Angewandte Chemie

Supporting Information

Concise, Enantioselective, and Versatile Synthesis of (-)-Englerin A Based on a Platinum-Catalyzed [4C+3C] Cycloaddition of Allenedienes
 Ronald Nelson, Moisés Gulías, José L. Mascareñas,* and Fernando López*

anie_201607348_sm_miscellaneous_information.pdf

Contents

General Procedures S2
Synthesis of englerin A S3
Synthesis of (-)-englerin A analogues S17
NMR Spectra S22

General Procedures

All the reactions were conducted in dry solvents under argon atmosphere unless otherwise stated. Dry solvents were freshly distilled under argon from an appropriate drying agent before use. Gold complexes and PtCl_{2} were purchased from Aldrich. Compounds $9,{ }^{1}(\mathrm{~S}, \mathrm{~S})$-Ru1, ${ }^{2}$ $(R, R, R)-A u 1^{3}$ and L-Shi catalyst ${ }^{4}$ are known and were synthesized according to the reported procedures. All other reagents used were bought from Aldrich, Alfa Aesar, TCI or Acros and used without further purification. The abbreviation "rt" refers to reactions carried out approximately at $23^{\circ} \mathrm{C}$. Reaction mixtures were stirred using Teflon-coated magnetic stirring bars. Reaction temperatures were maintained using Thermowatch-controlled silicone oil baths. Thin-layer chromatography (TLC) was performed on silica gel plates and components were visualized by observation under UV light, and/or by treating the plates with p anisaldehyde or cerium nitrate solutions, followed by heating. Flash chromatography was carried out on silica gel (40-63 $\mu \mathrm{m}$) unless otherwise stated. Dryings were performed with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration refers to the removal of volatile solvents via distillation using a Büchi rotary evaporator followed by residual solvent removal under high vacuum. NMR spectra were recorded in CDCl_{3}, at 300 MHz (Varian), 400 MHz (Varian) or 500 MHz (Bruker and Varian). Chemical shifts were reported in parts per million (δ) using the residual solvent signals (Methanol-d $d_{4}: \delta_{H} 3.31, \delta_{C} 49.00 ; \mathrm{CDCl}_{3}: \delta_{H} 7.26, \delta_{C} 77.16$) as the internal standards for the 1 H and 13 C NMR spectra and coupling constants (J) in Hz . Carbon types and structure assignments were determined from DEPT-NMR and two-dimensional experiments (HMQC and HMBC, COSY 1D-nOe and NOESY). NMR spectra were analyzed using MestreNova ${ }^{\odot}$ NMR data processing software (www.mestrelab.com). The following abbreviations are used to indicate signal multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; dd, double doublet; ddd, doublet of doublet of doublets; td , triple doublet; dt , doublet of triplets; ddt , doublet of doublet of triplets; dtd, doublet of triplet of doublets; m, multiplet; br, broad. Mass spectra (ESI-MS) were acquired using IT-MS Bruker AmaZon SL at CIQUS and also using chemical ionization (CI) electron impact (EI), or electrospray ionization (ESI) at the CACTUS facility of the University of Santiago de Compostela. The reactions were monitored by TLC. Enantioselectivities were determined in an Agilent GC system 6890 N with Chiraldex G-TA $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ analytical columns. Optical rotations were measured by used a Jasco P-2000 polarimeter.

Full Reference 3, main manuscript:
C. Carson, P. Raman, J. Tullai, L. Xu, M. Henault, E. Thomas, S. Yeola, J. Lao, M. McPate, J. M. Verkuyl, G. Marsh, J. Sarber, A. Amaral, S. Bailey, D. Lubicka, H. Pham, N. Miranda, J. Ding, H. M. Tang, H. Ju, P. Tranter, N. Ji, P. Krastel, R. K. Jain, A. M. Schumacher, J. J. Loureiro, E. George, G. Berellini, N. T. Ross, S. M. Bushell, G. Erdemli, J. M. Solomon, PLoS One 2015, 10, e0127498. doi:10.1371/journal.pone. 0127498

[^0]
Synthesis of (-)-englerin A

Dimethyl (E)-2-(3-methylpenta-2,4-dien-1-yl)malonate (7):

A solution of dimethyl malonate ($35.1 \mathrm{~mL}, 306.0 \mathrm{mmol}, 3.0$ eq.) in THF (60 mL) was added to an ice-cooled suspension of $\mathrm{NaH}(4.89 \mathrm{~g}, 60 \%$ in mineral oil, $122 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in THF (450 mL). After stirring at $23^{\circ} \mathrm{C}$ for 1 h , a solution of dienyl bromide $6^{5}(16.4 \mathrm{~g}, 102.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 3 h at $23^{\circ} \mathrm{C}$, poured into water and extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated, and the resulting crude product was purified by flash chromatography ($\mathrm{SiO}_{2}, 5$ to 20% EtOAc/hexanes) to give the diester 7 as a colorless oil ($19.1 \mathrm{~g}, 88 \%$ yield). $\mathbf{R}_{f}=0.49$ (30% $\mathrm{Et}_{2} \mathrm{O} /$ hexanes). ${ }^{1} \mathrm{H}$ NMR (300 MHz CDCl 3) $\delta 6.33$ (dd, $J=17.4,10.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.39(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.13(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ ($\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.34$ (CO), 140.92 (CH), 136.79 (C), $127.21(\mathrm{CH}), 112.00\left(\mathrm{CH}_{2}\right), 52.54\left(\mathrm{CH}_{3}\right), 51.53(\mathrm{CH}), 27.72\left(\mathrm{CH}_{2}\right), 11.69\left(\mathrm{CH}_{3}\right)$. LRMS $(\mathrm{m} / \mathrm{z}, \mathrm{ESI})$: $235.09[\mathrm{M}+\mathrm{Na}]^{+}, 185.05,138.98,105.04$. HRMS-ESI Calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 235.0941, found 235.0936 .
(E)-N-Methoxy-N,5-dimethylhepta-4,6-dienamide (8):

A solution of 7 ($15.0 \mathrm{~g}, 70.7 \mathrm{mmol}, 1.0$ eq.), $\mathrm{NaCN}(17.3 \mathrm{~g}, 353 \mathrm{mmol}, 5.0 \mathrm{eq}$.$) , and water (6.37$ $\mathrm{mL}, 353 \mathrm{mmol}, 5.0 \mathrm{eq}$.$) in DMSO (707 \mathrm{~mL}$) was stirred for 48 h at $80^{\circ} \mathrm{C}$. When the reaction was complete water (700 mL) was added, and the resulting mixture was extracted with pentane (3 $\times 250 \mathrm{~mL}$). The combined pentane fractions were washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give ester 7 a as a colorless oil ($8.83 \mathrm{~g}, 81 \%$) which was used without purification in the next step.

MeNHOMe•HCl (11.13 g, $114 \mathrm{mmol}, 2.0$ eq.), followed by ${ }^{i} \operatorname{PrMgCl}(2.0 \mathrm{M}$ in THF, $120 \mathrm{~mL}, 240$ mmol, 4.2 eq.) were added to a solution of the crude product $7 \mathrm{a}(8.80 \mathrm{~g}, 57.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (500 mL) at $-15{ }^{\circ} \mathrm{C}$ The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 3 h before $\mathrm{NH}_{4} \mathrm{Cl}$ (sat.) (50 mL) was added. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by flash

[^1]chromatography ($\mathrm{SiO}_{2}, 20$ to $60 \% \mathrm{EtOAc} /$ hexanes) to give the Weinreb amide 8 as a pale yellow oil ($9.93 \mathrm{~g}, 95 \%$).

Compound 7a: ${ }^{6} \mathbf{R}_{f}=0.58$ ($30 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes). ${ }^{1} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz} \mathrm{CDCl} 3) \delta 6.36$ ($\mathrm{dd}, \mathrm{J}=17.4$, $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}$, 3H), $2.51-2.29(\mathrm{~m}, 4 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}).) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8$ (C), 141.8 (CH), 135.8 $(\mathrm{C}), 131.3(\mathrm{CH}), 111.6\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{CH}_{3}\right), 34.3\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right), 11.9\left(\mathrm{CH}_{3}\right)$.

Compound 8: $\mathbf{R}_{f}=0.60$ (50% EtOAc/hexanes). $\left.{ }^{1} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz} \mathrm{CDCl})_{3}\right) \delta 6.36$ (dd, $J=17.3$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.09(\mathrm{C})$, $141.47(\mathrm{CH}), 135.08(\mathrm{C}), 131.49(\mathrm{CH}), 111.15\left(\mathrm{CH}_{2}\right), 61.24\left(\mathrm{CH}_{3}\right), 32.20\left(\mathrm{CH}_{3}\right), 31.66\left(\mathrm{CH}_{2}\right), 23.32$ $\left(\mathrm{CH}_{2}\right), 11.57\left(\mathrm{CH}_{3}\right)$. LRMS ($\mathrm{m} / \mathrm{z}, \mathrm{ESI}$): $184.13[\mathrm{M}+\mathrm{H}]^{+}, 159.12,145.10$. HRMS-ESI Calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 184.1332$, found 184.1340.

