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Abstract 

There is a growing appreciation in research that subconcussive impacts may affect cognitive 

functioning. Canadian University football players (n=45) were separated into three groups 

based on their position/skill (small skilled, big skilled and big unskilled). An impact 

measuring device (GForceTracker) was used to record the number of impacts that each 

player experienced in a season. Player groups were separated into two levels of impact 

exposure: low and high. Players completed baseline, midseason, postseason, and follow-up 

neurophysiological tests (four months later) to measure P3b amplitude in response to a visual 

oddball paradigm, and high versus low impact subgroups for each player group were 

compared. Small skilled and big skilled players showed significant decreases in P3b 

amplitudes at midseason and postseason, reflecting decreased attentional resources allocated 

to the task. No skill group exhibited a significant change from baseline at follow-up, 

illustrating that in-season cognitive function deficits appear to recover in the offseason. 
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1 Introduction 

1.1 Concussion 

Dr. Robert Cantu, the foremost expert on concussion diagnosis and management, 

described in a review paper that concussions were first brought to society’s attention as a 

medical condition in 1904 through President Roosevelt’s threat of banishment to 

American football20. At the time, the main indicator for a concussion was loss of 

consciousness98, 112, 123. As time passed and the understanding of concussions grew, so 

has the definition of a concussion. Currently, a concussion is defined as a complex 

pathophysiological process that affects the brain and is induced by biomechanical 

forces87. It can result from a direct impact to the head/neck or from an indirect impact to 

the body that transmits an impulsive force to the head72, 87, 148. The diagnosis for a 

concussion involves the assessment of 22 clinical symptoms, physical signs, cognitive 

impairment, behavioural changes, and sleep disturbance by a trained health 

professional87. The 22 clinical symptoms are: headache, “pressure in head”, neck pain, 

nausea or vomiting, dizziness, blurred vision, balance problems, sensitivity to light, 

sensitivity to noise, feeling slowed down, feeling like “in a fog”, “don’t feel right”, 

difficulty concentrating, difficulty remembering, fatigue or low energy, confusion, 

drowsiness, trouble falling asleep, more emotional, irritability, sadness, and nervous or 

anxious86. The breadth of this array of clinical indicators speaks to the diversity of the 

etiology of concussions and the large variety of factors that affect the brain. A recent 

review concluded that in order to better understand what changes occur in the brain, input 
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variables such as head accelerations are used as surrogate parameters to measure head 

impacts and investigate their association with concussion72. 

When a head is impacted, either directly or indirectly, it sustains combined linear and 

rotational accelerations72, 90. Early animal studies by Gurdjian et al. indicated that linear 

acceleration was the primary cause for head injury50, 52. Holbourn et al. acknowledged 

rotational acceleration as a cause for head injury65 and later animal studies by Ommaya et 

al.98 and Gennarelli et al.42, 44 concluded that head injury was not caused by pure linear or 

pure rotational accelerations; rather, it was caused by the brain’s response to complex 

interactions between linear and rotational head accelerations72. However, these 

acceleration measurements were performed on primates44, 98 and cadavers51. Animals do 

not share the same physiology as humans and cadavers do not have any physiologic 

response when impacted. Thus, measurements from human participants were needed. 

Purposefully exposing human beings to potentially injurious head impacts is not ethical 

so professional sport was explored as an arena for research due to its relatively common 

frequency of head impacts. 

1.2 Head Impact Biomechanics in the Sport of Football 

A recent review estimated that there are between 1.6 million and 3.8 million sports-

related concussions in the United States annually,77 with the highest proportion of 

concussions being reported in football45, 80, 109, 119, 126. The mechanisms of injury 

underlying the high concussion rate in the sport of football were unclear, so a variety of 

metrics have been proposed to quantify head impact exposure such as peak linear head 

accelerations, total number of impacts, and linear acceleration thresholds143. Researchers 

at University of California at Davis93 and Evanston Hospital111 quantified head 
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accelerations during football competitions in the early 1970s. Moon et al collected data 

from five players during scrimmage practices and actual conference games93. They report 

that the peak linear accelerations in university football can exceed 1000 g. Reid et al 

collected head acceleration measurements from one middle linebacker during seven Big 

Ten Conference games, and observed peak accelerations between 40 and 230 g111. In a 

follow-up study, they reported that one player sustained 650 head impacts during 

gameplay over the course of three university football seasons, including twelve high 

intensity impacts that produced accelerations between 180 and 400 g112. They observed a 

single concussion which occurred following a 188 g impact111. Linear accelerations of 

that magnitude were between 2.3 and ten times as large as any earlier measurements on 

cadavers or animals53 and were likely inflated due to the low resonant frequency of their 

instrumentation. These early studies in football only examined the linear accelerations of 

the head.  

Recent studies have reconstructed concussion-inducing impacts in the National Football 

League (NFL) via video analysis96, 100, 101, 132. Video data were used to calculate the angle 

and velocity of the impacts and then the impacts were reconstructed in a laboratory 

setting using Hybrid-III (HIII) anthropomorphic test devices (ATDs). Accelerometers 

were located at the centre of mass of the ATD heads. The peak head acceleration in these 

reconstructed concussive impacts was 98  28 g, which was significantly greater than 

impacts received by uninjured players100, 101. However, the findings of these studies were 

limited to specific impacts of NFL athletes that could be viewed on video, and they 

focused on concussive events. 
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1.3 The Head Impact Telemetry System 

Video analysis and laboratory impact reconstruction are labour intensive and limited to 

ATD biofidelity assumptions and validation from video that has limited sample rate 

(30 Hz)96, 100, 101, 103, 131, 150. Real-time high-resolution data regarding head impacts and 

accelerations of football players were needed, and the Head Impact Telemetry (HIT) 

System (Simbex, Lebanon, NH) was created. The HIT System consists of six linear 

spring-mounted accelerometers that are designed to fit inside a Riddell VSR-4 L or XL 

football helmet (Riddell, Elyria, OH) and wirelessly record and transmit head 

acceleration data to a sideline computer34. These data are processed using a proprietary 

algorithm to calculate the peak linear and rotational acceleration magnitudes at the head’s 

centre of mass and the location of each impact22, 26. Peak rotational acceleration is 

calculated by multiplying the vector product of peak linear acceleration and a point of 

rotation 10 cm below the centre of mass of the head and iteratively optimizing the sum of 

squared error between each accelerometer value and the expected acceleration26. The HIT 

System’s head impact kinematics has been validated in computer simulations26 and by 

comparing resultant head linear and rotational accelerations measured between the HIT 

System and an instrumented HIII head form from a linear impactor5. However, a recent 

study performed by Jadischke67 presented evidence that the HIT System does not yield 

accurate data. A pressure-sensing cap was used to examine the fit of the helmet to a 

player’s head. These measurements were then used to properly fit a HIT-instrumented 

helmet to a HIII head form and perform testing via a linear impactor. Previous studies 

had always used a medium-sized helmet5, 82, 96 while Jadischke’s pressure cap indicated 

that a large-sized helmet should be used as this was representative of how players wore 
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their helmets in a comfortable pressure range. It was also noted that previous studies 

reported the correlation between the HIT System and HIII using relative errors, which 

tended to offset large positive and negative deviations. Finally, the linear acceleration of 

any impact recorded by the HIT System had a large range of inaccuracy.  They report that 

an impact that HIT records as 100 g would actually correspond to head accelerations that 

are less than 85 g or greater than 115 g, 55% of the time67. According to one study, this 

range of head accelerations represents a 52-70% risk of concussion150. This high degree 

of uncertainty would likely result in some concussions being missed while other non-

concussed players would be excluded from play.  

