a two-dimensional array on the left-hand side of assignments.
Thus, we use a one-dimensional array to represent the output matrix. Applying the optimization
strategy codes in a sequence (1) (4a) (3a) (2) (2), the first case generates the optimized Meta-
Fork code shown in Figure 7.19.

7.4. Experimentation 117

int T, N, s, B, dim = (N-2)/(s*B);

int a[2*N];

for (int t = 0; t < T; ++t)

meta_schedule {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++)

for (int k = 0; k < s; ++k) {

int p = i * s * B + k * B + j;

int p1 = p + 1;

int p2 = p + 2;

int np = N + p;

int np1 = N + p + 1;

int np2 = N + p + 2;

if (t % 2)

a[p1] = (a[np] + a[np1] + a[np2]) / 3;

else

a[np1] = (a[p] + a[p1] + a[p2]) / 3;

}

}

Figure 7.15: The MetaFork source code for 1D Jacobi

Constraints:{
2sB + 2 ≤ ZB

9 ≤ RB

strategies (1) (4a) (3a) (2) (2) applied

int T, N, s, B, dim = (N-2)/(s*B);

int a[2*N];

for (int t = 0; t < T; ++t)

meta_schedule cache(a) {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++)

for (int k = 0; k < s; ++k) {

int p = j+(i*s+k)*B;

int t16 = p+1;

int t15 = p+2;

int p1 = t16;

int p2 = t15;

int np = N+p;

int np1 = N+t16;

int np2 = N+t15;

if (t % 2)

a[p1] = (a[np]+a[np1]+a[np2])/3;

else

a[np1] = (a[p]+a[p1]+a[p2])/3;

}

}

Figure 7.16: The first case of the optimized MetaFork code for 1D Jacobi

Applying the optimization strategy codes in a sequence either (1) (3b) (4a) (3a) (2) (2) or
(2) (2) (3b) (1) (4a) (3a), the second case generates the optimized MetaFork code shown in
Figure 7.20.

Applying the optimization strategy codes in a sequence either (1) (3b) (2) (2) (4b) or (2)
(2) (3b) (1) (4b), the third case generates the optimized MetaFork code shown in Figure 7.21.

Matrix transpose. Applying the optimization strategy codes in a sequence (1) (4a) (3a)

118 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

Constraints:{
2B + 2 ≤ ZB < 2sB + 2
9 ≤ RB

strategies (1) (3b) (4a) (3a) (2) (2) applied

int T, N, s = 1, B, dim = (N-2)/(s*B);

int a[2*N];

for (int t = 0; t < T; ++t)

meta_schedule cache(a) {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++) {

int p = i*B+j;

int t20 = p+1;

int t19 = p+2;

int p1 = t20;

int p2 = t19;

int np = N+p;

int np2 = N+t19;

int np1 = N+t20;

if (t % 2)

a[p1] = (a[np]+a[np1]+a[np2])/3;

else

a[np1] = (a[p]+a[p1]+a[p2])/3;

}

}

Figure 7.17: The second case of the optimized MetaFork code for 1D Jacobi

Constraints:{
ZB < 2B + 2
9 ≤ RB

strategies (1) (3b) (2) (2) (4b) applied

int T, N, s = 1, B, dim = (N-2)/(s*B);

int a[2*N];

for (int t = 0; t < T; ++t)

meta_schedule {

meta_for (int i = 0; i < dim; i++)

meta_for (int j = 0; j < B; j++) {

int p = j+i*B;

int t16 = p+1;

int t15 = p+2;

int p1 = t16;

int p2 = t15;

int np = N+p;

int np1 = N+t16;

int np2 = N+t15;

if (t % 2)

a[p1] = (a[np]+a[np1]+a[np2])/3;

else

a[np1] = (a[p]+a[p1]+a[p2])/3;

}

}

Figure 7.18: The third case of the optimized MetaFork code for 1D Jacobi

(2) (2), the first case generates the optimized MetaFork code shown in Figure 7.22.
Applying the optimization strategy codes in a sequence either (1) (3b) (4a) (3a) (2) (2) or

(2) (2) (3b) (1) (4a) (3a), the second case generates the optimized MetaFork code shown in
Figure 7.23.

Applying the optimization strategy codes in a sequence either (1) (3b) (2) (2) (4b) or (2)
(2) (3b) (1) (4b), the third case generates the optimized MetaFork code shown in Figure 7.24.

Matrix matrix multiplication. Applying the optimization strategy codes in a sequence (1)

7.4. Experimentation 119

Constraints:{
3sB0B1 ≤ ZB

7 ≤ RB

strategies (1) (4a) (3a) (2) (2) applied

int N, B0, B1, s, dim0 = N/B0, dim1 = N/(B1*s);

int a[N][N], b[N][N], c[N*N];

meta_schedule cache(a, b, c) {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

for (int k = 0; k < s; ++k) {

int i = v0*B0+u0;

int j = (v1*s+k)*B1+u1;

c[i*N+j] = a[i][j] + b[i][j];

}

}

Figure 7.19: The first case of the optimized MetaFork code for matrix addition

Constraints:{
3B0B1 ≤ ZB < 3sB0B1
6 ≤ RB

strategies (1) (3b) (4a) (3a) (2) (2) applied
or

{
3B0B1 ≤ ZB < 3sB0B1
6 ≤ RB < 7

strategies (2) (2) (3b) (1) (4a) (3a) applied

int N, B0, B1, s = 1, dim0 = N/B0, dim1 = N/(B1*s);

int a[N][N], b[N][N], c[N*N];

meta_schedule cache(a, b, c) {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++) {

int i = v0*B0+u0;

int j = v1*B1+u1;

c[i*N+j] = a[i][j] + b[i][j];

}

}

Figure 7.20: The second case of the optimized MetaFork code for matrix addition

Constraints:{
ZB < 3B0B1
6 ≤ RB

strategies (1) (3b) (2) (2) (4b) applied
or

{
ZB < 3B0B1
6 ≤ RB < 7

strategies (2) (2) (3b) (1) (4b) applied

int N, B0, B1, s = 1, dim0 = N/B0, dim1 = N/(B1*s);

int a[N][N], b[N][N], c[N*N];

meta_schedule {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++) {

int i = v0*B0+u0;

int j = v1*B1+u1;

c[i*N+j] = a[i][j] + b[i][j];

}

}

Figure 7.21: The third case of the optimized MetaFork code for matrix addition

(4a) (3a) (2) (2), the first case generates the optimized MetaFork code shown in Figure 7.25.
Applying the optimization strategy codes in a sequence either (1) (3b) (4a) (3a) (2) (2) or

(2) (2) (3b) (1) (4a) (3a), the second case generates the optimized MetaFork code shown in
Figure 7.26.

Applying the optimization strategy codes in a sequence either (1) (3b) (2) (2) (4b) or (2)

120 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

Constraints:{
2sB0B1 ≤ ZB

6 ≤ RB

strategies (1) (4a) (3a) (2) (2) applied

int N, B0, B1, s, dim0 = N/B0, dim1 = N/(B1*s);

int a[N][N], c[N*N];

meta_schedule cache(a, c) {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

for (int k = 0; k < s; ++k) {

int i = v0*B0+u0;

int j = (v1*s+k)*B1+u1;

c[j*N+i] = a[i][j];

}

}

Figure 7.22: The first case of the optimized MetaFork code for matrix transpose

Constraints:{
2B0B1 ≤ ZB < 2sB0B1
5 ≤ RB

strategies (1) (3b) (4a) (3a) (2) (2) applied
or

{
2B0B1 ≤ ZB < 2sB0B1
5 ≤ RB < 6

strategies (2) (2) (3b) (1) (4a) (3a) applied

int N, B0, B1, s = 1, dim0 = N/B0, dim1 = N/(B1*s);

int a[N][N], c[N*N];

meta_schedule cache(a, c) {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++) {

int i = v0*B0+u0;

int j = v1*B1+u1;

c[j*N+i] = a[i][j];

}

}

Figure 7.23: The second case of the optimized MetaFork code for matrix transpose

Constraints:{
ZB < 2B0B1
5 ≤ RB

strategies (1) (3b) (2) (2) (4b) applied
or

{
ZB < 2B0B1
5 ≤ RB < 6

strategies (2) (2) (3b) (1) (4b) applied

int N, B0, B1, s = 1, dim0 = N/B0, dim1 = N/(B1*s);

int a[N][N], c[N*N];

meta_schedule {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++) {

int i = v0*B0+u0;

int j = v1*B1+u1;

c[j*N+i] = a[i][j];

}

}

Figure 7.24: The third case of the optimized MetaFork code for matrix transpose

(2) (3b) (1) (4b), the third case generates the optimized MetaFork code shown in Figure 7.27.

7.5. Conclusion 121

Constraints:{
sB0B1 + sBB1 + B0B ≤ ZB

9 ≤ RB

strategies (1) (4a) (3a) (2) (2) applied

int N, B0, B1, s, dim1 = N/(B1*s);

int dim0 = N/B0, B = min(B0, B1), dim = N/B;

int a[N][N], b[N][N], c[N*N];

meta_schedule cache(a, b, c) {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

for (int w = 0; w < dim; w++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

for (int k = 0; k < s; ++k) {

int i = v0*B0+u0;

int j = (v1*s+k)*B1+u1;

for (int z = 0; z < B; z++) {

int p = B*w+z;

c[i*N+j] = c[i*N+j] +

a[i][p] * b[p][j];

}

}

}

Figure 7.25: The first case of the optimized MetaFork code for matrix matrix multiplication

Constraints:{
B0B1 + BB1 + B0B ≤ ZB < sB0B1 + sBB1 + B0B
8 ≤ RB

strategies (1) (3b) (4a) (3a) (2) (2) applied
or

{
B0B1 + BB1 + B0B ≤ ZB < sB0B1 + sBB1 + B0B
8 ≤ RB < 9

strategies (2) (2) (3b) (1) (4a) (3a) applied

int N, B0, B1, s = 1, dim1 = N/(B1*s);

int dim0 = N/B0, B = min(B0, B1), dim = N/B;

int a[N][N], b[N][N], c[N*N];

meta_schedule cache(a, b, c) {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

for (int w = 0; w < dim; w++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

{

int i = v0*B0+u0;

int j = v1*B1+u1;

for (int z = 0; z < B; z++) {

int p = B*w+z;

c[i*N+j] = c[i*N+j] +

a[i][p] * b[p][j];

}

}

}

Figure 7.26: The second case of the optimized MetaFork code for matrix matrix multiplication

7.5 Conclusion

In this chapter, we proposed a comprehensive optimization algorithm that optimizes the input
code fragment depending on unknown machine and program parameters; meanwhile, we re-
alized a proof-of-concept implementation for generating comprehensive parametric MetaFork
programs, in the form of a case distinction based on the possible values of the machine and
program parameters.

122 Chapter 7. Towards Comprehensive Parametric CUDA Kernel Generation

Constraints:{
ZB < B0B1 + BB1 + B0B
8 ≤ RB

strategies (1) (3b) (2) (2) (4b) applied
or

{
ZB < B0B1 + BB1 + B0B
8 ≤ RB < 9

strategies (2) (2) (3b) (1) (4b) applied

int N, B0, B1, s = 1, dim1 = N/(B1*s);

int dim0 = N/B0, B = min(B0, B1), dim = N/B;

int a[N][N], b[N][N], c[N*N];

meta_schedule {

meta_for (int v0 = 0; v0 < dim0; v0++)

meta_for (int v1 = 0; v1 < dim1; v1++)

for (int w = 0; w < dim; w++)

meta_for (int u0 = 0; u0 < B0; u0++)

meta_for (int u1 = 0; u1 < B1; u1++)

{

int i = v0*B0+u0;

int j = v1*B1+u1;

for (int z = 0; z < B; z++) {

int p = B*w+z;

c[i*N+j] = c[i*N+j] +

a[i][p] * b[p][j];

}

}

}

Figure 7.27: The third case of the optimized MetaFork code for matrix matrix multiplication

The comprehensive optimization algorithm that we proposed takes optimization strategies,
resource counters and performance counters into account; we implemented two resource coun-
ters and four optimization strategies in this comprehensive optimization algorithm.

With this preliminary implementation, experimentation shows that given a MetaFork pro-
gram, three scenarios of optimized MetaFork programs are generated, each of them with a
system of constraints specifying when the corresponding code is valid.

In addition, from the experimental results, we observe that different sequences of the opti-
mization strategies yield the same optimized MetaFork program. However, since some opti-
mization strategies are applied to the intermediate representation of the source code, the corre-
sponding improvements are not shown in Section 7.4.

Chapter 8

Conclusion and Future Work

Our ultimate goal was to generate optimized CUDA kernels, where machine and program pa-
rameters are unknown symbols and can be, respectively, determined and optimized when the
CUDA code is installed on the targeted hardware.

In our route to this goal, we developed a model of multithreaded computation (MCM)
targeting many-core machines so as to measure the work, span and parallelism overhead of
a CUDA-like program as well as to estimate the overall execution time of such program. Our
experimentation shows that this model was able to determine the value ranges of some program
parameters so that one can obtain a program with reduced parallelism overheads.

We acknowledge the fact that the MCM abstract machines admit a few simplifications and
limitations with respect to actual many-core devices. Some factors, such as bank conflicts of
shared memory and register spilling, increase memory access time because of the hardware
limits of a streaming multiprocessor; however, these factors are ignored by our model. It is
desirable to enhance our model with such features so as to obtain more accurate complexity
estimates of a CUDA-like program. We leave this task for future work.

Taking advantage of the sophisticated CUDA code generator in PPCG [115], we realized a
preliminary implementation of automatic code translator from MetaFork [29] programs to
CUDA programs. In our automatic code generator, the number of threads per thread-block is
generated as a symbol, whereas this number is generated as a numerical value by other tools,
in particular PPCG.

In order to obtain optimized CUDA kernels, we also tuned a program parameter representing
the granularity of a thread in a thread-block. Experimental results indicate that the CUDA kernels
with these program parameters can lead to significant performance improvement and that the
optimal choices for program parameters may depend on the problem size.

In addition, the non-linear expressions supported by our automatic code generator may in-
volve parameters related to thread-block formats but not to the granularity of threads. Relaxing
this limitation is a work in progress. On the other hand, our BPAS library provides efficient,
parallel algorithms dealing with polynomial arithmetic operations; hence, it is desirable to in-
tegrate support from the BPAS library into our MetaFork-to-CUDA code generation framework.

Ultimately, we have proposed a comprehensive optimization algorithm that, given unknown
machine and program parameters, optimizes the input code fragment in the form of a case dis-
cussion based on the possible values of the machine and program parameters. In the prelim-
inary implementation, we considered optimizing MetaFork programs using LLVM as inter-

123

124 Chapter 8. Conclusion and FutureWork

mediate representation. In the future, this algorithm should be implemented within the Meta-
Fork-to-CUDA and should use PTX as intermediate representation.

Bibliography

[1] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Communication complexity of
PRAMs. Theoretical Computer Science, 71(1):3–28, 1990.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques
and Tools. Reading: Addison Wesley Publishing Company, 1986.

[3] Ed Anderson, Zhaojun Bai, Jack Dongarra, Anne Greenbaum, A. McKenney, Jeremy Du
Croz, Sven Hammarling, James Demmel, Christian H. Bischof, and Danny C. Sorensen.
LAPACK: a portable linear algebra library for high-performance computers. In
Joanne L. Martin, Daniel V. Pryor, and Gary Montry, editors, Proceedings Supercom-
puting ’90, New York, NY, USA, November 12-16, 1990, pages 2–11. IEEE Computer
Society, 1990.

[4] Philippe Aubry, Daniel Lazard, and Marc Moreno Maza. On the theories of triangular
sets. Journal of Symbolic Computation, 28(1):105–124, 1999.

[5] László Babai and Endre Szemerédi. On the complexity of matrix group problems I. In
Foundations of Computer Science, 1984. 25th Annual Symposium on, pages 229–240.
IEEE, 1984.

[6] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-
CUDA code generation for affine programs. In Proceedings of the 19th joint European
conference on Theory and Practice of Software, international conference on Compiler
Construction, CC’10/ETAPS’10, pages 244–263, Berlin, Heidelberg, 2010. Springer-
Verlag.

[7] Cedric Bastoul. Code generation in the polyhedral model is easier than you think. In
Proceedings of the 13th International Conference on Parallel Architectures and Com-
pilation Techniques, PACT ’04, pages 7–16, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[8] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real algebraic
geometry, volume 10 of Algorithms and Computations in Mathematics. Springer-Verlag,
2006.

[9] Carlo Bertolli, Samuel F. Antao, Alexandre E. Eichenberger, Kevin O’Brien, Zehra Sura,
Arpith C. Jacob, Tong Chen, and Olivier Sallenave. Coordinating GPU threads for
OpenMP 4.0 in LLVM. In Proceedings of the 2014 LLVM Compiler Infrastructure

125

126 BIBLIOGRAPHY

in HPC, LLVM-HPC ’14, pages 12–21, Piscataway, NJ, USA, 2014. IEEE Computer
Society.

[10] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP ’95, pages 207–216. ACM, 1995.

[11] Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multi-
threaded computations. SIAM Journal on Computing, 27(1):202–229, 1998.

[12] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations
by work stealing. Journal of the ACM (JACM), 46(5):720–748, 1999.

[13] OpenMP Architecture Review Board. OpenMP application program interface, version
4.0. http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf, 2013.

[14] Marco Bodrato and Alberto Zanoni. Integer and polynomial multiplication: Towards
optimal Toom-Cook matrices. In Proceedings of the 2007 international symposium on
Symbolic and algebraic computation, pages 17–24. ACM, 2007.

[15] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy Sa-
dayappan. A practical automatic polyhedral parallelizer and locality optimizer. In ACM
SIGPLAN Notices, volume 43, pages 101–113. ACM, 2008.

[16] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system I: The
user language. Journal of Symbolic Computation, 24(3):235–265, 1997.

[17] Richard P. Brent and H.T. Kung. Systolic VLSI arrays for polynomial GCD computa-
tion. IEEE Transactions on Computers, 33(8):731–736, 1984.

[18] Christopher W. Brown. QEPCAD B: A program for computing with semi-algebraic sets
using CADs. ACM SIGSAM Bulletin, 37(4):97–108, 2003.

[19] Changbo Chen, Xiaohui Chen, Abdoul-Kader Keita, Marc Moreno Maza, and Ning Xie.
MetaFork: A compilation framework for concurrency models targeting hardware accel-
erators and its application to the generation of parametric CUDA kernels. In Proceed-
ings of the 25th Annual International Conference on Computer Science and Software
Engineering, pages 70–79. IBM Corp., 2015.