(E)-2,10-Dimethyl-3-((tetrahydro-2H-pyran-2-yl)oxy)dodeca-9,11-dien-4-yn-6-one (10):

10
${ }^{n}$ BuLi ($13.5 \mathrm{ml}, 2.5 \mathrm{M}$ in hexanes, 33.7 mmol , 1.5 eq .) was slowly added ($0.2 \mathrm{~mL} / \mathrm{min}$) to a solution of propargyl ether $9(6.15 \mathrm{~g}, 33.7 \mathrm{mmol} 1.5 \mathrm{eq}$.$) in THF (225 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$. The reaction was stirred 30 min at $-78{ }^{\circ} \mathrm{C}$ and a solution of the Weinreb amide $8(4.12 \mathrm{~g}, 22.5$ mmol, 1.0 eq.) in THF (25 mL) was added. The solution was warmed to $-15{ }^{\circ} \mathrm{C}$. After 1 h , consumption of starting material was observed by $\mathrm{TLC}, \mathrm{NH}_{4} \mathrm{Cl}$ (sat.) was added and the resulting mixture was diluted with EtOAc and water. The aqueous layer was separated and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification of the crude material by flash chromatography ($\mathrm{SiO}_{2}, 1$ to $20 \% \mathrm{EtOAc} /$ hexanes) affords the diene-ynone 10 as a $1: 1$ mixture of diastereomers (6.78 g , 99% yield, pale yellow oil). ${ }^{7} \mathbf{R}_{f}=0.46$ and 0.51 ($30 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes). ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.29$ (dd, $J=17.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ ($\mathrm{d}, J=17.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1.5 \mathrm{H}), 4.75-4.64(\mathrm{~m}, 0.5 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.13(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 0.5 \mathrm{H}$), $3.96(\mathrm{td}, J=10.6,9.8,0.5 \mathrm{H}), 3.74(\mathrm{td}, \mathrm{J}=10.1,9.0,0.5 \mathrm{H}), 3.56-3.44(\mathrm{~m}, 1 \mathrm{H})$, $2.61(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}$, $3 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.07-0.91(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 186.74 (C), 186.57(C), 141.10 (CH), 141.05 (CH), 135.40 (C), 135.32 (C), 130.07 (CH), 129.90 $(\mathrm{CH}), 111.44\left(\mathrm{CH}_{2}\right), 111.35\left(\mathrm{CH}_{2}\right), 99.22(\mathrm{CH}), 95.65(\mathrm{CH}), 91.71(\mathrm{C}), 90.55(\mathrm{C}), 84.88(\mathrm{C}), 84.07$ (C), $72.86(\mathrm{CH}), 69.91(\mathrm{CH}), 62.16\left(\mathrm{CH}_{2}\right), 62.00\left(\mathrm{CH}_{2}\right), 45.23\left(\mathrm{CH}_{2}\right), 45.17\left(\mathrm{CH}_{2}\right), 33.03(\mathrm{CH}), 30.33$ $\left(\mathrm{CH}_{2}\right), 30.30\left(\mathrm{CH}_{2}\right), 25.43\left(\mathrm{CH}_{2}\right), 22.80\left(\mathrm{CH}_{2}\right), 19.09\left(\mathrm{CH}_{2}\right), 18.76\left(\mathrm{CH}_{2}\right), 18.60\left(\mathrm{CH}_{3}\right), 18.28\left(\mathrm{CH}_{3}\right)$, $18.18\left(\mathrm{CH}_{3}\right), 17.71\left(\mathrm{CH}_{3}\right), 11.68\left(\mathrm{CH}_{3}\right) . \operatorname{LRMS}-\mathrm{Cl}(\mathrm{m} / \mathrm{z}, \mathrm{I}): 305\left([\mathrm{M}+\mathrm{H}]^{+}, 18\right), 221(25), 203(75)$, 161 (63), 85 (100). HRMS-Cl Calculated for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 305.2117$, found 305.2109.

[^2]

A solution of diene-ynone $10(4.7 \mathrm{~g}, 15.44 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in { }^{'} \operatorname{PrOH}(25 \mathrm{~mL})$ was added to a solution of (S,S)-Ru1 ($231 \mathrm{mg}, 0.386 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$) in ${ }^{i} \operatorname{PrOH}(125 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$. After stirring the mixture for 1 h , the volatiles were concentrated in vacuo, redissolved in ether and filtered over a Florisil ${ }^{\circledR}$ pad to give propargylic alcohol 11 as a colorless oil (4.73 g , quant.), which was subsequently used in the next step without further purification. A solution of crude product 11 $\left(4.73 \mathrm{~g}, 15.44 \mathrm{mmol}, 1.0\right.$ eq.) in $\mathrm{Et}_{2} \mathrm{O}(125 \mathrm{~mL})$ was added at $23^{\circ} \mathrm{C}$ to a suspension of LiAlH_{4} ($1.45 \mathrm{~g}, 38.6 \mathrm{mmol}, 2.5 \mathrm{eq}$.) in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. The mixture was warmed to $40^{\circ} \mathrm{C}$ and, after 2 h , the reaction was cooled in an ice bath and cold water was added, stirred for 1 h , filtered over silica and concentrated in vacuo. Purification of the crude residue by flash chromatography $\left(\mathrm{SiO}_{2}, 5\right.$ to $20 \% \mathrm{EtOAc} /$ hexanes) afforded the allenediene $\mathbf{2 a}$ as a mixture of diastereomers ($2.61 \mathrm{~g}, 82 \%$ yield, colorless oil). ${ }^{8}$

Compound 11: ${ }^{8} \mathbf{R}_{f}=0.39\left(30 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.34$ ($\mathrm{dd}, \mathrm{J}=17.4$, $10.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.47(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{t}, J=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{ddd}, J=11.5,9.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}$, $1 \mathrm{H}), 2.30(\mathrm{q}, ~ J=7.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 7 \mathrm{H}), 1.63-1.47(\mathrm{~m}, 4 \mathrm{H})$, $1.02(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl ${ }_{3}$) $\delta 141.41$ (CH), 134.96 (C), $131.67(\mathrm{CH}), 110.99\left(\mathrm{CH}_{2}\right), 95.18(\mathrm{CH}), 87.23(\mathrm{C}), 82.75(\mathrm{C}), 70.28(\mathrm{CH}), 62.05\left(\mathrm{CH}_{2}\right), 61.96$ $(\mathrm{CH}), 37.59\left(\mathrm{CH}_{2}\right), 33.22(\mathrm{CH}), 30.51\left(\mathrm{CH}_{2}\right), 25.59\left(\mathrm{CH}_{2}\right), 24.11\left(\mathrm{CH}_{2}\right), 19.19\left(\mathrm{CH}_{2}\right), 18.76\left(\mathrm{CH}_{3}\right)$, $18.27\left(\mathrm{CH}_{3}\right), 11.73(\mathrm{CH} 3) . \operatorname{LRMS}-\mathrm{Cl}(\mathrm{m} / \mathrm{z}, \mathrm{l}): 307\left([\mathrm{M}+\mathrm{H}]^{+}, 25\right), 204(78), 177$ (81), 135 (96), 121 (98), 86 (100).

Compound 2a: $\mathbf{R}_{f}=0.57$ (20\% EtOAc/hexanes). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.36$ (dd, $\mathrm{J}=17.4$, $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.03(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.18(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.63$ (td, $J=7.7,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 200.87 (C), 200.55 (C), 141.54 (CH), 134.55 (C), 132.38 (CH), $110.72\left(\mathrm{CH}_{2}\right), 102.14$ (CH), 101.65 $(\mathrm{CH}), 96.92(\mathrm{CH}), 69.85(\mathrm{CH}), 69.28(\mathrm{CH}), 37.22\left(\mathrm{CH}_{2}\right), 27.99(\mathrm{CH}), 24.42\left(\mathrm{CH}_{2}\right), 24.32\left(\mathrm{CH}_{2}\right)$, $22.55\left(\mathrm{CH}_{3}\right), 11.73\left(\mathrm{CH}_{3}\right) . \operatorname{LRMS}(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 207.17[\mathrm{M}+\mathrm{H}]^{+}, 189.16,145.10$. HRMS-ESI Calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 207.1743$, found 207.1738.

[^3]
tert-Butyl(((6S,E)-2,10-dimethyldodeca-3,4,9,11-tetraen-6-yl)oxy)dimethylsilane (2b):

A solution of allenediene $\mathbf{2 a}$ ($2.43 \mathrm{~g}, 11.78 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added to a solution of imidazole ($3.21 \mathrm{~g}, 47.1 \mathrm{mmol}, 4.0 \mathrm{eq}$), DMAP ($288 \mathrm{mg}, 2.35 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and TBSCl ($3.55 \mathrm{~g}, 23.55 \mathrm{mmol}, 2.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. The resulting reaction mixture was stirred for 1.5 h at $23^{\circ} \mathrm{C}$, water (10 mL) was added and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by column chromatography (SiO_{2}, $5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes with $0.5 \% \mathrm{Et}_{3} \mathrm{~N}$) to give allenediene $\mathbf{2 b}$ as a mixture of diastereomers (3.78 g , quant., colorless oil). ${ }^{9} \mathbf{R}_{f}=0.83$ ($20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.38$ (dd, $J=$ $17.4,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (d, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.09(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.11(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.03$ $\left.(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75MHz,CDCl}_{3}\right) \delta 201.39(\mathrm{C}), 201.09(\mathrm{C})$, $, ~, ~$ 141.72 (CH), 141.69 (CH), 134.26 (C), $133.00(\mathrm{CH}), 132.91$ (CH), $110.50\left(\mathrm{CH}_{2}\right), 100.24$ (CH), 99.69 (CH), $96.97(\mathrm{CH}), 72.26(\mathrm{CH}), 71.32(\mathrm{CH}), 38.71\left(\mathrm{CH}_{2}\right), 38.54\left(\mathrm{CH}_{2}\right), 28.40(\mathrm{CH}), 28.05(\mathrm{CH})$, $26.05\left(\mathrm{CH}_{3}\right), 24.54\left(\mathrm{CH}_{2}\right), 24.36\left(\mathrm{CH}_{2}\right), 22.91\left(\mathrm{CH}_{3}\right), 22.86\left(\mathrm{CH}_{3}\right), 22.73\left(\mathrm{CH}_{3}\right), 22.62\left(\mathrm{CH}_{3}\right), 18.35$ (C), $11.78\left(\mathrm{CH}_{3}\right),-4.00\left(\mathrm{CH}_{3}\right),-4.69\left(\mathrm{CH}_{3}\right)$. LRMS-CI: ($\left.\mathrm{m} / \mathrm{z}, \mathrm{l}\right): 321$ ($\left.[\mathrm{M}+\mathrm{H}]^{+}, 43\right), 305(94), 263(95)$, 239 (92), 189 (90), 81 (100). LRMS (m / z, ESI): $321.26[\mathrm{M}+\mathrm{H}]^{+}, 189.16,133.10,105.06$. HRMSESI Calculated for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 321.2614$, found 321.2686 .
tert-Butyll((1S,3aR,8aS)-7-Isopropyl-4-methyl-1,2,3,3a,6,8a-hexahydroazulen-1-yl)oxy)dimethyIsilane (3b):

A solution of allenediene $\mathbf{2 b}$ ($2.0 \mathrm{~g}, 6.24 \mathrm{mmol}, 1.0$ eq.) in o-xylene (10 mL) was added to a suspension of $\mathrm{PtCl}_{2}(83.0 \mathrm{mg}, 0.312 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and tris(pentafluorophenyl) phosphine (166 $\mathrm{mg}, 0.312 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in o-xylene (52 ml) which was previously heated at $150{ }^{\circ} \mathrm{C}$. The mixture was stirred for 30 min and, after completion of the reaction (the progress of the process was monitored by TLC), allowed to cool down to $23^{\circ} \mathrm{C}$ and filtered through a pad of Florisil ${ }^{\infty}$, eluting with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo and purified by flash chromatography ($\mathrm{SiO}_{2} 15-40 \mu \mathrm{~m}, 0.1$ to $5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to afford the cycloadduct $\mathbf{3 b}(1.42 \mathrm{~g}$, 71% yield, colorless oil) and the triene $\mathbf{1 2 b}$ ($100 \mathrm{mg}, 5 \%$ yield, yellow oil).

