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Resumen: En este trabajo abordamos el problema de localización y mapeo 

simultáneo (SLAM) utilizando únicamente información obtenida mediante 

una cámara RGB-D. El objetivo principal es desarrollar un sistema SLAM 

capaz de estimar la trayectoria completa del sensor y generar una 

representación 3D consistente del entorno en tiempo real. Para lograr este 

objetivo, el sistema se basa en un método de estimación del movimiento del 

sensor a partir de información de profundidad densa y en técnicas de 

reconocimiento de lugares a partir de características visuales. A partir de estos 

algoritmos, se extraen restricciones espaciales entre fotogramas 

cuidadosamente seleccionados. Con estas restricciones espaciales se construye 

un grafo de poses, empleado para inferir la trayectoria más verosímil. El 

sistema se ha diseñado para ejecutarse en dos hilos paralelos: uno para el 

seguimiento y el otro para la construcción de la representación consistente. El 

sistema se evalúa en conjuntos de datos públicamente accesible, alcanzando 

una precisión comparable a sistemas de SLAM del estado del arte. Además,  

el hilo de seguimiento se ejecuta a una frecuencia de 60 Hz en un ordenador 

portátil de prestaciones modestas. También se realizan pruebas en situaciones 

más realistas, procesando observaciones adquiridas mientras se movía el 

sensor por dos entornos de interiores distintos. 

Palabras claves: SLAM, RGB-D, tiempo real, grafo de poses, Robótica, 

Visión por Computador. 

 

Abstract: In this work, we address the Simultaneous Localization And 

Mapping (SLAM) problem using only an RGB-D camera. The main purpose 

is to develop a SLAM system capable of estimate the full sensor's trajectory 

and generate a globally consistent 3D reconstruction of the environment in 

real time. To achieve this goal, we rely on a dense motion estimation 

algorithm and on a feature based place recognition technique to derive spatial 

constraints between selected frames from a sequence. All computed spatial 

constraints are merged into a graph of poses, used to infer the most likely 

trajectory. The system is designed to run in two parallel threads: one for 

tracking and the other for mapping. The resulting system is evaluated on a 

publicly available benchmark for SLAM systems, reaching an accuracy 

comparable to state-of-the-art SLAM systems in the estimation of the sensor's 

trajectory. Moreover, the tracking thread runs at 60 Hz on a modest laptop. 

Also, we test the system in real settings, processing observations acquired 

while moving the sensor in two different indoor environments. 

Keywords: SLAM, RGB-D, real-time, pose graph, Robotics, Computer 

Vision. 
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Chapter 1

Introducction

Robots have been successfully applied to industrial manufacturing, working in structured en-

vironments and releasing us from repetitive tasks. By now, robots are also taking place in our

everyday life, working in uncontrolled environments and helping us in tasks that require high-

level abilities to be completed. The so-called service robots aim to work in a priori unknown

environments, with the purpose of improving our quality of life.

For instance, TPR-Robina is a robot that guide tours in a museum, and it is also possible

to acquire domestic robots to help us keep our houses clean, like Roomba does, which was

designed to vacuum an entire level of a facility (see Figure 1.1).

In order to provide services and perform autonomously, robots usually need a representation

of their working environment: for example guiding robots need to know where they are, and

home cleaning robots need to know where they have not cleaned yet. These representations

(a) TPR-Robina (b) Roomba 960

Figure 1.1: TRP-Robina museum guide robot (1.2 m height), by Toyota, acquires a new map
whenever the environment changes. Roomba home cleaning robot (0.35 m diameter), by
iRobot, builds a map of the working environment so it does not lose track of visited places.
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Figure 1.2: The inherent cumulative errors arising from the motion estimation results in
inconsistencies when revisiting places.

(commonly referred to as a maps) are required for some important high-level tasks that make a

robot truly autonomous, such as planning, navigation or localization. However, a workspace’s

model is not always available beforehand.

1.1 Motivation

If there is no prior knowledge about the underlying structure of the working environment, and

the robot requires a map to operate, it must be acquired online. Mapping and Localization

are two important problems in mobile robotics, and due its correlation they are usually jointly

addressed. This leads to the Simultaneous Localization and Mapping problem (or SLAM for

short) [49].

A SLAM system aims to incrementally build a consistent map of an unknown environment

while simultaneously determining the robot’s location within this map. Here, by consistent we

mean that there are no different representations of a single place (see Figure 1.2).

Following the previous examples, TPR-Robina robot uses SLAM techniques to update its

map autonomously according to changes in the museum structure, while Roomba creates a

map of visual landmarks using a regular camera for its posterior localization in the house (see

Figure 1.3).

Due its complexity, SLAM systems are conceptually divided into two parts: front-end and

back-end. Briefly, the front-end abstracts sensor measurements in a way that can be useful

for inferences, performed by the back-end [6].

Visual front-ends rely on cameras to perceive the world, which are relatively cheap sensors

that can provide highly distinctive information about the environment [12]. The distinctiveness

is required for feature-based motion estimation (visual odometry [8]) and for place recognition

(loop closure detection [27]): two main front-end components for robust metric mapping

algorithms.
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Figure 1.3: SLAM system of Roomba robots based on visual features, by iRobot.

Motion estimation algorithms compute the relative transformation between two consecutive

poses, and they are subject to cumulative errors. Place recognition techniques are usually

applied to compute additional spatial constraints, independent from odometry ones. These

additional constraints allow to bound the cumulative errors and to generate globally consistent

representations. The back-end performs this last step: it infers the most likely trajectory taking

into account all computed constraints.

For a robot operating in indoor environments, RGB-D cameras are interesting sensors to

consider, as they provide color along with depth information for each single pixel. This allows

to use traditional computer vision techniques on the RGB images and Depth maps, as well as

registration methods working with the point cloud generated from the depth measurements

(see Figure 1.4).

1.2 Goals

The main goal of this work is to develop an efficient visual SLAM system that relies on

information taken from an RGB-D camera, representing the trajectory followed by the sensor

with a graph of poses. The system should be able to run in real-time on a modest laptop

and reconstruct 3D dense maps of indoor environments without any prior knowledge of their

underlying structure.

This main goal can be divided into the following specific goals:

1. Measurement representation: RGB-D cameras provide more than 300,000 depth

measurements on a single observation, therefore efficient representations should be used

to avoid intractable memory requirements.
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Figure 1.4: A dense 3D point cloud generated from an RGB-D observation. The position in
the three-dimensional space of each pixel can be derived from the acquired depth data and
the pinhole camera model.

2. Keyframe selection: Since these cameras record observations at 30 Hz, efficient rep-

resentations are not enough. Only carefully selected frames should be considered.

3. Pose graph modeling: All spatial constraints from visual odometry and loop closure

detection should be integrated into a single model, by building a graph of 3D sensor

poses.

4. Global consistency: The most likely trajectory should be inferred from all computed

constraints, resulting in a globally consistent representation of the environment.

1.3 Related Work

Since the introduction of low-cost RGB-D sensors several SLAM systems have been developed

relying on such cameras as the only input device. To the best of our knowledge, the first SLAM

system based on this sensors was developed by Henry et. al. [17]. Their system extracts visual

features along with 3D information to estimate the sensor pose and build a graph of spatial

constraints. In order to reduce the number of nodes in the graph, keyframes are selected based

on the number of features matched with the previous keyframe. On a separated execution

thread, to detect when the sensor is revisiting a place, loop closures are found with previous

keyframes following a Bag of Words approach [46]. With this information the pose graph is

optimized, resulting in a globally consistent map.

The place recognition method described above tries to detect a loop closure by comparing

the last keyframe with each previous one, which results in a linear growth of the time complexity

with respect to the number of keyframes. In order to ensure real-time execution for large-scale
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environments, the RTAB-MAP system, developed by Labbé and Michaud [25], keeps a fixed

number of keyframe candidates for loop closure detection. However, this strategy negatively

affects the place recognition performance.

