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RESUMEN

El grafeno, considerado por muchos como el material del futuro, se define como una
lamina plana constituida por atomos de carbono fuertemente entrelazados en una
red bidimensional con forma de panal de abeja. Desde que en 2004 los fisicos rusos
K. Novoselov y A. Geim de la Universidad de Manchester (ambos galardonados con
el Premio Nobel de Fisica en 2010) sintetizaran por primera vez laminas aisladas de
grafeno mediante exfoliaciéon mecanica, este revolucionario material ha despertado
un gran interés debido a sus extraordinarias propiedades optoelectréonicas muy ttiles
para la nanofoténica (rama de la fisica que estudia la interaccién de la luz con la
materia en el rango del nandmetro, esto es, en distancias mil millones de veces
mas pequenas que el metro). La naturaleza 2D de este alétropo de carbono en
combinacién con su singular estructura atémica, dan lugar a una poco corriente
relacion de dispersion lineal muy diferente a la tipica parabdlica de los metales
nobles.

Al producirse la interaccion entre la luz y la materia (cuya longitud caracteristi-
ca D ha de ser necesariamente mas pequena o del orden de la longitud de onda de
la propia luz incidente, i.e., D < \), se genera una serie de interesantes fenémenos
electromagnéticos entre los cuales se halla la excitacion del objeto de estudio de esta
tesis: el plasmon (i.e., la oscilacion colectiva de los electrones en metales nobles o
grafeno). Debido al intenso confinamiento de estas oscilaciones eléctricas (en distan-
cias por debajo del limite de difraccién de la luz), los plasmones estimulan una fuerte
interaccién luz-materia e incrementan notablemente el campo eléctrico inducido. Es
necesario destacar también que los plasmones son muy sensibles a la forma y tamaino
de las nanoestructuras que los sustentan, al entorno dieléctrico y a la cantidad de
electrones participando en la oscilacién colectiva (relacionados éstos a su vez con la

estructura de bandas electrénicas del material que los contiene). Un estricto control



2 RESUMEN

de estos parametros es indispensable para poder conocer en profundidad la respuesta

de cualquier nanoestructura capaz de sustentar plasmones.

Centrémonos ahora en el elemento quimico que conforma la estructura de gra-
feno: el carbono. Su is6topo més comun, el '2C, posee 6 protones y 6 neutrones en
el nicleo atémico, y 6 electrones moviéndose libremente alrededor de éste distri-
buidos en diferentes orbitales electrénicos. La configuracion electrénica del dtomo
de carbono en el estado fundamental es 1s22s%2p?, con dos electrones llenando por
completo el orbital 1s, otros dos llenando el orbital 2s, y los dos electrones restantes
ocupando distintos orbitales 2p. Sin embargo, cuando varios atomos de carbono estan
proximos entre si, la interaccion entre orbitales hace que sea mas favorable energé-
ticamente que un electrén del orbital 2s se excite hasta el orbital 2p desocupado,
forméndose de esta manera enlaces covalentes entre diferentes atomos vecinos. Por
lo tanto, pasamos a tener cuatro estados cuanticos idénticos que pueden combinarse

entre si formando diferentes orbitales hibridos sp’ (con i = 1,2 o 3).

La red atémica con forma de panal de abeja del grafeno es el resultado de la
hibridacién sp? entre un orbital s y dos orbitales p por cada 4tomo de carbono, a
partir de la cual se forman enlaces covalentes o con un angulo caracteristico de 120°
entre atomos vecinos. Este enlace fuerte es el responsable de la extrema dureza de
la red bidimensional de atomos de carbono, los cuales permanecen separados una
distancia ag = 1.421 A. El orbital p (o también denominado 7) que queda libre se
orienta perpendicularmente a la lamina de atomos y puede formar un enlace débil
con los orbitales de los carbonos de otras laminas mediante interaccion de van der
Waals. La singular estructura de bandas electronicas del grafeno esta producida por
estos orbitales 7 y consta de dos bandas: una inferior, o también llamada banda de
valencia, y una superior o de conduccién. A bajas energias sus formas se asemejan a
las de dos conos invertidos tocandose en un tinico punto. A este punto se le denomina
comunmente punto de Dirac (su posicién exacta en el espacio de momentos se halla
en el vértice del hexdgono que conforma la primera zona de Brillouin del grafeno)
y su importancia reside en que determina el nivel de Fermi del grafeno en estado
neutro (también denominado grafeno pristino o grafeno sin dopar). En este estado
de neutralidad, la banda de valencia estd completamente llena con electrones
deslocalizados, mientras que la de conducciéon permanece vacia. En consecuencia,

podemos tratar al grafeno en estado neutro como un semiconductor con una banda
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prohibida de valor nulo, de manera que tnicamente son posibles transiciones inter-

banda de pares electron-hueco.

La oscilacion colectiva de los electrones deslocalizados 7 en grafeno da lugar a
los llamados plasmones intrinsecos 7 cuyas energias oscilan entre los 4.5 y 7eV, lo
que los situa en la regién ultravioleta del espectro electromagnético. Ademas, es-
tos plasmones son muy poco ajustables lo que limita su relevancia en nanofotoénica.
Sin embargo, cuando agregamos electrones adicionales al grafeno, éstos comienzan a
llenar estados desocupados en la banda de conduccién hasta un cierto nivel que de-
termina el nuevo valor del nivel de Fermi Er = Avgy/7n, donde n es la densidad por
unidad de area de estos electrones adicionales y vg & ¢/300 su velocidad de desplaza-
miento (ndtese que debido a la relacién de dispersion lineal, los electrones adicionales
son tratados como particulas sin masa). De este modo, una banda prohibida de an-
chura 2FEr se abre y, ademas de las ya mencionadas transiciones inter-banda, ahora
también son posibles transiciones intra-banda de pares electrén-hueco. El proceso
de agregar nuevos electrones se conoce como dopado (més concretamente, este caso
se denomina dopado tipo n) y, debido a la simetria de bandas, se produce el mismo
efecto cuando electrones 7 son extraidos de la banda de valencia (i.e., dopado tipo p,
o mediante huecos en vez de electrones). El hecho de que el nivel de Fermi Ep (tam-
bién llamado nivel de dopado) sea ajustable con n asi como la peculiar relacién de
dispersién lineal, son propiedades tnicas del grafeno que lo distinguen notablemente
de los metales nobles estudiados habitualmente en nanofoténica. A diferencia del
grafeno, n en los metales nobles apenas es ajustable y, ademas, cambios ostensibles
en n apenas afectan de manera significativa a las propiedades optoelectrénicas del

metal.

A las oscilaciones colectivas de los electrones adicionales en grafeno dopado se
las conoce como plasmones extrinsecos o plasmones de Dirac. Sus frecuencias de
resonancia abarcan desde los THz hasta el infrarrojo cercano y habitualmente se
suelen dividir en dos subgrupos distintos dependiendo de sus propiedades de propa-
gacion: los polaritones del plasmon de superficie (SPPs, por su acrénimo en inglés)
y los plasmones de superficie localizados (LSPs). Los primeros son modos electro-
magnéticos que se propagan en laminas de grafeno extendido situadas en la interfaz
de separacion entre dos medios dieléctricos. Paradéjicamente, estos plasmones no

pueden ser excitados directamente con luz externa debido a los diferentes vecto-
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res de onda de la luz y del propio plasmén. En la actualidad se emplean distintas
estrategias para evitar este problema: las configuraciones Otto y Kretschmann, la
reflexion interna total, el dopado periddico, etc. Por otro lado, los LSPs son modos
electromagnéticos confinados en nanoestructuras finitas que si pueden ser eficien-
temente excitados con luz externa. Ambos subgrupos de plasmones presentan en
grafeno unas propiedades interesantes si se comparan con sus homoénimos en me-
tales nobles (e.g., poseen mayores tiempos de vida medios 7 asi como factores de
calidad ) superiores, son también mas propensos a sufrir efectos épticos no lineales
y permiten incrementar el campo eléctrico inducido en varios 6rdenes de magnitud).
Asimismo, los SPPs en grafeno presentan una longitud de onda mucho mas corta
que A, lo que se traduce en un mayor grado de confinamiento del campo eléctrico.
El control de las anteriores propiedades ha estimulado el desarrollo de nuevos mo-
delos tedricos capaces de predecir la respuesta plasmoénica del grafeno y, por tanto,
fomentar su aplicacion en dispositivos para éptica no lineal, deteccién y modulacion

de luz, procesado de senales, etc.

La dispersion 6ptica de los plasmones de Dirac en grafeno esta determinada por la
dinamica de los electrones adicionales ocupando la banda de conduccion. El modelo
mas simple capaz de proporcionar una descripcion razonable es el modelo de Drude,
en el cual inicamente se asumen transiciones intra-banda a temperatura nula y un
posterior decaimiento de los electrones a través de multiples canales: colisién con
fonones, con defectos de red o, en menor medida, con otros electrones. A pesar de
su aparente simplicidad, este modelo se puede considerar una buena aproximacion
cuando las energias de los fotones incidentes son bastante inferiores al nivel de
dopado. Si esta condiciéon no se cumple, un modelo mas elaborado y realista conocido
como la aproximacion de fase aleatoria (RPA) nos permite incluir las transiciones
inter-banda y los efectos de temperaturas finitas. En el primer capitulo de esta tesis

comparamos al detalle ambos modelos para multiples niveles de dopado.

Para describir teéricamente el comportamiento de los campos electromagnéti-
cos asociados al grafeno en el limite clasico, es necesario hallar la solucion de las
ecuaciones macroscopicas de Maxwell, incluyendo el efecto del retardo temporal en
la propagacion de la luz. A lo largo de esta tesis, obtendremos la soluciéon exacta
de las ecuaciones de Maxwell a través del método de elementos de frontera (BEM).

En BEM, un sistema de ecuaciones (equivalente a las ecuaciones macroscopicas de
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Maxwell) que contiene integrales de superficie se evalia en las fronteras de una de-
terminada nanoestructura de grafeno. En cuanto a las caracteristicas electromagné-
ticas de esta nanoestructura, asumimos las siguientes condiciones: es no magnética,
local (i.e.,no depende de la componente paralela del vector de onda kj de la luz
incidente) y lineal (i.e.,la relacién entre la polarizacion de la nanoestructura y el
campo eléctrico externo asociado al haz incidente es lineal). Una vez determinadas
las condiciones de frontera, obtenemos la solucién numérica rigurosa del sistema
de ecuaciones mediante una discretizacion finita en las fronteras de la muestra de
grafeno con forma arbitraria. A pesar de la versatilidad de este método, hallar una
solucion veraz puede consumir mucho tiempo de calculo. Sin embargo, tal y como
mostramos en el primer capitulo de esta tesis, para nanoestructuras suficientemente
pequenas (i.e., D < \), podemos trabajar con seguridad en el limite electrostati-
co (i.e., limite sin retardo temporal en donde asumimos ¢ — 00). En este contexto
electrostatico, la interaccion entre la luz y el grafeno se considera instantdnea y
nuestro problema se reduce a encontrar la solucién de la ecuacién de Poisson con las
condiciones de frontera apropiadas. Como también exponemos en este primer capi-
tulo, la respuesta plasmonica del grafeno concuerda excelentemente con la solucion
numérica completa de las ecuaciones de Maxwell incluyendo el retardo temporal.
Finalmente, en la tltima seccién de este primer capitulo, derivamos analiticamente
una ley de escala electrostatica muy 1util que nos permite obtener las frecuencias de
resonancia de los LSPs para cualquier forma arbitraria, tamano, entorno dieléctrico
o nivel de dopado de la nanoestructura de grafeno. En concreto, mostramos que las
frecuencias de resonancia de los LSPs evolucionan aproximadamente siguiendo la

condicién w, </ Er/D, la cual ilustra lo altamente ajustables que son.

El proceso de dopado experimental de grafeno generalmente se realiza a través
de métodos quimicos o mediante la aplicaciéon de un potencial electrostatico. En
este ultimo caso, se aplica una diferencia de potencial eléctrico sobre el grafeno con
respecto a tierra, generandose un campo eléctrico uniforme Eg en direccion perpen-
dicular sobre uno de los lados de la nanoestructura de grafeno. De este modo se
induce una densidad de electrones adicionales n = —FEj/4me que se distribuye uni-
formemente sobre el grafeno con el fin de apantallar por completo el campo eléctrico
externo. Es muy comin encontrar en la literatura estudios sobre LSPs en grafeno

asumiendo esta distribucién uniforme de n. Sin embargo, en experimentos reales se



6 RESUMEN

observa que n presenta una distribucion espacial no homogénea, con un perfil que
depende de la configuraciéon geométrica especifica y que, por tanto, afecta a la res-
puesta plasmonica del grafeno. En el segundo capitulo de esta tesis analizamos este
comportamiento no homogéneo estudiando en el limite clasico diferentes configura-
ciones realistas de dopado en nanocintas (nanoribbons), nanodiscos y en laminas de
grafeno extendido. En particular, para las nanocintas estudiamos tres tipos distintos
de dopado: (i) nanocintas individuales a las que aplicamos un determinado potencial
eléctrico, (ii) pares de nanocintas coplanarias con potenciales de signo opuesto y (iii)
nanocintas individuales bajo el efecto de un campo eléctrico uniforme paralelo a su
superficie. Para los nanodiscos estudiamos un dopado mediante (i) un determinado
potencial eléctrico y (ii) mediante una carga puntual situada en el eje de simetria
del disco y proxima a su superficie. Finalmente, para la ldmina de grafeno extendido
estudiamos un dopado periédico con (i) cargas puntuales de igual signo y (ii) cargas
de signo alterno, en los cuales se generan distintas bandas plasmoénicas de los SPPs.
Como resultado global, hallamos que los plasmones de Dirac son altamente sensi-
bles a las distribuciones no homogéneas de dopado y que, por tanto, una respuesta
plasmoénica particular ha de ser considerada para el correcto disefio de dispositivos

6pticos que contengan grafeno.

En el caso de que la longitud caracteristica de una nanoestructura de grafeno sea
del orden de la longitud de onda de Fermi (i.e., la longitud de onda de de Broglie cerca
del nivel de Fermi, que en el grafeno resulta ser A\p = \/m = hvp/Er ~ 10.33nm
cuando Er = 0.4eV; noétese que la dependencia con n en grafeno contrasta con
el valor casi constante en los metales nobles: Ap ~ 0.52nm en el caso del oro),
el electromagnetismo clésico pierde su validez y es necesario un modelo mecano-
cuantico para poder describir la respuesta plasmoénica del grafeno. En el tercer ca-
pitulo de esta tesis presentamos extensos calculos cudnticos obtenidos mediante un
modelo de enlace fuerte (TB) para la respuesta eléctrica, combinado con la RPA
para la respuesta 6ptica (nétese que con el modelo de TB se incluyen también efec-
tos no locales y de borde, en donde distinguimos dos tipos de terminaciones en la
muestra de grafeno: borde tipo brazo de silla y borde tipo zigzag). En particular,
observamos que para nanocintas estrechas de grafeno dopado (D = 6nm), tanto
en muestras individuales como en grupo produciendo interacciones electromagné-

ticas entre ellas, los calculos clasicos no tienen en cuenta miltiples efectos fisicos
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que afectan notablemente a la respuesta plasmonica del grafeno y que, por contra,
si observamos usando el modelo mecano-cuantico. Por ejemplo, en nanocintas in-
dividuales, cuando el nivel de dopado es inferior a las frecuencias de resonancia de
los LSPs (en este capitulo consideramos los modos dipolares de orden més bajo),
éstos se ven fuertemente afectados por los bordes tipo zigzag y decaen a través de
la excitacién de estados de borde con energia nula. Ademads, en el caso del borde
tipo brazo de silla, los LSPs también experimentan efectos no locales (aunque en
menor medida), dando lugar a corrimientos al azul y a ensanchamientos de los mo-
dos. Mostramos también en este tercer capitulo que los efectos no locales juegan
un papel importante en la interaccion de grupos de nanocintas a distancias cortas,
dando lugar a correcciones notables en las frecuencias de resonancia de los LSPs.
De hecho, basandonos en estos resultados, podemos afirmar que el grafeno es un

material muy apropiado para estudiar los efectos cuanticos y no locales sobre los

LSPs.

El cuarto capitulo de esta tesis estd dedicado al estudio de las intensas no linea-
lidades observables en la respuesta plasmoénica del grafeno dopado. En primer lugar
realizamos un minucioso informe de tres de los procesos no lineales mas importantes:
generacion del segundo armonico, generacion del tercer armonico y efecto Kerr. Pos-
teriormente, a partir de la ecuacidn de transporte de Boltzmann (BTE), en la cual
unicamente se consideran transiciones intra-banda de pares electrén-hueco a T' = 0,
conseguimos extender el formalismo de la ley de escala electrostatica a 6rdenes no
lineales en las expresiones de la conductividad y polarizabilidad eléctricas del gra-
feno. Finalmente, comparamos en detalle la respuesta plasmonica (no lineal) clasica
y cuantica (obtenida esta tltima a través de un modelo de TB similar al descrito
en el tercer capitulo, el cual tiene en cuenta también las transiciones inter-banda
y los efectos de temperaturas finitas) para pequenos nanotridngulos equildteros de
grafeno. Los resultados que presentamos muestran que la respuesta clasica subesti-
ma notablemente las no linealidades excepto para bajos niveles de dopado, lo que
revela la importancia crucial de tener un conocimiento pormenorizado de los efectos
no lineales.

Por ultimo, en el quinto capitulo mostramos el extraordinario potencial de los
LSPs en grafeno para poder identificar la estructura quimica de las moléculas. En

la actualidad, los procesos de identificacién de moléculas generalmente requieren



8 RESUMEN

el uso de técnicas de deteccién bastante ineficientes, ademdas de espectréometros y
haces de luz laser muy costosos. Con el fin de evitar estos inconvenientes, en es-
ta tesis presentamos un nuevo mecanismo de deteccién que tnicamente requiere el
uso de lamparas emitiendo en el rango del infrarrojo y nanodiscos de grafeno dopa-
do. Comprobamos semianaliticamente que los LSPs sustentados en los nanodiscos
contribuyen notablemente a la capacidad de la molécula de absorber o esparcir
(scatter) ineldsticamente los fotones del haz de luz incidente, cambiando al final
del proceso la energia roto-vibracional de la molécula. Estos procesos de absorcion
y esparcimiento son los principios elementales de ciertas técnicas de espectrosco-
pia muy comunes: intensificacion de la absorcion infrarroja en superficies (SEIRA)
e intensificacion de dispersion Raman en superficies (SERS). En nuestro caso, ha-
llamos incrementos de ~ 103 y ~ 10%, respectivamente. Como resultado fundamental
de este quinto capitulo destacamos que, mediante la integracion de la sefial de detec-
cién a lo largo de un amplio rango de frecuencias en funcién del nivel de dopado FF,
nos es posible identificar la naturaleza quimica de la molécula con una resoluciéon en
energia dada por la anchura espectral de los LSPs sustentados en los nanodiscos de
grafeno.

Como corolario, consideramos que los resultados presentados en esta tesis con-
tribuyen a ampliar el conocimiento teérico de la respuesta plasmoénica del grafeno.
En concreto, estudiamos la respuesta plasmonica de multiples geometrias con el ti-
pico dopado uniforme incluyendo los efectos de no localidades y no linealidades, y
también asumimos novedosas condiciones realistas de dopado no homogéneo. Por
todo ello, creemos que esta tesis verdaderamente sienta las bases tedricas de futuros

dispositivos experimentales basados en grafeno.