Notwithstanding these limitations, the HIT System is the most commonly used system for 

measuring head impact kinematics96. This device has been used to quantify linear and 

rotational head accelerations experienced by football players at collegiate6, 16, 27, 28, 34, 35, 40, 

49, 56-58, 60, 84, 85, 92, 97, 115, 117, 118, high school6, 8-12, 14, 15, 38, 49, 83, 118, 124, and minor23, 128, 129 

levels over the course of complete seasons. While the studies that have implemented the 

HIT System have focused on peak linear accelerations and their effect on head injury, 

rotational accelerations have been overlooked. Rotational accelerations occur from a 

linear force acting at a distance from the center of rotation 116. Early research has 

associated concussions with rotational acceleration of the head and impacts that cause 

shear stress in the brain due to coronal motion43, 44. More recently, the head kinematic 

data from reconstructed NFL impacts100, 101 were used as input into a comprehensive 

finite element computer model of the human head: the Wayne State University Brain 

Injury Model (WSUBIM)149, 150. This study found that intracranial pressure was largely a 

function of linear acceleration. They also found that shear stress was more sensitive to 
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rotational head acceleration in the midbrain (thalamus and brainstem) and relatively 

insensitive to translational acceleration148, 151. Other finite element model studies have 

investigated large cumulative strains in the brain induced by large magnitudes of 

rotational velocity69 as well as examined impact direction and duration and rotational 

velocity and their relationship with strain-induced brain injuries140. These studies 

provided evidence that both rotational velocity and rotational acceleration contribute to 

the cause of concussions. 

In an effort to improve estimates of the head centre of mass acceleration and gather better 

rotational measurements, a device combining the HIT System with six additional 

accelerometers was developed to measure six degree of freedom (6DOF) head 

accelerations in football player impacts114. This device measures linear and rotational 

accelerations at the centre of mass of the head and was validated with linear impactor 

testing. Similar 6DOF devices were incorporated into a mouth guard and combined linear 

accelerometers and gyroscopes to approximate head kinematics during impact4, 17, 62, 146. 

One study reasoned that the mouth guard is located closer to the centre of mass of the 

head than an accelerometer mounted to the crown of the helmet and so it may provide a 

better representation of the head’s centre of mass acceleration during impact than a 

helmet-mounted accelerometer62. However the mouth guard devices cannot clearly 

distinguish between impact and non-impact events in a laboratory setting with ideal 

conditions62, and have not been tested during gameplay. The scope of the on-field data 

was limited to a player wearing their mouth guard properly and clenching down with 

their teeth for every impact and may require hit verification through video. 
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1.4 Hit Count 

While many studies have focused on the kinematic aspect of head impacts, others have 

focused on examining athletes’ hit count during a season. For example, the HIT System 

has been used to monitor 42 high school football athletes’ head impact exposure over the 

course of a single season12. These data were used to suggest that contact should be 

limited in practices to reduce the number of head impacts that athletes sustain during the 

season. Another study made comparable conclusions based on studying 20 college level 

football athletes in one season113.  

One study of two high school football teams over two seasons used the HIT System to 

count the number of subconcussive impacts that the players received during practices and 

games. They found a decrease in visual working memory in relation to head impact 

exposure120. An associated paper from this study found altered functional connectivity 

using functional Magnetic Resonance Imaging (fMRI) in football athletes compared to 

noncontact sport athletes1. Another high school football study used the HIT System, 

neurocognitive testing, and fMRI to evaluate neurocognitive and neurophysiological 

deficits as a function of head impacts124. Two groups of athletes were compared – 

concussed and non-concussed. While finding deficits in neurocognitive and 

neurophysiological functioning in the group of concussed athletes, deficits were also 

found in half of the non-concussed group creating a third study group without observable 

symptoms of concussion but still exhibiting cognitive impairments.  

Similarly, a study of 214 college football and ice hockey athletes used the HIT System to 

monitor head impact exposure over a single season84. Contact athletes were compared 

with noncontact sport athletes and all participants completed a cognitive screening test 
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pre- and postseason. They reported significant differences for main effect of time 

(preseason and postseason) and main effect of athlete type (non-contact vs. contact). As 

well, contact athletes performed significantly poorer on a measure of new learning 

compared to noncontact athletes.  

1.5 The GForce Tracker 

GForce Tracker (Markham, ON, Canada), has developed a device with similar 

functionality to the HIT System and the instrumented mouth guard. It measures 6DOF 

head impact kinematics. The GForce Tracker (GFT3) device is attached to the inside 

shell of football players’ helmets and it collects the linear acceleration, rotational velocity 

and impact location of every impact above a user-defined threshold.  

 

Figure 1.1: The GForce Tracker relative to a quarter. Coordinate system is shown 

in red, with the circled axis directed into the page. 
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The GFT3’s accuracy in measuring head accelerations has been evaluated through linear 

impactor testing19. This evaluation showed that the head linear acceleration magnitudes 

were approximately 49% of the helmet accelerations recorded by the GFT3. This is 

similar to a study on hockey helmets that reported comparable magnitudes around 68%74, 

but quite different than one study that performed helmet to helmet impacts in a laboratory 

with the HIT System and reported that the head accelerations were only 10% of the 

helmet accelerations81. It is unclear whether the differences may be due to experimental 

factors (such as helmet to helmet impacts versus impactor tests) or instrumentation 

differences. Previous research in the Joint Biomechanics Laboratory at Western 

University has developed a correction algorithm to predict head centre of mass 

kinematics from the GFT3 measurements19. 

1.6 Electroencephalogram and Its Use in Measuring 
Concussion 

Electroencephalogram (EEG) is the neurophysiologic measurement of brain electrical 

activity. Electrodes are placed on the scalp to measure changes in electrical activity 

originating from the brain. It is noninvasive and relatively inexpensive, and therefore it 

has become a common tool to examine brain function in concussion125. 