[20] Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie,
and Yuzhen Xie. The basic polynomial algebra subprograms. In International Congress
on Mathematical Software, pages 669–676. Springer, 2014.

[21] Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie,
and Yuzhen Xie. Parallel multiplication of dense polynomials with integer coefficient.
Accepted by 18th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC’16), 2016.

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

BIBLIOGRAPHY 127

[22] Changbo Chen, James H. Davenport, John P. May, Marc Moreno Maza, Bican Xia, and
Rong Xiao. Triangular decomposition of semi-algebraic systems. Journal of Symbolic
Computation, 49:3–26, 2013.

[23] Changbo Chen, James H. Davenport, Marc Moreno Maza, Bican Xia, and Rong Xiao.
Computing with semi-algebraic sets represented by triangular decomposition. In Pro-
ceedings of the 36th international symposium on Symbolic and algebraic computation,
pages 75–82. ACM, 2011.

[24] Changbo Chen, Oleg Golubitsky, François Lemaire, Marc Moreno Maza, and Wei Pan.
Comprehensive triangular decomposition. In International Workshop on Computer Al-
gebra in Scientific Computing, pages 73–101. Springer, 2007.

[25] Changbo Chen and Marc Moreno Maza. Algorithms for computing triangular decom-
positions of polynomial systems. In Proceedings of the 36th international symposium
on Symbolic and algebraic computation, pages 83–90. ACM, 2011.

[26] Changbo Chen and Marc Moreno Maza. An incremental algorithm for computing cylin-
drical algebraic decompositions. In Computer Mathematics, 10th Asian Symposium
(ASCM 2012), pages 199–221. Springer, 2012.

[27] Changbo Chen and Marc Moreno Maza. Quantifier elimination by cylindrical algebraic
decomposition based on regular chains. In International Symposium on Symbolic and
Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages 91–98, 2014.

[28] Changbo Chen, Marc Moreno Maza, and Yuzhen Xie. Cache complexity and multicore
implementation for univariate real root isolation. In Journal of Physics: Conference
Series, volume 341, page 012026. IOP Publishing, 2012.

[29] Xiaohui Chen, Marc Moreno Maza, Sushek Shekar, and Priya Unnikrishnan. MetaFork:
A framework for concurrency platforms targeting multicores. In Using and Improv-
ing OpenMP for Devices, Tasks, and More - 10th International Workshop on OpenMP,
IWOMP 2014, Brazil, September 28-30, 2014. Proceedings, pages 30–44, 2014.

[30] Clang. A C language family frontend for LLVM. http://clang.llvm.org/, 2005.

[31] George E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In Automata Theory and Formal Languages 2nd GI Conference Kaiser-
slautern, May 20–23, 1975, pages 134–183. Springer, 1975.

[32] George E. Collins and Alkiviadis G. Akritas. Polynomial real root isolation using
Descarte’s rule of signs. In Proceedings of the third ACM symposium on Symbolic and
algebraic computation, pages 272–275. ACM, 1976.

[33] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Mathematics of computation, 19(90):297–301, 1965.

[34] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT press Cambridge, 2001.

http://clang.llvm.org/

128 BIBLIOGRAPHY

[35] Intel Corporation. Intel CilkPlus language extension specification, version
1.1. https://software.intel.com/sites/default/files/m/6/a/3/0/7/

37679-Intel_Cilk_plus_lang_spec_2.htm, 2013.

[36] NVIDIA Corporation. NVIDIA’s next generation CUDA compute architecture: Fermi.
http://www.nvidia.com/object/IO_89570.html, 2009.

[37] NVIDIA Corporation. NVIDIA next generation CUDA compute architec-
ture: Kepler GK110. http://www.nvidia.ca/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, 2012.

[38] NVIDIA Corporation. Compiler driver NVCC. http:

//docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

#options-for-steering-gpu-code-generation(09.07.2013), 2013.

[39] NVIDIA Corporation. Parallel thread execution ISA: v4.3. http://docs.nvidia.
com/cuda/parallel-thread-execution/#axzz4HdnS1mUC, 2015.

[40] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control dependence
graph. ACM Transactions on Programing Languages and Systems, 13(4):451–490, Oc-
tober 1991.

[41] Leonardo Dagum and Ramesh Menon. OpenMP: An industry standard API for shared-
memory programming. IEEE computational science and engineering, 5(1):46–55, 1998.

[42] Xavier Dahan, Abdulilah Kadri, and Éric Schost. Bit-size estimates for triangular sets
in positive dimension. Journal of Complexity, 28(1):109–135, 2012.

[43] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. FFPACK: finite field lin-
ear algebra package. In Jaime Gutierrez, editor, Symbolic and Algebraic Computation,
International Symposium ISSAC 2004, Santander, Spain, July 4-7, 2004, Proceedings,
pages 119–126. ACM, 2004.

[44] Jean-Guillaume Dumas, Erich L. Kaltofen, and Clément Pernet, editors. Proceedings
of the 2015 International Workshop on Parallel Symbolic Computation, PASCO 2015,
Bath, United Kingdom, July 10-12, 2015. ACM, 2015.

[45] Paul Feautrier. Parametric integer programming. Revue française d’automatique,
d’informatique et de recherche opérationnelle, 22(3):243–268, 1988.

[46] Paul Feautrier. Automatic parallelization in the polytope model. In Guy-René Perrin
and Alain Darte, editors, The Data Parallel Programming Model: Foundations, HPF
Realization, and Scientific Applications, volume 1132 of Lecture Notes in Computer
Science, pages 79–103. Springer, 1996.

[47] Michael J. Flynn. Some computer organizations and their effectiveness. IEEE transac-
tions on computers, 100(9):948–960, 1972.

https://software.intel.com/sites/default/files/m/6/a/3/0/7/37679-Intel_Cilk_plus_lang_spec_2.htm
https://software.intel.com/sites/default/files/m/6/a/3/0/7/37679-Intel_Cilk_plus_lang_spec_2.htm
http://www.nvidia.com/object/IO_89570.html
http://www.nvidia.ca/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.ca/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#options-for-steering-gpu-code-generation (09.07. 2013)
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#options-for-steering-gpu-code-generation (09.07. 2013)
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#options-for-steering-gpu-code-generation (09.07. 2013)
http://docs.nvidia.com/cuda/parallel-thread-execution/#axzz4HdnS1mUC
http://docs.nvidia.com/cuda/parallel-thread-execution/#axzz4HdnS1mUC

BIBLIOGRAPHY 129

[48] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Pro-
ceedings of the IEEE, 93(2):216–231, 2005.

[49] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In Foundations of Computer Science, 1999. 40th Annual Sympo-
sium on, pages 285–297. IEEE Computer Society, 1999.

[50] Mickaël Gastineau and Jacques Laskar. Highly scalable multiplication for distributed
sparse multivariate polynomials on many-core systems. In International Workshop on
Computer Algebra in Scientific Computing, pages 100–115. Springer, 2013.

[51] Phillip B. Gibbons. A more practical PRAM model. In Proceedings of the first annual
ACM symposium on Parallel algorithms and architectures, pages 158–168. ACM, 1989.

[52] Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran. The Queue-Read Queue-
Write PRAM model: Accounting for contention in parallel algorithms. SIAM Journal
on Computing, pages 638–648, 1997.

[53] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM journal on
Applied Mathematics, 17(2):416–429, 1969.

[54] Armin Größlinger, Martin Griebl, and Christian Lengauer. Introducing non-linear pa-
rameters to the polyhedron model. In Proceedings of 11th Workshop on Compilers for
Parallel Computers (CPC 2004), Research Report Series, pages 1–12, 2004.

[55] Armin Größlinger, Martin Griebl, and Christian Lengauer. Quantifier elimination in
automatic loop parallelization. Journal of Symbolic Computation, 41(11):1206–1221,
2006.

[56] OpenACC Working Group et al. The OpenACC application programming interface.
http://www.openacc.org/, 2011.

[57] Tianyi D. Han and Tarek S. Abdelrahman. hiCUDA: A high-level directive based lan-
guage for GPU programming. In Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units, GPGPU-2, pages 52–61, New York, NY,
USA, 2009.

[58] Tianyi D. Han and Tarek S. Abdelrahman. Reducing branch divergence in GPU pro-
grams. In Proceedings of the Fourth Workshop on General Purpose Processing on
Graphics Processing Units, page 3. ACM, 2011.

[59] Sardar A. Haque, Xin Li, Farnam Mansouri, Marc Moreno Maza, Wei Pan, and Ning
Xie. Dense arithmetic over finite fields with the CUMODP library. In International
Congress on Mathematical Software, pages 725–732. Springer, 2014.

[60] Sardar A. Haque and Marc Moreno Maza. Plain polynomial arithmetic on GPU. In Jour-
nal of Physics: Conference Series, volume 385, page 012014. IOP Publishing, 2012.

http://www.openacc.org/

130 BIBLIOGRAPHY

[61] Sardar A. Haque, Marc Moreno Maza, and Ning Xie. A many-core machine model
for designing algorithms with minimum parallelism overheads. In Gerhard R. Joubert,
Hugh Leather, Mark Parsons, Frans J. Peters, and Mark Sawyer, editors, Parallel Com-
puting: On the Road to Exascale, Proceedings of the International Conference on Paral-
lel Computing, ParCo 2015, 1-4 September 2015, Edinburgh, Scotland, UK, volume 27
of Advances in Parallel Computing, pages 35–44. IOS Press, 2015.

[62] William Hart, Fredrik Johansson, and Sebastian Pancratz. FLINT fast library for number
theory version 2.3. 0. 2011.

[63] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. The Cilkview scalability
analyzer. In Proceedings of the twenty-second annual ACM symposium on Parallelism
in algorithms and architectures, pages 145–156. ACM, 2010.

[64] Anthony C. Hearn. REDUCE: The first forty years. In Invited paper presented at the
A3L Conference in Honor of the 60th Birthday of Volker Weispfenning, 2005.

[65] Karin Högstedt, Larry Carter, and Jeanne Ferrante. Determining the idle time of a tiling.
In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’97, pages 160–173, New York, NY, USA, 1997. ACM.

[66] Justin Holewinski, Louis-Noël Pouchet, and Ponnuswamy Sadayappan. High-
performance code generation for stencil computations on GPU architectures. In Pro-
ceedings of the 26th ACM international conference on Supercomputing, ICS ’12, pages
311–320, New York, NY, USA, 2012. ACM.

[67] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness. In ACM SIGARCH Computer
Architecture News, volume 37, pages 152–163. ACM, 2009.

[68] The LLVM Compiler Infrastructure. User guide for NVPTX back-end. http://llvm.
org/docs/NVPTXUsage.html, 2013-2016.

[69] Richard D Jenks and Robert S Sutor. Axiom: The scientific computation system.
Springer, 1992.

[70] Michael Kalkbrener. Three contributions to elimination theory. PhD thesis, 1991.

[71] Ken Kennedy and John R. Allen. Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2002.

[72] Malik Khan, Protonu Basu, Gabe Rudy, Mary Hall, Chun Chen, and Jacqueline Chame.
A script-based autotuning compiler system to generate high-performance CUDA code.
ACM Transactions on Architecture and Code Optimization (TACO), 9(4):31:1–31:25,
January 2013.

[73] David B. Kirk and W. Hwu Wen-mei. Programming massively parallel processors: A
hands-on approach. Elsevier, 2013.

http://llvm.org/docs/NVPTXUsage.html
http://llvm.org/docs/NVPTXUsage.html

BIBLIOGRAPHY 131

[74] Donald E. Knuth. The Art of Computer Programming, Vol. II: Seminumerical Algo-
rithms. Addison-Wesley, 1969.

[75] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO ’04,
pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

[76] C. L. Lawson, Richard J. Hanson, D. R. Kincaid, and Fred T. Krogh. Basic linear algebra
subprograms for fortran usage. ACM Trans. Math. Softw., 5(3):308–323, 1979.

[77] Chuck L. Lawson, Richard J. Hanson, David R. Kincaid, and Fred T. Krogh. Basic linear
algebra subprograms for Fortran usage. ACM Transactions on Mathematical Software
(TOMS), 5(3):308–323, 1979.

[78] Daniel Lazard and Renaud Rioboo. Integration of rational functions: Rational compu-
tation of the logarithmic part. Journal of Symbolic Computation, 9(2):113–115, 1990.

[79] Charles E. Leiserson. The Cilk++ concurrency platform. Journal of Supercomputing,
51(3):244–257, 2010.

[80] Xin Li, Marc Moreno Maza, Raqeeb Rasheed, and Éric Schost. The Modpn library:
Bringing fast polynomial arithmetic into Maple. ACM Communications in Computer
Algebra, 42(3):172–174, 2009.

[81] Weiguo Liu, Wolfgang Muller-Wittig, and Bertil Schmidt. Performance predictions for
general-purpose computation on GPUs. In 2007 International Conference on Parallel
Processing (ICPP 2007), pages 50–50. IEEE Computer Society, 2007.

[82] Yang Lu, Zhang Jingzhong, and Zeng Zhenbing. Searching dependency between al-
gebraic equations: An algorithm applied to automated reasoning. In Institute of Math-
ematics and its Applications Conference Series, volume 51, pages 147–147. Oxford
University Press, 1994.

[83] Zhengyi Lu, Bi He, Yong Luo, and Lu Pan. An algorithm of real root isolation for
polynomial systems. Proceedings of Symbolic Numeric Computation, pages 94–107,
2005.

[84] David G. Luenberger and Yinyu Ye. Linear and nonlinear programming, volume 2.
Springer, 1984.

[85] Lin Ma, Kunal Agrawal, and Roger D. Chamberlain. A memory access model
for highly-threaded many-core architectures. Future Generation Computer Systems,
30:202–215, 2014.

[86] Lin Ma and Roger D. Chamberlain. A performance model for memory bandwidth con-
strained applications on graphics engines. In 2012 IEEE 23rd International Confer-
ence on Application-Specific Systems, Architectures and Processors, pages 24–31. IEEE
Computer Society, 2012.

132 BIBLIOGRAPHY

[87] Farnam Mansouri. On the parallelization of integer polynomial multiplication. Master’s
thesis, The University of Western Ontario, 2014.

[88] Marc Moreno Maza and Jean-Louis Roch, editors. Proceedings of the 4th International
Workshop on Parallel Symbolic Computation, PASCO 2010, July 21-23, 2010, Grenoble,
France. ACM, 2010.

[89] Marc Moreno Maza and Stephen M. Watt, editors. Parallel Symbolic Computation,
PASCO 2007, International Workshop, 27-28 July 2007, University of Western Ontario,
London, Ontario, Canada. ACM, 2007.

[90] Leon Mirsky. A dual of Dilworth’s decomposition theorem. The American Mathemati-
cal Monthly, 78(8):876–877, 1971.

[91] Michael Monagan and Roman Pearce. Parallel sparse polynomial multiplication using
heaps. In Proceedings of the 2009 international symposium on Symbolic and algebraic
computation, pages 263–270. ACM, 2009.

[92] Marc Moreno Maza and Wei Pan. Fast polynomial arithmetic on a GPU. In Journal of
Physics: Conference Series, volume 256, 2010.

[93] Marc Moreno Maza and Yuzhen Xie. Balanced dense polynomial multiplication on
multi-cores. In 2009 International Conference on Parallel and Distributed Computing,
Applications and Technologies, pages 1–9. IEEE Computer Society, 2009.

[94] Marc Moreno Maza and Yuzhen Xie. FFT-based dense polynomial arithmetic on multi-
cores. In High Performance Computing Systems and Applications, pages 378–399.
Springer, 2010.

[95] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel pro-
gramming with CUDA. Queue, 6(2):40–53, 2008.

[96] Benjamin C Pierce. Types and programming languages. MIT press, 2002.

[97] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 21(5):895–913, September
1999.

[98] Markus Püschel, José MF Moura, Bryan Singer, Jianxin Xiong, Jeremy Johnson, David
Padua, Manuela Veloso, and Robert W Johnson. Spiral: A generator for platform-
adapted libraries of signal processing alogorithms. International Journal of High Per-
formance Computing Applications, 18(1):21–45, 2004.

[99] Helge Rhodin. A PTX code generator for LLVM. Master’s thesis, Saarland University,
2010.

[100] Arch D. Robison. Composable parallel patterns with Intel CilkPlus. Computing in
Science and Engineering, 15(2):66–71, 2013.

BIBLIOGRAPHY 133

[101] Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen, and Jacqueline Chame. A
programming language interface to describe transformations and code generation. In
Proceedings of the 23rd International Conference on Languages and Compilers for Par-
allel Computing, LCPC’10, pages 136–150, Berlin, Heidelberg, 2011. Springer-Verlag.

[102] Greg Ruetsch and Paulius Micikevicius. Optimizing matrix transpose in CUDA. Nvidia
CUDA SDK Application Note, 18, 2009.

[103] Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient sorting algo-
rithms for many-core GPUs. In Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pages 1–10. IEEE Computer Society, 2009.

[104] A. Schönhage and Volker Strassen. Schnelle multiplikation grosser zahlen. Computing,
7(3-4):281–292, 1971.

[105] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons,
1998.

[106] Jaewook Shin. Introducing control flow into vectorized code. In 16th International
Conference on Parallel Architecture and Compilation Techniques (PACT 2007), pages
280–291. IEEE Computer Society, 2007.

[107] Jun Shirako, Priya Unnikrishnan, Sanjay Chatterjee, Kelvin Li, and Vivek Sarkar. Ex-
pressing doacross loop dependences in OpenMP. In IWOMP, volume 8122 of Lecture
Notes in Computer Science, pages 30–44. Springer, 2013.

[108] Victor Shoup et al. NTL: A library for doing number theory. http://www.shoup.
net/ntl/, 2001.

[109] Thomas G. Stockham Jr. High-speed convolution and correlation. In Proceedings of the
April 26-28, 1966, Spring joint computer conference, pages 229–233. ACM, 1966.

[110] Larry Stockmeyer and Uzi Vishkin. Simulation of parallel random access machines by
circuits. SIAM Journal on Computing, 13(2):409–422, 1984.

[111] John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel programming
standard for heterogeneous computing systems. Computing in science & engineering,
12(1-3):66–73, 2010.

[112] Agnes Szanto. Computation with polynomial systems. PhD thesis, 1999.

[113] Xiaonan Tian, Rengan Xu, Yonghong Yan, Zhifeng Yun, Sunita Chandrasekaran, and
Barbara Chapman. Compiling a high-level directive-based programming model for
GPGPUs. In International Workshop on Languages and Compilers for Parallel Com-
puting, pages 105–120. Springer, 2013.

[114] Swapneela Unkule, Christopher Shaltz, and Apan Qasem. Automatic restructuring of
GPU kernels for exploiting inter-thread data locality. In International Conference on
Compiler Construction, pages 21–40. Springer, 2012.