Alternatively, more efficient place recognition methods can be used for long trajectories

under real-time constraints. This is the case of DBoW2, proposed by Gálvez-López and

Tardós [11], a Bag of Words approach built on top of a binary feature space, allowing to

detect loop closures in databases containing 20,000 images at 30 Hz. This approach for place

recognition is used, for instance, by the monocular ORB-SLAM system (developed by Mur-

Artal et. al. [32]) through the utilization of ORB visual features.

Following a different perspective, Kerl et. al. [23] propose a dense (i. e. featureless)

approach for visual SLAM, based on a fast dense visual odometry method that minimizes

both intensity and depth errors from RGB-D observations. Keyframes are selected based on

an entropy measure of the covariance of the pose estimation. Loop closure candidates are

keyframes that fall in a radius search from the current keyframe 3D position, being validated

with the same entropy metric. Although loop closure methods with metric search works well

for small environments where loops occur frequently, they can fail in environments with large

loops [33].

In this work, we present an hybrid SLAM system that leverages the short execution times

of dense visual odometry methods along with the robustness of feature-based place recognition

techniques.

1.4 Resources

The SLAM system was written in the C++ programming language, relying on the following

open-source libraries:

• MRPT: A general library to develop robotic applications.

• PCL: A large scale library for 3D point cloud processing.

• OpenCV: A library for computer vision and image processing.

• g2o: A general framework for optimizing graph-based non-linear functions.

• DBoW: A library for binary Bag of Words image representation and retrieval.

• Boost: An extensive collection of general-purpose libraries, including smart pointer

management and multithread programming features.

• Eigen: A library for linear algebra, involving matrices, numerical solvers and algorithms.

• DLib: A collection of classes to solve common programming tasks.

• OpenMP: An application interface for parallel computing.
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as well as on the following hardware components:

• An RGB-D Camera (Asus Xtion Pro Live).

• A Laptop (Compaq CQ58).

1.5 Document outline

The rest of this document is structured as follows:

• Chapter 2 details the theoretical aspects of the main components behind the developed

SLAM system.

• Chapter 3 covers the experimental evaluation of these components, as well as of the

performance of the whole system.

• Chapter 4 relates the conclusions derived from this work and interesting improvements

not covered here but that should be taken into account for future works.
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Chapter 2

System Overview

The developed system is composed of a visual front-end and a graph-based back-end (see

Figure 2.1). The front-end performs motion estimation with DIFODO [22], a fast dense

visual odometry method, and place recognition for both keyframe selection and loop closure

detection using DBoW2 [11], an efficient Bag of Words approach relying on FAST [40] features

and BRIEF [7] binary descriptor. The back-end performs graph optimization for a globally

consistent representation under g2o [24] framework.

The system has been designed to run in two separate threads: one for tracking and keyframe

selection, and the other for loop closure detection and pose graph optimization. The tracking

thread must process observations at sensor speed in order to achieve real-time performance,

while the mapping thread does not have strict run-time constraints and therefore is reserved

for algorithms with linear growth complexity. For the parallel execution of the threads we rely

on the OpenMP API [37].

Figure 2.1: Flowchart of the developed SLAM system for a single RGB-D camera. Tracking
and mapping threads are executed in parallel on a dual-core processor.
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2.1 Front-end

A front-end abstracts sensor measurements for maximum-a-posteriori estimation. In this work,

we use a single RGB-D camera as sensor, and the input measurements are represented as two

functions:

I : Ω→ N (2.1)

Z : Ω→ R (2.2)

where I is the intensity value function and Z is the depth value function for each image pixel

in the image domain Ω ⊂ N2 (typically Ω = 640× 480). The intensity function is computed

from the R, G and, B components following the Rec. 601 [21]:

I(p) = 0.299R(p) + 0.587G(p) + 0.114B(p) (2.3)

The front-end component outputs selected frames represented as graph nodes, i.e. state

variables subject to future optimization, and constraints between nodes represented as graph

edges. In this work, we will consider only spatial constraints from:

1. Odometry, and

2. Loop Closure

The first ones constrain two consecutive keyframes, while the second ones constrain two

keyframes, not necessarily consecutive, observing the same place. These spatial constraints, as

well as state variables, are represented as elements in the three-dimensional Special Euclidean

Group SE(3).

Keyframe Selection

To reduce the number of loop closure candidates and the number of state variables, only a

subset of selected frames are considered, namely keyframes.

Several techniques for keyframe selection exist, and probably the ones based on visual

overlap are the most widely extended. For instance, in [17, 32] the same features are employed

for motion estimation are reused for keyframe selection, and whenever the number of tracked

features from the last keyframe fall below a given threshold, a new keyframe is added. The

key idea behind this approach is that the number of tracked features are progressively fewer as

the camera moves, and therefore the density of keyframes is adapted to the camera motion.

In [23], they propose a keyframe selection criterion based directly on the uncertainty of the

camera motion estimate, using an entropy measure. This measure encapsulates the uncertainty

from the covariance matrix into a scalar value. They add a new keyframe whenever the entropy

ratio is below a predefined threshold. The entropy ratio is computed between the uncertainty

of the motion from last keyframe and of the first captured motion from the last keyframe

(between the last keyframe and the immediately following frame from it).
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Figure 2.2: A 9 px segment test corner in a circle of 16 px length, by Edward Rosten.

In this work, we follow an appearance-based keyframe selection criterion over a Bag of

Words model, trying to negatively affect as less as possible the loop closure detection algorithm.

Within this approach, the whole image is described using a global descriptor build from local

image feature descriptors. The similarity between two images can be then computed from a

simple vector norm.

Bag of Words techniques are taken from text retrieval in document processing, and used

in computer vision as object or scene retrieval [46], often called Bag of Visual Words. The

general idea consists in building a properly weighted histogram (or a BoW vector) over a finite

number of keywords w: the vocabulary. In computer vision, instead of keywords, image feature

descriptors are used. Each extracted local descriptor is matched to a visual word from the

vocabulary to computed the histogram, which acts as global scene descriptor represented as a

w-dimensional vector.

Here, we rely on FAST [40] features and BRIEF [7] binary descriptor, as they have shown

good performance in scene retrieval [11] and feature matching for small displacements [16],

and are orders of magnitude faster than SIFT [26] or SURF [2] methods.

Features from Accelerated Segment Test (FAST) [40] is a high-speed corner detector from

the segment test criterion. A pixel candidate p ∈ Ω is considered to be a corner if the

Bresenham circle around it contains exactly n consecutive pixels, all brighter or all darker than

the candidate pixel (see Figure 2.2). Brighter and darker pixels are defined as:

Sbright = {x ∈ Ωp | I(x) > I(p) + t} (2.4)

Sdark = {x ∈ Ωp | I(x) < I(p)− t} (2.5)

for a given threshold t, where Ωp denotes the circle pixels around p. Within this definition,

most non-corner pixels can be excluded before completing the full segment test, speeding up

the computation time required for the corner detection.

To avoid the detection of multiple adjacent keypoints for the same corner, a non-maximal

suppression step is applied to discard redundant detections. For this purpose, an efficient score
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Figure 2.3: Spatial arrangement of the close binary tests used with BRIEF descriptor.

function is computed for each detected feature:

V (p) = max
( ∑

x∈Sbright

|I(x)− I(p)| − t,
∑

x∈Sdark

|I(p)− I(x)| − t
)

(2.6)

keeping only local maxima keypoints.