There are several studies of human EEG during head impact in football that were 

published in the late 1960s and early 1970s66, 111, 112. These studies focused on the linear 

forces and time of the impacts. A total of two concussions were captured on EEG during 

impact in these studies. Two of the studies reported the appearance of abnormal EEG 

theta rhythms after severe head impact, but concluded no head trauma had occurred111. 

EEG has been used in animal models to measure induced concussions in an effort to 
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understand the immediate physiologic response to a head impact32, 33, 39, 61, 71, 91, 136, 138, 142. 

EEG measurements have been studied closely following concussions in boxers33, 59, 70. 

Interestingly the boxers showed little or no noticeable changes in EEG immediately 

following a concussion. Also, there was no statistically significant correlation between 

EEG changes and the number of fights or career length. EEG has also been used to 

compare control against concussed participants31, 48, 134. Other studies have used EEG to 

examine the brain at certain time points during recovery from concussion75, 135. EEG has 

been compared with clinical signs and symptoms; however, some clinical discrepancies 

exist despite normal EEG findings137, 141. Conversely, some neuropsychological deficits 

exist despite normal clinical presentation25, 79, 127. All of this has led some authors to 

conclude that EEG is a poor diagnostic tool for concussion41, 105, 134. 

1.6.1 Event-Related Potentials 

Event-related potentials (ERPs) are a time-locked EEG technique in response to a 

stimulus36. ERPs are largely used in research protocols to investigate cognitive 

functioning and are resistant to practice effects. Event-related potentials are the averaged 

EEG signal recorded after a stimulus is presented. These averaged signals are made up of 

different waves that are named according to their polarity (P for positive and N for 

negative) and their latency (i.e. P300 is a positive wave evoked 300 ms after presentation 

of a stimulus).  

1.6.2 The P3 Wave 

The best-known paradigm among the tasks used in ERPs is the Oddball paradigm. It 

consists of the presentation of two stimuli (auditory or visual), each having different 

probabilities of happening (frequent and infrequent). The frequent target stimulus elicits a 
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strong positive P300 wave which is commonly referred to as P3a47. The amplitude of the 

P3a wave is associated with engagement of attention, stimulus recognition, and the 

processing of novelty stimuli76, 106. When the infrequent stimulus occurs, subjects must 

give a physical response (i.e. press of a button). This infrequent target stimulus elicits a 

strong positive P300 wave which is commonly referred to as P3b. The amplitude of the 

P3b wave does not directly measure cognitive performance, but is associated with the 

amount of attentional resources allocated to a task, information processing, and working 

memory76, 106, 122. The P3b wave is a deflection after stimulus onset which has a higher 

peak amplitude than the P3a response47. The latency of these P3 responses has also been 

studied3, 99, 110, 121. 

1.7 Eliciting P3 to Measure Concussion 

The P3 wave has been well studied pertaining to changes in cognitive function associated 

with development63, 130, aging88, and health behaviours64. Changes in P3 have also been 

evaluated in the acute stages of concussion7, 78. Dupuis et al.37 found deficits in P3b 

amplitude following a sport-related concussion in symptomatic athletes compared to 

asymptomatic athletes and non-concussed athletes. Another study reported a delayed P3 

response in both symptomatic and asymptomatic athletes compared to control 

participants, despite normal clinical cognitive evaluations48. A similar study with the 

same athletes tested found an attenuation of the P3b component in concussed athletes 

compared to control participants, and symptomatic athletes showed a greater reduction 

than asymptomatic athletes78. The reduction in P3b amplitude observed in these studies 

represents a reduced amount of attention resources allocated to the task and has been 

observed in other clinical populations with deficits46. 
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ERPs and the P3b wave have also been utilized to evaluate the effects of multiple 

concussions and overall long-term effects of concussion on athletes. For example, a study 

compared the P3b responses for athletes with a history of concussion to those without13. 

They report significant decreases in P3b amplitudes in the athletes with a history of 

concussion even though both groups performed equally on a clinical cognitive 

assessment. Another study compared healthy former athletes who had last suffered a 

concussion over 25 years ago to age-matched former athletes with no concussion 

history31. They found significantly delayed and attenuated P3 waves in the athletes with a 

concussion history.  

1.8 Subconcussive Impacts 

A large amount of research has used the framework that concussions are caused by one 

“big hit”14, 55, 56, 85, 102. Studies examining concussive hits in professional and college 

football have not been able to pinpoint an exact threshold that will lead to concussion, but 

have established a range in which there is a greater likelihood of concussion100. Others 

have explored the effect of multiple concussions sustained over a career has on the 

brain24, 54 and even linked this to a deadly disease – chronic traumatic encephalopathy 

(CTE)89 and neurodegenerative conditions such as ALS21, 139. Many studies observing 

head impact exposures in collegiate football have measured impacts that were 

considerable in magnitude but did not result in concussion18, 28, 29, 92. During a Canadian 

university football game, players receive an average of 17.8 impacts to the head with an 

average rotational acceleration of 1846.41 rad/s2 and average linear acceleration of 21.53 

g18. There is a lack of research on the effects of these subconcussive impacts on the 

human brain. A player’s health risk is further affected by the number (history) of impacts 
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a player has received over their career, the amount of impacts in a short period of time, 

and the magnitude of each impact. As a player’s sub-concussive impact exposure 

increases, there may be changes occurring to their brain that do not result in concussive 

symptoms. Since these impact exposures accumulate over long periods of sports play, 

and each impact’s effect does not present as an acute injury, then the overall effect on the 

player will be gradual and difficult to notice in their behaviour. ERP measurements can 

distinguish changes in brain activity before they manifest as physical symptoms25, 79, 127, 

and accordingly may be a powerful tool for investigating the effects of accumulated sub-

concussive head impacts.   
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2 Purpose Statement and Hypotheses 

2.1 Purpose Statement 

The purpose of this thesis was to determine if Canadian university football players 

experience changes in cognitive functioning, as reflected in their P3b event related 

potentials, in relation to the number of subconcussive impacts that they receive over the 

course of a single season.  

2.2 Hypotheses 

1) Players that experience a higher number of impacts throughout the season will show 

greater deficits in their P3b amplitude than players that experience a lower number of 

impacts. 

2) There will be a relationship between changes in P3b amplitude at midseason and 

postseason time points and the number of head impacts depending on player skill group. 

3) All players will show a return to baseline P3b amplitude at the follow-up time point. 
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3 Methods 

3.1 Participants 

Members of the varsity football team during the Fall 2015 Canadian Interuniversity Sport 

(CIS) football season were eligible to participate in this study, and Western University’s 

Human Subjects Research Ethics Board approved the protocol. There were 110 football 

players on the 2015 Western University Mustangs varsity football team. Forty-seven of 

these players made up the dress roster that competed in games. The coaching staff 

advised which players would consistently play in games throughout the season and the 

positions that they would play. Fifty-six players volunteered to participate in this study, 

and they all provided formal written informed consent. They represented players from 

various football positions who participated in training camp, practices and in games. 