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

134 BIBLIOGRAPHY

[115] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian
Tenllado, and Francky Catthoor. Polyhedral parallel code generation for CUDA. ACM
Transactions on Architecture and Code Optimization TACO, 9(4):54, 2013.

[116] Sven Verdoolaege and Tobias Grosser. Polyhedral extraction tool. In Second Interna-
tional Workshop on Polyhedral Compilation Techniques (IMPACT’12), Paris, France,
2012.

[117] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen. Schedule trees. In
Proceedings of the 4th International Workshop on Polyhedral Compilation Techniques.
Vienna, Austria, 2014.

[118] Vasily Volkov. Better performance at lower occupancy. http://www.nvidia.com/
content/gtc-2010/pdfs/2238_gtc2010.pdf, 2010. Presentation at the GPU Tech-
nology Conference, GTC.

[119] Joachim Von Zur Gathen and Jürgen Gerhard. Fast algorithms for Taylor shifts and
certain difference equations. In Proceedings of the 1997 international symposium on
Symbolic and algebraic computation, pages 40–47. ACM, 1997.

[120] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge
university press, 2013.

[121] R. Clint Whaley. ATLAS (automatically tuned linear algebra software). In David A.
Padua, editor, Encyclopedia of Parallel Computing, pages 95–101. Springer, 2011.

[122] H Paul Williams. Fourier’s method of linear programming and its dual. The American
mathematical monthly, 93(9):681–695, 1986.

[123] Christian Wimmer and Michael Franz. Linear scan register allocation on SSA form. In
Proceedings of the 8th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’10, pages 170–179, New York, NY, USA, 2010. ACM.

[124] Michael E Wolf and Monica S Lam. A data locality optimizing algorithm. In ACM
Sigplan Notices, volume 26, pages 30–44. ACM, 1991.

[125] Stephen Wolfram. Mathematica: A system for doing mathematics by computer. Addison
Wesley Longman Publishing Co., Inc., 1991.

[126] Bican Xia and Ting Zhang. Real solution isolation using interval arithmetic. Computers
& Mathematics with Applications, 52(6):853–860, 2006.

http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf
http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf

Appendix A

Sample Code in the BPAS Library

We collect sample code from the BPAS library, including two adaptive algorithms shown in
Appendix A.1 and some user interface code for BPAS rings and polynomials in Appendix A.2.

A.1 Adaptive algorithms
/***

* Internal multiplication function for integer univariate polynomials *

* It is an adaptive algorithm based on input sizes and available cores. *

* @param mul, a vector of coefficients of the product polynomial *

* @param a, a vector of coefficients over Z representing a polynomial *

* @param n, the size of the above vector *

* @param b, a vector of coefficients over Z representing a polynomial *

* @param m, the size of the above vector *

***/

void univariateMultiplication(mpz_class* mul, mpz_class* a, int n,

mpz_class* b, int m) {

int size = n + m - 1;

// UnivariateIntegerPolynomial: internal data structure

// for integer univariate polynomials

UnivariateIntegerPolynomial aPoly(n, a);

UnivariateIntegerPolynomial bPoly(m, b);

UnivariateIntegerPolynomial rPoly(size, mul);

if (size < 64) { // Naive multiplication; serial

MulNaive naive;

naive.multiply(&aPoly, &bPoly, &rPoly);

}

else if (size < 2048) { // Kronecker substitution method; serial

MulKS ks;

ks.multiply(&aPoly, &bPoly, &rPoly);

}

else if (size < 4096) { // Toom Cook method; parallel

int worker = __cilkrts_get_nworkers();

135

136 Chapter A. Sample Code in the BPAS Library

if (worker <= 6) { // 4-way

MulToom4 toom4;

toom4.multiply(&aPoly, &bPoly, &rPoly, 4);

}

else { // 8-way

MulToom8 toom8;

toom8.multiply(&aPoly, &bPoly, &rPoly, 8);

}

}

else { // Two convolution method; parallel

MulSSA ssa;

ssa.multiply(&aPoly, &bPoly, &rPoly);

}

}

/**

* The adaptive Taylor shift algorithm combining a divide and conquer method, *

* aka Algorithm (E) in [119], with the algorithm in [28] as the base case. *

* @param a, a vector of coefficients over Z representing a polynomial *

* @param m, the size of the above vector, power of 2 *

* @param bi, a vector of coefficients representing (x+1)ˆk, for all 1<k<=m/2 *

* @param B, the size determining whether to switch to Algorithm (E) *

**/

void taylorShiftBasePower2(mpz_class* a, int m, mpz_class* bi, int B) {

int d = (B > m)? m : B;

// Base case, calling to the algorithm in [28]

cilk_for (int i = 0; i < m/d; ++i)

taylorShiftIncrementalCilkFor(&a[i*B], d, 16);

mpz_class* mul = new mpz_class[m];

for (int i = B; i < m; i <<= 1) {

cilk_for (int k = 0; k < m/(2*i); ++k)

univariateMultiplication(&mul[2*k*i], &a[2*k*i+i], i, &bi[i-1], i);

for (int k = 0; k < m; ++k)

a[k] += mul[k];

}

delete [] mul;

}

A.2 User interfaces
/***

* A child class of abstract BPASRing implements a ring *

* structure in the sense of commutative algebra. *

***/

class BPASRing {

A.2. User interfaces 137

public:

static int characteristic;

static bool isPrimeField;

static bool isComplexField;

virtual bool isZero() = 0;

virtual void zero() = 0;

virtual bool isOne() = 0;

virtual void one() = 0;

virtual bool isNegativeOne() = 0;

virtual void negativeOne() = 0;

virtual int isConstant() = 0;

};

typedef int DataType; // Different data type for each concrete polynomial

/***

* A child class of abstract BPASPolynomial implements a polynomial ring. *

* At this level, the type of the coefficients and the number of variables *

* are unspecified. Hence, the only member functions deal with assignment, *

* stream writing and arithmetic operations. Those latter include: *

* addition, subtraction, multiplication, exact division, exponentiation *

* and equality test. Note that for the first four arithmetic operations, *

* in-place versions are provided. *

***/

class BPASPolynomial : public BPASRing {

public:

BPASPolynomial& operator= (BPASPolynomial&);

BPASPolynomial& operator+ (BPASPolynomial&);

BPASPolynomial& operator+= (BPASPolynomial&);

BPASPolynomial& operator- (BPASPolynomial&);

BPASPolynomial& operator- ();

BPASPolynomial& operator-= (BPASPolynomial&);

BPASPolynomial& operator* (BPASPolynomial&);

BPASPolynomial& operator*= (BPASPolynomial&);

BPASPolynomial& operator/ (BPASPolynomial&);

BPASPolynomial& operator/= (BPASPolynomial&);

BPASPolynomial& operatorˆ (int);

bool operator== (BPASPolynomial&);

bool operator!= (BPASPolynomial&);

friend std::ostream& operator<< (std::ostream&, BPASPolynomial&);

};

/***

* A child class of abstract BPASUnivariatePolynomial inherits from *

* BPASPolynomial. Moreover, it implements a univariate polynomial ring *

* in which a notion of Greatest Common Divisor (GCD) makes sense. *

* Arithmetic operations (addition, subtraction, multiplication, exact *

138 Chapter A. Sample Code in the BPAS Library

* division) can take a polynomial and a coefficient as input arguments. *

* Arithmetic operations also include shift left and shift right (that *

* is, multiplication or division by a power of the variable) as well as *

* divisions (monic, pseudo and lazy), differentiation, evaluation, GCD *

* computation and square-free factorization. One can query the degree, *

* the leading coefficient, the coefficient of a prescribed monomial, *

* the variable name, the content of a polynomial. *

***/

class BPASUnivariatePolynomial : public BPASPolynomial {

public:

BPASUnivariatePolynomial& operator+ (DataType);

BPASUnivariatePolynomial& operator+= (DataType);

BPASUnivariatePolynomial& operator- (DataType);

BPASUnivariatePolynomial& operator-= (DataType);

BPASUnivariatePolynomial& operator* (DataType);

BPASUnivariatePolynomial& operator*= (DataType);

BPASUnivariatePolynomial& operator/ (DataType);

BPASUnivariatePolynomial& operator/= (DataType);

BPASUnivariatePolynomial& operator<< (int);

BPASUnivariatePolynomial& operator<<= (int);

BPASUnivariatePolynomial& operator>> (int);

BPASUnivariatePolynomial& operator>>= (int);

BPASUnivariatePolynomial& monicDivide(BPASUnivariatePolynomial&);

BPASUnivariatePolynomial& monicDivide(BPASUnivariatePolynomial&,

BPASUnivariatePolynomial*);

BPASUnivariatePolynomial& lazyPseudoDivide(BPASUnivariatePolynomial&,

DataType*, DataType*);

BPASUnivariatePolynomial& lazyPseudoDivide(BPASUnivariatePolynomial&,

BPASUnivariatePolynomial*, DataType*, DataType*);

BPASUnivariatePolynomial& pseudoDivide(BPASUnivariatePolynomial&,

DataType*);

BPASUnivariatePolynomial& pseudoDivide(BPASUnivariatePolynomial&,

BPASUnivariatePolynomial*, DataType*);

virtual void differentiate(int) = 0;

DataType content();

BPASUnivariatePolynomial& gcd(BPASUnivariatePolynomial&);

std::vector<BPASUnivariatePolynomial&> squareFree();

virtual int degree() = 0;

DataType leadingCoefficient();

DataType coefficient(int);

void setCoefficient(int, DataType);

virtual void setVariableName (std::string) = 0;

virtual std::string variable() = 0;

virtual bool isTrailingCoefficientZero() = 0;

DataType evaluate(DataType);

};

Appendix B

Theoretical Analysis of Fundamental
Algorithms Using the MCM Model

With respect to using our MCM model to analyze fundamental algorithms in Chapter 4, we
attach the PDF versions of the executable Maple worksheets of all applications.

> >

(2)(2)

(3)(3)

> >

> >
(1)(1)

> >

Euclidean

This document is to demonstrate the analysis of the Euclidean algorithm

Given two polynomials and over a finite field, with ,
and , where , return the GCD of , where is the
remainder in the division of by

Computing 1 coefficient in the intermediate remainder (in one
division step) needs 3 steps along the span

1. multiplication factor
2. multiplication
3. subtraction

Assumptions:
1. At each step, the degree of or decreases by 1
2.

r e s t a r t ;
te rms_a := n ;

terms_b := m;

s teps_for_one_coef f ic ien t := 3 ;

139

(1.2)(1.2)

> >

> >

> >

> >

(1)(1)

(1.6)(1.6)

(1.4)(1.4)

(1.3)(1.3)

> >

> >

(1.5)(1.5)

> >

(1.1)(1.1)

s teps_for_one_coef f ic ien t := 3 ;

Optimized Algorithm
Phase 1, for the degree of and will decrease by ,

, , ..., , such that

there are kernel calls, and each kernel call has blocks (

divides , and is even).

Phase 2, for the first kernel call, we use blocks, for the second

kernel call, we use blocks, for the third kernel call, we use

 blocks, and so on, until the last kernel call, we use 1 block

with terms. There are kernel calls.

For each block, it performs division steps, and we use threads,
computing 1 leading coefficient and 2 other coefficients
optimized_param := s;

opt imized_threads := l ;

optimized_euclidean_kernels_phase1 := (terms_a-terms_b)
/optimized_param;

optimized_euclidean_kernels_phase2 := 2*
terms_b/optimized_param;

optimized_eucl idean_kernels :=
optimized_euclidean_kernels_phase1+
optimized_euclidean_kernels_phase2;

optimized_eucl idean_first_blocks := terms_b/optimized_threads;

140 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

> >

(1.1.2)(1.1.2)

(1.2.1)(1.2.1)

> >

(1.1.1)(1.1.1)

> >

(1.1.3)(1.1.3)

> >

Work
optimized_euclidean_phase1_workperblock := normal((sum(i,i=
1..optimized_param)+2*optimized_threads*optimized_param) *
s teps_for_one_coef f ic ient) ;

optimized_euclidean_phase2_workperblock := normal((2*sum(i,
i=optimized_param/2..optimized_param) + 2*optimized_threads*
opt imized_param) * steps_for_one_coeff ic ient) ;

Phase 1: Work per block is the same as optimized division
algorithm

Phase 2: For the last kernel call, it uses threads to compute the

leading coefficients and threads to compute other coefficients

Phase 2: For the rest kernel calls, it uses threads to

compute the leading coefficients (for 1

block) and threads to compute other coefficients
optimized_euclidean_work := normal
(optimized_euclidean_kernels_phase1*
optimized_eucl idean_f irst_blocks*
optimized_euclidean_phase1_workperblock
+
2*sum((terms_b - i *opt imized_param/2) /opt imized_threads, i=0.
. (terms_b/optimized_param)-1)*
optimized_euclidean_phase2_workperblock);

Span
optimized_euclidean_span := normal(normal
(optimized_eucl idean_kernels*steps_for_one_coeff icient*
optimized_param));

Overhead
For each kernel calls, each block needs leading coefficients and

141

> >

(1.4.1)(1.4.1)

(1.4.5)(1.4.5)

> >

(1.3.4)(1.3.4)

> >

> >

> >

(1.3.1)(1.3.1)

> >

> >

(1.3.2)(1.3.2)

(1.4.3)(1.4.3)

(1.3.3)(1.3.3)

(1.4.2)(1.4.2)

(1.4.4)(1.4.4)

> >

> >

 other coefficients of a and same of b, then it takes time to
load data and time to write back

optimized_euclidean_overheadperblock := 8*U;

optimized_euclidean_overhead_a :=
optimized_euclidean_kernels_phase1 *
opt imized_eucl idean_f i rs t_blocks *
optimized_euclidean_overheadperblock;

optimized_euclidean_overhead_b := normal(2*sum((terms_b - i*
opt imized_param/2) /opt imized_threads, i=0. .
terms_b/optimized_param-1)*
optimized_euclidean_overheadperblock);

optimized_euclidean_overhead := normal
(optimized_euclidean_overhead_a +
optimized_euclidean_overhead_b);

T p
optimized_euclidean_workperthread :=
steps_for_one_coefficient*optimized_param;

optimized_euclidean_overheadperthread := 8*U;

optimized_euclidean_C := optimized_euclidean_workperthread+
optimized_euclidean_overheadperthread;

optimized_euclidean_N := normal
(optimized_euclidean_kernels_phase1*
optimized_eucl idean_first_blocks
+
2*sum((terms_b - i *opt imized_param/2) /opt imized_threads, i=0.
.terms_b/optimized_param-1)
) ;

optimized_euclidean_L := normal(optimized_euclidean_kernels)
;

142 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

(1.4.5)(1.4.5)

(9)(9)

(5)(5)

(1.4.7)(1.4.7)

(3)(3)

(1.4.6)(1.4.6)

> >

> >

(6)(6)

> >

(2)(2)

> >

> >

> >

> >

> >

> >

(7)(7)

(8)(8)

(4)(4)

> >

optimized_eucl idean_K := optimized_eucl idean_first_blocks;

optimized_euclidean_Tp := normal(
(optimized_euclidean_N/optimized_euclidean_K+
optimized_euclidean_L)*optimized_euclidean_C);

naive_eucl idean_work := eval(opt imized_eucl idean_work, [s=1]) ;

naive_eucl idean_span := eval(opt imized_eucl idean_span, [s=1]) ;

naive_euclidean_overhead := eval(optimized_euclidean_overhead,
[s = 1]) ;

naive_eucl idean_Tp := eval (opt imized_eucl idean_Tp, [s=1]) ;

work_rat io := normal
(naive_euclidean_work/optimized_euclidean_work);

span_rat io := normal
(naive_euclidean_span/optimized_euclidean_span);

overhead_rat io := normal
(naive_euclidean_overhead/optimized_euclidean_overhead);

Tp_ratio := normal(naive_euclidean_Tp/optimized_euclidean_Tp);

 on the condition that must fit into the local memory

143

(1.1)(1.1)

(1.3)(1.3)

> >

> >

(1.2)(1.2)
> >

Fast Fourier Transform

This documentation is to demonstrate the analysis of Cooley-Tukey and
Stockham FFT algorithm on GPUs

Cooley-Tukey FFT algorithm

Phase 1:

Phase 2:
Phase 3:

cooleytukey_param := m;

cooleytukey_threadsperblock := l ;

cooleytukey_size := n ;

First data_shuffle:
In list_transpose2, each thread moves 2 data, and it executes 9
additions, 11 bit operations.
Further, list_transpose2 is called times

Second list_fft, each thread moves data. For each data, it executes

 with 2 modular

additions (each 5 arithmetic operations), 2 modular multiplications
(each 11 arithmetic operations).
Also for each data, it executes 30 bit operations.
Additionally, 1 modular multiplication.