Binary Robust Independent Elementary Features (BRIEF) [7] is a simple binary descriptor

of a local patch around a detected feature. Given a keypoint p ∈ Ω, the local descriptor

is computed using a intensity difference test over a predefined sequence of sampling points,

generating a binary string b(p) of length L. The test function is defined as

τ(x,y) =

{
1 if I(x) < I(y)

0 otherwise
(2.7)

where x and y are a pair of sampling points. The sequence of sampling points is generated

randomly from the normal distributions [10]:

xi ∼ N (0,
1

25
S2) (2.8)

yi ∼ N (xi,
4

625
S2) (2.9)

where S is the side length of the local square patch centered at p.

To reduce the effect of image noise, patches are smoothed using a Gaussian kernel before

computing the tests. Finally, the binary string is generated as follows:

b(p) =
L∑
i=1

2i−1τ(p + xi,p + yi) (2.10)

From these features, the vocabulary for the Bag of Words model is generated by a hierar-

chical quantization of the descriptor space into w words [35]. Training features are partitioned

into k clusters by k-means [1] algorithm, and this procedure is repeated for each new cluster

up to d levels, yielding a vocabulary tree with w = kd leaves.
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Each word is weighted according to its inverse document frequency

idf(i) = log
N

Ni

(2.11)

where N is the number of training images, and Ni the number of occurrences of the word i

in these images. This metric downweights very frequent words in the training images, being

less discriminative.

To convert an image I (represented by its BRIEF description from FAST features) into a

BoW vector v ∈ Rw, its binary descriptors traverse the tree (from root to leaves) by selecting

at each level the immediate descendant node that minimizes the Hamming distance:

d(a,b) =
∑
i

ai ⊕ bi (2.12)

where ⊕ is the XOR binary operator.

In addition, the term frequency for each word in the image I is computed as

tf(i, I) =
ni

nI

(2.13)

where ni stands for the number of occurrences of word i in image I and nI for the total

number of words in I. This weighting gives more importance to frequent words in a particular

image, as they describe it well.

The resulting vector for an image I is

v =

w1

...

ww


where wi = tf(i, I)idf(i) is the term frequency–inverse document frequency (tf-idf ) as pro-

posed in [46].

The similarity between two BoW vectors v1 and v2 is computed as a L1-score [11]:

s(v1,v2) = 1− 1

2

∣∣∣∣ v1

|v1|
− v2

|v2|

∣∣∣∣ (2.14)

whose value lies in [0, 1].

The range in which these scores varies depends on the query image and the visual words

it contains. In order to directly compare similarity scores an additional normalization step is

performed. The normalized similarity score η between two BoW vectors vi and vj is defined

as [11]:

η(vi,vj) =
s(vi,vj)

s(vi,vi−1)
(2.15)

where s(vi,vi−1) is an approximation of the maximum expected similarity for vi: the similarity

with the immediate previous frame vi−1.

Within this approach, a frame i is considered to be a keyframe if the normalized similarity

score η(vi,vj) with the last keyframe j is less than a given threshold β.
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Visual Odometry

The main purpose of a visual odometry algorithm is to estimate the relative sensor motion

between two consecutive frames relying only on visual input data [34]. The whole trajectory

is then calculated incrementally, composing all relative motions and starting from a reference

frame (usually, but not necessarly, the first one).

A typical feature-based visual odometry method processes a sequence of images as fol-

lows [8]:

1. Feature Detection

2. Feature Matching

3. Motion Estimation

The feature detection step selects distinctive and repeatable interesting points (2D image

points or 3D shape points) from the two consecutive observations. The extracted keypoints

are then described locally and matched from one image to the other in a high-dimensional

space (the descriptor space). Finally, from the set of corresponding points, the sensor motion

is computed.

In contrast to that, dense visual odometry methods don’t perform any feature extraction

or matching step, instead, the motion is estimated by minimizing some general error function.

For instance, ICP [3] algorithm (or its variants [42]) aligns two 3D point clouds by correspond-

ing each point from one cloud to the closest in the other cloud and minimizing the Euclidean

distance between correspondences. The accuracy of ICP heavily depends on the initial align-

ment, while, in general, feature-based methods are more robust to large motions. Therefore,

ICP-like algorithms are often used to refine a feature-based alignment [17].

An interesting variant of ICP for indoor environments could be Generalized-ICP [44], as

it can be formulated with a plane-to-plane error metric, and then it can cope with larger

motions. Instead, in this work we use an efficient alternative to GICP: Differential Odometry

(DIFODO), as it has shown better execution time as well as accuracy [22].

DIFODO algorithm takes a depth map Z as input and computes a motion estimation

between consecutive depth observations from the average linear and angular camera velocities

during the time interval elapsed (usually 30 Hz). The sensor velocities are derived by applying

the range flow constraint equation [47]

Ż =
∂Z

∂t
+
∂Z

∂u
u̇+

∂Z

∂v
v̇ +O(u̇, v̇,∆t) (2.16)

to each pixel p = (u, v) in Ω, where Ż represents the depth map derivative with respect to

time t, and ṗ = (u̇, v̇) the optical flow [19].

The three partial derivatives of Z in Eq. (2.16) can be directly computed from the con-

secutive depth images. And Ż, u̇ and v̇ can be expressed in terms of the camera velocities
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Figure 2.4: Pin-hole camera model, by Mariano Jaimez

ξ = (vx, vy, vz, ωx, ωy, ωz)
> under a static world assumption:

Ṗ =

ẋẏ
ż

 =

−vx − zωy + yωz

−vy + zωx − xωz

−vz − yωx + xωy

 (2.17)

meaning that every 3D point P moves with the same velocities as the sensor, but with opposite

directions.

Ignoring the higher order terms O(u̇, v̇,∆t), Eq. (2.16) becomes

Ż ' Zt + Zuu̇+ Zvv̇ (2.18)

where Zt, Zu and Zv are, for simplicity of notation, the partial derivatives of Z. Rearranging

terms and replacing the depth map Ż by the depth coordinate ż since Z(u, v) = z, yields:

−Zt = −ż + Zuu̇+ Zvv̇ (2.19)

From the pin-hole camera model, and assuming that the pixel coordinates of a 3D point P

are time-varying (see Figure 2.4), we get:

u = fx
x

z
+ uc ⇒ u̇ = fx

( ẋz − żx
z2

)
(2.20)

v = fy
y

z
+ vc ⇒ v̇ = fy

( ẏz − ży
z2

)
(2.21)
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where (uc, vc) is the principal point (image center) and fx and fy the focal length values, in

pixels.

Expressing the optical flow in terms of Ṗ in Eq. (2.19):

−Zt = −ż + Zufx

( ẋz − żx
z2

)
+ Zvfy

( ẏz − ży
z2

)
(2.22)

and applying the static world assumption yields:

−Zt =
(

1 +
xfx
z2

Zu +
yfy
z2
Zv

)
(vz + yωx − xωy)

+
fx
z
Zu(−vx + yωz − zωy) +

fy
z
Zv(−vy − xωz + zωx)

(2.23)

The linearization in Eq. (2.18) holds for small motions or if observed points belong to local

planar patches, since the higher order terms are negligible. To derive the velocity constraints, a

system of linear equations is built from Eq. (2.23). At least, six linearly independent restrictions

are required to solve the algebraic system. However, in practice a higher number of points

are considered, leading to an over-determined linear system solved by weighted least squares

in closed form.

In order to cope with motions larger than a single pixel, a coarse-to-fine scheme is used [5]

to compute the optical flow. Within this strategy, a Gaussian pyramid is built by iteratively

downsampling and filtering the depth image, allowing to capture larger displacements. The

optical flow is solved from coarser to finer levels and at each level, the previous solution is

used to warp one image against the other at the same level, leading to image pairs presenting

less displacement than the original pair for which the assumption of small motions holds.

Loop Closure Detection

The errors in relative motion estimation that arise from incremental frame-to-frame alignment

accumulate over time and eventually yield to significant drift errors. These drifts causes

inconsistencies in the map estimation, as a single region may have multiple representations.

