Existence of positive solutions for a semipositone p-Laplacian problem

Alfonso Castro
Harvey Mudd College
Djairo G. de Figueredo
Universidade Estadual de Campinas, Brazil
Emer Lopera
Universidad Nacional de Colombia, Colombia

Recommended Citation

(With D.G. de Figueiredo and E. Lopera) "Existence of positive solutions for a semipositone p-Laplacian problem", Proc. Roy. Soc.
Edinburgh Sect. A 146 (2016), no. 3, 475-482.

Existence of positive solutions for a semipositone p-Laplacian problem

Alfonso Castro
Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, USA (castro@g.hmc.edu)
Djairo G. de Figueredo
Instituto de Matemática, Estatística e Computação Cientifica, Universidade Estadual de Campinas, Caixa Postal 6065, Campinas, SP 13083-859, Brazil (djairo@ime.unicamp.br)
\section*{Emer Lopera}
Escuela de Matemáticas, Universidad Nacional de Colombia, Sede Medellín, Apartado Aéreo 3840, Medellín, Colombia (edlopera@unal.edu.co)
(MS received 4 November 2014; accepted 25 March 2015)

We prove the existence of positive solutions to a semipositone p-Laplacian problem combining mountain pass arguments, comparison principles, regularity principles and a priori estimates.

Keywords: mountain pass theorem; semipositone problem; positive solutions; p-Laplacian; maximum principles; a priori estimates

2010 Mathematics subject classification: Primary 35J92; 35J20; 35J60

1. Introduction

In this paper we study the existence of positive weak solutions to the problem

$$
\left.\begin{array}{cl}
-\Delta_{p} u=\lambda f(u) & \text { in } \Omega \tag{1.1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right\}
$$

where $\Delta_{p}(u)=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ denotes the p-Laplacian operator, $p>2 . \Omega$ is an open smooth bounded domain in $\mathbb{R}^{N}, N>2$. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function with $f(0)<0$ (semipositone). We assume that there exist $q \in(p-1, N p /(N-p)-1), A>0, B>0$ such that

$$
\left.\begin{array}{cl}
A\left(u^{q}-1\right) \leqslant f(u) \leqslant B\left(u^{q}+1\right) & \text { for } u>0 \tag{1.2}\\
f(u)=0 & \text { for } u \leqslant-1
\end{array}\right\}
$$

(C) 2016 The Royal Society of Edinburgh

We also assume an Ambrosetti-Rabinowitz type of condition, namely that there exist $\theta>p$ and $M \in \mathbb{R}$ such that

$$
\begin{equation*}
u f(u) \geqslant \theta F(u)+M \tag{1.3}
\end{equation*}
$$

where

$$
F(u)=\int_{0}^{u} f(s) \mathrm{d} s
$$

The assumption $f(0)<0$ implies that $u=0$ is not a subsolution to (1.1), making the finding of positive solutions rather challenging; this was pointed out in [6].

The aim of this paper is to prove the following result.
Theorem 1.1. There exists $\lambda^{*}>0$ such that if $\lambda \in\left(0, \lambda^{*}\right)$, then the problem (1.1) has a positive weak solution $u_{\lambda} \in C^{1, \beta}(\bar{\Omega})$ for some $\beta \in(0,1)$.

Our results extend [1, theorem 1.1], where the case $p=2$ was studied. Extending such a theorem to $p>2$ is not straightforward due to the lack of regularity and linearity of Δ_{p}. Associated to (1.1) we have a functional, which will be defined in the next section. We show that this functional has a critical point of mountain pass type and, consequently, a weak solution of (1.1) for appropriate values of $\lambda>0$. Finally, using order properties of $-\Delta_{p}$, we prove that by further restricting λ such a solution is actually positive. For recent results on semipositone problems the reader is referred to $[2,3]$.

2. Preliminary results

Let $W_{0}^{1, p}(\Omega)$ denote the Banach space of functions in $L^{p}(\Omega)$ with first-order partial derivatives in $L^{p}(\Omega)$ and vanishing on $\partial \Omega$. By a weak solution to (1.1) we mean an element $u \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2}\langle\nabla u, \nabla \phi\rangle \mathrm{d} x=\lambda \int_{\Omega} f(u) \phi \mathrm{d} x \tag{2.1}
\end{equation*}
$$

for all $\phi \in W_{0}^{1, p}(\Omega)$. We denote by $\|\cdot\|_{s}$ the norm in the space $L^{s}(\Omega)$ and by $\|\cdot\|_{1 . p}$ the norm in the Sobolev space $W_{0}^{1, p}(\Omega)$.