144 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

> >

(1.1.4)(1.1.4)

(1.1.3)(1.1.3)

> >

> >

> >

> >

> >

(1.1.2)(1.1.2)

(1.1.5)(1.1.5)

(1.4)(1.4)

(1.1.6)(1.1.6)

(1.5)(1.5)

> >

(1.1.1)(1.1.1)

(1.6)(1.6)

> >

> >

Third list_butterfly, each trhead moves 2 data and reads 1 data, and it
executes 6 additions, 6 bit operations, 2 modular additions.
Or compute jumped powers:
move 2 data, 2 modular additions, calls to
fourier_reduction, with , 1 additional call to fourier_reduction
In fourier_reduction, 11 bit operations, 5 additions, 1 multiplications

cooleytukey_phase3_workperblock_powers := 17 * 2 * simplify(sum
(l o g [2] (i) , i = 1 . . c o o l e y t u k e y _ t h r e a d s p e r b l o c k)) +
cooleytukey_threadsperblock * 27;

cooleytukey_phase3_spanperkernel_powers := 17 * 2 * log[2]
(cooleytukey_threadsperblock) + 27;

cooleytukey_phase3_overheadperblock_powers := 4 * U;

Work

cooleytukey_phase1_kernels := log[2](cooleytukey_size)- log
[2](cooleytukey_param);

cooleytukey_phase1_blocks := cooleytukey_size /
cooleytukey_threadsperblock;

cooleytukey_phase1_workperblock := 20 *
cooleytukey_threadsperblock;

cooleytukey_phase1_work := cooleytukey_phase1_kernels *
cooleytukey_phase1_blocks * cooleytukey_phase1_workperblock;

cooleytukey_phase2_blocks := cooleytukey_size /
(cooleytukey_threadsperblock * cooleytukey_param);

cooleytukey_phase2_workperblock :=
cooleytukey_threadsperblock * simpli fy(cooleytukey_param *
(32 * sum(cooleytukey_param/2^ i , i=1 . . log[2]

145

> >

(1.1.13)(1.1.13)

(1.1.15)(1.1.15)

> >

> >

(1.1.16)(1.1.16)

(1.1.11)(1.1.11)

(1.1.14)(1.1.14)

(1.1.12)(1.1.12)

> >

> >

(1.1.9)(1.1.9)

(1.1.8)(1.1.8)

(1.1.6)(1.1.6)

(1.1.7)(1.1.7)

> >

> >

(1.1.10)(1.1.10)

> >

> >

> >

> >

(cooleytukey_param)) + 11) + 30 * cooleytukey_param);

cooleytukey_phase2_work := cooleytukey_phase2_blocks *
cooleytukey_phase2_workperblock;

cooleytukey_phase3_kernels := log[2](cooleytukey_size)- log
[2](cooleytukey_param);

cooleytukey_phase3_blocks := cooleytukey_size /
cooleytukey_threadsperblock;

cooleytukey_phase3_workperblock := 22 *
cooleytukey_threadsperblock;

cooleytukey_phase3_work := cooleytukey_phase3_kernels *
cooleytukey_phase3_blocks * cooleytukey_phase3_workperblock;

cooleytukey_phase3_work_powers := simplify
(cooleytukey_phase3_kernels * cooleytukey_phase3_blocks *
cooleytukey_phase3_workperblock_powers);

cooleytukey_work := normal(cooleytukey_phase1_work +
cooleytukey_phase2_work + cooleytukey_phase3_work);

cooleytukey_work1 := eval(cooleytukey_work, [m=16]);

cooleytukey_work_powers := normal(cooleytukey_phase1_work +
cooleytukey_phase2_work + cooleytukey_phase3_work_powers);

cooleytukey_work1_powers := expand(eval

146 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

(1.2.8)(1.2.8)

> >

> >

> >

> >

(1.2.1)(1.2.1)

(1.1.16)(1.1.16)

(1.2.3)(1.2.3)

> >

(1.2.2)(1.2.2)

(1.2.4)(1.2.4)

(1.1.6)(1.1.6)

(1.2.7)(1.2.7)

(1.2.5)(1.2.5)

> >

> >

> >

> >

(1.2.6)(1.2.6)

> >

(cooleytukey_work_powers, [m=16]));

Span

cooleytukey_phase1_span := 20 * cooleytukey_phase1_kernels;

cooleytukey_phase2_span := s impl i fy ((32 * log[2]
(cooleytukey_param) * sum(cooleytukey_param/2^i , i=1. . log[2]
(cooleytukey_param)) + 30 * cooleytukey_param) + 11);

cooleytukey_phase3_span := 22 * cooleytukey_phase3_kernels;

cooleytukey_phase3_span_powers := simplify
(cooleytukey_phase3_kernels *
cooleytukey_phase3_spanperkernel_powers);

cooleytukey_span := normal(cooleytukey_phase1_span +
cooleytukey_phase2_span + cooleytukey_phase3_span);

cooleytukey_span1 := eval(cooleytukey_span, [m=16]);

cooleytukey_span_powers := normal(cooleytukey_phase1_span +
cooleytukey_phase2_span + cooleytukey_phase3_span_powers);

cooleytukey_span1_powers := expand(eval
(cooleytukey_span_powers, [m=16]));

147

(1.3.5)(1.3.5)

> >
(1.3.2)(1.3.2)

> >

(1.1.16)(1.1.16)

(1.3.3)(1.3.3)

(1.1.6)(1.1.6)

> >

(1.2.8)(1.2.8)

> >

> >

> >

(1.3.8)(1.3.8)

(1.3.7)(1.3.7)

> >

> >

(1.3.4)(1.3.4)

(1.3.1)(1.3.1)

> >

(1.3.9)(1.3.9)

> >

> >

(1.3.6)(1.3.6)

Overhead

cooleytukey_phase1_overheadperblocka := 2 * U + 2 * U *
cooleytukey_threadsperblock;

cooleytukey_phase1_overheadperblockb := 4 * U;

cooleytukey_phase1_overhead := simplify(log[2]
(cooleytukey_threadsperblock) * cooleytukey_phase1_blocks *
cooleytukey_phase1_overheadperblocka +
(cooleytukey_phase1_kernels - log[2]
(cooleytukey_threadsperblock)) * cooleytukey_phase1_blocks *
cooleytukey_phase1_overheadperblockb);

cooleytukey_phase2_overheadperblock := 2 * cooleytukey_param
* U ;

cooleytukey_phase2_overhead := cooleytukey_phase2_blocks *
cooleytukey_phase2_overheadperblock;

cooleytukey_phase3_overheadperblock := 5 * U;

cooleytukey_phase3_overhead := cooleytukey_phase3_kernels *
cooleytukey_phase3_blocks *
cooleytukey_phase3_overheadperblock;

cooleytukey_phase3_overhead_powers :=
cooleytukey_phase3_kernels * cooleytukey_phase3_blocks *
cooleytukey_phase3_overheadperblock_powers;

cooleytukey_overhead := normal(cooleytukey_phase1_overhead +

148 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

(1.1.16)(1.1.16)

(1.3.12)(1.3.12)

(1.4.3)(1.4.3)

(1.1.6)(1.1.6)

(1.3.10)(1.3.10)

(1.3.11)(1.3.11)

> >

(1.2.8)(1.2.8)

(1.4.4)(1.4.4)

> >

> >

(1.4.2)(1.4.2)

> >

> >

> >

(1.3.9)(1.3.9)

> >

> >

> >

(1.4.1)(1.4.1)

(1.4.5)(1.4.5)

> >

> >

cooleytukey_phase2_overhead + cooleytukey_phase3_overhead);

cooleytukey_overhead1 := eval(cooleytukey_overhead, [m=16]);

cooleytukey_overhead_powers := normal
(cooleytukey_phase1_overhead + cooleytukey_phase2_overhead +
cooleytukey_phase3_overhead_powers);

cooleytukey_overhead1_powers := expand(eval
(cooleytukey_overhead_powers, [m=16]));

T p

cooleytukey_N := normal(eval(cooleytukey_phase1_kernels *
cooleytukey_phase1_blocks + cooleytukey_phase2_blocks +
cooleytukey_phase3_kernels * cooleytukey_phase3_blocks, [s=
1 6])) ;

cooleytukey_L := eval(cooleytukey_phase1_kernels + 1 +
cooleytukey_phase3_kernels, [s=16]);

cooleytukey_C := eval(cooleytukey_phase2_span +
cooleytukey_phase1_overheadperblocka, [s=16]);

cooleytukey_K := cooleytukey_phase1_blocks;

cooleytukey_Tp := normal((cooleytukey_N/cooleytukey_K +
cooleytukey_L) * cooleytukey_C);

149

> >

(2)(2)

> >

> >

(1.1.16)(1.1.16)

(1.4.8)(1.4.8)

(1.1.6)(1.1.6)

> >

> >

(1.2.8)(1.2.8)

> >

> >

(3)(3)

(1.4.6)(1.4.6)

> >

(1.4.7)(1.4.7)

(1.4.9)(1.4.9)

> >

(4)(4)

(1.3.9)(1.3.9)

> >

> >

(1)(1)

(1.4.5)(1.4.5)

cooleytukey_Tp1 := eval(cooleytukey_Tp, [m=16]);

cooleytukey_C_powers := eval
(cooleytukey_phase3_spanperkernel_powers +
cooleytukey_phase1_overheadperblocka, [s=16]);

cooleytukey_Tp_powers := normal((cooleytukey_N/cooleytukey_K
+ cooleytukey_L) * cooleytukey_C_powers);

cooleytukey_Tp1_powers := eval(cooleytukey_Tp_powers, [m=16]
) ;

Cooley-Tukey with vs without pre-computed jumped powers
Rwork := normal(cooleytukey_work1_powers / cooleytukey_work1);

Rspan := normal(cooleytukey_span1_powers / cooleytukey_span1);

Roverhead := normal(cooleytukey_overhead1_powers /
cooleytukey_overhead1);

Rt := normal(cooleytukey_Tp1_powers / cooleytukey_Tp1);

150 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

> >

(1.1.16)(1.1.16)

> >

(2.2)(2.2)

(1.1.6)(1.1.6)

(2.1.1)(2.1.1)

> >

(1.2.8)(1.2.8)

> >

(1.3.9)(1.3.9)

> >

(1.4.5)(1.4.5)

> >

(2.1)(2.1)

Stockham FFT algorithm
For each fixed there are three computational steps:

 Phase 1:

 Phase 2:

 Phase 3:

stockham_threadsperblock := l ;

stockham_size := n;

First compute phase 3 once, a thread reading 2
data + writing back the same + executing 3 bit operations, 3
additions, 2 modular add operations (5 arithmetic operations)

Second, for each compute phase 1, 2 & 3

In phase 1, if , a thread reading data and writing back the same
+ executing 14 bit operations, 10 additions, 1 multiplications.

I f , a thread reading 1 data and writing back the same +
executing 11 bit operations, 8 additions.
In phase 2, a thread reading 1 data and writing back the same +
executing 5 bit operations, 4 additions, 1 modular multiply operations
(11 arithmetic operations)

Prefix sum to compute the powers of the n-th primitive
root of unity

Each thread deals with 4 data items
roots_blocks := stockham_size/(4*stockham_threadsperblock);

Regard to the prefix sum, one block performs the up-sweep
phase, with 3 instructions, and then performs the down-sweep
phase, with 5 instructions, regard to Listing 2 in scan.pdf. (Except
mediate step)

151

> >

> >

(2.1.10)(2.1.10)

> >

(1.1.16)(1.1.16)

> >

(2.1.7)(2.1.7)

> >
(2.1.11)(2.1.11)

> >

> >

> >

(2.1.4)(2.1.4)

(1.1.6)(1.1.6)

(2.1.5)(2.1.5)

(2.1.8)(2.1.8)

> >

(1.2.8)(1.2.8)

(2.1.13)(2.1.13)

(2.1.15)(2.1.15)

(2.1.12)(2.1.12)

> >

(2.1.14)(2.1.14)

> >

> >

> >

> >

(2.1.6)(2.1.6)

(2.1.2)(2.1.2)

> >

(1.3.9)(1.3.9)

> >

(2.1.9)(2.1.9)

> >

(2.1.3)(2.1.3)

(1.4.5)(1.4.5)

roots_inclusive_workperblock := normal(simpli fy(8*(sum
(stockham_threadsperb lock /2^(i -1) , i=1 . . log[2]
(stockham_threadsperblock))+2)+1)) ;

roots_inclusive_overheadperblock := (4+4)*U;

roots_inclusive_work := roots_blocks*
roots_inclusive_workperblock;

roo ts_ inc lus ive_span := s imp l i f y (8 * (log [2]
(stockham_threadsperblock)+2)+1);

roots_inclusive_overhead := roots_blocks*
roots_inclusive_overheadperblock;

roots_mediate_overheadperblock := (4+4)*U;

roots_mediate_work := normal(simplify(8*(sum
(stockham_threadsperb lock /2^(i -1) , i=1 . . log[2]
(stockham_threadsperblock))+2)+1));

roots_mediate_span := 8*(log[2](stockham_threadsperblock)+2)
+ 1 ;

roots_mediate_overhead := roots_mediate_overheadperblock;

Scan Block Sums
roots_exclusive_workperblock := 4*stockham_threadsperblock;

roots_exclusive_overheadperblock := (4+1+4)*U;

roots_exclusive_work := (roots_blocks-1)*
roots_exclusive_workperblock;

roots_exclusive_span := 4;

roots_exclusive_overhead := (roots_blocks-1)*

152 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

(2.2.4)(2.2.4)

> >

(1.1.16)(1.1.16)

> >

(2.2.6)(2.2.6)

> >

> >

> >

(2.1.17)(2.1.17)

(1.1.6)(1.1.6)

> >

> >

(1.2.8)(1.2.8)

(2.1.15)(2.1.15)

(2.2.5)(2.2.5)

> >

(2.1.16)(2.1.16)

(2.2.7)(2.2.7)

(2.1.18)(2.1.18)

> >

(2.2.3)(2.2.3)

> >

> >

(2.2.2)(2.2.2)

> >

(2.1.2)(2.1.2)

(2.2.1)(2.2.1)

(1.3.9)(1.3.9)

> >

> >

> >

(1.4.5)(1.4.5)

roots_exclusive_overheadperblock;

Total work & span in phase 2
roots_work := normal(roots_inclusive_work+
roots_mediate_work+roots_exclusive_work);

roots_span := simpl i fy(roots_inclusive_span+
roots_mediate_span+roots_exclusive_span);

roots_overhead := normal(roots_inclusive_overhead+
roots_mediate_overhead+roots_exclusive_overhead);

Work
stockham_phase1_blocks := stockham_size /
stockham_threadsperblock;

stockham_phase1_workperblock := 25 *
stockham_threadsperblock;

stockham_phase1_work := stockham_phase1_blocks *
stockham_phase1_workperblock;

stockham_phase2_blocks := stockham_size / (2 *
stockham_threadsperblock);

stockham_phase2_workperblock := 20 *
stockham_threadsperblock;

stockham_phase2_work := stockham_phase2_blocks *
stockham_phase2_workperblock;

stockham_phase3_blocks := stockham_size / (2 *
stockham_threadsperblock);

153

(2.2.9)(2.2.9)

> >

> >

(1.1.16)(1.1.16)

(2.2.8)(2.2.8)

> >

> >

(2.4.2)(2.4.2)

> >

> >

(2.3.3)(2.3.3)

(1.1.6)(1.1.6)

(2.3.2)(2.3.2)

> >

> >

(2.3.1)(2.3.1)

(1.2.8)(1.2.8)

(2.1.15)(2.1.15)

> >

(2.4.4)(2.4.4)

(2.3.4)(2.3.4)

(2.2.10)(2.2.10)

> >

(2.2.7)(2.2.7)

> >

> >

(2.4.3)(2.4.3)

> >

> >

(2.1.2)(2.1.2)

(1.3.9)(1.3.9)

> >

> >

(1.4.5)(1.4.5)

(2.4.1)(2.4.1)

stockham_phase3_workperblock := 16 *
stockham_threadsperblock;

stockham_phase3_work := stockham_phase3_blocks *
stockham_phase3_workperblock;

stockham_work := normal(roots_work + sum
(stockham_phase1_work+stockham_phase2_work+
stockham_phase3_work, i=0. . log[2](stockham_size)-2) +
stockham_phase3_work);

Span
stockham_phase1_span := 25;

stockham_phase2_span := 10;

stockham_phase3_span := 8;

stockham_span := normal(roots_span + sum
(stockham_phase1_span+stockham_phase2_span+
stockham_phase3_span, i=0 . . log[2] (n) -2) +
stockham_phase3_span);

Overhead
stockham_phase1_overheadperblock := 2*U;

stockham_phase1_overhead := stockham_phase1_blocks *
stockham_phase1_overheadperblock;

stockham_phase2_overheadperblock := 2*U;

stockham_phase2_overhead := stockham_phase2_blocks *
stockham_phase2_overheadperblock;

154 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

(2.5.3)(2.5.3)

> >

(2.4.6)(2.4.6)

(1.1.16)(1.1.16)

> >

(2.5.2)(2.5.2)

> >

> >

(1.1.6)(1.1.6)

> >

(2.5.1)(2.5.1)

> >

(1.2.8)(1.2.8)

> >

(2.1.15)(2.1.15)

(2.4.4)(2.4.4)

(2.4.5)(2.4.5)

(2.2.7)(2.2.7)

> >

> >

(2.5.4)(2.5.4)

(5)(5)

> >

(2.1.2)(2.1.2)

(1.3.9)(1.3.9)

(2.4.7)(2.4.7)

> >

> >

(2.5.5)(2.5.5)

(1.4.5)(1.4.5)

> >

> >

stockham_phase3_overheadperblock := 4*U;

stockham_phase3_overhead := stockham_phase3_blocks *
stockham_phase3_overheadperblock;

stockham_overhead := normal(roots_overhead + sum
(stockham_phase1_overhead+stockham_phase2_overhead+
stockham_phase3_overhead, i=0. . log[2](stockham_size)-2) +
stockham_phase3_overhead);

T p
stockham_N := normal(roots_blocks + sum
(stockham_phase1_blocks + stockham_phase2_blocks +
stockham_phase3_blocks, i=0. . log[2](stockham_size)-2) +
stockham_phase3_blocks);

stockham_L := normal(3 + sum(3, i=0. . log[2](stockham_size)
- 2) + 1) ;

stockham_C := roots_inclusive_span +
stockham_phase3_overheadperblock;

stockham_K := stockham_phase1_blocks;

stockham_Tp := normal((stockham_N/stockham_K + stockham_L) *
stockham_C);

Cooley-Tukey without pre-computed jumped powers vs Stockham
work_ratio := normal(cooleytukey_work1_powers / stockham_work);

155

(1.2.8)(1.2.8)

(2.1.15)(2.1.15)

> >

(8)(8)

(2.4.4)(2.4.4)

(6)(6)

(1.1.16)(1.1.16)

(2.2.7)(2.2.7)

> >

(7)(7)

(5)(5)

> >

(2.1.2)(2.1.2)

> >

(1.1.6)(1.1.6)

(1.3.9)(1.3.9)

> >

> >

(1.4.5)(1.4.5)

> >

> >

span_ratio := normal(cooleytukey_span1_powers / stockham_span);

overhead_ratio := normal(cooleytukey_overhead1_powers /
stockham_overhead);

Tp_ratio := normal(cooleytukey_Tp1_powers / stockham_Tp);

156 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

(7)(7)

(3)(3)

(5)(5)

> >

> >
(4)(4)

(6)(6)

> >

> >

> >

(1)(1)

> >

> >

(2)(2)

> >

Plain Polynomial Multiplication Algorithm

This document is to demonstrate the analysis of plain polynomial
multiplication algorithm

Given two polynomials and over a finite field, with ,
and , where , compute the product of

r e s t a r t ;
te rms_a := n ;

terms_b := m;

mul t ip l ica t ion_param := s ;

mu l t ip l i ca t ion_ threadsperb lock := l ;

mul t ip l i ca t ion_ length := te rms_a + mul t ip l i ca t ion_param - 1 ;

mult ip l icat ion_rows := terms_b/mult ip l icat ion_param;

Phase 1:
The grid of thread blocks is 2-D. Principle: each thread block
computes some of the coefficient produtcs and some of the partial
sums toward the polynomial product. Those partial sums are stored
in an auxiliary array, which is later processed in Phase 2.
One row of thread blocks contributes to terms of the

product of , while there are rows of blocls.