A loop closure occurs when a previously seen place is revisited, providing additional con-

straints that can be used to correct the accumulated drift. Therefore, it is necessary to:

1. Detect loop closures between two observations, and

2. Compute the spatial constraint that relates the sensor poses

Most of the approaches to visual loop closure detection are based on the Bag of Visual

Words model, but there are other alternatives. For instance, the similarity between two images

can be computed from the Locality Sensitive Hashing of the image descriptors [45], avoiding

the use of a predefined vocabulary. Instead of local descriptors, a global descriptor can be

learned using deep Convolutional Neural Networks to describe the whole image [20]. In this

work we use a slightly modified version of the Bag of Visual Words approach, using local binary

descriptors [11], that has shown to be more efficient than the other alternatives.

14



The same Bag of Words model for keyframe selection is reused1 for loop closure detection,

adding an image database of previous observations in order to detect revisited places.

The general idea is to find the best match between the current keyframe and all previous

keyframes stored in the database. To speed-up this search, an inverse index is maintained

along with the database to retrieve the images that contain a given word. The inverse index

allows to compare the current keyframe only against images that share some words in common.

The last K keyframes are excluded from the loop closure candidates as, even having high

similarity scores, they don’t constitute a true loop closure. A loop closure candidate j is

considered for a given keyframe i if the normalized similarity score η(vi,vj) between their

BoW vectors vj and vi is greater than a given threshold α. Only the best scoring candidate

is taken into account for future checks.

However, if the expected score s(vi,vi−1) is low enough (e.g from fast sensor movements),

the normalization step can result in erroneously high similarity values. Therefore, keyframes

with low expected scores are discarded from the loop closure detection.

An additional geometric verification of the feature’s distribution in the two images is nec-

essary to discard incorrect visually similar loop closure candidates, as introducing false loop

closure constraints could lead to even worse errors. In this work, we consider the 3D spa-

tial distribution of the features, as opposed to the 2D distribution proposed in the original

approach [11]. A geometric check usually involves the following steps:

1. Feature Matching

2. Outlier Rejection

3. Validation

The feature matching step is only a first guess and it usually contains incorrect matches,

which are detected and discarded in the outlier rejection step. Finally, the resulting matches

are accepted only if the error of the spatial distribution is acceptable.

The feature matching is performed using the nearest neighbor distance ratio [26] policy.

A match between a feature from an image and its nearest neighbor in the descriptor space

(namely the closest in Hamming distance) on the other image is accepted if the ratio

d(a, c)

d(a,b)
(2.24)

is lower than a threshold, where b and c correspond to the closest and second-closest matches

in one image, respectively, for a feature a in the other image, and d is the distance function

in the descriptor space (the Hamming distance for binary descriptors). This gives us a set of

matches {ai ↔ bi} between local descriptors on both images.

The exact nearest neighbor search has computational complexity of Θ(n2) in the number

of features, but faster approximations can be used. In this case, the words (or intermediate

1Actually, the BoW approach described was originally developed for loop closure detection in [11] and
reused here for keyframe selection afterwards, so the BoW model was reused for keyframe selection.
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nodes) of the vocabulary reduces the search space for nearest neighbors [11], speeding-up

the feature matching process in one hand but sacrificing the exact result in the other hand.

For this reason, a direct index is maintained with the database, allowing to retrieve features

associated to each word (or tree node) for a given image.

The nearest neighbor distance ratio ensures that the matches are distinctive enough, so that

they are less likely to contain incorrect matches. Unfortunately, outliers can be still present,

and they negatively affect the quality of the loop closure detection and thus the quality of the

overall estimation, so an outlier rejection step is still necessary.

The RANdom SAmple Consensus (RANSAC) is a general model fitting paradigm able to

cope with a large proportion of outliers. The algorithm takes a minimum size sample from the

observed data to compute a model that fits that sample. The support for the computed model

is the consensus set: the observed data within an error threshold from the model. These steps

are repeated until a reasonably good model (one that has enough support) is computed, or

the maximum number of iterations is achieved.

Algorithm 1 Generic RANSAC

1: Select randomly the minimum number of observations required to determine the model
parameters.

2: Solve for the parameters of the model.
3: Determine the set of data observations which fit the model within a distance threshold tr.

This is the consensus set of the sample and defines the inliers for the initial data.
4: If the number of inliers is greater than some threshold T , re-estimate the model using all

inliers and terminate.
5: Otherwise, repeat steps 1–4 a maximum of N times.

In this case, the observed data is the match set {ai ↔ bi}. For each image, we generate

a sparse feature point cloud using the per pixel depth information. This point cloud includes

only 3D information for the detected features in the intensity image, giving to each feature

descriptor ai and bi a 3D position xi,yi ∈ R3. For a pixel p = (u, v)>, its 3D coordinates

P = (x, y, z)> can be derived from the pin-hole camera model:

z = Z(u, v) (2.25)

x = (u− uc)
z

fx
(2.26)

y = (v − vc)
z

fy
(2.27)

where (uc, vc) is the principal point (image center) and fx and fy the focal length values.

From the corresponding 3D points {xi ↔ yi}, the model is given by a rigid body transfor-

mation T ∈ SE(3) that aligns the two point clouds {xi} and {yi}. A rigid body transformation

has a rotation component R and a translation component t:

T =

[
R t

01×3 1

]
(2.28)
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with R ∈ SO(3) and t ∈ R3. Here, RANSAC performs both outlier rejection and validation for

the geometrical verification, but it also computes the spatial constraint required to complete

the loop closure detection procedure.

The components R and t are computed as the solution of a least squares formulation [50],

minimizing the error function

e(T ) =
1

n

n∑
i=1

‖yi − Txi‖2 (2.29)

in closed form, for a set of n corresponding points.

The rotation component is computed from the Singular Value Decomposition (SVD) of

the covariance matrix of X = {x1,x2, · · · ,xn} and Y = {y1,y2, · · · ,yn}:

Σxy =
1

n

n∑
i=1

(yi − µy)(xi − µx)> (2.30)

where

µx =
1

n

n∑
i=1

xi (2.31)

µy =
1

n

n∑
i=1

yi (2.32)

are the mean vectors (or centroids) of X and Y , respectively. Then, Σxy = UDV > is the

SVD of Σxy (with D = diag(d1, d2, d3) a diagonal matrix satisfying d1 ≥ d2 ≥ d3 ≥ 0).

The optimum rotation R can be computed as

R = USV > (2.33)

when rank(Σxy) ≥ 2, where

S =

{
I if det(Σxy) ≥ 0

diag(1, 1,−1) if det(Σxy) < 0
(2.34)

If rank(Σxy) = 2, then

S =

{
I if det(U)det(V ) = 1

diag(1, 1,−1) if det(U)det(V ) = −1
(2.35)

must be chosen instead of Eq. (2.34).

Finally, the translation t that minimizes the error function is

t = µy −Rµx (2.36)

for the rotation R.
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2.2 Back-end

A back-end performs maximum-a-posteriori estimation of the state variables, reasoning about

the dependence between these variables. In graph-based SLAM, the state variables are sen-

sor poses, represented as graph nodes, while the dependencies among them are the spatial

constraints computed by the front-end, represented as graph edges.

The state vector x = (x1, · · · , xn)> contains the configuration of each node xi ∈ SE(3)

in the graph. A given constraint ẑij ∈ SE(3) relates the variables xi and xj.

Pose Graph Optimization

The main goal here is to compute the optimal sensor trajectory that integrates all the con-

straints computed by the front-end, and thus in a globally consistent representation of the

environment.

The original formulation of the SLAM problem as a graph optimization [28] minimizes the

spatial distance between corresponding points from different scan matches. It was formulated

to work in the two-dimensional space with three degrees of freedom (2 for the position, 1 for

the orientation) and for range scans (2D point clouds). Later on, its formulation was extended

to work efficiently in the three-dimensional space with six degrees of freedom [4].