[^4]Compound 3b: $\mathbf{R}_{f}=0.41$ ($1 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes). $[\alpha]_{\mathrm{D}}{ }^{20.1}=-24.39$ (c 1.0, CHCl_{3}). ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.50(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{ddt}, J=7.6,3.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{td}, J=8.7,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{dtd}, J=12.9,8.8,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.7$ $\mathrm{Hz}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.074(\mathrm{~s}, 3 \mathrm{H}), 0.068(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.45(\mathrm{C})$, $139.14(\mathrm{C}), 123.39(\mathrm{CH}), 120.86(\mathrm{CH}), 79.26(\mathrm{CH}), 50.56(\mathrm{CH}), 44.02(\mathrm{CH}), 36.36(\mathrm{CH}), 32.40$ $\left(\mathrm{CH}_{2}\right), 29.85\left(\mathrm{CH}_{2}\right), 27.79\left(\mathrm{CH}_{2}\right), 26.11\left(\mathrm{CH}_{3}\right), 23.10\left(\mathrm{CH}_{3}\right), 21.56\left(\mathrm{CH}_{3}\right), 21.30\left(\mathrm{CH}_{3}\right), 18.38(\mathrm{C}),-$ $4.21\left(\mathrm{CH}_{3}\right),-4.35\left(\mathrm{CH}_{3}\right)$. LRMS-EI $(\mathrm{m} / \mathrm{z}, \mathrm{l}): 307\left(\mathrm{M}^{+}, 6\right), 263(100), 187$ (39), 145 (75), 75 (98). HRMS-EI Calculated for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{OSi}[\mathrm{M}]^{+}: 320.2535$, found 320.2541 . GC analysis on Chiraldex GTA $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ showed a 99.1% enantiomeric excess. The relative stereochemistry of the $\mathbf{3 b}$ was determined by nOe experiments (Figure 1).

Figure 1

Compound 12b: $\mathbf{R}_{f}=0.50$ (1\% $\mathrm{Et}_{2} \mathrm{O} /$ hexanes). $[\alpha]_{\mathrm{D}}{ }^{21.5}=+76.66$ (c 0.97, CHCl_{3}). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.66(\mathrm{dd}, J=17.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=15.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=15.5$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J$

[^5]$=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dt}, J=17.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.80$ $(\mathrm{m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.59(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.56(\mathrm{C}), 138.44(\mathrm{CH}), 137.22(\mathrm{CH}), 127.56(\mathrm{CH}), 126.77(\mathrm{C}), 109.71$ $\left(\mathrm{CH}_{2}\right), 79.75(\mathrm{CH}), 54.74(\mathrm{CH}), 32.60\left(\mathrm{CH}_{2}\right), 31.06(\mathrm{CH}), 28.84\left(\mathrm{CH}_{2}\right), 25.89\left(\mathrm{CH}_{3}\right), 22.57\left(\mathrm{CH}_{3}\right)$, $18.17(\mathrm{C}), 14.45\left(\mathrm{CH}_{3}\right),-4.56\left(\mathrm{CH}_{3}\right),-4.59\left(\mathrm{CH}_{3}\right)$. LRMS $(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 321.26[\mathrm{M}+\mathrm{H}]^{+}, 261.18,247.16$, 133.10, 105.07. HRMS-ESI Calculated for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 321.2608$, found 321.2609 . The relative stereochemistry of the 12b was determined by nOe experiments (Figure 2).

Figure 2
(1S,3aR,4S,5R,8aS)-1-((tert-Butyldimethylsilyl)oxy)-7-isopropyl-4-methyl-1,2,3,3a,4,5,6,8a-octahydroazulene-4,5-diol (4b):

A solution of cycloadduct $\mathbf{3 b}$ ($564 \mathrm{mg}, 1.76 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and N-methylmorpholine N-oxide ($412 \mathrm{mg}, 3.52 \mathrm{mmol}, 2.0$ eq.) in acetone (5 mL) was added to a solution of $\mathrm{K}_{2} \mathrm{OsO}_{4}(194 \mathrm{mg}$, $0.528 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and methanesulfonamide ($251 \mathrm{mg}, 2.64 \mathrm{mmol}, 1.5$ eq.) in acetone (35 mL) and water (4 mL) at $23^{\circ} \mathrm{C}$. The mixture was stirred for 12 h before $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (sat.) (20 mL) was added, and the resulting mixture was stirred for additional 30 min . The volatile materials were concentrated in vacuo and the aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification of the crude residue by flash chromatography ($\mathrm{SiO}_{2}, 10$ to 50% EtOAc/hexanes) afforded the diol $\mathbf{4 b}$ ($455 \mathrm{mg}, 73 \%$ yield, colorless foam) and its isomer $\mathbf{4 b}^{\prime}$ (12 $\mathrm{mg}, 2 \%$ yield, pale brown foam). ${ }^{11}$

Compound 4b: $\mathbf{R}_{f}=0.46$ (50% EtOAc/hexanes). $[\alpha]_{\mathrm{D}}{ }^{21.2}=+52.79$ (c $0.99, \mathrm{CHCl}_{3}$). ${ }^{1} \mathbf{H} \mathbf{N M R}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.63(\mathrm{dt}, J=2.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{td}, J=8.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.48 (ddd, $J=16.0,8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.28(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.18(\mathrm{~m}, 1 \mathrm{H})$, $2.02-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{ddd}, \mathrm{J}=12.2,8.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 1 \mathrm{H}), 1.52-$ $1.45(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.15(\mathrm{C}), 126.58(\mathrm{CH}), 79.81(\mathrm{CH}), 76.40(\mathrm{C})$, $75.29(\mathrm{CH}), 48.83(\mathrm{CH}), 45.60(\mathrm{CH}), 37.28(\mathrm{CH}), 33.68\left(\mathrm{CH}_{2}\right), 33.19\left(\mathrm{CH}_{2}\right), 26.18\left(\mathrm{CH}_{3}\right), 22.11$

[^6]$\left(\mathrm{CH}_{2}\right), 21.78\left(\mathrm{CH}_{3}\right), 21.61\left(\mathrm{CH}_{3}\right), 19.24\left(\mathrm{CH}_{3}\right), 18.42(\mathrm{C}),-4.02\left(\mathrm{CH}_{3}\right),-4.29\left(\mathrm{CH}_{3}\right)$. LRMS $(\mathrm{m} / \mathrm{z}, \mathrm{ESI})$: $377.24[\mathrm{M}+\mathrm{Na}]^{+}, 319.24,245.07,187.15$. HRMS-ESI Calculated for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 377.2482 , found 377.2484 . The relative stereochemistry of the $\mathbf{4 b}$ was determined by nOe experiments (Figure 3).

Figure 3
Compound $\mathbf{4 b}^{\mathbf{\prime}}: \mathbf{R}_{f}=0.52$ ($50 \% \mathrm{EtOAc} /$ hexanes). $[\alpha]_{D}{ }^{21.3}=-31.25$ (c $0.94, \mathrm{CHCl}_{3}$). ${ }^{1} \mathbf{H} \mathbf{N M R}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.58(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=$ $15.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{dt}, \mathrm{J}=13.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{t}, \mathrm{J}=3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.98-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 1 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H})$, $1.00(d, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.65(\mathrm{C}), 126.79(\mathrm{CH}), 79.68(\mathrm{CH}), 75.35(\mathrm{CH}), 74.80(\mathrm{C}), 48.18(\mathrm{CH}), 46.31(\mathrm{CH})$, $36.67(\mathrm{CH}), 34.39\left(\mathrm{CH}_{2}\right), 32.63\left(\mathrm{CH}_{2}\right), 26.02\left(\mathrm{CH}_{3}\right), 25.76\left(\mathrm{CH}_{3}\right), 22.08\left(\mathrm{CH}_{2}\right), 21.48\left(\mathrm{CH}_{3}\right), 21.09$ $\left(\mathrm{CH}_{3}\right), 18.26(\mathrm{C}),-4.18\left(\mathrm{CH}_{3}\right),-4.44\left(\mathrm{CH}_{3}\right) . \operatorname{LRMS}(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 377.24[\mathrm{M}+\mathrm{Na}]^{+}, 3190.24,205.16$, 158.09. HRMS-ESI Calculated for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 377.2482$, found 377.2481. The relative stereochemistry of the $\mathbf{4} \mathbf{b}^{\prime}$ was determined by nOe experiments (Figure 4).