If we use threads per block, then we have thread-blocks.

Each thread in each thread block performs s^2 coefficient products
and additions.
Each block needs terms of and terms of . Then it
computes elements of the y matrix.
mult ip l icat ion_phase1_blocks := mul t ip l icat ion_length*
mul t ip l icat ion_rows/ (mul t ip l icat ion_threadsperblock*
mul t ip l icat ion_param);

157

> >

> >

> >

(1.4)(1.4)

> >

(1.3)(1.3)

> >

(1.1)(1.1)

(8)(8)

> >

(1.2)(1.2)

Phase 2:
The x rows of the auxiliary array M are added pairwise in log(x)
parallel steps. At each step, the number of rows (to be added) is
divided by two
At a given parallel step, each thread reads s elements form one row
and s from another row
Therefore at the i-th parallel step (starting at i=0 and using l threads
per block) one reads 2 times s times l coefficients per block
The total amount of data (coefficients) to be added at the beginning
at the i-th parallel is twice less than at the previous step, thus it is x
times y divifed by 2^i
Therefore, at the i-th parallel step, using threads per block, we need

 blocks and we have parallel steps for the whole

phase.
Each thread to compute at most s addition needs s element of

 and s element from another row, then writes back s
elements.
mult ip l icat ion_phase2_blocks := proc(i)
 r e t u r n m u l t i p l i c a t i o n _ l e n g t h * m u l t i p l i c a t i o n _ r o w s /
(mul t ip l ica t ion_param*mul t ip l ica t ion_threadsperb lock*2^(i)) ;
end proc:
mul t ip l ica t ion_phase2_steps := s impl i fy (log[2]
(m u l t i p l i c a t i o n _ r o w s)) ;

Work
multipl icat ion_phase1_workperblock :=
mult ipl icat ion_threadsperblock*mult ipl icat ion_param*
(mult ip l icat ion_param+mult ip l icat ion_param-1);

mult ipl icat ion_phase1_work := mult ipl icat ion_phase1_blocks*
multiplication_phase1_workperblock;

mult ipl icat ion_phase2_workperblock :=
mult ipl icat ion_threadsperblock*mult ipl icat ion_param;

mult ipl icat ion_phase2_work := simplify(sum
(mul t ip l ica t ion_phase2_blocks(i) *

158 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

(3.2)(3.2)

> >

(3.1)(3.1)

(2.1)(2.1)

(1.5)(1.5)

> >

> >

(1.4)(1.4)

> >

> >

(2.2)(2.2)

> >

(2.3)(2.3)

> >

> >

(1.6)(1.6)

(3.3)(3.3)

> >

mult ipl icat ion_phase2_workperblock, i=1. .
mul t ip l icat ion_phase2_steps)+mul t ip l icat ion_length/2) ;

mult ipl icat ion_work := normal(mult ipl icat ion_phase1_work+
mult ipl icat ion_phase2_work);

expand((2 *m- 1 /2) * (n+s -1)) ;

Span

mult ipl icat ion_phase1_span := mult ipl icat ion_param*
(mult ip l icat ion_param+mult ip l icat ion_param-1);

mult ipl icat ion_phase2_span := mult ipl icat ion_phase2_steps*
mult ip l icat ion_param;

mult ip l icat ion_span := expand(s impl i fy
(mult ipl ication_phase1_span+multipl ication_phase2_span));

Overhead
s from b, l*s+s-1 from a

multipl ication_phase1_overheadperblock := U*
(mult ipl icat ion_param+1+1+mult ipl icat ion_param);

mult ipl ication_phase1_overhead := mult ipl ication_phase1_blocks*
multiplication_phase1_overheadperblock;

multipl ication_phase2_overheadperblock := U*3*
mult ip l icat ion_param;

159

> >

> >

> >

> >

> >

(1.4)(1.4)

> >

> >

> >

(3.5)(3.5)

> >

(4.2.1)(4.2.1)

> >

(4.1.3)(4.1.3)

> >

> >

(4.2.2)(4.2.2)

(4.1.1)(4.1.1)

(4.1.5)(4.1.5)

(3.4)(3.4)

(4.1.6)(4.1.6)

(4.1.4)(4.1.4)

(4.1.2)(4.1.2)

(4.2.3)(4.2.3)

mult ipl ication_phase2_overhead := simplify(sum
(m u l t i p l i c a t i o n _ p h a s e 2 _ b l o c k s (i) , i = 1 . .
mult ipl icat ion_phase2_steps)*
multiplication_phase2_overheadperblock);

mult ipl icat ion_overhead := normal
(multiplication_phase1_overhead+multiplication_phase2_overhead)
;

T p

Phase 1 N & L & C
mult ipl icat ion_phase1_workperthread := mult ipl icat ion_param*
(mult ip l icat ion_param+mult ip l icat ion_param-1);

mult ipl ication_phase1_overheadperthread :=
multiplication_phase1_overheadperblock;

mult ip l icat ion_phase1_C :=
multiplication_phase1_workperthread+
multiplication_phase1_overheadperthread;

mult ipl icat ion_phase1_N := mult ipl icat ion_phase1_blocks;

mul t ip l icat ion_phase1_L := 1 ;

Tp_phase_1 := simpli fy(eval((mult ipl icat ion_phase1_N/P+
mult ipl icat ion_phase1_L)*mult ipl icat ion_phase1_C, [P=
mult ip l icat ion_phase1_blocks])) ;

Phase 2 N & L & C
mult ipl icat ion_phase2_workperthread := mult ipl icat ion_param;

mult ipl ication_phase2_overheadperthread :=
multiplication_phase2_overheadperblock;

mult ip l icat ion_phase2_C :=

160 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

> >

> >

> >

(4.2.6)(4.2.6)

(1.4)(1.4)

(5.1)(5.1)

(4.3.4)(4.3.4)

> >

> >

> >

> >

(4.3.1)(4.3.1)

(4.3.2)(4.3.2)

> >

(4.2.4)(4.2.4)

> >

(4.2.5)(4.2.5)

(4.3.3)(4.3.3)

> >

(3.4)(3.4)

> >

(4.2.3)(4.2.3)

multiplication_phase2_workperthread+
multiplication_phase2_overheadperthread;

mult ipl icat ion_phase2_N := simpli fy(sum
(m u l t i p l i c a t i o n _ p h a s e 2 _ b l o c k s (i) , i = 1 . .
mul t ip l icat ion_phase2_steps)) ;

mult ipl icat ion_phase2_L := mult ipl icat ion_phase2_steps;

Tp_phase_2:= simplify(eval((mult ipl icat ion_phase2_N/P+
mult ipl icat ion_phase2_L)*mult ipl icat ion_phase2_C, [P=
mul t ip l ica t ion_phase2_blocks(1)])) ;

T p

mult ip l ica t ion_N := s impl i fy (mul t ip l ica t ion_phase1_N +
mult ipl icat ion_phase2_N);

mul t ip l ica t ion_L := mul t ip l ica t ion_phase1_L +
mult ipl icat ion_phase2_L;

mul t ip l icat ion_C := mul t ip l icat ion_phase1_C;

mul t ip l i ca t ion_Tp := s imp l i f y (eva l ((mu l t ip l i ca t ion_N/P+
mul t ip l i ca t ion_L) *mul t ip l i ca t ion_C, [P=
mult ip l icat ion_phase1_blocks])) ;

When

mul t ip l ica t ion_work1 := normal (eva l (mul t ip l ica t ion_work , [s=1])

161

(5.3)(5.3)

> >

> >

> >

> >

(12)(12)

(10)(10)

> >

(5.4)(5.4)

(5.1)(5.1)

(1.4)(1.4)

> >

> >

> >

> >

(5.2)(5.2)

(11)(11)

> >

> >

(3.4)(3.4)

(9)(9)

(4.2.3)(4.2.3)

) ;

mul t ip l ica t ion_span1 := expand(eva l (mul t ip l ica t ion_span, [s=1])
) ;

mult ip l icat ion_overhead1 := normal(eval
(m u l t i p l i c a t i o n _ o v e r h e a d , [s = 1])) ;

mu l t ip l i ca t ion_Tp1 := norma l (eva l (mu l t ip l i ca t ion_Tp , [s=1])) ;

work_ra t io := normal (mul t ip l ica t ion_work1 / mul t ip l ica t ion_work) ;

span_rat io := normal (mul t ip l ica t ion_span1 / mul t ip l ica t ion_span) ;

overhead_rat io := normal (mul t ip l icat ion_overhead1 /
mul t ip l icat ion_overhead) ;

Tp_ra t io := norma l (mul t ip l i ca t ion_Tp1 / mu l t ip l i ca t ion_Tp) ;

 on the condition that must fit into the local memory

162 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

> >

(3)(3)

(5)(5)
> >

(2)(2)

> >

> >

(4)(4)
> >

> >

(7)(7)

(1)(1)

(6)(6)

> >

> >

Polynomial Multiplication Algorithm

This document is to demonstrate the analysis of plain vs FFT-based
polynomial multiplication algorithm

Given two polynomials and over a finite field, with ,
and , where , compute the product of

r e s t a r t ;
te rms_a := n ;

terms_b := m;

Plain multiplication
pla in_param := s ;

p la in_ threadsperb lock := l ;

p la in_ length := te rms_a + p la in_param - 1 ;

plain_rows := terms_b/plain_param;

Phase 1 multiplication:
The grid of thread blocks is 2-D. Principle: each thread block
computes some of the coefficient produtcs and some of the partial
sums toward the polynomial product. Those partial sums are stored
in an auxiliary array, which is later processed in Phase 2.
One row of thread blocks contributes to terms of the

product of , while there are rows of blocls.

If we use threads per block, then we have thread-blocks.

Each thread in each thread block performs s^2 coefficient products
and additions.
Each block needs terms of and terms of . Then it
computes elements of the y matrix.
plain_phase1_blocks := plain_length*plain_rows/

163

(1.3)(1.3)

> >

(1.2)(1.2)

> >

> >

(8)(8)

> >

(7)(7)

> >

> >

> >

(1.1)(1.1)

(1.4)(1.4)

(plain_threadsperblock*plain_param);

Phase 2 addition:
The x rows of the auxiliary array M are added pairwise in log(x)
parallel steps. At each step, the number of rows (to be added) is
divided by two
At a given parallel step, each thread reads s elements form one row
and s from another row
Therefore at the i-th parallel step (starting at i=0 and using l threads
per block) one reads 2 times s times l coefficients per block
The total amount of data (coefficients) to be added at the beginning
at the i-th parallel is twice less than at the previous step, thus it is x
times y divifed by 2^i
Therefore, at the i-th parallel step, using threads per block, we need

 blocks and we have parallel steps for the whole

phase.
Each thread to compute at most s addition needs s element of

 and s element from another row, then writes back s
elements.
pla in_phase2_blocks := proc(i)
 re turn p la in_ length*p la in_rows / (p la in_param*
p la in_ threadsperb lock*2^(i)) ;
end proc:
p la in_phase2_steps := s impl i fy (log[2] (p la in_rows)) ;

Work
plain_phase1_workperblock := plain_threadsperblock*plain_param*
(plain_param+plain_param-1);

plain_phase1_work := plain_phase1_blocks*
plain_phase1_workperblock;

plain_phase2_workperblock := plain_threadsperblock*plain_param;

plain_phase2_work := simplify(sum(plain_phase2_blocks(i)*
plain_phase2_workperblock,i=1..plain_phase2_steps)+

164 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

> >

> >

> >

(1.5)(1.5)

> >

(3.3)(3.3)

(2.2)(2.2)

(3.2)(3.2)

> >

> >

(7)(7)

> >

> >

> >

(1.4)(1.4)

(2.3)(2.3)

(1.6)(1.6)

(2.1)(2.1)

> >

> >

> >

(3.1)(3.1)

(3.5)(3.5)

(3.4)(3.4)

p l a i n _ l e n g t h / 2) ;

plain_work := normal(plain_phase1_work+plain_phase2_work);

expand((2 *m- 1 /2) * (n+s -1)) ;

Span
plain_phase1_span := plain_param*(plain_param+plain_param-1);

plain_phase2_span := plain_phase2_steps*plain_param;

plain_span := expand(simplify(plain_phase1_span+
plain_phase2_span));

Overhead
s from b, l*s+s-1 from a

plain_phase1_overheadperblock := U*(plain_param+1+1+
plain_param);

plain_phase1_overhead := plain_phase1_blocks*
plain_phase1_overheadperblock;

plain_phase2_overheadperblock := U*3*plain_param;

plain_phase2_overhead := simpli fy(sum(plain_phase2_blocks(i) , i=
1..plain_phase2_steps)*plain_phase2_overheadperblock);

plain_overhead := normal(plain_phase1_overhead+
plain_phase2_overhead);

165

(4.1.5)(4.1.5)

> >

(4.1.3)(4.1.3)

> >

> >

> >

> >

> >

(4.2.5)(4.2.5)

> >

(4.1.4)(4.1.4)

(7)(7)

> >

> >

(4.2.2)(4.2.2)

> >

(1.4)(1.4)

(4.1.2)(4.1.2)

> >

(4.1.1)(4.1.1)

(4.1.6)(4.1.6)

(4.2.3)(4.2.3)

(4.2.4)(4.2.4)

(4.2.1)(4.2.1)

(3.5)(3.5)

> >

> >

T p

Phase 1 N & L & C
plain_phase1_workperthread := plain_param*(plain_param+
plain_param-1);

plain_phase1_overheadperthread :=
plain_phase1_overheadperblock;

plain_phase1_C := plain_phase1_workperthread+
plain_phase1_overheadperthread;

plain_phase1_N := plain_phase1_blocks;

pla in_phase1_L := 1;

Tp_phase_1 := simplify(eval((plain_phase1_N/P+
plain_phase1_L)*plain_phase1_C, [P=plain_phase1_blocks]));

Phase 2 N & L & C
plain_phase2_workperthread := plain_param;

plain_phase2_overheadperthread :=
plain_phase2_overheadperblock;

plain_phase2_C := plain_phase2_workperthread+
plain_phase2_overheadperthread;

pla in_phase2_N := s impl i fy(sum(pla in_phase2_blocks(i) , i=1. .
plain_phase2_steps));

plain_phase2_L := plain_phase2_steps;

166 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

(5.4)(5.4)

> >

(4.2.6)(4.2.6)

> >

> >

(4.3.4)(4.3.4)

(7)(7)

> >

> >

(5.2)(5.2)

(5.5)(5.5)

> >

(4.3.3)(4.3.3)

(5.1)(5.1)

(1.4)(1.4)

> >

> >

> >

> >

(4.3.1)(4.3.1)

> >

> >

(3.5)(3.5)

(5.3)(5.3)

(4.3.2)(4.3.2)

Tp_phase_2:= simplify(eval((plain_phase2_N/P+plain_phase2_L)
*plain_phase2_C, [P=plain_phase2_blocks(1)])) ;

T p
plain_N := simpl i fy(plain_phase1_N + plain_phase2_N);

plain_L := plain_phase1_L + plain_phase2_L;

plain_C := plain_phase1_C;

p la in_Tp := s impl i fy (eva l ((p la in_N/P+p la in_L) *p la in_C, [P=
plain_phase1_blocks])) ;

When
pla in_work1 := normal (eva l (p la in_work , [s=4 , m=n])) ;

p la in_span1 := expand(eval (p la in_span, [s=4, m=n])) ;

p la in_overhead1 := normal (eval (p la in_overhead, [s=4, m=n])) ;

p la in_K1 := eval (p la in_phase1_blocks, [s=4, m=n]) ;

p l a i n _ T p 1 : = s i m p l i f y (e v a l (p l a i n _ T p , [s = 4 , m = n])) ;

167

(4.2.6)(4.2.6)

> >

> >

> >

(7)(7)

(6.1)(6.1)

> >

(3.5)(3.5)

(1.4)(1.4)

FFT-based multiplication

Input with degree less than and
a primitive n-th root of unity

compute

return

Stockham FFT algorithm

For each fixed there are three computational steps:

 Phase 1:

 Phase 2:

 Phase 3:

FFT_threadsperblock := l ;

First compute phase 3 once, a thread reading 2
data + writing back the same + executing 3 bit operations, 3
additions, 2 modular add operations (5 arithmetic operations)

Second, for each compute phase 1, 2 & 3

In phase 1, if , a thread reading data and writing back the same
+ executing 14 bit operations, 10 additions, 1 multiplications.