ABSTRACT

Graphene is a planar monolayer of carbon atoms tightly packed into a 2D honey-
comb lattice. Since its first experimental isolation by K. Novoselov and A. Geim in
2004, graphene has attracted an enormous interest due to its extraordinary optoelec-
tronic properties for nanophotonics (a branch of physics that studies the interaction
of light with matter over characteristic lengths in the nanometer range). Specifically,
its bidimensional nature and singular atomic structure are translated into an un-
conventional linear dispersion relation, very different from the parabolic relation in
typical noble metals.

When materials are structured over length scales that are smaller or comparable
to the wavelength of the incident light, their electromagnetic interaction displays
interesting phenomena, including the excitation of plasmons (i.e., collective oscilla-
tions of bonded electrons in noble metals or graphene). Due to their tight confine-
ment (below the diffraction limit of light), plasmons enable an intense light-matter
interaction, in addition to large electric field enhancement. Remarkably, plasmons
strongly depend on the shape and size of the supporting material, on the dielectric
environment, and on the number of oscillating bounded electrons (related to the de-
tailed electronic band structure of the material). A strict control of these properties
is required to engineer the plasmonic response of the sustaining nanostructures.

The honeycomb lattice of graphene is the result of the sp? hybridization bet-
ween one s orbital and two p orbitals per carbon atom forming o-bonds with a
characteristic angle of 120° between them. A third p (also named as 7) orbital re-
mains oriented perpendicularly to the atomic layer and can bind weakly through
van der Waals interaction with additional carbon layers or other materials. The uni-
que band structure of graphene produced by these 7 orbitals consists of a lower or

valence band and an upper or conduction band, which at low energies resemble the
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shape of two inverted cones touching at one point. This point is the so-called Dirac
point and marks the Fermi level in the neutral state. In this state, the valence band
is completely filled with delocalized 7 electrons, while the conduction band is empty.
The absence of an optical gap between both bands permits one to treat graphene in
this neutral state as a zero-energy bandgap semiconductor, where only electron-hole

pair interband transitions can occur.

The collective oscillation of the 7 electrons gives rise to the so-called 7 intrinsic
plasmons with energies = 4.5 eV, confining them in the ultraviolet region of the elec-
tromagnetic spectrum. Moreover, these plasmons present a low tunability, so their
relevance for nanophotonics is limited. Interestingly, when extra electrons are added
to graphene, they start filling unoccupied states in the conduction band up to a
certain level that corresponds to the new shifted Fermi level Er = hvgy/7n, where
n is the density per unit area of these extra electrons, and vg & ¢/300 their velocity.
Therefore, an optical gap of width 2Er opens, and electron-hole pair intraband tran-
sitions are enabled in addition to interband. The process of adding new electrons is
known as doping, and due to the symmetry of the bands, it produces the same effect
as when removing 7 electrons from the lower cone (i.e.,doping with holes instead
of electrons). The tunability of the Fermi level with n, as well as the peculiar linear
dispersion relation, are unique properties of graphene in comparison with typical
noble metals. In contrast to graphene, noble metals do not show a salient tunability

as significant changes in n barely affect their global optoelectronic properties.

The collective oscillations engaging extra electrons in doped graphene are known
as Dirac plasmons, and their resonances embrace from THz to near infrared fre-
quencies. They are commonly subdivided into two different subgroups depending on
their propagating features: surface plasmon polaritons (SPPs) and localized surface
plasmons (LSPs). The former are propagating electromagnetic modes sustained by
extended graphene layers acting as an interface layer between two different dielec-
tric media, and that cannot be directly excited by external light due to momentum
mismatch. The latter are confined modes sustained by finite nanostructures that,
in turn, can be effectively excited by light. Dirac plasmons present a bunch of ap-
pealing properties in comparison with those of noble metals (e.g., they have longer
lifetimes and higher quality factors, they show strong nonlinearities, and they possess

the ability to boost the electric field enhancement by several orders of magnitude).
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Furthermore, SPPs display a much shorter wavelength than the incident light, which
translates into a larger degree of field confinement. The control of these properties
has spurred the development of new theoretical models able to predict the plasmo-
nic response of graphene, promoting its application to optical detection, sensing,

nonlinear optics, and light modulation.

The optical dispersion of graphene Dirac plasmons is governed by the dynamics
of the extra electrons in the conduction band. The simplest model capable of giving
a fairly accurate description is the Drude model, where only intraband transitions
at zero temperature are considered. Despite its simplicity, this model is considered
a good approximation at photon energies well below the doping level. If this con-
dition is not satisfied, a more elaborate and realistic model like the random-phase
approximation shows up including the effects of a finite temperature and interband
transitions. We present an extensive comparison between both models for different

doping levels in the first chapter of this thesis.

The theoretical electromagnetic modeling of graphene in the classical limit is
based on the solution of macroscopic full-retarded Maxwell’s equations. Throughout
this thesis, the exact solution of Maxwell’s equations is obtained by the boundary-
element method. Within this procedure, a system of surface-integral equations is
evaluated at the boundaries of a non-magnetic, local (i.e.,independent of the pa-
rallel wave vector k| of the incident light), and linear (i.e., polarization responding
linearly to the electric field of the incident light) graphene nanostructure with an
arbitrary shape. After determining the boundary conditions, a rigorous numerical
solution is accomplished through a finite discretization of the graphene boundaries,
with the carbon layer modeled as a thin film, and with a denser surface grid pla-
ced near the film edges. Despite the versatility of this method, finding a solution
can be a highly time-consuming process. However, for nanostructures with charac-
teristic length D much smaller than the incident light wavelength, we can safely
work in the electrostatic limit (i.e.,non-retarded approach). Here, the interaction
between light and graphene is regarded as instantaneous, and the problem reduces
to solving the Poisson equation with the appropriate boundary conditions. Under
these assumptions, we observe that the plasmonic response of graphene derived from
electrostatics is in excellent agreement with the full numerical solution of Maxwell’s

equations. Moreover, in the last section of the first chapter, we derive a useful analy-
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tical electrostatic scaling law that permits obtaining the resonance frequencies of the
LSPs for any arbitrary shape by just knowing the size, doping level, and dielectric
environment of the graphene nanostructure. Specifically, we show that the resonance
frequencies of the LSPs fulfill approximately the expression w, « y/Er/D, which

already illustrates their strong tunability.

In actual experiments, the doping of graphene is generally achieved via chemical
methods or electrostatic gating. In the latter, a potential difference with respect to a
backgate is applied to graphene, thus inducing a perpendicular electric field Eq that
is uniformly applied to one side of graphene, so that an induced doping density of
electrons n = —Ey/4me is distributed to screen the field completely. For simplicity,
LSPs are extensively studied in the literature assuming a uniform distribution of
n over the graphene nanostructure. However, we find that n is actually distributed
inhomogeneously with a profile depending on the specific geometrical configuration,
thus affecting the plasmonic response of the carbon film. We analyze this behavior
in the second chapter of this thesis, where we classically study different realistic
doping configurations in nanoribbons, nanodisks, and extended graphene layers. We
find that Dirac plasmons are sensitive to inhomogeneous doping distributions, and
thus, the particular plasmonic response needs to be considered for the correct design

of device applications.

When the characteristic length of the nanostructure is of the order of the Fer-
mi wavelength (i.e.,the de Broglie wavelength in the vicinity of the Fermi energy,
which for graphene is A\p = \/M = hvp/Er =~ 10.33nm when Fr = 0.4€V; note
that its tunability with n contrasts with the nearly constant value in noble metals:
Ar &~ 0.52nm in gold), classical electromagnetism is no longer valid, and a quantum-
mechanical approach for the description of the plasmonic response is necessary. In
the third chapter of this thesis, we provide extensive quantum calculations (inclu-
ding nonlocal and edge effects, where we can distinguish between armchair or zigzag
terminations) through a tight-binding model, in combination with the random-phase
approximation. In particular, we notice that for narrow single and interacting na-
noribbons, classical calculations disregard several physical effects that affect the
plasmonic response of graphene. For example, when the doping level is lower than
the resonance frequencies of the lowest-order dipolar LSPs, these are strongly quen-

ched by zigzag edges and decay through the excitation of electronic zero-energy edge
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states. Besides, for armchair terminations, LSPs are also affected by nonlocalities
leading to slight blueshifts and broadening. Furthermore, we note that nonlocal ef-
fects play an important role in interacting islands at short separations, which give
rise to remarkable corrections in the resonance frequencies of the sustained LSPs.
In fact, we conclude that graphene is a suitable platform for studying the quantum
effects and nonlocalities on LSPs.

The fourth chapter of this thesis is devoted to the study of the strong non-
linear plasmonic response of doped graphene. Specifically, we present a review of
three of the most important nonlinear processes: second-harmonic generation, third-
harmonic generation, and Kerr effect. Moreover, starting from the Boltzmann trans-
port equation, we extend the electrostatic scaling law formalism to nonlinear orders
of the graphene conductivity and electric polarizability. We also provide a detai-
led comparison between the classical and quantum nonlinear plasmonic response of
small equilateral graphene nanotriangles. We find that the classical approach un-
derestimates nonlinearities except for low levels of doping. Our results reveal the
crucial relevance of a comprehensive knowledge of nonlinear effects in graphene.

Finally, in the fifth chapter, we show the outstanding potential of graphene LSPs
to resolve the chemical identity of molecules. It is known that the identification of
molecules usually involves the employment of inefficient sensing techniques inclu-
ding the use of costly spectrometers and laser sources. In order to avoid this, we
present a new sensing mechanism that simply requires infrared lamps and doped
graphene nanodisks. We prove that graphene LSPs allow the molecule to enhance
greatly its capability to absorb or inelastically scatter impinging light changing its
roto-vibrational energy. These absorption and scattering processes are the elemen-
tary principles of the spectroscopy techniques known as surface-enhanced infrared
absorption and surface-enhanced Raman scattering, for which we obtain intensity
enhancements of ~10% and ~ 10%, respectively. We claim that by just integrating
the sensing signal over a broadband spectral range as a function of the graphene
doping level Er, we can identify the chemical fingerprints of the molecule with an
energy resolution given by the spectral width of the graphene LSPs.

In conclusion, we consider that our results contribute to broadening the theoreti-
cal understanding of the plasmonic response of graphene under the usual assumption

of uniform doping including the effects of nonlocalities and nonlinearities, and also
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under novel realistic inhomogeneous doping conditions. We believe that this thesis

paves the way for future experimental studies of graphene-based nanodevices.



CHAPTER 1

INTRODUCTION

In this initial chapter, we discuss the general properties of graphene, the key material
to which this thesis is devoted. In particular, we start by succinctly analyzing its his-
tory in the context of the discovery of different carbon allotropes (i.e., diverse struc-
tural forms of carbon). We continue with a brief review on how to grow graphene
experimentally, and then we study its singular band structure and multiple optoelec-
tronic properties derived from its bidimensional character. For this purpose, we use
a macroscopic classical approach for the electromagnetic description of graphene.
Additionally, the quantum-mechanical model used in further chapters for a detailed
microscopic study is also presented here. Finally, we analyze the main properties of

the surface plasmons sustained by graphene.

1.1 HISTORY OF GRAPHENE AND OTHER CARBON
ALLOTROPES

The first carbon allotrope known in history was the 3D graphite [see Fig.[1.1](c)].
It was discovered in England in the 16th century [1] and chiefly used in pencils.
Although the functionality of pencils promptly spread all over the world, the ongoing
term “graphite” was not conceived until 1789 by the geologist A. Werner, thus
remarking its use for graphical reasons [2]. The atomic structure of graphite consists

of stacked graphene layers and its utility for writing derives from the weak van der

15
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(@)

Figure 1.1: Plots of different carbon allotropes where each sphere represents a carbon
atom. (a) 0D molecule of Cgg, (b) 1D carbon nanotube, and (c) 3D graphite.

Waals forces between the different sheets. In fact, after pressing a pencil against a
sheet of paper, stacks of graphene are exfoliated from the graphite, and it is actually
possible to find individual graphene layers adhered to the surface.

Fullerenes are carbon molecules arranged in a spherical-like shape so that they
can be considered as a 0D structure. The most representative fullerene structure
is the Cgp molecule also called “buckyball” [see Fig.[I.1[(a)]. This Cgo molecule was
first detected in 1985 [3], although its existence had been predicted previously [4].
Besides, fullerenes can be directly constructed from graphene with the replacement
of some hexagons by pentagons creating positive curvature defects that result in a
wrapped-up structure [5].

Single-walled carbon nanotubes (CNTs) were discovered in 1991 [6]. They present
only hexagons wrapped into a seamless cylinder [see Fig.[1.1(b)], so that they are
regarded as 1D cylindrical molecules with a diameter in the order of the nanometer.

However, due to the lack of tools for searching carbon flakes, we had to wait un-
til 2004 for the milestone of the experimental isolation of the 2D carbon allotrope:
graphene [7]. Graphene is a one-atom-thick monolayer of carbon atoms tightly ar-
ranged in a purely bidimensional honeycomb lattice [see Fig.[l.2(a)]. The physicists
K. Novoselov and A. Geim from Manchester University (both awarded the Physics
Nobel Prize in 2010) showed that, by just rubbing graphite over a silica substrate
in a process known as “mechanical exfoliation”, graphene could be readily detected
by regular microscopy techniques [8]. Soon after, simultaneously with P. Kim from

Columbia [9], they found evidence of the quantum Hall effect in graphene [10].
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1.2 SYNTHESIS OF GRAPHENE

In this section, we review the main techniques so far developed for the synthesis of
graphene. Some of them are feasible with modest means while others require ad-
vanced experimental equipment. Furthermore, the resulting samples do not present
exactly the same properties. Specifically, the main synthesis techniques are:

e Mechanical exfoliation: This is the most straightforward and, as mentioned in
the previous section, the original technique used for the synthesis of graphene. Its
principal advantages are that it is an easy way of producing graphene and that the
resulting layers present high quality and great electrical properties.

However, this technique presents a serious disadvantage: the distribution of the
layers over the substrate is completely random and the subsequent identification of
single layers of graphene is very time-consuming and difficult to scale up.

e Epitaxial growth: This promising technique consists of exposing hexagonal-like
silicon carbide substrates (SiC) to temperatures ~ 1300 °C so that the silicon atoms
evaporate and the remaining carbon atoms form graphene [11]. Unfortunately, the
charge distribution of the remaining graphene nanostructures is not always uniform.

e Chemical vapor deposition (CVD): This is the most popular method to produce
relatively high-quality graphene on a large scale. In this technique, disassociated
carbon atoms in gas phase are accumulated on a substrate at a temperature of
~1000°C. The main problem with this technique is the complicated separation of

graphene from the substrate once the system has cooled down.

1.3 OPTOELECTRONIC PROPERTIES

1.3.1 sp? HYBRIDIZATION

Carbon, the elementary basis of all the organic molecules, is the fundamental compo-
nent of graphene. Its most common isotope, %C, possesses 6 protons and 6 neutrons
in the atomic nucleus, and 6 electrons moving freely in different orbitals. Thus, the
electronic configuration of a carbon atom in the ground state is 1s?2s?2p?, with two
electrons confined in the inner orbital 1s, other two electrons in 2s, and the two

remaining allocated in the orbitals 2p. The energy difference between the 2s orbital
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and the three 2p orbitals (we name them as 2p,,2p,, and 2p,) is ~4eV, hence in
the ground state it is more favorable in terms of energy that two electrons fill the

orbital 2s and the other two stay in distinct orbitals 2p.

However, when various carbon atoms are in close proximity, it is more favorable
to excite one electron from the 2s orbital to the remaining 2p empty orbital, thus
forming covalent bonds between electrons of different atoms. Since the energy gain
with the covalent bond is >4¢€V, the system tends to stay in this excited state.
Therefore, we have four identical quantum states |2s),|2p,), |2p,), and |2p,) that

can combine resulting in different sp® (i = 1,2, and 3) hybrid orbitals.

Graphene presents sp® hybridization [i.e., the orbitals 2s, 2p,, and 2p, hybridize
and combine among themselves forming a trigonal planar structure with an angle of
120° between the carbon atoms as shown in Fig.[1.2(a)]. Carbon atoms in graphene
are separated a distance ag= 1.421 A and are strongly bonded between them by
means of covalent o bonds, which are responsible for the strength of the planar
carbon structure. The remaining 2p, or m orbital is oriented perpendicularly to
the atomic plane and can bind covalently with other 7 orbitals of different atoms.
Each carbon atom of graphene possesses one m orbital containing one 7 electron,
and then, due to the spin degeneracy (i.e., g = 2) the 7 orbitals are half populated.
These 7 electrons are delocalized and, as we explain in the next section, they form
two bands: a lower-energy one (7, valence, or bonding band that is completely filled
with electrons) and an upper-energy one (7*, conduction, or anti-bonding band that

is completely empty).

1.3.2 GRAPHENE BAND STRUCTURE

The atomic structure of graphene is plotted in Fig.|1.2(b) and can be understood as
a triangular lattice with two atoms per unit cell (see shaded area) composed by two

intersecting triangular Bravais sublattices. The lattice vectors areﬂ

a|; = 50 (3, \/g) , Q9 = 50 (3, —\/g) . (11)

LGaussian units are used in all the equations throughout this thesis.
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(a) atomic structure (b) real lattice (c) reciprocal lattice

Figure 1.2: Bidimensional honeycomb lattice of graphene. (a) Sketch of the atomic
structure of 2D graphene. (b) Triangular lattice of graphene formed by two in-
tersecting triangular Bravais sublattices. The carbon atoms of each sublattice are
represented by the green and orange dots, respectively. The lattice vectors are a;
and as. The vectors d;, 02, and d3 connect nearest neighbor atoms. The distance

between the carbon atoms is ag = 1.421 A. The shaded region is the area of the
unit cell Ay = 3v/3a2/2. (c) Reciprocal lattice of graphene. The yellow hexagonal
region represents the first Brillouin zone with center at I while the brown and the
grey represent the second and the third, respectively. The reciprocal lattice vectors
(blue arrows) are by and by. The Dirac points are represented by red dots in the
corners of the 1BZ and named as K and K.

The resulting reciprocal lattice is shown in Fig.|1.2(c) and presents vectors in the

momentum space with coordinates

27 2
b=—(1,v3), by=—(1,-V3), (1.2)
3ag Qo

that fulfill the condition a; - b; = 27d;;, where ¢;; is the Kronecker delta. Further-
more, the vectors connecting the three nearest neighbor atoms in the real space

are

81 = —ag(1,0), 8= %(1, V3), & = %(1, —V3). (1.3)

The first Brillouin zone (1BZ) of graphene corresponds to the yellow shaded hexag-
onal region with center at the I point as detailed in Fig.[1.2(c). The vertex of this

1BZ are named as K and K  points, and present the coordinates

K:i(\/ﬁ,1), K’

i (V3,-1). (1.4)

27
B 3\/5@0
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They are usually called Dirac points for reasons that we explain below and play a
central role in the optoelectronic properties of graphene. Interestingly, the other
four vertex of the 1BZ are equivalent to either K or K because the former can
be obtained through a translation of the reciprocal lattice vectors. So that by just
considering the pair of Dirac points K and K', we can describe graphene in the
momentum space (i.e., graphene is doubly degenerate with g, = 2 as the valley

degeneracy).