Associated to (1.1) we have the functional $J_{\lambda}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
J_{\lambda}(u):=\int_{\Omega} \frac{|\nabla u(x)|^{p}}{p} \mathrm{~d} x-\int_{\Omega} \lambda F(u(x)) \mathrm{d} x \tag{2.2}
\end{equation*}
$$

where

$$
F(s):=\int_{0}^{s} f(r) \mathrm{d} r
$$

It is well known that J_{λ} is a functional of class C^{1} (see [7]) and that the critical points of the functional J_{λ} are the weak solutions of (1.1). The proof of theorem 1.1 consists of two main steps:
(i) the proof of existence of one solution via the mountain pass theorem,
(ii) the proof that for proper values of λ the solution is indeed positive.

It follows from (1.2) that there exist positive real numbers A_{1}, B_{1} such that

$$
\begin{equation*}
F(u) \leqslant B_{1}\left(|u|^{q+1}+1\right) \quad \text { for all } u \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
F(u) \geqslant A_{1}\left(|u|^{q+1}-1\right) \quad \text { for all } u \geqslant 0 \tag{2.4}
\end{equation*}
$$

For simplicity of the notation, we define $r=1 /(q+1-p)>0$. Let $\varphi \in W_{0}^{1, p}(\Omega)$ denote a positive differentiable function with $\|\varphi\|_{1, p}=1$. Let us define the constant

$$
\begin{equation*}
c=\left(2 p^{-1} A_{1}^{-1}\|\varphi\|_{q+1}^{-q-1}\right)^{r} \tag{2.5}
\end{equation*}
$$

which will be used in the next lemma.
The next two lemmas prove that J_{λ} satisfies the geometric hypotheses of the mountain pass theorem.

Lemma 2.1. There exists $\lambda_{1}>0$ such that if $\lambda \in\left(0, \lambda_{1}\right)$, then $J_{\lambda}\left(c \lambda^{-r} \varphi\right) \leqslant 0$.
Proof. Let $s=c \lambda^{-r}$, with c and r as defined above. Hence, due to (2.4),

$$
\begin{align*}
J_{\lambda}(s \varphi) & =\int_{\Omega}\left\{\frac{|\nabla(s \varphi)|^{p}}{p}-\lambda F(s \varphi)\right\} \mathrm{d} x \\
& \leqslant \frac{s^{p}}{p}-\lambda A_{1} \int_{\Omega}\left(s^{q+1} \varphi^{q+1}-1\right) \mathrm{d} x \\
& =\frac{s^{p}}{p}-A_{1} s^{q+1}\|\varphi\|_{q+1}^{q+1} \lambda+\lambda A_{1}|\Omega| \\
& =c^{p}\left\{\frac{\lambda^{-r p}}{p}-\lambda A_{1} c^{q+1-p} \lambda^{-r(q+1)}\|\varphi\|_{q+1}^{q+1}\right\}+\lambda A_{1}|\Omega| \tag{2.6}
\end{align*}
$$

Substituting (2.5) into (2.6) yields

$$
\begin{align*}
J_{\lambda}(s \varphi) & \leqslant c^{p}\left(\frac{\lambda^{-r p}}{p}-\frac{2}{p} \lambda^{1-r(q+1)}\right)+\lambda A_{1}|\Omega| \\
& =c^{p} \lambda^{-r p}\left(\frac{1}{p}-\frac{2}{p} \lambda^{1+r p-r(q+1)}\right)+\lambda A_{1}|\Omega| \\
& =-c^{p} \lambda^{-r p} \frac{1}{p}+\lambda A_{1}|\Omega| \tag{2.7}
\end{align*}
$$

Taking $\lambda_{1}<\min \left\{1,\left(p A_{1} c^{-p}|\Omega|\right)^{-1 /(1+p r)}\right\}$, the lemma is proven.
Lemma 2.2. There exist $\tau>0, c_{1}>0$, and $\lambda_{2} \in(0,1)$ such that if $\|u\|_{1, p}=\tau \lambda^{-r}$, then $J_{\lambda}(u) \geqslant c_{1}\left(\tau \lambda^{-r}\right)^{p}$ for all $\lambda \in\left(0, \lambda_{2}\right)$.

