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Abstract 

This PhD Thesis is focused on the applicability of thermal analysis 
and calorimetry techniques to determine phase transitions, thermal stability 
and ecotoxicity of ionic liquids (ILs) to be used as lubricants and/or 
absorbents in heat pumps. The studied compounds are based on different 
anions (imide, triflate, sulphonate, phosphate) and cations (phosphonium, 
pyridinium, pyrrolidinium, imidazolium, choline) in order to determine 
possible dependences of these properties according to a selected ion.  

Phase transitions:  glass transition (tg), cold crystallization (tcc), 
solid-solid transition (tss) melting (tm), and freezing (tf) temperatures were 
determined through Differential Scanning Calorimetry on the interval 
temperature of (-75 to 120) ºC. All the selected ILs presented an 
endothermic peak attributed to melting point, indicating crystalline phase 
presence for all of them. 

Thermal stability was measured by Thermogravimetric Analysis 
(TGA). Due to the extensive variability on previous bibliographic reports, 
first of all, a broad study on the experimental conditions dependence has 
been done, reporting that thermal stability is higher on Nitrogen atmosphere 
and the associated degradation temperature increase whenever the heating 
rate decreases. To determine the real thermal stability, dynamic and 
isothermal methods have been combined, due to the overestimation of 
dynamic scans on decomposition temperatures. Dynamic scans showed that 
[C4C1C1Im][OTf] has the highest (436 ºC) and [C2C1Im][C6SO4]  the lowest 
tonset values for the selected ILs, meanwhile, on lubricant bases, DiPEC7 
presents a tonset of 318 ºC and 3 of the lubricant bases show lower tonset 
values tan ILs. Nevertheless the maximum operation temperature of the 
selected ILs depends on the exposition time, and it is between 150 ºC and 
200 ºC lower than the corresponding onset temperatures. Activation energy 
was determined by isothermal methods for most selected ILs. In order to 
validate the obtained these results, kinetic dynamic analysis was also 
applied to one of the aforementioned ILs ([C4C1C1Im][NTf 2]), obtaining 
very similar values. ILs ageing effect was also analysed with this technique, 
showing that the successive repetition of heating and cooling cycles, does 
not affect the thermal stability of the sample, if the temperature limit of 
these cycles is below the maximum operation temperature previously 
calculated. 

From the results of both techniques, the liquid range of the selected 
ILs was estimated using as limits of this interval tm and tonset/t´0.10/10h. Liquid 
range temperature values were determined since 145 ºC for [C2py][C1SO3] 



to 299 ºC for [C4C1Pyrr][NTf2] for the selected ILs, and 208 ºC for Krytox 
GPL 105.  

With the aim to stablish a protocol of actuation, ecotoxicity of two of 
the most studied ILs was analysed; microbial activity of soils was studied by 
isothermal microcalorimetry, Thermal Activity Monitor (TAM), obtaining 
those doses of 10% of a water solution of these ILs provoked a big stress on 
microorganisms of the selected soils, followed by their death. These results 
were also compared with that of seed germination test after adding the same 
doses of both ILs. 

Keywords: Ionic liquids, lubricants, phase transitions, thermal stability, 
liquid range, temperature operation range, microcalorimetry, TGA, DSC, 
TAM, green chemistry.  



Resumen 

Esta Tesis Doctoral se centra en la aplicación de técnicas de análisis 
térmico y calorimétrico para determinar transiciones de fase, estabilidad 
térmica y ecotoxicidad de los líquidos iónicos (LIs) para ser propuestos 
como lubricantes y/o absorbentes en bombas de absorción de calor. Los 
compuestos estudiados están basados en diferentes aniones (imida, triflato, 
sulfonato, fosfato) y cationes  (fosfonio, piridinio, pirrolinidio, imidazolio y 
colina) para poder determinar posibles dependencias de estas propiedades 
según el ión seleccionado. 

Mediante Calorimetría Diferencial de Barrido (DSC) se 
determinaron las transiciones de fase en el intervalo de temperaturas (-75 a 
120) ºC transición vítrea (tg), cristalización fría (tcc), sólido-sólido (tss), 
temperaturas de fusión (tm) y cristalización (tf), de los diferentes LIs se 
determinaron  Todos los LIs analizados presentaron pico endotérmico 
atribuido a la fusión, indicando la presencia de fase cristalina en todos los 
LIs. 

La estabilidad térmica se determinó mediante Análisis 
Termogravimétrico (TGA). Dada la variabilidad de los resultados 
bibliográficos previos, se ha realizado, en primer lugar, un estudio profundo 
de la dependencia de las condiciones experimentales, observándose que la 
estabilidad térmica es mayor en atmósfera de Nitrógeno y que las 
temperaturas asociadas a la degradación aumentan a medida que disminuye 
la velocidad de barrido. Para determinar la estabilidad térmica real, se 
combinaron estudios dinámicos e isotermos, ya que los estudios dinámicos 
sobreestiman el valor de la temperatura de degradación. Mediante los 
estudios dinámicos se observó que el [C4C1C1Im][OTf] presenta el mayor 
valor de la tonset (436 ºC), mientras que el [C2C1Im][C6SO4] es el valor más 
bajo de los LIs (251 ºC); para las bases lubricantes, el DiPEC7 presenta un 
valor de la tonset de 318 ºC y 3 de las bases lubricantes presentan valores 
menores de la tonset que los LIs. Sin embargo, se observa que las 
temperaturas máximas de uso dependen del tiempo de exposición, y se ha 
obtenido que, en general, estas temperaturas límite son entre (150 y 200) ºC 
menores que las correspondientes tonset. Se determinó la energía de 
activación mediante métodos isotermos para la mayoría de los LIs 
seleccionados. Para tratar de validar estos resultados también se aplicaron 
análisis dinámicos para uno de los LIs estudiados ([C4C1C1Im][NTf 2]), 
encontrándose valores muy similares. Con ésta técnica también se analizó el 
efecto del envejecimiento en los LIs, observándose que la sucesiva 
reiteración de ciclos de enfriamiento y calentamiento, no afecta a la 



estabilidad térmica de la muestra, si la temperatura límite de estos ciclos 
está por debajo de la temperatura máxima de operación calculada 
previamente. 

De los resultados de ambas técnicas, se estimó el rango líquido de 
los LIs seleccionados usando como límites de este intervalo las temperaturas 
de tm y tonset/t´0.10/10h respectivamente. Se han determinado valores de rango 
líquido de temperatura desde 145 ºC para el [C2py][C1SO3] hasta 299 ºC 
para el [C4C1Pyrr][NTf2] para los LIs, y de 208 ºC para el Krytox GPL 105.  

Con el objetivo de introducir protocolos de actuación para 
determinar los efectos tóxicos de los LIs, se analizó el efecto sobre la 
actividad microbiana de suelos después de la adición de diferentes dosis de 
los dos LIs más estudiados en la bibliografía. Para ello se usó un 
microcalorímetro isotermo ultraestable (TAM), obteniéndose que las dosis 
del 10% en agua de estos LIs provocan un gran estrés en los 
microorganismos seguido de la muerte de los mismos, para los suelos 
seleccionados. Estos resultados se compararon con los obtenidos del test de 
germinación de semillas después de la adición de las mismas dosis de 
ambos LIs. 

 

Palabras clave: Líquidos iónicos, lubricantes, transiciones de fase, 
estabilidad térmica, rango líquido, rango de temperatura de operación, 
microcalorimetría, TGA, DSC, TAM, química verde. 

 

  



Resumo 

Esta Tese Doutoral centrase na aplicación de técnicas de análise 
térmico e calorimétrico para determinar transicións de fase, estabilidade 
térmica e ecotoxicidade dos líquidos iónicos (LIs) para ser propostos como 
lubricantes e/ou absorbentes en bombas de absorción de calor. Os 
compostos estudados están baseados en diferentes anións (imida, triflato, 
sulfonato, fosfato) e catións (fosfonio, piridinio, pirrolinidio, imidazolio, 
colina) para poder determinar posibles dependencias destas propiedades 
segundo o ión seleccionado. 

Mediante Calorimetría diferencial de Varrido (DSC) determináronse 
as transición de fase no intervalo de temperaturas (-75 a 120) ºC, transición 
vítrea (tg), cristalización fría (tcc), sólido-sólido (tss), temperaturas de fusión 
(tm) e conxelación (tf). Todos os LIs analizados presentaron pico 
endotérmico atribuído á fusión, indicando a presenza de fase cristalina en 
todos eles. 

A estabilidade térmica foi determinada mediante Análise 
Termogravimétrico (TGA). Dada a variabilidade dos resultados 
bibliográficos previos, realizouse, en primeiro lugar, un estudo profundo da 
dependencia das condiciones experimentais, observándose que a 
estabilidade térmica é maior en atmosfera de Nitróxeno e que as 
temperaturas asociadas á degradación aumentan a medida que diminúe a 
velocidade de varrido. Para determinar a estabilidade térmica real, 
combináronse estudos dinámicos e isotermos, posto que os estudos 
dinámicos sobreestiman o valor da temperatura de degradación. Mediante os 
estudos dinámicos observouse que o [C4C1C1Im][OTf] presenta o maior 
valor da tonset (436 ºC), namentres [C2C1Im][C6SO4] é o que presenta o valor 
máis baixo dos LIs (251 ºC); nas bases lubricantes, o DiPEC7 mostra un 
valor da tonset de 318 ºC e 3 das bases lubricantes presentan valores menores 
da tonset que os LIs. Con todo, observouse que a temperatura máxima de 
operación dos LIs depende dos tempos aos que estes estean expostos, e así 
obtívose que, en xeral, as temperaturas límite son entre (150 e 200) ºC 
menores que as determinadas tonset. Determinouse a enerxía de activación 
mediante métodos isotermos para a maioría dos LIs seleccionados. Para 
tratar de validar estes resultados,tamén se aplicaron análises dinámicos para 
un dos LIs estudados ([C4C1C1Im][NTf 2]), atopando valores moi similares. 
Con esta técnica tamén se analizou o efecto del envellecemento nos LIs, 
observándose que a sucesiva reiteración de ciclos de arrefriado e 
quecemento non afecta a estabilidade térmica da mostra, se a temperatura 



límite destes ciclos está por debaixo da temperatura máxima de operación 
calculada previamente. 

Dos resultados de ambas técnicas, estimouse o rango líquido dos LIs 
seleccionados tomando como límite do intervalo as temperaturas tm e 
tonset/t´0.10/10h. Determináronse valores do rango líquido de temperatura dende 
145 ºC para o [C2py][C1SO3] ata 299 ºC para o [C4C1Pyrr][NTf2]nos LIs, e 
de 208 ºC para o Krytox GPL 105, cando determinamos o rango líquido co 
valor de t0́.10/10h.  

Co obxectivo de establecer futuros protocolos de actuación, 
analizouse a variación da actividade microbiana do solo despois da adición 
de diferentes doses dos dous LIs más estudados na bibliografía. Para isto 
usouse un microcalorímetro isotermo ultraestable (TAM), obténdose que as 
doses do 10% en auga de ámbolos dous LIs provocan un gran estres nos 
microorganismos seguido da morte dos mesmos, para os solos 
seleccionados. Finalmente, comparáronse estes resultados cos obtidos dos 
test de xerminación de sementes despois da adición das mesmas doses dos 
mesmos LIs. 

Palabras clave: Líquidos iónicos, lubricantes, transicións de fase, 
estabilidade térmica, rango líquido, rango de temperatura de operación, 
microcalorimetría, TGA, DSC, TAM, química verde. 
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1.1. Context 

It is well known the need of green solvents on industry to avoid problems 

as toxicity, flammability and high volatility which allows the release of hazardous 

substances to the environment. This current situation of the world economy 

requires the search for alternative energies to conventional fuels, optimization of 

current energy technologies minimizing the environmental impact, and the search 

for new and clean working fluids in order to decrease the energy consumption 

without destroying the developmental needs of different countries 1. 

Lubricants are substances capable of reducing friction, heat, and wear 

when they are introduced as films between solid surfaces. Use of lubricants allows 

more work to be done for the same amount of energy input, lowering the 

temperatures of the materials in contact, and greatly extending the lifespan of the 

moving equipment. Lubrication must have special attention in most of 

technologies. Some estimations emphasize that bearing failures can cause the 40% 

of a hydropower plant's operating losses, indicating that the current technology is 

inadequate for the markets demands 2. European Union, and governments of the 

various states in particular, are promoting research in replacing mineral oil by 

biodegradable bases, such as polyalkylene, ester, vegetable type and Ionic Liquids 

(ILs), since the currently used compounds are highly polluting; besides this 

characteristic this new solvents also might have better lubricating properties. 

Thus, one of the current challenges is the development of new lubricants with a 

high technical performance and more environmentally friendly. There are several 

different types of lubricants available for commercial use, each suited to particular 

applications and circumstances. Today, practically all types of lubricants contain 

at least one additive. Depending on the application, additives may be mixed with 

the refined oil to lend it the desired physical properties. For example, the 

percentage of additives for steam turbines or compressors varies between 0.5% 

and 5%, whereas for hydraulic systems the percentage of additives is between 2% 
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and 10% 3. Several ILs have been evaluated as lubricants and lubricant additives 

with promising results in recent years 4. 

Other important technology to mention is the absorption heat pumps, that 

are a great opportunity to reduce energy consumption of heating and refrigeration 

systems, since this technology allows either recovering residual heat or using 

renewable energies (as solar, bio-hydrogen...) to produce profitable thermal 

energy. Subsequently, the use of additional electric power is almost negligible. 

Therefore this is a technology of high added value in regions where the electrical 

network is not developed, besides its high ecological benefits. Nevertheless, 

conventional working pairs present several drawbacks which have limited the 

potential of absorption heat pumps 5. Some of these problems are corrosion and 

crystallization in the case of H2O/LiBr, high working pressures, low relative 

volatility and NH3 toxicity for NH3/H2O. Thus, improvements of absorption heat 

pumps by developing new working pairs (refrigerant/absorbent) have drawn 

attention of companies and researchers. Seeking new working pairs involving ILs 

as absorbents occupy a principal role in these investigations 6. 

1.2. Ionic liquids 

ILs are a class of molten salts that are liquid below 100 °C. A subclass, 

denoted room-temperature ionic liquids (RTILs), is even liquid below ambient 

temperature. The first room temperature ionic liquid which turned up in literature 

was ethylammonium nitrate, in 1914 by Sugden & Wilkins 7. Although there have 

been some experiments considering industrial applications of ILs, they were 

negated for many decades.  

Halide based salts are the most widely studied class of room temperature 

ionic liquids. Moreover, these salts are precursors for several air and water stable 

RTILs; e.g. numerous di-alkylimidazolium based ionic liquids (CnMImPF6, 

CnMImBF4, CnMImNTf2, etc.) are synthesized from dialkylimidazolium 

chlorides. The mixture of di-alkylimidazolium chloride ([R1R2Im]Cl) and AlCl3, 
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which are termed as chloroaluminate ionic liquids, have been extensively studied 

for metal/alloy deposition and transition metal catalysis.8 

ILs possess several properties which make them so interesting; namely, 

non-volatility, non-flammability, high thermal stability, high polarity, large 

electrochemical window, high thermal conductivity and one of the most 

important, their “tunability”, i.e. it is possible to obtain a wide variety of ILs by 

the combination of different ions. It was estimated that the possible number of ILs 

from the combinations of known anion and cation is higher than 1012. Therefore, 

ILs have been recognized as “designer-solvents.” 9. These salts have bulky, 

organic cations, e.g. alkylated imidazole, pyrrole or pyridine derivatives or 

quaternized alkyl amines and alkyl phosphines. Common anions are, e.g. halides, 

alkyl sulphates, fluorinated hydrocarbons, carboxylic acids or amino acids 10,11. 

The physical and chemical properties of ILs are customizable by the choice of 

different cation-anion combinations, and by the length of the alkyl chain of the 

cation. Due to the outstanding and versatile properties of ILs, various applications 

in chemistry, engineering to materials and pharmaceutical science have been 

developed in the recent years. The employment of ILs has turned out to be an 

option to intensify processes, in order to overcome disadvantages of conventional 

approaches and to reduce energy and material consumption.  

The increasing interest on Ionic Liquids in the lasts decades, has coincided 

with the beginning of the Green Chemistry 12. Figure 1.1 shows this rising about 

publications on this topic. 
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Figure 1.1. Scientific publications about ILs (data extracted from Scifinder, keyword: “Ionic 

liquids” ).  

Notwithstanding the amazing number of possible ILs and publications, 

only a small number have been studied. The most frequent cations used in 

lubrication works are imidazolium, pyridinium, fosfonium and ammonium 

together with the anions tetrafluoroborate, hexafluorophosphate, phosphate and 

bis(trifluoromethylsulfonyl)imide (Fig. 1.2). For absorption heat pumps, the most 

used are also imidazolium and ammonium, mainly with triflate anion 6.  

 

Figure 1.2. Some of the most frequent anions and cations used in lubrication works. 

Before considering a new fluid/substance for incorporation into a specific 

industrial application, a fundamental understanding must be established for the 
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chemical and physical properties of this fluid. For academic research, physic-

chemical properties are also indispensable to validate the theoretical models or to 

select proper ILs 13.  

1.2.1. Applicability 

Beside the above mentioned applications, lubrication and absorbent for 

absorption heat pumps 4,6,14,15, ILs can have multiple applicability, in the last years 

many studies have determined some of these properties for these compounds, i.e., 

as electrolytes on batteries 16, as safe electrolyte components for Li-metal and Li-

ion batteries 17, keep the stability of proteins in an aqueous solution at high 

temperatures 18, as stationary phases for gas chromatography 19, effect of IL 

dispersion on Li+ ion glasses and glass-ceramics 20, media for liquid-liquid 

extraction 21, as mobile phase additives in high-performance liquid 

chromatography 22, potential application in the extraction and separation of 

nonferrous metal 23, as electrolytes 24, as solvents for a wide range of synthetic 

procedures 10 etc. To decide which IL is the most suitable for a defined 

application, previous characterization must be performed. The knowledge of 

structure influence on the thermophysical properties is essential to choose the 

right combination (anion, cation, functional groups, etc.) of the adequate ILs to 

the specific application. 

1.2.2. Thermophysical properties 

Some of the more important thermophysical properties are presented on 

this section: 

� Density 

Typical densities of ILs range from 0.96 to 1.65 g/cm3 at 293 K, and 

decrease with temperature. Values are, in general, larger than most of the 

current molecular liquids. 

This property seems to be strongly dependent on the anion. Some authors 

have found the following density sequence 25,26: 
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[FAP]- > [NTf2]
- > [OTf] - > [B(CN)4]

-.  

Fernández and Gaciño 27 obtained the following trend for some cations 

with common anion [NTf2]
-: imidazolium > pyridinium > pyrrolidinium. 

Density of ILs decreases when the number of the alkyl chains increases. 

� Viscosity 

This property varies widely depending on the type of cation and anion, 

ranging from 6 to 7600 mPa at 20 ºC and atmospheric pressure. This 

property depends strongly on the molecular structure and it is highly 

dependent on the interactions between the ions: electrostatic, van der 

Waals interactions, and hydrogen bonding 28.  

It seems that the viscosity of ILs is more dependent on the anion structure 

than on the cation. The most known anions follow the trend:  

[FAP]- < [OTf]- < [BF4]- < [C2SO4]- < C1SO4]- < [C6SO4]- < [PF6]- < 

[CH3COO]- < [Cl]- < [Br]-. 

� Electrical conductivity 

Because ILs are entirely composed by ions, a high electrical conductivity 

should be expected. However, their values at 25 ºC, ranged from 0.0017 

S/m for [C8C4C4C4N][OTf] to 11.874 S/m for [C1C1Im][Cl], which are 

quite low in comparison with conventional aqueous electrolyte solutions 

used in electrochemical applications (40-75 S/m). These low conductivity 

values can be attributed to the available charge carriers, because of ion 

paring and/or ion aggregation as well as the reduced mobility resulting 

from the large ion size. Their “tunability” offers the possibility of 

designing a liquid with a specific conductivity value. 27 

� Surface tension 

Surface tension is an important property in the study of physics and 

chemistry at free surfaces because of its influence on transfer rates of 



Introduction 

 

9 
 

vapour absorption at the vapour- liquid interfaces. For this reason, the 

relationships between the chemical structure and the surface tension are 

essential in many engineering fields, such as chemical process and reactor, 

flow and transport in porous media, materials selection, biomedical and 

biochemical fields, electronic and electrical engineering, as well as in 

environmental science and biology. 27 

In general, the liquid/air surface tension values of ILs are higher than those 

of conventional solvents (hexane 18 mN/m at 298 K) and organic 

compounds, but not as high as water (71.97 mN/m at 298 K). 27 

� Solubility 

Ionic liquids can act as both, hydrogen bond acceptors (anion) and donors 

(cation); for this reason they can interact with substances with both 

accepting and donating sites. Ionic liquids can be divided into two groups 

(water-miscible and water immiscible) according to their water solubility. 

Some water-immiscible ionic liquids are 1-butyl-3-methylimidazolium 

hexafluorophosphate and 1-decyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl) imide. Examples of water miscible ionic 

liquids include [1-Butyl-3-methylimidazolium tetrafluoroborate. 

Miscibility of ionic liquids in water is mainly dependent on the anion 

present, although it is also dependent on the structure of the cation.29 

The low solubility of ILs with base oils is an important issue for their 

application as additives. In general, the ILs miscibility increases with the 

polarity of the base stock. 4 

� Chemical Stability  

Composition of the anion as well as the strength of the anion–cation bond 

of ionic liquids are crucial factors influencing on their chemical stability 30.  
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� Electrochemical window 

The electrochemical potential window, which depends on the oxidative 

and reductive stabilities of the selected solvent, is a key criterion for 

electrochemical studies. In case of ILs, the potential window is primarily 

dependent on the resistance of the cation to reduction and the resistance of 

the anion to oxidation. ILs generally have a potential window of more than 

2.0 V. However, impurities in the ILs have a deep impact on the anodic or 

cathodic potential limits and the corresponding electrochemical potential 

window.31 

� Thermal stability 

Thermal stability gives information about the higher temperature that a 

material can support without losing its properties, i.e., about the stable 

temperature limit. 8. The knowledge of this temperature is necessary to 

determine the upper limit of the liquid range temperature, which can be 

defined as the interval between melting or glass transition and degradation 

temperatures. The most common criterion employed to characterize the 

thermal stability of a substance is through the onset temperature (tonset), 

which is usually measured through dynamic scans under a controlled 

atmosphere in thermogravimetric analysis. However, some controversial 

exists about this criterion; this is one of the reasons why in this PhD Thesis 

the selection of an alternative method to characterize the thermal stability 

of ILs was proposed  

� Green chemistry/aspects 

Green chemistry is defined as the design of chemical products and 

processes which reduce or eliminate the use and generation of hazardous 

substances 32,33. All the aforementioned properties of ionic liquids make 

them interesting as potentially ‘green’ solvents with little associated 

hazard 34. For this reason, hazard assessment of ILs became an important 
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area of research; studies of toxicity, ecotoxicity and biodegradation of 

ionic liquids have been widely reported 33-37. So far, toxicity of ILs has 

been evaluated through different models, i.e., involving microorganisms 38-

40 as well as terrestrial invertebrates such as earthworms, 41 aquatic 

species, including the zebrafish (Danio rerio) 42 as well as water fleas 

(Daphnia magna) 43,44 and algae 37. The toxicity of ionic liquids towards 

terrestrial plants has also been investigated and more recent studies have 

even screened human cells 45. 

Many classes of ionic liquid are water soluble, although this property is 

not so noticeable for those containing lipophilic anions, such as 

bis(trifluoromethyl)- sulfonyl amide [NTf2], or hexafluorophosphate [PF6] 

anions. Even though ionic liquids may help reduce the risk of air pollution, 

their water solubility could cause severe contamination when they are 

released to aquatic environments because of their potential toxicity and 

inaccessible biodegradability 46. As a result, this problem can also affect to 

the soil health in case of leaching contaminated water.  

Despite the big database of ILs properties now available, there are some 

aspects as the long-term thermal degradation; the liquid range temperature and the 

toxicity that are still open questions. Thereby, this PhD Thesis tries to complete 

the analysis of these properties for a selection of ILs that could be proposed as 

lubricants or lubricant additives and absorbents in absorption heat pumps. 

1.3. Thermal analysis 

The term thermal analysis (TA) implicates a broad quantity of analytical 

experimental techniques such as differential scanning calorimetry (DSC), 

differential thermal analysis (DTA), thermogravimetric analysis (TGA), 

thermomechanical analysis (TMA), dynamic mechanical analysis (DMA) and 

thermal activity monitor (TAM) 47. Table 1.1 shows each of these techniques and 



Introduction 

 

12 
 

their related properties. In this work, DSC and TGA techniques will be used to 

characterize some compounds.  

Table 1.1. TA techniques and related properties. 

TA method Property 

DSC Enthalpy 

TGA Mass 

DTA Difference temperature 

TMA Deformation 

DMA Deformation 

TAM Heat flow 

 

Advantages of TA techniques above other analytical methods can be 

summarized as: 

• The sample can be studied over a wide range according to different 

temperature programs 

• Almost any physical state (solid, liquid and gel) can be analyzed 

• A small quantity of sample (0.1 µg – 1 g) is needed 

• Sample atmosphere can be standardized 

• Time required to analysis takes from several minutes to several hours 

DSC is one of the most known TA techniques, and is very useful for 

studying endothermic and/or exothermic phenomena (transitions, chemical 

reactions, adsorptions…) occurring on samples. 48 

Thermogravimetric analysis (TGA) is the TA technique which examines 

the mass change of a sample as a function of temperature (dynamic scan) or as a 

function of time (isothermal scan). Some thermal events present a change in the 

sample mass as desorption, absorption, sublimation, vaporization, decomposition, 



Introduction 

 

13 
 

oxidation and reduction, as it can be seen in Figure 1.3. and can be observed with 

this technique.  