The optoelectronic response of graphene at low energies is governed by the exci-
tation of electrons from the 7 to the 7* band. A simple tight-binding model (TB)
[12], 13] is sufficient to provide an excellent quantitative description of these bands.
Here, 7 electrons can hop between nearest and next-nearest sites. The electronic
states j of one 7 electron in the valence band are constructed as a linear combina-
tion of the states 3", a;; |I) of the orbitals 2p,, where [ runs over each carbon site.
Remarkably, the influence of the ¢ band is not considered since it presents low en-
ergy only contributing to a nearly uniform background polarization. The TB model

yields two energy bands with a form given by [12]

Ei _ :l:t’)/k
KT F sy

(1.5)

where k is the wave vector in the momentum space while the + superindex in
ex refers to the upper or 7* band, and — to the lower or m band. The parame-
ter t ~2.8€eV is the nearest neighbor hopping energy and its value —deduced from
scanning tunneling microscope (STM) measurements of graphene nanoislands [14]-
agrees with ab initio calculations [I3]. The parameter s ~ 0.1€V corresponds to the
next-nearest-neighbor hopping energy [15]. Finally, the dependence on the recipro-

cal vectors is enclosed in the dimensionless parameter

T = \/1 + 4 cos? <\/§§zﬂ0> + 4 cos (\/ggy&o> oS (3%@0)' (1.6)

We represent in Fig.[1.3((a) the full band structure of graphene resulting from this
TB approach. Due to the consideration of non-zero next-nearest-neighbor hopping

energy, both bands are asymmetric with respect to the level of zero energy. Each
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Figure 1.3: Graphene band diagram. (a) Spectrum of the electronic band struc-
ture of graphene given by Eq. , considering the nearest neighbor hopping en-
ergy t ~2.8eV, and the next-nearest-neighbor hopping energy s~ 0.1eV. The yellow
hexagon represents the limits of the 1BZ depicted in Fig.|[1.2(c). (b) Slice of panel
(a) when k,ag = 27/3, showing the linear dispersion near the Dirac points (K and
K'), where both bands are degenerate and get the same null value (i.e., Bp = 0).
The upper band (blue curve) is the so-called 7* or antibonding band while the lower
(green curve) is the 7 or bonding band.

band contains the same number of states, and since the electron of each carbon
atom can occupy either a spin-up or spin-down state, the m band is completely full,
while the 7 remains empty. We observe that the gap between both bands closes at
the Dirac points. These points are the center around which low-energy excitations
are created and also mark the Fermi level (Er = 0) of pristine (undoped) graphene.
Furthermore, due to the time-reversal symmetry, at low energies the bands fulfill

the condition € = €_x.

In Fig.b) we plot the intersection of the band structure with the plane k,aq =
27/3. As we can observe, the bands around the Dirac points resemble two inverted
cones (Dirac cones), and at energy scales < 1€V, they show an approximately linear
dispersion relation. At this point, it is convenient to define the bidimensional vector
q = k — K, as the momentum measured relatively to the Dirac points which fulfills

lq| < |K]|. If we neglect the next-nearest-neighbor hopping energy (s = 0) and we
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expand the expression of Eq. ((1.6) around q = 0, we obtain

q 2
e ~ Lhvglg| + O (?) , (1.7)

where vp = (3tag/2h) ~ ¢/300 is the Fermi velocity in graphene that is independent

of the electron energy.

A linear dispersion relation is generally associated with massless particles like
photons and can be quantum mechanically described by the relativistic Dirac equa-
tion [16]. Moreover, ultrarelativistic particles like neutrinos (the kinetic energies are
much higher than their rest masses energy) can be also described by this equation
if their small but finite masses are neglected. Note that if this approximation is
dropped, neutrinos are described by coupled Dirac equations with different mass
states [I7]. So the reason why the vertex of the 1BZ in graphene are called Dirac
points is because of the resemblance to the electron and positron bands touching at
the zero momentum in the zero-mass limit of the Dirac equation, and also because

the dynamics of graphene electrons can be fully described by this Dirac equation.

Therefore, due to the massless-like behavior of graphene electrons, we can di-
rectly obtain quantities like the charge carrier density n and the cyclotron mass m}.
The electronic density depends on the Fermi surface which separates the occupied
from the unoccupied electronic states. Considering that graphene is a bidimen-
sional material of characteristic size D, the number of electrons or charge carriers in
graphene is defined as N, = g5¢, {T(‘k‘% /(2m/ D)Q]. We include the valley degeneracy
due to the contribution of both Dirac points in each 1BZ. Hence, the charge carrier

density in graphene n = N,/D? finally reads
n=—. (1.8)

Additionally, the cyclotron mass is defined in the semiclassical approximation
[18] as

W O[nk*(e)] _ hkp h\/ﬁ (19)

e=Ep U UF

*

c ox Oe

m

This variable value is in contrast to the constant value in noble metals due to their

parabolic dispersion relation.



1.3. OPTOELECTRONIC PROPERTIES 23

5 “Van Hove
= singularities
i rd N
|95]
Gy
S
Ly
7
-
8
O°Q3 2 -1 _ 0 1 2 3

Energy/t

Figure 1.4: Scheme of the electronic density of states per unit cell (red solid curves)
as a function of the energy normalized to the nearest neighbor hopping energy
t~2.8eV. We neglect the next-nearest-neighbor hopping energy. The blue dotted
lines represent the linear-like evolution around the Dirac points given by Eq. .
The divergences at energies equal to £¢ are Van Hove singularities.

1.3.3 DENSITY OF STATES

Another quantity that indicates the uniqueness of graphene is the electronic density
of states per unit cell p(e) = ON,./Je. Specifically, it gives the number of electronic
states N, below a fixed energy e. In the absence of next-nearest-hopping energy
(i.e.,s = 0), the full analytical expression of the density of states [19] can be found
in Eq. (14) of Ref. [20], and it is depicted within red solid curves in Fig.[1.4 In the
vicinity of the Dirac points, the expression of the density of states can be simply

approximated as [20]
. 2A0|€‘

==,
mh?vg

ple) (1.10)

where Ay = 3\/§a(2)/ 2 is the area of the unit cell. This approximated behavior is
represented by blue dotted lines in Fig.[I.4]

The first conclusion extracted from Eq. is that the density of states per
unit cell in graphene actually evolves with the energy, which is in contrast to the
usual constant response of electrons in 2D materials p(e) = m?Ay/mh? that possess
an energy dispersion ¢ = h%¢?/2m?. Moreover, both the full analytical and the

approximated solution vanish at the Dirac points. Finally, we need to remark that
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the divergences observable in Fig.[I.4] at ¢ energies correspond to the so-called
Van Hove singularities [2I] which always appear at the border of the 1BZ for wave
vectors situated exactly in between the Dirac points. This is because the density of
states in the vicinity of the Dirac points approximately evolves with the inverse of
the derivative of the energy with respect to the momentum, and from Fig.(b) we

observe that at half distance between K and K, the curves are flat.

1.3.4 HIGH ELECTRICAL MOBILITY

The electrical mobility p —the capability of electrons to move as a response to an
electric field— is mainly determined by the scattering mechanisms of electrons with
phonons (vibrational modes of the atomic lattice), lattice defects, or other electrons.

The electrical mobility in graphene is remarkably higher compared to typical
noble metals. At low temperatures (< 100 K), the graphene mobility barely changes
[10]. This indicates that in this range, the scattering mechanisms are dominated by
the lattice defects, which are nearly temperature independent. Interestingly, these
lattice defects can be produced extrinsically or intrinsically. The former appear
in different forms such as vacancies, adatoms, surrounding charges, or geometrical
defects like edges and cracks. The latter are produced by topological defects and
surface ripples.

At room temperature, other aspects like the method of fabrication, the high
sound velocity or the suppression of backscattering effects affect directly the reach-
able graphene mobility. For example, experimental transport measurements esti-
mate that the electron mobility in graphene [22] is p ~ 10000 cm?/(V's). For exfo-
liated graphene at low temperatures, it can reach up [23] to p ~ 20000. However,
even higher mobilities have been observed in boron nitride supported graphene [24]
(1 =~ 60000), and in high-quality suspended graphene [25] (¢ > 100000).

1.4 ELECTROMAGNETIC MODELING OF GRAPHENE

In this section, we present various theoretical ways of describing the interaction of
graphene with external light, ranging from a classical approach to more elaborate

microscopic quantum-mechanical models. The applicability of the former vanishes
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when the characteristic size of the graphene nanostructure is of the order of the
Fermi wavelength (A\p = \/m = hvp/Er) and then, a quantum-mechanical ap-
proach is strictly required. In classical electromagnetism, the rigorous solution is
derived by fully solving the macroscopic Maxwell’s equations. However, an alterna-
tive method holds when the size of the graphene nanostructure is much smaller than
the wavelength of the incident light in the surrounding medium. Thus, the problem

reduces to electrostatics.

1.4.1 CLASSICAL DESCRIPTION

In classical electromagnetism, all phenomena can be described via the solution of

macroscopic full-retarded Maxwell’s equations in 3D space [26]
V X E (r,w) =ikB (r,w),

4
V x H(r,w) = —ikD (r,w) + 3 (r,w),
¢ (1.11)

V- D (r,w) = 4mp(r,w),

V- -B(r,w) =0,

where k = w/c is the free-space light wave vector of the incident continuous plane
wave, and E (r,w) [H (r,w)] is the electric (magnetic) field. We define E (r,w) as
the sum of the external field E®® (r,w) and the induced field E™? (r,w) generated
by the charge carrier density. The electric displacement is given by D (r,w) and the
magnetic induction by B (r,w). The charge and the current densities, represented
by p(r,w) and J (r,w) respectively, are the sources that establish the shape and
intensity of the fields.

In the above expressions, we consider that graphene is a linear, non-magnetic
medium that presents temporal dispersion and local behavior. This is easily ob-
servable in the optical frequency regime, while the latter can be assumed since non-
locality (dependence on the parallel wave vector &y of the incident radiation) is only
relevant when the characteristic size of the material is of the order of the Fermi wave-
length (e.g., \r &~ 10.33nm when Fr = 0.4eV). Furthermore, Maxwell’s equations

need to be supplemented with constitutive equations to get a self-consistent solution
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that relates the interaction between the electromagnetic radiation and graphene:
D (r,w) = £ (r,0) B (r,w), B(r,w)=H(rw), (1.12)

where the frequency dependence of the media on the electromagnetic fields is en-
compassed now in the local dielectric function e(r,w) and an exp(—iwt) temporal

dependence is always assumed.

Throughout this thesis, the exact solution of full-retarded Maxwell’s equations
is obtained using the boundary-element method (BEM) [27]. In BEM, a system of
surface-integral equations is evaluated at the boundaries of geometries with arbitrary
shapes. Once we determine the boundary conditions satisfied by the surface charges
and currents, the system is numerically solved by discretizing the boundaries with

a finite number of points.

Nevertheless, when the graphene nanostructures present a size much smaller
than the incident light wavelength (7.e., D < \), their response can be described
in the electrostatic limit (i.e., non-retarded limit where we assume ¢ — oc0). The
interaction between graphene and the external light is considered instantaneous, so
that the temporal phase of the electromagnetic field is practically constant, and
therefore, we can reduce our problem of finding the spatial field distribution to elec-
trostatics [28]. The electric and magnetic fields are decoupled [i.e., V X E (r,w) =0
and V x H (r,w) = 0] and the solution of Maxwell’s equations, considering negli-
gible external currents and charges, reduces to solving Poisson equation with the

appropriate boundary conditions,
V- e(r,w)VO(r,w) = —4mp™(R,w)d(2), (1.13)

where p"Y(R,w) = —en(R,w) is the 2D induced charge density in the graphene
plane and d(z) is the Dirac Delta function. From the previous equation we can
directly get the expression of the electric field E(r,w) = —V®(r,w), where we define
r = (R, z) and assume that the graphene layer lies on the z = 0 plane. Moreover,

the continuity equation relates the induced density and the surface current as

PR, w) = ;iv IR, W), (1.14)
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This current can be also expressed as J(R,w) = —0(R,w)V®(R, w), where o(R,w)
is the in-plane graphene conductivity. As we will show in further sections, the solu-
tion of the former electrostatic expressions gives a suitably accurate optoelectronic

response of the graphene nanostructures.

In the local classical description of graphene, the dielectric function of the nanos-
tructures is characterized by the relation

4rio(w)

elw) =1+ : (1.15)

wt

where, for simplicity, we assume that graphene is an isotropic and uniformly doped
material (by doping we refer to the process of changing the Fermi energy of graphene).
Moreover, the value used in the simulations for the graphene thickness needs to be
well converged with ¢ — 0 for finding a valid solution. Note that the nominal thick-
ness of a one-atom-thick layer of graphene is ¢, =~ 0.334nm (i.e., the interlayer

separation of graphite [29]).

The shape of the conductivity is characterized by the behavior of the free con-
duction electrons (or holes) sustained by graphene [see section ((1.5.2])]. The simplest
kinetic model that approximately describes the local dynamics of these electrons and
its scattering processes is the Drude model [18]. Here, only intraband electron-hole
(e-h) pair transitions at temperature 7" = 0 are considered [see section ((1.5.2))], and
the free electrons may decay through multiple channels (e.g., collision with phonons,
lattice defects or, more rarely, quenching with other electrons) with a phenomeno-
logical rate per unit time ~y [this magnitude, also known as damping rate, comprises
all the possible graphene loss channels, see section (1.5.3))]. The resulting graphene

conductivity presents the form [30]

i€2 EF

Th w4+ iy

g

Drude)y = (1.16)

Inserting this expression into Eq. (1.15]), we can rewrite the dielectric function of

graphene with a more recognizable expression according to the Drude model [26]

wDrude

gDrude(w> =1= m (117)
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Figure 1.5: Conductivity and dielectric function of doped graphene. (a) Real part of
the conductivity of doped graphene as a function of the incident photon energy. We
compare the Drude model (blue curves) with the local-RPA model at temperature
T = 300K (red curves) for different doping energies Er. The inset shows the
evolution of the imaginary part. The conductivity is normalized to that in pristine
graphene oy = €*/4h [31]. (b) Evolution of the dielectric function 1 + 4mio(w)/wt
of a graphene slab with EFr = 0.4eV and thickness ¢ = 0.5nm. The purple vertical
lines represent the bulk plasma frequency corresponding to local-RPA and Drude
models, respectively. At these frequencies, graphene changes from a metallic to a
dielectric-like behavior. The mobility here used is x = 10000 cm?/(V's).

Here, wPmde = (2¢/h) \/m is the Drude bulk plasma frequency that depends on
the graphene Fermi energy and the thickness [e.g.,for Fr = 0.4eV and t = 0.5nm
—well converged value with t,o,— we find AwP 4 ~ 2.15eV, as shown within the
purple vertical line on the right side of Fig.(b)]. Using Eq. , this bulk plasma
frequency can be also expressed as whid® = \/4rne? /tm:. The importance of whide
relies on the fact that it determines how is the response displayed by graphene to

external radiation:

— For w < wPide doped graphene shows a behavior similar to metals, so that

conduction electrons (or holes) are capable of screening external radiation.
The dielectric function satisfies Re{eP™¢(w)}<0.

— For w > wPpde doped graphene behaves as a dielectric to external radia-

tion, so that light can propagate through it. The dielectric function satisfies
Re{ePrude(w)}>0.



1.4. ELECTROMAGNETIC MODELING OF GRAPHENE 29

However, there are more elaborated models that take into account not only the
scattering processes of the conduction electrons (or holes) and intraband transitions
at T' = 0, but also electronic interband transitions at finite temperatures. For exam-
ple, within the random-phase approximation (RPA) [32] 33, 34], 35, 36] we can de-
scribe more realistically the conductivity of graphene [31] %" (ky, w) = —iwx (K, w),
where x(kj,w) is the linear graphene susceptibility. In the local limit (kj — 0), the
local-RPA conductivity [31], 37] is expressed as follows

. 2 o
local-RPA 1€ —1 afﬁ (€/|E|)
_ e d |, (.18

where f. is the Fermi-Dirac electron distribution as a function of the energy e [see
Eq. (L.21)].
The first term inside the integral of Eq. (1.18]) corresponds to the intraband

transitions —dominant at photon energies roughly below the Fermi energy FEp—
and can be integrated analytically resulting in e’} /h? (w + iv), with Ej = Ep +
2kgT In (1 + e~F#/k2T) thus converging to the Drude model at 7' = 0.

The second term inside the integral of Eq. (1.18]) corresponds to interband transi-
tions and needs to be solved numerically. As depicted by the red curves in Fig.|1.5|a)
for different Fermi energies, this term contributes a step function to the real part

local-RPA ((U)

of o when € ~ 2Fp, which is smoothed by the inclusion of finite val-

ues of the temperature and damping. The effect of the interband transitions is

also appreciable in the imaginary part of g'°®l=RPA(y,)

with a clear valley again at
€ ~ 2EF [see red curves of the inset of Fig.|1.5(a)]. Moreover, we show in Fig.|L.5(b)
the evolution of the real and imaginary parts of the dielectric functions for the two
local classical models under study. Although the Drude model (blue curves) can be
considered a good approximation (particularly when ¢ < Ep for Er smaller than
the optical phonon energy ~ 0.2¢eV [38]), an in-depth analysis of the graphene con-
ductivity including the interband transitions and finite temperature effects result in
clear redshifts of the bulk plasma frequency. Additionally, since the choice of sign
for time-dependence is exp(—iwt), we find in the whole frequency spectrum for both
models that Im{e(w)}>0, so that we can assert that graphene is a lossy material.

Finally, we want to mention that for graphene characteristic sizes larger than g,
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the inclusion of nonlocal effects does not induce significant changes with respect to
the local limit, and qualitatively similar results are observed [31].

The employed lifetime or relaxation time 7 = y~! of Fig.[I.5 is obtained using
the impurity-limited approximation 7 = uFr/evd, where p is the direct current (dc)
graphene electrical mobility [see section (1.3.4)]. For instance, in Fig.[L.5(b) we use
the parameters Fr = 0.4¢eV and p = 10000 cm?/(V's), thus the predicted lifetime in
graphene is 7 &~ 400fs (i.e., iy &~ 1.65meV). This value is substantially higher than
7 ~ 10fs in gold [39]. In all the figures depicted in this introductory chapter, the

damping rate is calculated using this dc procedure.