In this work, we follow a more general approach [24], taking into account the error between

computed transformations instead of between matching points. The error eij resulting from

violating the graph constraint ẑij is defined as:

eij(x) = hij − ẑij (2.37)

where the observation model h(x) predicts a constraint between nodes xi and xj, given the

state parameters:

hij(x) = xi 	 xj (2.38)

and 	 is the inverse pose composition.

Here, we consider two types of constraints: odometry and loop closure ones. Odometry

constraints form a chain, ẑi(i+1), by applying the observation model to consecutive odometry

poses. Loop closure constraints are provided by the loop closure detection module, for some

ẑij with i > j (see Section 2.1).

Therefore, we want the configuration of nodes x∗ that minimizes the overall error2 F(x):

x∗ = arg min
x

F(x) (2.39)

F(x) =
∑

(i,j)∈C

eij(x)>Ωijeij(x) (2.40)

where C is the set of graph constraint indexes and Ωij represents the information matrix for

the constraint ẑij.

2Or negative log likelihood [13]
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The solution to Eq. (2.39) can be obtained iteratively by approximating the error function

by its first order Taylor expansion around a good initial guess x̆:

eij(x̆ + δ) ' eij(x̆) + Jijδ (2.41)

where Jij is the Jacobian of eij(x) evaluated at x̆. In the following, we will write eij = eij(x̆)

for simplicity of notation.

Then, substituting Eq. (2.41) in the error terms of Eq. (2.40):

F(x̆ + δ) =
∑

(i,j)∈C

eij(x̆ + δ)>Ωijeij(x̆ + δ) (2.42)

'
∑

(i,j)∈C

(eij + Jijδ)>Ω(eij + Jijδ) (2.43)

=
∑

(i,j)∈C

e>ijΩijeij︸ ︷︷ ︸
cij

+2 e>ijΩijJij︸ ︷︷ ︸
bij

δ + δ> J>ijΩijJij︸ ︷︷ ︸
Hij

δ (2.44)

= c+ 2b>δ + δ>Hδ (2.45)

where c =
∑
cij, b =

∑
bij and H =

∑
Hij.

The overall graph error can be minimized in δ by minimizing the quadratic equation

Eq. (2.45), i.e. solving the linear system

Hδ∗ = −b (2.46)

The solution for a single iteration is obtained by adding δ∗ to the initial guess:

x∗ = x̆ + δ∗ (2.47)

The following iteration takes x∗ as the initial guess, and the whole process is repeated until

some convergence condition holds. This is the standard Gauss-Newton non-linear least squares

optimization algorithm, which works only for state variables that span over an Euclidean space.

The general method can be applied to the minimal parameterization for 3D poses, as it is in

R6 (6 degrees of freedom, 3 for translation and 3 Euler angles for rotation).

However, the minimal parameterization is subject to singularities (namely, gimbal lock),

that can be overcome using an over-parameterized representation. The parameterization in

SE(3) has the manifold structure SO(3)×R3 and, clearly, the rotational component span over

a non-Euclidean space. In this case, the standard minimization algorithm is not applicable,

since Eq. (2.47) can break the orthogonality constraint induced by the over-parameterized

representation for the rotations, the Special Orthogonal Group SO(3).

An alternative is to express the increments δi in a space different from the one for state

variables xi. In this case, we want over-parameterized representations for the state variables

but a minimal representation for the perturbation term, as for small increments it is far from

singularities.

19



In order to use the standard optimization algorithms with different parameterizations, and

to apply Eq. (2.47) and (2.37), two new operators are needed. Let S = SO(3) × R3 be the

manifold structure for SE(3). Then the encapsulation operator

� : S × R6 → S (2.48)

can replace the vector sum in Eq. (2.47), yielding:

x∗ = x̆ � δ∗ (2.49)

where x � δ = (x1 � δ1, · · · , xn � δn)> with xi ∈ SE(3) and δi ∈ R6. This operator applies

a small increment parameterized over an Euclidean space to a manifold state variable.

The inverse encapsulation operator

� : S × S → R6 (2.50)

replaces the vector difference in Eq. (2.37):

eij(x) = hij � ẑij (2.51)

Finally, the first order approximation for the error function is then

eij(x̆ � δ) ' eij(x̆) +
∂(eij(x̆ � δ))

∂δ

∣∣∣∣∣
δ=0

δ (2.52)

The Gauss-Newton algorithm, however, is not guaranteed to converge if the initial guess

is not close enough to the minimum. The Levenberg-Marquardt algorithm improves the con-

vergence by introducing a control parameter λ in Eq. (2.46), behaving like a gradient descent

when the current solution is far from the minimum and like Gauss-Newton when approaching

the minimum. With this control parameter, Eq. (2.46) becomes

(H + λI)δ∗ = −b (2.53)

For more information and the mathematical details, we refer the reader to [13, 18, 29].
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Chapter 3

Experimental Evaluation

Our main concerns regarding SLAM components are their execution time and accuracy. The

methods are evaluated on an Intel R© CoreTM i3-2328M CPU at 2.20 GHz with a shared 4GB

SO-DIMM DDR3 RAM at 1333 MHz, while they are compared with ground-truth reference

information for a quantitative performance measure.

For that purpose, we use the publicly available RGB-D TUM Dataset [48], as it contains

sequences for the evaluation of SLAM systems with highly accurate ground truth camera poses.

Within this dataset, we choose sequences from the Handheld SLAM category, which includes

camera motions in office and house-like environments with six degrees of freedom.

More precisely, we use the sequences:

• ‘freiburg1 desk’ (fr1/desk)

• ‘freiburg1 desk2’ (fr1/desk2)

• ‘freiburg1 room’ (fr1/room)

• ‘freiburg2 desk’ (fr2/desk)

• ‘freiburg3 long office household’ (fr3/office)

being widely used to evaluate RGB-D state-of-the-art SLAM systems.

The accuracy of the whole system is compared with state-of-the-art RGB-D SLAM systems,

and, finally, we perform real experiments with a handheld camera. For these live tests, we use

an Asus Xtion Pro Live RGB-D camera to acquire 3D observations in real-time, moving the

sensor around our lab and in a typical living room.

Unless otherwise explicitly stated, we use the default parameters for each algorithm. In all

cases, we rely on open-source implementations, so the default parameters can be easily found.
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Table 3.1: Execution time for DIFODO with different resolutions.

Resolution
Execution time (ms)

Mean Std Min Max

640× 480 88.06 8.48 51.91 143.18
320× 240 21.49 1.99 12.75 37.85
160× 120 5.56 0.50 3.51 14.25

3.1 Visual Odometry

Regarding the visual odometry algorithm, we are interested in how the resolution of the finer

level considered by DIFODO affects its performance and execution time, in our own hard-

ware settings1. For these experiments we run the algorithm as implemented in the MRPT

library [31].

We start by evaluating how the downsampling factor affects the execution time of the

algorithm, with the maximum number coarse-to-fine levels allowed for each resolution. We

run DIFODO in the five sequences with three different resolutions: 640 × 480, 320 × 240

and 160 × 120. In Table 3.1, we summarize the average execution time, as well as standard

deviation, minimum and maximum for all executions (a total of 7777 executions, for each

resolution).

From these results, as one may expect, the lowest resolution is the fastest in execution

time. Moreover, it is the only that ensures a real-time execution, running even faster than

60 Hz. But this high speed was achieved by ignoring information in the downsampling step,

and these strategies often negatively affects the accuracy in the estimation.

To measure the accuracy, the relative pose error (RPE) [48] metric is used, where the

estimated trajectory P1, . . . , Pn ∈ SE(3) and ground-truth Q1, . . . , Qn ∈ SE(3) are compared

over a time interval ∆:

Ei = (Q−1
i Qi+∆)−1(P−1

i Pi+∆) (3.1)

for i = 1, . . . ,m, where m = n−∆.