Proof. By the Sobolev embedding theorem there exists $K_{1}>0$ such that if $u \in$ $W_{0}^{1, p}(\Omega)$, then $\|u\|_{q+1} \leqslant K_{1}\|u\|_{1, p}$. Let

$$
\begin{equation*}
\tau=\min \left\{\left(2 p K_{1}^{q+1} B_{1}\right)^{-r}, c\|\varphi\|_{1, p}\right\} \tag{2.8}
\end{equation*}
$$

If $\|u\|_{W_{0}^{1, p}}=\tau \lambda^{-r}$, then

$$
\begin{align*}
J_{\lambda}(u) & =\frac{\left(\tau \lambda^{-r}\right)^{p}}{p}-\int_{\Omega} \lambda F(u) \\
& \geqslant \frac{\left(\tau \lambda^{-r}\right)^{p}}{p}-\lambda \int_{\Omega} B_{1}|u|^{q+1}-\lambda|\Omega| B_{1} \\
& \geqslant \frac{\left(\tau \lambda^{-r}\right)^{p}}{p}-\lambda B_{1} K_{1}^{q+1}\|\nabla u\|_{p}^{q+1}-\lambda|\Omega| B_{1} \\
& =\frac{\left(\tau \lambda^{-r}\right)^{p}}{p}-\lambda B_{1} K_{1}^{q+1}\left(\tau \lambda^{-r}\right)^{q+1}-\lambda|\Omega| B_{1} \\
& =\lambda^{-r p}\left[\frac{\tau^{p}}{2 p}-\lambda^{1+r p}|\Omega| B_{1}\right] \\
& \geqslant \lambda^{-r p} \frac{\tau^{p}}{4 p} \tag{2.9}
\end{align*}
$$

where we have used that $\tau \leqslant\left(2 p K_{1}^{q+1} B_{1}\right)^{-r}$ (see (2.8)). Taking $c_{1}=\tau^{p} /(4 p)$ and $\lambda_{2}=\tau^{p /(1+r p)}\left(4 p B_{1}|\Omega|\right)^{-1 /(1+r p)}$, the lemma is proven.

Next, using the mountain pass theorem we prove that (1.1) has a solution $u_{\lambda} \in$ $W_{0}^{1, p}(\Omega)$.
Lemma 2.3. Let $\lambda_{3}=\min \left\{\lambda_{1}, \lambda_{2}\right\}$. There exists $c_{2}>0$ such that, for each $\lambda \in$ $\left(0, \lambda_{3}\right)$, the functional J_{λ} has a critical point u_{λ} of mountain pass type that satisfies $J_{\lambda}\left(u_{\lambda}\right) \leqslant c_{2} \lambda^{-p r}$.

Proof. First we show that J_{λ} satisfies the Palais-Smale condition.
Assume that $\left\{u_{n}\right\}_{n}$ is a sequence in $W_{0}^{1, p}(\Omega)$ such that $\left\{J_{\lambda}\left(u_{n}\right)\right\}_{n}$ is bounded and $J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$. Hence, there exists $\nu>0$ such that $\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \leqslant\left\|\nabla u_{n}\right\|_{p}$ for $n \geqslant \nu$. Thus,

$$
-\left\|\nabla u_{n}\right\|_{p}^{p}-\left\|\nabla u_{n}\right\|_{p} \leqslant-\lambda \int_{\Omega} f\left(u_{n}\right) u_{n} \mathrm{~d} x \quad \text { for } n \geqslant \nu
$$

Let K be a constant such that $\left|J_{\lambda}\left(u_{n}\right)\right| \leqslant K$ for all $n=1,2, \ldots$. From (1.3), we obtain

$$
\frac{1}{p}\left\|\nabla u_{n}\right\|_{p}^{p}-\frac{\lambda}{\theta} \int_{\Omega} f\left(u_{n}\right) u_{n} \mathrm{~d} x+\frac{\lambda}{\theta} M|\Omega| \leqslant \frac{1}{p}\left\|\nabla u_{n}\right\|_{p}^{p}-\lambda \int_{\Omega} F\left(u_{n}\right) \mathrm{d} x \leqslant K .
$$