1.4.2 QUANTUM-MECHANICAL DESCRIPTION:
RANDOM-PHASE APPROXIMATION

The local classical descriptions of the electromagnetic response of graphene to ex-
ternal radiation presented in the previous section are no longer valid when the size
of the graphene nanostructure D fulfills D < Ag. Hence, a microscopic quantum-
mechanical procedure that takes also into account finite-size and edge effects, is
necessary to characterize the optoelectronic response of graphene. In this thesis, we
combine the RPA with a TB model similar to the one described in the section (1.3.2])
[see Ref. [40] for a detailed description of the method used here]. However, in our
case we only consider the hopping between nearest neighbors [ and [’, so that the
TB Hamiltonian satisfies (I| H |I') = —t with the already known hopping parameter
t ~ 2.8¢eV. The diagonalization of this Hamiltonian permits finding the energy ¢; of
each single-electron state j. Once this is done, we are interested in finding the non-
interacting susceptibility x9, (w) using the RPA. This quantity relates the induced
charge density pi"? (w) with the total potential per unit area resulting from the sum
of the external and induced potentials ®; (w) = ®F* (w) + ® (w) as

P (@) =D, X (@) (), (1.19)

where [ and I’ run over the carbon sites of the graphene structure [41]. For sim-
plicity, we have just considered the non-interacting susceptibility between electrons,

otherwise finding a solution requires the use of many-body theory. By means of the
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expansion coefficients aj; of each TB state 3, aj |I), the non-interacting susceptibil-

ity yields

0 2 ajl a;‘fl/ a;/l aj/l/
/ = —2 e — Je. _ , 1.20
Xu (w) ¢ ijl <fj f] ) hw — €5 + €j + lh/QT ( )

where hw is the energy of the incident photon, 7 is the finite lifetime of the electronic

excitations, and

1
1 —+ e(Ej_EF)/kBT

ij =

is the Fermi-Dirac electron distribution of the state j at Fermi energy Er and tem-

(1.21)

perature 7. The factor 2 immediately after the equal sign in Eq. (1.20)) stems from
the spin degeneracy. Additionally, the total potential per unit area can be also

expressed as
B (w) = B (W) + ) vw (w) o (), (1.22)

where vy (w) = 1/ry is the Coulomb interaction between sites [ and I’. Finally,
combining Egs. (1.19)) and ((1.22), we can get a self-consistent solution of the induced
charge density given by

-1

P =1 =X W) )] X (W) 2™ (w), (1.23)

from which we can directly obtain the induced dipole moment [see section ((1.5.3))]
and the electric polarizability a(w). A detailed study of the effects regarding this
quantum-mechanical approach is fully illustrated for different graphene geometries
in Chapters[3] and [

1.5 PLASMONS IN GRAPHENE

Graphene plasmons are collective surface oscillations of electrons with respect to the
fixed positively-charged lattice of carbon nuclei. The oscillation occurs because the
attractive binding exerted by the lattice is weak, so that electrons can move freely
forming an electronic cloud reacting to external radiation. Plasmons sustained by
graphene are generically divided into two different groups: intrinsic and extrinsic
plasmons. The former are observable under any doping conditions —even in pristine

graphene— and can be subdivided into two different subgroups: ¢ and 7 plasmons.
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The latter, also named Dirac plasmons, only appear when graphene is extrinsically
doped.

In the next section, we briefly introduce the main properties of intrinsic graphene
plasmons. Their extremely high resonance frequencies (2 4.5¢V) are in contrast to
the suitable ones of Dirac plasmons (< 3eV) which make them more interesting
for nanophotonics opening a wide range of potential applications. Afterwards, we
explain the main properties of these Dirac plasmons but always assuming a classical

description for graphene.

1.5.1 o AND 7™ PLASMONS

These plasmons arise respectively from the collective oscillation in the 2D plane
of delocalized o and 7 electrons [see section (|1.3.2))]. They were first observed in
fullerene [42, [43], and later in CNTs [44], [45] and extended graphene [46] via electron
energy loss spectroscopy (EELS). This technique has been extensively employed for
spectrally and spatially characterizing diverse plasmons in noble metals [47, [48], [49]
50, 51] and graphene [52, 53], [54]. Essentially, in EELS an electron beam passes near
or through a plasmonic target and the electrons lose part of their energy by exciting
plasmons.

The resonance frequencies of 7 plasmons oscillate between 4.5 and 7€V, while
for o plasmons the range fluctuates from 14.5 to 30€eV, which confine both deeply
in the UV regime. Moreover, they display a limited tunability, similarly to those in
typical noble metals. Finally, we need to remark that at electron energies ~5eV,
vertical interband transitions between the m and 7* bands can occur for wave vectors
situated between the Dirac points [see Fig.[1.3|(b)]. The resulting possible coupling
of this mechanism with the 7 plasmon is known as plexciton [55]. In the rest of this

thesis, we do not discuss these plasmons any more.

1.5.2 DIRAC PLASMONS

As explained in section ((1.3.2)), pristine graphene presents a peculiar linear disper-
sion relation around the Dirac points with a zero-energy optical gap between the
completely filled valence band and the fully empty conduction band (i.e., pristine

graphene can be treated as a zero-gap semiconductor). Within these conditions, the
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Figure 1.6: Schematic representation of the different plasmons sustained by
graphene. The blue region corresponds to the plasmons excited in pristine graphene,
where we can distinguish between the 7 plasmons at energies ~ 5¢€V, and the o plas-
mons at ~ 15eV. For doped graphene, a new type of low-energy plasmons appear
(red region), the so-called Dirac plasmons with energy < 3eV.

Dirac points mark exactly the Fermi level [see Fig.[1.3(b)]. Besides, the only pos-
sible e-h excitation when graphene is illuminated under this null doping condition
is an interband transition. These transitions are responsible for a nearly-constant
absorption [30] of self-standing undoped extended graphene [56, 7] 7o ~ 2.3%
(i.e.,conductivity og = e*/4h [31]), where o = e?/hc ~ 1/137.036 is the fine-
structure constant.

When we add extra charge carriers (electrons) to the conduction band (i.e., n-
doped graphene), an optical gap opens and the Fermi energy substantially shifts to
Ex = hvpy/mn, where now n is the density of these extra electrons [see Fig.|1.8(a)
for an illustrative representation of the variation of Ep with the external doping].
Due to the symmetry of the bands, the doping can be also produced by the removal
of valence electrons (i.e., p-doped graphene), so that the Dirac massless particles
responsible for the doping are now the holes in the valence band. The remarkable
tunability of the Fermi level in graphene with the addition of external carriers is
in contrast to the response of typical noble metals, which is rather unaffected by
doping. Moreover, noble metals present a parabolic dispersion of their conduction
band that electrons fill up to a certain level determined by Eg, and there is no optical

gap so that electrons below the Fermi level can move up to any of the unoccupied
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states above Er. However, significant changes in the electronic carrier density n in
metals will only slightly affect their optoelectronic response. Furthermore, in metals
n is expressed per unit of volume while in graphene it is per unit of area, so that a
bigger quantity of electrons is required for inducing significant changes in Eg.

Experimentally, the injection of additional charge carriers (either electrons or
holes) is usually achieved by electrostatic gating [568), 59] or with chemical methods
[60, 61]. Within the former, a potential difference with respect to a backgate is ap-
plied to graphene, thus inducing a perpendicular dc electric field Eq that is uniformly
applied to one side of the carbon layer and screened by an induced doping charge
carrier density n = —Fy/4me. Fermi levels as high as ~1eV have been obtained
using this technique [58, 59], which correspond to n ~ 75 x 10 cm™2.

Moreover, when light impinges on doped graphene, electrons from the conduction
band can be excited up to unoccupied states. This can occur through the absorp-
tion of the energy and momentum of incident photons. Therefore, in addition to
interband e-h transitions [i.e., the green and blue arrows in Fig.[1.§|a)], intraband
e-h transition are also allowed [i.e., the magenta arrow in Fig.[L.§|a)].

Within the opening of an optical gap of maximum width 2F%, apart from the
e-h transitions, doped graphene can support surface plasmons without undergoing
Landau damping [62]. These are the Dirac plasmons mentioned above —collective
oscillations of the conduction electrons (or holes)— whose resonance frequency fall
between the THz and the near infrared region (NIR) [35] 63, (64, 65, 66, 67, 68|
69, [70, [71), [72, [73]. Graphene Dirac plasmons present an impressive number of
salient properties in comparison with those in typical noble metals: (i) stronger
interaction with light; (ii) ability of producing a large field enhancement [26] [31]
(> 10° in near-field intensities) upon external illumination; (iii) smaller wavelength
in comparison to the external radiation which results in an extraordinary light and
field confinement; (iv) longer lifetimes [38| [74]; and (v) stronger nonlinearities [75],
706, [77, [78, 79, [80, ’1]. Furthermore, the spectral and spatial control via electrical
gating over these collective oscillations have been intensively investigated in recent
years both experimentally [64] 65 [66] 67, (68, [69) 71, 82, 83] and theoretically [31), 34]
35, 38, 30, 811, [84L [85), [86), 87, 88, 89, 90]. Owing to the former appealing properties,
graphene Dirac plasmons can be currently found in a vast range of applications:
light modulation [69, [7T], 9], nonlinear optics [75] 76l [77, [78, 8], sensing [92, O3],
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Figure 1.7: Reflection and transmission coefficients of impinging (a) s polarized and
(b) p polarized waves by a thin graphene layer. The graphene layer is characterized
by its conductivity o(k),w) and acts as an interface between two different media
with dielectric functions £; and e, respectively. The orientations of the incident
(Ep), reflected (E*), and transmitted (E%#) electric fields are depicted within
blue arrows.

and signal processing [63], among other feats.
We focus now on the two different subgroups of Dirac plasmons sustained by
doped graphene which we distinguish according to their propagating features: sur-

face plasmon polaritons and localized surface plasmons.

SURFACE PLASMON POLARITONS IN GRAPHENE

The surface plasmon polaritons (SPPs) are electromagnetic modes traveling along an
extended graphene layer acting as an interface between two dielectric media. They
are transverse solutions [i.e., V-E (r,w) = 0] of the macroscopic Maxwell’s equations
described in Eq. in the absence of external sources, and fulfill the condition
of non-zero magnetic field in both surrounding dielectric media and graphene.
Once the graphene interface —which we assume in the limit of a thin layer— is
illuminated by a plane wave, we can easily obtain the relations between the reflected
and transmitted electric fields at the interface through the Fresnel coefficients [26].
The expressions of these coefficients depend on the two different types of electro-
magnetic field polarizations. For s polarization [i.e., TE modes: the incident light

impinging from medium 1 is polarized with its electric field perpendicular to the



36 CHAPTER 1. INTRODUCTION

plane of incidence as shown in Fig.[1.7)(a)], we get

4o

kyy —koy —
- e " 14, 1.24
ki1 + kot + ngk ( )

Ts

where o(kj,w) is the graphene conductivity and k;, is the free-space light wave
vector component oriented perpendicularly to the graphene layer in the dielectric
medium j = 1,2 (above or below graphene, respectively). The wave vector in each
dielectric medium evolves as k; = /;k and it can be split into its components as
k; = \/m , where the parallel wave vector component k| is equal in both media.
The interesting point of this TE mode is that, unlike metal-dielectric interfaces,
graphene can sustain it [94] but only when Im{o(w)}<0 [i.e., for low levels of doping,
2Fr < hw, as depicted in the inset of Fig.(a)].

For p polarization [i.e., TM modes: the incident light is polarized with the as-
sociated electric field parallel to the incidence plane as shown in Fig.[1.7(b)] we

have A
_— eok1L —erkoy + "7k kol

P eokyy +erkos + %k 1 Koy

w

ty=1—1, (1.25)

where now the surface mode only propagates under the condition of Im{o(w)}>0
[i.e., for high levels of doping, 2Fr 2 hw, as depicted in the inset of Fig.[l.5[(a)]. The
dispersion relation of the p polarized graphene SPPs is obtained through the pole
of r,, which satisfies the equation

€1 E9 drio

+ == 1.26
\/k2 — e1k? \/k2 — e9k? w ( )

Spp Spp

for the in-plane component of the plasmon wave vector kgpp,. In Fig.[1.8(b) we plot
the self-consistent solution of Im{r,} for self-standing (i.e.,e; = £ = 1) extended
graphene with Er = 0.4V and p = 10000 cm?/(V s). Here, the graphene conductiv-
ity is taken from the full (nonlocal) RPA model [see supplementary material (SM)
of Ref. [31]]. As we can observe, for kj < kp and hw < 2Ew, an optical gap opens,
and a propagating mode along the surface arises (i.e., the SPP). Thus, a distinct ab-
sorption feature is generated apart from the intraband and interband e-h transitions

(lower and upper orange triangles on the right side).

Interestingly, in the electrostatic limit the light wave vector —depicted within a
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Figure 1.8: Dispersion relation of graphene. (a) Optical dispersion diagram of
graphene with the typical linear behavior [i.e.,zoom around the Dirac point K in
Fig.|1.3|(a)]. For doped graphene the lower band (valence band) is completely filled,
and the upper band (conduction band) is partially filled with conduction electrons
up to a certain level with respect to K, thus marking the Fermi energy Er. We
also represent here three different possible e-h excitations: intraband (magenta dot)
and interband (green and blue dots) transitions. (b) Density plot representing the
dispersion relation of self-standing extended graphene with the possible intraband
and interband transitions of electrons including the three cases depicted in panel (a).
We observe an optical gap (white triangle on the left at parallel wave vector smaller
that the Fermi wave vector, i.e., k| < kp), where graphene SPPs can be sustained.
We represent here the Im{r,} as a function of k| and w, using the RPA model at
temperature T = 300K for Fr = hvpkp = 0.4V and mobility x = 10000 cm?/(V s),
where vp & ¢/300 is the Fermi velocity. The dispersion of the plasmons obtained
from the Drude model is plotted within the purple dashed curve. The light line is
represented in red and in close proximity to the vertical axis.
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red line in close proximity to the left vertical axis— fulfills the condition k < |kspp
(in reality, this is fulfilled for fuw > aE¥), so that Eq. (1.26)) can be expressed as

(51 + 82) iw
2 2mo(kj,w)

kspp(k\\ac‘J) ~ (127)
Due to the momentum mismatch between light and SPP, we immediately claim
that SPPs cannot be directly excited with light (i.e.,they are dark modes with

non-radiative nature), and overcoming this problem becomes a challenge [see sec-

tion (2.4))].

For completeness, we represent within the purple dashed curve the dispersion

relation of SPPs following the Drude model [see Eq. (1.16])]. Here, the plasmon wave

vector reduces to kPi°(w) ~ [(e1 4 e2) /2] h’w (w + 1) /2¢?Ep, clearly showing a

quadratic dependence on the frequency. Since Agpp = 27 /Re{kqpp}, we can directly

obtain the ratio between the SPP and the free-space-light wavelengths

)\Drude B 2 20 EF

Spp

~ 1.28
A (€1+52) hw ’ ( )

which illustrates the high degree of confinement of graphene SPPs.

On the other hand Im{kg,,}, which strongly depends on +, accounts for the
damping of the SPPs as they propagate along graphene. For a decay of 1/e in
the plasmon intensity, the longitudinal propagated length of the plasmon is L ~
1 / 2Im{kqpp }. Additionally, the perpendicular wave vector component is ~ ikgpp, SO
that it presents a dominant imaginary part which turns into a tighter confinement of
the field in the transverse direction of the graphene layer. Specifically, the transversal
plasmon intensity decays exponentially with L, ~ 1 / 2Re{ksypp} < Ly (although
rigorously, when €1 > €9 we have L1 < Lo < LH)' The balance of both properties:
the degree of confinement and the propagation length, is an inherent problem when

dealing with graphene SPPs.

LOCALIZED SURFACE PLASMONS IN GRAPHENE

The second fundamental plasmon excitation in doped graphene are the localized

surface plasmons (LSPs), which are collective charge oscillations confined in finite
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nanostructures with characteristic size D (e.g., triangles, ribbons, disks, etc.) Un-
like SPPs, these plasmons can be directly excited by external plane waves, thus
contributing to multiple absorption and scattering mechanisms. However, due to
the lack of translational invariance, they are constrained to the two dimensions of

the graphene nanostructures (i.e., they are localized or non-propagating waves [28]).

We start by taking macroscopic Maxwell’s equations from Eq. (1.11]) and after
assuming negligible the external currents and charges, the first two expressions re-

main

V x V x E(r,w) — e(w)k*E(r,w) = 0,
(1.29)
V x e (w)V x H(r,w) — K*H(r,w) = 0.

Implementing the convenient boundary conditions for each arbitrary graphene ge-
ometry, it is possible to get an analytical full-retarded solution of Eq. . Never-
theless, as mention in section ([1.4.1]), even for the simplest nanostructures, finding
a solution involves huge numerical calculations. Thus, if we assume that the size of
the nanostructure is much smaller than the wavelength of the incident radiation, we

can safely work in the electrostatic limit and the problem simplifies to just solving
the Poisson equation given in Eq. (1.13]).
Like SPPs supported in extended graphene, LSPs also present interesting prop-

erties such as strong field enhancement, a high degree of confinement, and a low
level of losses in comparison to those in typical noble metals. Besides, as we will
show below, graphene LSPs highly depend on the size and shape of the supporting
particle. Slight variations of these geometrical parameters induce remarkable shifts
in the plasmon frequencies that are strongly tunable with the level of doping. More-
over, LSPs permit boosting light-matter interactions up to levels where the effective

plasmonic area can be higher than the proper geometric area of the nanostructure.

The existence of the LSPs is easily demonstrated through the scattering and
absorption light processes produced in the graphene nanostructures. In fact, the
most common way of quantifying them is via the scattering and absorption cross-
sections, which are directly derived from the optical theorem [26]

@ 8mrw?
ow) = 3ct

la(w)]?,  o™(w) = —— Im{a(w)} = 0*(w). (1.30)
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The sum of these variables is known as the extinction cross-section o®*(w). Inter-
estingly, for sufficiently small particles, absorption dominates over scattering since
the former scales with D3 and the latter with D° [28§].

In Fig.[1.9 we represent the lowest-order dipolar LSP excited in a graphene nan-
odisk under normal illumination. The panel (a) shows the absorption and scatter-
ing cross-sections of an illuminated disk of 30 nm in diameter embedded in vacuum
(see upper right inset). The Fermi level, thickness, and mobility of the disk are
Er =0.4¢V,t=0.5nm, and x = 10000 cm?/(V s), respectively. We compare the so-
lution of Maxwell’s equations (solid curves) with the electrostatic approach (dashed
curves). As we can observe, the models are in excellent agreement. Besides, we
also compare the results from the two different local models for the dielectric func-
tion of the graphene disk studied in this thesis: the Drude (blue curves), and the
local-RPA model at room temperature 7" = 300 K (red curves) [see Egs. and
, respectively|. We observe that the different approaches give similar results
but, again, the inclusion of the temperature and the interband transitions result in
slight redshifts of the LSP resonance frequencies.

The curves of the cross-sections were numerically obtained through BEM calcu-
lations and present a Lorentzian lineshape centered at the LSP resonance frequency
wp, and its broadening presents a spectral FWHM given by the damping rate v [26].
Moreover, the plasmon quality factor (@) = w, /) reaches here for the Drude model
a value 2 150, which is remarkably higher than in typical noble metals. Finally, we
observe that the absorption cross-section reaches ~ 7 times the geometric area of
the disk, which turns graphene into a perfect tool for the confinement of light at
the nanoscale. In panel (b) we plot the induced near-field intensity enhancement
(|JE/Eo|?) produced in the vicinity of the disk at the LSP frequency of the red solid
curve (hwp, ~ 0.262¢V). The huge value induced close to the surface (~1000) illus-
trates the importance of LSPs for the enhancement of electromagnetic fields. The
white arrows indicate the orientation of the electric field. As we observe, the induced
electric field created inside the disk is capable of screening the external field, and
the metallic behavior is preserved.

Finally, it is also interesting to know the number of charge carriers (conduction
electrons or holes) responsible for the LSPs. This quantity can be estimated via

the f-sum rule [32] 95], which in graphene possesses singular properties [96]. In the
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Figure 1.9: Localized surface plasmons (LSPs) excited in a graphene nanodisk by
the effect of an electric field (Eg) associated with external light impinging perpen-
dicularly to the graphene area. (a) We plot the absorption (o) and scattering
(0%°) cross-sections as a function of the incident photon energy of a self-standing
graphene nanodisk with diameter D = 30nm, Fermi level Fr = 0.4¢eV, thickness
t = 0.5nm, and mobility z = 10000 cm?/(V's) (see inset). The dielectric function of
the graphene disk is described by two different models: the local-RPA at tempera-
ture T'= 300 K (red curves) and the Drude model (blue curves). The cross-sections
are normalized to the disk area (7D?/4). We compare the results from the solution
of full-retarded Maxwell’s equations (solid curves) with the electrostatic approach
(dashed curves). The multiplying factor in the scattering cross-section indicates that
the depicted curves in reality should be divided by 10? (we use this procedure only
for aesthetic reasons). (b) Induced near-field intensity enhancement (JE/Eq|?) plot-
ted in linear scale at the LSP frequency corresponding to the LSP resonance of the
red solid curve (i.e., iw, ~0.262¢eV). The white arrows represent the orientation of
the induced electric field. All the results are calculated using the boundary-element
method (BEM) through the MNPBEM toolbox [97].

electrostatic limit, it presents the form [30]
me?