There were ten running backs (including two quarterbacks), nine receivers, nine offensive 

linemen, eight defensive linemen, ten linebackers, and ten defensive backs. Participants’ 

age range was narrow but mass and height varied according to player position (Table 

3.1). The helmets of these players were equipped with sensors that measured the 

magnitude of each impact that the players received during the season. Five of these 

players were subsequently withdrawn from the study based on the coaching staff’s 

assessment that they would have limited playing time. In addition, two participants left 

the team at separate times during the season and one participant received a season-ending 

injury.  
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Table 3.1: The number of players per position and the average and standard 

deviation of their body masses, heights and ages for each position 

Position 

Number 

of Players 

Mass (kg) Height (m) Age (yrs) 

Mean SD Mean SD Mean SD 

Defensive Back 10 84.05 3.96 1.81 0.02 22.34 1.05 

Linebacker 10 97.48 4.03 1.82 0.04 21.42 1.39 

Defensive Line 8 115.50 14.94 1.88 0.05 22.10 1.21 

Offensive Line 9 127.96 13.15 1.91 0.06 21.67 0.76 

Runningback 10 94.08 7.80 1.82 0.05 21.67 1.32 

Wide Receiver 9 86.38 5.35 1.85 0.07 21.90 1.15 

All Positions 56 101.31 19.25 1.85 0.06 21.80 1.23 

 

Participants performed neurophysiological testing (eVox System, Evoke Neuroscience, 

New York, USA) at four separate times during the study – a preseason baseline (before 

training camp began), a midseason test (after five games had been played), a postseason 

test (after the conclusion of the season; ten games had been played), and a follow-up test 

four months after the end of the season. Fifty-one players completed baseline 

neurophysiological testing. For the two participants who left the team during the season, 

one had completed two neurophysiological tests and the other had missed the baseline 
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testing. Another participant missed the postseason test time point due to personal reasons. 

Two participants did not undergo the March follow-up tests as they were not available. 

In an effort to increase the number of participants with a complete data set (helmet 

devices and completed neurophysiological tests), four players who were regular starters 

in games were removed from the study due to incomplete baseline neurophysiological 

tests. However, the devices in these players’ helmets were retained to collect 

representative head impact exposures for players in that position. The device of the 

participant who received a season-ending musculoskeletal injury was reassigned to 

another participant who underwent a baseline neurophysiological test and played the 

same position. The new player did not have a device in his helmet and accordingly his 

head impacts up to this point had not been recorded. In this case, his impacts for the first 

part of season were assumed to be identical to the player that he replaced. The participant 

that suffered the season-ending injury remained in the study - although he did not 

participate in any more practices or games, he did complete neurophysiological testing at 

all four time points. 

3.2 Helmet Instrumentation and GFT3 Measurements 

The GForce Tracker (GFT3, Artaflex Inc., Markham, ON, Canada) is 52 mm long, 

28 mm wide, 10 mm high, and weighs 20 g. It contains a tri-axial accelerometer, a tri-

axial gyroscope, a lithium ion rechargeable battery, and on-board memory for storing up 

to 400 impacts. The accelerometer has a range of  200 g and a 1 g resolution on each 

axis while the gyroscope measures rotational velocities with a range of  2000 /s. The 

GFT3 was triggered when any of the three orthogonal linear accelerometers detected an 
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acceleration greater than the user-defined threshold; this study used a threshold of 15 g 

which is consistent with best practices defined in a recent review.73 The device recorded 

data for a 40 ms window for each impact. The first 8 ms of data preceded the trigger, and 

the remaining 32 ms of data followed the trigger. The linear acceleration signals were 

sampled at 3000 Hz and low-pass filtered with a 300 Hz anti-aliasing filter. The 

rotational velocity signals were sampled at 800 Hz and low-pass filtered with a 100 Hz 

anti-aliasing filter. These sample rates are consistent with recent recommendations147. 

Each impact was time stamped and recorded to the onboard memory of the GFT3.  

The participants’ helmets were instrumented with one GFT3. It was adhered to the inside 

of the helmet, right of the crown cushion, using an industrial strength re-closeable 

fastener (3MTM Dual LockTM Re-closeable Fastener SJ3551 400 Black, 3M Global 

Headquarters, St. Paul, MN). This location and mounting are similar to previous studies2, 

18, 94, 133 and have been validated against measures recorded at the centre of mass of the 

head using a Hybrid III anthropometric test dummy headform19. Helmets were fitted by 

the team’s equipment manager. 
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Figure 3.1: Figure depicts a GFT3 device, circled in red, mounted to the right of the 

crown cushion. 

3.3 Data Collection Protocol 

3.3.1 Practices 

Participant attendance was recorded during every practice. All of the GFT3 devices were 

turned on remotely before the scheduled practice start time. During practice, the timing of 

each scheduled practice activity was recorded. A custom LabVIEW program used these 

time recordings to delete any impacts that were measured by the device when the 

participant was not taking part in practice drills or the helmet was not on the participant’s 

head. Upon the completion of practice, the devices were powered off remotely and 

participants returned their helmets to the charging racks in the team locker room. The 

GFT3 data were wirelessly transmitted to a laptop after every practice. The impact data 

were uploaded to the GFT3’s cloud-based Internet software for storage. A summary file 

of every time stamped impact was exported to Microsoft Excel 2011 (Microsoft, 

Redmond, WA, USA). Each summary file contained the peak linear acceleration, peak 

angular velocity, max HIC15, GSI, and location for each impact on one sheet. The linear 

acceleration time series data and angular velocity time series data for all of the impacts 
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from that practice were recorded on two additional sheets. The devices remained inside 

the helmets while they were connected to a micro USB cord and wall mount adapter to 

charge.  

3.3.2 Games 

Participant attendance was recorded at every game. All of the GFT3 devices were turned 

on remotely while the participants were on the field before the start of the game. A 

custom LabVIEW program was used to record which participants were on the field for 

each play of the game. These data were later used to ensure that only impacts occurring 

to participants competing on the field were included for analysis. Upon the completion of 

each game, the helmets were returned to the charging racks and the same procedure was 

followed for downloading data and charging devices as after practices. 

3.4 EEG Measurements 

3.4.1 Instrumentation 

The eVox System (Evoke Neuroscience, New York, New York, USA) is a portable 

hardware and software system that consists of all necessary components to record 

electrophysiological data and conduct basic biofeedback modalities. The components are 

housed in a protective shipping and travel case that allowed for the participants to be 

tested at TD Stadium and Thames Hall Room 2141 of Western University, as 

appropriate. Two units were used for the testing in this study.  