 

Figure 1.3. Schematic comparison of TG and DSC curves against temperature for a variety of 

physic-chemical processes 47. 

Isothermal microcalorimetry is an extremely general technique which 

measures the heat production rate that accompanies nearly all physical, chemical 

and biological process. The role of this technique has been increased during last 

years in the microbiological field due to its simplicity, versatility and analysis 

speed. 49  

Applications of DSC, TGA and TAM analysis 

DSC technique has a broad range of applications. This technique can 

provide the measurements of many different phase transition temperatures such 

as: melting (tm), freezing (tf), glass transition (tg), cold-crystallization (tc-c) and 

solid-solid (ts-s) temperatures. DSC can be used to estimate the enthalpy of a 

transition, ∆H. The purity of a sample can be estimated by DSC. Temperature 

associated with crystal to crystal transitions on polymorphism are measured using 

DSC.  
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TGA technique can determine the onset (tonset) and endset (tendset) 

temperature, moreover the temperature of different peaks on DTG curves (t1st, t2nd 

…). 50-52 

The following scheme summarize some calorimetry and thermal analysis 

applications, reported in the literature 

Technique Application 

DSC Determination of proportions of water fractions present in different 
substances 47 
Measurements of the enthalpies of crystal-structure transformations 53 
To perform heat capacity (Cp) measurements of a sample 54 
Evaluation of catalyst activities 55 
Estimation of concentration of several clays and minerals 56 
Characterization of oil shales 57 and petroleum 55 
Determination of the composition of different pharmaceutical 
compounds 58 

TGA 
Determination of the reaction rate kinetics 59-61 
Energetic characterization of forest biomass 62 
Study of coals, oil shales and oil sands on fuels 63 
Determination of some inorganic materials presence 64,65 
Determination of reaction sequences on thermal decomposition of 
substances 66-69 
Unusual weight loss observed in samples at elevated temperatures 70. 
Identification of different pharmaceuticals compounds 71,72 
Determination of composition on pure pharmaceuticals 58 
Characterization of additive content on polymeric materials 73 
Predicting tool on disease detection 74.  

TAM 

Detection of heavy metals on microorganisms 75 
Interesting tool for looking at kinetics of all types of reactions and 
processes 49 
Biological applications in food science and technology (milk 
fermentation, cell death from blanching, microbiological spoilage 
prevention, thermal treatment or shelf life) 49 
On pharmaceutical industry; as a rapid, practical and predictive 
excipient compatibility screening 76 or quantification of small degrees 
of disorder in lactose 77 
Drug efficacy on life sciences 78 
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1.4.Framework 

This PhD Thesis was carried out within the framework of three funded 

national research projects. This PhD Thesis was developed on the Laboratory of 

Thermophysical Properties of Fluids and Biomaterials (PTFB). 

The first project was LUBIONIC (molecular structure influence on 

thermophysical and tribological properties of ionic liquids in broad pressure 

ranges for their use in lubrication), CTQ2008-0698-C02-01, Ministerio de Ciencia 

e Innovación. This project was carried out in collaboration with the companies 

Merck KGaA (the company that provided all the ILs samples), Verkol 

Lubricantes, Repsol, Gamesa and Croda. The aims of this project were to analyse 

the thermophysical and tribological properties of ILs, according to their molecular 

structure, in a broad range of temperature and pressure for their use in lubrication. 

ILs samples were tested as pure lubricants and lubricant additives of conventional 

base oils in applications under regime of lubrication. The following properties 

have been analysed: thermal stability, heat capacity, density and viscosity, 

tribological properties and miscibility of ILs with biodegradable lubricants 
25,26,51,79-90. 

The second project was RENELUBIL (New nanostructured lubricants on 

ionic liquids for renewable energies), CTQ2011-2395, Ministerio de Ciencia e 

Innovación. The objective of this project was to obtain new nanostructured 

lubricants based on ILs for their use in renewable energies, mainly as gear 

lubricants. This project started from the need of developing new “green” oils for 

wind turbines and gear based on biodegradable oils, such as polyalkylene glycols 

and esters, and ILs. ILs were selected taking into account their potential affinity 

with base lubricants, their potential toxicity and biodegradability. To analyse the 

suitability of ILs as lubricants, several properties were analysed: thermal stability, 

melting and glass transition, viscosity and density at different pressures and the 

miscibility of ILs in the lubricants. The results allow evaluating if the new 
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lubricants are more effective than the reference oils whether in boundary and 

lubrication regimes. 4,15,25,50,51,79,80,83-93 

The third project was LISVAPES (Efectos dos líquidos iónicos sobre o 

solo e as comunidades vexetais. Aplicación a parques eólicos e solares), 

EM2013/031, Xunta de Galicia. The objective of this Project was the evaluation 

of toxicity of ILs on different soil and seed samples. First of all it was analysed 

the thermophysical properties of a large number of ILs 15,50. Afterwards, addition 

of different doses of ILs concentration (pure and degraded samples) and common 

salts to two kind of different soils, and evaluation of germination response after 

the addition of these ILs doses. 

In addition, the Galician network REGALIS R2014/015 (Xunta de Galicia, 

Spain), composed of 13 researchers groups of the three Galician universities have 

collaborated to explore the potential of the ILs in the context of fundamental and 

applied chemistry, materials science and engineering. 

1.5. Objectives 

 The main aim of this PhD Thesis is to perform an experimental study of 

ILs in order to propose them as possible “green” substitutes on lubrication or 

additives, through study of several relevant thermophysical properties. 

Specific objectives of this PhD Thesis are: 

• To determine the different state transitions experienced by the IL 

during heating and cooling cycles 

• To seek for DSC experimental data of some of the selected ILs and the 

lubricant bases 

• To determine the influence of experimental conditions, atmosphere, 

initial mass, heating rate and water content on the results of 

degradation temperature. 

• To analyse the effect of aging on the tonset  
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• To analyse the Maximum Operation Temperature (MOT) of the 

selected ILs and lubricant bases. 

• To determine the activation energy of the selected ILs and lubricant 

bases through isothermal studies. 

• To compare activation energy values obtained through isothermal and 

through dynamic studies of some of the ILs. 

• To discern about evaporation or degradation on the mass loss processes 

occurred during TGA experiments. 

• To determine the lower and upper limits of the liquid range of the 

selected ILs and lubricant bases, with the help of DSC and TGA, 

respectively. 

• To analyse the effect of the addition of different dose on the microbial 

activity in two different soils and on the germination of seed of 

different species of pine and eucalyptus. 
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2.1. Context 

In this chapter, basic information about the studied fluids and the description of 

the three different calorimetric techniques used for the characterization of these fluids are 

presented: Differential Scanning Calorimetry was used to determine the lowest limit of 

the liquids range for the selected ILs and fluids, whereas the highest limit was obtained 

using Thermogravimetry. Combination of both techniques, Simultaneous DSC/TGA, was 

also used to complete the information previously obtained from isolated techniques. The 

final part of this chapter describes the Isothermal Microcalorimetry technique used to 

perform a preliminary study of toxicity of ILs through the changes on the metabolic 

respiration of microbial populations of two different soils after the addition of different 

doses of two ILs.  

2.2. Materials 

Twenty-one ionic liquids and five lubricant bases have been selected for this 

study. Abbreviations, CAS numbers, chemical structures and mass fraction purities for 

these materials are shown in Table 2.1. 

The motivations to select these ILs were the following:  

- ILs 1 to 13 were studied in the framework of the projects LUBIONIC (2009-

2011) and RENELUBIL (2012-2015) where properties of ILs were 

determined to propose new lubricants for renewable energy sources. Solvent 

Innovation (currently integrated in Merck KGaA) was an adviser of these 

projects. A number of ILs was selected taking into account three conditions 

for these fluids:  a) being liquids at room temperature, b) to have high 

hydrophobicity, and c) to have good potentiality to be used as lubricants. 

After this selection, ILs were synthetized and kindly donated by this 

company.  

- ILs 14 to 19 were studied in the framework of LISVAPES project and 

collaborations with the Applied Physics group of University of Vigo under 

the Galician Network of Ionic Liquids (REGALIs) with the aim to propose 
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new absorbents for absorption heat pumps. All these ILs were selected by 

their low viscosity and high water solubility and were purchased to IoLiTec. 

- ILs 20 and 21 were in the framework of LISVAPES project to study the toxic 

effects on soils and seeds germination. These ILs presented high thermal 

stability and they are good candidates to be used in high temperature 

applications and were purchased to Fluka and Aldrich, respectively. 

- For comparison, lubricants 22 to 24 were used. PAG2 and DiPEC7 (donated 

by Croda-Uniqema), polyalkylene glycol and dipentaerythritol ester 

respectively, are commonly used on refrigeration equipment working with 

CO2 as a refrigerant. Krytox oils (by Brugarolas) are fluorinated synthetic 

oils, no flammable and no reactant. They have a wide operation range, even 

under extreme conditions.  
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2.3. Experimental techniques 

2.3.1. Differential Scanning Calorimetry  

DSC is a thermal analysis technique that measures the difference in energy 

provided to a sample and a reference material in function of a controlled 

temperature. This technique keeps the sample and the reference at the same 

temperature. A control system (servo system) immediately increases the energy 

supplied to the sample or the reference, depending on if the process involved 

during the experiment is endothermic or exothermic. The record of the DSC curve 

is expressed in terms of heat flow versus temperature or time. 

Experiments were performed in a differential scanning calorimeter DSC 

Q100 TA-Instruments (Figure 2.1), with aluminium pans hermetically sealed and 

liquid nitrogen as coolant fluid. Temperature and heat calibration of this DSC was 

performed before to start the experiments. Temperature and enthalpy of melting of 

indium, determined under the same experimental conditions than the subsequent 

studies were the parameters used to do it.   

As it was pointed out in Introduction chapter, the lowest limit of liquid 

range of an IL was defined by the melting temperature (if the IL presents crystal 

structure) or glass transition (if only amorphous phase is presented in the IL 

structure.  
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2. Calibration of the temperature: this routine is performed by 

measuring the temperatures of the Curie point of various metals 

and alloys. In this case Alumel, Nickel, Perkalloy and Iron were 

employed; whose magnetic transition temperatures are (163, 354, 

596 and 780) oC respectively. 

3. Weight calibration: a 100 mg standard weight is used for 

performing this part of the calibration process. 

TGA curve analysis 

There are many different parameters which affect to the nature and 

accuracy of the results, mainly due to the dynamic nature of the temperature 

changes in the sample 3. Among the factors that should be highlighted are: the 

heating rate (which has a great influence on the shape of the thermogram, 

particularly in regard to the determination of the initial, ti, and final, tf, 

temperatures of the mass load process), the furnace atmosphere and sample mass. 

Thermogravimetric curves have two characteristic temperatures, ti and tf. Ti is the 

starting temperature of the decomposition (or evaporation), i.e., the lowest 

temperature at which the mass change is detectable, under certain experimental 

conditions, and tf is the final temperature, i.e., the lowest temperature at which the 

mass loss process is over. 

Mass loss percentage, ML, which is defined as positive, is given by the 

following expression: 

     100
m

mm
M

i

fi
L


                        (2.1) 

being mi and mf the masses corresponding to the temperatures ti y tf, respectively. 

The figures included in this PhD Thesis represent the remaining mass percentage, 

W, i.e. 100-ML. 
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Experimental procedure 

The experimental procedure of this PhD Thesis has been developed 

according to similar studies found on the literature 4-13. With this technique, the 

thermal stability was studied for several ILs.  

Given that experimental conditions can have a vast influence on thermal 

and calorimetric results, initially, a deep study of the influences of experimental 

conditions (atmosphere, heating rate, initial mass and water content) for some of 

the selected ILs has been done. Once these influences have been checked, 

dynamic scans were performed at the following selected conditions: temperature 

range (100-800) ºC, heat rate of 10 ºC min-1, sample mass about 5 mg, and air 

atmosphere with a flow of 20 cm3 · min-1. Additionally, to complete the kinetic 

study of the mass loss process, TGA measurements at different heating rates (1, 3, 

5, 15 and 20 ºC · min-1) have been done for one of the ILs [C4C1C1Im][NTf2]. 

From TG/DTG curves, as it can be seen in Figure 2.5, following parameters can 

be obtained: 

- Onset temperature, tonset, as the temperature at which the baseline and 

the tangent to the mass loss curve at its inflection point (point 

determined using the minimum of the DTG curve) are cut 

- Endset temperature, tendset, as the temperature at which the baseline of 

total mass loss and the tangent to the mass loss curve at its inflection 

point are cut 

- t1st, temperature where the DTG curve reaches its minimum (that 

corresponds to the point with the higher mass degradation rate) 

- Wonset, defined as the percentage of remaining mass at tonset 

- t10%, which corresponds to the temperature where the 10% of mass loss 

is attained. 
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where m is the measured experimental mass at temperature T, m0 the initial mass, 

and m the mass at the end of the non-isothermal experiments.
  

 
The mass loss rate can be represented in integral form, considering 

equation (2.2), as: 

     Ckt                                                  (2.4) 

where t is time and C is another constant. So, representing for each isothermal 

scan α versus time, we obtain the rate constant k from a linear fitting of these 

experimental data.  

In case of isothermal studies, the temperature dependence on the rate of 

loss mass, k, is represented by the Arrhenius equation: 

     






 


TR

E
expAk

              
(2.5) 

where E is the activation energy and A is the pre-exponential coefficient.  

2.3.2.1.2. Kinetic dynamic study 

In order to verify the activation energy of the mass loss process obtained 

by the kinetic isothermal study, dynamic methods (Kissinger and Friedman) were 

also employed. 

Kinetic information can be extracted from dynamic experiments by 

various methods. All kinetic methods utilize the basic reaction rate equation that 

relates the rate of conversion, d/dt, at constant temperature to some function of 

the conversion, f(), through a rate constant, k: 

(2.6) 

where k is the temperature-dependent rate constant, and f() depends on the 

particular decomposition mechanism.  

                              )(
kf

dt

d

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Substituting Arrhenius dependence (equation 2.5) into equation (2.6), one 

obtains: 

 )( RT

E

eAf
dt

d 
 

               (2.7) 

If the temperature of the sample is changed by a controlled and constant 

heating rate, =dT/dt, the variation of the degree of conversion can be analysed as 

a function of temperature, being this temperature dependent on the time of 

heating. 

2.3.2.1.2.1. Kissinger method 

Fox et al. 5 suggest Kissinger’s method to determine the activation energy 

of the degradation process of ([C4C1C1][Cl] y [C4C1C1][BF4]) from plots of the 

logarithms of the heating rate vs. the inverse of temperature at the maximum of 

the reaction rate in constant heating rate experiments.17-20 

Differentiation of equation (2.7) gives rise to: 

   
d

222

2

dt

d

d

df
Ae

RT

E

dt

d

d

df
Ae

dt

d

RT

E

dt
RT

E

RT

E 

















       (2.8) 

Taking into account that at the inflection point of the TGA curve (T1st) the 

second derivative of is zero, the equation (2.8) takes the form: 

   0
2

1




m

m

d

df
Ae

RT

E RT

E

st 


            (2.9) 

where m is the conversion corresponding at T1st. Making a reorganization of 

equation (2.9) and taking logarithms, the following expression can be obtained: 

     
R

E
-

E

AR
 lnn

1
2

1 stst Td

df

T
l

m 















                                                                       (2.10) 
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It should be pointed out that T1st, the temperature corresponding to the inflection 

point of the thermodegradation curve, corresponds to the maximum reaction rate. 

2.3.2.1.2.2. Friedman method 

Isoconversional methods are based on the isoconversion principle which 

states that the reaction rate is only temperature dependent, for a given constant 

conversion value 5. The most commonly isoconversional method used to 

determine the apparent activation energy is the Friedman method 5,21. This method 

considers that the temperature dependence at a given degree of conversion, α. 

Simple rearrangement of equation (2.7) leads to the following equation 22: 

   



Afk
RT

E
k

dt

d
n ln   where;          -   l  F F 








;                                            
(2.11) 

where kF is a constant and Eα is the apparent activation energy at degree of 

conversion, α. 

This method can be used to determine the apparent activation energy over 

the entire conversion range.23 

2.3.3. Simultaneous DSC/TGA 

Additionally a simultaneous DSC/TGA from Mettler Toledo (Fig. 2.6) was used. 

This device provides trustworthy results using a TGA balance with a 

complementary DSC heat flow sensor using the same sample for both techniques. 

It allows users to analyze a wide variety of sample types up to 1600 °C. 

DSC/TGA was used to determine the kind of peak detected at onset 

temperature in order to know the kind of process: evaporation or degradation 

(endothermic or exothermic, respectively during heating). Experiments were 

performed under N2 or air atmosphere, at a heating rate of 5 o C · min-1 in a 

temperature range between (50 and 420) oC.  
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2.3.5. Germination response 

Seed germination test of species of Pinus halepensis, Pinus nigra, Pinus 

pinaster, Pinus sylvestris and Pinus radiata were carried out. In each, five 

different concentrations of aqueous solutions (10%, 1%, 0.1%, 0.01% and 0% 

(control) in weight) of the two of the selected ILs ([C4C1Im][BF4] and 

[C3C1Im][NTf2]) were tested. Five replies with 25 seeds per Petri dish were 

incubated for every species and treatments. The seeds were incubated in a 

Phytotron (Climas AGP890) and were maintained for 16 h under light at 24 ºC 

and in the dark for 8 h at 16 ºC. Germinated seeds were counting every Monday, 

Wednesday and Friday. Germination had been completed in all the species after 

45 days of incubation.  

Additionally, results of this study were compared under the same 

conditions with the corresponding to the addition of a well-known salt, sodium 

chloride (NaCl), which present adverse effects on germination and plants growth 
27-30.  

The average germination percentage level and the average T50 rate (time 

that each replicate took to reach 50% of germination) were calculated, and also 

the temporal distribution of germination. The germination data of each species 

were analysed using Oneway Analysis of Variance (ANOVA) followed by a 

Duncan Test using p < 0.05 as the significance criteria. Data sets were previously 

checked for Normality and the germination percentage data were arcsine 

transformed prior to ANOVA performance. Programme ‘‘PASW Statistics 18’’ 

for Windows was used for statistical calculations. 
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In order to know the liquid range of some of the ILs, thermal analysis 

techniques, as it was exposed in previous chapters, were used. The lowest 

temperature limit is defined by glass transition or melting temperature, depending 

on the crystallinity degree and/or thermal history of the sample. These transitions, 

together with cold crystallization, solid-solid transitions, etc. are detectable by 

Differential Scanning Calorimetry (DSC). Afterwards Thermogravimetry (TGA) 

was used to characterize the “upper limit temperature operation” of each IL. 

Additionally the influence of experimental conditions was previously studied with 

the aim to find the better requirements to experimental procedures. 

Finally, preliminary analysis of the eco-toxicity of some ILs using 

microcalorimetric and germination response studies were also developed in this 

thesis. 

Results are broadly explained and discussed in this chapter; some of the 

results have been published in the following papers: 

1. J. Salgado; M. Villanueva; J.J. Parajó; J. Fernández; Long-term thermal 

stability of five imidazolium ionic liquids. J. Chem. Thermodyn. 2013, 65, 184-

190. 

2. J. Salgado; J.J. Parajó; J. Fernández; M. Villanueva; Long-term thermal 

stability of some 1-butyl-1-methylpyrrolidinium. J. Chem. Thermodyn. 2014, 74, 

51-57. 

3. M. Villanueva; J.J. Parajó; P.B. Sánchez; J. García, J.; Liquid range 

temperature of ionic liquids as potential working fluids for absorption heat pumps. 

J. Chem. Thermodyn. 2015, 91, 127-135. 

4.  J. J. Parajó; M. Villanueva; I. Otero; J. Fernández; J. Salgado; Long-term 

thermal stability of some ionic liquids and other five synthetic lubricant bases. on 

final writing phase. It will be sent for publication to J. Chem. Thermodyn. 2016. 

5. J. Salgado; J. J. Parajó; T. Teijeira; J. Proupín; M. Villanueva; J. A. 

Rodríguez-Añón; P. V. Verdes; O. Reyes; Addition effects of two imidazolium 

based ionic liquids on seed germination and on soil microbial activity. on final 

writing phase. It will be sent for publication in J. Hazard. Mater. 2016. 
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All the ILs show melting peak and most of them, also, freezing peak. This 

means that these ILs are very good crystal-formers, although the DSC curves 

profiles show important differences associated to different thermal behaviours. 

Table 3.1 summarizes state transition temperatures, such as melting, freezing, cold 

crystallization and glass temperatures determined from these curves. Up to our 

knowledge, scarce data of the thermal behaviour of these ILs in heating and/or 

cooling ramps can be found in literature. Values of transition temperatures found 

in literature for these ILs are also presented in Table 3.1.  

Important agreements between ours and other author results have been 

observed, thus for [C2C1Im][BETI], Ngo et al. 1 obtained freezing temperature    

(-12 ºC) similar than our result (Fig. 3.1.f), but values for melting point (-1 ºC) 

differ considerably than ours, probably due to different experimental conditions 

and different thermal history, but, on the contrary, our results are in good 

concordance with that of Shirota et al. 2 for the melting point. [C2C1Im][BETI] 

presents a glass transition (-52 ºC) with enthalpic recovery. To distinguish it from 

a solid-solid transition we have zoomed in the DSC scan and checked that it 

corresponds to a "stair step" which is the common appearance for a glass 

transition 3. Afterwards, [C2C1Im][BETI] shows a subcooling phenomenon, 

characterised by an incomplete crystallization on cooling ramp, then a part of this 

IL pass from a glassy to a subcooled state, suffering a cold crystallization 

followed by the melting transition. This cold crystallization phenomenon is 

usually observed in the thermal behaviour of many ILs. Agreeing with these 

results, Calvar et al. 4 and Fredlake et al. 5 found that some imidazolium based ILs 

presented similar behaviour, nevertheless it cannot be observed in pyridinium 

based ILs. 
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Table 3.1. Freezing (tf), melting (tm), glass transition (tg), cold crystallization (tcc) and solid-solid 

transition (tss) temperatures measured in our laboratory and literature reported for all selected ILs. 

Compound tm / (oC) tg / (ºC) tf / (ºC) Other / (oC) 

[C4C1C1Im][OTf]  2 6    

[C4C1C1Im][NTf2] -13 7, -2 8 ≥20 9   

[C4C1Pyrr][NTf2]  

-8 10, -19 11, 

-18 12, -22 13,  

-15 14, -13 15, 

-18 16 

-87 12, -88 13,  

-89 11, -87 17,  

-83 14, -81 15 

-39 10, -54 11 -24 16, -30 11 (tss)

[C1OC2C1Pyrr][NTf2]   -91 11, -95 18   

[C4C1Pyrr][OTf]  3 6,10  -2 10  

[C4C1Im][BF4] 
-71 19,20,  

-81 20-23 
-85 5,24, -87 25,    

-80 26 
 

 

[C4C1Pyrr][B(CN)4]  19 27    

[C3C1Im][NTf2]  
-87 28, -88 29,      

-89 30 
 

 

[C2Py][OTf] 32/-7  16 /-10  

[C2Py][C1SO3] 62  -1  

[Chol][NTf2] 
27/33, 27 31,    

30 32 
 

-9 2, -1 31 (tss) 

[C2C1Im][BETI] 16, -1 1, 15 2 -52 -11, -12 1 -37 (tcc) 

[C2Py][NTf2] 32, 31 33 -38 33 -22 21, 20 33 (tss) 

[C2C1Im][OTf] 14, -11 34, -9 35  -4, -9 34  

[P6,6,6,14][(C2F5)3PF3]  -64, -65 36    

[C4C1C1Im][(C2F5)3PF3]  5   -23 (tcc) 

[C4C1Pyrr][(C2F5)3PF3]  7, 2 10, 4 37,38  
-26, -9 10,  

-27 37 
-40 37 (tcc) 

[C1OC2C1Pyrr][(C2F5)3PF3]  -15   -49 (tcc) 

[C4C1Pyrr][(C4F9)3PF3]  4 -62 -35  

[C1C1Im][C1C1PO4]  < -65 39 -64 40   

[C2C1Im][C6SO4]  7   -32 (tcc) 

Expanded uncertainties are U(t) = ±2 ºC (0.95 level of confidence). 
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[Chol][NTf2] showed a very different profile on heating ramp than the rest 

of ILs (Fig. 3.1.b). This profile is characterized by three endothermic peaks at (2, 

27 and 33) ºC. The first is attributed to a solid-solid transition and the last to a 

melting process. The origin of the peak at 27 ºC, which is not completely resolved 

with the last peak, could be associated either to solid-solid or to melting transition. 

Taking into account that the temperatures of second and third peaks (27 ºC and 33 

ºC) do no change when the heating rate increases at 10 ºC · min-1 (results are not 

shown), it could be possible that the melting process of this IL takes place in two 

different phases at 27 ºC and 33 ºC. Similar behaviour and temperatures were also 

found by Yoshizawa-Fujita et al. 31 for this IL, being this shape usual in DSC of 

polymers with high molecular weight 41,42. Additionally, Nockeman et al. 32, 

indicates that the melting temperature for [Chol][NTf2] is 30 ºC although these 

authors do not show the DSC curves of this IL, being this value in relative good 

concordance with our results.  

On the other hand, [C2Py][NTf2] crystallizes, at -21 ºC, on cooling, but 

does not form a glass in the temperature range studied (Fig. 3.1.a). A solid–solid 

transition at 21 ºC and the melting point at 32 ºC are detected in heating ramp, 

agreeing in both cases with the results of Liu et al. 33. This behaviour, not unusual 

in ILs, is also observed by Machanová et al. 43 and Stefan et al. 44 for ammonium 

and pyrrolidinium based IL, with the [NTf2]
- anion, observing in the last case, 

even two solid-solid transitions before the melting.  