I f , a thread reading 1 data and writing back the same +
executing 11 bit operations, 8 additions.
In phase 2, a thread reading 1 data and writing back the same +
executing 5 bit operations, 4 additions, 1 modular multiply operations
(11 arithmetic operations)

168 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

(6.1.5)(6.1.5)

> >

> >

(6.1.6)(6.1.6)

(6.1.2)(6.1.2)

> >

(4.2.6)(4.2.6)

(6.2.1)(6.2.1)

> >

> >

(6.2.2)(6.2.2)
> >

> >

(7)(7)

(6.2.3)(6.2.3)

> >

> >

(6.1.9)(6.1.9)

(6.1.3)(6.1.3)

(1.4)(1.4)

> >

(6.1.7)(6.1.7)

> >

(6.1.1)(6.1.1)

> >

> >

> >

> >

(6.2.4)(6.2.4)

(3.5)(3.5)

> >

> >

(6.1.10)(6.1.10)

(6.1.4)(6.1.4)

(6.1.8)(6.1.8)

Work
FFT_phase1_blocks := n / FFT_threadsperblock;

FFT_phase1_workperblock := 25 * FFT_threadsperblock;

FFT_phase1_work := FFT_phase1_blocks *
FFT_phase1_workperblock;

FFT_phase2_blocks := n / (2 * FFT_threadsperblock);

FFT_phase2_workperblock := 20 * FFT_threadsperblock;

FFT_phase2_work := FFT_phase2_blocks *
FFT_phase2_workperblock;

FFT_phase3_blocks := n / (2 * FFT_threadsperblock);

FFT_phase3_workperblock := 16 * FFT_threadsperblock;

FFT_phase3_work := FFT_phase3_blocks *
FFT_phase3_workperblock;

FFT_work := normal(sum(FFT_phase1_work+FFT_phase2_work+
FFT_phase3_work, i=0. . log[2](n)-2) + FFT_phase3_work);

Span
FFT_phase1_span := 25;

FFT_phase2_span := 10;

FFT_phase3_span := 8;

FFT_span := normal(sum(FFT_phase1_span+FFT_phase2_span+
FFT_phase3_span, i=0. . log[2](n)-2) + FFT_phase3_span);

169

(6.4.2)(6.4.2)

(4.2.6)(4.2.6)

(6.3.4)(6.3.4)

> >

(6.3.1)(6.3.1)

> >

> >

> >

(7)(7)

(6.3.2)(6.3.2)

> >

> >

(1.4)(1.4)

> >

> >

> >

(6.3.5)(6.3.5)

(6.3.6)(6.3.6)

> >

(6.3.3)(6.3.3)

> >

> >

> >

(6.4.3)(6.4.3)

(3.5)(3.5)

(6.3.7)(6.3.7)

> >

(6.4.4)(6.4.4)

(6.4.1)(6.4.1)

Overhead
FFT_phase1_overheadperblock := 2*U;

FFT_phase1_overhead := FFT_phase1_blocks *
FFT_phase1_overheadperblock;

FFT_phase2_overheadperblock := 2*U;

FFT_phase2_overhead := FFT_phase2_blocks *
FFT_phase2_overheadperblock;

FFT_phase3_overheadperblock := 4*U;

FFT_phase3_overhead := FFT_phase3_blocks *
FFT_phase3_overheadperblock;

FFT_overhead := normal(sum(FFT_phase1_overhead+
FFT_phase2_overhead+FFT_phase3_overhead, i=0..log[2](n)-2) +
FFT_phase3_overhead);

T p
FFT_N := normal(sum(FFT_phase1_blocks + FFT_phase2_blocks +
FFT_phase3_blocks, i=0. . log[2](n)-2) + FFT_phase3_blocks);

F F T _ L : = n o r m a l (s u m (3 , i = 0 . . l o g [2] (n) - 2) + 1) ;

FFT_C := FFT_phase1_span + FFT_phase3_overheadperblock;

FFT_Tp := normal((FFT_N/FFT_phase1_blocks + FFT_L) * FFT_C);

Point wise multiplication

170 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

> >

(8.4)(8.4)

> >

(4.2.6)(4.2.6)

(8.5)(8.5)

> >

> >

> >
(7.9)(7.9)

> >

(8.1)(8.1)

(7)(7)

> >

> >

> >
(7.5)(7.5)

> >

> >

(7.7)(7.7)

> >

(1.4)(1.4)

(7.6)(7.6)

> >

(7.4)(7.4)

(7.1)(7.1)

(7.8)(7.8)

> >

(7.10)(7.10)

> >

> >

> >

> >

(3.5)(3.5)

> >

(7.2)(7.2)

(8.6)(8.6)

(7.3)(7.3)

(8.2)(8.2)

(8.3)(8.3)

PWM_threads := l;

PWM_blocks := n / PWM_threads;

PWM_workperblock := 6 * PWM_threads;

PWM_work := PWM_blocks * PWM_workperblock;

PWM_span := 6;

PWM_overheadperblock := 3 * U;

PWM_overhead := PWM_blocks * PWM_overheadperblock;

PWM_N := PWM_blocks;

PWM_L := 1;

PWM_C := 6 + PWM_overheadperblock;

Scale the vector

SV_threads := l ;

SV_blocks := n / SV_threads;

SV_workperblock := 5 * SV_threads;

SV_work := SV_blocks * SV_workperblock;

SV_span := 5;

SV_overheadperblock := 2 * U;

171

> >

(10.1)(10.1)

> >

> >

(4.2.6)(4.2.6)

> >

> >

> >

(9.2)(9.2)

(7)(7)

(10.2)(10.2)

(10.3)(10.3)

> >

(1.4)(1.4)

(8.9)(8.9)

> >

> >

> >

(8.8)(8.8)

> >

(10.4)(10.4)

> >

(9.3)(9.3)

> >

> >

(8.10)(8.10)

(10.5)(10.5)

(3.5)(3.5)

(8.7)(8.7)

(9.1)(9.1)

> >

SV_overhead := SV_blocks * SV_overheadperblock;

SV_N := SV_blocks;

SV_L := 1 ;

SV_C := 5 + SV_overheadperblock;

Work, Span & Overhead

FFTbased_work := 3 * FFT_work + PWM_work + SV_work;

FFTbased_span := 3 * FFT_span + PWM_span + SV_span;

FFTbased_overhead := 3 * FFT_overhead + PWM_overhead +
SV_overhead;

T p

FFTbased_K := FFT_phase1_blocks;

FFTbased_N := normal(3*FFT_N+PWM_N+SV_N);

FFTbased_L := normal(3*FFT_L+PWM_L+SV_L);

FFTbased_C := FFT_C;

FFTbased_Tp := normal((FFTbased_N/FFTbased_K + FFTbased_L) *
FFTbased_C);

172 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

(9)(9)

> >

(4.2.6)(4.2.6)

> >

> >

> >

(12)(12)

> >

> >

(7)(7)

(14)(14)

> >

(11)(11)

(1.4)(1.4)

> >

> >

(13)(13)

> >

(10.5)(10.5)

(3.5)(3.5)

(8.7)(8.7)

(10)(10)

Plain vs FFT-based
Rwork := normal(plain_work1 / FFTbased_work);

Rspan := normal(plain_span1 / FFTbased_span);

Roverhead := normal(plain_overhead1 / FFTbased_overhead);

Rt := normal(plain_Tp1 / FFTbased_Tp);

p la in_Tp1 := s impl i fy (eva l (eva l ((p la in_N/P+p la in_L) *p la in_C, [P=
FFTbased_K]) , [s=4, m=n])) ;

Rt := normal(plain_Tp1 / FFTbased_Tp);

173

> >

(3)(3)
> >

> >

> >

(1)(1)

> >

(4)(4)

(6)(6)

(5)(5)

> >

(2)(2)

> >

Sorting

This document is to demonstrate the analysis of radix sort.

r e s t a r t ;

For a fixed key size , radix sort on input size is computed by

passes, and each pass sort based on ([1..8]) bits.
We denote is the number of threads per block.

r a d i x _ i n p u t : = n ;

r a d i x _ k e y s i z e : = c ;

r a d i x _ t h r e a d s : = l ;

r a d i x _ i t e r a t i o n s : = s ;

rad ix_b locks := rad ix_ input / (4 * rad ix_ threads) ;

rad ix_buckets := 2^rad ix_ i te ra t ions;

Phase 1: Each block loads and sorts its tile using iterations of 1-bit

split, and write back its -entry digit histogram and sorted data
Each of threads deals with 4 elements, so that each thread
block needs elements to load, and writes back sorted elements

and 2 entry elements.
Each thread block computes iterations (c bits), where

In total, we have thread blocks.

For each block dealing with one bit, it needs 5 steps to compute the
correct position of each input element:
1) Set a "1" in each "0" input;
2) Scan the 1s (using prefix sum algorithm)

174 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

> >

(1.2)(1.2)

(1.3)(1.3)

> >

> >

> >

(1.4)(1.4)

(1.5)(1.5)

> >

(1.1)(1.1)

3) Compute the total false only once per block
4) Compute the position by 2 additions and 1 comparison
5) Scatter input to the correct position
(Refer to http://cudpp.googlecode.
com/svn/trunk/doc/CUDPP_slides.pdf)

To create a bucket, it needs 3 steps
1) Set the bucket to 0
2) Each thread checks 5 elements and update the bucket at most 5
times
3) Each bucket updates its value to the number of elements inside
the bucket

Load elements and write back sorted elements and values of
the bucket

radix_phase1_workperblock := normal(radix_i terat ions*(6*
rad ix_ threads+8*sum(rad ix_ threads /2^(i -1) , i=1 . . log[2]
(rad ix_ threads))+17)+12) ;

radix_phase1_overheadperblock := (4+4+1)*U;

radix_phase1_work := simpli fy(radix_blocks*
radix_phase1_workperblock);

radix_phase1_span := radix_ i terat ions* (4+(log[2] (radix_threads)
+2)*3+(log[2](radix_threads)+2)*5+1+3*4+2*4)+5+5+1+1;

radix_phase1_overhead := normal(radix_blocks*
radix_phase1_overheadperblock);

Phase 2: Perform a prefix sum over the histogram table, stored in
column-major order

We consider buckets, each having , the results from phase 1,

and perform a prefix sum over the histogram table to compute the

175

> >

> >

(2.10)(2.10)

> >

(2.3)(2.3)

(2.4)(2.4)

(2.2)(2.2)

> >

> >

> >

(2.1)(2.1)

(2.6)(2.6)

(2.5)(2.5)

> >

(2.9)(2.9)

(2.8)(2.8)

> >

> >

(2.7)(2.7)

> >

output positions.
Further reference: Multiscan - http://www.moderngpu.
com/intro/scan.html

radix_phase2_elements := radix_blocks*radix_buckets;

radix_phase2_blocks := radix_phase2_elements/(4*radix_threads);

Regard to the prefix sum, one block performs the up-sweep phase,
with 3 instructions, and then performs the down-sweep phase, with 5
instructions, regard to Listing 2 in scan.pdf. (Except mediate step)

radix_phase2_inclusive_workperblock := normal(simplify(8*(sum
(r a d i x _ t h r e a d s / 2 ^ (i - 1) , i = 1 . . l o g [2] (r a d i x _ t h r e a d s)) + 2) + 1)) ;

radix_phase2_inclusive_overheadperblock := (4+4)*U;

radix_phase2_inclusive_work := radix_phase2_blocks*
radix_phase2_inclusive_workperblock;

rad ix_phase2_ inc lus ive_span := s impl i fy (8 * (log[2]
(r a d i x _ t h r e a d s) + 2) + 1) ;

radix_phase2_inclusive_overhead := radix_phase2_blocks*
radix_phase2_inclusive_overheadperblock;

Store Block Sum to Auxiliary Array, here assume the number of

blocks can fit in one shared memory, say .

radix_phase2_mediate_overheadperblock := (4+4)*U;

radix_phase2_mediate_work := normal(simplify(8*(sum
(r a d i x _ t h r e a d s / 2 ^ (i - 1) , i = 1 . . l o g [2] (r a d i x _ t h r e a d s)) + 2) + 1)) ;

radix_phase2_mediate_span := 8*(log[2](radix_threads)+2)+1;

176 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

> >

> >

(2.17)(2.17)

(2.19)(2.19)

(2.10)(2.10)

(2.13)(2.13)

> >

> >

> >

> >

(2.12)(2.12)

> >

(2.11)(2.11)

(2.14)(2.14)

(2.18)(2.18)

(2.16)(2.16)

> >

> >

(2.15)(2.15)

radix_phase2_mediate_overhead :=
radix_phase2_mediate_overheadperblock;

Scan Block Sums
radix_phase2_exclusive_workperblock := 4*radix_threads;

radix_phase2_exclusive_overheadperblock := (4+1+4)*U;

radix_phase2_exclusive_work := (radix_phase2_blocks-1)*
radix_phase2_exclusive_workperblock;

radix_phase2_exclusive_span := 4;

radix_phase2_exclusive_overhead := (radix_phase2_blocks-1)*
radix_phase2_exclusive_overheadperblock;

Total work & span in phase 2
radix_phase2_work := normal(radix_phase2_inclusive_work+
radix_phase2_mediate_work+radix_phase2_exclusive_work);

radix_phase2_span := simplify(radix_phase2_inclusive_span+
radix_phase2_mediate_span+radix_phase2_exclusive_span);

radix_phase2_overhead := normal
(radix_phase2_inclusive_overhead+radix_phase2_mediate_overhead+
radix_phase2_exclusive_overhead);

Phase 3: Each block copies its elements to the correct output
position

We have blocks, and each block copies elements to the

correct output position

177

(4.3)(4.3)

> >

> >

(4.2)(4.2)

(4.4)(4.4)

(2.10)(2.10)

(3.5)(3.5)

(3.1)(3.1)

> >

(4.5)(4.5)

> >

> >

> >
(3.3)(3.3)

(3.4)(3.4)

(4.1)(4.1)

(3.2)(3.2)

> >

> >

> >

> >

Each thread needs the update bucket to compute the position of the
first element

radix_phase3_workperblock := 4*radix_threads;

radix_phase3_overheadperblock := (4+1+4)*U;

radix_phase3_work := radix_blocks*radix_phase3_workperblock;

radix_phase3_span := 4;

radix_phase3_overhead := radix_blocks*
radix_phase3_overheadperblock;

Work & Span & Overhead & N & L & C

rad ix_work := co l l ec t (rad ix_keys ize / rad ix_ i te ra t ions*
(radix_phase1_work+radix_phase2_work+radix_phase3_work), n);

rad ix_span := normal (rad ix_keysize / rad ix_ i terat ions*
(radix_phase1_span+radix_phase2_span+radix_phase3_span));

radix_overhead := normal (radix_keysize / radix_ i terat ions*
(radix_phase1_overhead+radix_phase2_overhead+
radix_phase3_overhead));

rad ix_N := rad ix_keys ize / rad ix_ i tera t ions* (rad ix_b locks+2*
radix_phase2_blocks+radix_blocks);

rad ix_L := rad ix_keys ize / rad ix_ i te ra t ions* (1+3+1) ;

178 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

(6.1)(6.1)

(4.7)(4.7)

(6.3)(6.3)

> >

> >

(5.2)(5.2)

(2.10)(2.10)

(5.1)(5.1)

(4.5)(4.5)

> >

> >

> >

> >

(5.4)(5.4)

> >

(4.6)(4.6)

> >

(6.2)(6.2)

> >

(5.3)(5.3)

radix_C := radix_phase1_span+9*U;

rad ix_Tp := s impl i fy ((rad ix_N/ rad ix_b locks+rad ix_L) * rad ix_C) ;

When

rad ix_work_1 := s imp l i f y (eva l (rad ix_work , [s=1])) ;

radix_overhead_1 := normal (eval (radix_overhead, [s=1])) ;

rad ix_span_1 := normal (eva l (rad ix_span, [s=1])) ;

r a d i x _ T p _ 1 : = s i m p l i f y (e v a l (r a d i x _ T p , [s = 1])) ;

Comparison

radix_work_rat io := s impl i fy (radix_work_1/radix_work) ;

rad ix_overhead_ra t io := co l lec t
(radix_overhead_1/radix_overhead, n);

radix_span_rat io := s impl i fy (radix_span_1/radix_span) ;

Assume , we can reduce overhead by s

179

(6.8)(6.8)

> >

> >

(6.4)(6.4)

(2.10)(2.10)

(6.9)(6.9)

> >

> >

> >

> >

(4.5)(4.5)

(6.7)(6.7)

(6.5)(6.5)

(6.12)(6.12)

(6.10)(6.10)

> >

(6.6)(6.6)

> >

> >

(6.11)(6.11)

radix_Tp_R := s impl i fy (rad ix_Tp_1/ radix_Tp) ;

s i m p l i f y (e v a l (r a d i x _ T p _ R , [s = l o g [2] (l)])) ;

l c N : = c o l l e c t (e x p a n d (2 * (1 + 7 * l) * (8 * l n (l) + 9 * U + 5 3) * l n (l)) , l) ;

l c D : = 1 5 * l * (9 * U + 8 * l n (l) ^ 2 + 4 1 * l n (l) + 1 2) ;

l c N : = 1 1 2 * l n (l) ^ 2 + 1 2 6 * l n (l) * U + 7 4 2 * l n (l) ;

l cD := expand(15* (9 *U+8* ln (l)^2+41* ln (l)+12)) ;

s i m p l i f y (l c N / l c D) ;

expand(14* (8* ln (l)+9*U+53)) ;

e x p a n d (1 5 * (8 * l n (l) + 4 1)) ;

180 Chapter B. Theoretical Analysis of Fundamental Algorithms Using theMCM Model

Appendix C

Documentation for MetaFork-to-CUDA
Code Generator

Our MetaFork-to-CUDA code generator is based on the version 0.04 of PPCG1. The code gen-
eration follows two algorithms, depending on whether one intends to use the shared memory
or not in the kernel code. In the sequel, we refer to these algorithms as the shared memory
and global memory modes of the code generator. These two algorithms are available to the
user as two different targets of the Makefile for compiling our code generator. By default,
the compilation of MetaFork programs, with our extended version of PPCG, uses the global
memory only. This mode is compiled by running make at the root of the source tree of PPCG.
To enable the use of the shared memory, one should compile the code generator by issuing
make mem=mlocal.

In this documentation, we report the assumptions within our MetaFork-to-CUDA code gen-
erator in Appendix C.1, and the schedule tree used as a mathematical representation for Meta-
Fork and parametric CUDA code in Appendix C.2.

C.1 Assumptions on the sytax of MetaFork statements
In order to use MetaFork-to-CUDA code generator without post-processing, we make assump-
tions on the syntax of MetaFork statements as below.

meta schedule { ... }

This statement indicates its body will be launched to hardware accelerators, i.e. NVIDIA
GPUs. It also transfers the data from CPU to GPU before launching kernels and transfers the
data back from GPU to CPU after executing kernels. Furthermore, data transfer between CPU
and GPU is automatically detected by this statement.

Statements supported within the body of the meta schedule statement are a sequence of
nested for loops. Thus, each nested for loops consist of parallel for loops (only 2 or 4)
and/or serial for loops, and will be translated into a kernel call. In the case of parallel for
loops, it is identified with the ‘meta for’ keyword.

1PPCG’s original code is available at https://www.openhub.net/p/ppcg.

181

https://www.openhub.net/p/ppcg

182 Chapter C. Documentation for MetaFork-to-CUDA Code Generator

meta for (initialize; condition; increment) { ... }

initialize: 0
condition: < (a variable)
increment: ++ or += 1
For instance, meta for (int i = 0; i < upper bound; i++) { ... }

The upper bound in the condition indicates either the number of threads per thread-block
or the number of thread-blocks per grid. Thus, for launching a one-dimension kernel, it re-
quires one outer meta for loop specifying the grid size and one inner meta for loop speci-
fying the thread-block size. For a two-dimension kernel, two (immediately) consecutive outer
meta for loops are used to specify the grid sizes, and two (immediately) consecutive inner
meta for loops are used to specify the thread-block sizes. Moreover, the iterators in the first
and second outer (resp. inner) meta for loops correspond to blockIdx.y and blockIdx.x
(resp. threadIdx.y and threadIdx.x), respectively, in the generated kernel code. Fig-
ure C.1 shows an example of a meta schedule statement with a 1-D kernel and a 2-D kernel.

meta_schedule {

// only for loops are supported here

meta_for (int i = 0; i < gridDim.x; i++)

// only for loops are supported here

meta_for (int j = 0; j < blockDim.x; j++) {

... // nested for-loop body

}

// only for loops are supported here

meta_for (int u = 0; u < gridDim.y; u++)

meta_for (int i = 0; i < gridDim.x; i++)

// only for loops are supported here

meta_for (int v = 0; v < blockDim.y; v++)

meta_for (int j = 0; j < blockDim.x; j++) {

... // nested for-loop body

}

}

Figure C.1: An example of the meta schedule statement

for (initialize; condition; increment) { ... }

For those serial for loops, the upper or lower bound of condition should be a linear expres-
sion and increment should be increased or decreased by a constant. This observation is based
on the work reported in [116].

array[expression] or array[expression][expression]

C.2. Schedule tree for MetaFork and parametric CUDA code 183

In the global memory mode, one can only use linear expressions as the indices (expression)
of 1D or 2D arrays. However, one can hide non-linear expressions by using a separate state-
ment, which yields a linear expression that can be used as the indices. For instance, int p
= i * B + j * s + k; array[p] = · · · . Note that non-linear expressions cannot be an-
alyzed by PPCG, such that whether array[p] is reused or coalesced accessed is unknown to
PPCG.