For the sake of simplicity, we assumed that both sequences were time-synchronized, equally

sampled and with the same length, as well as a fixed time interval. In practice they have

different start times and sampling rates, so additional data association and interpolation steps

are performed.

From the relative pose errors, the root mean squared error (RMSE) is computed for trans-

lational and rotational errors:

RMSEt(E1:m,∆) =

√√√√ 1

m

m∑
i=1

‖trans(Ei)‖2 (3.2)

1Also, we run the latest version of DIFODO, so the result can vary from the ones presented in the original
publication.
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Figure 3.1: Translational and rotational RMSE, in m/s and deg/s, respectively.

RMSEr(E1:m,∆) =

√√√√ 1

m

m∑
i=1

‖ang(Ei)‖2 (3.3)

where trans(Ei) ∈ R3 represents the translational component and ang(Ei) ∈ R is computed

from the rotational component Ri ∈ SO(3) as follows:

ang(Ei) = cos−1
(trace(Ri)− 1

2

)
(3.4)

The RMSE is influenced by occasionally large errors in the estimates, and therefore a low

RMSE drift value indicates a continuously high tracking accuracy. We evaluate the perfor-

mance of the three considered resolutions of DIFODO in the five sequences, presenting the

results in Figure 3.1.

Following the intuition, the highest resolution achieves, in general, the best performance.

But the fact is that the three resolutions are close performers.

From these results, we choose to use the lowest resolution (160× 120), meaning a down-

sampling factor of 4, and considering 5 coars-to-fine levels, as it runs at 60 Hz with a high

accuracy. For the sake of completeness, in Table 3.2 the translational and rotational RMSE

for these parameters are presented. As noted by the original authors [22], the accuracy of the

method is more susceptible to measurement errors produced by the sensor in slower motions.

Therefore, we evaluate the improvements achieved with this strategy by skipping consecutive

frames to simulate faster motions.

In most cases, by skipping a single frame we achieve more accurate results in these se-

quences. The best improvements for the sequences fr2/desk and fr3/office are achieved

by skipping two consecutive frames. This can be explained from the fact that they were

recorded by moving the sensor slowly
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Table 3.2: Performance of DIFODO, in terms of translational and rotational RMSE, for the
final parameters and skipping fs consecutive frames.

Sequence
Translational (m/s) Rotational (deg/s)

fs = 0 fs = 1 Fs = 2 Fs = 0 fs = 1 fs = 2

fr1/desk 0.044 0.043 0.078 2.724 3.130 6.034
fr1/desk2 0.051 0.047 0.162 3.454 3.359 3.761
fr1/room 0.049 0.047 0.052 2.787 2.679 2.680
fr2/desk 0.032 0.025 0.023 1.240 0.987 0.906
fr3/office 0.072 0.019 0.018 2.439 1.065 0.969

3.2 Loop Closure Detection

For the loop closure detection module, we are interested in the number of correct detections

and how this number is affected by the keyframe selection. We also analyze the effect of

reducing the sequence length (by applying a keyframe selection crietrion) on the execution

time of the loop closure detection algorithm.

We run the implementation of FAST from the OpenCV library [36], while for BRIEF, we run

the implementation in DLib [15]. For the binary Bag of Words, we rely on the implementation

from DBoW2 []. We use the vocabulary generated in [11], available for download2, with w =

106 words from the ‘Bovisa 2008-09-01’ session of the Rawseeds project3. We implemented

our own RANSAC procedure, based on the SVD transformation estimation implemented in

the PCL [38]. We set the maximum distance threshold to 1 cm, the minimum size consensus

set to 12 and a maximum of 500 iterations.

Loop closure detections can be represented as a binary relation between sequence indices.

Here, R(i, j) means that a loop between frames (or keyframes, depending on the case) was

detected. The precision and recall metrics, to compare the estimated loop closure relation R

with a ground truth loop closure relation S, are defined as4:

precision(R, S) =
|ΓR∩S|
|ΓR|

(3.5)

recall(R, S) =
|ΓR∩S|
|ΓS|

(3.6)

where

ΓA = {i | i > j + k, (i, j) ∈ A} (3.7)

for a given set A and the discarding parameter K, used to reject recent frames from the loop

closure candidates.

2http://doriangalvez.com/resources/DLoopDetector/resources.tar.gz
3http://www.rawseeds.org/rs/capture_sessions/view/10
4Here we give a formal definition of the precision and recall metrics, as described in [11].
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The precision metric is defined as the ratio between the number of correct detections and

all the detections fired by the algorithm, and it measures the quality of the detections. For

a robust SLAM system, a 100% precision is required, as usually loop closures are unmovable

decisions. The recall is defined as the ratio between the correct detections and all loops in the

ground truth, and measures the ability of the algorithm to capture the loop closures occurring

in a sequence. A higher recall is preferable, as more correction constraints will be available,

resulting in a better trajectory estimation.

Since there is no loop closure ground-truth information on the dataset used, we derive this

information from ground-truth pose information to evaluate the precision of the loop closure

detection method. Following a similar approach as in [43], a loop closure detection is verified

(or correct) if:

1. ‖trans(Tij)‖ < 2 m, and

2. |ang(Tij)| < 45 deg

where Tij = Q−1
i Qj represents the relative ground-truth transformation between frames num-

ber i, j ∈ {1, . . . , n} in the sequence.

Detected loop closures but not automatically verified from the ground-truth information

(meaning at least one of the above conditions does not hold) are manually verified, as it is

hard to define a procedure sound and complete for this purpose. With these simple and easy

implementable conditions most loop closures are automatically verified, so only a few need

human supervision.

Instead of the true recall metric, we use a relative lower bound recall metric, dividing by

the sequence length n, or the number of keyframes considered, if it is the case:

recall(R, S) =
|ΓR∩S|
n

(3.8)

This definition of recall allows us to measure the trade off between the number of correct

loop closures detected and the reduction in the length of the sequence.

The number K of frames discarded from loop closure candidates affects the recall, and

depends on the speed of the camera motion. When no keyframes are selected (i.e. all frames

are processed), we set K = 100 (a bit more than 3 s for sequences recorded at 30 Hz). For

keyframe selection criteria, we set K = 40, as the expected reduction factor of the frames to

process is around 2.5. In order to evaluate the accuracy of the loop closure detection with

these values for K for all sequences, we skip two consecutive frames in the slower sequences

(namely fr2/desk and fr3/office) to simulate faster motions.

Table 3.3 shows the results form these experiments. In most cases, using a keyframe

selection criterion improves the relative lower bound recall metric, meaning that loop closures

are preserved to some degree while reducing the total number of frames to process. Figure 3.2

shows the effect of reducing the sequence length in the maximum execution time spent by

the loop closure detection algorithm. The maximum execution time is reduced roughly by
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Table 3.3: Relative lower bound recall performance of the Loop Closure Detection algorithm
for different values of the similarity threshold β.

Similarity
Sequence

fr1/desk fr1/desk2 fr1/room fr2/desk fr3/office

No Keyframe 1.79% 2.13% 0.68% 1.28% 4.46%
β = 0.8 2.70% 1.59% 1.34% 1.33% 3.88%
β = 0.7 1.91% 2.67% 1.32% 2.17% 3.44%
β = 0.6 1.09% 3.05% 0.76% 1.05% 3.07%

fr1/desk fr1/desk2 fr1/room fr2/desk fr3/office
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Figure 3.2: Maximum execution time spend on each sequence, for various keyframe selection
criteria, in ms. ‘No KF’ means all frames were processed.

the same factor as number of frames to process, since the computational complexity for loop

closure detection grows linearly with the number of frames in the worst case.