2m*

e

/ wdwIm{a(w)} = ZEN,, (1.31)
0

with N, being the number of charge carriers in the graphene nanostructure and
m the cyclotron mass given in Eq. (1.9)). Fortunately, since the most intense LSPs

appear at low energies, we can shorten the range of frequencies inside the integral.



42 CHAPTER 1. INTRODUCTION

1.5.3 OPTICAL LOSSES

Once excited, plasmons in graphene possess a finite lifetime v~ before they dissipate
either through radiative or non-radiative (inelastic) channels. The former are related
with re-emission of photons [98], while the latter are associated with other path-ways
[99] like coupling with phonons [38], collision with lattice defects [100], finite-size
and edge effects |40} [101], or generation of hot e-h pairs [I02]. Thus, we can split
the decay rate into a radiative and non-radiative components as v = v + Vn,. The

radiative contribution is usually a factor ~ 10 smaller and is given by [9§]

(61 + &9) 4w?
Ty ga PEP (1.32)

Ay (w) =
where p(w) = f PP (R, w) R d?R is the dipole moment associated with the graphene
layer, and &1]es the permittivities above|below graphene, respectively.

Regarding the non-radiative decay channels, the coupling with phonons plays
an important role above the threshold energy ~0.2eV [38, [70]. Moreover, the edge
effects also induce a remarkable increment of the damping due to the creation of
electronic edge states [20]. There are two different types of edge terminations in the
graphene nanostructures: armchair or zigzag [see right inset of Fig.[3.1]. The elec-
tronic edge states are only present in zigzag terminations [20] and produce a strong
plasmon quenching [40] when Aw, 2 Ep [L0I]. Under the same energy condition,
for the armchair terminations the edge effects only induce a slight broadening of the
plasmons [89] [I0TI]. Finally, the decay of plasmons into e-h pairs because of Landau
damping may occur when additional momentum is provided, and the plasmons fall

inside the region of electronic interband transitions [see Fig.[1.8(b)].

1.5.4 ELECTROSTATIC SCALING LAW

In previous sections we have showed that for graphene nanostructures of size D
(e.g., width of ribbons, diameter of disks, lateral size of equilateral triangles. .. ) much
smaller than the incident light wavelength, retardation effects can be neglected and
we can safely work in the electrostatic limit. Thus, we can study the response of

graphene in terms of an electrostatic potential ®(r,w). The self-consistent equation
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of this potential created by a certain bidimensional charge density acting as an

interface between two dielectric media with permittivitief] g1 and gy is [B3]

2 d*R/

(I) — q)ext
(I‘,OJ) (r,w) + (81 + 62) |I‘ _ R./‘

PR, w). (1.33)

This expression is valid for any point r = (R, z), but since we restrict our analysis
to the graphene sheet which lies in the plane z = 0, the self-consistent potential
will only involve coordinate vectors R = (z,y). The expression of Eq. is the
sum of two contributions: the external perturbation [now rewritten as ®**(R,w)],
and the potential created by the charge induced in doped graphene under external
illumination which is globally represented by the integral. We can relate this induced
charge with the current by means of the continuity equation given in Eq. (1.14)).
Furthermore, if we assume a linear response of graphene, the current can be obtained
from the multiplication of the local, in-plane graphene conductivity o(R,w) by the
total electric field E(R,w). Combining all the former elements, we can rearrange

the self-consistent equation of the potential to obtain

2 i d?R/’ v
(e1+e)w/) R-R| ®

P(R,w) = &R, w) + - o(RL,w) VR O(R,w). (1.34)
We need to remark that the abrupt change of the conductivity produced at the edge
of the nanostructure produces a divergent contribution to the integral of Eq. (1.34)).
The numerical solution of this issue involves the implementation of a smoothing at
the graphene edge [an example is described in section (2.3)] that barely affects the
final result [90].

Owing to the complete lack of absolute length scales in electrostatics, we can
introduce for simplicity the dimensionless coordinate vector =R /D. Besides, we
consider that the conductivity can be split into a position and a frequency dependent
terms as o(R,w) = f(R)o(w). Under uniform doping, the occupation function
f(R) takes the constant value 1 inside the graphene area and vanishes elsewhere.
As we will see in the next chapter, this formalism can be easily applied to diverse

inhomogeneous doping configurations by just modifying the spatial distribution of

Zsee Appendix for the derivation of the factor 2/(e1 +&2) regarding the dielectric environment
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f(R) [86l, 90, 103]. Thus, implementing these elements in Eq. (1.34)), we obtain

. . A2 . .
B(0) = 0 @0) 4 (o) [ Ve SO0, 0
where 5 ()
10(W
= 1.
n(w) (e1+¢&2) wD’ (1.36)

is a dimensionless parameter that contains all the information about the full depen-
dence of graphene on the frequency, temperature, size, dielectric environment, and
doping level. Integrating by parts Eq. and taking the in-plane gradient on
both sides, we find

— —

(0, w) = E(,w) + n(w) / 20 M@0.9) - E@,w), (1.37)

where

— — —

(0,w) = V(O E(0,w), (1.38)
and M(60,60) = \/f(0)F(0") V;® Vg (1/]5— @|> is a real and symmetric operator.

This operator possesses a complete dimensionless set of real, negative eigenvalues
1/n;, and eigenvectors 5’;(67) that satisfy the eigenstate, orthogonality, and closure

conditions given respectively by
@26 E(0)- &) = 537, (1.39)

with Zy being the 2 x 2 unit matrix. Then, the solution to Eq. (1.37)) can be trans-

formed into
(O.w)=> &), (1.40)
where the expansion coefficients

— —

¢ = / 420 €(8) - E24(0,w

~—

(1.41)
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hold the same units as the electric field. If we assume normal-incidence illumi-
nation (i.e.,kj = 0) with an associated external field uniformly distributed with
amplitude Eq and oriented along the direction x of the nanostructure [i.e., 56Xt(§) =
WEO x|, we can get the expression of the polarizability along that direction
a(w) = (D3/Eg)f d26 0, p™ (0, w), where the induced density is

P00 =~ [, 10 ). (1.42)

It is then convenient to insert Eq. (1.40]) into this expression, then we finally find
QW%Z@“+@Mf§:.1j _ (1.43)

where j runs over each eigenmode and

2

$:V$§f@@@), (1.44)

are real, positive, and dimensionless coefficients that only depend on the specific
shape of the nanostructure considered. Interestingly, for the Drude model we find
aDrudc(w) x D5/2Eé/2.

The &; and n; factors obey two useful sum rules [30] that enable estimating ana-
lytically their values: (i) in the weak coupling regime (i.e.,c — 0) upon application

of the closure relation for &(f), we have

X:g m’ (1.45)

where A in the area of the graphene nanostructure; and (ii) in the limit of a perfect

conductor (i.e.,0 — 00), we get

—2: A—Jﬁﬂ. (1.46)

(1 + €9)

In particular, for nanodisks we have [104] «(0)/D? = 1/6m, while for nanoribbons we
find [105] a(0)/D? = L/16D where L — oo is the nanoribbon length. In Table[L.1]

we summarize the analytical values of these factors for both nanostructures
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Geometry —> 77;‘532 > 512- > i
disk [2/(e1 +e2)] (1/67) | /4 | [2/(e1 + &2)] (—2/37?)
ribbon [2/(g1 + €2)] (1/16) 1 [2/(g1 + &2)] (—1/16)

Table 1.1: Analytical approximations for the parameters &; and 7; of the electrostatic
scaling law.

Interestingly, for the nanostructures here considered, one finds that the first mode
j =1 (i.e.,lowest-order dipolar mode) is dominant and owns most of the weight in
the sums given in Eqs. and [30]. Additionally, we need to remark
that the condition n(w;) = 71, sets the plasmon frequency w; of the corresponding
eigenstate j. Since all the graphene properties are contained inside n(w), these
eigenvalues 7; only depend on the geometrical shape of the graphene nanostructure
and can be calculated once and for all in order to get the plasmon frequencies for any
desired value of the temperature, size, dielectric environment, or doping level. In
particular, using the Drude model [see Eq. (1.16])], we easily obtain [see Appendix[B]

wf.f)mde ~ w;Drude —iy/2, (1.47)

Wyt = 2\/{51 iaJ {—71%} Vzﬂ (145)

As an example, we take the conditions used in Fig.[I.9 of Er = 0.4eV and D = 30 nm

of a uniformly doped, self-standing nanodisk. If we assume dominant the lowest-

with

order dipolar plasmon, we find that the estimated LSP energy is AiwPrd® ~ 0.3eV,
which is in good agreement with the numerical solution of full-retarded Maxwell’s
equations depicted in Fig.[l.9(a).

The fact that the resonance frequencies of LSPs in graphene nanostructures obey
the approximate behavior w, o \/Er/D, illustrates their strong tunability and pave
the way for plenty of potential applications to exploit the plasmonic properties of

doped graphene.
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PLASMONS IN MULTIPLE DOPING
CONFIGURATIONS

In the previous chapter, we have presented a description of graphene plasmons
sustained by extended layers or individual nanostructures under a uniform doping
configuration. The plasmonic response of graphene under this doping scheme has
been extensively described in the literature and plenty of potential applications have
been developed up to date [30, B1L [63], 88].

It is well-known that Dirac plasmons arise in doped graphene with a resonance
frequency proportional to n'/4, where n is the doping charge carrier density. How-
ever, we find that usually n is not uniformly distributed, and therefore, its profile
depends on the particular geometrical configuration which modifies the plasmonic
response of graphene. Besides, the interaction of neighboring nanostructures can
also produce remarkable differences in the Dirac plasmons developed on each single
island.

Motivated by these facts, in this chapter we classically study the effects of differ-
ent geometric, and inhomogeneous doping schemes exerted on LSPs (for convenience,
during this chapter we will refer to them simply as “plasmons”) and SPPs. Using
extensively the electrostatic scaling law described in section , we specifically

discuss the following topics:

— We start by analyzing the interaction between identical uniformly doped graph-

47
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ene nanoribbons via a novel and easy-to-handle model based on the plasmon
wave function (PWF) which presents a higher level of accuracy than other

existing commonly-used models.

— Then, we describe the properties of plasmons generated under multiple in-
homogeneous doping configurations. Firstly, we analyze the plasmons sus-
tained on nanoribbons with diverse non-uniform distributions of n over the
surface. Secondly, we concentrate on plasmons supported by individual inho-

mogeneously doped graphene nanodisks.

— Finally, we investigate SPPs created on periodically doped extended graphene

which develop a plasmonic band structure.

2.1 PLASMONS IN INTERACTING UNIFORMLY DOPED
RIBBONS

In this section, we describe the plasmonic response of uniformly doped graphene
nanoribbons of width D. We focus on this geometry due to the availability of new
synthesis methods with control down to the nanometer scale [106], 107, 108, 109].
For our purpose, we analytically derive a model based on the PWF together with
the electrostatic scaling law formalism presented in section . We conveniently

define the PWF associated with the electromagnetic mode j as

(0 = o VT E500), 2.)

where we have assumed that the nanoribbon is normally illuminated with the electric
field polarized along the transversal direction X with amplitude Eo. In Fig.[2.]]
we illustrate the interaction between two ribbons through the interaction of their
PWEFs. The ribbons are separated a center-to-center distance r and aligned along ¥
(i.e., they can lie in different z planes) under the illumination conditions mentioned
above. The impinging light induces a line dipole along X. The PWF profile at the

plasmon frequency is also included displaying a uniform dipolar-like behavior along

A

y.
Using the definition of the PWF given in Eq. (2.1)), the expansion coefficients of
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Figure 2.1: Plasmon wave functions (PWFs) of two interacting graphene nanorib-
bons aligned along ¥ under normal-incidence illumination. We represent the PWF
associated with the lowest-order dipolar mode of two graphene nanoribbons sepa-
rated by a vector r;y and excited by a normal-incidence plane wave of transverse
polarization. The shape of the PWF is obtained from the induced charge density
at the frequency of this lowest-order plasmon (p;) and clearly shows a dipolar-like
behavior going from positive (red color) to negative (blue color) values along the
transversal direction of the ribbons. The figure is adapted from Ref. [110].

Eq. (1.41) can be now expressed as ¢; = —FE¢;, whereas the dimensionless coeffi-
cients of Eq. (1.44]) remain

2

&= ‘ [ 0.6.p,(0.) (2.2)

Remarkably, the PWF is proportional to the induced charge density of the plasmon
mode j, whereas {; can be treated as the normalized dipole moment. Moreover, the
PWF also fulfills the charge neutrality condition | dé, pi(0z) = 0.

For simplicity, we study the response of identical ribbons within a spectral region
dominated by their lowest-order transversal dipole mode (j = 1), neglecting other
modes in what follows. Besides, we intentionally discard the x subindex since we
know that the geometric evolution of the PWF varies along the x direction. Thus,

we can express £(f,w) in terms of this lowest-order mode as

Eb,w) =) diw)E(0—0), (2.3)
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where [ runs over each different ribbon, and 6, indicates the position of the central
point of the nanoribbon. Inserting Eq. (2.3) into Eq. (1.37)), and using the eigenstate
and orthogonality conditions given in Eq. (1.39)), we find the self-consistent equation

dl(w) = EO 51 +T] Z Mll’ 0 9 dl/( ) (24)

S S
1 —n(w)/m

for the expansion coefficients, where

My (6,6') / d9 / 49" E,(6 — 6,)M(8,8)Ex (0 — by)
(2.5)
_ /d@/de P (0)p1(0) I [(0 — 0 + 6 — )2 + (2 — 2)2 /W],

describes the interaction between ribbons [ and I’. Notice that we have generalized
M;;(0,6") in order to deal with ribbons that are located at different heights z;.

Considering now the expression of the induced charge density given in Eq. ((1.42)),

we can easily find the dipole moment induced in ribbon [

p(w) = —n(w)D*L dy(w)&;. (2.6)

Taking into account that the self-consistent interaction between the dipoles of dif-
ferent ribbons is [104]

pi(w) = a(w)Bo + (@), Gupr(w). (2.7)

where we identify

|t : [2/(51+€2 /2 /2 , r(R)p(R))
gu/_{mm%} My (6, 0) — R [er BERE (2

as the Green tensor [20], [I11] for the electric field produced by a single dipole, which
contains all the information about the interaction between nanoribbons. As we can
observe, it is directly related with the PWF which is well approximated by the

phenomenological analytical function [110]

e—5+2062
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Moreover, p;(w) is the dipole moment at the plasmon frequency, and a(w) =
[(e1 4 &2)/2] D*L&R/ [1/n(w) — 1/m] is the individual nanoribbon polarizability in
the single-mode approximation that presents a similar expression to Eq. . Re-
markably, from our calculations we get that the fitting coefficients are 7, ~ —0.069
and & =~ 0.94, which are in good agreement with the purely analytical values pre-
dicted in Section >;n; =—1/16 ~ =0.063 and ) ;& = 1.

If we take now into account that the extinction cross-section is the sum of the

expressions given in Eq. (1.30)), for a system formed by interacting ribbons we get

ext _471-7(’0 1
o) == wlm{l/aw)—g

”,} , (2.10)

where G is a matrix of elements (1 — &) G;r. Note that since we assume symmetry
along the longitudinal direction of the nanoribbon with length L. — oo, we in fact
implement in Eq. (2.10) the polarizability per unit length a(w)/L and GL, so that

the resulting extinction cross-section in also given per unit length.

We depict in Fig.[2.2] the extinction cross-section normalized to the nanoribbon
area of two interacting self-standing graphene nanoribbons (I = 1,2). The dielec-
tric response of the carbon layer is taken from the local-RPA model at temperature
T = 300K [see Eq. (1.18)], where Er = 0.4 €V is the Fermi level and iy = 20 meV is
the decay rate. The system displays a prominent dipolar plasmon that starts at the
single-ribbon energy limit, corresponding to large separations between nanoribbons
(blue curves) and undergoes dramatic redshifts (blueshifts) due to inter-ribbon at-
tractive (repulsive) interaction in co-planar (stacked) arrangements, as illustrated
in panel (a) [panel (b)]. The attractive (repulsive) character of this interaction is
intuitively suggested from the induced charge distribution shown in Fig.[2.1 We find
that the results from the PWF model (dashed curves) agree well with the full numer-
ical solution (solid curves) down to very small edge-to-edge separations. In contrast,
the dipole-dipole model (dotted curves) only produces accurate results at large sep-
arations, and its failure at small distances is particularly severe for stacked ribbons.
This dipole-dipole model treats each ribbon as a line dipole along the transversal
direction [30], and thus, the plasmon of the system results from the interaction
between different dipoles that are oriented parallel to the external radiation.

In Fig.[2.3) we plot the evolution of the plasmon frequency for interacting rib-
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Figure 2.2: Extinction cross-section normalized to the total graphene area of dimers
formed by self-standing graphene nanoribbons. The edge-to-edge distance is d for co-
planar (a) and vertically-aligned (b) configurations. The ribbon width is D = 6 nm,
while the Fermi energy and damping are Er = 0.4eV, and Ay = 20 meV, respectively.
The conductivity of graphene is obtained from the local-RPA model at temperature
T = 300K [see Eq. (1.18)]. The solid curves correspond to the numerical solutions
of full-retarded macroscopic Maxwell’s equations, directly calculated using BEM
see section (1.4)]. The PWF calculations are represented by dashed curves while
the analytical dipole-dipole interaction is plotted with dotted curves. The figure is
adapted from Ref. [110].

bons over a more extended spatial range. The red curves correspond to the ribbon
dimers presented in Fig.[2.2] whereas the green curves correspond to an infinite pe-
riodic array of ribbons. The plasmon modes are calculated here from the condition
Re{l/a(w) — G} = 0. As we can observe, the frequency shifts are larger in the
array than in dimers due to the inter-ribbon interactions. Remarkably, the results
from our PWF model are in excellent agreement with numerical calculations even
at very short edge-to-edge distances, especially in the stacked system as represented
in Fig.[2.3(b). For the periodic array, we have assumed that Eq. can be analyt-
ically solved by summing G =, Goe™14 where a is the period of the array and
k) is the wave vector component along the array direction. In the case of the green
curves displayed in Fig., since the incidence of light is normal, we have kj = 0,
and therefore, G = ;o Go-

Furthermore, within the PWF model for long distances between the ribbons,
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Figure 2.3: Plasmon energy of interacting graphene nanoribbons in different dimer
and array configurations. (a) We plot the evolution of the plasmon energies with the
edge-to-edge separation d in co-planar ribbon dimers (red curves) and infinite peri-
odic arrays (green curves). The black solid curve corresponds to the full numerical
solution of the Maxwell’s equations for the dimers [see section (1.4)]. The dielectric
response of the graphene ribbons, whereas their doping and damping parameters
are the same as in Fig.[2.2l (b) Same as panel (a) for vertically offset nanoribbons.
The figure is adapted from Ref. [T10].

we recover the values from the dipole-dipole model. In this long-distance limit
(i.e.,large r compared with the ribbon width), we can expand the Coulomb interac-
tion described by the logarithm function of Eq. (2.5)), which leads to the well-known

expression for the dipole-dipole interaction

Glb 2 {Bmm/ 1 } - : 2 2 (z—2p)*— (1 — ap)? 1)

we (61 + 62) ’rl5l’ B T?l’ €1+ 82) Z [(Zl — 211)2 + (:El — 951/)2]2

Here, for co-planar and vertically stacked dimers separated by a center-to-center dis-
tance a, we have G5’ = [2/(ey + £3)] 2/La? and — [2/(e1 + £3)] 2/La?, respectively.
For periodic arrays of co-planar ribbons and period a = (D + d) < A (i.e., there is
no diffraction), we have z; = la and z = 0, leading to G5° = [2/(e1 + £2)] 2/L(la)?,
so that GYP = [2/(e; + &9)] g/La?, with g = 272/3 ~ 6.58. Likewise, for vertically
stacked ribbons of period a = d (i.e.,7; = 0 and z = la), we find G¥P to be exactly
the value of the co-planar array but with opposite sign. For completeness, in the

cases of 2D co-planar hexagonal and square arrays when A = 50a, we find g ~ 5.52
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Figure 2.4: Absorbance of a bilayer array with a lateral offset obtained from the
PWF model. (a) Sketch of the geometry under consideration where, for simplicity,
the interlayer distance d in the only variable parameter. (b) Normal-incidence ab-
sorbance (s polarization) for several values of d. The dielectric response, doping,
and damping of the self-standing graphene nanoribbons are the same as in Fig.[2.2]
The figure is adapted from Ref. [110].

and g ~ 4.52, respectively [88].