Figure 4
(1S,3aR,4S,5R,8aS)-1-((tert-Butyldimethylsilyl)oxy)-4-hydroxy-7-isopropyl-4-methyl-1,2,3,3a,4,5,6,8a-octahydroazulen-5-yl pivalate (13b):

$\mathrm{Et}_{3} \mathrm{~N}$ ($5.0 \mathrm{~mL}, 35.8 \mathrm{mmol}, 10.0 \mathrm{eq}$.), pivaloyl chloride ($1.32 \mathrm{~mL}, 10.74 \mathrm{mmol}, 3.0 \mathrm{eq}$.) and DMAP ($88 \mathrm{mg}, 0.72 \mathrm{mmol}, 20 \mathrm{~mol} \%$) were successively added to a solution of diol $\mathbf{4 b}(1.27 \mathrm{~g}, 3.58$ mmol, 1.0 eq.) in $\mathrm{CHCl}_{3}(120 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was warmed to $65^{\circ} \mathrm{C}$ and stirred for 12 h . After completion of the reaction, the mixture allowed to cool down to $23^{\circ} \mathrm{C}$ and it was directly absorbed in silica, concentrated in vacuo and purified by flash chromatography ($\mathrm{SiO}_{2}, 2.5$ to $30 \% \mathrm{EtOAc} /$ hexanes with $5 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{1 3 b}(1.56 \mathrm{~g}, 99 \%$ yield, pale brown oil). $\mathbf{R}_{f}=0.60$ ($50 \% \mathrm{EtOAc} /$ hexanes). $[\alpha]_{\mathrm{D}}{ }^{19.2}=+18.07$ (c 1.12, CHCl_{3}). ${ }^{1} \mathrm{H} \mathbf{N M R}$
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.54(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, \mathrm{J}=9.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.63 (ddd, $J=17.4,9.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.10(\mathrm{p}, J=7.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.91-1.73$ $(\mathrm{m}, 2 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H})$, $0.96(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.68(\mathrm{CO}), 143.32(\mathrm{C}), 124.68(\mathrm{CH}), 79.66(\mathrm{CH}), 77.74(\mathrm{CH}), 75.75(\mathrm{C})$, $48.91(\mathrm{CH}), 45.79(\mathrm{CH}), 39.20(\mathrm{C}), 37.02(\mathrm{CH}), 33.65\left(\mathrm{CH}_{2}\right), 30.84\left(\mathrm{CH}_{2}\right), 27.42\left(\mathrm{CH}_{3}\right), 27.14\left(\mathrm{CH}_{3}\right)$, $26.01\left(\mathrm{CH}_{3}\right), 22.00\left(\mathrm{CH}_{2}\right), 21.49\left(\mathrm{CH}_{3}\right), 19.84\left(\mathrm{CH}_{3}\right), 18.24(\mathrm{C}),-4.20\left(\mathrm{CH}_{3}\right),-4.45\left(\mathrm{CH}_{3}\right)$. LRMS ($\mathrm{m} / \mathrm{z}, \mathrm{ESI}$): $461.30[\mathrm{M}+\mathrm{Na}]^{+}, 347.22,319.24,187.14$. HRMS-ESI Calculated for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{NaO}_{4} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 461.3058$, found 461.3059.
(1S,3aR,4S,5R,8aS)-1,4-Dihydroxy-7-isopropyl-4-methyl-1,2,3,3a,4,5,6,8a-octahydroazulen-5yl pivalate (13):

HF•Py ($2.78 \mathrm{~mL}, \sim 70 \%$ in pyridine, $21.65 \mathrm{mmol}, 10.0$ eq.) was added dropwise to a solution of the silyl ether 13b ($950 \mathrm{mg}, 2.165 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (10 mL) in a falcon type tube (50 mL). The mixture was stirred for 4 h at $23^{\circ} \mathrm{C}$. After completion of the reaction, the mixture was cooled at $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (sat.) (20 mL) was added. The aqueous layer was separated and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification of the crude residue by flash chromatography ($\mathrm{SiO}_{2}, 20$ to $50 \% \mathrm{EtOAc} /$ hexanes with $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the alcohol 13 as a white foam ($630 \mathrm{mg}, 90 \%$ yield). $\mathbf{R}_{f}=0.48$ ($50 \% \mathrm{EtOAc} /$ hexanes). $[\alpha]_{\mathrm{D}}{ }^{19.9}=-1.29$ (c 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.59(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.61 (ddd, $J=16.4,9.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.87(\mathrm{~m}$, $3 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{dt}, J=13.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{ddt}, J=12.5,9.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.22$ (s, 3H), $1.20(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 177.87 (CO), $144.20(\mathrm{C}), 124.58(\mathrm{CH}), 79.67(\mathrm{CH}), 77.60(\mathrm{CH}), 75.73(\mathrm{C}), 49.21(\mathrm{CH}), 47.14(\mathrm{CH})$, $39.32(\mathrm{C}), 37.21(\mathrm{CH}), 33.80\left(\mathrm{CH}_{2}\right), 30.65\left(\mathrm{CH}_{2}\right), 27.52\left(\mathrm{CH}_{3}\right), 22.61\left(\mathrm{CH}_{2}\right), 21.52\left(\mathrm{CH}_{3}\right), 21.42$ $\left(\mathrm{CH}_{3}\right), 19.93\left(\mathrm{CH}_{3}\right) . \operatorname{LRMS}(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 347.22[\mathrm{M}+\mathrm{Na}]^{+}, 236.07,205.16,187.15$. HRMS-ESI Calculated for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 347.2193, found 347.2198.
(1S,3aR,4S,5R,7R,8S,8aS)-1,8-Dihydroxy-7-isopropyl-4-methyldecahydro-4,7-epoxyazulen-5yl pivalate (5a):

Method A (Table 2, entry 4): mCPBA ($85 \mathrm{mg}, 0.370 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added to a solution of alcohol 13 ($100 \mathrm{mg}, 0.308 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ and warmed to $55^{\circ} \mathrm{C}$ for 5 h . After completion of the reaction, the mixture was allowed to cool to $23^{\circ} \mathrm{C}$ and NaHCO_{3} (sat.) $(10 \mathrm{~mL})$ was added. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give a crude residue which was purified by flash chromatography ($\mathrm{SiO}_{2} 15-40 \mu \mathrm{~m}, 10$ to 70% $\mathrm{EtOAc} /$ hexanes with $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the oxatryciclic compound 5 a ($52 \mathrm{mg}, 50 \%$ yield, white foam) and the epoxide $\mathbf{1 4}^{\prime}$ ($52 \mathrm{mg}, 50 \%$ yield, amorphous solid).

Method B (Table 2, entry 5): MMPP ($2.05 \mathrm{~g}, 4.13 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added to a solution of alcohol 13 ($894 \mathrm{mg}, 2.76 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{CH}_{3} \mathrm{CN}(92 \mathrm{~mL}$). The suspension was stirred for 4 h at $85{ }^{\circ} \mathrm{C}$, cooled down to $23^{\circ} \mathrm{C}$, filtered and concentrated in vacuo. The white solid residue was dissolved in EtOAc, and the resulting organic phase was washed with $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (10\%), NaHCO_{3} (sat.), and water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification of the crude was carried out as for Method A, to give 5a ($470 \mathrm{mg}, 50 \%$ yield) and 14^{\prime} ($468 \mathrm{mg}, 50 \%$ yield).

Method C (Table 2, entry 7): Alcohol 13 ($440 \mathrm{mg}, 1.36 \mathrm{mmol}, 1.0$ eq.) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ $(6.5 \mathrm{~mL})$ and dimethoxymethane (DMM) (13 mL). Then, a Borax buffer solution [$20 \mathrm{~mL}, 0.05 \mathrm{M}$ solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ in $4 \times 10^{-4} \mathrm{M}$ aqueous $\mathrm{Na}_{2}($ EDTA $\left.)\right],\left({ }^{n} \mathrm{Bu}\right)_{4} \mathrm{NHSO}_{4}(0.015 \mathrm{~g}, 0.04 \mathrm{mmol})$, and L-Shi catalyst ($105 \mathrm{mg}, 0.407 \mathrm{mmol}, 30 \mathrm{~mol} \%$) were subsequently added. A solution of Oxone ${ }^{\circledR}(2.5 \mathrm{~g}, 4.07 \mathrm{mmol}, 3.0 \mathrm{eq})$ in aqueous $\mathrm{Na}_{2}($ EDTA $)\left(12 \mathrm{~mL}, 4 \times 10^{-4} \mathrm{M}\right)$ and a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.31 \mathrm{~g}, 9.49 \mathrm{mmol}, 7.0$ eq.) in water (12 mL) were added dropwise separately over a period of 1.5 h . The mixture was stirred at $23^{\circ} \mathrm{C}$ for 12 h , diluted with water (50 mL), and extracted with EtOAc ($4 \times 50 \mathrm{~mL}$). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude was redissolved in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ and warmed at $85{ }^{\circ} \mathrm{C}$ for 2 h . Then, the reaction mixture was cooled down to $23^{\circ} \mathrm{C}$, absorbed in silica, and evaporated under vacuo. Purification of the crude residue was carried out as for Method A, to give 5a ($328 \mathrm{mg}, 71 \%$ yield) and $\mathbf{1 4}^{\prime}$ ($73 \mathrm{mg}, 16 \%$ yield).

Compound 5a: $\mathbf{R}_{f}=0.28$ (50\% EtOAc/hexanes). $[\alpha]_{\mathrm{D}}{ }^{18.8}=-2.69$ (c 0.93, CHCl_{3}). ${ }^{1} \mathbf{H} \mathbf{N M R}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.02(\mathrm{dd}, J=7.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{td}, J=8.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.51 (dd, $J=14.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (brs, 2 H), $2.18-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.97$ (hept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.67-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H})$, $1.13(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.20$ (CO), 86.09 (C), $84.39(\mathrm{C}), 77.07(\mathrm{CH}), 74.91(\mathrm{CH}), 74.49(\mathrm{CH}), 51.43(\mathrm{CH}), 48.22(\mathrm{CH}), 39.04$ $\left(\mathrm{CH}_{2}\right), 38.99(\mathrm{C}), 32.23\left(\mathrm{CH}_{2}\right), 31.54(\mathrm{CH}), 27.27\left(\mathrm{CH}_{3}\right), 23.54\left(\mathrm{CH}_{2}\right), 18.46\left(\mathrm{CH}_{3}\right), 18.16\left(\mathrm{CH}_{3}\right)$, $17.17\left(\mathrm{CH}_{3}\right)$. LRMS ($\mathrm{m} / \mathrm{z}, \mathrm{ESI}$): $341.23[\mathrm{M}+\mathrm{H}]^{+}, 239.16,221.15,203.14$. HRMS-ESI Calculated for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 41.2323$, found 341.2320 . The relative stereochemistry of the 5 a was determined by nOe experiments (Figure 5).