Wachter et al. 34 and Bonhôte et al. 35 observed melting and freezing 

temperature transitions of [C2C1Im][OTf] very different to ours (Fig. 3.1.d). This 

fact can be explained taking into account the difference in heating rate; these 

authors have chosen a very small rate of 0.5 ºC · min-1.  

[C4C1Pyrr][(C2F5)3PF3] shows an exothermic peak on cooling ramp at -26 

ºC and an endothermic peak in heating at 7 ºC (Fig. 3.1.h); similar results have 

been found by other authors 37,38. Fletcher et al. 37 reported a cold crystallization 

temperature at -40 ºC, probably due to the use of a cooling rate twice than ours, 
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and possibly the sample has not enough time to crystalize in the cooling ramp, 

appearing the cold crystallization in the heating one. Similarly than in the 

previous IL and due to the different experimental conditions, Wachter et al. 10 

indicated at (2 and -9) ºC melting and freezing transitions, respectively, very 

different to ours. 

[P6,6,6,14][(C2F5)3PF3] shows an endothermic peak in heating at -64 ºC (Fig. 

3.1.l), very similar value than Otero et al 36, -65 ºC; the cooling ramp did not 

register any transition over the limited temperature range of the used equipment. 

For the rest of the selected ILs, no references have been found, thus, 

[C2Py][OTf] shows two exothermic peaks on cooling and two endothermic peaks 

on heating (Fig. 3.1.c) ramps. Other authors as Calvar et al. 4 have observed 

similar behaviour in some pyridinium and imidazolium based ILs with the same 

anion, [OTf]-, suggesting a polymorphic-like behaviour, which leads to the 

formation of crystals with different structures stated. Nevertheless, a deeper study 

is necessary to complement and to confirm this result. [C4C1C1Im][(C2F5)3PF3] 

(Fig. 3.1.g), [C2C1Im][C6SO4] (Fig. 3.1.j) and [C1OC2C1Pyrr][(C2F5)3PF3] (Fig. 

3.1.k) show an exothermic peak (corresponding to a tcc) and an endothermic one 

(corresponding to a tm) in heating (Fig. 3.1) and it cannot be detected any peak on 

cooling ramp over the temperature range of the equipment. [C2Py][C1SO3] (Fig. 

3.1.e) and [C4C1Pyrr][(C4F9)3PF3] (Fig. 3.1.i) present exothermic peak 

(corresponding to a tf) on cooling ramp and an endothermic one (corresponding to 

a tm) on the heating ramp. 

From results of Table 3.1, the sequence obtained for melting temperature 

of selected ILs was:  

[C2Py][C1SO3] > [C2Py][OTf] ≈ [C2Py][NTf2]] ≈ [Chol][NTf2] > 

[C4C1Pyrr][B(CN)4 > [C2C1Im][BETI] ≈ [C2C1Im][C6SO4] > [C2C1Im][OTf] > 

[C4C1C1Im][(C2F5)3PF3] > [C4C1Pyrr][(C2F5)3PF3] ≥ [C4C1Pyrr][(C4F9)3PF3] ≥ 

[C4C1Pyrr][OTf] ≥ [C4C1C1Im][OTf] > [C4C1C1Im][NTf2] > [C4C1Pyrr][NTf2] ≈ 
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A trend with anion or cation cannot be established for freezing 

temperatures. Although it is important to remark that, in both sequences, the two 

first ILs remain the same.  

Substantial supercooling is observed for some of the ILs, with freezing 

point significantly lower than melting point, being the differences tm-tf  around (20 

to 30) ºC, except for [C2Py][NTf2], [C2C1Im][OTf], [C4C1Pyrr][(C4F9)3PF3] and 

[C2Py][C1SO3] which is higher than 50 ºC, indicating a very slow crystallization 

rate. This fact is a very important and positive feature for the application of ionic 

liquids as absorbents in absorption heat pumps and avoid problem of 

crystallization commonly observed in the current working pairs, as it previously 

was pointed out (Introduction chapter). 

3.2.  Thermogravimetric results  

Although it is well known that the experimental conditions, such as 

heating rate, sample pan materials, sample weight and atmosphere can influence 

on the thermal analysis results, scarce bibliographic data show numerical values 

about this influence on ILs or even the published values present some 

incoherence. For example:  Ngo et al. 1 have found differences higher than 100 ºC 

between the onset temperatures (tonset) of [C2C1Im][PF6] measured in aluminum 

(375 ºC) and alumina (481 ºC) pans, whereas only a difference of 2 ºC was found 

for [C2C1Im][NTf2] under the same conditions. On the other hand, for this last IL, 

Ngo et al. 1 obtained a value of 453 ºC at 20 ºC · min-1 whereas Noda et al. 45 have 

found a value of 417 ºC when using a heating rate of 10 ºC min-1, both in Nitrogen 

atmosphere, i.e. an increase in more than 30 ºC was found in the onset 

temperature when using different heating rates. Fox et al. 46 found an increase of 

100 ºC in the onset temperature of [C4C1Im][BF4] when the heating rate increases 

from (10 to 20) ºC · min-1. Similar results have been reported by other authors like 

Awad et al. 47, Kosmulski et al. 48, Hao et al. 49 and Amarasekara and Owereh 50. 
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Then, the first proposal of this work is the study of the influence of these 

experimental conditions on TGA curves and onset temperatures of some ILs.  

3.2.1. Influence of experimental conditions 

In this section, the influence of the analysis conditions, namely 

atmosphere, heating rate, sample mass or water content, in dynamic scans will be 

checked.  

3.2.1.1. Atmosphere influence 

With the aim to define the most advisable analysis conditions of ILs for 

lubrication applications, five ILs, [C4C1C1Im][NTf2], [C4C1C1Im][(C2F5)3PF3], 

[C4C1Pyrr][OTf], [C1OC2C1Pyrr][NTf2] and [P6,6,6,14][(C2F5)3PF3], were analyzed 

in a dynamic mode from (100 to 800) ºC at 10 ºC · min-1 in both, air and Nitrogen 

atmospheres. Figure 3.3 shows the comparison of TG and DTG curves in both 

atmospheres for [C1OC2C1Pyrr][NTf2]. Results of tonset, tendset, t10%, tpeak, and Wonset 

obtained from the TG and DTG curves, for every atmosphere, are presented in 

Table 3.2. These results show that the studied ILs are slightly more stable in 

Nitrogen atmosphere. Small differences in tonset, until 19 ºC, for N2 and air 

atmospheres can be observed. Nevertheless, for each IL similar values of Wonset 

were obtained in air and N2 indicating that mass loss at onset temperature seems to 

be not atmosphere dependent. Villanueva et al. 51 studied the differences between 

these atmospheres on the IL [C2C1Im][NTf2] finding a similar behavior, 

differences in tonset of 25 ºC at 10 ºC · min-1. Ghaemy et al. 52, studied the thermal 

stability of poly(etherimidazoleimide) (PEII)s under these two atmospheres, 

obtaining values 30 ºC higher in N2 than air atmosphere on the t10%. Heym et al. 53 

studied the thermal stability under He and N2 of [C4C1Im][NTf2] at 0.5 ºC · min-1 

concluding that this IL shows higher thermal stability under N2 atmosphere. 

Nevertheless, Hao et al. 49, studied the thermal stability under Air and N2 of Allyl-

methylimidazolium Chloride ([AC1Im][Cl]) at 10 ºC · min-1 finding differences of 

1 oC. And Huddleston et al. 54 concluded, after analysis of the data published by 
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As it can be seen, the process of degradation shifts to higher temperatures 

with increasing mass, as is reported by other authors 48,51,59. Onset temperatures 

for the different initial mass are 417, 438 and 456 ºC for 1, 2.5 and 5 mg, 

respectively. 

3.2.1.3. Heating rate influence 

Several authors have reported that heating rate have a strong influence on 

the dynamic scans 51,55,60,61. TG and DTG curves of [C4C1C1Im][NTf2] obtained at 

different heating rates, 1, 3, 5, 10, 15 and 20 ºC · min-1 in air atmosphere and 

similar mass (2.5 ± 0.3) mg, are presented in Figure 3.5.  

Table 3.3 shows tonset, tendset, t10%, t1st, and Wonset values obtained at the 

different heating rates. Degradation process takes place at temperatures higher 

than 350 ºC in all cases. Onset temperatures can range to 73 ºC according to the 

heating rate. ΔT between onset and endset temperatures grows as the heating rate 

increases. According to Hatakeyama and Quinn 62, the reason for this behaviour is 

that at low heating rates the sample temperature is more uniform and diffusion of 

product gases can occur within the sample, lowing the decomposition 

temperature. 
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Table 3.3. Thermal results from the dynamic scans in air atmosphere at different heating rates. 

Heating rate 
(ºC · min-1) 

tonset 
(ºC) 

tendset 

(ºC) 
t10% 

(ºC) 
Wonset 

(ºC) 
t1st 

(ºC) 
1 369 406 342 73 401 
3 376 433 354 79 420 
5 398 452 374 78 441 

10 419 480 393 78 465 
15 422 484 397 78 468 
20 442 507 419 80 492 

Expanded standard uncertainties are U(t) = 5 ºC and U(W) = 2% (0.95 level of confidence). 

3.2.1.4. Water content influence 

Water quantities could be considered important 54, but the samples of ILs 

were employed in this work without purification because in many potential 

industrial applications as lubricants, contact with air cannot be avoided. With the 

aim to determine the water influence on thermal stability of ILs, we have 

performed some TGA experiences of ILs purified and saturated of water.  

Three samples of the selected ILs ([C1OC2C1Pyrr][NTf2], 

[C1OC2C1Pyrr][(C2F5)3PF3] and [P6,6,6,14][(C2F5)3PF3]) were stored in an open 

bottle for a week in order to reach the water saturation level content. These 

samples are referred in this work as “water-saturated”. The increased water 

content was measured by weighting the samples every 24 hours, with a precision 

of ± 0.00001 g.  

A Karl-Fischer coulometric titrator (Metler Toledo DL32) was used in 

order to measure water content in the samples of ILs (Fig. 2.9). This titrator can 

determine water contents in the range from 1 ppm to 1% and it is based on the 

standard reaction equation for the Karl-Fischer reaction 63. 

Water contents of the pure and water-saturated samples are shown in Table 

3.4. As it can be seen, [C1OC2C1Pyrr][NTf2] has a high capacity for absorbing 

water, reaching a water content value that is around twenty times that of the pure 

sample. For the ILs with anion [(C2F5)3PF3]
-, the water saturation content is quite 

lower; although in case of [P6,6,6,14]
+ cation the water content in supply conditions 

was the highest, the water content on the saturation level was the lowest.  
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In Figure 3.6, comparisons of the TG and DTG curves obtained for 

[C1OC2C1Pyrr][NTf2] and [C1OC2C1Pyrr][(C2F5)3PF3] saturated and under supply 

conditions are presented. As it can be observed on Figure 3.6 and on Table 3.4, 

ILs do not show appreciable differences in the thermal stability after the water 

saturation. No significant differences in DTG curves of saturated and as supplied 

samples are also observed.  

Table 3.4. Water contents and degradation onset temperatures for the ILs corresponding to water 

saturation content and to supply conditions measured under atmospheric pressure, (992 ± 5) hPa, 

and relative humidity of 80 %. 

IL 
Water content (ppm) tonset (ºC) 

As supplied saturated As supplied saturated 

[C1OC2C1Pyrr][NTf2] 174 3700 411 406 

[C1OC2C1Pyrr][(C2F5)3PF3] 139 1028 352 349 

[P6,6,6,14][(C2F5)3PF3] 193 264 363 356 

Expanded standard uncertainties are U(t) = 5 ºC and U(W) = 2% with 0.95 level of confidence. 

Huddleston et al. 54 have found, in general, that drying improves the 

thermal stability of ILs, but in the studies here presented no significant differences 

were observed between the stability for pure and water saturated ILs. Valkenburg 

et al. 64 studied the effect of water on the thermal stability of the ILs 

[C2C1Im][BF4], [C4C1Im][BF4] and [C1C1C3Im][NTf2] and they did not found 

significant changes on the onset temperatures. 
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Table 3.5. Characteristic thermogravimetric parameters for all the studied compounds 

Compound 
tonset tendset t10% Wonset t1st t2nd 

(ºC) (ºC) (ºC) (%) (ºC) (ºC) 

[C4C1C1Im][OTf]  436  502 424  84  479   --- 

[C3C1Im][NTf2] 430 481 404 77 472  

[C4C1C1Im][NTf2]  424  476 407  79  470  476  

[C4C1Pyrr][NTf2]  417  461  402  81  452  --- 

[C1OC2C1Pyrr][NTf2]  411 460 399 82 443 --- 

[Chol][NTf2]  410  460  401  85  442  --- 

[C2py][NTf2]  409  471  397 83  450  --- 

[C2C1Im][OTf]  404  458  388 87  436  --- 

[C4C1Im][BF4] 400 455 390 84 435  

[C4C1Pyrr][OTf]  399  436  382  88  414  --- 

[C4C1Pyrr][B(CN)4]  387  421  381  86  407  --- 

[C2py][OTf]  371  416  365 86  399  --- 

[C2C1Im][BETI]  368  425  354 85  407  --- 

[P6,6,6,14][(C2F5)3PF3]  363 451 356 88 396 445 

[C4C1C1Im][(C2F5)3PF3]  363  437 364  88  395  413  

[C4C1Pyrr][(C2F5)3PF3]  358  458  360  90  381  441  

[C1OC2C1Pyrr][(C2F5)3PF3]  352 419 349 88 384 417 

DiPEC7  318 445 307 86 370 420 

[C4C1Pyrr][(C4F9)3PF3]  315  440  316  90  350  426  

[C2py][C1SO3]  315  353  298 85  339  --- 

Krytox GPL 105 298 373 270 79 352 --- 

[C1C1Im][ C1C1PO4]  274  326  262  87  303  --- 

[C2C1Im][C6SO4]  251  413 269  94  398  --- 

Krytox GPL 104 235 321 228 87 288 --- 

PAG2  212 240 197 76 234 --- 
Krytox GPL 103  200 267 186 83 244  --- 

Expanded standard uncertainties are U(t) = 5 ºC and U(W) = 2% (0.95 level of confidence). 

Figure 3.8 represents, for comparison, a selection of the different kind of 

anions and the most stable lubricant. It can be seen that exists a wide variety of 

thermal behaviours; namely, different curve shapes, diversity of “size” thermal 

degradation interval, different location of the main thermal degradation step.  
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As it can be seen in Figure 3.12, [NTf2]
-, [BF4]

-, [OTf]-, [C1SO3]
-, 

[B(CN)4]
- (Fig.3.12a) and [BETI]- (Fig. 3.12b) anions show a well-defined peak, 

which means a one-step mass loss; however [C1C1PO4]
- (Fig. 3.12a),  

[(C2F5)3PF3]
-, [C6SO4]

- and [(C4F9)3PF3]
- (Fig. 3.12b) show overlapped peaks that 

are related with a mass loss in various steps. For [C1C1Im][C1C1PO4] and 

[C4C1Pyrr][B(CN)4] a broader temperature interval should be necessary to 

complete the mass loss process. As it can be observed in Figure 3.12c, lubricant 

bases, in general, show the mass loss peak at lower temperatures than ILs. 

DiPEC7 shows better results than Krytox GPL and PAG2; Krytox GPL bases 

show an increment on their characteristic temperatures with the molecular weight. 

Krytox GPL show a single peak on DTG curves while DiPEC7 seems to present 

two, which means different degradation processes.  

 



Re

 

 

Fi

(

(

(

GP

esults and dis

gure 3.12. D

)[C1OC2C1Py

)[C4C1Pyrr][

)[C4C1C1Im]

PL 103, ()P

scussion 

 

DTG curves f

yrr][NTf2], 

[B(CN)4], (■)

][(C2F5)3PF3], 

PAG2. 

for lubricant b

(■)[C4C1Im]

)[C2C1Im][C6S

()DiPEC7,

80 

bases and di

[BF4], ()

SO4], (●)[C2

, (■)Krytox G

fferent anion 

[C2Py][C1SO3

C1Im][BETI],

GPL 105, ()

 
types ILs: (

3], ()[C1C

, ()[C4C1Py

)Krytox GPL 

a)

b) 

c) 

()[C2Py][OT

C1Im][C1C1PO

yrr][(C4F9)3PF

104, ()Kryt

Tf], 

O4], 

F3], 

tox 



Results and discussion 
 

81 
 

Figures 3.13 and 3.14 show the tonset and tendset comparison for the 21 ILs 

and the 5 lubricant bases. It can be clearly seen that the most part of ILs have 

higher thermal stability than the selected lubricant bases, and ILs with [BF4]
-, 

[NTf2]
-and [OTf]- anions were the most stable meanwhile [C1C1PO4]

- and 

[C6SO4]
- were the least stable; besides all the ILs presented better thermal stability 

than three of the selected lubricant bases (Krytox GPL 104, PAG2 and Krytox 

GPL 103), as it was previously mentioned. 

With regard to degradation temperature interval that can be defined as the 

range of temperature in which thermal decomposition of the sample occurs, 

different behaviours between ILs have also been observed. Thus, for ILs with 

[NTf2]
-, [OTf]-  and [BF4]

- anions, Δt (tenset-tonset) takes similar value, around 50 ºC. 

This means that once initiated the IL decomposition, in approximately 5 minutes, 

at the selected heating rate (10 ºC · min-1), the sample has almost completely 

disappeared. In contrast, it was found that the phosphate and sulphate anions are 

associated with lower thermal stability, especially in cases of ILs 

[C2C1Im][C6SO4] and [C1C1Im][C1C1PO4], which initiate degradation at 

temperatures below 275 ºC and have a wider degradation temperature interval 

(Fig. 3.7). For example, in case of [C2C1Im][C6SO4] values of Δt higher than 160 

ºC were observed.  
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Literature about the degradation of these ILs and lubricants is scarce, and 

in most cases comparisons are difficult due to the influence of experimental 

conditions on results, as it has been pointed out, as well as to the different criteria 

followed by different authors.  

Thus, Bittner et al. 65 used temperature of maximal decomposition rate (i.e. 

t1st in this work) and they found similar results than those here obtained for 

[C2Py][NTf2].  

Heym et al. 53, with the scope of studying deeply the thermal stability, 

used the temperature to reach a mass loss of 1% during TGA experiments at 

different heating rates obtaining 348 ºC for [C2C1Im][OTf], being in concordance 

with ours data (t10%=388 ºC).  

[C1OC2C1Pyrr][NTf2] presents a tonset of 411ºC and t10% of 399ºC, which 

are consistent with results of  Fox et al. 57 who have reported for  tonset at two 

different heating rates of (10 and 20) ºC · min-1, (436 and 450) ºC respectively, 

under N2 atmosphere, and those of Reiter et al. 69 who obtained an onset 

temperature at a heating rate of 5 ºC · min-1 of (345 and 306) ºC under N2 and O2 

atmospheres respectively for this IL.   

Holopainen et al.38 have found that decomposition temperature of 

[C4C1Pyrr][(C2F5)3PF3] is higher than 300 ºC, which agrees quite well with the 

results obtained in this thesis.  

Important disagreement can be found in literature with regard to the 

thermal stability of [C4C1Pyrr][NTf2], thus Biso et al. 70 have reported 410 ºC as 

the temperature at which thermal decomposition takes place with a 5% weight 

loss (t5%) of in N2 atmosphere and 20 ºC · min-1, being this value quite similar to 

the t10% presented in Table 3.5, 402 ºC. Similarly,  Chancelier et al. 71 reported for 

an onset temperature of 423 ºC and 451ºC, measured by TGA in  argon flow 

atmosphere and DSC in  Nitrogen atmosphere, respectively, using in both cases a 

heating rate of 5 ºC · min-1, being both values in relatively good agreement with 
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our result. Nevertheless, Shamsipur et al. 72, using TGA and DSC techniques, in 

similar conditions to this work, obtained the lowest value of bibliography (346ºC).  

Fox et al. 57, have reported tonset of [C4C1C1Im][NTf2] at two different 

heating rate of (10 and 20) ºC · min-1, (459 and 464) ºC respectively, on N2 

atmosphere, also coherent with the result here obtained, 417ºC, taking into 

account the experimental conditions.  

Decomposition temperature (td) of [C2C1Im][BETI] was previously 

calculated by Ngo et al.1, obtaining different values using either aluminium (423 

ºC) or alumina (462 ºC) sample pan, both of them higher than the data obtained in 

this work (368 ºC), but these researchers using N2 atmosphere and a heating rate 

of 20 ºC · min-1, tending both factor to increase stability, as it was pointed out in 

the previous section 3.2.1  

In spite of the different experimental conditions, N2 atmosphere and 5 ºC · 

min-1, Królikowska 27 has reported a td for [C4C1Pyrr][B(CN)4] of 383 ºC, being 

similar that the value here presented. Likewise, Vitz et al. 73, have reported a td 

under N2 atmosphere and 20 ºC · min-1, only, 6 ºC lower than us for 

[C1C1Im][C1C1PO4]. Zhou et al. 11 have found an td value (5 and 6) ºC higher than 

ours, for [C1OC2C1Pyrr][NTf2] and [C4C1Pyrr][NTf2] respectively, with the same 

heating rate and N2 gas. 

On the other hand, Meindersma et al. 74 obtained a similar TG and DTG 

pattern for the [C4C1Pyrr][B(CN)4], although they reported a tonset lower than that 

obtained in this work, but this can be explained taking into account that these 

authors calculated this temperature differently than us, thus they used the 

temperature at which the dW/dt0 75. 

Noack et al. 8 have found t10% values for [C4C1C1Im][NTf2] of 359 ºC 

(almost 50 ºC lower than our value). In this case, these authors used the same 

heating rate than us, nevertheless the rest of operational conditions are not well 
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indicated; and then, all those differences can be probably due to different 

analytical conditions.  

There is not good concordance between decomposition temperature value 

reported in bibliography for [C4C1Im][BF4]. Huddlestone et al. 54 have found 

similar values than ours, 403 ºC, Fredlacke et al. 5 and Holbrey and Seddon 76 

have found decomposition temperatures at (361 and 360) ºC, respectively and 

Erdmenger et al. 26 have reported a decomposition temperature of 380 ºC. These 

differences can be explained taking into account that the tetra-fluoroborate-based 

ILs can easily hydrolyze and the hydrolysis extent, and as a consequence the 

water content, is markedly dependent on the temperature 77,78.  

Additionally, in a review, Maton et al. 79 collected the onset temperatures 

of 60 imidazolium base ILs with different anions, among those are [NTf2]
- and 

[OTf]-. These results show that for ILs with the same cation, those with the 

[NTf2]
- anion present higher values of tonset than the ILs with [OTf]- anion, except 

for the ILs with the cation [C2C1Im]+. Moreover, Fredlake et al. 5 also studied the 

thermal stability of several imidazolium based ILs, reporting the onset and start 

temperatures, tonset and tstart respectively, being the last one the temperature at 

which the decomposition begins. The values of tstart are determined as the 

temperature at which the baseline and the TG curve separate from each other. 

These last authors found that the tonset of [C4C1Im][NTf2] is higher than that of 

[C4C1Im][OTf], whereas the tstart displayed the opposite behaviour. All these facts 

reveals that both anions, [NTf2]
- and [OTf]-, present similar results in thermal 

stability studies and then the cation effect is more appreciable than in other 

combinations. 

According to the remaining mass at tonset (Wonset), measured values range 

between 7% for [C2C1Im][C6SO4] and 23% for [C2C1Im][NTf2] and 

[C2C1Im][BETI], being remarkable that higher levels of this parameter correspond 

to those with the lower Δt (tenset-tonset) interval and vice versa. From the obtained 

results, it can be concluded that in general, values for Wonset are too high to can 
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consider tonset as the maximum operation temperature. This feature, and the fact 

that variations on the experimental conditions can lead important changes in 

results, would involve that this dynamic analysis can be used just at comparative 

level, i.e., to determine thermal stability sequence for a given set of ILs. To know 

the maximum operation temperature it is necessary to perform isothermal scans 
1,48,51,55,61,68,79-81. 

3.2.2.1. Heating-cooling cycles. ILs ageing 

Regarding to absorption heat pumps application, ILs behaviour after long 

periods of time, i.e. the ageing of the ILs after consecutive absorption-desorption 

cycles, remains as an open question. Up to our knowledge, very few experiments 

have been done to study ageing effect on ILs 57. 

So, in this section this question is outlined using thermal techniques. 

Heating-cooling cycles were chosen to adapt the experimental procedure to 

absorption heat pump application. The experimental procedure consists in essays 

of 8 successive cycles “heating up to 175 ºC - cooling up to 50 ºC” under air 

atmosphere.  

Figure 3.15 shows the second (the first one was not considered because a 

little percentage of impurities, specially water, released to rise 100 ºC) and the last 

heating TG curve for [C2C1Im][OTf] and [C2Py][C1SO3]. No significant 

degradation related to successive heating-cooling cycles was found.  
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Even though during this process ILs do not undergo other effects related 

with physical absorption, chemical interactions or mechanical factors, results 

seem to indicate that ageing does not affect to thermal stability.  

Table 3.6. Onset temperatures (t’onset) of selected ILs obtained from dynamic studies after aging 

cycles. 