Each eVox unit consisted of one base station laptop, a tape measure, an amplifier and its 

charging kit, two sets of ear bud earphones, medical tape, a response button, one medium 

and one large cap (Electro Cap International, Eaton, Ohio), electrode gel (Elecro-Gel, 
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Electro Cap International, Eaton, Ohio) and skin preparation gel (NuPrep, Weaver and 

Company, Aurora, Colorado).  

3.4.2 Testing Procedure 

The measuring tape was used to measure the participant’s head circumference in order to 

select the correct cap size for the participant. The EEG cap was applied to the head of the 

participant and connected to the amplifier. The cap is constructed such that the 19 

electrode locations correspond to specific scalp location positions according to the 10-20 

International System for electrode placement68. The amplifier is a battery powered device 

that connects to the EEG cap to measure EEG and ECG data and transmits it wirelessly to 

the base station computer for recording. NuPrep abrasive skin prep was applied to the ear 

lobes of the participant to improve contact and decrease impedance for the ear clips. 

Electro-Gel was inserted in the ear clips which were then placed on the ear lobes. An 

alcohol swab was used to rub the skin below the clavicle on the participant’s left side of 

their chest in preparation for the ECG sensor. Electro-Gel was then inserted in the ECG 

electrode and taped gel side down below the participant’s clavicle. Electro-Gel was 

applied to each of the 19 electrodes on the EEG cap with a blunted needle. Connection 

quality was displayed on the laptop screen for each of the 19 cap electrodes, both earlobe 

electrodes and the ECG electrode. If any of the connections exhibited poor quality, then 

additional gel was inserted. The test did not proceed until all sites indicated that a good 

connection had been established. The ear bud headphones provided auditory instructions, 

prompts, and stimuli to the subject throughout the assessment process.  Upon completion 

of every test, each cap and its electrodes were thoroughly washed with soap and any 
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excess Electro-Gel removed before being used again in accordance with manufacturer 

recommendations. Blunted needles were disposed of after each use (one per participant). 

 

Figure 3.2: Illustration showing the 10-20 System for scalp electrode placement 

during an EEG test. F, T, C, P, and O stand for frontal, temporal, parietal, central, 

and occipital. Even numbers refer to positions on the right hemisphere and odd 

numbers refer to positions on the left hemisphere. 

 

3.4.3 Neurophysiologic Tests 

Participants completed three tasks during each test session: Eyes Open Relaxed, Eyes 

Closed Relaxed, and the Oddball paradigm. During the Eyes Open Relaxed task, each 

participant was instructed to stare at the computer screen for five minutes with their eyes 

open. For the Eyes Closed Relaxed task, the participant spent five minutes with their eyes 
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closed, staying awake. During these two tests, participants were instructed to sit as still as 

possible, minimizing facial and head movement, in order to reduce movement artifact. 

Finally, participants performed the Oddball paradigm for the remaining ten minutes of 

the testing session. Two visual stimuli (a medium blue circle and a large blue circle) were 

presented in a random series such that one of them occurred relatively infrequently (the 

large blue circle). The participants were required to distinguish between the stimuli by 

pressing the response button when the large blue circle appeared on the screen. The 

participants completed a short tutorial and received feedback on their performance before 

the actual test commenced. 

3.5 Data Analysis 

P3b waves were acquired from 19-channel tin sensors using a ground from linked ear 

electrodes at a sampling rate of 250 Hz. All electrode impedances were measured below 

10 k. P3b wave signals from the midline parietal electrode (indicated as Pz in Figure 

3.3) were analyzed for peak amplitude.  Amplitude was measured as the difference 

between the mean pre-stimulus baseline and maximum peak amplitude. The time window 

used to identify P3b was 250 to 500 milliseconds. Only data associated with correct 

stimulus identification were included in the analysis. Eye blinks and eye movement 

artifact were corrected using proprietary digitized algorithms and visual analysis to 

ensure consistent artifact rejection across all participants. 

When a participant finished their neurophysiological testing, their raw EEG data was 

uploaded wirelessly from the base station laptop to a secure, password protected cloud. 

The raw EEG data were then analyzed and reports created that could be accessed through 
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the cloud. If a participant had more than two indiscernible scores for their P3b 

amplitudes, they were excluded from the statistical analysis. 

P3b amplitude changes were calculated relative to baseline. Each subsequent test was 

subtracted from the participant’s baseline test. A negative value indicated a decrease in 

P3b amplitude from baseline while a positive value indicated an increase in P3b 

amplitude from baseline.  

Participants were placed into high impact and low impact groupings at each skill level for 

all three time points depending upon their total number of impacts at the end of season. 

High impact players were distinguished from low impact players by calculating the 

median number of impacts received as a group. Players who had more impacts than the 

median were labelled high impact while those below the median were low impact. If the 

median statistic fell on a player’s exact number of impacts, then the mean of the group 

was then used to decide the placement of that player. If the number of impacts for that 

player was less than the group mean, that player was grouped as a low impact player. If 

the number of impacts for that player was more than the group mean, that player was 

grouped as a high impact player.  

Midseason neurophysiological tests were performed after the team had competed in five 

games. Individual players had participated in between 26 and 31 contact practices 

depending when they completed their midseason neurophysiological test. The midseason 

assessment of the number of impacts was tallied up to the last impact that the players 

received before their midseason neurophysiological test. 
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Postseason and follow-up tests were performed after the team had competed in ten games 

and 42 contact practices. 

3.6 Statistical Analyses 

Only participants who experienced impacts in at least one practice, underwent a 

neurophysiological baseline test, and had at least two discernible P3b amplitudes were 

included for statistical analysis. A total of 45 players met these inclusion criteria.  A 

Shapiro-Wilks test was used to determine the normality of the distribution of the change 

in P3b amplitudes for each testing point at a significance level  of 0.05. Homogeneity of 

variances was assessed by Levene’s test for equality of variances at a significance level  

of 0.05. Outliers were determined via a boxplot analysis. Means and standard deviations 

for the changes from baseline in P3b scores were determined. Analysis of variance tests 

could not be performed on this data set due to the unequal sample sizes in each group and 

the test’s inability to account for missing data. Thus, one-tailed independent-samples t-

tests were performed to assess the specific a priori hypotheses of whether there were 

statistically significant differences in change in P3b amplitudes for high versus low 

impact frequency at the midseason and postseason testing points as well as comparing the 

P3b amplitudes of the different player groups at baseline. Two-tailed independent-

samples t-tests were performed to assess the specific a priori hypothesis of whether there 

were statistically significant returns to baseline P3b amplitudes for high versus low 

impact frequency at the follow-up time point. Given the preliminary nature of this 

experiment and the relatively limited amount of data, no post hoc Bonferroni-style 

adjustments were performed to correct for experiment-wise type I errors. This approach 

has been advocated when multiple tests are performed, but that the variables are 
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independent104. Player skill and player mass defined the between-subjects factor and 

comprised of three levels: small skilled, big skilled, and big unskilled12, 95. The small 

skilled group included wide receivers and defensive backs. The big skilled group 

included linebackers, runningbacks, fullbacks, and quarterbacks. The big unskilled group 

included offensive and defensive linemen. These three skill groups were expected to 

experience similar number and magnitude of impacts12, 18, 95, and the nearly equal number 

of members in each group will make the statistical analysis robust. All statistical tests 

were performed using R Studio 2015 (RStudio, Inc., Boston, MA) and the level of 

significance was set at an alpha level of less than 0.05 a priori. 
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4 Results 

In the following sections, data are presented as mean  standard deviation, unless 

otherwise stated. Box plot analyses were used to determine any outliers and are reported 

accordingly. Change in P3b scores for each level of impact frequency were normally 

distributed, as assessed by Shapiro-Wilk’s test (p>0.05), and there was homogeneity of 

variances, as assessed by Levene’s test for equality of variances (p>0.05), at all time 

points.  