For the subsequent experiments, we set β = 0.8, has it has shown the best performance

for the relative lower bound recall metric and runs at 60 Hz for a sequence with more than

500 keyframes.

3.3 The Whole System

In this section, we compare our system with state-of-the-art SLAM systems, in terms of

the Absolute Trajectory Error (ATE) [48] metric. We also evaluate the improvement in the

trajectory estimation achieved by optimizing the graph of poses, and how this procedure is

affected by the keyframe selection criterion, in execution time and in terms of the ATE metric.

This metric measures the accuracy of the resulting estimated trajectory against the ground-

truth trajectory, taking into account the global consistency. Each keyframe pose Pi ∈ SE(3)
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is assigned to a corresponding ground-truth pose Qi ∈ SE(3) based on the timestamp values.

The 3D corresponding points, obtained from the translation component of each pose, are

aligned by the rigid body transformation S ∈ SE(3), from a least squares solution. The error

between corresponding poses is then

Fi = Q−1
i SPi (3.9)

From these errors, the RMSE is computed as

RMSE(F1:n) =

√√√√ 1

n

n∑
i=1

‖trans(Fi)‖2 (3.10)

for the translational component of Fi.

Within this metric, we compare our approach with different SLAM systems. More pre-

cisely, we consider the DVO-SLAM [23] and RGB-D SLAM [9] systems as they minimize both

photometric and geometric errors form RGB-D observations. The former is based only on

dense methods, while the latter uses feature-based ones. We also compare it with systems

that minimizes only the geometric error following a dense formulation. In this class fall the

Kintinuous [51] system: an extension to large scale environments of KinectFusion [39] algo-

rithm, and the CPA-SLAM [30]: a very recent system based on plane segmentation of depth

information.

The accuracy of the visual odometry algorithm directly affects the accuracy of the whole

system. For this reason, we run our system for several frame skip values, as it has shown to

be a reliable strategy to improve the trjectory estimation. The results from these experiments

are presented in Table 3.4.5 Despite the low resolution used and the simplicity of the feature

extraction algorithms, our system reaches an accuracy comparable to state-of-the-art SLAM

systems (see Figure 3.3).

The execution time of the whole system for all sequences is shown in Table 3.5. The

tracking thread (visual odometry and keyframe selection) runs at 60 Hz on a single CPU. This

performance, for the best of our knowledge, has never been reported in the literature.

For the analysis of the back-end module, we summarize in Table 3.6 the improvements

achieved in terms of absolute trajectory RMSE in contrast to a visual odometry only trajectory

(i.e. without any optimization), along with general information about the number of keyframes

and loop closures considered for each sequence, setting fs = 1. In all cases, as one may expect,

there is a great improvement in the estimated trajectory.

In Figure 3.4 we show the effect of the keyframe selection strategy on the maximum

execution time of the graph optimization and on the trajectory estimation, for each sequence.

Has the intuition says, the execution time is improved in all cases, while, in general, the error

in the estimated trajectory increases when only keyframes are considered. This is mostly due

5The errors for each system were taken form their original publications, as well as form [14]. If there is
any contradiction between these values, we take always the smallest one.
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(a) fr2 desk (b) fr3 office

Figure 3.3: The ground-truth and estimated trajectories aligned, for the longest sequences.
The absolute trajectory error is computed from these differences.

Table 3.4: Absolute Trajectory Error RMSE (m) comparison with state of the art approaches.

Frame skip
Sequence

fr1/desk fr1/desk2 fr1/room fr2/desk fr3/office

fs = 0 0.047 0.048 0.068 0.118 0.116
fs = 1 0.039 0.049 0.062 0.064 0.063
fs = 2 0.214 0.205 0.082 0.056 0.055

CPA-SLAM [30] 0.018 0.029 0.055 0.046 0.025
Kintinuous [51] 0.037 0.071 0.075 0.034 0.030
RGB-D SLAM [9] 0.023 0.043 0.084 0.057 0.032
DVO-SLAM [23] 0.021 0.046 0.053 0.017 0.035

to a lower number of loop closures. The execution time was plotted using a logarithmic scale,

and it is improved in a greater factor than the additional error induced by a keyframe selection

strategy.

Finally, we tested the developed system in real-life scenarios, by and RGB-D camera on

indoor environments. We run it the MAPIR 6 and in a typical living room. The resulting 3D

maps are shown in Figure 3.5. In both cases, the system was able to detect loop closures and to

correct the accumulated drift, generating consistent representations. For larger environments

with few loop closures, the accuracy of the representation can be highly affected, yielding to

unacceptable errors.

6http://mapir.isa.uma.es/mapirwebsite/
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Table 3.5: Execution time for all components of the SLAM system.

Component
Execution time (ms)

Mean Std Min Max

DIFODO 5.80 0.55 0.98 13.82
FAST 1.95 0.51 0.34 5.61
BRIEF 3.12 0.33 2.07 7.34
Keyframe Selection 4.32 0.39 1.76 9.18

Loop Closure Detection 5.23 0.96 2.21 20.09
Graph Optimization 106.11 57.30 17.54 196.31

Table 3.6: Graph optimization vs no graph... .

Sequence Opt. w/o Opt. Frames Keyframes Loop Closures

fr1/desk 0.039 0.113 559 120 4
fr1/desk2 0.049 0.078 609 131 1
fr1/room 0.062 0.159 1310 284 1
fr2/desk 0.064 0.310 2182 536 11
fr3/office 0.063 0.322 2488 425 17

fr1/desk fr1/desk2 fr1/room fr2/desk fr3/office
10

0

10
1

10
2

10
3

No KF

0.8

(a) Execution time

fr1/desk fr1/desk2 fr1/room fr2/desk fr3/office
0.035

0.04

0.045

0.05

0.055

0.06

0.065

No KF

0.8

(b) Trajectory Error

Figure 3.4: Maximum execution time and absolute trajectory RMSE, in ms and m, respectively.
Note that the execution time is plotted on a logarithmic scale.
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(a) Lab

(b) Living room

Figure 3.5: Globally consistent 3D dense representations of two different indoor environments.
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Chapter 4

Conclusions and Future Work

In this work, we developed a SLAM system that relies solely on information taken from an RGB-

D camera. The system is able to estimate the full trajectory of the sensor and incrementally

build a consistent 3D representation for small indoor environments. Real-time execution is

achieved by dividing the execution into two threads: tracking and mapping.

The tracking thread, composed of the visual odometry and keyframe selection components,

runs at 60 Hz on a modest laptop. The mapping thread runs the remaining components, with

higher computational demands.

The accuracy of the estimated trajectory by our SLAM system was evaluated on a publicly

available benchmark for SLAM systems, and performed comparable to state-of-the-art RGB-D

SLAM systems.

The specific goals considered for this work were addressed as follows:

• Measurement representation: RGB-D observations are represented by sparse feature

point clouds, using the FAST detector.

• Keyframe selection: Interesting frames are selected based on visual similarity, com-

puted with a binary Bag of Words (DBoW2) over BRIEF descriptions.

• Pose graph modeling: Visual odometry constraints are computed from DIFODO poses

estimation, while loop closure are detected based on the same Bag of Words as for

keyframe selection and the spatial constraints are computed from 3D point correspon-

dences.

• Global consistency: Trajectory poses are estimated from all computed constraints,

under the g2o framework.

Even having accomplished the goals we set for this work, there is still room for improve-

ments. Regarding the keyframe selection algorithm, an interesting alternative can be thresh-

olding the entropy measure [23] of the covariance matrix of the motion estimation computed

by DIFODO.
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As we see in the experimental evaluation, the accuracy in the trajectory estimated by

DIFODO can be improved by skipping consecutive frames. The number of frames depends on

the speed at which the sensor is moving, and an optimal value could be derived online, from

the sensor velocities computed during the estimation.