IL t’onset / ºC tonset / ºC 

[Chol][NTf2] 410 410 

[C2py][NTf2] 401 409 

[C2C1Im][OTf] 405 404 

[C2py][OTf] 370 371 

[C2C1Im][BETI] 362 368 

[C2py][C1SO3] 321 315 

Expanded uncertainties are U(t)=±4 ºC (0.95 level of confidence)  

3.2.3. Isothermal study 

The onset temperature, tonset, can be used as a relative thermal stability 

parameter, i.e., to determine which IL (or lubricant), in a given set, is the most (or 

least) stable. But it cannot be employed as an “absolute” parameter of the thermal 

stability, since, as it can be clearly seen for example in Figure 10, the 

corresponding mass loss below temperatures than tonset is important. Therefore, a 

reformulation of the study of the characterization of the "real" mass loss process 

of ILs is required. To do this, isothermal studies at temperatures below tonset were 

performed. Isothermal scans have been carried out only in oxidative atmosphere, 

using the same air flow above mentioned. Temperatures of these essays have been 

chosen using the following criteria: the highest temperature for isothermal tests 

was set at least 40 ºC below the tonset, and from that, isothermal tests were 

performed at temperatures 20 ºC under the previous one, until the temperature for 

which no degradation over 10% was observed. 46,50,59,82  



 

is

an

ch

du

is

be

te

on

te

th

on

in

Fi

 

Sever

othermal st

nd experime

hosen to dev

Figure

uring isothe

othermal T

e observed

emperatures

nset tempe

emperature i

hermal stab

nset temper

nitial mass is

gure 3.16. Iso

ral measure

udy, as it h

ental metho

velop this st

e 3.16 sho

ermal scan

GA results 

d that the

, even thou

eratures ca

is not a para

bility. For e

ature was 3

s lost in jus

othermal scans

es at differe

as been exp

ods Chapter.

tudy. 

ows the ma

s. Compari

correspond

re is appr

ugh these te

alculated fr

ameter as g

example, fo

52 ºC, in an

t 50 minute

s of the selecte

89 

ent tempera

plained on e

. Fifteen IL

ass loss of 

ing, in all 

ding to the 

reciable d

emperatures

rom previo

ood as is us

for the IL 

n isotherma

es. 

ed ILs and lub

atures have

experimenta

s and two lu

the chosen

of them, t

first isother

egradation 

s are lower

ous studies

sually consi

[C1OC2C1P

al scan 50 ºC

bricants at diff

Results

e been perf

al procedure

ubricant bas

n compoun

the tonset va

rmal temper

at these 

r than the c

s, which 

idered to ch

Pyrr][(C2F5)

C below, ov

ferent Celsius

s and discussi

formed in t

e in Materia

ses have be

nds over tim

alues and t

ratures, it c

“isotherma

correspondi

means ons

haracterize t

)3PF3], who

ver 80% of t

s degrees. 

ion 
 

the 

als 

een 

me 

the 

can 

al” 

ing 

set 

the 

ose 

the 

 

 



Re

 

 

Fi

(co

 

esults and dis

gure 3.16. Is

ontinue). 

scussion 

sothermal scaans of the sel

90 

lected ILs annd lubricants at different Celsius degr

 

 

 

 

ees 



 

Fi

(co

sc

se

be

is

de

th

gure 3.16. Is

ontinue). 

By th

cans during 

elected ILs a

Furthe

etween the 

othermal s

egradation i

han that obt

sothermal sca

he contrary,

 more than

and (140 an

er analysis 

different i

scan at 40

in air is qui

tained by C

ans of the sel

a thermal 

n 5 hours at

nd 200) ºC f

of isother

ion types a

00 ºC for 

icker (IL tak

Chancelier e

91 

 

lected ILs an

degradation

t two temp

for Krytox G

rmal scans,

at the same

[C4C1Pyrr]

akes less tim

et al. 71 un

nd lubricants 

n is hardly 

eratures, (2

GPL 105 an

 Table 3.7

e isotherma

][NTf2] we

me to achiev

nder argon 

Results

at different 

appreciable

200 and 260

nd DiPEC7 r

, shows th

al scan tem

e have fou

ve a concret

atmosphere

s and discussi

Celsius degr

e in the TG

0) ºC, for t

respectively

he differenc

mperature. O

und that t

ete mass los

e; in our ca

ion 
 

 

 

ees 

GA 

the 

y. 

ces 

On 

the 

ss), 

ase 



Results and discussion 

 

92 
 

there is a mass loss of 94% after 19 minutes and Chancelier et al 71 reported the 

same mass loss after 1 hour.  

Table 3.7. Mass loss values after 50 minutes on isothermal scans at specified temperature. 

IL T / ºC mass loss / % 

[C4C1Pyrr][NTf2] 

260 0.5 

300 3 
340 27 

[C4C1Pyrr][OTf] 

260 2 

300 6 

340 48 

[C4C1Pyrr][(C2F5)3PF3] 

260 2 

300 47 

340 97 

[C1OC2C1Pyrr][NTf2] 

260 1 

300 4 

340 14 

[C1OC2C1Pyrr][(C2F5)3PF3] 

260 5 

300 46 

340 98 

[C4C1Pyrr][NTf2] 

260 0.5 

300 9 

340 11 

[C4C1Pyrr][OTf] 

260 1 

300 9 

340 90 

[C4C1Pyrr][C1SO3] 260 20 

[C4C1C1Im][NTf2] 
300 8 
340 26 

[C4C1C1Im][OTf] 
300 3 

340 23 

[C2C1Im][BETI] 
300 12 

340 50 

[C2C1Im][OTf] 
300 1 

340 13 

[C4C1C1Im][(C2F5)3PF3] 300 10 

[Ph3t][(C2F5)3PF3] 300 23 

Krytox GPL 104 
260 25 

300 47 

DiPEC7 
260 59 

300 70 
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3.2.3.1. Maximum operation temperature 

Up to now, does not exist a clear criterion on the degradation level allowed 

in the different applications, finding in literature a wide range, from 1 % in one 

year 61, 1 % in 10 h 75 or 10 % in 10 h 60.  In this works, three thermal degradation 

levels (1 %, 5 % and 10 % at different temperatures) were selected in order to 

obtain information about how much time an IL takes to degrade at different 

operation temperatures. 

From isothermal scans, times that each ionic liquid takes to lose the 1%, 5% 

and 10% percentages of initial mass (t´1%, t´5% and t´10%, respectively) were 

determined. Figure 3.18 shows t´1%, t´5% and t´10% values against temperature for 

some of the studied compounds. As it can be also seen from this figure, good 

correlations of the experimental data with a decreasing exponential function 

(equation (3.1)) were obtained: 

BtAet '                (3.1) 

being t’ the time in minutes, t the temperature in ºC, and, A and B correlation 

coefficients. Table 3.8 shows the values of the A and B parameters. From these 

fits the maximum time at which an IL could be used in reliable conditions can be 

estimated, taking into account that, depending on intended application, different 

appropriate degrees of degradation and time periods should be chosen. 
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Table 3.8. Parameters A and B for the equation (3.1) for the selected compounds. 
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Table 3.9. Estimated temperatures (in ºC) corresponding to the loss of 1 % during 10 h (t0.01/10h) 

according to Wooster et al. 75, and to the loss of 1 %, 5 % and 10 % in 10 h (t´0.01/10h , t´0.05/10h  and 

t´0.10/10h) obtained from isothermal scans. 

IL t0.01/10h t´0.01/10h t´0.05/10h t´0.10/10h 

 Dynamic study Isothermal study 

[C4C1Pyrr][NTf2]  261 --- 268 284 

[C4C1Pyrr][OTf]  266 249 282 296 

[C4C1Pyrr][(C2F5)3PF3]  242 207 237 247 

[C4C1C1Im][NTf2]  252 231 257 266 

[C4C1C1Im][OTf]  274 225 276 284 

[C4C1C1Im][(C2F5)3PF3]  231 224 244 258 

[C2C1Im][BETI] 213 172 213 235 

[C2C1Im][OTf] 258 245 276 291 

[C2py][C1SO3] 183 178 201 207 

[C2py][NTf2] 250 218 258 272 

[C2py][OTf] 243 226 253 263 

[Chol][NTf2] 253 240 265 276 

[C1OC2C1Pyrr][NTf2] 258 201 223 252 

[C1OC2C1Pyrr][(C2F5)3PF3] 180 143 184 219 

[P6,6,6,14][(C2F5)3PF3] 196 157 196 213 

DiPEC7 195 112 117 121 

Krytox GPL 105 125 60 144 172 

 

As it can be observed in Table 3.9, the values obtained for t0.01/10h, , 

calculated from the dynamic scans and using equation (3.2), are significantly 

lower than the onset temperatures and these values are higher, in all the cases, 

than the corresponding to t’0.01/10h obtained from isothermal scans. Better 

agreement was obtained between the predicted t0.01/10h values using Wooster et 
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Table 3.10. Pre-exponential coefficients, A, and activation energies, E, for the selected ILs 

obtained from the Arrhenius equation (2.5). 

IL E / kJ · mol-1 A / min-1 

[C4C1Pyrr][NTf2]  147 1.56   1012 

[C4C1Pyrr][OTf]  187 3.78   107 

[C4C1Pyrr][(C2F5)3PF3]  153 1.05   1016 

[C4C1C1Im][NTf2]  129 1.29   1010 

[C4C1C1Im][OTf]  148 1.10   1012 

[C4C1C1Im][(C2F5)3PF3]  139 9.36   1011 

[C2C1Im][BETI]  109 2.42   109 

[C2C1Im][OTf]  161 1.58   1013 

[C2py][C1SO3]  142 4.91   1013 

[C2py][NTf2]  143 9.37   1011 

[C2py][OTf]  185 2.08   1016 

[Chol][NTf2]  169 2.43   1014 

[C1OC2C1Pyrr][NTf2] 113 2.41  1010 

[C1OC2C1Pyrr][(C2F5)3PF3] 102 5.85  108 

[P6,6,6,14][(C2F5)3PF3] 104 1.10   1010 

DiPEC7 88 1.14   109 

Krytox GPL 105 65 3.58   106 

 

As Table 3.10 shows, activation energy values of ILs range between (102 

and 187) kJ · mol-1 for [C1OC2C1Pyrr][(C2F5)3PF3] and [C4C1Pyrr][OTf], 

respectively. Base lubricants presented the lowest values of this parameter. 

Although, according to our data, it can be concluded there is no relation among 

tonset and E values for selected fluids, the highest values of E correspond to ILs 

with anion [OTf]-, with tonset higher than 370 ºC, and in the same way, base 

lubricants, with the lowest tonset, present the lowest values of activation energy. Up 

to know, no references with values of this parameter for these ILs have been 

found, although these values are in concordance with those reported in the 

literature for other ILs 49,56,59,64. The activation energy of the imidazolium ILs is 

lower than the pyrrolidinium ILs with the same anion. Besides, the sequence 
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Table 3.11. Apparent activation energies, Eα, for [C4C1C1Im][NTf2] obtained for each conversion 

value by applying Friedman method 

Conversion (%) Eα (kJ · mol-1) 

13 123 

15 124 

17 126 

19 127 

20 128 

30 127 

40 124 

50 122 

60 119 

70 115 

Average 124  4 

The activation energies obtained for [C4C1C1Im][NTf2] through the three 

different methods are shown in Table 3.13.  

Table 3.12. Activation energies, E, for [C4C1C1Im][NTf2] from the different models for dynamic 

and isothermal methods. 

E / kJ · mol-1 
Dynamic 

Isothermal 
Friedman Kissinger 

[C4C1C1Im][NTf2] 124 ± 4 127 ± 11 129 ± 5   

As it can be seen, the activation energy values calculated from these 

different methods are quite similar. Up to now, no references with values of this 

parameter for this IL have been found by other authors. Taking into account that 

Friedman method obtains the energy value considering the shape of the TG curve 

(different conversion values) and Kissinger method only uses a point of the TG 

curve but both give similar energy values, it could be proposed that, unless for the 
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IL analysed, there is an unique process during the experiment or, in case of being 

more than one, there is a predominant process, which selects the final energy 

value. Moreover, the coincidence of isothermal results with dynamic ones, gives 

an optional and faster way to determine the degradation activation energy; 

however, isothermal studies will be always necessary to know with more accuracy 

the stability of an IL. 

3.3. Liquid range 

As it was described on the Introduction chapter, one of the objectives of 

this PhD Thesis is try to determine the lower and upper limits of the liquid range 

of the selected ILs and lubricant bases, with the help of DSC and TGA. 

According to DSC studies, the lower limit is given by tm, and the upper 

limit can be measured by thermogravimetric analysis, which can provide several 

characteristic temperatures depending on the kind of experiment (tonset , t´0.01/10h . 

t´0.05/10h and t´0.10/10h, from sections 3.2.2 and 3.2.3.1, respectively). Thus, in a first 

approximation, it could be calculated a liquid range temperature using dynamic 

experiments for all the compounds, i.e., with tonset and tm, as is shown in Table 

3.13. 
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Table 3.13. Liquid range temperature (tonset - tm) for the studied compounds 

Compound 
tonset tm  Liquid range 

temperature (oC) (oC) 

[C4C1C1Im][OTf]  436 2 434 

[C4C1C1Im][NTf2]  424 -2 426 

[C4C1Pyrr][NTf2]  417 -15 432 

[Chol][NTf2]  410 30 380 

[C2py][NTf2]  409 31 378 

[C2C1Im][OTf]  404 14 390 

[C4C1Pyrr][OTf]  399 3 396 

[C4C1Pyrr][B(CN)4]  387 19 368 

[C4C1Im][BF4] 373 -81 454 

[C2py][OTf]  371 32 339 

[C2C1Im][BETI]  368 15 353 

[P6,6,6,14][(C2F5)3PF3]  363 -64 427 

[C4C1C1Im][(C2F5)3PF3]  363 5 358 

[C4C1Pyrr][(C2F5)3PF3]  358 7 351 

[C1OC2C1Pyrr][(C2F5)3PF3]  352 -15 367 

[C4C1Pyrr][(C4F9)3PF3]  315 4 311 

[C2py][ C1SO3]  315 62 253 

[C1C1Im][ C1C1PO4]  274 -65 339 

[C2C1Im][C6SO4]  251 7 244 

[C1OC2C1Pyrr][NTf2]  411 --- 

Krytox GPL 105 298 -36 84 334 

Krytox GPL 104 235 -51 84 286 

Krytox GPL 103  200 -60 84 260 

But as it was exposed above, the tonset overrates decomposition 

temperature; the liquid range temperature was then corrected using t´0.10/10h and tm 

values, as it is shown in Table 3.14. 
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Table 3.14. Liquid range temperature (t´0.10/10h - tm) for the studied compounds 

Compound 
t´0.10/10h tm  Liquid range 

temperature (ºC) (ºC) 

[C4C1C1Im][OTf]  284 2 282 

[C4C1C1Im][NTf2]  252 -2 254 

[C4C1Pyrr][NTf2]  284 -15 299 

[Chol][NTf2]  276 30 246 

[C2py][NTf2]  250 31 219 

[C2C1Im][OTf]  291 14 277 

[C4C1Pyrr][OTf]  296 3 293 

[C2py][OTf]  263 32 231 

[C2C1Im][BETI]  235 15 220 

[P6,6,6,14][(C2F5)3PF3]  213 -64 277 

[C4C1C1Im][(C2F5)3PF3]  258 5 253 

[C4C1Pyrr][(C2F5)3PF3]  247 7 240 

[C1OC2C1Pyrr][(C2F5)3PF3]  219 -15 234 

[C2py][C1SO3]  207 62 145 

[C1OC2C1Pyrr][NTf2]  252 --- 

Krytox GPL 105 172 -36 84 208 

Thus, taking into account both of previous data, a comparison of these two 

different liquid range temperatures is presented in Figure 3. 22. It can be seen an 

overestimation on liquid range temperature for this ILs of, at least, 103 ºC (for 

[C4C1Pyrr][OTf]),  and in the case of the selected lubricant base 126 ºC, if onset 

temperature is taken to determine this parameter.  
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presence of the IL in the soil. Even more, the death of those microorganisms could 

improve the proliferation of the more resistant giving rise to a higher peak when 

comparing to the control curve. Nevertheless the differences between the curves 

of the two lowest doses and the corresponding control are small, only a broader 

time interval of growth can be observed in samples of soil treated with the IL. It 

could be even said that the lower doses of IL could strengthen the growth of the 

microorganisms present in the soil, this fact reflected in a higher peak height and 

in a broader time interval of growth when compare with control curve. Thus, it 

can be concluded that the addition of the selected IL in low concentrations does 

not induce toxic effects on the microbial growth of this soil.  

Table 3.15. Characteristic parameters for the soil under eucaliptus obtained by TAM experiences 

  Q (J) PM (μW) tD (min) tM (min) tF(min) k (x 10-3 min-1) 

Control 4.1 60 30 830 2590 1.2 

[C
4C

1I
m

][
B

F
4]

 10% 3.7 225 0 20 900 --- 

1% 2.8 62 444 1380 2100 1.9 

0.1% 4.1 67 50 985 2220 1.3 

0.01% 4.3 67 80 975 2290 1.3 

[C
3C

1I
m

][
N

T
f 2

] 10% 5.0 124 390 1040 2220 3.0 

1% 4.7 127 360 990 2400 3.6 

0.1% 5.0 70 50 1068 2340 1.6 

0.01% 4.3 63 45 1020 2100 1.3 
Maximun Standard error for Q: ±0.4 J, Standard error for k<1%, Standard error for the different times (tD, tM 
and tF) <10%  
 
Tables 3.15 and 3.16 present values of the heat released by microorganism (Q), 

thermal power at the maximum of the peak (PM), delay time of activity (tD), time 

for the maximum of thermal power (tM), time to finish the activity (tF) and 

constant of microbial growth rate (k) obtained for the soil under eucalyptus and 
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pine, respectively, after the addition of the four doses of both ILs, as well as the 

corresponding values to the control samples.  

Table 3.16. Characteristic parameters for the soil under pine obtained by TAM experiences 

  Q (J) PM (μW) tD (min) tM (min) tF(min) k (x 10-3 min-1) 

Control 4.0 53 150 1300 3120 1.6 

[C
4C

1I
m

][
B

F
4]

 10% 3.9 138 0 15 1200 --- 

1% 6.5 62 900 2460 4000 0.8 

0.1% 5.1 59 0 1045 3600 1.1 

0.01% 3.6 55 20 1250 2100 1.7 

[C
3C

1I
m

][
N

T
f 2

] 10% 1.4 24 600 1776 4065 1.8 

1% 1.1 25 600 1764 3180 1.9 

0.1% 5.0 62 90 1425 3420 1.2 

0.01% 6.1 68 90 1505 3600 1.2 
Maximun Standard error for Q: ±0.4 J, Standard error for k<1%, Standard error for the different times (tD, tM 

and tF) <10%  

Some small differences can be observed between the power-time curves of 

the control for soils under pine and under eucalyptus. Soil under pine shows a 

symmetric exothermic peak from the beginning of the experiment until elapsed 30 

hours, with the maximum at 15 hours, whereas the microbial activity of soil under 

eucalyptus corresponds to an asymmetric peak finished after 35 hours of 

experience with a maximum at 22 hours after start experiment.  

Important differences have been observed between both selected ILs and 

between the four studied doses. The addition of the highest dose of [C4C1Im][BF4] 

yields an intense and short peak that finish at approximately 10 hour after start 

experiment. The dose of 1% of this IL provokes a loss of the symmetry of the 

peak, no activity is observed during the first eight hours of the experiment, and the 

maximum of the peak appears at 25 hours approximately (i.e. a shift of 10 hours 
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a narrow and high pitch exothermic peak. Integration of these curves provides 

values of the total heat evolved during the process. 

Figure 3.33 shows a comparison between the effects of this IL on the soil 

microbial activity and the corresponding to a well-known salt, sodium chloride, in 

the same conditions (10%). From these curves it can be said that, qualitatively, the 

effects of the IL are similar to that detected with the sodium chloride; a slight 

retard on the growth of microbial population producing an increase on the peak 

time and also a higher value of the peak height. A difference between salt and IL 

curves can be observed at the beginning of the reaction; for ClNa, an immediate 

and continuous growth is observed whereas for the IL curve a slight retard on the 

initial growth step was detected. 

Studzinska and Buszewski 87 have proved that hazardous effects of 

imidazolium ILs are closely connected with organic matter content in soil. Soil 

with more organic carbon was observed to sorb IL cations more extensively than 

soil with little or no organic matter; hence, the more fertile the soil, the lower 

probability of hazardous effect of ILs to plants. 

Nonetheless the toxicity of ionic liquids is in itself a property which can be 

tuned and exploited for other beneficial uses, for example in developing novel 

antimicrobials.  

3.5.2. Germination response 

To provide more information to compare, the effects of these ILs on seed 

germination were also determined, being this parameter more sensitive to toxicity 

than the microbial activity.  

Significant differences have been observed for the germination 

percentages of the control for the selected species and significant differences have 

also been observed for the values corresponding to applied treatments of both ILs.   
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With regards the values of percentage of control germination (Fig. 3.34) 

three groups can be stablished, the first one, with the highest values (62%) 

corresponding to P. radiate, the second one corresponds to E. globulus (54%) and 

P. nigra (52%) and the last one formed by P. pinaster (33%), P. sylvestris (26%) 

and P. halepensis (18%) 

The two highest doses of both ILs provokes the total extinguishment of 

germination for all the species, except for P. radiate treated with the dose of 1% 

of [C3C1Im][NTf2]. The dose of 0.1% produces a reduction in this parameter in 

comparison with the obtained for the lowest dose and control.  IL [C4C1Im][BF4] 

presents stronger effect on germination than  [C3C1Im][NTf2] in P. radiata, 

whereas the opposite relation can be observed in E. globulus, P. halepensis and P. 

nigra. P. pinaster and P. sylvestris did not shown significant differences between 

both ILs for all the doses. 

Similar results have been found by Wang and co-workers 88 that conducted 

a study on the effect of 1-butyl-3- methylimidazolium tetrafluoroborate on wheat 

seedlings. The increase of this IL concentration in soil showed a significant 

negative effect both on germination and roots and shoot length of the wheat 

plants. At low concentrations, 1-butyl-3-methylimidazolium tetrafluoroborate did 

not inhibit, and even promoted wheat seedling growth. 
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already completed). Germination of P. pinaster and P. radiata started the 3th of 

the experiment and after the 24th day no germinations have been observed. 

Finally, germination of P. halepensis, shifts toward higher values of time, starting 

germinating on the 5th day and until the 33th day the germination is almost 

constant and scanty, with the exception of the treatment of 0.1% of 

[C3C1Im][NTf2] which only two seed (of a total of 125) germinates after 40 days 

of start experiment. 
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4. Conclusions 

This PhD Thesis was carried out under the framework of three research projects, 

two of them funded by Spanish Science and Innovation Ministry, LUBIONIC and 

RENELUBIL, focussed on the analysis and development of lubricants based on 

ILs, and an autonomic project, funded by Xunta de Galicia, motivated by the 

evaluation of ecotoxicity of ILs on soils and seeds. The main conclusions of this 

work are the following:  

 

� Phase transitions (melting, freezing, glass, etc.) of twelve ILs were determined 

using scanning differential calorimetry technique. All these ILs presented 

melting peaks, indicating that all of them showed a crystalline phase.  

� Melting temperature of selected ILs ranged from -81 ºC (obtained for 

[C4C1Im][BF4]) and 62 ºC (for [C2Py][C1SO3])  

� Substantial supercooling was observed for all the ILs that presented freezing 

peak, being these temperatures significantly lower than melting point, with tm-tf  

differences around (20 to 30) ºC, except for [C2Py][NTf2], [C2C1Im][OTf], 

[C4C1Pyrr][(C4F9)3PF3] and [C2Py][C1SO3] whose values were higher than 50 

ºC, indicating a very slow crystallization rate. 

� Determination of the thermal stability depends on experimental conditions 

(atmosphere, mass sample, heating rate and water content). Results of this 

work show that this property is higher in nitrogen than in air atmosphere, with 

differences up to 19 ºC in onset temperatures. Sample mass also affects the 

results, hence similar mass, with the aim to perform the best comparison, were 

chosen for all the next experiments. The most affecting parameter studied in 

this work is the heating rate; differences higher than 75 ºC in the values of 

characteristic temperature were measured when the heating rate changed from 

(1 to 20) ºC · min-1. Finally, the water content does not affect the thermal 

stability of the IL analysed; an increase in 20 times the water content does not 

change the values of characteristic temperatures. 
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� Anion influence on ILs thermal stability is higher than the cation influence. 

The most stable anions were [BF4]
-, [NTf2]

- and [OTf]- and the less stable was 

[C6SO4]
-. With regard to the cations, the trend obtained was [Imidazolium]+ > 

[Pirrolidinium]+ > [Piridinium]+ > [Choline]+. The most part of ILs have higher 

thermal stability than the selected lubricant bases. 

� No significant changes have been observed neither TGA curves nor onset 

temperatures after the 8 successive heating-cooling cycles between 50ºC and 

175ºC for the ILs [C2C1Im][OTf] and [C2Py][C1SO3].  

� Isothermal scans at temperatures lower than the corresponding onset 

temperatures showed important degradation. A thermal degradation is hardly 

appreciable in the TG scans during more than 5 hours at two temperatures: 

(200 and 260) ºC for the selected ILs, and (140 and 200) ºC for Krytox GPL 

105 and DiPEC7 respectively. 

� Maximum Operation Temperature (MOT) was calculated through isothermal 

scans for the selected ILs and lubricant bases at three different levels of 

degradation, namely (1, 5 and 10)% of initial mass loss during 10 hours. These 

values were compared with MOT values obtained by other authors using 

dynamic scans. These results showed that MOT obtained through a dynamic 

experiment overrate that obtained by isothermal scans, i.e., MOT value of 

[C4C1C1Im][OTf] obtained from dynamic scans was 274 ºC, meanwhile the 

corresponding to isothermal study was 225 ºC (mass loss of 1% during 10 h). 

� Activation energy of degradation process was calculated from isothermal 

studies for 15 ILs using Arrhenius equation. The obtained values range from 

187 kJ · mol-1 for [C4C1Pyrr][OTf] to 102 kJ · mol-1 for 

[C1OC2C1Pyrr][(C2F5)3PF3]. 

� Kinetic analysis using two dynamic methods (Kissinger and Friedman) was 

also performed for IL [C4C1C1Im][NTf 2]. Energy values obtained in both cases 

were similar to that determined in the isothermal study. (127 ±7 kJ · mol-1). 
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� The real liquid interval, calculated as the difference between temperature at 

which the 10% of degradation is reached in 10 hours and melting temperature, 

ranges from 208 ºC for Krytox GPL 105 and 282 ºC for IL [C4C1C1Im][OTf].  

