Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

Model Transformations in Practice Workshop

Jean Bézivin, Bernhard Rumpe, Andy Schiirr, Laurence Tratt

University of Nantes, TU Darmstadt, TU Braunschweig, King’s College London
http://sosym.dcs.kcl.ac.uk/events/mtip/

1 Background

Model Transformations in Practice (MTiP) 2005 was a workshop which pro-
vided a forum for the model transformation community to discuss practical
model transformation issues. Although many different model transformation ap-
proaches have been proposed and explored in recent years, there has been little
work on comparing and contrasting various approaches. Without such compar-
isons, it is hard to assess new model transformation approaches such as the up-
coming OMG MOF/QVT recommendation, or to discern sensible future paths
for the area. Our aims with the workshop were to create a forum that would
help lead to an increased understanding of the relative merits of different model
transformation techniques and approaches. A more advanced understanding of
such merits is of considerable benefit to both the model transformation and
wider modelling communities.

2 Workshop format

In order to achieve the workshops’ aims, we took an unusual approach in the
Call for Papers (CfP). We decided that the workshop would focus on under-
lying model transformations mechanisms, concepts, languages and tools, devel-
opment environments, libraries, practises and patterns, verification and opti-
mization techniques, traceability and composeability issues, applicability scope,
deployment techniques, and so on. In order to achieve aim, we detailed a specific
mandatory example that all submissions had to tackle (detailed in section 5),
in order that it would be easier to compare and contrast submissions. Authors
were asked to take a particular model transformation approach and structure
their submission as follows:

1. An overview of the authors’ chosen model transformation approach.

2. The required aspects of the mandatory model transformation example.

3. Optionally, additional aspects of the mandatory model transformation ex-
ample.

4. Optionally, extra model transformations chosen by the authors from a list
of alternatives.

5. Results and discussion.

Authors were asked to consider and discuss, where relevant, the following issues
with regard to their chosen approach:

https://core.ac.uk/display/76067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

— Composition of transformations.

— Robustness and error handling,

— Debugging support.

— Flexibility, overall usability and power of the chosen approach.

— Whether the approach can express bidirectional and / or incremental (some-
times known as change propagating) transformations.

— Technical aspects such as the ability to deal with model exchange formats,
modelling tool APIs, and layout updates.

3 Accepted submissions

Because of the unusual demands of our CfP, we were pleasantly surprised at both
the quantity and quality of submissions. In the end we accepted the following
eight submissions:

Model Transformation by Graph Transformation: A Comparative Study
Gabriele Taentzer, Karsten Ehrig, Esther Guerra, Juan de Lara, Laszlo Lengyel,
Tihamer Levendovszky, Ulrike Prange, Daniel Varro, Szilvia Varro- Gyapay, Tech-
nische Universitéat Berlin, Universidad Carlos I1I de Madrid, Universidad Au-
tonoma de Madrid, Budapest University of Technology and Economics

Model Transformation with Triple Graph Grammars
Alexander Kénigs, University of Technology Darmstadt

Kent Model Transformation Language
D.H.Akehurst, W.G.Howells, K.D.McDonald-Maier, University of Kent

Practical Declarative Model Transformation With Tefkat
Michael Lawley, Jim Steel, DSTC, University of Rennes

Transforming Models with ATL
Frédéric Jouault, Ivan Kurtev, INRIA

Model Transformation Approach Based on MOLA
Audris Kalnins, Edgars Celms, Agris Sostaks, University of Latvia

On Executable Meta-Languages applied to Model Transformations
Pierre-Alain Muller, Franck Fleurey, Didier Vojtisek, Zoé Drey, Damien Pol-
let, Frédéric Fondement, Philippe Studer, Jean-Marc Jézéquel, IRISA /INRIA,
France, EPFL/IC/UP-LGL, INJ, Switzerland, Université de Haute-Alsace

Model Transformation in Practice Using the BOC Model Transformer
Marion Murzek, Gerti Kappel, Gerhard Kramler, Vienna University of Technol-

ogy

With so many high quality submissions to pick from, choosing only two for
inclusion in these proceedings was an inevitably difficult task. However we believe
that the two papers that the programme committee voted to select are indicative
of the overall high quality of submissions.