For the loop closure detection module, we only consider the best match for the geometric

validation procedure. A higher number of candidates can be considered, depending on the

computational load, to increase the detection recall. These candidates can be sorted by the

uncertainty of their pose, favouring candidates with lower pose uncertainty. Also, more robust

features and descriptors can be used, such as ORB [41].

Finally, the information matrix in the graph optimization formulation should be used to

allow higher variations in poses with higher uncertainty, in order to preserve poses with lower

uncertainty as much as possible.

32



Conclusiones y Trabajos Futuros

En este trabajo se presenta un sistema SLAM que depende únicamente de información obtenida

mediante una cámara RGB-D. El sistema es capaz de estimar la trayectoria completa del sensor

y construir de manera incremental una representación 3D consistente de entornos de interiores

pequeños. Se alcanza la ejecución en tiempo real dividiéndola en dos hilos: uno para el

seguimiento y el otro para la construcción de la representación consistente.

El hilo de seguimiento, compuesto por los algoritmos de odometŕıa visual y de selección de

fotogramas a procesar, alcanza los 60 Hz en un ordenador portátil de prestaciones modestas.

El otro se encarga de la ejecución el resto de componentes, que tienen un crecimiento lineal

en cuanto a complejidad computacional.

La precisión de la trayectoria estimada por este sistema ha sido evaluada en conjuntos de

datos públicamente accesibles, obteniendo resultados comparables a sistemas de SLAM del

estado del arte.

Los objetivos espećıficos propuestos para este trabajo han sido abordados del siguiente

modo:

• Representación: Las observaciones RGB-D se representan con nubes de puntos dis-

persas, a partir de puntos de interés obtenidos mediante el detector FAST.

• Selección de fotogramas: Los fotogramas relevantes se seleccionan en base a una

métrica de similitud visual, calculada mediante una Bolsa de Palabras binarias (DBoW2)

sobre descripciones BRIEF.

• Grafo de poses: Las restricciones espaciales entre los fotogramas consecutivos se

calculan utilizando el algoritmo DIFODO, mientras que las detecciones de cierre de

bucle se realizan utilizando la misma Bolsa de Palabras empleada para la selección de

fotogramas y las restricciones espaciales entre las detecciones se calculan a partir de

correspondencias entre puntos 3D.

• Consistencia global: La trayectoria resultante de integrar todas las restricciones cal-

culas se realiza en el marco de la libreŕıa g2o.

Aún habiendo cumplido los requisitos establecidos para este trabajo, siguen habiendo mejo-

ras por realizar. Respecto a la selección fotogramas, una alternativa interesante puede ser
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utilizar una métrica sobre la entroṕıa [23] de la matriz de covarianza en la estimación de la

trayectoria realizada por DIFODO.

Como se puede observar en la evaluación experimental, la precisión en la estimación de

la trayectoria realizada por DIFODO se puede mejorar descartando fotogramas consecutivos.

El número de fotogramas a descartar depende de la velocidad con la que se mueve el sensor

por el entorno, y el número óptimo se podŕıa calcular dinámicamente a partir de la velocidad

estimada por el propio algoritmo.

Para la detección de cierre de bucle se ha considerado únicamente el fotograma con mayor

similitud para la posterior etapa de verificación geométrica. Se puede considerar un número

mayor de candidatos dependiendo de la carga computacional del sistema, con el objetivo de

aumentar el número de detecciones. Estos candidatos se podŕıan ordenar con respecto a la

incertidumbre en la estimación de su posición en el espacio, favoreciendo aquellos que tengan

una incertidumbre menor. También se pueden usar otros descriptores más robustos, como es

el caso de ORB [41].

Finalmente, la matriz de información empleada en la formulación de la optimización de

grafos debeŕıa utilizarse para permitir mayores variaciones en la estimación de poses con mayor

incertidumbre, de modo que se mantengan, cuanto sea posible, las poses con menos incer-

tidumbre.
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[25] M. Labbé and F. Michaud. Online global loop closure detection for large-scale multi-

session graph-based slam. In 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 2661–2666, Sept 2014.

[26] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

[27] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and M. J. Milford.

Visual place recognition: A survey. IEEE Transactions on Robotics, 32(1):1–19, Feb 2016.

[28] F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping.

Autonomous Robots, 4(4):333–349, 1997.

[29] J. luis Blanco. A tutorial on se(3) transformation parameterizations and on-manifold

optimization, 2015.

[30] L. Ma, C. Kerl, J. Stückler, and D. Cremers. Cpa-slam: Consistent plane-model alignment

for direct rgb-d slam. In 2016 IEEE International Conference on Robotics and Automation

(ICRA), pages 1285–1291, May 2016.

[31] MRPT.

[32] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. Orb-slam: A versatile and accurate

monocular slam system. IEEE Transactions on Robotics, 31(5):1147–1163, Oct 2015.

[33] P. Newman and K. Ho. Slam-loop closing with visually salient features. In Proceedings

of the 2005 IEEE International Conference on Robotics and Automation, pages 635–642,

April 2005.

[34] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In roceedings of the 2004 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, volume 1,

pages I–652–I–659 Vol.1, June 2004.

[35] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In Proceedings of

the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

- Volume 2, CVPR ’06, pages 2161–2168, Washington, DC, USA, 2006. IEEE Computer

Society.

[36] OpenCV. Open source Computer Vision. http://opencv.org/. [Online; accessed

15-September-2016].

[37] OpenMP Architecture Review Board. The OpenMP API Specification for Parallel Pro-

gramming. http://openmp.org/wp/. [Online; accessed 15-September-2016].

[38] PCL. Point Cloud Library. http://pointclouds.org/. [Online; accessed 15-

September-2016].

37



[39] O. H. D. M. D. K. A. J. D. P. K. J. S. S. H. A. F. Richard A. Newcombe, Shahram Izadi.

Kinectfusion: Real-time dense surface mapping and tracking. In IEEE ISMAR. IEEE,

October 2011.

[40] E. Rosten and T. Drummond. Machine learning for high-speed corner detection. In

European Conference on Computer Vision, volume 1, pages 430–443, May 2006.

[41] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative to sift

or surf. In Proceedings of the 2011 International Conference on Computer Vision, ICCV

’11, pages 2564–2571, Washington, DC, USA, 2011. IEEE Computer Society.

[42] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In 3rd International

Conference on 3D Digital Imaging and Modeling (3DIM 2001), 28 May - 1 June 2001,

Quebec City, Canada, pages 145–152, 2001.

[43] S. A. Scherer, A. Kloss, and A. Zell. Loop closure detection using depth images. In 2013

European Conference on Mobile Robots (ECMR), pages 100–106, Sept 2013.

[44] A. Segal, D. Haehnel, and S. Thrun. Generalized-icp. In Proceedings of Robotics: Science

and Systems, Seattle, USA, June 2009.

[45] H. Shahbazi and H. Zhang. Application of locality sensitive hashing to realtime loop

closure detection. In 2011 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 1228–1233, Sept 2011.

[46] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in

videos. In Proceedings of the Ninth IEEE International Conference on Computer Vision

- Volume 2, ICCV ’03, pages 1470–1477, Washington, DC, USA, 2003. IEEE Computer

Society.

[47] H. Spies, B. Jähne, and J. L. Barron. Range flow estimation. Computer Vision and Image

Understanding, 85(3):209–231, 2002.

[48] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the

evaluation of rgb-d slam systems. In Proceedings of the International Conference on

Intelligent Robot Systems (IROS), Oct. 2012.

[49] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT Press, 2005.

[50] S. Umeyama. Least-squares estimation of transformation parameters between two point

patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(4):376–

380, Apr 1991.

[51] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J. Mcdonald. Real-

time large-scale dense rgb-d slam with volumetric fusion. International Journal of Robotics

Research, 34(4-5):598–626, Apr. 2015.

38