� Visual observation experiments of the remaining degraded sample were done 

for some ILs and one of the lubricant bases. The main conclusion was, in case 

of the ILs, that a sample colour change is related to the level of degradation; 

the colour change was much more intense as higher was the degradation level. 

In case of the lubricant, there was no appreciable colour change, which 

suggests that the mass loss was possibly produced by evaporation. For the 

same purpose DSC-TGA and DSC experiments were carried out under air and 

nitrogen atmosphere for some of the above ILs and another lubricant base. The 

results showed similar observations to the visual interpretations. ILs can 

present different mechanism of degradation in nitrogen atmosphere, but 

decomposition is the most probably in oxidative atmosphere. Base lubricants 

also decompose in air atmosphere, but in nitrogen atmosphere the most 

probable mechanism is evaporation. 

� Taking into account that the most suitable IL for an application under no-

reactive atmosphere will be the IL that does not present degradation, because 

the fluid can be recovered without any modification, this methodology is very 

useful in order to discern which process suffers the sample under heating.  

� In order to analyse the environmental toxicity of two selected ILs, 

[C3C1Im][NTf 2], and [C4C1Im][BF4], the effect of the addition of different 

doses (0.01% to 10 %) on the microbial activity in two different soils was 

performed using isothermal microcalorimetry, observing different effect 

depending on the IL and on the doses considered. In case of [C3C1Im][NTf 2], 

the addition of this IL in low concentrations does not induce toxic effects on 

the microbial growth of the selected soils. In case of the [C4C1Im][BF4] the 

behaviour was different; the addition of the highest doses (10%) yields an 

intense and short peak at the beginning of the experiment, the dose of 1% 

provokes a shift of 10 hours with regard to control curve, the addition of the 
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two lowest doses does not generate important changes in microbial activity 

with regard to control.  

� Toxic effects on microbial population of these ILs were compared with that of 

NaCl observing similar behaviours for [C3C1Im][NTf 2] and NaCl. 

Nevertheless, the effects of [C4C1Im][BF4] are harmful that the salt.   

� Toxic effect on germination response on seeds of different species of pine and 

eucalyptus has also been performed for the same ILs than microbial growth 

study. Significant differences have been observed on germination percentages 

among the control and ILs treatments for the selected species. The two highest 

doses of both ILs provokes the total inhibition of germination for almost all the 

species (except for P. radiate treated with the dose of 1% of [C3C1Im][NTf 2]). 

The dose of 0.1% produces a reduction in this parameter in comparison with 

the obtained for the lowest dose and control. [C4C1Im][BF4] IL presents 

stronger effect on germination than [C3C1Im][NTf 2] in P. radiata, whereas no 

significant differences between both ILs for all the doses can be observed for  

E. globulus, P. halepensis and P. nigra. P. pinaster and P. sylvestris.  
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Figure 3.34. Germination percentages and standard 
deviation reached for every treatment and species. IL1: 
[C4C1Im][BF4], IL2: [C3C1Im][NTf 2], T1: 10%, T2: 1%, 
T3: 0.1%, T4: 0.01%. 

Figure 3.35. Germination percentages for all the selected 
species after the addition of the two highest doses of both 
ILs, IL1: [C4C1Im][BF4], IL2: [C3C1Im][NTf 2], and the salt 
NaCl 

Figure 3.36 Germination T50 and and standard deviation 
reached for every treatment and species. . IL1: 
[C4C1Im][BF4], IL2: [C3C1Im][NTf 2], T1: 10%, T2: 1%, 
T3: 0.1%, T4: 0.01%. 
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Resumen  

En las últimas décadas, el interés por la conservación del medioambiente, 

y en concreto el crecimiento de los problemas de contaminación y degradación del 

medio, ha originado la necesidad y por ende la inquietud de encontrar nuevos 

fluidos para su uso como disolventes, lubricantes y fluidos de trabajo más 

respetuosos con el medioambiente, tratando de evitar los problemas de toxicidad, 

inflamabilidad y en algunos casos, alta volatilidad de los compuestos actuales. 

Además, la situación actual de la economía mundial requiere la búsqueda de 

energías alternativas frente a las fuentes convencionales y la optimización de las 

tecnologías actuales para obtener un mayor rendimiento intentando minimizar al 

máximo su impacto medioambiental. 

Los Líquidos Iónicos (LIs) son compuestos que se encuentran en estado 

líquido a inferiores a 100 ºC. En 1914, se describió el primer Líquido Iónico, el 

[C2NH3][NO3], pero no fue hasta la década de los 70 cuando se sintetizó el 

primero. Varios autores trataron de desarrollar un electrolito para construir 

baterías más eficaces que pudieran emplearse en la construcción de ojivas 

nucleares y sondas espaciales. Las sales fundidas que emplearon eran líquidas a 

temperaturas que dañaban el material que se encontraba alrededor. Por este 

motivo, una pequeña comunidad de investigadores comenzó a buscar sales que 

permanecieran en estado líquido a temperaturas más bajas.  

Durante el último decenio los LIs han suscitado un gran interés tanto en el 

mundo académico como entre los más diversos sectores tecnológicos e 

industriales, debido a la infinidad de aplicaciones en la que pueden ser usados. 

Estos compuestos poseen características físico-químicas muy atractivas, tales 

como alta estabilidad térmica y química, baja presión de vapor, alta densidad, baja 

viscosidad, amplio potencial electroquímico… Debido a estas propiedades pueden 

ser usados en diversas aplicaciones industriales; ingeniería de materiales, en el 

sector energético (como por ejemplo electrolitos para células solares, pilas de 

combustible, fluidos de transferencia de calor, lubricantes o aditivos de 
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lubricantes), en la industria farmacéutica y como alternativa “verde” para 

evitar/reducir la producción de sustancias peligrosas para el medioambiente. La 

enorme cantidad de aniones y cationes que podrían combinarse para formar un LI, 

y el hecho de que la elección de los iones (la longitud de la cadena alquílica, el 

grupo funcional presente en el compuesto; éter, hidroxilo, ciano…, la presencia de 

grupos aromáticos) determina las propiedades físico-químicas del compuesto 

final, justifican la potencialidad de estos compuestos. Los cationes más habituales 

son los imidazolios, piridinios y tetraalquilfosfonios, pirrolidinios, y entre los 

aniones más comunes suelen estar los halogenuros, sulfatos, triflatos e imidas.  

Los líquidos iónicos suelen denominarse “fluidos verdes” debido a que no 

son volátiles, en consecuencia, al utilizarse para sustituir a los solventes orgánicos 

tradicionales, de elevada volatilidad y por tanto peligrosos contaminantes 

atmosféricos, ha hecho que, de manera casi generalizada, se les considere inocuos 

para el medio ambiente, habiendo sido incluso calificados como no tóxicos, 

aunque en realidad su (eco)toxicidad nunca ha sido estudiada en profundidad, y 

cada vez está siendo más cuestionada. Por otro lado, hay que tener en cuenta que 

el problema de la contaminación no se reduce a la atmósfera, ya que los LIs 

solubles en agua pueden llegar fácilmente, a través de las aguas residuales, a los 

cursos de agua superficiales, a las aguas subterráneas y a los ambientes acuáticos 

en general. Hasta ahora la toxicidad de los LIs se ha investigado casi 

exclusivamente in vitro, habiéndose evaluado mediante ensayos con algunas 

enzimas, diferentes tipos de células y algunos organismos tales como la lombriz 

de tierra, el pez cebra (Danio rerio Hamiltomn-Buchanan), la dafnia (Daphnia 

magna Straus) o ensayos de inhibición del crecimiento de algas. En estos estudios 

se ha puesto de manifiesto que la toxicidad de los LIs puede variar mucho entre 

organismos y depende de la estructura del LI. De todas formas, hay que destacar 

que, hasta la fecha, en los estudios realizados hay un olvido generalizado de los 

ecosistemas terrestres, ya que hasta el momento los trabajos en los que se 

investiga el efecto tóxico de los LIs tanto para el suelo como para la vegetación 
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son verdaderamente escasos. Este olvido resulta sorprendente si se tiene en cuenta 

que una vez el uso industrial de los LIs sea habitual, es más que probable que se 

produzcan derrames accidentales de los líquidos, bien sea de aquellos 

almacenados o bien durante las operaciones de transporte y manipulación de los 

mismos. Obviamente, como consecuencia de dichos derrames los LIs llegarán en 

primer lugar al suelo, lo que hace necesario investigar su posible toxicidad para 

éste.  

Antes de considerar un nuevo fluido/sustancia para una aplicación 

industrial específica, es necesario un amplio conocimiento de sus propiedades 

físicas y químicas. Algunas de las propiedades termofísicas más estudiadas son: la 

densidad (cantidad de masa en un determinado volumen de una sustancia), la 

viscosidad (resistencia interna al flujo de un fluido), la conductividad eléctrica 

(capacidad de un material o sustancia para conducir corriente eléctrica), la tensión 

superficial (cantidad de energía necesaria para aumentar la superficie de un fluido 

por unidad de área), la solubilidad (capacidad de una sustancia o un cuerpo para 

disolverse al mezclarse con un líquido), la estabilidad química (estabilidad 

termodinámica de un sistema químico), la ventana electroquímica (rango de 

voltaje eléctrico dentro del cual la sustancia no se oxida ni se reduce), la 

estabilidad térmica (estabilidad de una sustancia cuando es sometida a altas 

temperaturas), y la química “verde” (o química sostenible, que consiste en una 

filosofía química dirigida hacia el diseño de productos y procesos químicos que 

implique la reducción o eliminación de productos químicos).  

El trabajo desarrollado en esta Tesis, está enfocado al estudio de líquidos 

iónicos para su posible uso como lubricantes o como absorbentes en bombas de 

calor y se ha llevado a cabo en el Laboratorio de Propiedades Termofísicas de 

Fluidos y Biomateriales de la Facultad de Física de la Universidad de Santiago de 

Compostela. Este trabajo está  marcado en 2 proyectos del Plan Nacional de 

investigación, “Influencia de la Estructura Molecular en las Propiedades 

Termofísicas y Tribológicas de Líquidos Iónicos en amplios rangos de presión 
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para su uso en Lubricación” (LUBIONIC) y “Nuevos lubricantes 

nanoestructurados basados en líquidos iónicos para energías renovables” 

(RENELUBIL), y un proyecto autonómico “Efectos dos líquidos iónicos sobre o 

solo e as comunidades vexetais. Aplicación a parques eólicos e solares” 

(LISVASPES). Además parte de este trabajo corresponde a colaboraciones con 

otros grupos de investigación del Sistema Universitario Gallego que conforman la 

Red Gallega de Líquidos Iónicos (REGALIs), financiada por la Xunta de Galicia 

desde el año 2012. Parte de los resultados de los estudios se han publicado en tres 

trabajos en la revista Journal Chemical Thermodynamics, y el resto se publicarán 

en dos artículos más, uno más se enviará a esta misma revista y otro al Journal of 

Hazardous Materials. 

Los sistemas de refrigeración por absorción, comúnmente conocidos como 

bombas de calor, son dispositivos que funcionan cíclicamente y usan un par de 

trabajo, refrigerante-absorbente. Hasta hace relativamente poco se utilizaban 

como refrigerantes los compuestos clorofluorocarbonados (CFCs), pero cuando 

estos compuestos llegan al nivel estratosférico pierden su estabilidad química y 

reaccionan eficazmente con el ozono, consumiéndolo y contribuyendo a la 

destrucción de la capa de ozono y al calentamiento global del planeta, como es 

bien sabido. Por ello, fueron progresivamente sustituidos por los pares H2O/LiBr 

y NH3/H2O. Sin embargo, estos pares de trabajo presentan también problemas 

importantes, como la corrosión, la cristalización y la disminución de la solubilidad 

de los fluidos a bajas temperaturas. La búsqueda de nuevos tipos de fluidos de 

trabajo que permita una mejora en la eficiencia energética ha situado a las mezclas 

de líquidos iónicos (absorbente) con NH3, CO2, alcohol o H2O (refrigerantes) 

como una alternativa a las mezclas anteriores. Y en este ámbito es también crucial 

conocer el intervalo de temperaturas de rango líquido para elegir aquellos que 

eviten los problemas de los actuales pares de trabajo. 

Por otro lado, entre las propiedades fundamentales que permitirían 

establecer que un LI es un buen candidato para ser usado como lubricante, están la 



Appendix 
 

151 

 

densidad y viscosidad a distintas temperaturas y presiones, además de los 

coeficientes de fricción y desgaste entre los materiales en los que vaya a ser 

aplicado este lubricante. Un lubricante eficiente debe mantener sus propiedades en 

todo el rango de temperaturas en el que puede ser usado, sin que se detecten 

problemas de cristalización a temperaturas bajas ni de degradación a temperaturas 

altas. Algunas de estas propiedades, como densidad, viscosidad, coeficiente de 

fricción y desgaste ya han sido ampliamente estudiadas en otras Tesis Doctorales 

recientes del grupo de investigación. Esta Tesis completa la base de datos con el 

cálculo del intervalo de temperaturas de uso de una amplia colección de LIs. El 

trabajo aquí presentado se centra en la aplicabilidad de técnicas de calorimetría y 

análisis térmico en el estudio de los LIs para su potencial uso en las dos 

aplicaciones ya indicadas. La versatilidad de estas técnicas permitirá analizar 

aspectos tan diferentes como las temperaturas de fusión y cristalización, los 

mecanismos de degradación y la toxicidad medioambiental de los LIs.  

En los últimos años el análisis térmico, como única técnica o combinada 

con otras, ha ganado aceptación en el estudio de las propiedades de la materia 

orgánica del suelo, sus fracciones o el efecto que produce en él una perturbación 

como pueden ser un incendio o el cambio de uso. Por otro lado, la 

microcalorimetría isoterma ultraestable (TAM), permite la determinación del 

calor asociado a la actividad metabólica de los microorganismos del suelo después 

de la adición de un nutriente (glucosa, por ejemplo). Usando esta técnica, otro de 

los temas abordados en el presente trabajo es la toxicidad de los LIs en el suelo. 

Los resultados se compararán con la inhibición sufrida en la germinación de 

semillas de especies autóctonas como consecuencia de la adición de los mismos 

líquidos iónicos.  

Para el desarrollo de la parte experimental, la compañía Merck ha donado 

algunos de los LIs estudiados. Los LIs citados son los siguientes: 

[C4C1C1Im][(C2F5)3PF3], [C4C1C1Im][NTf 2], [C4C1C1Im][OTf],  

[C1C1Im][C1C1PO4], [C2C1Im][C6SO4], [C4C1Pyrr][(C2F5)3PF3], 
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[C4C1Pyrr][NTf2], [C4C1Pyrr][OTf], [C4C1Pyrr][B(CN)4], [C4C1Pyrr][(C4F9)3PF3], 

[C1OC2C1Pyrr][NTf2], [C1OC2C1Pyrr][(C2F5)3PF3] y [P6,6,6,14][(C2F5)3PF3]. Por 

otra parte, los líquidos iónicos [C2Py][NTf2], [Chol][NTf2], [C2C1Im][BETI],  

[C2C1Im][OTf],  [C2Py][C1SO3] y [C2Py][OTf] han sido suministrados por la 

compañía IoLiTec, y los LIs [C4C1Im][BF4] y [C3C1Im][NTf 2] fueron adquiridos 

a Fluka y Sigma Aldrich, respectivamente. Para comparar propiedades se 

estudiaron  cinco lubricantes comerciales, PAG2 y DiPEC7 fueron donados por 

Croda-Uniquema, y tres Krytox GPL por Brugarolas. A la hora de seleccionar 

estos 21 LIs, se han elegido éstos por tener una estructura similar a otros LIs que, 

en base a datos presentes en la bibliografía, cumplían una serie de características 

interesantes, como ser líquidos a temperatura ambiente, presentar una alta 

hidrofobicidad y, en general, una buena potencialidad para su uso como 

lubricantes.  

Para la caracterización termofísica se realizaron ensayos calorimétricos y 

de análisis térmico usando dos conocidas técnicas experimentales, la calorimetría 

diferencial de barrido (DSC) y la termogravimetría (TGA). La calorimetría 

diferencial de barrido (Differential Scanning Calorimetry, DSC) es una de las 

técnicas calorimétricas más utilizadas y permite detectar fenómenos endotérmicos 

y exotérmicos (transiciones de fase, adsorciones, reacciones químicas…) en la 

muestra cuando se realiza un calentamiento o enfriamiento controlado de la 

misma. Con esta técnica se han determinado las temperaturas de transición del 

estado sólido al líquido (fusión y transición vítrea, principalmente).  

El estudio por DSC se ha realizado sobre muestras de (3 – 5) mg, que 

fueron sometidas a cuatro rampas de temperatura, dos de enfriamiento y otras dos 

de calentamiento, entre (100 y − 85) ºC. Las primeras rampas de enfriamiento y 

de calentamiento no se han tenido en cuenta para las determinaciones, sólo para 

eliminar el efecto de la historia térmica. De las segundas rampas de enfriamiento y 

calentamiento se han determinado transiciones de fase para los siguientes LIs: 

[C2Py][NTf2], [Chol][NTf2], [C2Py][OTf], [C2C1Im][OTf], [C 2Py][C1SO3], 
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[C2C1Im][BETI],  [C4C1C1Im][(C2F5)3PF3], [C4C1Pyrr][(C2F5)3PF3], 

[C4C1Pyrr][(C4F9)3PF3], [C2C1Im][C6SO4], [C1OC2C1Pyrr][(C2F5)3PF3] y 

[P6,6,6,14][(C2F5)3PF3], y se ha recurrido a bibliografía para completar los datos de 

los restantes líquidos iónicos. Se ha obtenido una gran correlación entre los 

resultados de esta Tesis y los datos presentados por otros autores. Todos los 

líquidos estudiados presentaron picos de fusión y cristalización, aunque no se ha 

obtenido una tendencia clara para los valores de las temperaturas de transición de 

fase; en el caso particular de la temperatura de fusión, se podría, sin embargo, 

concluir que los cationes imidazolio muestran valores más bajos y los piridinio los 

más altos, para el mismo anión.  

Las medidas de estabilidad térmica se han llevado a cabo mediante una 

balanza termogravimétrica, que registra el cambio de masa de una muestra como 

función de la temperatura (estudio dinámico) o del tiempo (estudio isotermo). Esta 

técnica permite realizar experimentos en un amplio rango de temperaturas (desde 

ambiente hasta 850 ºC).  

En primer lugar, ante la falta de unanimidad de estudios previos a la hora 

de seleccionar unas condiciones experimentales óptimas y dada la influencia que 

éstas ejercen sobre los resultados, se ha realizado un análisis de la dependencia de 

las mismas sobre las temperaturas características de la degradación; así se ha visto 

el efecto de la atmósfera (aire o nitrógeno), la masa inicial, la velocidad de 

calentamiento y el contenido en agua en algunas de las muestras. A partir de las 

conclusiones obtenidas, se han establecido las siguientes condiciones 

experimentales para los posteriores análisis dinámicos: atmósfera de aire, masa 

inicial de (4 – 6) mg y velocidad de calentamiento de 10 ºC · min-1. Dichos 

estudios dinámicos han sido hechos sobre los 26 compuestos seleccionados (21 

LIs y 5 lubricantes). A partir de los resultados obtenidos, se concluye que hay una 

mayor influencia del anión que del catión sobre las temperaturas características de 

la estabilidad de los líquidos iónicos, pudiendo establecerse la siguiente secuencia, 

para un catión común dado: [NTf2]
- 
≥ [OTf] - > [B(CN)4]

- > [BETI]- > 
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[(C2F5)3PF3]
- > [(C4F9)3PF3]

- > [C1SO3]
- > [C1C1PO4]

- > [C6SO4]
-. En general los 

líquidos iónicos presentaron mejor estabilidad, en resultados dinámicos, que los 

lubricantes. Una vez obtenida la temperatura onset (tonset), y utilizando la 

temperatura de fusión calculada mediante el DSC, se ha determinado el rango 

líquido para los compuestos analizados, obteniéndose un valor máximo de 434 ºC 

correspondiente al LI [C4C1C1Im][OTf] y un valor mínimo 244 ºC en el caso del 

[C2C1Im][C6SO4], mientras que para los lubricantes, estos rangos han sido 

prácticamente en todos los casos inferiores que los de los LIs, siendo (334 y 260) 

ºC los valores extremos asociados al Krytox GPL 105 y al Krytox GPL 103, 

respectivamente. Mediante esta técnica también se han hecho estudios sobre el 

envejecimiento de los LIs cuando éstos son sometidos a reiterados ciclos de calor. 

El principal resultado de este estudio ha sido que no hay diferencias significativas 

en cuanto a la estabilidad térmica de esos LIs antes y después de ser sometidos a 

dichos ciclos. 

Se comprobó que los estudios dinámicos de estabilidad sobreestiman la 

temperatura de uso de los fluidos, ya que se observa degradación completa de 

todos ellos a temperaturas ligeramente inferiores a la temperatura onset. Por ello, 

para conocer la estabilidad térmica a largo plazo, se realizaron estudios 

termogravimétricos isotermos, que se han llevado a cabo únicamente en atmósfera 

oxidativa (aire); las temperaturas de estos ensayos han sido elegidas a partir de la 

temperatura onset determinada en el ensayo dinámico, usando el criterio 

siguiente: la temperatura más alta para los ensayos isotermos se fijó al menos 40 

ºC por debajo de la temperatura onset y, a partir de ésa, se fueron realizando 

ensayos isotérmicos a temperaturas 20 ºC por debajo de la anterior. Este análisis 

se ha hecho sobre 15 líquidos iónicos: [C4C1C1Im][(C2F5)3PF3], 

[C4C1C1Im][NTf 2], [C4C1C1Im][OTf],  [C4C1Pyrr][(C2F5)3PF3], [C4C1Pyrr][NTf2], 

[C4C1Pyrr][OTf], [C1OC2C1Pyrr][NTf2], [C1OC2C1Pyrr][(C2F5)3PF3], 

[P6,6,6,14][(C2F5)3PF3], [C2Py][NTf2], [Chol][NTf2], [C2C1Im][BETI],  

[C2C1Im][OTf],  [C2Py][C1SO3] y [C2Py][OTf], y dos bases lubricantes DiPEC7 y 
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Krytox GPL 105. Los resultados obtenidos ratificaron la observación previa; por 

ejemplo, en el caso del [C4C1C1Im][OTf], que tiene una temperatura onset de 436 

ºC y, sin embargo, en los estudios isotermos, a 400 ºC, en sólo 50 minutos de 

experimento pierde cerca de un 90% de su masa inicial. Así, gracias a estos 

estudios isotermos, se ha podido determinar un valor más adecuado para la 

temperatura máxima de operación de cada LI y compararla con la obtenida por 

otros métodos encontrados en la bibliografía. 

También se han realizado estudios sobre la cinética del proceso que tiene 

lugar durante la pérdida de masa en un ensayo termogravimétrico, empleando los 

datos de los ensayos isotermos de los LIs anteriormente mencionados. Se han 

obtenido valores para las energías de activación que oscilaron entre los 187 kJ · 

mol-1 para el [C4C1Pyrr][OTf] y los 102 kJ · mol-1 para el 

[C1OC2C1Pyrr][(C2F5)3PF3]. Adicionalmente, se han hecho estudios dinámicos 

para el [C4C1C1Im][NTf 2] empleando dos métodos cinéticos diferentes (Kissinger 

y Friedman), con el fin de realizar una comparación entre los resultados obtenidos 

con ambos métodos y con el estudio isotermo. Los valores de las energías de 

activación determinadas aplicando estos tres métodos fueron similares (127±7 kJ · 

mol-1) 

Como ya se ha indicado, uno de los principales objetivos de esta Tesis 

Doctoral es establecer el rango líquido de temperatura de los compuestos 

seleccionados. Dicho intervalo de temperatura puede ser definido como la 

diferencia entre la temperatura de fusión y la de degradación. Dada la ambigüedad 

a la hora de definir de manera adecuada la temperatura máxima de estabilidad, la 

estimación previa del rango líquido de temperatura considerando como 

temperatura de degradación la tonset se ha corregido con la temperatura a la que se 

pierde un 10% de LI en 10 horas (t´0.10/10h), determinada mediante el estudio 

isotermo, y que es uno de los parámetros más usados en la bibliografía para 

definir la estabilidad térmica a largo plazo de los LIs. Los nuevos valores de rango 

líquido de temperatura obtenidos de esta forma oscilaron, en el caso de los LIs 
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estudiados, entre los 145 ºC para el [C2py][C1SO3] y los 299 ºC para el 

[C4C1Pyrr][NTf2], siendo de 208 ºC para el Krytox GPL 105. 

Complementariamente, se ha intentado discernir si durante la pérdida de 

masa registrada en los ensayos termogravimétricos, se producía evaporación o 

descomposición o ambas. Para ello se han llevado a cabo dos estudios: 

Comparación visual y análisis simultáneo DSC-TGA. En primer lugar se realizó 

una comparación del aspecto de muestras de 3 LIs y una base lubricante antes y 

después de degradar; y a continuación una nueva comparación de muestras de un 

LI sometido a una temperatura de calentamiento constante y distintos tiempo de 

exposición. Se analizó cualitativamente si las muestras presentaban cambios de 

color, se carbonizaban o simplemente se evaporaban. Mediante este método se 

pudo concluir que, en atmósfera de aire, predomina la degradación frente a la 

evaporación, para los 3 LIs seleccionados para este estudio.  