Figure 5

Compound 14': $\mathbf{R}_{f}=0.39$ (50% EtOAc/hexanes). $[\alpha]_{D}{ }^{21.6}=+37.11$ (c 1.01, CHCl_{3}). ${ }^{1} \mathbf{H} \mathbf{N M R}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.60(\mathrm{dd}, J=10.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.30(\mathrm{dd}, \mathrm{J}=15.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dt}, \mathrm{J}=11.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.71$ ($\mathrm{m}, 2 \mathrm{H}$), 1.64 (dd, $J=15.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.57 (ddd, $J=12.5,8.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{p}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.46(\mathrm{CO}), 77.02(\mathrm{CH}), 76.75(\mathrm{CH}), 74.68(\mathrm{C}), 65.70(\mathrm{C}), 61.82(\mathrm{CH}), 48.91(\mathrm{CH})$, $40.67(\mathrm{CH}), 39.30(\mathrm{C}), 37.52(\mathrm{CH}), 34.76\left(\mathrm{CH}_{2}\right), 28.61\left(\mathrm{CH}_{2}\right), 27.46\left(\mathrm{CH}_{3}\right), 22.76\left(\mathrm{CH}_{2}\right), 20.24$ $\left(\mathrm{CH}_{3}\right), 18.10\left(\mathrm{CH}_{3}\right), 17.28\left(\mathrm{CH}_{3}\right)$. LRMS $(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 363.21[\mathrm{M}+\mathrm{Na}]^{+}, 277.11,236$. HRMS-ESI Calculated for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 363.2142$, found 363.2151 . The relative stereochemistry of the 14^{\prime} was determined by nOe experiments (Figure 6).

Figure 6
($1 S, 3 \mathrm{aR}, 4 \mathrm{4}, 5 R, 7 R, 8 S, 8 \mathrm{a}$)-8-Hydroxy-7-isopropyl-4-methyl-1-(tosyloxy)decahydro-4,7-epoxy-azulen-5-yl pivalate (15):

p-Toluenesulfonyl chloride ($248 \mathrm{mg}, 1.30 \mathrm{mmol}, 1.5$ eq.) and $\mathrm{Et}_{3} \mathrm{~N}(181 \mu \mathrm{~L}, 1.30 \mathrm{mmol}, 1.5$ eq.) were added to a solution of the diol $\mathbf{5 a}$ ($295 \mathrm{mg}, 0.866 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The mixture was cooled in an ice-water bath and DMAP ($2.65 \mathrm{mg}, 2.17 \mathrm{mmol}, 2.5$ eq.) was added. After 10 min the ice bath was removed and stirring was continued at $23^{\circ} \mathrm{C}$ for additional 12 h . The mixture was poured into $\mathrm{NaHSO}_{4}(30 \%$ aq.) and the organic phase was separated and washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification of the crude residue by flash chromatography $\left(\mathrm{SiO}_{2}, 5\right.$ to $30 \% \mathrm{EtOAc} /$ hexanes with $5 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 15 (407 mg , 95% yield, white foam).
$\mathbf{R}_{f}=0.61(50 \% \mathrm{EtOAc} /$ hexanes $) .[\alpha]_{\mathrm{D}}{ }^{20.2}=-24.41\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{dd}, J=7.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{td}, J=9.1,5.7 \mathrm{~Hz}$, 1 H), 3.68 (d, J = $9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (brs, 1 H), $2.50(\mathrm{dd}, \mathrm{J}=14.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.06-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{td}, \mathrm{J}=12.8,6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.99$ (CO), 145.27 (C), 133.33 (C), 130.04 (CH), 127.94 (CH), 86.08 (C), 84.13 $(\mathrm{CH}), 83.85(\mathrm{C}), 74.54(\mathrm{CH}), 72.85(\mathrm{CH}), 50.31(\mathrm{CH}), 48.02(\mathrm{CH}), 38.92(\mathrm{C}), 38.86\left(\mathrm{CH}_{2}\right), 31.42$ $(\mathrm{CH}), 29.61\left(\mathrm{CH}_{2}\right), 27.23\left(\mathrm{CH}_{3}\right), 23.31\left(\mathrm{CH}_{2}\right), 21.78\left(\mathrm{CH}_{3}\right), 18.43\left(\mathrm{CH}_{3}\right), 18.02\left(\mathrm{CH}_{3}\right), 16.99\left(\mathrm{CH}_{3}\right)$. LRMS (m / z, ESI): $495.24[\mathrm{M}+\mathrm{H}]^{+}, 477.23,375.16,323.21$. HRMS-ESI Calculated for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 495.2411$, found 495.2410 .
(1R,3aR,4S,5R,7R,8S,8aR)-7-Isopropyl-1,4-dimethyldecahydro-4,7-epoxyazulene-5,8-diol (19): ${ }^{12}$

MeLi ($2.0 \mathrm{~mL}, 1.6 \mathrm{M}, 3.24 \mathrm{mmol}, 20.0$ eq.) was added dropwise to a stirred suspension of $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}\left(332 \mathrm{mg}, 1.62 \mathrm{mmol}, 10.0\right.$ eq.) in $\mathrm{Et}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$. After being stirred for 30 min , a solution of the tosylate 15 ($80.0 \mathrm{mg}, 0.162$ mmoles, 1.0 eq .) in $\mathrm{Et}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ was added dropwise. The resultant suspension was stirred at $23^{\circ} \mathrm{C}$ for 2 h , cooled down to $0{ }^{\circ} \mathrm{C}$ and MeLi ($1.0 \mathrm{~mL}, 1.6 \mathrm{M}, 1.62 \mathrm{mmol}, 10.0 \mathrm{eq}$.) was added dropwise. The resulting mixture was stirred for an additional hour, cooled in an ice-water bath and water (2 mL) was added, followed by $\mathrm{NH}_{4} \mathrm{Cl}$ (sat.). Extraction with EtOAc ($3 \times 20 \mathrm{~mL}$) provided an organic phase which was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo and purified by flash chromatography ($\mathrm{SiO}_{2} 15-40 \mu \mathrm{~m}$, 20 to $50 \% \mathrm{EtOAc} /$ hexanes with $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the diol 19 ($31.3 \mathrm{mg}, 76 \%$ yield, white solid) and the alkene 18 ($3.5 \mathrm{mg}, 9 \%$ yield, white solid).

Compound 19: $\mathbf{R}_{f}=0.39$ (50\% EtOAc/hexanes). $[\alpha]_{\mathrm{D}}{ }^{19.2}=-53.71$ (c 1.0, CHCl_{3}). ${ }^{1} \mathbf{H} \mathbf{N M R}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.93(\mathrm{dd}, J=7.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=14.5,7.6 \mathrm{~Hz}$, 1 H), 2.30 (ddd, J = 15.5, 7.1, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.05-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.54$ (m, 2H), 1.25 (brs, 2H), $1.23(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.06(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $6 \mathrm{H}), 0.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 85.62$ (C), 85.26 (C), 73.43 (CH), 70.97 $(\mathrm{CH}), 47.96(\mathrm{CH}), 47.86(\mathrm{CH}), 41.93\left(\mathrm{CH}_{2}\right), 32.13(\mathrm{CH}), 31.53\left(\mathrm{CH}_{2}\right), 30.61(\mathrm{CH}), 25.94\left(\mathrm{CH}_{2}\right)$, $19.39\left(\mathrm{CH}_{3}\right), 18.38\left(\mathrm{CH}_{3}\right), 17.57\left(\mathrm{CH}_{3}\right), 17.09\left(\mathrm{CH}_{3}\right) . \operatorname{LRMS}(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 277.12[\mathrm{M}+\mathrm{Na}]^{+}, 237.18$, 201.16. HRMS-ESI Calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 277.1774$, found 277.1772 . The relative stereochemistry of the compound 19 was determined by nOe experiments (Figure 7).

Figure 7
Compound 18: $\mathbf{R}_{f}=0.36$ ($50 \% \mathrm{EtOAc} /$ hexanes). $[\alpha]_{\mathrm{D}}{ }^{22.3}=-144.26$ (c 0.64, CHCl_{3}). ${ }^{1} \mathbf{H} \mathbf{N M R}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.10(\mathrm{dt}, J=5.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{ddd}, J=5.9,4.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.02(\mathrm{~m}$, $1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (dddd, $J=14.2,6.1,3.1$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=12.3$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dd}, \mathrm{J}=14.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{brs}, 1 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.06$ (dd, J = 6.9, 1.1 Hz, 6H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $132.72(\mathrm{CH}), 131.96(\mathrm{CH}), 86.54(\mathrm{C}), 84.52(\mathrm{C})$, $74.28(\mathrm{CH}), 72.64(\mathrm{CH}), 55.01(\mathrm{CH}), 49.37(\mathrm{CH}), 42.10\left(\mathrm{CH}_{2}\right), 32.49\left(\mathrm{CH}_{2}\right), 31.84(\mathrm{CH}), 18.76$

[^7]$\left(\mathrm{CH}_{3}\right), 18.41\left(\mathrm{CH}_{3}\right), 17.40\left(\mathrm{CH}_{3}\right) . \operatorname{LRMS}(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 239.23[\mathrm{M}+\mathrm{H}]^{+}, 221.15,141.02 . \operatorname{LRMS}(\mathrm{m} / \mathrm{z}$, ESI): 261.14 [$\mathrm{M}+\mathrm{Na}]^{+}, 221.15,161.03$. HRMS-ESI Calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 261.1461, found 261.1449 .
(1R,3aR,4S,5R,7R,8S,8aR)-8-hydroxy-7-isopropyl-1,4-dimethyldecahydro-4,7-epoxyazulen-5yl 2-((4-methoxybenzyl)oxy)acetate (25): ${ }^{13}$