Postseason tests were completed an average of 10.58  10.04 days after the final impact 

to a player’s head was received. The wide spread of this data is explained by three 

outliers of 24, 29, and 68 days since last impact. Two of these players were injured 

during the season so did not continue to receive impacts but continued to complete the 

neurophysiological tests and one player who was not available for a postseason test for 

over three weeks due to personal reasons. 

Follow-up tests were completed an average of 116.89  11.87 days after the final impact 

to a player’s head was received. The wide spread of this data is explained by two outliers 

of 182 and 141 days since last impact. These were the two players injured during the 

season. 
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4.1 P3b Amplitudes Compared to Baseline 

4.1.1 Small Skilled Group 

P3b amplitudes for small skilled high impact players (7.46  7.89 V) had a greater 

decrease from baseline to midseason than did P3b scores for low impact players (1.23  

6.25 V), a statistically significant mean difference of 8.69 V (95% CI,  to 2.68, 

t(15) = 2.53, p=0.011) (Tables of P3b amplitudes are reported in the Appendix). 

P3b amplitudes for small skilled high impact players (4.36  2.05 V) had a greater 

decrease from baseline to postseason than did P3b scores for low impact players 

(0.19  5.51 V), a statistically significant mean difference of 4.17 V (95% CI,  to 

0.54, t(15) = 1.88, p=0.041) (Tables of P3b amplitudes are reported in the Appendix). 

P3b amplitudes for all small skilled players did not show a significant difference from 

baseline to follow-up (p>0.05, tables of P3b amplitudes are reported in the Appendix).   
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Figure 4.1 a) Baseline, b) Midseason, c) Postseason, and d) Follow-Up mean P3b amplitudes for small skilled 

group. High impact group average is in red (minus 1 standard deviation) low impact is in blue (plus 1 

standard deviation). The star denotes a statistically significant difference from baseline between impact 

groups. 
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4.1.2 Big Skilled Group 

P3b amplitudes for big skilled high impact players (2.87  2.25 V) had a greater 

decrease from baseline to midseason than did P3b scores for low impact players (1.10  

3.84 V), a statistically significant mean difference of 3.97 V (95% CI,  to 1.04, 

t(13) = 2.40, p=0.016) (Tables of P3b amplitudes are reported in the Appendix). 

P3b amplitudes for big skilled high impact players (2.27  1.74 V) had a greater 

decrease from baseline to postseason than did P3b scores for low impact players 

(0.27  2.19 V), a statistically significant mean difference of 

2.54 V (95% CI,  to 0.71, t(13) = 2.33, p=0.020) (Tables of P3b amplitudes are 

reported in the Appendix). 

P3b amplitudes for all big skilled players did not show a significant difference from 

baseline to follow-up (p>0.05, tables of P3b amplitudes are reported in the Appendix). 
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Figure 4.2 a) Baseline, b) Midseason, c) Postseason, and d) Follow-Up mean P3b amplitudes for big skilled 

group. High impact group average is in red (minus 1 standard deviation) low impact is in blue (plus 1 standard 

deviation). Star denotes statistically significant difference from baseline between impact groups. 
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4.1.3 Big Unskilled Group 

P3b amplitudes for all big skilled players did not show a significant difference from 

baseline to midseason, baseline to postseason, nor baseline to follow-up (p>0.05, tables 

of P3b amplitudes are reported in the Appendix). 

 

 

 

 

 

 

 

 

 



33 

 

  

  

Figure 4.3 a) Baseline, b) Midseason, c) Postseason, and d) Follow-Up mean P3b amplitudes for big unskilled 

group. High impact group average is in red (minus 1 standard deviation) low impact is in blue (plus 1 standard 

deviation).  
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4.2 Number of Impacts Experienced by 2015 Team 

The small skilled group consisted of 17 participants – nine defensive backs and eight 

wide receivers. Eight participants were classified as high impact players and nine as low 

impact players. The small skilled group received a total of 2014 impacts to the head at 

midseason with an average of 118.47  63.84 impacts per player. By the end of the 

season, small skilled players had amassed 3626 impacts with an average of 213.29 

 110.70 impacts per player. 

The big skilled group consisted of 15 participants – eight linebackers and seven running 

backs. Seven participants were classified as high impact players and eight as low impact 

players. The big skilled group received a total of 2408 impacts at midseason with an 

average of 160.53  73.00 impacts per player.  By the end of the season, players in the 

big skilled group had amassed 4270 impacts with an average of 284.67  141.58 impacts 

per player. 

The big unskilled group consisted of 13 participants – five defensive linemen and eight 

offensive linemen. Six participants were classified as high impact players and seven as 

low impact players. The big unskilled group received a total of 4138 impacts to the head 

at midseason with an average of 318.31  202.18 impacts per player.  By the end of the 

season, big unskilled players had amassed 7,210 impacts with an average of 554.62 

 303.01 impacts per player. 

The whole team received a total of 8,560 impacts to the head at midseason with an 

average of 190.22  146.50 impacts per player.  By the end of the season, the team had 
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amassed 15,106 impacts with an average of 335.69  238.14 impacts per player. (Tables 

of cumulative impacts are reported in the Appendix). 

 

 

 

 

 

 

 

 

 

 

 

4.3 Athlete Exposure Events 

The midseason was comprised of a high intensity training camp with five games 

afterwards. In total, the athletes participated in 23 full practices ( 2 depending when 

their midseason neurophysiological test was completed), four shell practices, seven 

helmet practices, and five games over 46 days.  
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Figure 4.4 Cumulative impacts by group during the 2015 season. The vertical purple line denotes 

midseason. 
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In contrast, the remainder of the season was comprised of 13 full practices, one shell 

practice, five helmet practices, and five games over 44 days.  

 

Table 4.1: Number of athlete exposure events from baseline to midseason and 

midseason to postseason neurophysiological test periods. 