Por otro lado se compararon los picos DSC (endotérmicos y/o 

exotérmicos) asociados a la degradación (medida en TGA). Ambas señales fueron 

obtenidas simultáneamente, con DSC-TGA Mettler Toledo. Se concluyó que en 

atmósfera de aire se producía predominantemente descomposición, mientras que 

en Nitrógeno la pérdida de masa puede estar relacionada con procesos de 

evaporación, sobre todo en el caso de los LIs con anión [NTf2]
-,  resultados 

totalmente concordantes con la bibliografía. 

Finalmente, se estudió el efecto tóxico de dos de los LIs seleccionados, 

sobre la actividad microbiana de dos suelos y sobre germinación de semillas de 

especies autóctonas. Concretamente, se ha analizó la toxicidad de diferentes dosis 

(10, 1, 0.1 y 0.01%) de los LIs [C4C1Im][BF4] y [C3C1Im][NTf 2] sobre una 

muestra de 1 g de un suelo extraído bajo cultivos de pino y eucalipto por 

comparación con un control (0% de LI), mediante el registro del flujo de calor en 

un microcalorímetro isotermo (TAM). Se han observado fenómenos muy variados 

e interesantes; desde la muerte de los microorganismos presentes por un gran 

estrés en el caso de la dosis del 10% de [C4C1Im][BF4], así como un ligero retardo 
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en la actividad microbiana para el 1% de este mismo LI, hasta un incremento de la 

actividad microbiana para las dosis más bajas de [C3C1Im][NTf 2]. Se compararon 

los resultados obtenidos para los LIs con los correspondientes a los de una sal de 

uso común (NaCl al 10%), observándose que los comportamientos son similares 

para el caso de la sal y del [C3C1Im][NTf 2], aunque en el caso del NaCl se 

produce un ligero retardo en la actividad microbiana en comparación con la curva 

registrada para ese LI. 

Con respecto a la germinación, se observó una total inhibición para las dos 

dosis más altas de ambos LIs (10 y1)% de todas las especies estudiadas: Pinus 

radiata, Eucalyptus globulus, P. nigra, P. pinaster, P. sylvestris y P. halepensis. 
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Thermal stability is an essential property to select the most suitable compounds for applications as high-
temperature lubricants, thermal fluids and solvents for high-temperature organic reactions. Thermal sta-
bility of five imidazolium ionic liquids (ILs) was determined using a thermogravimetrical analyzer (TG).
The ILs were 1-butyl-2,3-dimethylimidazolium tris(pentafluoroethyl) trifluorophosphate, 1-butyl-2,3-
dimethylimidazolium bis(trifluoromethylsulfonyl) imide, 1-butyl-2,3-dimethylimidazolium trifluoro-
methanesulfonate, 1-ethyl-3-methylimidazolium ethylsulfate and 1,3-dimethylimidazolium dimethyl-
phosphate. Onset temperatures were determined from dynamic experiments for the five ILs at
scanning rate of 10 �C �min�1 under air atmosphere. Additionally, dynamic scans were carried out with
nitrogen gas for two 1-butyl-2,3-dimethylimidazolium ILs, finding that onset temperatures are 14 �C
higher than those obtained with air gas flow. The three 1-butyl-2,3-dimethylimidazolium ILs present
the highest onset temperatures under air atmosphere. For these last ILs, isothermal scans at lower tem-
peratures than the onset temperature, were performed in air gas flow, finding that the most stable is 1-
butyl-2,3-dimethylimidazolium trifluoromethanesulfonate. Finally, for these ILs, lifetimes were also
determined for several temperatures.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Increasing interest is well known in the use of ionic liquids (ILs)
in the energy sector, specifically in the area of renewable energy, as
electrolytes for solar cells, fuel cells, heat transfer fluids, lubricants
or lubricant additives of wind turbines [1].

We must mention that during the 1980s there were very few
patents for this class of salts; however, only in 2012 more than
3200 were registered. In 1914, Walden [2] described the first ionic
liquid, the ethyl ammonium nitrate but it was not until the 1970s
when the first ionic liquid was synthesized. Wilkes et al. [3] and his
collaborators tried to develop an electrolyte to build more efficient
batteries that could be used in the construction of nuclear war-
heads and space probes. The molten salts used were liquid at tem-
peratures damaging the surrounding material. So, a small
community of investigators began looking for salts that remain li-
quid at lower temperatures [3].

In a recent review, Bermúdez et al. [4] concluded that ILs are a
family of new high performance lubricants which may find com-
mercial and technological applications where other lubricants are
not suitable or fail to prevent friction, wear and surface damage
of materials, but some additional efforts are necessary for commer-
cial implementation.
The development of ILs for several of these applications requires
the knowledge of their thermophysical properties. Taking into ac-
count that in these and other potential uses as thermal fluids or
solvents, ILs can be subjected to high temperatures and long-time
exposures, their thermal stability is an essential property when
selecting the most suitable ones. Thermal stability of ILs is affected
by many parameters, e.g., the cation and anion type, structural
modifications of the cation (alkyl chain length, different function-
alities in the alkyl chain) and impurities (water, chlorides, etc.)
[5]. As is well known, the anion is the most relevant moiety in
the IL thermal stability. In a recent review, Siedlecka et al. [6] con-
cluded that imidazolium ILs are more stable than pyridinium,
phosphonium, ammonium, pyrrolidinium and pyperidinium ILs.

To date, onset decomposition temperature (tonset) of several ILs
has been determined using the scanning thermogravimetric analy-
sis (TGA) method. Nevertheless, in recent years, the definitions of
stability and of the maximum operation temperature for ionic liq-
uids (ILs) remain an open question [4,6–8]. Thus, in the previous
decade, but also among several authors nowadays, the thermal sta-
bilities of ILs were evaluated primarily using thermogravimetric
(TG) analysis at a single linear heating rate in inert atmosphere.
Most of the TG studies were performed with a heating rate of
10 �C �min�1, but some authors even use higher values as
15 �C �min�1 [9], 20 �C �min�1 [10–12] and others use lower rates
such as 5 �C �min�1 [13]. Due to the scanning nature of the exper-
iment, the decomposition temperatures obtained from these
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experiments, often overestimated the long term thermal stabilities
of the ILs. This fact indicates that the degradation of the ionic liquid
starts at lower temperatures than the onset values, as numerous
authors have pointed out during the last decade [5,7,8]. Neverthe-
less, this parameter can be used as a relative parameter of thermal
stability, but never as the top limit of temperature in a particular
application. Hence, fast TG analysis scans under a protective atmo-
sphere do not imply long-term thermal stability below these tem-
peratures. Meine et al. [14] found that the ILs 1-ethyl-3-
methylimidazolium chloride, [C2C1Im][Cl], and 1-butyl-3-methyl-
imidazolium chloride, [C4C1Im][Cl], presented degradation at 120
�C, although onset temperatures were 278 �C and 291 �C, respec-
tively. Nowadays it is known that the maximum operation temper-
ature of the ILs is much lower than the decomposition
temperatures [5,7,15]. Isothermal studies have shown that the
ILs exhibit appreciable decomposition at temperatures signifi-
cantly lower than those indicated by the peak or onset decomposi-
tion temperatures determined from scanning TG experiments
[5,15–17].

With the aim of characterizing the anion effect, in this work
the thermal stability of five ILs was analysed. These liquids were
three 1-butyl-2,3-dimethylimidazolium tris(pentafluoroethyl)
trifluorophosphate ([C4C1C1Im]+) ILs based in the anions trif-
luoromethyllsulfonyl imide ([NTf2]�), tris(pentafluoroethyl) tri-
fluorophosphate ([FAP]�), and trifluoromethanesulfonate ([OTf]�)
as well as 1-ethyl-3-methylimidazolium hexylsulfate [C2C1Im][C6-

SO4], and 1-ethyl-3-methylimidazolium dimethylphosphate [C1C1-

Im][DMP]. Dynamic TG studies on trialkylimidazolium ILs are very
scarce; only few studies [5,11,18–21] have been published for [C4-

C1C1Im][NTf2]. Thus, Fox et al. [5] studied the useful range of tem-
perature in the liquid phase of several ionic liquids, among them
five trialkylimidazolium ILs with different hydrocarbon chains
and anions. In their work, a dynamic thermogravimetric study of
the IL [C4C1C1Im][NTf2] was performed under N2 atmosphere,
obtaining a decomposition temperature at 5% mass fraction loss,
around 435 �C. We are not aware about other TG isothermal or
dynamical analysis of the ILs studied in this work that were chosen
in a research project aiming to study their potential use as lubri-
cants and hydraulic fluids. In addition, we should point out that al-
kyl sulfate-based ILs with an imidazolium-type cation can be
TABLE 1
Provenance and purity of the ionic liquids used in this work.a

Name Chemica
CAS nu

1-Butyl-2,3-dimethylimidazolium tris(pentafluoroethyl)
trifluorophosphate

[C4C1C1I
Not ava

1-Butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide [C4C1C1I
350493

1-Butyl-2,3-dimethylimidazolium trifluoromethanesulfonate [C4C1C1I
765910

1,3-Dimethylimidazolium dimethylphosphate [C1C1Im
654058

1-Ethyl-3-methylimidazolium hexylsulfate [C2C1Im
942916

a All ILs were supplied by Merck.
considered as some of the most promising ILs for application in
industrial processes because they can be easily synthesized in an
atom-efficient and halide-free way, at a reasonable cost. Promising
results were found for oil refining [22] and on reducing lignin mo-
lar mass [23] among other [24] applications. Imidazolium ILs with
[DMP]� anion have also been proposed to break up lignin and cel-
lulose [25], for extractive desulfurization [26] of gasoline and in
absorption refrigeration [27]. Viscosities and densities over a broad
range of temperature were recently reported for [C4C1C1Im][NTf2],
[C4C1C1Im][FAP] and [C2C1Im][C6SO4][28]. The viscosity-pressure
coefficients were also recently measured for [C4C1C1Im][NTf2]
and [C4C1C1Im][FAP][29].
2. Experimental

The chemical structure, molecular formula, CAS number, prove-
nance and purity of the five ionic liquids are listed in table 1. These
liquids were kindly provided by Merck KGaA. The specified mole
fraction purity of the samples is higher than 0.98. By chromatogra-
phy of ionic exchange, HPLC or electrophoresis it has been found
that the mole fraction purity of the five ILs is higher than 0.98.

A thermogravimetric analyser (TGA 7- Perkin Elmer), operating
in dynamic and isothermal modes under dry nitrogen and dry air
atmospheres, was used to perform thermogravimetric analysis. Li-
quid samples of (3–5) mg were placed in an open platinum pan.
Dynamic experiments were performed at temperatures from
(100 to 800) �C, with a heating rate of 10 �C �min�1 and a purge
gas flow of 20 cm3 �min�1. Using the thermal analysis software,
the onset temperature was calculated by the intersection of the
straight baseline along the temperature axis from a low tempera-
ture region where there is no weight loss, and a straight line cre-
ated through the inflection point (previously determined as the
minimum in the derivative of the mass loss curve, DTG) of the mass
versus temperature data. From these curves, the temperature at
the 10% of mass loss, t10%, mass loss at onset temperature, Wonset,
as well as the temperature of the minimum of the DTG peaks, t1st

and t2nd, were determined. Each analysis was repeated three times,
the standard deviation average values being lower than 2% in all
the cases.
l formula
mber

Chemical structure Mole fraction
purity

m][FAP]
ilable

>0.98

m][NTf2]
-08-2

>0.999

m][OTf]
-73-4

>0.98

][DMP]
-04-5

0.993

][C6SO4]
-86-1

>0.999



TABLE 2
Thermal results from the dynamic scans in N2 and in the air atmosphere.

IL Atmosphere tonset/oC t10%/oC Wonset/
%

t1st/oC t2nd/oC

[C4C1C1Im][FAP] N2 376 379 91 402 442
Air 363 364 88 395 413

[C4C1C1Im][NTf2] N2 436 408
435 [5] 414 [18] 75 478
430 [11]

Air 424 407 79 470 476
[C4C1C1Im][OTf] Air 436 424 84,1 479
[C2C1Im][C6SO4] Air 251 269 93.8 398
[C1C1Im][DMP] Air 274 262 87.2 303

N2 268 [33]

Standard uncertainties are u(t) = 2% and u(W) = 2%.
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On the other hand, isothermal TG analysis under air atmosphere
was used to determine the long-term thermal stability of ILs. Air
atmosphere was chosen because is more realistic to predict the
long term stabilities in real applications as lubrication systems or
thermal fluids. The highest temperature selected for isothermal
scans was approximately 40 �C lower than the onset temperature
and a 20 �C decreasing step was used for the selection of the other
temperatures in almost all of the cases.

3. Results and discussion

3.1. Atmosphere influence

It is well known that the experimental conditions, such as heat-
ing rate, sample pan materials, sample weight and atmosphere can
influence on the thermal analysis results. Thus, Ngo et al. [19]
found differences higher than 100 �C between the onset tempera-
tures of [C2C1Im][PF6] measured in aluminium (375 �C) and alu-
mina (481 �C) pans, whereas only a difference of 2 �C was found
for [C2C1Im][NTf2] under the same conditions. On the other hand,
for this last IL, Ngo et al. [19] obtained a value of 453 �C at
20 �C �min�1 whereas Noda et al. [20] found a value of 417 �C when
using a heating rate of 10 �C �min�1, both in nitrogen atmosphere,
i.e., an increase in more than 30 �C was found in the onset temper-
ature when using different heating rates. Fox et al. [30] found an
increase of 100 �C in the onset temperature of [C4C1im][BF4] when
the heating rate increases from 10 �C �min�1 to 20 �C �min�1. Sim-
ilar results have been reported by other authors like Awad et al.
[31], Kosmulski et al. [17], Hao et al. [32] and Amarasekara and
Owereh [10].

With the aim to define the most advisable analysis conditions of
ILs for lubrication applications, two ILs, [C4C1C1Im][NTf2] and [C4-

C1C1Im][FAP], were analysed in a dynamic mode from 75 �C to
800 �C at 10 �C �min�1 in both, air and nitrogen atmospheres. Fig-
ure 1 shows the comparison of TG and DTG curves in both atmo-
spheres for [C4C1C1Im][NTf2]. Table 2 shows tonset, t10%, tpeak, and
Wonset values obtained in air and in nitrogen atmospheres and cor-
responding data reported by other authors. In the literature there
are few studies corresponding to these ILs. These results show that
the ILs studied are slightly more stable in the nitrogen atmosphere.
Small differences in tonset, up to 14 �C, for N2 and air atmospheres
can be observed. Nevertheless, the mass loss at onset temperature
seems to be not dependent on the atmosphere; for each IL similar
values of Wonset were obtained in air and N2.

Since the objective of the study is the characterization of the
thermal stability of ILs, in order to estimate the maximum temper-
ature of operation as lubricants, and taking into account the above
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FIGURE 1. Comparison of TG (solid) and DTG (dashed) curves under N2 (h) and air
(s) for [C4C1C1Im][FAP].
results, further analyses were performed only in air atmosphere for
being this one the more restrictive.

3.2. Dynamic study

Figure 2 shows the TG and DTG curves, obtained under air
atmosphere for the five ILs. The most stable ILs, which are those
containing the cation [C4C1C1Im]+, showed greater mass losses (a
sharp decay is observed in their DTG curves, although they are
more stable because thermal degradation starts at higher temper-
atures). [C4C1C1Im][FAP] shows two resolved peaks, whereas the
degradation of [C4C1C1Im][NTf2] and [C4C1C1Im][OTf] exhibits only
one step. This fact suggests that the [FAP]� ILs could have different
mechanism of decomposition. [C1C1Im][DMP] and [C2C1Im][C6SO4]
need a broader temperature interval to complete the thermal deg-
radation and they also presented two resolved peaks in DTG
curves. Table 2 shows that the values obtained in this work for [C4-

C1C1Im][NTf2] in N2 agree very well with the onset temperatures
determined by Fox et al. [5] and Bazito et al. [11]. Additionally,
our datum of the t10%, 408 �C is slightly lower than the value re-
ported by Jin et al. [18]. Vitz et al. [33] obtained a similar value
to ours for the [C1C1Im][DMP] (sample purity of 80%) at
20 �C �min�1 under N2 atmosphere.

As mentioned above, the most used parameter to identify the
thermal stability is the onset temperature, which ranges for the
five ILs studied ILs from 251 �C to 436 �C, being the lowest value
for [C2C1Im][C6SO4] and the highest for [C4C1C1Im][OTf]. Taking
into account the values of the onset temperature showed in
table 2, thermal stability in air of the liquids decreases with the
following trend: [C4C1C1Im][OTf] > [C4C1C1Im][NTf2] > [C4C1C1Im]
[FAP] > [C1C1Im][DMP] > [C2C1Im][C6SO4]. We should remark that
the difference of the onset temperatures of the two first ILs is only
12 �C. It is well known that the thermal stability of the ILs is
strongly anion dependent [1,5,6,10,21,34,35]. Previous works
[21,34,35] suggest that the [NTf2]� anion confers the highest ther-
mal stability to the ILs, but some [OTf]� ILs have excellent values of
this property. Thus, Nakata et al. [36] found that the [C2C1

Imin][OTf] is the most stable of five dialkylimidazolium ILs with
[I]�, [BF4]�, [SCN]�, [C2SO4]� and [OTf]� anions. Bittner et al. [9]
have recently investigated several pyridinium ILs finding for 1-
butyl-3-methylpyridinium ILs the sequence [BF4]� > [NTf2]� >
[FAP]� > [OTf]�. Tokuda et al. [37] have found that the onset
temperature 1-butyl-3-methylimidazolium IL with [OTf]� anion
is 14 �C lower than those of the corresponding IL with [NTf2]�

anion. These different trends could be explained taking into ac-
count the influence of the cation.

3.3. Isothermal study

To make a more realistic description of the thermal stability of
the ILs, the three ILs studied in this work with the highest onset
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temperatures, [C4C1C1Im][OTf], [C4C1C1Im][NTf2] and [C4C1C1-

Im][FAP], were subjected to several isothermal experiments at dif-
ferent temperatures, as it was already indicated.

Figure 3 shows the TG curves of these three ILs, as a function of
time for different exposition temperatures. The main observation
is, as it was expected, a fast degradation at temperatures close to
tonset. Hardly appreciable thermal degradation is observed in the
ILs exposed more than 5 h at temperatures 200 �C lower than their
tonset values.

To compare the thermal stability, figure 4 shows the TG curves
of the three ILs selected at 300 �C. From this figure, it can be con-
cluded that the thermal stability decreases with the following se-
quence: [C4C1C1Im][OTf] > [C4C1C1Im][NTf2] > [C4C1C1Im][FAP].
This trend is the same as that of the onset temperatures.
3.4. Kinetics of isothermal decomposition

As can be seen in figure 3, the mass losses against time for the
three ILs present practically linear dependences during the first
part of the degradation, i.e., the degradation rate is constant at a gi-
ven temperature. Because of the decomposition rate of ionic liq-
uids depends in general on the mass and heat transfer and no on
chemical reactions, the kinetics of decomposition can be repre-
sented as a pseudo-zero-order expression [15,17,32,38].

da=dt0 ¼ k; ð1Þ

where k is the rate constant of pseudo-zero-order, and a is the de-
gree of conversion, which can be defined as a function of Wt, mass of
the sample at time t0 , and of Wi, the initial mass, by the following
expression:

a ¼ ðWi �WtÞ
Wi

: ð2Þ

The degradation rate can be represented in integral form, con-
sidering equation (1), as:

a ¼ kt0 þ C; ð3Þ

where t0 is time and C is another constant. So, representing for each
isothermal scan a versus time, we obtain the rate constant k from a
linear fitting of these experimental data.

The temperature dependence on k, is represented by the Arrhe-
nius equation:

k ¼ A exp
�Ea

RT

� �
; ð4Þ
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where Ea is the activation energy and A is the pre-exponential
coefficient. Thus, from a linear fit of ln k versus 1/T (figure 5), the
activation energy can be obtained. The activation energies and
pre-exponential coefficients obtained for the three ILs are shown
in table 3.

Up to now, no references with values of this parameter for these
ILs have been found. Somewhat lower Ea values were obtained by
F
Im
Hao et al. [32] for 1-allyl-3-methylimidazolium chloride and by
Kamavaran et al. [15] for [C1C4Im][Cl] and [C1C6Im][Cl].
3.5. Lifetime

Up to now, a clear criterion does not exist on the degradation
level allowed in the different applications, finding in literature a
wide range, from 1% in one year [7] to 10% in 10 h [39]. In this work
we have analysed two degradation levels, 5% and 10%, at different
temperatures in order to give information about how much time
the ILs takes to degrade and the maximum operation temperature.

From isothermal scans, the time that each ionic liquid takes to
decompose 5% and 10% percentage of mass (t’5% and t’10%) were
determined and presented in table 4. Figure 6 shows t’5% and t’10%

against temperature. A decreasing exponential function fits quite
well the experimental values as it also represented in this figure.
From these equations the maximum time at which an IL could be
used in good conditions can be estimated. Using the criterion of
Liang et al. [39], 10% loss in 10h, the maximum temperatures of
operation were obtained from the above equations, being 258 �C,
266 �C and 284 �C for [C4C1C1Im][OTf], [C4C1C1Im][NTf2] and [C4C1-

C1Im][FAP], respectively. Taking into account that in all of these
calculations an important loss of accuracy can appear, 10% approx-



TABLE 3
Pre-exponential coefficients and activation energies of the studied ILs obtained from
Arrhenius equation (4).

IL Ea/(kJ �mol�1) A/min�1

[C4C1C1Im][FAP] 139 0.979
[C4C1C1Im][NTf2] 129 0.995
[C4C1C1Im][OTf] 148 0.987

TABLE 4
Thermal degradation times (in min) for degrees of decomposition of 5% and 10%
determined/calculated from the isothermal scans to the three selected ILs.

Ionic liquid t/�C t05%/min t010%/min

[C4C1C1Im][FAP] 200 10760a 20760a

240 1507a 3022a

280 25.6 78.5
300 20.6 50.4
310 12.5 30.3
320 4.2 9.2

[C4C1C1Im][NTf2] 240 2409a 4681a

280 130.9 254a

300 33.1 65.9
320 19.1 34.4
340 10.3 19.9
360 3.2 8

[C4C1C1Im][OTf] 260 1674a 3460
300 94.6 226a

320 56.1 123.1
340 12.3 23.6
360 7.9 15.3
400 2.4 4.6

a Extrapolated values.
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imately, temperatures of 250 �C should not be overcome in any
case to asses this criterion.

4. Conclusions

Onset temperatures for five ILs have been determined by dy-
namic thermogravimetric analysis, under N2 and air atmospheres.
According to the results, [C4C1C1Im][OTf] is the most stable and
[C2C1Im][C6SO4] the least stable. Owing to the fact that air atmo-
sphere is more restrictive than N2 (differences of 10 �C in tonset

were obtained), the isothermal study was performed in air. Accord-
ing to isothermal scans, thermal stability for the five ILs decreases
with the following sequence: [C4C1C1Im][OTf] > [C4C1C1Im][NTf2] >
[C4C1C1Im][FAP] > [C1C1Im][DMP] > [C2C1Im][C6SO4]. Activation
energies of the studied ILs, obtained from the Arrhenius equation,
have values between (129 and 148) kJ �mol�1. An equation has
been determined to estimate the useful time for the three ILs
studied.

Finally, it is interesting to emphasize the high reliability of the
information provided by isothermal studies; as an example, the
IL [C4C1C1im][NTf2], whose tonset is 424 �C, shows a degradation
higher than 80% after being 100 min at 360 �C. Using the criterion
of 10% loss in 10 h for the present isothermal studies, the maxi-
mum temperature of operation for this IL should not exceed
250 �C.
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Thermal stability of five ionic liquids (ILs) was determined by thermogravimetric analysis (TGA). The ILs
were selected with the common cation 1-butyl-1-methylpyrrolidinium and with the anions bis(trifluoro-
methylsulfonyl)imide, tetracyanoborate, trifluoromethanesulfonate, tris(pentafluoroethyl)trifluorophos-
phate and trifluorophosphate. Onset temperatures, tonset, were determined from dynamic experiments
under air atmosphere and scanning rate of 10 �C �min�1. Additionally isothermal scans at lower temper-
atures than the tonset values were performed for three of the selected ILs. The results showed that the ILs
with the anions bis(trifluoromethylsulfonyl)imide and trifluoromethanesulfonate present the highest
thermal stability. Although the influence of the cation on this property is lower than that of the anion,
these pyrrolidinium based ILs showed less thermal stabilities than those of the corresponding imidazo-
lium based ILs with the same anions published previously. Finally, the maximum operation temperature
was estimated for three possible degradations levels.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Perfluoropolyethers are widely used as lubricants in commer-
cial applications for extreme operating conditions due to their high
temperature stability and extremely low vapour pressure. How-
ever, these oils are not appropriate for some nanotechnology appli-
cations because of their low electrical conductivity. Ionic liquids
(ILs) are being explored as lubricants for several device applica-
tions [1] because of their high electrical conductivity and good
thermal conductivity. Current high-temperature aircraft lubricants
can operate only up to a temperature of 150 �C, whereas new aero-
space technologies demand lubricants that can function between
(�40 and 330) �C [2]. Zeng et al. [2] among others [3,4] have stud-
ied the performance for several ionic liquids as high temperature
lubricants. Besides, lubricants must be constantly improved to
reduce carbon emissions and to save energy [5]. As this regard,
new studies on ILs aim to its future use in renewable energy,
new transfer-fluids, and energy storage [6–8]. In these applications
and in many others is important to determine the thermal behav-
iour of ILs and the temperatures which allow for a correct and safe
application.