From the last two inequalities we have

$$
\left(\frac{1}{p}-\frac{1}{\theta}\right)\left\|\nabla u_{n}\right\|_{p}^{p}-\frac{1}{\theta}\left\|\nabla u_{n}\right\|_{p} \leqslant K-\frac{\lambda}{\theta} M|\Omega|
$$

This proves that $\left\{u_{n}\right\}$ is a bounded sequence. Thus, without loss of generality, we may assume that $\left\{u_{n}\right\}$ converges weakly. Let $u \in W_{0}^{1, p}(\Omega)$ be its weak limit. Since $q<N p /(N-p)$, by the Sobolev embedding theorem we may assume that $\left\{u_{n}\right\}$ converges to u in $L^{q}(\Omega)$. These assumptions and Hölder's inequality imply

$$
\begin{equation*}
\int_{\Omega} \lambda f\left(u_{n}\right)\left(u_{n}-u\right) \rightarrow 0 \tag{2.10}
\end{equation*}
$$

From (2.10) and $\lim _{n \rightarrow+\infty} J_{\lambda}^{\prime}\left(u_{n}\right)=0$ we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\left(\nabla u_{n}-\nabla u\right) \mathrm{d} x=0 \tag{2.11}
\end{equation*}
$$

Using again that u is the weak limit of $\left\{u_{n}\right\}$ in $W_{0}^{1, p}(\Omega)$ we also have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Omega}|\nabla u|^{p-2} \nabla u\left(\nabla u_{n}-\nabla u\right) \mathrm{d} x=0 \tag{2.12}
\end{equation*}
$$

By Hölder's inequality,

$$
\begin{align*}
& \int_{\Omega}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u\right)\left(\nabla u_{n}-\nabla u\right) \mathrm{d} x \\
& \quad \geqslant\left\|\nabla u_{n}\right\|_{p}^{p}-\|\nabla u\|_{p}\left\|\nabla u_{n}\right\|_{p}^{p-1}-\left\|\nabla u_{n}\right\|_{p}\|\nabla u\|_{p}^{p-1}+\|\nabla u\|_{p}^{p} \\
& \quad=\left(\left\|\nabla u_{n}\right\|_{p}^{p-1}-\|\nabla u\|_{p}^{p-1}\right)\left(\left\|\nabla u_{n}\right\|_{p}-\|\nabla u\|_{p}\right) \\
& \quad \geqslant 0 \tag{2.13}
\end{align*}
$$

From (2.11)-(2.13),

$$
\lim _{n \rightarrow \infty}\left(\left\|\nabla u_{n}\right\|_{p}^{p-1}-\|\nabla u\|_{p}^{p-1}\right)\left(\left\|\nabla u_{n}\right\|_{p}-\|\nabla u\|_{p}\right)=0
$$

which implies that $\lim _{n \rightarrow \infty}\left\|\nabla u_{n}\right\|_{p}=\|\nabla u\|_{p}$. Since $u_{n} \rightharpoonup u, u_{n} \rightarrow u$ in $W_{0}^{1, p}$. This proves that J_{λ} satisfies the Palais-Smale condition.

From (2.6) we see that

$$
\begin{align*}
\max \left\{J_{\lambda}(s \varphi) ; s \geqslant 0\right\} & \leqslant \frac{C^{1+p r}\left((q+1)^{r(q-p)}-p\right)}{D^{p r} p(q+1)^{r(q+1)}} \lambda^{-p r}+\lambda A_{1}|\Omega| \\
& :=c_{2}^{\prime} \lambda^{-p r}+\lambda A_{1}|\Omega| \leqslant c_{2}^{\prime} \lambda^{-p r}+A_{1}|\Omega| \lambda^{-p r} \\
& :=c_{2} \lambda^{-p r} \tag{2.14}
\end{align*}
$$

where $C=\|\nabla \varphi\|_{p}^{p}$ and $D=A_{1}\|\varphi\|_{q+1}^{q+1}$.
With this estimate and lemma 2.2 , the existence of $u_{\lambda} \in W_{0}^{1, p}(\Omega)$ such that $\nabla J_{\lambda}\left(u_{\lambda}\right)=0$ and