In the shared memory mode, due to the lack of analysis of non-linear expressions, we make
the following assumptions.

1. If expression is a linear expression, all its variables must refer to the variable counters
in the serial for loops of the current loop nest. In this case, we rely on PPCG to analyze
the access patterns of the corresponding array.

2. If expression contains one and only one non-linear term, that is, one variable multiply-
ing by another, say i * B, then one variable must refer to the current thread-block index
and the other must refer to the corresponding thread-block size. One shall hide this non-
linear expression by using a separate statement, while this statement should add a third
variable referring to the thread index. For instance, int p = i * B + j; array[p]
= · · · . Furthermore, adding a constant to the above format of the index of array[] is
supported, say array[p] = array[p+1]. For this format, we extend the analysis cal-
culating the total amount of required shared memory per thread-block. Particularly, for a
2D array, the first (resp. second) expression refers to the first (resp. second) dimension
of grids and thread-blocks, defined by the first (resp. second) outer and inner meta for
loops, respectively.

3. No other forms of non-linear expressions are accepted in expression.
Moreover, in the shared memory mode, not all arrays occurring in the MetaFork source

code will necessarily use the shared memory in the generated CUDA code. In fact, in the addition
to the syntax constraints described before, one of the following conditions must also hold:

1. If array[] (resp. array[][]) is written more than once and threads access it in a
coalesced fashion, then a shared memory counterpart of array[] (resp. array[][])
will be generated.

2. If array[] (resp. array[][]) is read and threads access it in a coalesced fashion, then
a shared memory counterpart of array[] (resp. array[][]) will be generated.

When none of those conditions is satisfied, then shared memory counterpart of array[] (resp.
array[][]) is not generated.

C.2 Schedule tree for MetaFork and parametric CUDA code
Sven Verdoolaege, et al [117] proposed to explicitly represent schedules in the polyhedral
model as a tree structure. We take advantage of this structure with minor modifications, such
that it can represent the execution order of a MetaFork program as well as be converted to the
AST for parametric CUDA kernel code generation.

For each schedule tree, there are three catalogues of node types, including core, external
and convenience nodes. For core nodes, a band node indicates multi-dimensional piecewise
quasi-affine partial schedule, a filter node selects statement instances that are executed by de-
scendants, a sequence node defines its children executed in a given order, and a set node has its

184 Chapter C. Documentation for MetaFork-to-CUDA Code Generator

children executed in an arbitrary order. For those external node types, a domain node includes
a set of statement instances to be scheduled, and a context node specifies external constraints
on symbolic constants. For convenience node types, one can attach additional information to
subtrees as a mark node.

int ub_v = N / B;

meta_schedule {

meta_for (int v = 0; v < ub_v; v++)

meta_for (int u = 0; u < B; u++) {

int inoffset = v * B + u; // S_1

int outoffset = N - 1 - inoffset; // S_4

Out[outoffset] = In[inoffset]; // S_6

}

}

Consider the above MetaFork code for one-dimensional array reversal. Within the nested
for loops, there are three statements referred as S 1, S 4, S 6, respectively, in the schedule
tree below. This schedule tree is initialized based on the original MetaFork code. Two sched-
ule nodes correspond to two meta for loops, respectively, while we set “permutable” and
“coincident” of each of these two schedule nodes to be 1s. Our goal is to extend this schedule
tree so as to obtain another “rich” schedule tree for its corresponding CUDA program.

domain: "[N, ub_v, B] -> { S_6[v, u] : B >= 0 and v >= 0 and v <= -1 + ub_v and

u >= 0; S_1[v, u] : B >= 0 and v >= 0 and v <= -1 + ub_v and u >= 0;

S_4[v, u] : B >= 0 and v >= 0 and v <= -1 + ub_v and u >= 0 }"

child:

schedule: "[N, ub_v, B] -> L_0[{ S_6[v, u] -> [(v)]; S_4[v, u] -> [(v)];

S_1[v, u] -> [(v)] }]"

permutable: 1

coincident: [1]

child:

schedule: "[N, ub_v, B] -> L_1[{ S_6[v, u] -> [(u)]; S_4[v, u] -> [(u)];

S_1[v, u] -> [(u)] }]"

permutable: 1

coincident: [1]

child:

sequence:

- filter: "[N, ub_v, B] -> { S_1[v, u] }"

- filter: "[N, ub_v, B] -> { S_4[v, u] }"

- filter: "[N, ub_v, B] -> { S_6[v, u] }"

The schedule tree shown below is extended from the above schedule tree for generating both
the host and device codes based on our MetaFork code. We first insert a mark node, named
“kernel,” as on Line 16 below that indicates where the kernel call starts. Then, for each thread-
block, we refer variable b0 to the thread-block index blockIdx.x for a one-dimensional ker-
nel, while for a two-dimensional kernel, we refer variable b0 (resp. b1) to blockIdx.y (resp.
blockIdx.x), which corresponds to the first (resp. second) outer meta for loop. Due to

C.2. Schedule tree for MetaFork and parametric CUDA code 185

the fact that the number of thread-blocks per grid depends on the problem size, which is an
arbitrary number, but that the maximum number of thread-blocks supported by streaming mul-
tiprocessors (SMs) is a fixed number, we shall generate a serial loop for each thread-block to
execute in sequence, in case the number of required thread-blocks exceeds the hardware limit.
Thus, we insert a filter node as on Line 21 of the schedule tree below, which means that there
exists an instance for each thread-block starting from b0 and incrementing by 32768 (that is,
the hardware limit).

1 domain: "[N, ub_v, B] -> { kernel0[] : ub_v >= 1 and B >= 0 }"

2 child:

3 context: "[N, ub_v, B] -> { [] : N <= 2147483647 and N >= 0 and

4 ub_v <= 2147483647 and ub_v >= 1 and B <= 2147483647 and B >= 0 }"

5 child:

6 guard: "[N, ub_v, B] -> { [] : ub_v >= 1 and B >= 0 and N <= 2147483647

7 and N >= 0 and ub_v <= 2147483647 and B <= 2147483647 }"

8 child:

9 contraction: "[N, ub_v, B] -> { S_6[v, u] -> kernel0[];

10 S_1[v, u] -> kernel0[]; S_4[v, u] -> kernel0[] }"

11 expansion: "[N, ub_v, B] -> { kernel0[] -> S_6[v, u] : B >= 0 and

12 v >= 0 and v <= -1 + ub_v and u >= 0;

13 kernel0[] -> S_1[v, u] : B >= 0 and v >= 0 and v <= -1 + ub_v and u >= 0;

14 kernel0[] -> S_4[v, u] : B >= 0 and v >= 0 and v <= -1 + ub_v and u >= 0 }"

15 child:

16 mark: "kernel"

17 child:

18 context: "[N, ub_v, B, b0, t0] -> { [] : b0 <= -1 + ub_v and

19 b0 <= 32767 and b0 >= 0 and t0 >= 0 and t0 <= 511 }"

20 child:

21 filter: "[N, ub_v, B, b0] -> { S_1[v, u] : exists

22 (e0 = floor((-b0 + v)/32768): 32768e0 = -b0 + v and b0 >= 0

23 and b0 <= 32767); S_4[v, u] : exists (e0 = floor((-b0 + v)/32768):

24 32768e0 = -b0 + v and b0 >= 0 and b0 <= 32767);

25 S_6[v, u] : exists (e0 = floor((-b0 + v)/32768): 32768e0 = -b0 + v

26 and b0 >= 0 and b0 <= 32767) }"

27 child:

28 schedule: "[N, ub_v, B] -> L_0[{ S_6[v, u] -> [(v)];

29 S_4[v, u] -> [(v)]; S_1[v, u] -> [(v)] }]"

30 permutable: 1

31 coincident: [1]

32 child:

33 extension: "[N, ub_v, B, b0] -> { [i0] -> sync0[];

34 [i0] -> read[[i0] -> In[o1]] : o1 >= B + 1024i0 and

35 o1 <= 1023 + B + 1024i0 and N >= 1 and ub_v >= 1 and B >= 0

36 and o1 <= -1 + N and o1 >= 0; [i0] -> sync1[] }"

37 child:

38 sequence:

39 - filter: "[N, ub_v, B, b0, t0] -> { read[[i0] ->

40 In[B + t0 + 1024i0]] }"

186 Chapter C. Documentation for MetaFork-to-CUDA Code Generator

41 child:

42 schedule: "[N, ub_v, B, b0] -> shared_In[{ read[[i0] ->

43 In[i1]] -> [(-B - 1024i0 + i1)] }]"

44 - filter: "{ sync1[] }"

45 - filter: "[N, ub_v, B, b0] -> { S_1[v, u]; S_4[v, u];

46 S_6[v, u] }"

47 child:

48 filter: "[N, ub_v, B, t0] -> { S_4[v, t0]; S_6[v, t0];

49 S_1[v, t0] }"

50 child:

51 schedule: "[N, ub_v, B] -> L_1[{ S_6[v, u] -> [(u)];

52 S_4[v, u] -> [(u)]; S_1[v, u] -> [(u)] }]"

53 permutable: 1

54 coincident: [1]

55 child:

56 sequence:

57 - filter: "[N, ub_v, B] -> { S_1[v, u] }"

58 - filter: "[N, ub_v, B] -> { S_4[v, u] }"

59 - filter: "[N, ub_v, B] -> { S_6[v, u] }"

60 - filter: "{ sync0[] }"

Regarding the thread index variables, we refer variable t0 to threadIdx.x for a one-
dimensional kernel, while for a two-dimensional kernel, we refer variable t0 (resp. t1) to
threadIdx.y (resp. threadIdx.x), which corresponds to the first (resp. second) inner
meta for loop. The maximum number of threads per thread-block is also limited by the
hardware architecture. However, when the value of the program parameter B, which indicates
the thread-block format, exceeds the hardware limit, the compilation fails when one intends to
launch the kernel from the host code. Thus, although in the schedule tree, we explicitly say
that t0 is bounded by 512 (that is, the hardware limit) on the context node as shown on Line
18, this information is ignored by the subtree of that node. The task to control the value of B
within the hardware limit is left to the user.

For this array reversal example, since we would like to use the shared memory for the input
array In in the kernel, we need to insert relevant nodes in the schedule tree corresponding to
copying data statements from the global memory to the shared memory. As shown on Lines
39-40, we insert a filter node that indicates the new statement reading from array In[B + t0
+ 1024i0]. However, this is a trick that we use to encode the non-linear expression t0 + B
* i0 here, but we later replace it during the phase of translating the AST to the generated code.
Then, a schedule node inserted on Lines 42-43 specifies an array shared In to be allocated
in the shared memory. In addition, the allocation unit size of this array shared In is defined
by o1 on the extension node as on Line 33, while it is bounded by 1024 but later replaced by
BLOCK 0 during the kernel code generation phase. Note that BLOCK 0 is predefined as a macro
and specified its value at compile time.

Within the kernel mark node, a synchronization filter node is inserted on Line 44 after
copy statements as well as on Line 60 after the computation statements. By the end, we insert
several nodes, such as domain and guard, to provide the kernel information for the host code.
The automatically generated CUDA kernel code for array reversal is shown in Figure 5.6 of

C.2. Schedule tree for MetaFork and parametric CUDA code 187

Chapter 5.
Turning our attention to the 1D Jacobi example as shown in Figure 5.3 of Chapter 5, we

observe that each thread-block of the first kernel shall read B+2 elements of the input array,
compute the average and update the result to an intermediate array. In the kernel code, we
intend to use the shared memory for the input, while PPCG uses the global memory. Thereby,
we extend the analysis for using the shared memory, such that when the total amount of re-
quired shared memory is based on the number of threads per thread-block and a constant (if
applicable), we can allocate a corresponding array in the shared memory. Consequently, the
following nodes for copy statements are inserted into the schedule tree for the first CUDA kernel
of 1D Jacobi.

- filter: "[N, T, ub_v, B, b0, t0] -> { read[[i0, i1] -> a[i2]] : exists

(e0 = floor((-B - t0 + i2)/1024): 1024e0 = -B - t0 + i2 and t0 >= 0 and

t0 <= 1023) }"

child:

schedule: "[N, T, ub_v, B, b0] -> shared_a[{ read[[i0, i1] -> a[i2]]

-> [(-B - 1024i1 + i2)] }]"

The above filter node indicates that a for loop will be generated to read for each thread,
since the total amount of required shared memory per thread-block is more than the number of
threads per thread-block. Moreover, the upper bound of this for loop and the allocation unit
size of the array that is declared in the shared memory are defined by o2 on the extension node
below. Note that there is one B used to replace 1024 so as to form the non-linear expression
B * i1. One can easily calculate from the upper and lower bounds of o2 the amount B+2,
which is used as the upper bound of the for loop for the copy statements and is replaced by
BLOCK 0+2 for allocating the array in the shared memory. The automatically generated CUDA
kernel code for 1D Jacobi is shown in Figure 5.4 of Chapter 5.

extension: "[N, T, ub_v, B, b0] -> { [i0, i1] -> sync1[];

[i0, i1] -> sync0[]; [i0, i1] -> read[[i0, i1] -> a[o2]] :

o2 >= B + 1024i1 and o2 <= 1 + 2B + 1024i1 and N >= 1 and

T >= 1 and ub_v >= 1 and B >= 0 and o2 <= -1 + N and o2 >= 0 }"

Appendix D

Examples Generated by PPCG

We present PPCG code with generated CUDA kernels for eight examples: array reversal (Fig-
ure D.1), 1D Jacobi (Figure D.3), 2D Jacobi (Figure D.4), LU decomposition (Figure D.5),
matrix transposition (Figure D.7), matrix addition (Figure D.2), matrix vector multiplication
(Figure D.6), and matrix matrix multiplication (Figure D.8).

#pragma scop

for (int i = 0; i < N; i++)

Out[N - 1 - i] = In[i];

#pragma endscop

__global__ void kernel0(int *In, int *Out, int N) {

int b0 = blockIdx.x;

int t0 = threadIdx.x;

__shared__ int shared_Out[32];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

for (int c0 = 32 * b0; c0 < N; c0 += 1048576) {

__syncthreads();

if (N >= t0 + c0 + 1)

shared_Out[-t0 + 31] = In[t0 + c0];

__syncthreads();

if (N + t0 >= c0 + 32)

Out[N + t0 - c0 - 32] = shared_Out[t0];

}

}

Figure D.1: PPCG code and generated CUDA kernel for array reversal

#pragma scop

for (int v0 = 0; v0 < n; v0++)

for (int v1 = 0; v1 < n; v1++)

c[v0][v1] = a[v0][v1] + b[v0][v1];

#pragma endscop

__global__ void kernel0(int *a, int *b, int *c, int n)

{

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c0 = 32 * b0; c0 < n; c0 += 8192)

if (n >= t0 + c0 + 1)

for (int c1 = 32 * b1; c1 < n; c1 += 8192)

for (int c3 = t1; c3 <= min(31, n - c1 - 1); c3 += 16)

c[(t0 + c0) * n + (c1 + c3)] =

(a[(t0 + c0) * n + (c1 + c3)] +

b[(t0 + c0) * n + (c1 + c3)]);

}

Figure D.2: PPCG code and generated CUDA kernel for matrix addition

188

189

#pragma scop

for (int t = 0; t < T; ++t) {

for (int i = 1; i < N-1; ++i)

b[i] = (a[i-1] + a[i] + a[i+1]) / 3;

for (int i = 1; i < N-1; ++i)

a[i] = b[i];

}

#pragma endscop

__global__ void kernel0(int *a, int *b, int N, int T, int c0)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

for (int c1 = 32 * b0; c1 < N - 1; c1 += 1048576)

if (N >= t0 + c1 + 2 && t0 + c1 >= 1)

b[t0 + c1] = (((a[t0 + c1 - 1] + a[t0 + c1]) +

a[t0 + c1 + 1]) / 3);

}

__global__ void kernel1(int *a, int *b, int N, int T, int c0)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

for (int c1 = 32 * b0; c1 < N - 1; c1 += 1048576)

if (N >= t0 + c1 + 2 && t0 + c1 >= 1)

a[t0 + c1] = b[t0 + c1];

}

Figure D.3: PPCG code and generated CUDA kernel for 1D Jacobi

#pragma scop

for (int t = 0; t < T; t++) {

for (int i = 0; i < N-2; i++)

for (int j = 0; j < N-2; j++)

b[i+1][j+1] = (a[i][j+1] +

a[i+2][j+1] + a[i+1][j] +

a[i+1][j+2]) / 4;

for (int i = 0; i < N-2; ++i)

for (int j = 0; j < N-2; j++)

a[i+1][j+1] = b[i+1][j+1];

}

#pragma endscop

__global__ void kernel0(int *a, int *b, int N, int T, int c0)

{

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c1 = 32 * b0; c1 < N - 2; c1 += 8192)

if (N >= t0 + c1 + 3)

for (int c2 = 32 * b1; c2 < N - 2; c2 += 8192)

for (int c4 = t1; c4 <= min(31, N - c2 - 3); c4 += 16)

b[(t0 + c1 + 1) * N + (c2 + c4 + 1)] =

((((a[(t0 + c1) * N + (c2 + c4 + 1)] +

a[(t0 + c1 + 2) * N + (c2 + c4 + 1)]) +

a[(t0 + c1 + 1) * N + (c2 + c4)]) +

a[(t0 + c1 + 1) * N + (c2 + c4 + 2)]) / 4);

}

__global__ void kernel1(int *a, int *b, int N, int T, int c0)

{

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c1 = 32 * b0; c1 < N - 2; c1 += 8192)

if (N >= t0 + c1 + 3)

for (int c2 = 32 * b1; c2 < N - 2; c2 += 8192)

for (int c4 = t1; c4 <= min(31, N - c2 - 3); c4 += 16)

a[(t0 + c1 + 1) * N + (c2 + c4 + 1)] =

b[(t0 + c1 + 1) * N + (c2 + c4 + 1)];