In most of the screening studies on the properties of ILs to select
the best ones for any application, dynamic thermogravimetric
analyses (TGA) are performed. In this type of evaluation the loss
weight of the IL sample is measured during a temperature ramp
with a heating rate usually of 10 �C �min�1. This type of assays per-
mits to determine the onset temperatures, tonset of ILs, which can
be used to roughly compare the relative thermal stability, but
the maximum operation temperature for ILs must be calculated
more carefully due to the influence of the experimental conditions
[9–13]. Several studies show that the maximum operating temper-
atures are considerably lower than the tonset value [14,15]. Thus, in
our previous work we have found for 1-butyl-2,3-dimethylimi-
dazolium bis(trifluoromethylsulfonyl)imide, a tonset value of
424 �C but also a thermal degradation higher than 80% after keep
it 100 min at 360 �C. Similar results were found for several research
groups that have already applied this technique [16,17]. To over-
come this problem and to obtain more profound information on
the stability at temperatures below the tonset values, it is necessary
to perform ‘long-term’ isothermal TGA measurements for
prolonged times (e.g. 0.5, 15 or 20 h) [9,10,12,14,18–20]. These
thermal analyses provides to rates of decomposition at a given
temperature instead of critical or onset temperatures.

Thermal stability of an IL mainly depends on the anion,
although the effect of the cation on the stability is less important
[12]. This property increases with the anion size and decreases
with the IL hydrophilicity [21]. In a previous work [9] we have
studied the thermal stability of five imidazolium ILs with different
anions through dynamic and isothermal TG scans. In the present

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jct.2014.03.030&domain=pdf
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work, the aim is to known both, anion and cation effects on the
thermal stability of the ILs. Thus, to study in depth the anion effect,
the ILs selected here present the same cation 1-butyl-1-meth-
ylpyrrolidinium ([C4C1Pyrr]+) with five different anions, (trif-
luoromethyllsulfonyl)imide ([NTf2]�), tris(pentafluoroethyl)
trifluorophosphate ([FAP]�), trifluoromethanesulfonate ([OTf]�),
tetracyanoborate ([B(CN)4]�) and tris(nonafluorobutyl)trifluoro-
phosphate ([C4F9)3PF3]). Besides, three of these ILs have the same
anions ([NTf2]�, [FAP]� and ([OTf]�) than the imidazolium based
ILs studied in the previous work. This selection permits to analyse
also the effect of the cation on the thermal stability.

Most of the studies on ILs correspond to imidazolium-based ILs.
The recent interest in pyrrolidinium-based ILs is mainly due to
their wider electrochemical windows and higher electrochemical
stability when compared to imidazolium-based ILs [22–26]. Gaciño
et al. [27] have measured the densities and viscosities at atmo-
spheric pressure in a broad density range of [C4C1Pyrr][NTf2],
[C4C1Pyrr][OTf] and [C4C1Pyrr][FAP]. In addition, for the first IL,
Regueira et al. [28] and Gaciño et al. [29] reported the densities
and the viscosities at high pressures. [C4C1Pyrr][B(CN)4] is an
halogen-free IL, whose densities, viscosities, surface tensions at
atmospheric pressure were measured by Meindersma et al. [30].
In addition, these authors have measured for this IL the onset tem-
perature and the heat capacities at (25 and 50) �C. Besides, Minami
et al. [31] have reported that its glass transition temperature is
22 �C. For [C4C1Pyrr][(C4F9)3PF3] we have not found any published
article.
2. Experimental

The samples of the five ILs were kindly provided by Merck KGaA
with a specified fraction purity higher than 0.98. Chemical struc-
ture, molecular formula, water content and mass fraction purity
are listed in table 1. It has been found by alkalimetry after ionic
exchange that the purity of [C4C1Pyrr][NTf2] is 0.999 and that of
[C4C1Pyrr][B(CN)4] obtained by electrophoresis is higher than
0.99. The ionic liquids were used without further purification.
TABLE 1
Ionic liquids used in this work. The five ILs were provided by Merck KGaA.

Name Abbreviation Chem
CAS number

1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)
trifluorophosphate

[C4C1Pyrr][FAP]
851856-47-8

1-butyl-1-methylpyrrolidinium
bis(trifluoromethylsulfonyl)imide

[C4C1Pyrr][NTf2]
223437-11-4

1-butyl-1-methylpyrrolidinium
trifluoromethanesulfonate

[C4C1Pyrr][OTf]
367522-96-1

1-butyl-1-methylpyrrolidinium tetracyanoborate [C4C1Pyrr][B(CN)4]
1266721-18-9

1-butyl-1-methylpyrrolidinium tris(nonafluorobutyl)
trifluorophosphate

[C4C1Pyrr][(C4F9)3PF3]
Not available
Water contents were measured with a Karl Fischer Coulometer.
As can be seen in table 1, these quantities could be considered
important (except for [C4C1Pyrr][(C4F9)3PF3]), but ILs were
employed in this work without purification because in many poten-
tial industrial applications as lubricants, contact with air cannot be
avoided.

A thermogravimetric analyser (TGA7- Perkin Elmer) operating
in dynamic and isothermal modes under dry air atmosphere was
used to perform thermal stability analysis. Although the effect of
the atmosphere becomes lower in studies of long-term thermal
stability [10], air atmosphere was chosen because in dynamic stud-
ies it is more restrictive than N2 [9], and it is more appropriate in
order to estimate the maximum operation temperature in lubrica-
tion applications. Samples of (3 to 5) mg were placed in an open
platinum pan. Dynamic experiments were performed at tempera-
tures from (100 to 800) �C with a heating rate of 10 �C �min�1

and a purge gas flow of 20 cm3 �min�1. The onset and end set tem-
peratures determination procedure is described in previous papers
[9,10]. From these curves, the temperature at the 10% of mass loss
(t10%), the mass loss at onset temperature (Wonset) as well as the
temperature of the minimum of the DTG peaks (t1st and t2nd) were
determined. Each analysis was repeated three times, the standard
deviation average values being lower than 6 �C in all the cases.

On the other hand, isothermal TG analysis was used to determine
the long-term thermal stability of ILs. This analysis provides rates of
decomposition at a given temperature after a given isothermal-
heating time. Seven temperatures in the interval (200 �C – tonset)
were selected for these scans. Taking into account that at 200 �C
the mass loss was lower than 1% in 5 h for the studied ILs, experi-
ments at temperatures lower than 200 �C were not performed.
3. Results and discussion

3.1. Dynamic study

For the five ILs both TG and DTG curves are plotted in figure 1.
The [C4C1Pyrr][FAP] and [C4C1Pyrr][(C4F9)3PF3] show two resolved
ical structure Mass fraction
purity

Water content
10�6

P0.99 700

P0.999 1416

P0.98 960

>0.99 1306

P0.98 56
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peaks, whereas the degradation of [C4C1Pyrr][NTf2], [C4C1Pyrr]
[OTf] and [C4C1Pyrr][B(CN)4] exhibits only one step. This observa-
tion agrees with results of a previous work [9], where we have also
found that [C4C1C1Im]+ ILs with [NTf2]�, [OTf]� anions show one
step degradation, whereas the [FAP]� IL presents two-steps.
Figure 1 also shows that the residue after the main degradation
step of [C4C1Pyrr][B(CN)4] is around the 20% of the initial weight.
This residue is getting lost slowly and continuously, following a
straight line with time; but whereas the rest of the ILs showed zero
mass at 600 �C, approximately the 15% of the initial mass of this IL
remains at this temperature. Shamsipur et al. [32], found a similar
behaviour in the dynamic TG curves of [C2mim][BF4] and
[C4mim][OTf], attributing it to the mass loss of elementary carbon
produced from the previous steps.

Table 2 presents the t10%, Wonset, t1st and t2nd values obtained
from the dynamic thermogravimetric curves for the five 1-butyl-
1-methylpyrrolidinium ILs. For these temperatures, tonset, t10% and
t1st, the anion trend observed is the following [NTf2]�P [OTf]�

� [B(CN)4]� > [FAP]� > [(C4F9)3PF3]�. Degradation temperature
interval is similar for [NTf2]�, [OTf]� and [B(CN)4]� ILs, about
40 �C, showing these ILs the lowest values of Wonset; whereas the
difference between tendset and tonset in [FAP]� and [(C4F9)3PF3]�

ILs is higher than 100 �C The highest values of Wonset observed
for these ILs are due to the longest degradation intervals and con-
sequently the slowest loss of weight.

As it is well known, the thermal stability of the ILs is highly
anion dependent [11,19,33–37]. This sequence agrees with that
FIGURE 1. TG (a) and DTG ((b) and (c)) curves of the five ILs: (d) [C4C1Pyrr][FAP], (h) [C4
of the previous works [19,36,37], which suggest that the [NTf2]�

anion confers the highest thermal stability to the ILs, but some
[OTf]� and [B(CN)4]� ILs have also excellent values of this
property. These results are also in relative good concordance with
the obtained in our previous article [9], where the thermal stabil-
ity of ILs with the common cation [C4C1C1Im]+ and five different
anions, sharing three of them with those of the present work,
[NTf2]�, [OTf]� and [FAP]�, was analysed. From the comparison,
it can be seen that ILs with 1-butyl-1-methylpyrrolidinium cation
are slightly less stable than the corresponding ILs with the
[C4C1C1Im]+ cation. In particular, for both ILs with [OTf]� anion
a difference in onset temperatures higher than 35 �C can be
observed.

The number of references on thermal stability of these ILs is
scarce. Up to our knowledge only in four published papers the
thermal stability of two of the ILs presented in this work have been
briefly analysed. Zhou et al. [38] obtained an onset value 6 �C
higher than ours with the same heating rate but with N2 gas. This
is in complete agreement with our results because the thermal sta-
bility at dynamic conditions should be slightly worse with air. On
the other hand, Chancelier et al. [8] reported for this IL an onset
temperature with an uncertainty of 5 �C, measured by TGA using
5 �C �min�1 and argon flow, being this value only slightly higher
(6 �C) than ours, which could be probably due to the different
experimental conditions [10]. Nevertheless, Shamsipur et al. [32]
studied the thermal stability of the [C4C1Pyrr][NTf2] by TG, in iden-
tical conditions to us, and also with DSC technique. These authors
C1Pyrr][NTf2], (+) [C4C1Pyrr][OTf], (s) [C4C1Pyrr][B(CN)4], (j) [C4C1Pyrr][(C4F9)3PF3].



TABLE 2
Thermal results from the dynamic scans in air atmosphere under pressure of (990.5 ± 0.5) hPa.

IL tonset/�C tendset/�C t10%/�C Wonset/% t1st/�C t2nd/�C

[C4C1Pyrr][FAP] 358 458 360 90 381 441
[C4C1Pyrr][(C4F9)3PF3] 315 440 316 90 350 426
[C4C1Pyrr][NTf2] 417 461 402 81 452
[C4C1Pyrr][B(CN)4] 388 421 381 86 407
[C4C1Pyrr][OTf] 399 436 382 88 414

Expanded standard uncertainties are U(t) = 6 �C and U(W) = 2% (0.95 level of confidence).

FIGURE 2. Isothermal scans of the three selected ILs: (a) [C4C1Pyrr][FAP], (b)
[C4C1Pyrr][NTf2] and (c) [C4C1Pyrr][OTf]. All experiments were performed at
atmospheric pressure of (985 ± 10) hPa.
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obtained an exothermic degradation but it shifts 75 �C
approximately towards minor temperatures, with respect to the
results of this work, Zhou et al. [38] and Chancelier et al. [8]. We
should point out that Chancelier et al. [8] also determined with a
DSC the onset temperature of this IL under nitrogen with a heat
rate of 5 �C �min�1 finding a value 105 �C higher than that of
Shamsipur et al. [32], On the other hand, Meindersma et al. [30]
obtained a similar TG and DTG pattern than us for the [C4C1Pyrr]
[B(CN)4], although they reported the tonset calculated from the tem-
perature at which the dW/dt – 0 [39], which is approximately
100 �C lower than that obtained in this work. The first minimum
obtained by these authors is quite close to that obtained in this
work. Later on, the usefulness of taking one or another value as
tonset will be discussed.

3.2. Isothermal study

With a double aim, firstly the determination of the maximum
operation temperature of the pyrrolidinium based ILs was done,
and secondly, to compare with the results obtained for the
imidazolium based ILs [9], [C4C1Pyrr][NTf2], [C4C1Pyrr][OTf] and
[C4C1Pyrr][FAP] were selected among the five ILs to perform
several isothermal experiments at different temperatures. Corre-
sponding TG scans are presented in figure 2.

As it was expected, the isothermal TG curves at the highest tem-
peratures are characterised by a fast degradation. By the contrary, a
thermal degradation is hardly appreciable in the TG scans during
more than 5 h for [C4C1Pyrr][FAP] at 200 �C and for
[C4C1Pyrr][NTf2] and [C4C1Pyrr][OTf] at 260 �C.

After 50 min at the temperatures (260, 300 and 340) �C for
[C4C1Pyrr][NTf2] the mass losses were (0.5, 3 and 27)%; for
[C4C1Pyrr][OTf] were (2, 6 and 48)% whereas for [C4C1Pyrr][FAP]
values of (2, 47 and around 97)% were obtained. For the first IL
we have found that the degradation in air is quicker than that in
argon analysed by Chancelier et al. [8].

Figure 3 shows the isothermal TG curves at 340 �C of the three
ILs analysed in this paper together with those for [C4C1C1Im]+ ILs
with the same cations [9]. From this figure, it can be concluded that
the imidazolium are slightly more stable than the pyrrolidinium
ILs; thermal stability for the ILs with the anions [NTf2]� and [OTf]�

is similar, and the ILs with [FAP]� are the less stable with indepen-
dence of the cation. Thus, degradation losses of 50% for
[C4C1Pyrr][FAP] and [C4C1C1Im][FAP] are reaching after (10 and
31) min, respectively, whereas for and [C4C1C1Im][OTf] 142 min
are needed. The differences between the [NTf2]� and [OTf]� ILs
are quite small, agreeing with the onset temperatures behaviour.
Additionally, in a recent review, Maton et al. [14] collect the onset
temperatures of 60 imidazolium base ILs with different anions,
among those are [NTf2]� and [OTf]�. These results show that for
ILs with the same cation, those with the [NTf2]� anion present
higher values of tonset than the ILs with [OTf]� anion, except for
the ILs with the cation [C2C1Im]+. Additionally, Fredlake et al.
[21] also studied the thermal stability of several imidazolium
based ILs, reporting the onset and start temperatures, tonset and
tstart respectively, being the last one the temperature at which
the decomposition begins. The values of tstart are determined as
the temperature at which the baseline and the TG curve separate
from each other. These last authors found that the tonset of
[C4C1Im][NTf2] is higher than that of [C4C1Im][OTf], whereas the



FIGURE 3. Comparison of the TG isothermal scans at 340 �C for [C4C1Pyrr][FAP],
[C4C1Pyrr][NTf2], [C4C1Pyrr][OTf] and for three ILs with the same anions from a
previous work [9].
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tstart displayed the opposite behaviour. All these facts reveals that
both anions, [NTf2]� and [OTf]�, present similar results in thermal
stability studies and then the cation effect is more appreciable than
in other combinations.

3.3. Kinetics of isothermal decomposition

The kinetics of decomposition of 1-butyl-1-methylpyrrolidini-
um ionic liquids with the anions [NTf2]�, [OTf]� and [FAP]�, was
analysed from isothermal TGA results following the methodology
reported in a previous paper [9].

The temperature dependence on the rate of loss mass, k, is
represented by the Arrhenius equation:

k ¼ Aexp
�Ea

RT

� �
; ð1Þ

where Ea is the activation energy and A is the pre-exponential
coefficient. Figure 4 shows the relation between the values of ln k
FIGURE 4. Arrhenius plots for the three ILs: [C4C1Pyrr][OTf] (D), [C4C1Pyrr][FAP]
(�), [C4C1Pyrr][NTf2] (h).

TABLE 3
Pre-exponential coefficients, A, and activation energies, Ea, for the selected ILs
obtained from the Arrhenius equation (1).

IL Ea/(kJ �mol�1) A/min�1

[C4C1Pyrr][NTf2] 147 1.56 1012

[C4C1Pyrr][OTf] 187 3.78 107

[C4C1Pyrr][FAP] 153 1.05 1016
and T�1. Thus, from the corresponding linear fitting, the activation
energy of the degradation process has been obtained, as is shown
in table 3, together the pre-exponential coefficients.

Up to know, no references with values of this parameter for
these ILs have been found, although these values are in concor-
dance with those reported in the literature for other ILs
[9,17,20,40,41]. The activation energy of the imidazolium ILs [9]
is lower than the pyrrolidinium ILs with the same anion. Besides,
the sequence observed is the same: [NTf2]� < [FAP]� < [OTf]� for
both imidazolium and pyrrolidinium ILs.

3.4. Maximum operation temperature

Following the criterion established in a previous paper [9], three
thermal degradation levels ((1, 5 and 10)% at different tempera-
tures) were selected in order to obtain information about how
much time an IL takes to degrade at different operation
temperatures.

Firstly, from isothermal scans, the times that each ionic liquid
takes to decompose (1, 5 and 10)% percentages of mass
ðt01%; t

0
5% and t010%Þ were determined. Figure 5 shows t05% and t010%Þ

values against temperature for the three ILs. As it can be also seen
from this figure, good correlations of the experimental data with a
decreasing exponential function (equation (2)) were obtained:

t0 ¼ BeCt; ð2Þ

where t0 is the time in minutes, t the temperature in �C, and, B and C
correlation coefficients. Table 4 shows the values of the B and C
parameters. From these fits the maximum time at which an IL could
be used in reliable conditions can be estimated, taking into account
FIGURE 5. Correlation of experimental values of degradation times obtained in the
isothermal scans for the three ILs against temperature for (a) 5% and (b) 10% of
degradation. [C4C1Pyrr][OTf] (D), [C4C1Pyrr][FAP] (d), [C4C1Pyrr][NTf2] (h).



TABLE 4
Parameters B and C for the equation (2) for the three selected ILs as well as for those
selected in a previous work [9].

IL B/min C/�C�1

1% weight loss
[C4C1Pyrr][NTf2]
[C4C1Pyrr][OTf] 1.449 � 107 �0.0389
[C4C1Pyrr][FAP] 1.168 � 108 �0.0582
[C4C1C1Im][NTf2] 1.149 � 108 �0.0533
[C4C1C1Im][OTf] 8.281 � 106 �0.0427
[C4C1C1Im][FAP] 2.878 � 1010 �0.0779

5% weight loss
[C4C1Pyrr][NTf2] 3.194 � 108 �0.0489
[C4C1Pyrr][OTf] 4.315 � 1010 �0.0639
[C4C1Pyrr][FAP] 6.099 � 108 �0.0576
[C4C1C1Im][NTf2] 4.744 � 108 �0.0529
[C4C1C1Im][OTf] 1.615 � 108 �0.0464
[C4C1C1Im][FAP] 6.354 � 109 �0.0658

10% weight loss
[C4C1Pyrr][NTf2] 8.501 � 108 �0.0510
[C4C1Pyrr][OTf] 1.737 � 1011 �0.066
[C4C1Pyrr][FAP] 8.787 � 109 �0.0583
[C4C1C1Im][NTf2] 6.394 � 108 �0.0546
[C4C1C1Im][OTf] 4.784 � 108 �0.0475
[C4C1C1Im][FAP] 8.685 � 109 �0.0639

TABLE 5
Estimated temperatures (in �C) corresponding to the loss of 1% during 10 h according
to Wooster et al. [39], and to the loss of (1, 5, and 10)% obtained from isothermal
scans.

IL t0.01/10 h/�C t0.01/10 h/�C t0.05/10 h/�C t0.10/10 h/�C

Dynamic study Isothermal study
[C4C1Pyrr][NTf2] 261 268 284
[C4C1Pyrr][OTf] 266 249 282 296
[C4C1Pyrr][FAP] 242 207 237 247
[C4C1C1Im][NTf2] 252 231 257 266
[C4C1 C1Im][OTf] 274 225 276 284
[C4C1C1Im][FAP] 231 224 244 258
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that, depending on intended application, different appropriate
degrees of degradation and time periods should be chosen.

Wooster et al. [39] suggested that the temperature at which 1%
degradation occurs in 10 h (T0.01/10 h) is as a good indicator of ther-
mal stability and they established a method to estimate it from
dynamic scans using the equation:

T0:01=10 h ¼ 0:82 Tðdw=dT – 0Þ; ð3Þ

being T(dW/dT–0) the lowest temperature (in Kelvin) at which the first
derivative of the weight loss versus T curve is non-zero. The T(dW/

dT–0) value provides an estimate of the lowest T at which volatile
products are evolved, under the conditions of the experiment. Fol-
lowing this methodology, the estimation of maximum temperature
operation as T0.01/10 h was done for the ILs subjected to isothermal
analysis in this work and in a previous article [9]. As it can be
observed in table 5, the values obtained for t0.01/10 h from the
dynamic scans and equation (3) are significantly lower than the
onset temperatures. With the aim to compare the results of this
methodology with those obtained from isothermal scans, the tem-
perature at which the (1, 5, and 10)% of the initial mass are lost after
10 h, t0.01/10 h, t0.05/10 h and t0.10/10 h respectively, were calculated
from the above equation (2). These comparisons are summarized
in table 5. The values obtained from both methods are in quite good
concordance taking into account the influence of the experimental
conditions [10] used to determine the coefficient 0.82 (Wooster
et al. [39] used nitrogen instead air atmosphere and the sample
mass are five times higher than our samples) and the loss of accu-
racy of the extrapolations used in the isothermal studies for long
periods of time. However, the t0.01/10 h values obtained from Woos-
ter et al. [39] method are higher than those obtained from isother-
mal scans, in all the cases. Thus, a better agreement was obtained
between the predicted t0.01/10h values using Wooster et al. [39] rela-
tion and the t0.05/10 h values obtained from isothermal scans and
equation (2).

This fact indicates that in spite of Wooster et al. [39] presents a
very good and rapid method to determine the long term stability
from the dynamic scans, these results should be taken with caution
if it will be used in an industrial application that need small loss of
weight. In this situation a deeper study using isothermal experi-
ments is needed.
4. Conclusions

Thermal stability of new ionic liquids with the common cation
1-butyl-1-methylpyrrolidinium was analysed using thermogravi-
metric analysis. The following conclusions were obtained:

– From dynamic experiments it was concluded that
[C4C1Pyrr][NTf2] and [C4C1Pyrr][(C4F9)3PF3] are the most and
the less stable, respectively.

– Imidazolium based ILs showed a slightly higher thermal stabil-
ity than the pyrrolidinium for the same anion. Isothermal anal-
ysis at temperatures 20 �C below the tonset showed a fast
degradation. TG scans at 200 �C revealed a hardly appreciable
degradation after 5 h.

– Activation energies of the ILs with the anions [NTf2]�, [OTf]� and
[FAP]�were obtained from the Arrhenius equation and their val-
ues are higher than the corresponding to the ILs with same
anions and the cation [C4C1C1Im]+. Besides, the trend with the
anion is the same for both imidazolium and pyrrolidinium ILs.

– Maximum temperature operation was determined from the iso-
thermal studies taking into account three possible degradation
levels. The results were compared with the proposed methodol-
ogy by Wooster et al. [39] to estimate the long term thermal sta-
bility from dynamic scans, obtaining a quite good concordance.
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The liquid range temperature of six ionic liquids (ILs) was determined in this work with the aim to
propose suitable absorbents for heat pump systems. The selected ILs have three different cations, imida-
zolium, pyridinium and choline and each was combined with four different anions [NTf2]�, [OTf]�,
[MeSO3]� and [BETI]�. The lower limit, given by solid � liquid transitions, was determined using differ-
ential scanning calorimetry (DSC). The upper limit is given by the degradation temperature. This temper-
ature is determined using thermogravimetric technique (TGA). Dynamic and isothermal methods have
been combined to estimate the maximum operation temperature. ILs ageing effect was also analysed
in this work.
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1. Introduction

Ionic liquids (ILs) are usually defined as salts melting under
100 �C. This definition is broadly accepted even though there is
no chemical or physical significance in this temperature which
has been chosen for historical reasons [1]. From the enormous
number of ILs, the most common chemical structure is based on
an organic cation together with an inorganic polyatomic anion
[2]. The unique properties of the ILs [3] have brought great interest
over the last years from industry and academia due to a large num-
ber of potential applications [4]. Since climate change stands out as
one of the main challenges for the next decades, technologies lead-
ing to efficient energy production will play a crucial role. In this
framework, absorption heat pumps are a great opportunity to
reduce energy consumption of heating and refrigeration systems,
since this technology allows either recovering residual heat or
using renewable energies (as solar, bio-hydrogen. . .) to produce
profitable thermal energy. Subsequently, the use of additional
electric power is almost negligible. Therefore it is a technology of
high added value in regions where the electrical network is not
developed in addition to its high ecological benefits. Nevertheless
conventional working pairs present several drawbacks which have
limited the potential of absorption heat pumps [5]. Some of these
problems are corrosion and crystallisation in the case of
H2O/LiBr, high working pressures, low relative volatility and NH3

toxicity for NH3/H2O. Thus, improvements of absorption heat
pumps by developing new working pairs (refrigerant/absorbent)
have drawn the attention of companies and researchers. Seeking
new working pairs involving ILs as absorbents occupy a principal
role in these investigations [6,7]. This work is framed into the anal-
ysis of different ILs as candidates for absorption processes together
with natural refrigerants such as water [8], ammonia or carbon
dioxide.

To meet the requirements of absorption heat pumps, a first
screening was performed paying special attention to the liquid
range temperature. As it has been pointed out, crystallisation at
low temperatures is one of the drawbacks for commercial
LiBr/H2O working pairs, therefore solid � liquid transitions should
be analysed to prevent solid phase formations in the absorber [7],
an important factor of any absorption refrigeration system [9]. On
the other hand, since absorbents will remain within the system for
long periods of time, thermal stability should be studied carefully
not only as a function of temperature but also as a function of time.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jct.2015.07.034&domain=pdf
http://dx.doi.org/10.1016/j.jct.2015.07.034
mailto:j.salgado.carballo@usc.es
http://dx.doi.org/10.1016/j.jct.2015.07.034
http://www.sciencedirect.com/science/journal/00219614
http://www.elsevier.com/locate/jct
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Differential scanning calorimetry (DSC) was used to determine
melting point (Tm) as much as the glass transition (Tg). These val-
ues may constrain the lower temperature operation range
[10,11]. However it should be taken into account that real working
fluids will be solutions of refrigerant/IL, where these temperatures
are expected to be lower than those of pure IL, thereby partially
easing the constraint [12].