Finally, the versatility of our PWF model also permits us to calculate the ab-
sorbance of the periodic co-planar array of nanoribbons depicted in green in the inset
of Fig.(a), or even more complicated systems. The expressions of the reflection
and transmission Fresnel coefficients in the dipole-dipole limit of an infinite periodic
array of co-planar ribbons acting as a e1|ey interface for incident light incoming from

medium 1 are given by [8§]

F= 1y + 15,1 +7.) Lo=1+7

T T TGS, ks v 21
i5,(1 — . '

Ry =1y — 155(1 — 1) L,=1-7,

a~t — G —iS, + 2ik3/3°

where the subindex stay for s and p polarizations of the incoming light, respectively.
Besides, the Fresnel coefficients 7, ¢, 7,, and ¢, of individual graphene nanoribbons
are described in Eqs. (1.24) and (1.25), and the —iS,, + 2ik®/3 factors in the de-

nominators stay for the radiative damping [88]. Moreover,
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where k; | are the perpendicular components of the wave vector in the media j = 1,2
as described in section (1.5.2). Combining all the former equations, we get the

expression of the absorbance of the thin-layer array remains [112]

- Eg ~
Agp=1—|Fpl* — ,/i [ (2.14)

Interestingly, for the conditions here assumed (self-standing layers and normal-
incidence light), the maximum possible absorbance is 50%. However, a suitable
combination of the surrounding dielectric media and angle of incidence of the exter-
nal light permits achieving complete optical absorption (100%) [88]. Full absorption
can further be achieved by placing the structure approximately a quarter wavelength
away from a good mirror (Salisbury screen configuration [113], 114]).

As an illustrative example, we calculate the absorbance of two neighboring layers
of graphene ribbon arrays with a lateral offset as depicted in Fig.[2.4(a). We assume
that the ribbons are self-standing and normally illuminated with s polarized light
(see Fig. 9 in Ref. [30]). Besides, we only vary the distance d between both layers and
we consider that the reflection coefficient of the global system is the sum of the two
independent layers. The spectra depicted in Fig.[2.4(b) are dominated by a single
plasmon feature that is redshifted with decreasing interlayer distance due to attrac-
tive interaction similar to the dimers described in Fig.[2.2(a). Interestingly, when
d = 0 we recover the extended graphene layer limit and the resulting absorbance is
approximately the value given in section ((1.5.2)) ma ~ 2.3%. Note that, since our
bilayer array is doped with a finite Fermi energy, here at the plasmon frequency
the absorbance is slightly smaller than that 2.3% value. This is due to the opening
of a gap of size Er between the Dirac points and the first unoccupied state in the

conduction band so that the e-h pairs creation is energetically less favorable.
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2.2 PLASMONS IN INHOMOGENEOUSLY DOPED
NANORIBBONS

In this section, we concentrate on the study of the plasmonic response of inhomo-
geneously doped self-standing graphene nanoribbons. Here, the spatial distribution
of the doping charge carrier density n is obtained via an electrostatic boundary-
element calculation. We particularly focus on three different realistic geometrical
configurations: (i) backgated ribbons, (ii) co-planar ribbon pairs placed at opposite

potentials, and (iii) individual ribbons subject to a uniform electric field.

2.2.1 BACKGATED NANORIBBONS

The first studied case consists of a nanoribbon of width D at a potential V relative
to a planar backgate at a distance d [see Fig.[2.5(a)]. Although the induced charge
density distribution —en(z) over the structure surface 0 < z < D has been already
reported in the past [115, [116] 117, 118], it can be analytically obtained using the
method of charge images [111]. Within this approach, the problem reduces to solving
a system formed by two parallel nanoribbons vertically separated by a distance 2d
and placed at potentials +V (the upper one) and —V (the lower one), so that the
backgate plane (z = 0) is at zero potential. The lower nanoribbon is thus represented
by a induced charge density en(x). Thereby, the potential at position z in the upper

nanoribbon is

D / +oo ) 1 1
V= /0 dm/_ood?/[_en(l')] [\/(l’—l”)2—|—y2 o \/(l‘—l’/>2—|—y2+4d2
(2.15)
Calculating analytically this integral along the y coordinate and using the notation
k= D/d, 0 = z/d, with
u=—V/ed, (2.16)

we can rewrite Eq. (2.15) as

u= /H do'n(6'd) F(6,6), (2.17)
0
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where
4

FO,0)=In |1+ ——=1.
(0,0") n{+(6—9’)2
We solve this integral equation by discretizing 6 through a set of N equally spaced
points 6; = (i + 1/2)k/N, with i = 0,..., N — 1. Thus, Eq. (2.17) can be approxi-

mated as

(2.18)

with
91-/+I-€/2N
My = / d6' F(6;,0') (2.20)
0,1 —K/2N

being an integral over the interval surrounding point ;. Finally, the distribution of

the doping charge carrier density is found by inverting the matrix M, so that

n(Od) =uy  [M7],. (2.21)

In practice, this method converges for N ~ 100. Interestingly, all the curves depicted
in Figs.[2.5(b),(c) consist of two different curves with N = 100 and N = 500, and the
difference is negligible on the scale of the plot. Interestingly, notice that the uniform
doping charge carrier density in the D/d > 1 limit is given by n® = —V/4red.
Thus, we can obtain the expression of the average Fermi energy (|Er|) normalized
to the value in the D/d > 1 limit Eg° = hvp/|V]/4ded

(IEpl) 1
= W > Narln(6:d) /ul. (2.22)

Incidentally, we consider the absolute value of Er because the graphene response is

nearly insensitive to the sign of Ef.

Once we know the spatial distribution of the Fermi energy, we can use the electro-
static scaling law formalism presented in section since D < A, where A is the
wavelength of the incident light. We assume that the Fermi energy can be split as
Er(R) = (|EF|) f(R), where now the occupation function f(R) is not uniform along
the nanoribbon surface. Furthermore, the conductivity of the graphene structure in
taken from the Drude model [see Eq. (1.16)]. We solve the self-consistent electro-
static equation given in Eq. by describing the graphene nanoribbon as a square
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periodic array of surface dipoles with a small period a compared to the characteristic
lengths of the structure, i.e.,a = D / (N dip 1), where NP is the number of dipoles
across X. This formalism is known as discrete surface-dipole approximation (DSDA)
[88], where we take the polarizability of each dipole such that the layer formed by a
uniform lattice of dipoles has the same conductivity as a uniform layer of graphene.
The sum over dipole elements along y is performed before a self-consistent solution
is found, and therefore, the numerical problem reduces to solving a set of 2N%P
linear equations with 2N4P variables (the dipole components along both % and ¥
directions). In practice, convergence is achieved with a few hundred dipoles for the
dimensions considered in this work. Here, we have modified this method by allowing
each element to depend through Ex on the spatial position along X. Finally, we just
need to solve a linear eigensystem [86] that produces real eigenvalues 7 (here the
subindex j refers to each eigenstate). Thus, using a similar formalism presented in
Eq. , we express the plasmon frequencies as wl?r“de ~ W) / \/—777; —iv/2, where
wy = (e/h)\/(|E¥|)/D defines a natural normalization frequency that we define for
convenience.

We show in Fig.(b) the evolution of the average Fermi energy of the backgated
nanoribbon normalized to Fp° as a function of the width-to-distance ratio D/d.
In the limit D > d, which corresponds to the graphene nanostructure in close
proximity to the backgate, (|Er|) converges smoothly to Eg°. Besides, from the
inset we observe that the spatial distribution of the Fermi energy is nearly uniform
except in the edges where a sharp profile appears. In contrast, in the limit D < d,
which corresponds to large separations between the nanoribbon and the backgate,
the profile is determined by the interaction of the nanoribbon with a distant image.
Remarkably, in this limit we find that (|Er|)/Ep x \/(d/D)/\/In (d/D), and from

the inset, we observe that the shape of the Fermi level is smooth and convergent.

Finally, we find that the doping level diverges as oc 2~ %/* with the distance to the

nanoribbon edge x.

Drude
p

Jwy is a dimensionless number, independent of the specific

In Fig.|2.5(c) we plot the plasmon frequencies of the system w , normalized to

Drude
p

width D or doping level (|Er|). As an example, for D = 100nm and (| Eg|) = 0.6€V,

Drude ~
p ~~
0.19€V (i.e., \J" ~ 6.5um). As we can observe from the solid curves, with this

wg, so that the ratio w

we find Aw( = 0.093eV and a dipolar plasmon energy when d = 10 um of w
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Figure 2.5: Inhomogeneous electrostatic doping and plasmon modes of backgated
graphene nanoribbons. (a) Sketch of the geometry under consideration where a
single nanoribbon of width D is placed at a potential V' over a backgate. The
distance between the graphene and the backgate is d. (b) Average Fermi energy
(|Er|) as a function of width-to-distance ratio D/d, normalized to the value Ep° =
hvgy/|V'|/4ed obtained in the D > d limit. The inset illustrates the Er distribution
along the nanoribbon, normalized to (|Eg|). (c) Frequency wl™?¢ of the dipolar
(orange curves) and quadrupolar (blue curves) plasmon modes, normalized to w(, =
(e/h)\/{|Er|)/D. The insets represent the induced charge density at the frequency
of these plasmons (vertical axis) as a function of position across the nanoribbon
(horizontal axis). The dashed curves indicate the D > d limit. The figure is

adapted from Ref. [86].
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Drude
p

and quadrupolar modes and is nearly constant when D < d. Moreover, the plasmon

normalization w Jwp displays just a weak dependence on D/d for the dipolar
frequencies slightly differ from the ones corresponding to the uniform doping (dashed
curves).

The inset of Fig.[2.5(c) shows the corresponding induced charge densities of the
dipolar (orange curves) and quadrupolar (blue curves) modes for different D/d ra-
tios, and obtained implementing the induced potential in Eq. as pd(z,w) =
lio(w)/w|V2®(z,w) via finite-difference derivation. We find that their profiles are
only slightly affected by the change in doping profile relative to uniform doping
(i.e.,the average level of doping is a dominant parameter, and the effect of edge
divergences is only marginal). In conclusion, the plasmon frequencies and induced
densities can be approximately described by assuming a uniform Fermi energy in
backgated nanoribbons, thus supporting the validity of previous analyses for this
configuration [31), 41], [85] although (|Er|) has to be appropriately scaled as plotted
in Fig.2.5(b) to compensate the effect of finite D/d ratios.

2.2.2 (CO-PLANAR NANORIBBON PAIRS AT OPPOSITE POTENTIALS

The second geometrical configuration here studied is illustrated in Fig.2.6(a). It
consists of two co-planar parallel nanoribbons of opposite polarity. The graphene
nanostructures present the same width D and are separated by an edge-to-edge
distance d. Here, the neighboring ribbons can act both as plasmonic structures and
gates.

We follow the same analysis described in the previous section for the backgated
case in order to get the spatial distribution of the Fermi energy. In our current case,

the potential created on the nanoribbon on the right is

/24D +oo
V:/ dx'/ dy [—en(x')] [ ! — ! . (2.23)

/2 ~oo Vie—a )2+ (o +a)?+ 2

Moreover, Egs. (2.17) and (2.19)-(2.21)) remain valid but Eq. (2.18) becomes

F(0,0') =2In (2.24)

-6

0’+9‘
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Figure 2.6: Inhomogeneous electrostatic doping and plasmon modes of co-planar
parallel graphene nanoribbons of opposite polarity. (a) Sketch of the geometry un-
der consideration with two co-planar parallel nanoribbons of width D, separated
a distance d, and set at opposite potentials —V and V', respectively. (b) Fermi
energy distribution across the graphene surface for different width-to-distance D/d
ratios. The Fermi energy Ff is normalized to the value E° = hop/|V|/4ed. (c)

Frequency w];r“de of the dipolar (orange curves) and quadrupolar (blue curves) plas-

mon modes, normalized to w, = (e/h)+\/(|Er|)/D, as obtained from the Drude model
[see Eq. (1.16])]. The solid (dashed) curves correspond to inhomogeneous (uniform)
doping. The insets illustrate the induced charge density associated with both plas-
mon modes (vertical axis) as a function of position across the nanoribbon on the
right (horizontal axis, with the position of the right side of the gap indicated by an
arrow) for D/d = 0.2, 1,3, and 10, respectively (curves evolving in the direction of
the cambered arrows). The figure is adapted from Ref. [86].
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For symmetry, the density of doping charge carriers of the left nanoribbon is found
as n(x + d/2) = —n(—x — d/2). Finally, the plasmon frequencies with this specific
spatial distribution of the doping are obtained using again the DSDA approach.

In Fig.(b) we depict the doping profiles across the nanoribbons, which evolve
from a shape similar to the one obtained for the single nanostructure shown in the
inset of Fig.2.5(b) in the D < d limit, towards a converged profile near the gap
in the D/d — oo limit. From Fig.[2.6(c) we observe that plasmons here greatly
resemble those of neighboring uniformly doped nanoribbons for the same value of
(|Er|). Incidentally, plasmons in pairs of uniform nanoribbons had already been

thoroughly investigated [41], including the redshift with decreasing d.

2.2.3 INDIVIDUAL NANORIBBONS UNDER
A UNIFORM ELECTRIC FIELD

The two inhomogeneous doping schemes considered so far for nanoribbons involve
fabrication processes including contacts that allow to charge graphene electrically
and could turn into structural defects. However, we can prevent these defects with
an electrostatic doping through a uniform external electric field easily attainable
experimentally by either distant gates or low-frequency radiation. For this reason,
the last geometrical configuration studied here consists of a globally neutral nanorib-
bon exposed to an uniform external electric field Eq oriented along its width D [see
Fig.2.7(a)].

We follow the same procedure as in the two previous doping configurations in
order to get the spatial distribution of the Fermi energy. If we take the nanoribbon

to be placed at zero potential, we can write

+D/2 +o00 1
0=—Eyr+ / dx'/ dy [—en(z")] , (2.25)
—D/2 —oo (x — /)% + 92
where the first term after the equal sign stays for the scalar potential produced
by the external field. Now, using the normalization § = x/D, the above equation
reduces to

+1/2
Byl = / 40/ [—en(0'd)] F(0,9), (2.26)
~1/2
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Figure 2.7: Inhomogeneous electrostatic doping and plasmon modes in individual
graphene nanoribbons subject to a uniform external electric field Eq. (a) Sketch
of the geometry under consideration with a single nanoribbon of width D exposed
to a uniform external electric field. (b) Fermi energy distribution normalized to
(|Er|) = 0.6hvp\/Ey/e where the dashed line shows corresponds to the uniform
doping case [i.e., Ep(x) = (|Er|)]. The inset corresponds to the induced charge
density associated with the dipolar plasmon mode excited when kj = 0 for inhomo-
geneous (solid curve) and uniform (dashed curve) doping conditions, respectively.
Here, the plasmon frequency for inhomogeneous doping is w?rude ~ 1.45w(, where
wy = (e/h)\/{|Er|)/D. (c) Plasmon dispersion diagram representing the dependence
of the density of optical states on frequency wgmde and wave vector parallel to the
nanoribbon k. (d) Same as panel (c) for uniform doping. The figure is adapted
from Ref. [86].
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where

F(0,0)=—In[(6 —0)°]. (2.27)

We use the discretization §; = —1/2+ (i +1/2)/N to write an expression similar to
Eq. (2.19), where M;; is still given by Eq. (2.20) with x = 1. Finally, the density of

doping charge carriers is obtained from

n(0;d) = (—Eofe) > [M™'], 0. (2.28)

i,

We illustrate in Fig.[2.7(b) the spatial distribution of the Fermi energy Fr(x) =
h’UF\/TFlT(I'” normalized to the average Fermi energy, which is found to be (|Er|) =
0.6 hvpm. We observe that the doping profile (solid curves) exhibits a diver-
gence at the edges again, and it vanishes at the center of the nanoribbon, where
n changes sign. The dashed line corresponds to the uniform doping. The result-
ing induced charge density of the dipolar plasmon for normal-incidence illumination
(k) = 0) is plotted in the insets. For the inhomogeneous doping, it displays a large
concentration of induced charges near the center of the ribbon, in contrast to the
uniform doping case (dashed curve) that shows the typical dipolar-like behavior also
observed in Fig.[2.1(a). This inhomogeneous induced dipole-charge density concen-
tration results from the vanishing of n, which can be understood as a thinning of
the effective layer thickness, similar to the trapping of graphene plasmons at p-n
junctions [119].

Although we have so far discussed plasmons that are invariant along the length
of the nanoribbon (i.e.,as those excited by light impinging normally to graphene,
ki = 0), we represent in Figs.2.7(c),(d) the full plasmon dispersion relation for
a nanoribbon either under inhomogeneous doping produced by Eq [Fig.2.7(c)], or
uniform doping [Fig.2.7(d)]. The dispersion relations are rather different in both
situations, with the inhomogeneously doped nanoribbon showing a denser set of
modes, as well as higher localization of the lowest-energy plasmons for large k; [86].

Finally, we need to mention that the decay rate v obtained from the Drude model
[see Eq. (L.16)] presents now a spatial dependence on the position through |Er(R)|.
However, since the local contribution to losses is proportional to Re{oP™(w)} =
(e2/7h?)|Er|y/ (w?* +~?) (i.e., independent of R), we conclude that the inhomogene-

ity of the decay rate is nonetheless translated into a uniform spatial distribution of
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losses. We need to remark that, during this section, we have obtained the decay
rate using the impurity-limited approximation for the constant dc graphene mobility
p = 10000 cm?/(Vs) [see last paragraph of section (|1.4.1])].