$$
\begin{equation*}
c_{1}\left(\tau \lambda^{-r}\right)^{p} \leqslant J_{\lambda}\left(u_{\lambda}\right) \leqslant c_{2} \lambda^{-p r} \tag{2.15}
\end{equation*}
$$

follows by the mountain pass theorem.
REmark 2.4. The solution $u_{\lambda} \in W_{0}^{1, p}(\Omega)$ is indeed in $C^{1, \alpha}(\bar{\Omega})$ (cf. [5]).
Lemma 2.5. Let u_{λ} be as in lemma 2.3. Then there is a positive constant M_{0} such that

$$
\begin{equation*}
M_{0} \lambda^{-r} \leqslant\left\|u_{\lambda}\right\|_{\infty} \tag{2.16}
\end{equation*}
$$

Proof. We already know that there exists $c_{1}>0$ such that $J\left(u_{\lambda}\right) \geqslant c_{1} \lambda^{-r p}$. On the other hand, we have that $F(s) \geqslant \min F>-\infty$ and $f(s) s \leqslant B_{1}\left(|s|^{q+1}+|s|\right)$ for all
$s \in \mathbb{R}$. Then there is a constant $C_{1}>0$ such that

$$
\begin{aligned}
\lambda \int_{\Omega} f\left(u_{\lambda}\right) u_{\lambda} \mathrm{d} x & =\int_{\Omega}\left|\nabla u_{\lambda}\right|^{p} \mathrm{~d} x \\
& =p J\left(u_{\lambda}\right)+p \lambda \int_{\Omega} F\left(u_{\lambda}\right) \mathrm{d} x \\
& \geqslant p C_{1} \lambda^{-r p}+p|\Omega| \lambda \min F \\
& \geqslant C_{1} \lambda^{-r p}
\end{aligned}
$$

Thus, $\lim _{\lambda \rightarrow 0}\left\|u_{\lambda}\right\|_{\infty}=+\infty$. On the other hand, by (2.3),

$$
\begin{aligned}
\lambda \int_{\Omega} f\left(u_{\lambda}\right) u_{\lambda} \mathrm{d} x & \leqslant B_{1} \lambda \int_{\Omega}\left(\left|u_{\lambda}\right|^{q+1}+\left|u_{\lambda}\right|\right) \mathrm{d} x \\
& \leqslant B_{1} \lambda \int_{\Omega}\left(\left\|u_{\lambda}\right\|_{\infty}^{q+1}+\left\|u_{\lambda}\right\|_{\infty}\right) \mathrm{d} x \\
& \leqslant 2 B_{1}|\Omega| \lambda\left\|u_{\lambda}\right\|_{\infty}^{q+1}
\end{aligned}
$$

where we have used the fact that $0<\lambda<1$. Finally, taking $M_{0}=C_{1} / 2 B_{1}|\Omega|$, the lemma is proven.

Lemma 2.6. Let u_{λ} be as in lemma 2.3. Then there exists $c_{3}>0$ such that

$$
\begin{equation*}
\left\|u_{\lambda}\right\|_{1, p}^{p} \leqslant c_{3} \lambda^{-p r} \tag{2.17}
\end{equation*}
$$

for all $\lambda \in\left(0, \lambda_{3}\right)$.
Proof. By (1.3) and the definition of u_{λ},

$$
\begin{align*}
\lambda \int_{\Omega} \frac{\theta-p}{\theta} u_{\lambda} f\left(u_{\lambda}\right) \mathrm{d} x & \leqslant \lambda \int_{\Omega}\left(u_{\lambda} f\left(u_{\lambda}\right)-p F\left(u_{\lambda}\right)\right) \mathrm{d} x-\frac{\lambda p M|\Omega|}{\theta} \\
& =\int_{\Omega}\left(\left|\nabla u_{\lambda}\right|^{p}-p \lambda F\left(u_{\lambda}\right)\right) \mathrm{d} x-\frac{\lambda p M|\Omega|}{\theta} \\
& \leqslant c_{2} \lambda^{-r p}+\frac{\lambda p M|\Omega|}{\theta} \\
& \leqslant 2 c_{2} \lambda^{-r p} \tag{2.18}
\end{align*}
$$

where we have used $0<\lambda<1$. Now the result follows from (2.18) and the fact that u_{λ} is a weak solution of (1.1).