4 Programme committee

The workshop had a programme committee which reflected many of the differ-
ent parts of the model transformation community. The programme committee
performed sterling work in reviewing the CfP, voting on papers to accept and so
on. The programme committee consists of:

Wim Bast Compuware, Netherlands

Tony Clark Xactium, UK

Krzysztof Czarnecki University of Waterloo, Canada

Gregor Engels University of Paderborn, Germany

Kerry Raymond DSTC, Australia

Robert France Colorado State University, USA

Jens Jahnke University of Victoria, Canada

Jean-Marc Jézéquel University of Rennes, INRIA, France

Stuart Kent Microsoft, UK

Gabor Karsai Vanderbilt University, Tennessee, USA

Gregor Kiczales University of British Columbia, Canada

Reiko Heckel University of Leicester, UK

Déniel Varro Budapest University of Technology and Economics,
Hungary

R. Venkatesh Tata Consultancy Services, India

Albert Ziindorf University of Kassel, Germany

5 Mandatory example

All submissions were asked to tackle the example as outlined in this section.
The example itself is a slight variation on the well known ‘class to RDBMS’
transformation. This example was chosen because, despite its relative simplicity,
it tends to exercise a broad class of model transformation features. Perhaps
inevitably after the release of this example, prospective authors found small
ambiguities, missing details, and even the odd small mistake in the specification.
We kept the workshop website up to date with ‘errata’ on the CfP, and informally
suggested to authors that in the event of doubt on their part, they were welcome
to choose a particular path provided they documented it appropriately.

The rest of this section contains the model transformation specification as it
was defined in the CfP which the reader will find useful when reading the two
papers selected from the MTiP workshop.

5.1 Meta-models

The meta-model for class models is shown in figure 1. The following OCL con-
straint is also part of the model (the allAttributes operation returns a class’s
local and inherited attributes):

context Class inv:
allAttributes()->size > 0 and
allAttributes()->exists(attr | attr.is_primary = true)

A model consists of classes and directed associations. A class consists, possibly
via inheritance, of one or more attributes, at least one of which must be marked
as constituting the classes’ primary key. An attribute type is either that of
another user class, or of a primitive data type (e.g. String, Int). Associations are
considered to have a 1 multiplicity on their destination. Submissions may assume
the presence of standard data-types as instances of the PrimitiveDataType
class.

Classifier Association
name: String name: String
(Src est
N
Class
PrimitiveDataType arent
is persigent : bool

Attribute

is_primary : bool
name: String

Fig. 1. Class meta-model.

The meta-model for RDBMS models is shown in figure 2. An RDBMS model
consists of one or more tables. A table consists of one or more columns. One
or more of these columns will be included in the pkey slot, denoting that the
column forms part of the tables primary key slot. A table may also contain zero
or more foreign keys. Each foreign key refers to the particular table it identifies,
and denotes one or more columns in the table as being part of the foreign key.

Transformation This version of the transformation contains several subtleties
that authors will need to be aware of. In order to facilitate comparisons be-
tween approaches, authors should ensure that they accurately implement the
transformation.

1. Classes that are marked as persistent in the source model should be trans-
formed into a single table of the same name in the target model. The resultant
table should contain one or more columns for every attribute in the class,
and one or more columns for every association for which the class is marked
as being the source. Attributes should be transformed as per rules 3 — 5.

Table

name : String

fk(:,ys references

FKey

Column

type: String
name: String

Fig. 2. RDBMS meta-model.

. Classes that are marked as non-persistent should not be transformed at the
top level. For each attribute whose type is a non-persistent class, or for each
association whose dst is such a class, each of the classes’ attributes should be
transformed as per rule 3. The columns should be named name _transformed
attr where name is the name of the attribute or association in question, and
transformed attr is a transformed attribute, the two being separated by
an underscore character. The columns will be placed in tables created from
persistent classes.