EDCI ($31.7 \mathrm{mg}, 0.165 \mathrm{mmol}, 2.0$ eq.) was added to a solution of the diol 19 ($21.0 \mathrm{mg}, 0.083$ mmol, 1.0 eq.), 2-(4-methoxybenzyloxy)acetic acid ($17.8 \mathrm{mg}, 0.091 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) and DMAP$ $(2.0 \mathrm{mg}, 0.017 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $23^{\circ} \mathrm{C}$ for 1 h , water $(2.0 \mathrm{~mL})$ was added, and the mixture was partitioned between EtOAc (30 mL) and water (5 mL). The organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat.) (5 mL), water (5 mL) and brine (5 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo. The resulting crude residue was purified by flash chromatography ($\mathrm{SiO}_{2}, 5$ to $30 \% \mathrm{EtOAc} /$ hexanes) to afford 25 ($28.9 \mathrm{mg}, 83 \%$ yield) as a colorless oil.
$\mathbf{R}_{f}=0.61$ (50% EtOAc/hexanes). $[\alpha]_{D}^{23.1}=-30.31\left(c 0.92, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29$ (d, J = 8.2 Hz, 2H), $6.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{dd}, J=7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, \mathrm{J}=14.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.10-$ $1.88(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{dd}, J=12.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{brs}, 1 \mathrm{H}), 1.32(\mathrm{dt}, J=$ $10.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{dd}, \mathrm{J}=6.9,2.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.33(\mathrm{CO}), 159.63(\mathrm{C}), 129.88(\mathrm{CH}), 129.29(\mathrm{C}), 114.03$ $(\mathrm{CH}), 86.05(\mathrm{C}), 84.52(\mathrm{C}), 75.81(\mathrm{CH}), 73.12\left(\mathrm{CH}_{2}\right), 70.75(\mathrm{CH}), 66.95\left(\mathrm{CH}_{2}\right), 55.42\left(\mathrm{CH}_{3}\right), 48.10$ $(\mathrm{CH}), 48.04(\mathrm{CH}), 38.70\left(\mathrm{CH}_{2}\right), 32.25(\mathrm{CH}), 31.42\left(\mathrm{CH}_{2}\right), 30.65(\mathrm{CH}), 25.65\left(\mathrm{CH}_{2}\right), 19.17\left(\mathrm{CH}_{3}\right)$, $18.41\left(\mathrm{CH}_{3}\right), 17.53\left(\mathrm{CH}_{3}\right), 16.99\left(\mathrm{CH}_{3}\right)$. LRMS ($\mathrm{m} / \mathrm{z}, \mathrm{ESI}$): $455.24[\mathrm{M}+\mathrm{Na}]^{+}, 403.22,373.25,219.05$.
HRMS-ESI Calculated for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 455.2404$, found 455.2403.
(-)-englerin A (1):

25

i) $E t_{3} \mathrm{~N}$ (6.0 eq.), DMAP (6.0 eq.) $2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COCl}$ (3.0 eq.) Tol. $80^{\circ} \mathrm{C}, 30 \mathrm{~min}$.
ii) DDQ (5.0 eq.)
$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ water (20:1), $23^{\circ} \mathrm{C}, 7 \mathrm{~h}$. 100\%

(-)-englerin $A(1)$

2,4,6-trichlorobenzoyl chloride ($30 \mu \mathrm{~L}, 0.194 \mathrm{mmol}, 3.0$ eq.) was added to a solution of (E) cinnamic acid ($28.8 \mathrm{mg}, 0.194 \mathrm{mmol}, 3.0 \mathrm{eq}$.) and $\mathrm{Et}_{3} \mathrm{~N}(54 \mu \mathrm{~L}, 0.388 \mathrm{mmol}, 6.0 \mathrm{eq}$.) in toluene $(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 2 h . Then, a solution of

[^8]compound 25 ($28.0 \mathrm{mg}, 0.065 \mathrm{mmol}, 1.0$ eq.) in toluene (0.5 mL) was added followed by addition of DMAP ($47.4 \mathrm{mg}, 0.388 \mathrm{mmol}$) and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min . After completion of the reaction, NaHCO_{3} (sat.) was added, and the mixture was partitioned between EtOAc (30 mL) and water (5 mL). The organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat.) (5 mL), water (5 mL) and brine (5 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting crude mixture was purified by flash chromatography ($\mathrm{SiO}_{2}, 5$ to $20 \% \mathrm{EtOAc} /$ hexanes) to afford the corresponding diester 26 ($36.4 \mathrm{mg}, 100 \%$) as a colorless oil. $\mathbf{R}_{\mathrm{f}}=0.40\left(20 \%\right.$ EtOAc/hexanes). $[\alpha]_{\mathrm{D}}{ }^{24.4}=-40.62\left(c 0.81, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=6.7,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ $(\mathrm{d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{dd}, J=14.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~h}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.51(\mathrm{~m}$, $1 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{dd}, J=9.4,7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 170.21$ (CO), 165.56 (CO), 159.49 (C), $145.10(\mathrm{CH}), 134.24$ (C), 130.35 (CH), 129.71 (CH), 129.07 (C), $128.86(\mathrm{CH}), 128.08(\mathrm{CH}), 117.97(\mathrm{CH}), 113.86(\mathrm{CH}), 85.43(\mathrm{C})$, $84.49(\mathrm{C}), 75.52(\mathrm{CH}), 72.98\left(\mathrm{CH}_{2}\right), 71.19(\mathrm{CH}), 66.78\left(\mathrm{CH}_{2}\right), 55.25\left(\mathrm{CH}_{3}\right), 47.49(\mathrm{CH}), 46.89(\mathrm{CH})$, $39.92\left(\mathrm{CH}_{2}\right), 32.95(\mathrm{CH}), 31.16(\mathrm{CH}), 30.92\left(\mathrm{CH}_{2}\right), 24.55\left(\mathrm{CH}_{2}\right), 19.02\left(\mathrm{CH}_{3}\right), 18.18\left(\mathrm{CH}_{3}\right), 17.44$ $\left(\mathrm{CH}_{3}\right), 16.87\left(\mathrm{CH}_{3}\right) . \operatorname{LRMS}(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 585.28[\mathrm{M}+\mathrm{Na}]^{+}, 437.23,389.20,219.06$. HRMS-ESI Calculated for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$: 585.2823, found 585.2815.

DDQ ($40.7 \mathrm{mg}, 0.179 \mathrm{mmol}, 5.0$ eq.) was added to a solution of diester $26(20.2 \mathrm{mg}, 0.036$ mmol, 1.0 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.38 \mathrm{~mL})$ and water $(19 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at 23 ${ }^{\circ} \mathrm{C}$ for 7 h . After completion of the reaction, NaHCO_{3} (sat.) (2 mL) was added and the mixture was partitioned between EtOAc (40 mL) and water (5 mL). The organic layer was washed with NaHCO_{3} (sat.) (5 mL), water (5 mL) and brine (5 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting crude residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 10\right.$ to $20 \% \mathrm{EtOAc} /$ hexanes $)$ to afford (-)-englerin A (15.9 mg, 100\%) as a white amorphous solid.
$\mathbf{R}_{f}=0.36$ (20\% EtOAc/hexanes). [$\left.\alpha\right]_{\mathrm{D}}{ }^{18.6}=-47.86$ (c $\left.0.21, \mathrm{MeOH}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 7.69 ($\mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64-7.57$ (m, 2H), $7.43-7.37(\mathrm{~m}, 3 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ (dd, $J=8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{dd}, J=14.5,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.13(\mathrm{~h}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.65$ $(\mathrm{m}, 1 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93$ (d, J = 7.1 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 173.96$ (CO), 167.31 (CO), 146.78 (CH), 135.65 (C), 131.64 (CH), 130.06 (CH), 129.33 (CH), 118.79 (CH), 86.67 (C), 86.05 (C), 76.63 (CH), 72.45 $(\mathrm{CH}), 61.03\left(\mathrm{CH}_{2}\right), 48.91(\mathrm{CH}), 48.01(\mathrm{CH}), 40.71\left(\mathrm{CH}_{2}\right), 34.09(\mathrm{CH}), 32.46(\mathrm{CH}), 32.00\left(\mathrm{CH}_{2}\right)$, $25.52\left(\mathrm{CH}_{2}\right), 19.24\left(\mathrm{CH}_{3}\right), 18.58\left(\mathrm{CH}_{3}\right), 17.74\left(\mathrm{CH}_{3}\right), 17.24\left(\mathrm{CH}_{3}\right) . \operatorname{LRMS}(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 465.22$ $[\mathrm{M}+\mathrm{Na}]^{+}, 443.23[\mathrm{M}+\mathrm{H}]^{+}, 425.23,219.16$. HRMS-ESI Calculated for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$: 465.2248, found 465.2246 .

NMR (Methanol- $d_{4}, 500 \mathrm{MHz}$) data for natural and synthetic (-)-englerin A

Synthesis of (-)-englerin A analogues

$\mathrm{S}_{\mathrm{N}} 2$ substitutions with cuprates (Alkyl) ${ }_{2} \mathrm{CuLi} \cdot \mathrm{SMe}_{2}$ (27-29): ${ }^{14}$

(1R,3aR,4S,5R,7R,8S,8aR)-1-butyl-7-isopropyl-4-methyldecahydro-4,7-epoxyazulene-5,8-diol (27):

27
39% yield (unoptimized). $\mathbf{R}_{\mathrm{f}}=0.37$ (20\% EtOAc/hexanes). $[\alpha]_{D}{ }^{22.3}=-22.30$ (c $\left.0.91, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.92(\mathrm{dd}, J=7.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=14.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{dt}, J$ $=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.58(\mathrm{~m}$, $1 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 6 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$, $1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.02-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $85.65(\mathrm{C}), 85.27(\mathrm{C}), 73.36(\mathrm{CH}), 70.85(\mathrm{CH}), 48.76(\mathrm{CH}), 48.05(\mathrm{CH}), 41.90\left(\mathrm{CH}_{2}\right), 36.45(\mathrm{CH})$, $32.12(\mathrm{CH}), 30.67\left(\mathrm{CH}_{2}\right), 30.17\left(\mathrm{CH}_{2}\right), 28.84\left(\mathrm{CH}_{2}\right), 26.11\left(\mathrm{CH}_{2}\right), 23.15\left(\mathrm{CH}_{2}\right), 19.39\left(\mathrm{CH}_{3}\right), 18.39$ $\left(\mathrm{CH}_{3}\right), 17.57\left(\mathrm{CH}_{3}\right), 14.33\left(\mathrm{CH}_{3}\right)$. LRMS ($\left.\mathrm{m} / \mathrm{z}, \mathrm{ESI}\right): 319.22[\mathrm{M}+\mathrm{Na}]^{+}, 290.15,282.27,261.22$, 243.21. HRMS-ESI Calculated for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 319.2244$, found 219.2237.
(1R,3aR,4S,5R,7R,8S,8aR)-1-isobutyl-7-isopropyl-4-methyldecahydro-4,7-epoxyazulene-5,8diol (28):

28
41% yield (unoptimized). $\mathbf{R}_{f}=0.41$ ($50 \% \mathrm{EtOAc} /$ hexanes). $[\alpha]_{D}^{21.6}=-58.21$ (c $0.99, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta{ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) δ 3.92 (t, J = 5.9 Hz, 1H), 3.65 (d, J = $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (dd, J = 14.5, $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.22(\mathrm{dtt}, J=11.4,7.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ (hept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}$, $1 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-$ $1.23(\mathrm{~m}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$, $1.03-0.97(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $85.64(\mathrm{C}), 85.25(\mathrm{C}), 73.34(\mathrm{CH}), 70.74(\mathrm{CH}), 48.78(\mathrm{CH}), 47.96(\mathrm{CH}), 41.91\left(\mathrm{CH}_{2}\right), 40.10\left(\mathrm{CH}_{2}\right)$, $33.70(\mathrm{CH}), 32.20(\mathrm{CH}), 28.70\left(\mathrm{CH}_{2}\right), 26.12\left(\mathrm{CH}_{2}\right), 25.60(\mathrm{CH}), 24.36\left(\mathrm{CH}_{3}\right), 21.67\left(\mathrm{CH}_{3}\right), 19.39$ $\left(\mathrm{CH}_{3}\right), 18.39\left(\mathrm{CH}_{3}\right), 17.58\left(\mathrm{CH}_{3}\right)$. LRMS $(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 319.22[\mathrm{M}+\mathrm{Na}]^{+}, 261.22,243.21$. HRMS-ESI Calculated for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 319.2244$, found 319.2245.