3. Proof of theorem 1.1

We prove theorem 1.1 by contradiction. Suppose there exists a sequence $\left\{\lambda_{j}\right\}_{j}, 1>$ $\lambda_{j}>0$ for all j, converging to 0 such that the measure $m\left(\left\{x \in \Omega ; u_{\lambda_{j}}(x) \leqslant 0\right\}\right)>0$.

Letting $w_{j}=u_{\lambda_{j}} /\left\|u_{\lambda_{j}}\right\|_{\infty}$, we see that

$$
\begin{equation*}
-\Delta_{p}\left(w_{j}\right)=\lambda_{j} f\left(u_{\lambda_{j}}\right)\left\|u_{\lambda_{j}}\right\|_{\infty}^{1-p} \tag{3.1}
\end{equation*}
$$

From lemmas 2.5 and 2.6 there is a constant C_{3} such that

$$
\begin{equation*}
\left\|w_{j}\right\|_{1, p} \leqslant C_{3} \tag{3.2}
\end{equation*}
$$

By [4, proposition 3.7] the sequence w_{j} is uniformly bounded in $C^{1, \alpha}$ for some $\alpha \in(0,1)$. Hence, for any $\beta \in(0, \alpha)$, the sequence w_{j} has a subsequence that converges in $C_{0}^{1, \beta}$. Let us denote its limit by w.

Next, using comparison principles, we prove that $w(x) \geqslant 0$.
Let $v_{0} \in W_{0}^{1, p}(\Omega)$ be the solution of

$$
\left.\begin{array}{rl}
-\Delta_{p} v_{0}=1 & \text { in } \Omega \tag{3.3}\\
v_{0}=0 & \text { on } \partial \Omega
\end{array}\right\}
$$

Let $K_{j}:=\lambda_{j} \min \{f(t) ; t \in \mathbb{R}\}\left\|u_{\lambda_{j}}\right\|_{\infty}^{1-p}$. Then the solution v_{j} of the equation

$$
\left.\begin{array}{rlrl}
-\Delta_{p} v_{j} & =K_{j} & & \text { in } \Omega \\
v & =0 & & \text { on } \partial \Omega \tag{3.4}
\end{array}\right\}
$$

is given by $v_{j}=\left(-K_{j}\right)^{1 /(p-1)} v_{0}$.
Since $\lambda_{j} f\left(u_{\lambda_{j}}\right)\left\|u_{\lambda_{j}}\right\|_{\infty}^{1-p} \geqslant K_{j}$, it follows by the comparison principle in [9] that $w_{j} \geqslant v_{j}$. Then the fact that $v_{j}(x) \rightarrow 0$ as $j \rightarrow 0$ implies that $w(x) \geqslant 0$ for all $x \in \Omega$.

Since, by hypothesis, $q>p-1$, we have $s=N p r /(N-p)>1$. This result, together with the Sobolev embedding theorem, (1.2) and lemma 2.6, gives

$$
\begin{align*}
\int_{\Omega}\left|f\left(u_{\lambda_{j}}\right)\right|^{s}\left\|u_{\lambda_{j}}\right\|_{\infty}^{s(1-p)} \mathrm{d} x & \leqslant B^{s} 2^{s-1} \int_{\Omega}\left(\left|u_{\lambda_{j}}\right|^{(q+1-p) s}+1\right) \mathrm{d} x \\
& \leqslant C\left(\left\|u_{\lambda_{j}}\right\|_{1, p}^{N p /(N-p)}+1\right) \\
& \leqslant C\left(c_{3} \lambda_{j}^{-r N p /(N-p)}+1\right) \tag{3.5}
\end{align*}
$$