. Attributes whose type is a primitive data type (e.g. String, Int) should be
transformed to a single column whose type is the same as the primitive data
type.

. Attributes whose type is a persistent class should be transformed to one
or more columns, which should be created from the persistent classes’ pri-
mary key attributes. The columns should be named name_transformed
attr where name is the attributes’ name. The resultant columns should
be marked as constituting a foreign key; the FKey element created should
refer to the table created from the persistent class.

. Attributes whose type is a non-persistent class should be transformed to one
or more columns, as per rule 2. Note that the primary keys and foreign keys
of the translated non-persistent class need to be merged in appropriately,
taking into consideration that the translated non-persistent class may con-
tain primary and foreign keys from an arbitrary number of other translated
classes.

. When transforming a class, all attributes of its parent classes (which must
be recursively calculated), and all associations which have such classes as a

src, should be considered. Attributes in subclasses with the same name as
an attribute in a parent class are considered to override the parent attribute.

7. Ininheritance hierarchies, only the top-most parent class should be converted
into a table; the resultant table should however contain the merged columns
from all of its subclasses.

Notes on the transformation:

— Rules 2, 4 and 5 are recursive — the ‘drilling down’ into attributes’ types can
occur to an arbitrary level.

— Associations do not directly transform into elements; however each associa-
tion which has a particular class as a src must be considered when trans-
forming that class into a table and / or columns.

— When merging the transformation of a non-persistent class, care must be
taken to handle the primary and foreign keys of the transformed class ap-
propriately.

— Foreign keys, primary keys and so on should point to the correct model
elements — transformations which create duplicate elements with the same
names are not considered to provide an adequate solution.

Authors are encouraged to take particular note of the following points when they
create their transformations:

— The recursive nature of the drilling down.
— The creation of foreign keys.
— Associations.

Example execution Figures 3 and 4 show the example input and output to
the class to RDBMS transformation example.

6 Workshop outcomes

The workshop itself was a lively, and well attended affair. We devoted a sub-
stantial portion of the day to discussion. Much of this related to the model
transformation approaches presented, and their relation to other approaches not
presented (e.g. the forthcoming QVT standard). In no particular order, some of
the points raised during discussion were as follows:

— Current model transformation approaches lack scalability in two aspects:
their efficiency, and their code organization. The latter would be aided by
features such as modularity.

— The relationship of model transformations to normal compilers could fruit-
fully be explored.

— A lack of formalization of model transformation approaches, and consequent
inability to reason reliably about model transformations.

— Are bidirectional transformations practical and / or desirable?

:Association

:Association

name="customer"

name="address"

Src \[

o

destl

:Class

:Class

:Class

name="Order"
is_persistent=true

name="Customer"|
is_persistent=true

name="Address"
is_persistent=falsg

attrs

attrs

attrs

:Attribute

:Attribute

:Attribute

name = "order_no
is_primary = true

name = "name"
is_primary = true

name = "addr"
is_primary = true

type type type
name = "int" name = "String"

Fig. 3. Example input.

— The importance of tracing information for tool users to track their transfor-
mations.

— Difficulties in making diagrammatic syntaxes for all aspects of model trans-
formations.

— A need for more sophisticated taxonomies of model transformation systems.

— A need to define the relationship of semantics preserving model transforma-
tions to the concept of refinement.

7 And finally...

We would like to thank the authors of papers, the programme committee, and
all those who turned up and participated on the day itself for making the MTiP
workshop a success. Due to the interest in this subject, we anticipate holding
another workshop on this subject to which you are all cordially invited!

:Table

name="Order"

references|

:Table

name="Customer"

pkey cols \; cols; , cols pkey cols , cols \ , pkey
:Column :Column :Column :Column :Column
name="order_no" name="customer_name" name="customer_address_addr" name="name" name="address_addr"
type="Int" type = "String" type = "String" type="String" type = "String"
cols cols
fkeys
EKev H—
:FKey |

Fig. 4. Example output.