In addition, the absorbents should be highly stable over a wide
range of operating temperature in absorption devices [9].
Although, no unique criterion has been defined to determine ther-
mal stability for a particular fluid, two operation modes are broadly
known when thermogravimetric analysis is used. The so-called
dynamic methods consist of performing a ramp of temperature
with time by measuring simultaneously how mass sample
changes. Results obtained are usually expressed in terms of degra-
dation temperature or onset temperature [13]. This value provides
qualitative information, as it has been broadly pointed out in the
literature [13–15], but never a maximum operation temperature
since it is observed that degradation starts below the onset tem-
perature. In other words, the onset temperature overestimates
the maximum operation temperature. For a deeper knowledge of
this parameter, this analysis must be refined with isothermal
scans. Additionally isothermal scans allow kinetic analysis of the
degradation process by using the Arrhenius equation and an esti-
mation of the degradation time for a given temperature.

Besides dynamic and isothermal scans, temperature conditions
of the absorption process have been reproduced. Since during
absorption cycles, the ILs undergo temperature changes (from
absorber to generator and backwards) for extended periods of
TABLE 1
Structure and identification of selected ILs (all of them supplied by IoLiTec).

Name Abbreviation C

CAS number

1-Ethylpyridinium bis (trifluoromethylsulfonyl) imide [C2Py][NTf2] 712354-
97-7

Choline bis (trifluoromethylsulfonyl) imide [Chol][NTf2] 827027-
25-8

O

1-Ethyl-3-methylimidazolium triflate [C2C1Im][OTf] 145022-
44-2

1-Ethyl-3-methylimidazolium bis
(perfluoroethylsulfonyl) imide

[C2C1Im][BETI] 216299-
76-2

1-Ethylpyridinium methanesulfonate [C2Py][MeSO3] 681481-
41-4

1-Ethylpyridinium triflate [C2Py][OTf] 3878-80-6
time. ILs thermal stability after several heating and cooling cycles
has been studied. To our knowledge, this is the first time this sort
of test has been reported for ILs.

At this point, and due to potential capabilities of ILs as absor-
bents, knowledge of physical and chemical properties becomes
critical in order to select suitable candidates among a huge number
of available ILs. The influence of the cation and anion, the length of
the alkyl chain or different functional groups over ILs properties
will allow ‘‘absorbent tunning’’ based on process requirements.
Apart from the temperature operation range, other thermophysical
properties such as solubility with the refrigerant, density, heat
capacity, viscosity, surface tension or thermal conductivity; and
also, factors as toxicity and environmental impact must be taken
into account.

With the aim to acquire a deeper knowledge of cation and anion
influence over the temperature operation range, six ionic liquids
have been chosen for evaluation as potential absorbents for natural
refrigerants (ammonia, water and carbon dioxide). The selected ILs
are based on four different anions together with imidazolium,
pyridinium and choline cations.

Four of the six ILs involve [NTf2]� and [OTf]� anions and they
were chosen because of their high thermal stability [16]. Other
anions, [BETI]� and [MeSO3]� [17] are not so extensively studied
and they were chosen due to their structural similarity with
[NTf2]� and [OTf]�. The influence of the cation over this property
is minor compared to the anion, however it cannot be considered
as a negligible factor. Thus, imidazolium, pyridinium and choline
cation families have been selected to explore the cation effect over
the decomposition temperature of the ILs.
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2. Materials and methods

2.1. Chemicals

Six ionic liquids, provided by IoLiTec, were considered for this
work, three contain the common cation, viz. 1-ethylpyridinium
[C2Py]+, and the anions bis (trifluoromethylsulfonyl) imide [NTf2]�,
triflate [OTf]�, and methanesulfonate [MeSO3]� The other two ILs
have the common cation 1-ethyl-3-methylimidazolium [C2C1Im]+,
with the anions triflate and bis (perfluoroethylsulfonyl) imide
[BETI]�, and the sixth IL is choline bis (trifluoromethylsulfonyl)
Imide [Chol] [NTf2]. Identification names and numbers, purities
and cations and anions chemical structures are presented in table 1.

2.2. Experimental

A differential scanning calorimeter DSC Q100 TA-Instruments
with aluminium pans hermetically sealed was used to determine
the different state transitions experienced by the IL during the
heating and cooling cycles. Liquid nitrogen was used as the coolant
fluid. Each sample (3 to 5 mg) was subjected to four ramps, two in
cooling and two in the heating mode, with an isothermal step
between them: (a) heating from (25 to 120) �C at 10 �C �min�1,
(b) isothermal step at 120 �C during 30 min to remove impurities
[18] and to erase the thermal history of the sample, (c) cooling
from (120 to �85) �C at 5 �C �min�1, (d) isothermal step at
�85 �C during 5 min and (d) heating from (�85 to 100) �C at
10 �C �min�1 and (e) cooling from 100 �C at �85 �C at
5 �C �min�1. Temperatures transitions were determined from the
DSC curves during the re-heating and re-cooling steps [19].

A thermogravimetric analyser (TGA 7-Perkin Elmer) operating
in dynamic and isothermal modes under dry air atmosphere was
used to perform thermogravimetric analysis [20]. Although the
effect of the atmosphere becomes lower for long-term thermal sta-
bility studies [21], it was considered more appropriate to use air
instead of an inert atmosphere in order to estimate the maximum
operation temperature for different applications, where ILs can be
in air contact.

Samples of (3 to 5) mg were placed in an open platinum pan.
Dynamic experiments were performed at temperatures from
(100 to 800) �C, with a heating rate of 10 �C �min�1 and a purge
gas flow of 20 cm3 �min�1. Each analysis was repeated three times.
Determination procedures of onset and ending temperatures were
described in previous papers [20,21]. Furthermore, isothermal TG
analysis at temperatures lower than tonset, was used to determine
the long-term thermal stability of ILs.

Besides the effects on the thermal stability owing to dynamic
and isothermal regimes during absorption cycles, the ILs undergo
temperature changes (from absorber to generator and backwards)
for extended periods of time. For this reason, the thermal stability
of the ILs after several heating and cooling cycles has been studied
in order to reproduce roughly the effects of these temperature
changes on this property. Each sample was subjected to two ramps,
one in cooling and one in the heating mode, with an isothermal
step between them: (a) heating from (50 to 175) �C at
5 �C �min�1, (b) isothermal step at 175 �C during 15 min, (c) cool-
ing from (175 to 50) �C at 5 �C �min�1, (d) isothermal step at 50 �C
during 15 min. The whole sequence was repeated eight times.

3. Results and discussion

3.1. DSC

Figure 1 shows the last ramp of heating and cooling of DSC
analysis of the six ILs [C2Py][NTf2], [Chol][NTf2], [C2Py][OTf],
[C2C1Im][OTf], [C2Py][MeSO3] and [C2C1Im][BETI].
All the ILs show melting and freezing peaks, presenting these ILs
as very good crystal-formers, although the DSC curve profiles show
important differences associated with different thermal behaviour.
Table 2 summarises state transition temperatures, such as melting,
freezing, cold crystallisation and glass temperatures determined
from these curves. As far as we are aware, information on the ther-
mal behaviour of these ILs in heating and/or cooling ramps is
scarce in the literature. Those values of transition temperatures
found in the literature for these ILs are also presented in table 2.

Important agreement between our results and those of and other
authors is, thus for [C2C1Im][BETI], Ngo et al. [22] obtained freezing
temperature (�12 �C) similar to our result, but values for the melt-
ing point (�1 �C) differ considerably from ours, probably due to dif-
ferent experimental conditions and different thermal history.
However on the contrary, our results are in good concord with those
of Shirota et al. [23] for the melting point. The [C2C1Im][BETI] shows
a glass transition (�52 �C) with enthalpic recovery. To distinguish it
from a solid � solid transition, we have zoomed in the DSC scan and
checked that it corresponds to a ‘‘stair step’’ which is the common
appearance for a glass transition [24]. Afterwards, [C2C1Im][BETI]
shows a sub-cooling phenomenon, characterised by an incomplete
crystallisation on the cooling ramp. Then a part of this IL passes from
a glassy to a subcooled state, suffering a cold crystallisation followed
by the melting transition. This cold crystallisation phenomenon is
usually observed in the thermal behaviour of many ionic liquids.
Agreeing with these results, Calvar et al. [18] and Fredlake et al.
[10] found that some imidazolium based ILs show similar beha-
viour. Nevertheless this cannot be observed in pyridinium based ILs.

The [Chol][NTf2] shows a very different profile on the heating
ramp compared to the rest of the ILs. This profile is characterised
by three endothermic peaks at (2, 27 and 33) �C. The first is attrib-
uted to a solid � solid transition and the last to the melting process.
The origin of the peak at 27 �C, which is not completely resolved
with the last peak, could be associated either to a solid � solid or
to a melting transition. Taking into account that the temperatures
of the second and third peaks (27 and 33 �C) do not change when
the heating rate increases at 10 �C �min�1 (results are not shown),
we think that the melting process of this IL takes place in two
different phases at (27 and 33) �C. Similar behaviour and tempera-
tures were also found by Yoshizawa-Fujita et al. [25] for this IL,
with the usual shape found in the DSC of polymers with high molar
mass [26,27]. Additionally, Nockeman et al. [28], indicated that the
melting temperature for [Chol][NTf2] is 30 �C although these
authors do not show the DSC curves of this IL, this value is in rela-
tive good concordance with our results.

The [C2Py][OTf] shows two exothermic peaks in the cooling
ramp and two endothermic peaks in the heating ramp. Other
authors as Calvar et al. [18] have observed similar behaviour in
some pyridinium and imidazolium based ILs with the same anion,
[OTf]�, which suggests a polymorphic-like behaviour that leads to
the formation of crystals with different structures. Nevertheless, a
deeper study is necessary to complement and confirm this result.

On the other hand, [C2Py][NTf2] crystallises, at �21 �C, on cool-
ing, but does not form a glass within the temperature range stud-
ied. A solid � solid transition at 21 �C and the melting point at
32 �C are detected during the heating ramp, agreeing in both cases
with the results of Liu et al. [29]. This behaviour, not unusual in ILs,
is also observed by Machanova et al. [30] and Stefan et al. [31] for
ammonium and pyrrolidinium based IL, with the [NTf2]� anion,
observing in the last case, even two solid � solid transitions before
the melting.

All melt at temperatures higher than 0 �C with the exception of
[C2C1Im][OTf] that melts at�14 �C. Wachter et al. [32] indicate that
the solid � liquid transition of this IL is �10 �C, which is the max-
imum temperature of the melting peak, agreeing with the result of
this work.



[C2Py][NTf2] [Chol][NTf2]

[C2Py][OTf] [C2C1Im][OTf]

[C2Py][MeSO3] [C2C1Im][BETI]

FIGURE 1. DSC curves (Exo down) on cooling (dashed line) and heating (solid line) scanning for the selected ILs.

TABLE 2
Freezing (tf), melting (tm), glass transition (tg), cold crystallisation (tcc) and
solid � solid transition (tss) temperatures obtained from DSC curves under pressure
of (990 ± 3) hPa and comparison with bibliographic results.

IL Cooling step Heating step

tf/�C tm/�C tg/�C Other/�C

[C2Py][OTf] 16/�10
[C2Py][MeSO3] �1 62
[Chol][NTf2] �9 27/33 2 (tss)

27 [25] �1 (tss) [25]
30 [28]

[C2C1Im][BETI] �11 16 �52 �37 (tcc)
�12 [22] �1 [22]

15 [23]
[C2Py][NTf2] �21 32 21 (tss)

31 [29] �38 [29] 20 (tss) [29]
[C2C1Im][OTf] �41 �14

�10 [32]

Expanded uncertainties are U(t) = ±2 �C (0.95 level of confidence).
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The sequence obtained for lowest limit for the liquid range of
selected ILs is:
½C2Py�½MeSO3� > ½C2Py�½OTf� � ½C2Py�½NTf2� � ½Chol�½NTf2�
> ½C2C1Im�½BETI� > ½C2C1Im�½OTf�:

Imidazolium based ILs show the lowest melting temperatures,
whereas the highest corresponds to ILs containing pyridinium
cations. Nevertheless a trend with the anion cannot be established
in the same way.
With regard to freezing temperatures the sequence is a little bit
different:

½C2Py�½OTf � > ½C2Py�½MeSO3� > ½Chol�½NTf2� > ½C2C1Im�½BETI�
> ½C2Py�½NTf2� > ½C2C1Im�½OTf �:

A trend with anion or cation cannot be established for freezing
temperatures. Although it is important to remark that, in both
sequences, the two first ILs remain the same.

Substantial super cooling is observed for all the ILs, with the
freezing point significantly lower than the melting point, with dif-
ferences (Tm–Tf) occurring around (20 to 30) �C, except for
[C2Py][NTf2] and [C2Py][MeSO3] which are higher than 50 �C, indi-
cating a very slow crystallisation rate. This fact is very important
and a positive observation for the application of ionic liquids as
absorbents in absorption heat pumps to avoid the problem of crys-
tallisation commonly observed in the current working pair, as pre-
viously pointed out.
3.2. Thermogravimetric analysis

3.2.1. Dynamic study
Figure 2 shows TG (a) and DTG (b) curves for the selected ILs.

Reported curves have similar shapes for all ILs, characterised by a
unique step with an intense loss weight, corresponding to a narrow
DTG peak (50 �C approximately).

Table 3 shows onset and ending temperatures (tonset and tendset),
weight at tonset (Wonset), temperature corresponding to a 1% weight
loss (t1%) and the temperature for DTG minimum (tpeak). These val-
ues were determined directly from TG and DTG curves using



FIGURE 2. TG (a) and DTG (b) of ILs: (⁄) [Chol][NTf2], (j) [C2C1Im][OTf], (s) [C2py][NTf2], ( ) [C2py][OTf], (d) [C2C1Im][BETI], (h) [C2py][MeSO3].

TABLE 3
Thermal results from dynamic scans in air atmosphere under pressure of
(990 ± 10) hPa. Onset and ending temperatures (tonset and tendset), weight at tonset

(Wonset), the temperature for DTG minimum (tpeak) and temperature corresponding to
1% loss weight (t1%).

IL tonset/�C tendset/�C Wonset/% tpeak/�C t1%/�C

[Chol][NTf2] 410 460 85 442 355
[C2Py][NTf2] 409 471 83 450 346
[C2C1Im][OTf] 404 458 87 436 338
[C2Py][OTf] 371 416 86 399 328
[C2C1Im][BETI] 368 425 85 407 305
[C2Py][MeSO3] 315 353 85 339 265

Expanded uncertainties are U(t) = ±4 �C and U(W) = 1% (0.95 level of confidence).
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methods widely described in previous papers published by our
group [15,20,21]. Analysed ILs present a remarkable thermal sta-
bility, with onset temperatures higher than 350 �C, except for
[C2Py][MeSO3] with tonset of 315 �C. Although the onset tempera-
ture cannot be considered the upper limit of the liquid range as
already noted, this parameter allows establishment of a sequence
for the thermal stability of the ILs. Thus, the trend obtained is as
follows:

½Chol�½NTf2� � ½C2Py�½NTf2� > ½C2C1Im�½OTf� > ½C2Py�½OTf�
> ½C2C1Im�½BETI� > ½C2Py�½MeSO3�:
This sequence indicates that the anion has the strongest influ-
ence over the ILs thermal stability, with the [NTf2]� conferring
the highest resistance to thermal degradation, following closely
by [OTf]�. Thus, it is clear that the cation influence should also
be taken into account with the imidazolium based ILs that provide
the greatest thermal stability. These observations are in good
agreement with previous works where ILs with similar cations or
anions were studied [16,33–36].

Literature information regarding the degradation of these ILs is
scarce and in most cases comparisons are difficult due to the influ-
ence of experimental conditions on results. Thus, Bittner et al. [36]
use temperature of maximal decomposition rate (i.e. tpeak for us)
and they found results similar to ours for [C2Py][NTf2].

Additionally, Heym et al. [17], with the scope of studying ther-
mal stability, used temperature to reach a mass loss of 1% during
TG experiments at different heating rates obtaining 348 �C for
[C2C1Im][OTf]. This value is consistent with result obtained in this
work (338 �C).

On the other hand, decomposition temperature (Td) of
[C2C1Im][BETI] was previously calculated by Ngo et al. [22],
obtaining different values using either aluminium (423 �C) or
alumina (462 �C) sample pan, both of them higher than the
value obtained in this work. These authors used a nitrogen atmo-
sphere and a heating rate of 20 �C �min�1, whereas in this work
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FIGURE 3. Isothermal scans at different temperatures of selected ILs.

FIGURE 4. Comparison of isothermal scans of selected ILs at 260 �C.

TABLE 4
Activation energy, Ea, and pre-exponential factor of Arrhenius equation, A, of
degradation process for the selected ILs.

IL Ea/(kJ �mol�1) A0 = lnA

[C2Py][OTf] 185 ± 10 37.57 ± 1.69
[Chol][NTf2] 170 ± 20 33.12 ± 5.33
[C2C1Im][OTf] 160 ± 5 30.39 ± 0.98
[C2Py][NTf2] 140 ± 20 27.57 ± 4.39
[C2Py][MeSO3] 140 ± 10 31.52 ± 1.57
[C2C1Im][BETI] 110 ± 5 21.61 ± 1.17
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air atmosphere and 10 �C �min�1 were chosen. As previous studies
[21] have shown, the onset temperature can be up to 30 �C higher
when the atmosphere changes from air to nitrogen. A similar
effect takes place when the heating rate changes from (10 to
20) �C �min�1.

Leaving aside the dynamic nature of the experiments, the loss of
weight at tonset is around 15% in all the ILs, too high to claim that
this temperature is the upper limit of the operation range, as men-
tioned above. So, to establish this upper limit, isothermal studies
are necessary [21].
3.2.2. Isothermal study
With the aim to determine the maximum operating tempera-

ture of these ILs, isothermal scans at different temperatures lower



FIGURE 5. Comparison between tonset (grey bar) and t0.01/10h (black bar).

TABLE 5
Maximum operating temperature (t, in �C) corresponding to three thermal degrada-
tion levels (1%, 5% and 10% in 10 h) calculated from Arrhenius parameter equation.

LI tonset/�C t0.01/10h/�C t0.05/10h/�C t0.1/10h/�C

[Chol][NTf2] 410 190 205 215
[C2Py][NTf2] 409 170 190 200
[C2C1Im][OTf] 404 200 215 225
[C2Py][OTf] 371 185 200 205
[C2C1Im][BETI] 368 130 150 160
[C2Py][MeSO3] 315 130 145 150

Uncertainties are U(tonset) = ±4 �C (0.95 level of confidence) and U(t0.01/10h) =
U(t0.05/10h) = U(t0.1/10h) = ±10 �C (0.68 level of confidence).
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than the corresponding tonset were performed. Figure 3 shows these
scans. As expected, weight loss corresponding to the highest
selected temperature was very rapid, even for [C2Py][NTf2] at
360 �C (42 �C lower than the onset temperature), with one hour
time enough to lose approximately the 60% of initial weight.
Nevertheless scans at 260 �C for ILs with [OTf]� and [NTf2]� anions
and at 200 �C for other ILs during more than five hours do not
imply detectable changes in mass samples.

Figure 4 shows a comparison between the isothermal scans at
260 �C. A similar trend than the one found with dynamic scans
was obtained. The [OTf]� and [NTf2]� based ILs are again the most
stable, whereas [C2Py][MeSO3] weight loss at 260 �C is around 50%
after 100 min.

The kinetics of decomposition was analysed from isothermal
TGA results following the methodology reported in previous
papers [18,19].

The temperature dependence on weight loss rate, k, is repre-
sented by the Arrhenius equation:

k ¼ A exp
�Ea

RT

� �
; ð1Þ

where Ea is the activation energy, R the gas constant and T the abso-
lute temperature. The activation energy of the degradation process
was obtained by fitting ln k and T�1. The results are presented in
table 4.

As far we are aware, activation energy values have not been
published for these ILs, although these values are in agreement
with those reported in the literature for other ILs with a similar
cation and anion. From the results obtained and previous publica-
tions [14,18,19], it can be concluded that the activation energy
follows the trend for a common anion ([NTf2]� or [OTf]�)
choline > pyrrolidinium > pyridinium > imidazolium, whereas the
anion sequence is:

½OTf�� > ½FAP�� > ½NTf2�� � ½MeSO3�� > ½BETI��:
3.3. Maximum operation temperature

As it was pointed out tonset cannot be considered a maximum
operating temperature. Thus, a long-term stability parameter,
t0.01/10h, that is the temperature necessary to reach a 1% weight loss
after 10 h, is often used [16,27,29,37]. This parameter can be calcu-
lated from the Arrhenius equation, whose parameters are shown in
table 4. A comparison between the values of tonset and calculated
t0.01/10h are presented in figure 5. Differences of 200 �C, approxi-
mately, between both temperatures are observed for all the
selected ILs.

Depending on the application, the maximum operating temper-
ature can vary, taking into account that the degradation level can
be different. Thus, as expressed in previous papers [20], the crite-
rion of t0.01/10h could be over strict, in which case the maximum
operating temperature corresponding to three thermal degrada-
tion levels (1%, 5% and 10% in 10 h) is calculated using the above
Arrhenius parameters that are shown in table 5.

In general, absorption systems will have operating tempera-
tures lower than data shown in table 5. However, this issue must
be analysed taking into account once the heat pump configuration
is chosen. According to systems evaluated by Ayou et al. [38], these
six ILs may accomplish the maximum operating temperature
requirements with [C2C1Im][BETI] and [C2Py][MeSO3] which are
close to this limit.
3.4. (Heating + cooling) cycles. ILs ageing

Regarding the application of absorption heat pumps, ILs
behaviour after long periods of time remains as an open question,
specifically the effects of ageing of the ILs after numerous
absorption/desorption cycles. To the best of our knowledge,
very few experiments have been done to study ageing effect on
ILs [39].

His question is outlined using thermal techniques.
(Heating + cooling) cycles were chosen to adapt the experimental
procedure to absorption heat pump applications. The experimental
procedure consists of 8 successive heating applications up to
175 �C and cooling up to 50 �C under air atmosphere.

Figure 6 shows the second (the first one was not considered
because a low percentage of impurities, specially water, released
to rise 100 �C) and the last heating TG curve for [C2C1Im][OTf]
and [C2Py][MeSO3], which are the most and least thermally stable.
No significant degradation related to successive (heating + cooling)
cycles was found.

After the successive (heating + cooling) cycles, the same sample
of these ILs was subjected to a heating from (50 to 800) �C at
10 �C �min�1 (figures not shown), i.e. the experimental conditions
corresponded to dynamic studies, with the aim to determine the
changes in characteristic temperatures after the cycles. Table 6
reports onset temperatures obtained from this dynamic study after
the cycles (t0onset). Results show there are no significant changes in
dynamic curves as a consequence of the ageing.

Even though during this process ILs do not undergo other
effects related with physical absorption, chemical interactions or
mechanical factors, results seem to indicate that ageing does not
affect to thermal stability.



FIGURE 6. Comparison between the second and last curves of (heating + cooling) cycles of (a) [C2C1Im][OTf] and (b) [C2Py][MeSO3] ILs.

TABLE 6
Onset temperatures (t0onset) of selected ILs obtained from dynamic studies after aging
cycles.

IL t0onset/�C

[Chol][NTf2] 410
[C2py][NTf2] 401
[C2C1Im][OTf] 405
[C2py][OTf] 370
[C2C1Im][BETI] 362
[C2py][MeSO3] 321

Expanded uncertainties are U(t) = ±4 �C (0.95 level of confidence).
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4. Conclusions

The liquid range of six different ILs has been determined in this
work, using thermal analysis techniques. The main results are the
following:

– All ILs show DSC curves peaks attributed to melting and freez-
ing processes in heating and cooling scanning, respectively.
The [C2Py][MeSO3] and [C2Py][OTf] show the highest melting
and freezing temperatures and [C2C1Im][OTf] the lowest.
Different ILs trends were obtained for melting and freezing
processes.
– The six ILs studied show remarkable thermal stability with
onset temperatures higher than 300 �C. The influence of the
anion over this property is very strong with [NTf2]� and
[OTf]� anions the most resistant to thermal degradation.
Nevertheless, temperatures provided by dynamic thermogravi-
metric studies cannot be considered to be the maximum
operating temperature. Isothermal scans are necessary to deter-
mine this value.

– [MeSO3]� and [BETI]� based ILs do not undergo significant ther-
mal degradation up to 200 �C whereas for [NTf2]� and [OTf]�

based ILs significant degradation is not detected up to 250 �C
under the same conditions.

– Activation energy of the degradation process has been deter-
mined using the Arrhenius equation and is compared with pre-
vious results for other ILs. Cation and anion influence on
activation energy is defined by the following trends; for cation:
choline > pyrrolidinium > pyridinium > imidazolium, and for
anion: [OTf]� > [FAP]� > [NTf2]� � [MeSO3]� > [BETI]�.

– The effect of successive heating to 175 �C and cooling to 50 �C
cycles on the mass sample was analysed to estimate the effects
on ageing of the ILs. Results indicate that this effect is negligible,
since no detectable mass loss is associated with these cycles.
Before and after the ageing, the TG curves show similar shapes
and the same onset temperatures.
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– According to the findings, the most adequate IL to operate in
absorption devices is [C2C1Im][OTf] due to its lowest melting
point and greatest thermal stability. Nevertheless, regarding
their liquid range, none of the others should be discarded since
they accomplish requirements for many heat pump configura-
tion systems. To determine suitable ILs, other experimental
and theoretical experimental studies will be made in the near
future.
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