where $C>0$ is a constant independent of j and, without loss of generality, we have assumed $\left\|u_{\lambda_{j}}\right\|_{\infty} \geqslant 1$. From (3.5) and the fact that $r N p /(s N-s p)=1$ we see that $\left\{\lambda_{j} f\left(u_{\lambda_{j}}\right)\left\|u_{\lambda_{j}}\right\|_{\infty}^{1-p}\right\}$ is bounded in $L^{s}(\Omega)$, so we may assume that it converges weakly. Let $z \in L^{s}(\Omega)$ be the weak limit of such a sequence. Since $\left\|u_{\lambda_{j}}\right\|_{\infty}^{1-p} \lambda_{j} \rightarrow 0$ as $j \rightarrow+\infty$ and f is bounded from below, $z \geqslant 0$. Now if $\phi \in C_{0}^{\infty}(\Omega)$, then

$$
\begin{align*}
\int_{\Omega}\|\nabla w\|^{p-2}\langle\nabla w, \nabla \phi\rangle \mathrm{d} x & =\lim _{j \rightarrow \infty} \int_{\Omega}\left\|\nabla w_{j}\right\|^{p-2}\left\langle\nabla w_{j}, \nabla \phi\right\rangle \mathrm{d} x \\
& =\lim _{j \rightarrow \infty} \int_{\Omega}\left\|u_{\lambda_{j}}\right\|_{\infty}^{1-p}\left\|\nabla u_{\lambda_{j}}\right\|^{p-2}\left\langle\nabla u_{\lambda_{j}}, \nabla \phi\right\rangle \mathrm{d} x \\
& =\lim _{j \rightarrow \infty} \int_{\Omega}\left\|u_{\lambda_{j}}\right\|_{\infty}^{1-p} \lambda_{j} f\left(u_{\lambda_{j}}\right) \phi \mathrm{d} x \\
& =\int_{\Omega} z \phi \mathrm{~d} x \tag{3.6}
\end{align*}
$$

Therefore, $-\Delta_{p} w=z$. Since $\left\|w_{j}\right\|_{\infty}=1, w \neq 0$. By Hopf's maximum principle for the p-Laplacian operator (see [8, theorem 5.1]), $w>0$ in Ω and

$$
\frac{\partial w}{\partial \nu}(x)<0 \quad \text { for all } x \in \partial \Omega
$$

Here $\partial / \partial n$ denotes the outward unit normal derivative. Therefore, since $\left\{w_{j}\right\}_{j}$ converges in $C^{1, a}$ to w, for sufficiently large $j, w_{j}(x)>0$ for all $x \in \Omega$. Hence,
$u_{\lambda_{j}}(x)>0$ for all $x \in \Omega$, which contradicts the assumption that

$$
m\left(\left\{x ; u_{\lambda_{j}}(x)<0\right\}\right)>0
$$

This contradiction proves theorem 1.1.

Acknowledgements

A.C. was partly supported by Grant no. 245966 from the Simons Foundation.

References

1 S. Caldwell, A. Castro, R. Shivaji and S. Unsurangsie. Positive solutions for classes of multiparameter elliptic semipositone problems. Electron. J. Diff. Eqns 2007 (2007), paper 96.
2 M. Chhetri and R. Shivaji. Existence of a positive solution for a p-Laplacian semipositone problem. Bound. Value Probl. 2005 (2005), 323-327.
3 M. Chhetri, and P. Girg. Existence of positive solutions for a class of superlinear semipositone systems. J. Math. Analysis Applic. 408 (2013), 781-788.
4 D. G. de Figueiredo, J. P. Gossez and P. Ubilla. Local superlinearity and sublinearity for the p-Laplacian. J. Funct. Analysis 257 (2009), 721-752.
5 M. Guedda and L. Veron. Quasilinear elliptic equations involving critical Sobolev exponents. Nonlin. Analysis 13 (1989), 879-902.
6 P. L. Lions. On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24 (1982), 441-467.
7 P. H. Rabinowitz. Minimax methods in critical point theory with applications to differential equations. Regional Conference Series in Mathematics, vol. 65 (Providence, RI: American Mathematical Society, 1986).
8 P. Takáç. Degenerate elliptic equations in ordered Banach spaces and applications. In Nonlinear differential equations, Chapman and Hall/CRC Research Notes in Mathematics, vol. 404, pp. 111-196 (Boca Raton, FL: CRC Press, 1999).
9 P. Tolksdorf. On the Dirichlet problem for quasilinear equations in domains with conical boundary points. Commun. PDEs 8 (1983), 773-817.