[^9](1R,3aR,4S,5R,7R,8S,8aR)-1-hexyl-7-isopropyl-4-methyldecahydro-4,7-epoxyazulene-5,8-diol (29):

29
35% yield (unoptimized). $\mathbf{R}_{\mathbf{f}}=0.49$ ($50 \% \mathrm{EtOAc} /$ hexanes). $[\alpha]_{\mathrm{D}}{ }^{24.4}=-73.86$ (c $\left.0.49, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.92(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, \mathrm{~J}=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=14.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{p}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.48$ $-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.22(\mathrm{~m}, 11 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.10(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.03-0.91(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 85.64$ $(\mathrm{C}), 85.27(\mathrm{C}), 73.37(\mathrm{CH}), 70.85(\mathrm{CH}), 48.77(\mathrm{CH}), 48.04(\mathrm{CH}), 41.90\left(\mathrm{CH}_{2}\right), 36.48(\mathrm{CH}), 32.11$ $(\mathrm{CH}), 32.08\left(\mathrm{CH}_{2}\right), 31.02\left(\mathrm{CH}_{2}\right), 29.79\left(\mathrm{CH}_{2}\right), 28.85\left(\mathrm{CH}_{2}\right), 27.91\left(\mathrm{CH}_{2}\right), 26.11\left(\mathrm{CH}_{2}\right), 22.82\left(\mathrm{CH}_{2}\right)$, $19.39\left(\mathrm{CH}_{3}\right), 18.39\left(\mathrm{CH}_{3}\right), 17.56\left(\mathrm{CH}_{3}\right), 14.24\left(\mathrm{CH}_{3}\right) . \operatorname{LRMS}(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 347.28[\mathrm{M}+\mathrm{Na}]^{+}, 307.26$, 289.25, 282.28. HRMS-ESI Calculated for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 347.2557$, found 347.2557.

(3aR,4S,5R,7R,8S,8aR)-7-isopropyl-4-methyldecahydro-4,7-epoxyazulene-5,8-diol (30):

A solution of $\mathrm{LiEt}_{3} \mathrm{BH}$ (1.0M in THF, $849 \mu \mathrm{~L}, 0.849 \mathrm{mmol}, 7.0$ eq.) was added dropwise to a solution of 15 ($60.0 \mathrm{mg}, 0.121 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF ($750 \mu \mathrm{~L}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, water (2 mL) was added and the volatile materials were concentrated in vacuo. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo to give a crude residue which was purified by flash chromatography ($\mathrm{SiO}_{2}, 10$ to 60% EtOAc/hexanes with $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the corresponding diol 30 ($16.9 \mathrm{mg}, 58 \%$ yield).
$\mathbf{R}_{f}=0.26$ (50% EtOAc/hexanes). $[\alpha]_{\mathrm{D}}{ }^{23.4}=-35.77\left(c 0.84 \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.92$ (td, J=7.4, 2.5 Hz, 1H), 3.53-3.43(m, 1H), 2.47 (dd, J = 14.5, 7.5 Hz, 1H), 2.03-1.90(m, 2H), $1.79-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{dd}, \mathrm{J}=6.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.22$ ($\mathrm{s}, 3 \mathrm{H}$), $1.19-1.09(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 85.76$ (C), $85.17(\mathrm{C}), 75.17(\mathrm{CH}), 73.53(\mathrm{CH}), 52.56(\mathrm{CH}), 45.51(\mathrm{CH}), 42.24\left(\mathrm{CH}_{2}\right), 31.80(\mathrm{CH}), 28.12\left(\mathrm{CH}_{2}\right)$, $25.55\left(\mathrm{CH}_{2}\right), 21.70\left(\mathrm{CH}_{2}\right), 19.25\left(\mathrm{CH}_{3}\right), 18.32\left(\mathrm{CH}_{3}\right), 17.42\left(\mathrm{CH}_{3}\right) . \operatorname{LRMS}(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 263.16$ $[\mathrm{M}+\mathrm{Na}]^{+}, 223.17,221.16,203.15$. HRMS-ESI Calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 263.1623$, found 263.1617.

Esterification of diols 27-30: ${ }^{15}$

i) EDCI (2.0 eq.), DMAP ($20 \mathrm{~mol} \%$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

ii) (E)-cinnamic acid (3.0 eq.) $2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COCl}$ (3.0 eq.) $\mathrm{Et}_{3} \mathrm{~N}$ (6.0 eq.), DMAP (6.0 eq.) Tol. $80^{\circ} \mathrm{C}, 30 \mathrm{~min}$.
iii) DDQ (5.0 eq.)
$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ water (20:1), $23^{\circ} \mathrm{C}, 7 \mathrm{~h}$.

(1R,3aR,4S,5R,7R,8S,8aR)-1-butyl-5-(2-hydroxyacetoxy)-7-isopropyl-4-methyldecahydro-4,7-epoxyazulen-8-yl cinnamate (20):

20

52\% yield, 3 steps from 27 (unoptimized) $\mathbf{R}_{f}=0.38(20 \%$ EtOAc/hexanes). $[\alpha]_{\mathrm{D}}{ }^{19.6}=-62.82\left(c 1.0 \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.65(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.39$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.68$ (dd, J = 14.5, 7.9 Hz, 1H), 2.37 (t, J = 5.5 Hz, 1H), $1.89(\mathrm{p}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.86-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.36$ $(\mathrm{m}, 1 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.16-1.03(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 173.22 (CO), 165.56 (CO), 145.15 (CH), 134.45 (C), 130.53 (CH), 129.05 (CH), 128.26 (CH), $118.19(\mathrm{CH}), 85.74(\mathrm{C}), 84.71(\mathrm{C}), 76.62(\mathrm{CH}), 71.15(\mathrm{CH}), 60.80\left(\mathrm{CH}_{2}\right), 48.48(\mathrm{CH}), 47.40(\mathrm{CH})$, $40.02\left(\mathrm{CH}_{2}\right), 37.02(\mathrm{CH}), 33.15(\mathrm{CH}), 29.93\left(\mathrm{CH}_{2}\right), 29.47\left(\mathrm{CH}_{2}\right), 27.88\left(\mathrm{CH}_{2}\right), 24.91\left(\mathrm{CH}_{2}\right), 22.88$ $\left(\mathrm{CH}_{2}\right), 19.10\left(\mathrm{CH}_{3}\right), 18.36\left(\mathrm{CH}_{3}\right), 17.62\left(\mathrm{CH}_{3}\right), 14.29\left(\mathrm{CH}_{3}\right)$. LRMS $(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 507.27[\mathrm{M}+\mathrm{Na}]^{+}$, $485.29\left[\mathrm{M}+\mathrm{H}^{+}, 337.24,261.22\right.$. HRMS-ESI Calculated for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$: 507.2717, found 507.2718.

(1R,3aR,4S,5R,7R,8S,8aR)-1-isobutyl-5-(2-hydroxyacetoxy)-7-isopropyl-4-methyldecahydro-

 4,7-epoxyazulen-8-yl cinnamate (21):

41\% yield, 3 steps from 28 (unoptimized) $\mathbf{R}_{f}=0.30$ (20\% EtOAc/hexanes). $[\alpha]_{D}{ }^{19.9}=-63.94$ (c $0.93 \mathrm{CHCl}_{3}$). ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.33(\mathrm{~m}$, $3 \mathrm{H}), 6.39(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.20(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{dd}, J=14.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ $(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.68$ $(\mathrm{m}, 4 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 3 \mathrm{H})$, $1.19(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.77(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 173.22$ (CO), 165.46 (CO), $145.10(\mathrm{CH}), 134.47(\mathrm{C})$, $130.52(\mathrm{CH}), 129.04(\mathrm{CH}), 128.27(\mathrm{CH}), 118.17(\mathrm{CH}), 85.73(\mathrm{C}), 84.76(\mathrm{C}), 76.63(\mathrm{CH}), 71.08(\mathrm{CH})$, $60.80\left(\mathrm{CH}_{2}\right), 48.51(\mathrm{CH}), 47.49(\mathrm{CH}), 40.06\left(\mathrm{CH}_{2}\right), 38.88\left(\mathrm{CH}_{2}\right), 34.69(\mathrm{CH}), 33.24(\mathrm{CH}), 28.28$ $\left(\mathrm{CH}_{2}\right), 25.83(\mathrm{CH}), 24.82\left(\mathrm{CH}_{2}\right), 24.46\left(\mathrm{CH}_{3}\right), 21.34\left(\mathrm{CH}_{3}\right), 19.10\left(\mathrm{CH}_{3}\right), 18.36\left(\mathrm{CH}_{3}\right), 17.63\left(\mathrm{CH}_{3}\right)$.

[^10]LRMS ($\mathrm{m} / \mathrm{z}, \mathrm{ESI}$): $507.27[\mathrm{M}+\mathrm{Na}]^{+}, 485.29[\mathrm{M}+\mathrm{H}]^{+}, 372.26,350.25$. HRMS-ESI Calculated for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 485.2898$, found 485.2890 .