}

Figure D.4: PPCG code and generated CUDA kernel for 2D Jacobi

190 Chapter D. Examples Generated by PPCG

#pragma scop

for (int k = 0; k < n; ++k) {

for (int i = 0; i < n-k-1; i++) {

// column major representation

// of L and U

int p = i + k + 1;

L[k][p] = U[k][p] / U[k][k];

for (int j = k; j < n; j++)

U[j][p] -= L[k][p] * U[j][k];

}

}

#pragma endscop

__global__ void kernel0(double *L, double *U, int n, int c0)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

__shared__ double shared_U_1[1][1];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

{

if (t0 == 0)

shared_U_1[0][0] = U[c0 * n + c0];

__syncthreads();

for (int c1 = 32 * b0; c1 < n - c0 - 1; c1 += 1048576)

if (n >= t0 + c0 + c1 + 2)

L[c0 * n + (t0 + c0 + c1 + 1)] =

(U[c0 * n + (t0 + c0 + c1 + 1)] / shared_U_1[0][0]);

}

}

__global__ void kernel1(double *L, double *U, int n, int c0)

{

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

__shared__ double shared_L[1][32];

__shared__ double shared_U_1[32][1];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

#define max(x,y) ((x) > (y) ? (x) : (y))

if (n + 30 >= ((32 * b1 + 8191 * c0 + 31) \% 8192) + c0)

for (int c1 = 32 * b0; c1 < n - c0 - 1; c1 += 8192) {

if (t0 == 0)

for (int c3 = t1; c3 <= min(31, n - c0 - c1 - 2); c3 += 16)

shared_L[0][c3] = L[c0 * n + (c0 + c1 + c3 + 1)];

__syncthreads();

for (int c2 = 32 * b1 + 8192 * ((-32 * b1 + c0 + 8160)

/ 8192); c2 < n; c2 += 8192) {

if (t1 == 0 && n >= t0 + c2 + 1)

shared_U_1[t0][0] = U[(t0 + c2) * n + c0];

__syncthreads();

if (n >= t0 + c0 + c1 + 2)

for (int c4 = max(t1, t1 + 16 * floord(-t1 + c0 - c2 - 1,

16) + 16); c4 <= min(31, n - c2 - 1); c4 += 16)

U[(c2 + c4) * n + (t0 + c0 + c1 + 1)] -=

(shared_L[0][t0] * shared_U_1[c4][0]);

__syncthreads();

}

__syncthreads();

}

}

Figure D.5: PPCG code and generated CUDA kernel for LU decomposition

191

#pragma scop

for (int i = 0; i < n; i++) {

c[i] = 0;

for (int j = 0; j < n; j++)

c[i] += a[i][j] * b[j];

}

#pragma endscop

__global__ void kernel0(int *a, int *b, int *c, int n)

{

int b0 = blockIdx.x;

int t0 = threadIdx.x;

__shared__ int shared_a[32][32];

__shared__ int shared_b[32];

int private_c[1];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c0 = 32 * b0; c0 < n; c0 += 1048576) {

for (int c1 = 0; c1 < n; c1 += 32) {

if (n >= t0 + c1 + 1) {

for (int c2 = 0; c2 <= min(31, n - c0 - 1); c2 += 1)

shared_a[c2][t0] = a[(c0 + c2) * n + (t0 + c1)];

shared_b[t0] = b[t0 + c1];

}

__syncthreads();

if (n >= t0 + c0 + 1 && c1 == 0)

private_c[0] = 0;

if (n >= t0 + c0 + 1)

for (int c3 = 0; c3 <= min(31, n - c1 - 1); c3 += 1)

private_c[0] += (shared_a[t0][c3] * shared_b[c3]);

__syncthreads();

}

if (n >= t0 + c0 + 1)

c[t0 + c0] = private_c[0];

__syncthreads();

}

}

Figure D.6: PPCG code and generated CUDA kernel for matrix vector multiplication

#pragma scop

for (int v0 = 0; v0 < n; v0++)

for (int v1 = 0; v1 < n; v1++)

c[v0][v1] = a[v1][v0];

#pragma endscop

__global__ void kernel0(int *a, int *c, int n)

{

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

__shared__ int shared_a[32][32];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c0 = 32 * b0; c0 < n; c0 += 8192)

for (int c1 = 32 * b1; c1 < n; c1 += 8192) {

if (n >= t0 + c1 + 1)

for (int c3 = t1; c3 <= min(31, n - c0 - 1); c3 += 16)

shared_a[t0][c3] = a[(t0 + c1) * n + (c0 + c3)];

__syncthreads();

if (n >= t0 + c0 + 1)

for (int c3 = t1; c3 <= min(31, n - c1 - 1); c3 += 16)

c[(t0 + c0) * n + (c1 + c3)] = shared_a[c3][t0];

__syncthreads();

}

}

Figure D.7: PPCG code and generated CUDA kernel for matrix transpose

192 Chapter D. Examples Generated by PPCG

#pragma scop

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

for (int k = 0; k < n; ++k)

c[i][j] += a[i][k] * b[k][j];

#pragma endscop

__global__ void kernel0(int *a, int *b, int *c, int n)

{

int b0 = blockIdx.y, b1 = blockIdx.x;

int t0 = threadIdx.y, t1 = threadIdx.x;

__shared__ int shared_a[32][32];

__shared__ int shared_b[32][32];

int private_c[1][2];

#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))

#define min(x,y) ((x) < (y) ? (x) : (y))

for (int c0 = 32 * b0; c0 < n; c0 += 8192)

for (int c1 = 32 * b1; c1 < n; c1 += 8192) {

if (n >= t0 + c0 + 1 && n >= t1 + c1 + 1) {

private_c[0][0] = c[(t0 + c0) * n + (t1 + c1)];

if (n >= t1 + c1 + 17)

private_c[0][1] = c[(t0 + c0) * n + (t1 + c1 + 16)];

}

for (int c2 = 0; c2 < n; c2 += 32) {

if (n >= t0 + c0 + 1)

for (int c4 = t1; c4 <= min(31, n - c2 - 1); c4 += 16)

shared_a[t0][c4] = a[(t0 + c0) * n + (c2 + c4)];

if (n >= t0 + c2 + 1)

for (int c4 = t1; c4 <= min(31, n - c1 - 1); c4 += 16)

shared_b[t0][c4] = b[(t0 + c2) * n + (c1 + c4)];

__syncthreads();

if (n >= t0 + c0 + 1 && n >= t1 + c1 + 1)

for (int c3 = 0; c3 <= min(31, n - c2 - 1); c3 += 1) {

private_c[0][0] +=

(shared_a[t0][c3] * shared_b[c3][t1]);

if (n >= t1 + c1 + 17)

private_c[0][1] +=

(shared_a[t0][c3] * shared_b[c3][t1 + 16]);

}

__syncthreads();

}

if (n >= t0 + c0 + 1 && n >= t1 + c1 + 1) {

c[(t0 + c0) * n + (t1 + c1)] = private_c[0][0];

if (n >= t1 + c1 + 17)

c[(t0 + c0) * n + (t1 + c1 + 16)] = private_c[0][1];

}

__syncthreads();

}

}

Figure D.8: PPCG code and generated CUDA kernel for matrix matrix multiplication

Appendix E

The Implementation for Generating
Comprehensive MetaFork Programs

In this appendix, we exhibit the pseudocode of the preliminary implementation of the com-
prehensive optimization algorithm demonstrated in Chapter 7. Algorithm 7 is the implemented
algorithm for generating comprehensive MetaFork programs from a given MetaFork program,
while Algorithm 8 and Algorithm 9 comprise the implemented Optimize procedure. In this
implementation, we consider two resource counters: register usage per thread and data amount
per thread-block to be cached in the shared memory; meanwhile, we apply three optimization
strategies, including reducing register pressure, controlling thread granularity, and common
sub-expression elimination.

Algorithm 7: MultiParametricCodeOptimizer(f ileName)
Input: f ileName, giving the location of the input program
Output: optimized versions of the input program in the form of a case discussion (depending on the

hardware resource limits)
1 plans := [Create Optimization Plan(fileName)];
2 results := [];
3 while the number of plans <> 0 do
4 plan := plans[1]; plans := plans[2..-1];
5 task := ExtractTask(plan) [1];
6 new plans := Optimize(plan, task);
7 for new plan in new plans do
8 if IsCompleted(new plan) then
9 results := [new plan, op(results)];

10 else
11 plans := [new plan, op(plans)];

12 return results;

193

194 Chapter E. The Implementation for Generating Comprehensive MetaFork Programs

Algorithm 8: Optimize(plan, task)
Input: plan, encoding a program being optimized, and task, an optimization task of plan
Output: A list of new plans obtained by optimizing plan according to task

1 local caching task, granularity task, register task, new plans, optimized plans, current vars, alternative;
2 new plans := [];
3 if task[NAME] = “Register Pressure Control” and task[CURRENTLEVEL] <= task[FINALLEVEL] then
4 alternative := Copy Optimization Plan(plan);
5 r := RegisterPressure(plan,task[CURRENTLEVEL]);

/* Accept case */

6 plan[CONSTRAINTS] := [‘<=’(r, R B), op(plan[CONSTRAINTS])];
7 if IsConsistent(plan) then
8 register task := FindTask(plan, “Register Pressure Control”);
9 register task[CURRENTLEVEL] := register task[FINALLEVEL] + 1;

10 plan[LOG] := [“Accept register pressure”, op(plan[LOG])];
11 caching task := FindTask(plan, “Caching”);
12 if caching task[CURRENTLEVEL] > caching task[FINALLEVEL] then
13 granularity task := FindTask(plan, “Granularity Control”);
14 granularity task[CURRENTLEVEL] := granularity task[FINALLEVEL] + 1;
15 plan[LOG] := [“No granularity reduction”, op(plan[LOG])];

16 new plans := [plan, op(new plans)];

/* Refuse case */

17 alternative[CONSTRAINTS] := [‘<’(R B, r), op(alternative[CONSTRAINTS])];
18 if IsConsistent(alternative) then
19 register task := FindTask(alternative, “Register Pressure Control”);
20 if (register task[CURRENTLEVEL] < register task[FINALLEVEL]) then
21 register task[CURRENTLEVEL] := register task[CURRENTLEVEL] + 1;
22 new plans := [alternative, op(new plans)];

23 else
24 optimized plans := Optimize(alternative,FindTask(alternative, “CSE”));
25 if evalb(nops(optimized plans) <> 0) then
26 new plans := [op(optimized plans), op(new plans)];

27 else
28 optimized plans := Optimize(alternative,FindTask(alternative, “Granularity Control”));
29 if evalb(nops(optimized plans) <> 0) then
30 new plans := [op(optimized plans), op(new plans)];

/* No ‘‘else" case since we tried everything we could */

/* to reduce register pressure and we failed! */

/* To be continued in Algorithm 9 */

195

Algorithm 9: Optimize(plan, task)
Input: plan, encoding a program being optimized, and task, an optimization task of plan
Output: A list of new plans obtained by optimizing plan according to task
/* continuing Algorithm 8 */

1 else if task[NAME] = “Caching” and task[CURRENTLEVEL] <= task[FINALLEVEL] then
2 alternative := Copy Optimization Plan(plan);
3 z := CacheAmount(plan);

/* Accept case */

4 plan[CONSTRAINTS] := [‘<=’(z, Z B), op(plan[CONSTRAINTS])];
5 current vars := { op((plan[RING])[variables]) };
6 current vars := (current vars union indets(z)) minus R B, Z B;
7 plan[RING] := RegularChains:∼PolynomialRing([R B, Z B, op(current vars)]);
8 if IsConsistent(plan) then
9 plan[LOG] := [“Accept caching”, op(plan[LOG])];

10 task[CURRENTLEVEL] := task[FINALLEVEL] + 1;
11 register task := FindTask(plan, “Register Pressure Control”);
12 if register task[CURRENTLEVEL] > register task[FINALLEVEL] then
13 granularity task := FindTask(plan, “Granularity Control”);
14 granularity task[CURRENTLEVEL] := granularity task[FINALLEVEL] + 1;
15 plan[LOG] := [“No granularity reduction”, op(plan[LOG])];

16 new plans := [plan, op(new plans)];

/* Refuse case */

17 alternative[CONSTRAINTS] := [‘<’(Z B, z), op(alternative[CONSTRAINTS])];
18 alternative[RING] := plan[RING];
19 if IsConsistent(alternative) then
20 optimized plans := Optimize(alternative,FindTask(alternative, “Granularity Control”));
21 if evalb(nops(optimized plans) <> 0) then
22 new plans := [op(optimized plans), op(new plans)];

23 else
24 optimized plans := Optimize(alternative,FindTask(alternative, “CSE”));
25 if evalb(nops(optimized plans) <> 0) then
26 new plans := [op(optimized plans), op(new plans)];

27 else
28 task := FindTask(alternative, “Caching”);
29 task[CURRENTLEVEL] := task[FINALLEVEL] + 1;
30 new plan := AbandonCaching(alternative);
31 new plan[LOG] := [“Refuse caching”, op(new plan[LOG])];
32 new plans := [new plan, op(new plans)];

33 else if task[NAME] = “CSE” and task[CURRENTLEVEL] <= task[FINALLEVEL] then
34 task[CURRENTLEVEL] := task[CURRENTLEVEL] + 1;
35 new plan := ApplyCSE(plan, task[CURRENTLEVEL]);
36 new plan[LOG] := [“CSE applied”, op(new plan[LOG])];
37 new plans := [new plan, op(new plans)];

38 else if task[NAME] = “Granularity Control” and task[CURRENTLEVEL] <= task[FINALLEVEL] then
39 task[CURRENTLEVEL] := task[FINALLEVEL] + 1;
40 new plan := SetGranularityToOne(plan);
41 new plan[LOG] := [“Granularity set to 1”, op(new plan[LOG])];
42 new plans := [new plan, op(new plans)];

43 return (new plans);

Curriculum Vitae

Name: Ning Xie

Education
Degrees: Doctor of Philosophy in Computer Science

University of Western Ontario, 2012.09 - 2016.09

Master of Science in Information Technology
Hong Kong University of Science and Technology, 2010.09 - 2011.08

Bachelor of Engineering in Computer Science and Technology
Harbin Institute of Technology, 2006.09 - 2010.07

Related Work
Experience: Lecturer of CS3350B - Computer Architecture

University of Western Ontario, 2016.01 - 2016.04

Research Intern, funded by MITACS
Maplesoft, 2013.07 - 2013.10

Publications:

• Changbo Chen, Svyatoslav Covanov, Farnam Mansouri, Marc Moreno Maza, Ning Xie
and Yuzhen Xie. “Parallel Integer Polynomial Multiplication”. Accepted by SYNASC
’16. 2016

• Changbo Chen, Xiaohui Chen, Abdoul-Kader Keita, Marc Moreno Maza and Ning Xie.
“MetaFork: A Compilation Framework for Concurrency Models Targeting Hardware
Accelerators and Its Application to the Generation of Parametric CUDA Kernels”. In
Proceedings of the 25th Annual International Conference on Computer Science and Soft-
ware (CASCON ’15). IBM Corp., 2015.11, p70-79.

• Sardar Anisul Haque, Marc Moreno Maza and Ning Xie. “A Many-core Machine Model
for Designing Algorithms with Minimum Parallelism Overheads”. In Proceedings of
International Conference on Parallel Computing (ParCo’15). IOS press, May 2016,
vol.27, p35-44.

196

197

• Changbo Chen, Farnam Mansouri, Marc Moreno Maza, Ning Xie and Yuzhen Xie.
“The Basic Polynomial Algebra Subprograms”. In Proceedings of the 4th International
Congress on Mathematical Software (ICMS’14). Springer Berlin Heidelberg, 2014.08,
vol.8592, p669-676.

• Sardar Anisul Haque, Xin Li, Farnam Mansouri, Marc Moreno Maza, Wei Pan and Ning
Xie. “Dense Arithmetic over Finite Fields with the CUMODP Library”. In Proceedings
of the 4th International Congress on Mathematical Software (ICMS’14). Springer Berlin
Heidelberg, 2014.08, vol.8592, p725-732.

	Towards Comprehensive Parametric Code Generation Targeting Graphics Processing Units in Support of Scientific Computation
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	List of Appendices
	Introduction
	Contributions of this thesis
	Outline of this thesis

	Background
	Models of computation
	Fork-join model
	PRAM model

	General-purpose GPU computing
	The Compute Unified Device Architecture (CUDA)
	Modern GPU architectures

	Dense arithmetic over finite fields with the CUMODP library
	The MetaFork language
	Automatic parallelization in the polyhedral model
	Z-polyhedron
	Polyhedral iteration domain
	Data dependence graph
	Dependence polyhedron
	Affine transformation
	Farkas multipliers
	Feautrier's algorithm
	PLUTO's algorithm

	Solving systems of polynomial equations and inequalities

	The Basic Polynomial Algebra Subprograms
	Design and specification
	User interface
	Implementation techniques
	Experimental evaluation
	Application

	A Many-Core Machine Model
	Introduction
	A many-core machine model
	Characteristics of the abstract many-core machines
	Many-core machine programs
	Complexity measures for the many-core machine model
	A Graham-Brent theorem with parallelism overhead

	The Euclidean algorithm
	Fast Fourier Transform
	Cooley & Tukey algorithm
	Stockham algorithm
	Comparison of running time estimates

	Polynomial multiplication
	Plain multiplication
	FFT-based multiplication
	Comparison of running time estimates

	Radix sort
	Conclusion

	MetaFork-to-CUDA: Generation of Parametric CUDA Kernels
	Optimizing CUDA kernels depending on program parameters
	Automatic parametric CUDA kernel generation
	The MetaFork-to-CUDA code generator
	Experimentation
	Conclusion

	Generation of Optimized CUDA Kernel Code
	Case study: matrix multiplication
	Experimentation
	Conclusion

	Towards Comprehensive Parametric CUDA Kernel Generation
	Comprehensive optimization
	Hypotheses on the input code fragment
	Hardware resource limits and performance measures
	Evaluation of resource and performance counters
	Optimization strategies
	Comprehensive optimization
	Data-structures
	The algorithm

	Comprehensive translation of an annotated C program into CUDA kernels
	Input MetaFork code fragment
	Comprehensive translation into parametric CUDA kernels

	Implementation details
	Experimentation
	Conclusion

	Conclusion and Future Work
	Bibliography
	Sample Code in the BPAS Library
	Adaptive algorithms
	User interfaces

	Theoretical Analysis of Fundamental Algorithms Using the MCM Model
	Documentation for MetaFork-to-CUDA Code Generator
	Assumptions on the sytax of MetaFork statements
	Schedule tree for MetaFork and parametric CUDA code

	Examples Generated by PPCG
	The Implementation for Generating Comprehensive MetaFork Programs
	Curriculum Vitae