2.3 PLASMONS IN INHOMOGENEOUSLY DOPED

NANODISKS

In this section, we change the geometry under study, and we focus on plasmons gen-
erated in self-standing graphene nanodisks with small diameter D. In addition to
the typical uniform doping distribution, we discuss in particular two different inho-
mogeneous doping configurations: (i) charged nanodisks under a uniform potential
where the additional amount of charge carriers is self-consistently distributed along
the graphene surface, and (ii) neutral nanodisks exposed to a neighboring external
point charge.

Our work is based on the study of the electromagnetic monopolar (m = 0) and
the lowest-order dipolar modes (m = 1) sustained by the nanodisks, whereas the
potential evolves as ®(R,w) = ®(R,w)e™?, with the azimuthal angle ¢ and the
polar coordinates R = (R, ¢) [see orange arrows in the lower inset of Fig.[2.§(b)]. In
this section, the doping charge carriers density n is also obtained via an electrostatic

boundary-element calculation, and the dielectric response of graphene is taken from

the Drude model [see Eq. (1.16])].

2.3.1 DISKS UNDER UNIFORM POTENTIAL DOPING

We start by analyzing charged nanodisks where additional carriers are rearranged

to produce a uniform potential

o [Zen(R)]
= —_—. 2.2
v /R’<D/2 TR R —R/| (229)

We numerically solve this integral equation by expanding the Coulomb interaction

in terms of Legendre polynomials of order [ as [120]
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W - leo Rgl PI(COS(SO a2 ))7 (230)

where R = max{R, R’} and R. = min{R, R'}. Besides, changing the radial vari-
able to § = 2R/D, we can rewrite Eq. (2.29) as

0 1
-2V * 1 2n+1 o [ 40
5= Y Do [W / 0 40’0 (') + 6 / 9 G| (2.31)
where
+7
Iim :/ d¢ cos (me) Py(cos(¢)), (2.32)
with ¢ = ¢ — ¢/, and in particular,
om [(2n)1]?
2n,0 — T, )
16™ !
(nl) (2.33)
7 (2n)!(2n 4 2)!
Lnyip =

20+l [(n + 1)1

with Ion410 = fon1 = 0 for integers n. We solve the integral of Eq. following
a similar approach as in section , where a discretization through a set of N
equally spaced points is used, so that 0; = (i + 1/2)k, with ¢ = 0,..., N — 1 and
k = 1/N. Finally, normalizing the density of charge carriers to n>® = —V/2weD
(i.e., the density in each of the infinite plates of a capacitor with a voltage difference

V and a plate separation D/2), we find

) _ g, ZN:_OI (M) (2.34)

with

My = ano oL, i =1, (2.35)
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where the coefficients

Iy = / T gani gy

I/N
1 (i+1/2)/N (i+1)/N de/
L= — / 021y 4 g2 / < 2.36
tgtl SN * (i+1/2)/N 072" ( )
(i/—i-l)/N dg’
K = / &
i/ /N g2n

admit straightforward closed-form solutions. The charge carriers density profile ob-
tained with this fine-element method agrees [90] with the purely analytical profile
expected n(0)/n> = (4/7) //1 — 62 [121]. Moreover, the effective capacitance den-
sity C' = Q/V from the total charge Q = Up(R)dzR’ = (reD?/2) féGn(@) de
yields C = 0.33D [90], which is in good agreement with the analytical result
C = D/m ~ 0.32D [121]. In particular, this method converges for [ ~ 50 terms
in the Legendre polynomials, and N ~ 2000 discretization points along the radial
distance of the disk.

For the calculation of n, we can express n(R) = h(R)/ [r(D/2)?, where h(R)
is a dimensionless envelope function related to the occupation function as follows
fR) = /h(R) / (Vh(R)). In absence of external fields, considering (i) the az-
imuthal symmetry m = 0,1 of the potential, (ii) the Drude model for the conduc-

tivity where o(R,w) = o(w)f(R), and (iii) the Coulomb expansion in Legendre
polynomials presented in Eq. (2.30]), we can express the electrostatic potential for
the disk given in Eq. (1.34) as

B0, w) = n(w) /:O d@’:;gm (Zi) {@”f + @ <f’ + g) - ”;Zf@} . (237

Here, we use that (R, w) = 0P(R,w)/IR, the parameter n(w) is given by Eq. ((1.36)
with e1 =9 =1, and
() =Y i o, (2.38)

with [, taken from Eq. (2.32)).

In order to get the plasmon frequencies, we discretize the self-consistent po-
tential of Eq. (2.37) in the same manner as above for obtaining the charge carrier
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distribution, so that we finally get again an eigensystem [90] with real eigenval-
ues 7)7. The plasmon frequencies of each mode become wEmde ~ W) \/—777;’ —iv/2,
where w = (e/ h)\/W is the normalization frequency used in this case,
then the relation between these eigenvalues and the ones presented in section
is i = 2n;.

Remarkably, the occupation function f(R) is discontinuous at the disk edge as
observed in the upper inset of Fig.[2.8(b), thus leading to a divergence of f'(R). We
numerically avoid this issue by introducing a small Gaussian smoothing of width A
in f(R) through the substitution

—(0-0)?
o oA S (@) e =

“-0)®

[ e e &

f(0) (2.39)

We take the upper integration limit as fm.c = 1 + 3A, where A = 1073 is the
converged value that we find for all the doping configurations in the A — 0 limit [90].
Furthermore, the discretization intervals in Egs. — need to be redefined
by setting x = (1 4+ 3A) /N.

In Fig.[2.8] we compare the plasmon induced charge densities of a uniformly
doped nanodisk [panel (a)] with inhomogeneous doping under uniform potential V'
[panel (b)]. The induced charge densities are again obtained from the self-consistent
potential using Eq. . We observe that for the two modes studied m = 0 (black
curves) and m = 1 (red curves), a piling up near the disk edges is observed. This is
combined with a close resemblance between both doping configurations which turns
into similar plasmon frequencies [see Fig.[2.10]. Taking into account these features,
although from the upper inset of Fig.(b) we observe that the spatial distribution
of the doping is remarkably different, we can conclude that the doped nanodisk under
uniform potential is qualitatively well described as a uniformly doped nanodisk with
the same value of (|Er|). Experimentally, the doping via a uniform potential can be
achieved through small leads compared to D.

On the other hand, for the uniform doping case (i.e., disks connected to a trans-
parent conductive layer in a top-gate configuration [71]), we know from section ([1.5.2)
that the m = 0 mode cannot couple with external light. For its excitation, we need

either (i) a highly reflecting metallic element (e.g.,a gold sphere) that enhances the
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Figure 2.8: Induced charge density of a graphene nanodisk of diameter D under
uniform doping and inhomogeneous doping by a uniform potential. (a) Induced
charge density of the uniformly doped graphene corresponding to the lowest-order
dipolar (red curve) and monopolar modes (black curve), with m = 1 and m = 0
azimuthal symmetries, respectively. (b) Induced charge density at the plasmon
frequency of the same modes as in panel (a). The upper inset displays the Fermi
energy profile along the radial distance normalized to its average value. The green
solid curve corresponds to the uniform potential case while the blue dashed line
represents the uniform doping case. The lower inset shows a sketch of the geometry
studied. The figure is adapted from Ref. [90].

coupling with light impinging parallel to the nanodisk surface [90], or (ii) an optical
emitter placed close to the disk in its axis of symmetry and oriented parallel to the
surface [31), 90].

Finally, for the dipolar mode we have from the blue solid line of Fig.[2.10] that
wErude Jwi = 2.621, or equivalently, n; ~ —0.073. This value is in excellent agreement
with converged BEM calculations [90]. Moreover, considering that the dipolar mode
is dominant, we observe that the eigenvalue fits the purely analytical value given in
section Yoini=—2/ 372 ~ —0.068. These results highlight the accuracy and

validity of our model.
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Figure 2.9: Plasmons in a neutral graphene nanodisk exposed to a neighboring
external point charge Qy. (a) Plasmon induced charge density for m = 1 azimuthal
symmetry and different distance-to-radius ratio 2d/D. The upper inset illustrates
the profile of |Er (2R/D) | normalized to the average value. We plot |Eg| because
of the local response is nearly insensitive to the sign of Er. (b) Evolution of the
average Fermi energy with 2d/D. We plot in the left axis the average occupation
function (f (2R/D)), from which the average Fermi energy is obtained as (|Ep|) =
(2hvp/ D) \/|Qo/e|{f (2R/D)). The right axis corresponds to (|Fg|) for D = 10nm
and )y = —e. The inset shows a sketch of the geometry. The figure is adapted from
Ref. [90].

2.3.2 DISKS DOPED BY AN EXTERNAL POINT CHARGE

A sketch of the second inhomogeneous doping configuration here considered is de-
picted in the inset of Fig.(b). We consider now a point charge )y placed along the
symmetry axis of a neutral graphene nanodisk at a distance d. The point charge can
be introduced experimentally through tipped gates (e.g., two facing tips at opposite
polarity with the nanodisk placed in the middle point). Thus, the charge carriers
redistribute their position owing to the external charge field. In order to get their
spatial distribution, the potential V' described in Eq. has to be supplemented
by the potential created by the external charge, which results in
[—en(R)]

QO dQRI

V=—"F7+r——=+ . 2.40
VR? + d? R'<D/2 R — R/| (2:40)



2.3. PLASMONS IN INHOMOGENEOUSLY DOPED NANODISKS 71

45 :
= 40 =0’ ]
o>~ 3.5¢ \/‘//;Hr;i%orm doping -
;5 .3 0___,_/’/ —uniform potential]

' —point charge

e

2.0 : ,

0.1 1 0 100

1
2d/D

Figure 2.10: Graphene-disk plasmon frequencies for three different doping configu-
rations. Evolution of the plasmon frequency with distance-to-radius ratio 2d/D for
the doping configurations studied in this section. The plasmon frequency wl?mde is
given relative to wj = (e/h) \/2(|Er|)/mD for both m = 1 (solid curves) and m =0

(dashed curves) azimuthal symmetries. The figure is adapted from Ref. [90].

We follow a similar discretization procedure as in the previous section in order to
solve this equation, but now we have an extra variable V| which is fixed by the
additional constraint that the total doping charge on the disk is zero, f é On(0)do =
0. This expression, in combination with the analogous of Eq. ,

4 N-1 Qo DV
n(0;) = ﬁzi’zo (M \/W_ | (2.41)

permits us to calculate the charge carriers density profile n(R). Furthermore, the
induced charge densities and the plasmon frequencies are calculated in the same

manner as the uniform potential doping case.

We observe from the inset of Fig.[2.9(a) that the charge carriers density is dis-
tributed into two regions of opposite sign separated by a circular boundary. This
translates into dipolar plasmons that are strongly confined to the points of vanish-
ing carrier concentration as shown in panel (a), similar to those that were discussed
above in section . When the external charge is approaching the disk, the plas-

mon follows the junction displacement towards the disk center. Remarkably, from
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Fig.[2.10, we observe that the dipolar plasmon frequency (red solid curve) for d > D
slightly differs from the uniform doping configuration for the same value of (|Ep|)
(blue solid line). However, substantial corrections appear when 2d < D.

In Fig.2.9(b), we plot on the left axis the evolution of the average occupation
function with the distance-to-radius ratio. Interestingly, for a D = 10 nm nanodisk
exposed to a single electron (Qy = —e) placed at a distance d = 1.5 nm, we achieve
(|Er|]) = 0.1eV, that corresponds to (|n|) ~ 0.75 x 102 cm~2. Moreover, from
Fig.[2.10] we get a dipolar plasmon energy ~ 0.2eV, which belongs to the range of
acceptance hw?rude < 2FEf for TM modes described in section . Consequently,
a single distant electron (or a singly charged ion) is enough to trigger the creation
of a plasmon in a neutral graphene nanodisk, thus suggesting a method for optically
sensing the presence of neighboring atoms. Finally, we observe from the red dashed
curve of Fig.[2.10] that the plasmon frequency of the monopolar mode is remarkably
different to the one of the uniform doping configuration, and this behavior is more

relevant when 2d < D.

2.4 PLASMONS IN PERIODICALLY DOPED GRAPHENE

We have asserted in section that SPPs cannot be directly excited by external
light in uniformly doped extended graphene due to the momentum mismatch. How-
ever, there are alternative methods to overcome this problem. The most common
strategies involve the use of prisms (e.g., high-index dielectrics in the well-known
Otto [122] and Kretschmann [123] configurations), scattering from topological de-
fects [124], attenuated total reflection (ATR) [125], or periodically doped systems
88, (103, 126, 127, 128, 129].

In the latter, a periodic doping provides the missing momentum needed by exter-
nal light to excite a SPP [130] since the momentum of the plasmon is conserved up to
a reciprocal lattice vector G due to the Bloch theorem [I§]. In other words, when ex-
tended graphene is under the effect of a weak periodic potential ®(r,w), a plasmonic
band structure appears in the first Brillouin zone (1BZ) so that it is possible for the
external light to excite directly the SPPs of the upper bands. This situation is stud-
ied in Fig.[2.11] where we represent the 1BZ of an extended graphene layer doped by

a square-arranged potential with a certain lattice period a that fulfills the condition
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Figure 2.11: First Brillouin zone of periodically doped extended graphene showing
its optical dispersion. The periodicity of the square-arranged doping is a. The solid
curves represent the folded plasmon bands of the monopolar (m = 0) and dipolar
modes (m = 1), respectively. At the edges of the 1BZ, a gap opens. The dashed
curves correspond to the same modes but for uniformly doped extended graphene.
The orange folded triangle at the bottom corresponds to the region of e-h pairs
intraband transitions. The figure is adapted from Ref. [103].

A > a > \p, with )\ as the external light wavelength. The dashed curves correspond
to the plasmonic bands of uniformly doped extended graphene, where the folded
lowest band (i.e., monopolar mode, m = 0) evolves as Eq. with e = e = 1.
Since we use the Drude model for the conductivity, we reproduce here the same
behavior as in the lower left corner of Fig.|1.8(b) for small parallel wave vectors.
The small folded branch touching the edge of the 1BZ corresponds to the dipolar
mode, and its plasmon frequency evolves as w4 = —27i g™ (w) |k —mG|, with
G = 27n/a and m = 1 (the integer m determines the multipole order, e.g.,m = 2
is the quadrupole, m = 3 the hexapole, etc.). Additionally, the solid curves act for
the periodic doping case. Here, we observe a clear plasmon energy shift, and as pre-
dicted theoretically [18], a band gap of amplitude 2|®g(w)| [i.e., Fourier transform
of the potential ®g(w) = a™2[ . d?Re SR (R, w)] is opened at the edge of
the 1BZ. Remarkably, the plasmonic bands are perpendicular to these edges, leading
to the creation of Van Hove singularities [21]. Finally, we observe now that the light

cone can match the dipolar band (also upper bands) so that a SPP can be excited.
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2.4.1 PERIODIC DOPING BY POINT CHARGES

In this section, we particularly describe the periodic doping of self-standing extended
graphene through a square array of point charges of either equal [see Fig.[2.12((a)] or
alternating [see Fig.[2.12[b)] sign, placed at a certain distance d above the extended
graphene. Due to the periodicity, we can restrict our study to one unit cell with
characteristic size a, and a similar scaling law to that presented in section (|1.5.4))
can be used here since A > a. Assuming the Drude model [see Eq. (1.16))], the

periodicity of the structure allows us to write the conductivity as Fourier series as

o(R,w) =) ogw)e (2.42)

where the og(w) coefficients are independent of the position.

The potential in the real space can be expanded using the same formalism
, i(G'+k) ) R-|G' +kH||z\
) =D P (w) (2.43)

where the dependence on k| comes from the external potential. Implementing

Egs. (2.42) and ([2.43)) into Eq. (1.34]), and considering that graphene is in the z = 0

plane, the self-consistent potential can be rewritten in the Fourier space as

G + kH G/ + kH> —2miog_g (w)
o ext
Da(w) = B (w) + ZG, {

G + K " }¢@w) (2.44)

Before solving the former equation, we need to know the profile of the doping charge
carrier density n under our specific doping configurations. We proceed by (i) using

the method of charge images [IT1], (ii) expressing the Coulomb potential as

I d?Q 2« IQR-Ql|

and (iii) performing the sum over charges via the identity
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Y= (2;)2 > .0(Q-G), (2.46)

where the sum on the left runs over 2D lattice sites R; and ¢ is the Dirac delta

function. We find that the screening charge carrier density per unit cell reduces to

|Qo/el,
n(R) = LLnR), (2.47)
where the envelope function h(R) is defined as
|Q0/€| el (G LG"a
h ZGH iG" R— Gd _ ol(GE+GY) /2}‘ (2.48)

Here, we consider that the 2D origin R = 0 is taken below one of the positive
charges. The factor 1 inside the square bracket stays for the positive charge, and
the complex exponential accounts the effect of the negative charge at the center of
the unit cell. Since |Er(R)| = hop \/W , we conveniently define the occupation

function
fR) = V[hR) =, far S, (2.49)

where the coefficients fg~ present the next expression

1 : 1
far == / d*Re ¢ R{/|A(R). (2.50)
a unit cell

Considering that G” = G — G/, we can rewrite the second fraction of Eq. (2.44]) as

follows

—27TiO'G,G/ (w) . a w(’)”2 foG/

w C2rw(w+iy)  fo

where w(’ = (e/h)\/47(|Er|)/a is the normalization frequency of the system used
here. Moreover, we establish fo = (|Eg|)/E with

EY = hop\/7|Qo/e| /a? (2.52)

as the Fermi energy obtained in the equal sign doping case in the limit d > a.

Furthermore, we define the function ¥g(w) = /|G + k|| g (w) so that Eq. 1)

, (2.51)
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reduces to a system of equations

Va(w) = Pg'(w) + ot 1) ZG,NGG' Yo (w), (2.53)

where we have defined the real, symmetric, and dimensionless matrix

_a 3 (G +k)-(G'+ky) fo-a

Noa = — 2.54
¢e ¢ VG +k[[G +k| fo (2:54)

27

Using the same procedure as in the previous sections of this chapter, if we set
d*(w) ~ 0, we need to solve an eigensystem [103] whose real eigenvalues 7]’ permit
us to find the plasmonic bands, since wD® ~ wi'/\ /0] — iv/2.

We plot in Figs.m(c),(d) the kj-resolved plasmonic bands for the equal-sign
doping (panel (c)) and alternating-sign doping (panel (d)) along a representative
path of the 1BZ [see lower inset in panel (d)]. We plot the bands for diverse values
of the d/a ratio, which determines the amplitude of the periodic doping modulation.
In panel (c), the plasmonic bands evolve from those of uniformly doped extended
graphene (blue dashed curves) to match perpendicularly the edges of the 1BZ show-
ing up band gaps (X and M points) for small values of d/a (e.g.,the green curves
where d/a = 0.1). In panel (d), the two lowest plasmonic bands display a flat
range that extends from X to M. Remarkably, under this doping configuration, the
normalized SPP frequency wgglde Jwy' is independent of d/a, unless d < a. This
behavior is produced by the vanishing of (|Eg|) with increasing d/a due to sign
cancellations in the doping potential [I03]. In this limit, the doping charge carrier
density n(z,y) = [4|Qo/e|/a?] {exp(—27rd/a)} [cos(2mz/a) + cos(27my/a)] presents a
perfect harmonic profile. Finally, we observe that higher-order bands are nearly
dispersionless over the entire 1BZ.