 Baseline - Midseason Midseason - Postseason 

Full Pads Practice 23 13 

Helmet Practice 7 5 

Shell Practice 4 1 

Games (playoff) 5 3 (2) 

Length (days) 46 44 
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Table 4.2: The average and standard deviation for P3b amplitudes (V) in each skill 

group across all four testing points. 

 

Baseline Midseason Postseason Follow-up 

Mean SD Mean SD Mean SD Mean SD 

Small Skilled 19.64 8.68 16.78 9.23 13.82 4.82 14.02 6.02 

Big Skilled 18.05 6.63 17.29 5.55 15.81 5.55 13.47 5.86 

Big Unskilled 17.98 7.03 16.29 4.44 13.38 4.44 15.57 7.72 

Total 18.63 7.45 16.81 7.15 14.36 4.97 14.29 6.41 

Baseline measures of P3b amplitudes were not significantly different between groups 

(p>0.05). 
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5 Discussion 

The purpose of this thesis was to determine whether Canadian university football players 

undergo changes in cognitive functioning based on the number of subconcussive impacts 

that they receive throughout a season of play. P3b amplitude, a component of event 

related potentials that represents the amount of attentional resources allocated to a task, 

information processing, and working memory76, 106, 122, elements that reflect cognitive 

function. Head impacts were measured in 45 players during games and practices for the 

2015 CIS football season. The players were divided into three different skill groups, and 

classified as high or low based on number of head impacts in each group. It was 

hypothesized that players that experience a higher number of head impacts will have 

greater changes in their P3b amplitudes than players that experience a lower number of 

impacts. Statistically significant decreases in P3b amplitude compared to baseline were 

observed at midseason in two of the player skill groups with high number of head 

impacts; these changes reflected decreased amount of attentional resources allocated to a 

task in the high hit groups. The same player skill groups also showed significant 

decreases at the postseason time point, and all three groups were not significantly 

different than baseline at the follow-up time point. 

5.1 Change in P3b amplitudes over the course of the 
season 

Both the small skilled and big skilled groups exhibited a statistically significant decrease 

in P3b amplitude in high impact players compared to low impact players at midseason. 

These decreases did not remain at the follow-up time point. The changes observed at the 

midseason point likely reflect the disproportionally large number of head impacts that the 
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players experienced in the first half of season. Although the number of games and the 

duration of the two periods were quite similar, there were differences in the number of 

head impacts. For example, the big skilled players amassed 546 more impacts in the first 

half of the season compared to the second half of the season while small skilled players 

amassed 402 more impacts between the two test points. One study has reported 

significant differences in the number of impacts received during games, helmet-only 

practices, shell practices, and full-pad practices113. These findings are consistent with the 

current study’s marked increase in number of impacts over the first half of the season in 

the current study. Players are relatively healthy and strong during the first weeks of the 

regular season. Accordingly, they can sustain higher intensity practices that will include 

more contact, consistent with the above study’s conclusion that the level of protective 

equipment is generally a good proxy measure for the intensity of a practice. Interestingly, 

at midseason and postseason the big unskilled players had almost as many head impacts 

as the other two skill groups combined, yet did not exhibit any significant changes in P3b 

amplitudes. The P3b changes were quite variable in this skill group, which could 

contribute to this nonsignificant finding. In a previous study on the same team during a 

previous season, it was found that offensive linemen had significantly lower magnitude 

impacts than offensive back and wide receiver positions18. In the current study, the big 

unskilled group is 61.5% composed of offensive linemen. The small skilled group 

includes wide receivers and big skilled group includes offensive backs (runningbacks, 

quarterbacks, and fullbacks). Taken together, the big unskilled players may experience a 

larger number of impacts, but these impacts are smaller in magnitude than those 
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experienced by the other skill groups. It appears that these types of head impact exposure 

do not lead to decreases in P3b amplitude. 

P3b amplitude also showed a statistically significant decrease in the small skilled and big 

skilled high impact players compared to the low impact players at the end of the season 

Although the team totaled less impacts in the second half of the season compared to the 

first, the high impact players continued to show decreased P3b amplitudes relative to 

baseline. This decrease in total impacts can be explained by the team’s coaching 

philosophy. The coaching philosophy for this team was to reduce the amount of contact 

in practices each week leading up to games. In addition, the coaching directive stated that 

small skilled players should refrain from taking part in contact during the majority of 

practice to avoid injury. In contrast, the coaching directive stated that big skilled and big 

unskilled players continue to endure contact to maintain proper tackling and blocking 

techniques (with the exception of quarterbacks). This occurred during a controlled and 

structured twenty-minute period of practice, which was at a decreased exposure than the 

first half of the season. Coaching philosophies on contact differ between coaches23. The 

coaching directive of this team is consistent with the overarching goal of reducing head 

impact exposures by reducing the number of contact practices, as identified by previous 

studies23, 113. To further protect the brains of football players, proper tackling and 

blocking techniques should be utilized at all times in practice. Removing the head as a 

tool used in the tackling progression could greatly reduce the head impact exposure. 

Coaches can also use tackling dummies and bags during practice for players to practice 

on, rather than teammates. As with most skills, if tackling is taught properly in a 

controlled setting, it should translate to games where the style of play is less controlled. 
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P3b amplitude did not show a statistically significant change from baseline in any skill 

groups at the follow-up time point. Three out of the six impact frequency groups 

exhibited an increase in change in P3b amplitude relative to baseline. This illustrates that 

the changes in cognitive function that occur during the football season appear to recover 

in the offseason. 

The P3b amplitudes in the current study were comparable to previous studies in football 

players. For example, first year high school athletes’ mean P3b amplitude was 12.35 V 

while the upper year athletes’ was 8.83 V145. The mean P3b amplitude for the current 

study across all participants was 16.02 V (Tables of P3b amplitudes are reported in the 

Appendix). These differences are the same order of magnitude, and may have occurred 

due to equipment differences such as the electrode and amplifier impedances. 

Interestingly, the study with high school athletes did not find a relationship between 

subconcussive impacts and brain function over the course of a season, but did find that 

P3b amplitudes were significantly decreased in upper year athletes compared to first year 

athletes.  

The significant decrease in P3b amplitude at a midseason time point yields new 

information about subconcussive impacts. While studies have found decreased 

amplitudes after diagnosed concussion13, 37, 47, 78 and between preseason and postseason 

testing145, we are not aware of any studies that have reported changes during the course of 

the season. One research group has reported statistically significant differences in 

changes relative to baseline on visual memory scores in a cognitive test one month into 

the football season107. This is consistent with impaired efficiency of working memory 
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tasks, similar to deficits in P3b amplitude. In separate papers, this research group also 

reports significant metabolic deviations from impact exposure108, and between football 

players at baseline and noncontact sport controls107, indicating underlying biochemical 

changes consequential to subconcussive impacts.  