(1R,3aR,4S,5R,7R,8S,8aR)-1-hexyl-5-(2-hydroxyacetoxy)-7-isopropyl-4-methyldecahydro-4,7-epoxyazulen-8-yl cinnamate (22):

58\% yield, 3 steps from 29 (unoptimized) $\mathbf{R}_{f}=0.36$ (50\% EtOAc/hexanes). $[\alpha]_{D}{ }^{22.2}=-96.25$ (c $0.80 \mathrm{CHCl}_{3}$). ${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.32(\mathrm{~m}$, $3 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.14(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.67$ (dd, J = 14.5, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{p}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.56$ (brs, 2 H$)$, $1.50-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 8 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.15-1.05(\mathrm{~m}$, $1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.83(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 173.22(\mathrm{CO}), 165.57(\mathrm{CO}), 145.17(\mathrm{CH}), 134.45(\mathrm{C}), 130.53(\mathrm{CH}), 129.05(\mathrm{CH}), 128.26$ $(\mathrm{CH}), 118.18(\mathrm{CH}), 85.75(\mathrm{C}), 84.71(\mathrm{C}), 76.62(\mathrm{CH}), 71.15(\mathrm{CH}), 60.79\left(\mathrm{CH}_{2}\right), 48.48(\mathrm{CH}), 47.39$ $(\mathrm{CH}), 40.01\left(\mathrm{CH}_{2}\right), 37.01(\mathrm{CH}), 33.15(\mathrm{CH}), 32.01\left(\mathrm{CH}_{2}\right), 29.71\left(\mathrm{CH}_{2}\right), 29.48\left(\mathrm{CH}_{2}\right), 27.88\left(\mathrm{CH}_{2}\right)$, $27.61\left(\mathrm{CH}_{2}\right), 24.92\left(\mathrm{CH}_{2}\right), 22.82\left(\mathrm{CH}_{2}\right), 19.09\left(\mathrm{CH}_{3}\right), 18.36\left(\mathrm{CH}_{3}\right), 17.62\left(\mathrm{CH}_{3}\right), 14.26\left(\mathrm{CH}_{3}\right)$. LRMS (m / z, ESI): $536.31[\mathrm{M}+\mathrm{Na}]^{+}, 513.32[\mathrm{M}+\mathrm{H}]^{+}, 437.31,381.30,365.27$. HRMS-ESI Calculated for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 513.3211$, found 513.3216.
(3aR,4S,5R,7R,8S,8aR)-5-(2-hydroxyacetoxy)-7-isopropyl-4-methyldecahydro-4,7-epoxyazulen-8-yl cinnamate (23): ${ }^{16}$

23
18% yield, 3 steps from 30 (unoptimized) $\mathbf{R}_{f}=0.22$ (20% EtOAc/hexanes). $[\alpha]_{\mathrm{D}}{ }^{24.0}=-33.06\left(c 0.37 \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, \mathrm{~J}=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}$, 1 H), 5.19 (dd, $J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=5.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.67(\mathrm{dd}, J=14.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{p}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.52(\mathrm{dd}, \mathrm{J}=12.3$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.21$ (CO), 166.08 (CO), 145.35 (CH), 134.42 (C), 130.57 (CH), 129.06 (CH), 128.27 (CH), 118.04 (CH), 85.57 (C), 84.67 (C), $76.70(\mathrm{CH}), 74.97(\mathrm{CH}), 60.80\left(\mathrm{CH}_{2}\right), 52.42(\mathrm{CH}), 44.43(\mathrm{CH}), 40.58\left(\mathrm{CH}_{2}\right), 32.99(\mathrm{CH}), 28.64$ $\left(\mathrm{CH}_{2}\right), 25.14\left(\mathrm{CH}_{2}\right), 21.41\left(\mathrm{CH}_{2}\right), 18.93\left(\mathrm{CH}_{3}\right), 18.39\left(\mathrm{CH}_{3}\right), 17.43\left(\mathrm{CH}_{3}\right)$. LRMS $(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 451.21$ $[\mathrm{M}+\mathrm{Na}]^{+}, 429.23[\mathrm{M}+\mathrm{H}]^{+}, 381.29,353.26,282.28$. HRMS-ESI Calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NaO}_{6}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 451.2091$, found 451.2085.

[^11]($3 a R, 4 S, 5 R, 7 R, 8 S, 8 a R$)-5-(2-hydroxyacetoxy)-7-isopropyl-4-methyl-3,3a,4,5,6,7,8,8a-octahydro-4,7-epoxyazulen-8-yl cinnamate (24): ${ }^{17}$

57% yield, (unoptimized). $\mathbf{R}_{f}=0.30$ ($20 \% \mathrm{EtOAc} /$ hexanes). $[\alpha]_{\mathrm{D}}{ }^{22.3}=-60.60$ (c $\left.0.64 \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60-$ 7.45 (m, 2H), $7.49-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=$ $6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.85-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=7.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}$, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{brs}, 2 \mathrm{H}), 2.73(\mathrm{dd}, J=14.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.22$ $(\mathrm{m}, 3 \mathrm{H}), 2.01-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.19$ (C), 166.17 (C), 145.58 (C), $134.38(\mathrm{C}), 133.17(\mathrm{CH}), 131.36(\mathrm{CH}), 130.65(\mathrm{CH}), 129.09(\mathrm{CH}), 128.31(\mathrm{CH}), 117.94(\mathrm{CH})$, $86.27(\mathrm{C}), 83.96(\mathrm{C}), 77.15(\mathrm{CH}), 72.98(\mathrm{CH}), 60.80\left(\mathrm{CH}_{2}\right), 54.87(\mathrm{CH}), 48.20(\mathrm{CH}), 40.51\left(\mathrm{CH}_{2}\right)$, $32.98(\mathrm{CH}), 32.06\left(\mathrm{CH}_{2}\right), 18.49\left(\mathrm{CH}_{3}\right), 18.43\left(\mathrm{CH}_{3}\right), 17.38\left(\mathrm{CH}_{3}\right)$. LRMS $(\mathrm{m} / \mathrm{z}, \mathrm{ESI}): 449.19[\mathrm{M}+\mathrm{Na}]^{+}$, $427.21[\mathrm{M}+\mathrm{H}]^{+}, 413.31,351.19,338.34$. HRMS-ESI Calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NaO}{ }_{6}[\mathrm{M}+\mathrm{Na}]^{+}$: 449.1935, found 449.1933.

[^12]
NMR Spectra

| 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

| | | | | | | | | | | | | | | | | |
| :--- |
| 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	C
									f1 (p										

¢	1	1	1	1	1	1	,	1	,	1	1	1	1	T	1	1	1	1
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.1

1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1	1	I	+
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	C
									f1 (p										

[^0]: ${ }^{1}$ B. M. Trost, C. Jonasson, M. Wuchrer, J. Am. Chem. Soc. 2001, 123, 1273.
 ${ }^{2}$ K-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya, R. Noyori, Angew. Chem. Int. Ed. 1997, 36, 285.
 ${ }^{3}$ I. Alonso, B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós, J. L. Mascareñas, J. Am. Chem. Soc. 2009, 131, 13020.
 ${ }^{4}$ Z. Wang, Y. Tu, M. Frohn, J. Zhang, Y. Shi, J. Am. Chem. Soc. 1997, 119, 11224.

[^1]: ${ }^{5}$ Compound 6 is commercially available, and can also be obtained quantitatively by the protocol described in: S. Yildizhan, S. Schulz, Synlett 2011, 19, 2831.

[^2]: ${ }^{6}$ Compound 7a has been previously reported, see: P. Andersson, J. Bäckvall, J. Org. Chem. 1991, 56, 5349.
 ${ }^{7}$ Compound 10 was obtained and used in the next step as a mixture of diastereomers.

[^3]: ${ }^{8}$ Compounds $\mathbf{1 1}$ and $\mathbf{2 a}$ were obtained and used in the next step as a mixture of diastereomers.

[^4]: ${ }^{9}$ Compound $\mathbf{2 b}$ was obtained and used in the next step as a mixture of diastereomers.

[^5]: ${ }^{10}$ The racemic sample of compound $\mathbf{3 b}$ was prepared by treatment of the diene-ynone 10 with $\mathrm{LiAlH}_{4}(2.5$ eq.) to afford the racemic allenediene $\mathbf{2 a}$ (81% yield), which was subsequently protected with TBSCl and submitted to the cycloaddition process to yield $\mathbf{3 b}$, as described above for the asymmetric version.

[^6]: ${ }^{11}$ Other frequently used dihydroxylation conditions were less efficient and selective. For instance, treatment of $\mathbf{3 b}$ with $\mathrm{OsO}_{4}(30 \mathrm{~mol} \%)$ in THF/Acetone/ $\mathrm{H}_{2} \mathrm{O}(6: 6: 1)$ and $\mathrm{NMO}\left(1\right.$ eq.) at $23^{\circ} \mathrm{C}$, provided 4b in 35% yield, together with $\mathbf{4 b} \mathbf{b}^{\prime}$ in 10% yield.

[^7]: ${ }^{12}$ Compound 19 has been previously reported, see: a) H. Kusama, A. Tazawa, K. Ishida, N. Iwasawa, Chem. Asian J. 2016, 11, 64; b) J. Wang, S. G. Chen, B. F. Sun, G. Q. Lin, Y. J. Shang, Chem. Eur. J. 2013, 19, 2539.

[^8]: ${ }^{13}$ Compound 25 has been previously reported, see: T. Hanari, N. Shimada, Y. Kurosaki, N. Thrimurtulu, H. Nambu, M. Anada, S. Hashimoto, Chem. Eur. J. 2015, 21, 11671.

[^9]: ${ }^{14}$ Prepared following the same procedure previously used for the preparation of the 19 , but using the corresponding cuprate obtained from the desired alkyllithium and $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$.

[^10]: ${ }^{15}$ Obtained following the previously described procedures for the preparation of the (-)-englerin A from $\mathbf{1 9}$, but using the corresponding diol 27-30, instead of 19 as starting material.

[^11]: ${ }^{16}$ Compound 23 is known in its racemic form, see: L. Dong, X. Jiao, X. Liu, C. Tian, J. Asian Nat. Prod. Res., 2014, 16, 629.

[^12]: ${ }^{17}$ Obtained following the previously described method for the preparation of the (-)-englerin A from 19, but using 18 as starting material.