Numerous studies have found a decrease in P3b amplitude in concussed athletes 

compared to non-concussed athletes13, 37, 47, 78. The reduction in P3 amplitude observed in 

these studies represents a reduced amount of attention resources allocated to the task. The 

changes in P3b appear to be related to the number of head injuries. For example, one 

study compared athletes with multiple concussions to those with single concussions and a 

control group; they observed that the P3b wave was significantly reduced in the group of 

athletes with multiple concussions compared to those with single concussions and the 

control group30. This idea that accumulated concussions lead to increased impairments is 

echoed in several studies. One study has reported changes in brain metabolism that are 

proportional to the number of accumulated head impacts within the football season108. 

Also, the study that compared first year football players to upper year players, identified 

that the accumulation of subconcussive impacts over multiple seasons might explain the 

differences in P3b amplitude between the two groups. The current study supports these 

findings, as all participants of this study had played at least one year of university 

football. Thus, it is possible that the athletes’ subconcussive histories are accumulating 

each season and are reflected in attenuated P3b amplitudes. 

A study on high school football players measured number of impacts to the head and 

neurophysiologic function with fMRI124. A subset of players in this study were never 

clinically diagnosed with a concussion but performed similarly to individuals who were 
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clinically diagnosed with a concussion. This seems to indicate that there are functional 

neurophysiologic consequences to repeated head impacts, even in players that are not 

diagnosed with a concussion. Similarly, significant relationships between the number of 

head impacts and ensuing neurophysiological change were found in high school football 

players over two seasons8. 

5.2 Limitations 

One limitation of this study was the length of the season. For the current study, the 

regular season only consisted of eight games with an additional two playoff games. 

However, the average NCAA football season is twelve games. The majority of published 

studies followed NCAA teams where the season length is longer. Future studies should 

normalize results to per practice or per athletic exposure so teams of varying schedule 

length can be compared. 

In relation to other studies37, 124, 145, the current study had a very large sample size. 

However, more players will be needed in order to make further comparisons of P3b 

amplitudes between positions, or to investigate thresholds that are leading to 

neurophysiologic consequences. Future work could include a comparison between 

players who participate in practices and play in games, and those who only participate in 

practice.  

Another limitation was the timing of the neurophysiological tests. The midseason 

assessment yielded important information regarding cumulative impact exposure, but 

more frequent testing would further clarify this important relationship. In addition, 

baseline neurophysiological test before the following season would also reveal whether 
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the player fully returned to their previous baseline values over the offseason or whether 

there is some sort of accumulation season over season as reported in one study145.  

Another limitation of the current study is that there was no control group. A comparison 

between noncontact sport athletes and football players would determine if a football 

player’s baseline measure is a true baseline in comparison to healthy young males of the 

same demographic that are not exposed to repetitive subconcussive impacts. In addition, 

this comparison could control for potential changes in cognitive function due to the fact 

that the football players are also engaged in full-time academic studies. 

This study evaluated P3b in response to a visual oddball paradigm stimulus. Another 

study found that an auditory oddball paradigm with simple visual distracter improves 

sensitivity to cognitive deficits144. As well, the current study exclusively focused on the 

amplitude of the P3b wave. P3b latency and P3a waves could be included in future 

investigations as they may offer complementary information about different aspects of 

cognitive function. 

This study did not consider the magnitude of the impacts that the players received, just 

the total sum of them. The fact that we observed statistically significant changes in 

cognition justifies this metric for quantifying head impact exposure, but future studies 

should examine head impact kinematic measures such as accumulated linear and 

rotational accelerations to explore the underlying injury mechanisms more fully.  

A recording threshold of 15 g was chosen for this study which means that we did not 

quantify the number of impacts below this threshold. This may not be important for this 
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study of cognitive functioning since impacts below the 15 g threshold are considered 

activities of daily living and not believed to have any neurological consequence73. 
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6 Conclusion 

Results showed in the small skilled and big skilled groups that P3b amplitudes of high 

impact players had a greater decrease from baseline to midseason than the P3b 

amplitudes of low impact players. Similarly, it was found that the P3b amplitudes of high 

impact players had a greater decrease from baseline to postseason than the P3b 

amplitudes of low impact players in the small skilled and big skilled groups. These 

results are consistent with the hypotheses. In contrast, big unskilled players did not 

exhibit any significant P3b amplitude changes from baseline throughout the season, 

which was not consistent with the hypothesis. As was expected, and consistent with the 

hypothesis, all players showed a return to baseline P3b amplitude at the follow-up test.  
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 Appendix 

Table 0.1: Sample descriptives and statistical significance for the change in P3b 

amplitude (V) between baseline and midseason 

 Midseason 

Group 

High Impact Low Impact 

t df p 

95% Confidence 

Interval 
Mean SD Mean SD 

Small Skilled 7.46 7.89 1.23 6.25 -2.53 15 0.011 [,2.68] 

Big Skilled 2.87 2.25 1.10 3.84 -2.40 13 0.016 [,1.04] 

Big Unskilled 0.53 7.82 4.72 2.60 1.24 11 0.121 [, 9.79] 

Table 0.2: Sample descriptives and statistical significance for the change in P3b 

amplitude (V) between baseline and postseason 

 Postseason 

Group 

High Impact Low Impact 

t df p 

95% Confidence 

Interval 
Mean SD Mean SD 

Small Skilled 4.36 2.05 0.19 5.51 1.88 15 0.041 [,0.54] 

Big Skilled 2.27 1.74 0.27 2.19 2.33 13 0.020 [,0.71] 

Big Unskilled 2.80 3.21 1.52 1.26 0.74 11 0.238 [, 1.08] 
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Table 0.3: Sample descriptives and statistical significance for the change in P3b 

amplitude (V) between baseline and follow-up 

 Follow-up 

Skill Group 

High Impact Low Impact 

t df p 
95% Confidence 

Interval 
Mean SD Mean SD 

Small Skilled 0.89 3.40 0.41 4.71 0.61 15 0.551 [3.24, 5.83] 

Big Skilled 1.86 2.62 2.75 7.29 0.306 13 0.306 [5.41, 7.20] 

Big Unskilled 0.40 2.35 0.88 4.75 0.43 11 0.666 [5.30, 4.34] 

 

Table 0.4: The average and standard deviation of the number of impacts at 

midseason and postseason testing points for each skill group. 

  Midseason Postseason 

Group n Total Mean SD Total Mean SD 

Small Skilled 17 2014 118.47 63.84 3626 213.29 110.70 

Big Skilled 15 2408 160.53 73.00 4270 284.67 141.58 

Big Unskilled 13 4138 256.46 151.52 7210 554.62 303.01 

Total 45 8560 190.22 146.50 15106 335.69 238.14 
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