In Figs.2.12(e),(f) we depict the near-field intensity for selected SPP modes
normalized to the maximum value of each case. The near-field is obtained from the

potential components in the parallel wave vector space as

E(r,w) = —-Vo(r,w) = —VZ / @ k” ol (G ) R=[G+ |2l gy a(w), (2.55)

1BZ

for the z = 0 plane, where graphene lies. The multiple panels of Fig.[2.12(e) represent
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Figure 2.12: Plasmonic bands in periodically doped graphene by point charges.
(a),(b) Sketches of the two different doping configurations considered. In panel (a),
the doping is produced by a square array of equal-sign point charges Qo = e (red
spheres) with periodicity a, and placed at a distance d over the graphene layer (note
that panels (c) and (e) correspond to the equal-sign doping while panels (d) and
(f) to alternating-sign doping). In panel (b), we alternate the sign by introducing
negative charges Qo = —e (green spheres) in the center of each square lattice. In
both schemes the graphene layer is assumed to be at z = 0 height and schematically
represented by its Fermi level. (c),(d) Plasmonic bands along the 1BZ [see inset
of panel (d)] for different values of the ratio d/a. The SPP frequency wPrude is

Spp
normalized to w(’ = (e/h) /47 {|Er|)/a. (e),(f) Parallel component of the graphene
near-field intensity at some representative SPP modes along the unit cell area (see
plot of point C) for a ratio d/a = 0.1. The figure is adapted from Ref. [103].
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the unit cell area corresponding to the equal-sign doping. Here, we assume that a
positive charge is placed over each corner of the plots. The SPP at A is a dipolar
mode excited under normal incident light; B represents a plasmon moving along the
I'X direction; C is similar to B, but with a node along I'M because it belongs to
the second band and it has to be orthogonal to B; finally, D behaves similarly to B,
but since it has a spatial period 2a along I'X, its intensity possesses maxima at the
vertical sides of the unit cell.

In the case of alternating-sign doping [see Fig.[2.12[f)], a negative charge is added
at the center of each plot. Here, the near-field intensities possess a strong localization
in the regions of vanishing doping charge [i.e., +x = +y = (m + 1/2)a, with m
being an integer|. This behavior is similar to the trapping of graphene plasmons
in ribbons and disks already mentioned in sections and . Therefore,
we can interpret that the dispersionless response of the upper plasmonic bands is
produced by the strong localization of the SPPs at the regions of vanishing n. In

all these results, we have assumed that the decay rate is v = 0.01wy’.

2.4.2 LOCAL DENSITY OF OPTICAL STATES

If we place an optical emitter (e.g., molecules and quantum dots) close to a graphene
layer, the plasmonic response of the latter can be substantially modified, giving rise
to changes in the radiative decay rate [I31], 132] of the emitter. This phenomenon is
quantified through a modulation in the local density of optical states (LDOS), which
measures the intensity of the normalized photon modes as function of the position
and energy [133, [134]. The radiative decay rate of an optical emitter placed at ry is
[135] 1:(w) = (47w |p(w)|?/h) x LDOS(rg,w), where p(w) and w are its transition
dipole and emission frequency, respectively. Besides, the LDOS(rg,w) is obtained

from the electric field E acting back at the position of the optical emitter as [26]

(51 + 82) [

LDOS(rg,w) = LDOS(w) + LDOS™(rg, w)], (2.56)

where e; (€2) is the permittivity above (below) graphene,

w2
3m2e3

LDOS(w) (2.57)
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is the value in vacuum projected along a certain Cartesian direction, and

1

LD ind _
05" (ro, ) 272w p?(w)

Im{E(rp,w) - p*(w)}. (2.58)
is the induced component. Thereby, as the plasmons of doped graphene trigger an
enhancement of the induced electric field, large values of the LDOS can be achieved
due to an increase in the interaction with nearby optical emitters. Remarkably, if
we only consider graphene as the optical emitter itself, Eq. is negligible [31],
and thus, we recover the expression given in Eq. for v, (w).

An alternative way of achieving high values of 7, (w) for optical emitters is via a
periodic doping which leads to divergences in the LDOS associated with Van Hove
singularities. Here, we study this possibility by considering the interaction of our
periodically extended graphene layer with an external optical emitter placed at a
height 2y. Using a similar fashion as the total potential given in Eq. , we con-
veniently rewrite the expression of the external potential considering (i) Eq. ,
and (ii) ®*'(r,w) = —p(w) - V (1/|r — ro|), so that in the graphene plane we find

(R, w) = ZG /1Bz éﬂl'{)'g oi( Gk ) R g (w), (2.59)

where

(G +K)

(I)ext - _9
¢ NEERT

) + sign(z@pz(w)} e i@t il (2.60)

Furthermore, we can also set

LDOS™ = d’k; LDOS™ (k). (2.61)

1BZ

Thus, we solve separately each fixed k| component so that Eq. (2.53]) remains

‘PGW:[“%NGG'] W ()
///2/ m ]t (2'62)
= [wh,w) - vE' W) —M Ve, (W),
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Figure 2.13: Enhancement of the local density of optical states (LDOS) in periodi-
cally doped graphene by point charges. (a),(b) LDOS under the two configurations
of Figs.[2.12(a),(b) for d/a = 0.1. The optical emitters (blue arrows) are placed in
the plane of the doping charges and their orientations and positions are described
in the insets. The black solid curves correspond to uniformly doped graphene. The
vertical dashed lines indicate exactly the monopolar frequencies at the edge of the
1BZ where the band gaps open [e.g.,in panel (a), it corresponds to the point D
of Fig.[2.12(c)]. (c),(d) In-plane evolution of the LDOS for the peak frequencies of
panels (a) and (b). The figure is adapted from Ref. [103].

where the sum in the second row extends over orthonormalized eigenstates of the ma-
trix Ngg [i.e., it fulfills the conditions displayed on Eq. (1.39)]. Inserting Eq. (2.55))
into Eq. (2.58)), and using Eq. (2.62)), we finally find

ind _# T L pext 2
LDOS™ (k) = 5 2 |G (w) U @) Im 7

xL A
W — wlw+ 1)
(2.63)
From this expression, we directly calculate the LDOS using Eq. through a
discretization of the 1BZ where a mesh of 200 x 200 points in k| is enough to achieve

converged results.

Fig.m illustrates the evolution in the LDOS with the ratio wP™d¢/w!" once

sSpp
we place an optical emitter close to the periodically doped structures presented in
Figs.2.12)(a),(b). Here, we assume that the optical emitter is suspended in the same
plane as the doping charges (d/a = 0.1), and we study the different positions and

orientations presented in the insets of Figs.2.13(a),(b). For the equal-sign doping
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[i.e., panel (a)], we observe a divergence in the LDOS (see vertical black dashed
line) associated with a Van Hove singularity at the saddle point where the first
band crosses the X value of the parallel wave vector [i.e.,D point in Fig.2.12{c)].
Remarkably, an even more pronounced singularity is related with the first flat band
in the XM region with the alternating-sign doping as depicted in Fig.[2.13(b). In
comparison with the uniformly doped case (black solid curves) for the same level of
(|Er|), we find an enhancement of a factor ~ 8 in panel (a) and ~ 64 in panel (b).

In Figs.[2.13|c),(d) we show the dependence of the LDOS on the lateral position
that fully confirms the symmetry of the plasmonic bands contributing to the singu-
larities: for equal-sign doping, the LDOS map [see Fig.[2.13(c)] follows the near-field
intensity at the saddle point D in Fig.[2.12(e), which is dominated by components
along x, just like the orientation of the optical emitter; besides, for alternating-sign
doping, the LDOS divergence extends over the entire region of vanishing doping, fol-
lowing the same behavior of the SPP mode at the point H as observed in Fig.(f).

"

The graphene decay rate used here is again v = 0.01wy’.

2.5 (CONCLUSIONS

In the first section of this chapter, we have introduced a new practical method
to describe accurately the electrostatic plasmonic response of interacting uniformly
doped graphene nanoribbons based on the plasmon wave function of an individual
island (7.e., magnitude proportional to the induced charge density associated with
the plasmon). We have shown that our model constitutes a natural extension of the
dipole-dipole interacting model but with a better degree of accuracy, especially at
short distances between the edges of the nanostructures. Although we have limited
our analysis to different arrangements of graphene nanoribbons (e.g., dimers, arrays,
and bilayer arrays), our model can be easily adapted to complex 2D geometries of
other 2D plasmonic materials and also incorporate more plasmon modes in each
nanostructure.

In the second section, we have investigated the classical effects of inhomogeneities
in diverse doping distributions in graphene nanoribbons. In particular, we have
focused on three different electrostatic doping configurations: backgated ribbons,

co-planar ribbon pairs placed at opposite potentials, and individual ribbons subject
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to a uniform electric field. In the first two cases, we have found that the plasmon
frequencies and the induced charge densities are very similar to those of uniformly
doped nanoribbons for the same value of the average Fermi energy (|Ep|). How-
ever, when a uniform electric field is used to dope graphene, an interesting scenario
opens where plasmons present very different characteristics, e.g., distinct plasmonic
dispersion to the uniformly doped case and induced charge densities piling up near
the center of the ribbon. This charge accumulation can offer an additional handle
to engineer graphene plasmon modes. Our study is based on the interaction of mul-
tiple dipoles spread all over the ribbon area, and can be straightforwardly extended
to other doping configurations of graphene nanoribbons or different geometries of
even diverse 2D plasmonic materials which could be useful for the design of future
optoelectronic devices.

In section , we have continued with the classical study of electrostatic in-
homogeneous doping, but focused on graphene nanodisks. We have found again
that the plasmon frequency and the induced charge density for inhomogeneous dop-
ing under a uniform potential behave similarly as in the uniform doping case for
the same value of (|Er|). Conversely, different behavior is observed when we have
neutral nanodisks exposed to a neighboring external charge. We have found regions
inside the nanodisks with a huge concentration of induced charge density near to the
points of vanishing doping, in a similar manner as the ribbons under uniform elec-
tric field described in section . Moreover, here the plasmon frequencies differ
considerably from the uniform doping configuration, particularly for the monopolar
mode and more remarkably when the distance between the external charge and the
disk is smaller than the disk radius. Remarkably, we have shown that a single elec-
tron is sufficient to excite a plasmon so that this doping configuration could enable
the optical sensing of atoms and ions.

Finally, we have explored in section a new way of doping electrostatically
extended graphene through a periodic distribution of equally-signed or alternately-
signed point charges. Under these patterned conditions, we have observed that the
radiative decay rate of an optical emitter close to graphene can be boosted via the
divergences in the LDOS associated with Van Hove singularities of the plasmonic
bands. The radiated energy is almost entirely converted into graphene SPPs, which

are eventually dissipated inelastically as heat or by the creation of e-h pairs.



CHAPTER 3

QUANTUM NONLOCAL EFFECTS IN
NANORIBBONS

As introduced in section , the plasmonic response of doped graphene is in-
fluenced by nonlocal and quantum finite-size effects when the characteristic size of
the island is < Ap, and therefore, classical electromagnetism loses its validity. More
specifically, upon the inclusion of a quantum-mechanical TB-RPA description, sub-
stantial differences in the LSP (renamed as “plasmon” for simplicity throughout this
chapter) frequencies and broadening appear up to sizes of ~ 10nm in nanoribbons
and ~ 20 nm in nanodisks [40]. Besides, the broadening of the resulting plasmon is
very sensitive to the type of edge termination [i.e., armchair (AC) or zigzag (ZZ); see
right inset of Fig.[3.1]. Following the mentioned in section (1.5.3)), ZZ-edged nanos-
tructures possess a band of zero-energy modes containing surface states populating
the edge termination (i.e.,electronic edge states) [20]. Thus, when plasmons dissi-
pate, if their energy is higher than the Fermi level [I01], a strong quenching emerges
due to coupling with these zero-energy edge states [40), 80, [84].

In this chapter, we study quantum nonlocal effects observable in the lowest-order
dipolar plasmons sustained by individual and interacting graphene nanoribbons. For
our purpose, we use the quantum TB-RPA model presented in section and
consider D = 6nm wide self-standing uniformly-doped nanoribbons at 7" = 300 K
where we distinguish between AC or ZZ edge terminations. Besides, we compare our

results with classical full-numerical calculations following the description given in
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section , where the edge configuration is irrelevant. Remarkably, the dielectric
response of the carbon layer in this classical approach is taken from the local-RPA
approximation [see Eq. ] We show that quantum nonlocal effects can occur
in individual nanoribbons and affect the hybridization of plasmons in co-planar
parallel dimers [41] and arrays for small edge-to-edge separations. These results, in
combination with other interesting properties studied in this chapter, support the
idea of the implementation of graphene nanoribbons as electro-optical modulators

and switchers in the NIR regime.

3.1 INDIVIDUAL NANORIBBONS

We start by analyzing plasmons in individual nanoribbons, as depicted in Fig.|3.1
Here, we plot the extinction cross-section under normal incidence normalized to the
graphene area for light polarized perpendicular to the nanoribbon edges (see left in-
set). This magnitude is obtained from the polarizability as the sum of the expressions
given in Eq. . We compare the results from the quantum-mechanical model
(i.e.,blue and red curves) with the numerical solutions of full-retarded Maxwell’s
equations (i.e., black curves) obtained with BEM [see section (|1.4.1])].

We study three different doping levels Fr = 0.4, 1, and 1.5eV, with a constant
intrinsic decay rate of iy = 20 meV. We observe that classical plasmons are generally
redshifted but in excellent quantitative agreement with the results from our quantum
TB-RPA model when the plasmon energy is below the Fermi level (i.e., Ep = 1eV
and 1.5eV). If this condition is not satisfied (i.e., Er = 0.4eV), plasmons in ZZ-
edged nanoribbons (blue curves) are strongly quenched by the excitation of the
edge states mentioned above. Moreover, for the AC termination (red curves), the
plasmons are slightly blueshifted and broadened by the effect of nonlocalities. This
behavior is reproducible over a large range of doping levels, with Fig.[3.1] acting as
a representative example.

Additionally, the plasmon frequencies increase with Fr following the approximate
behavior given in section for the nanoribbons hw,, = 4e\/[2/(e1 + &2)] Er /7D,

where we assume as dominant the lowest-order dipolar mode, and €, = g5 = 1.

Although this expression is derived assuming the Drude model, within the local-RPA
approach the plasmon energies are just slightly redshifted, as plotted in Fig.ﬂ(a).
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Figure 3.1: Comparison between quantum and classical plasmons sustained by indi-
vidual graphene nanoribbons. We plot the normal-incidence extinction cross-section
normalized to the graphene area of a self-standing nanoribbon (width D = 6 nm and
intrinsic decay rate Ay = 20meV) for several values of the Fermi energy Er. These
results are obtained using (i) classical theory (black curves) using BEM [see sec-
tion (L.4.1)] with the local-RPA conductivity [see Eq. (L.18)], and (ii) a quantum
TB-RPA model [see section (1.4.2)]. In this quantum formalism, we find a solu-
tion for either zigzag (blue curves) or armchair (red curves) edges as illustrated in

the right inset, where ag = 1.421 A is the carbon-to-carbon bond distance [see sec-
tion ([1.3.2)]. We focus on the lowest-order dipolar mode (see induced charge density
in the left inset), which is excited by light polarized across the ribbon. The figure
is adapted from Ref. [101].
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Figure 3.2: Normal-incidence classical (a) and AC-edged quantum TB-RPA (b) cal-
culations of the extinction cross-sections of nanoribbon dimers. The width, Fermi
energy, and intrinsic decay rate are D = 6nm, Er = 0.4eV, and Ay = 20meV,
respectively. Each spectrum corresponds to different carbon-to-carbon edge sepa-
rations d as shown in the inset of panel (b) [see Fig.[3.3(b) for the relation of this
parameter to the edge-to-edge distance in the classical model]. The spectra for indi-
vidual nanoribbons of widths D and 2D are depicted as dotted and dashed curves,
respectively. The light polarization is the same as in Fig.[3.1, The figure is adapted
from Ref. [101].

3.2 DIMERS OF CO-PLANAR NANORIBBONS

We know from section that two doped co-planar parallel nanoribbons separated
a carbon-to-carbon (C-C) edge distance d can interact, thus producing significant
changes in the plasmonic response of the whole system. We study this scenario
in Fig.[3.2] with a dimer of identical nanoribbons of width D = 6nm and Fermi
level Er = 0.4€V. Here we compare classical simulations [panel (a)] with quantum-
nonlocal AC-edged calculations [panel (b)]. For the latter, the implementation of a
finite number of nanoribbons in our quantum TB-RPA model is straightforward. In
the case of dimers (and also more generally for an array), we use the 1D periodicity
of the graphene atomic lattice is order to reduce the calculation to a finite number
of sites (I and !’ indices) within a unit cell [4I]. The single-ribbon susceptibility
is the same as in Eq. , but we need to supplement the Coulomb interaction

vy with the sum of all interactions of site [ with the equivalent [’ sites in other
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Figure 3.3: Evolution of the plasmon energy with the separation distance in co-
planar armchair-edged dimers of graphene nanoribbons. (a) We represent the plas-
mon peak energies of Fig.[3.2]as a function of the carbon-to-carbon edge distance d
using classical and quantum-mechanical (for AC nanoribbons) models. The classical
calculations [i.e., the black solid curve also plotted in Fig.[2.3(a)] converge well to
the double-width-ribbon (see lower right inset) limit for d < D (black dashed line),
in contrast to the quantum TB-RPA curve, which predicts a substantial energy gap.
The left inset illustrates the nearest separation dyim = v/3aq /2 considered for the
quantum AC calculations. (b) Scheme of the notation used for the separation dis-
tance between nanoribbons; classical calculations are performed with a separation
given by dg = d — dyin- The figure is adapted from Ref. [T0T].

ribbons. The resulting effective polarizability per unit length (L — oo) is then
given by a(w)/L = > 2 pid(w) / (Eob), where the sum extends over the noted unit
cell of length b along the nanoribbon, z; is the distance across it, p"(w) is the
induced charge density, and Ej is the external electric field per unit area used in our
formalism (i.e., Pf** = —x; Ep).

From Fig.[3.2] we observe at first glance that, accordingly to the results pre-
sented in Fig.[2.2(a), the interaction is attractive leading to redshifts. However,
the sequence of spectra clearly shows that the discrepancy between classical and
quantum calculations boosts at short distances d between the nanoribbons. This is

consistent with the intuitive idea that the influence of nonlocal effects is higher at



88 CHAPTER 3. QUANTUM NONLOCAL EFFECTS IN NANORIBBONS

short distances [136]. As part of this behavior, we find from panel (a) that classical
simulations of the dimer converge smoothly to the double-width single-ribbon limit
(black dashed curve), in contrast to quantum calculations. This singular effect is
more remarkable in Fig.[3.3|a), where we plot the evolution of the dimer plasmon
energy with d. As we see, a sizeable jump appears between the plasmon of an AC
single-ribbon with double-width and the dimer separated the minimum possible dis-
tance duym = V/3a0/2 (with ap = 1.421 A as the C-C bond distance) when a row of
C-C bonds is removed (i.e., the TB hopping between electrons of different ribbons is
set to zero). These removed bonds are depicted within dashed lines in the left inset
of Fig.[3.3a). Interestingly, the classical calculations for the dimers [same black
solid curve as in Fig.[2.2(a)], match the double-width nanoribbon plasmon at very
small distances.

Incidentally, since the nanoribbon edges are generally passivated with hydrogens,
and considering the C-H and H-H bond distances, we estimate that only carbon-to-
carbon edge distances 2 0.3 nm are realistic, with well-separated and non-tunneling
electronic states in each nanoribbon. We include smaller distances for tutorial pur-
poses and, in particular, dy;, in AC nanoribbons to study the effect of removing
one row of C-C bonds, as discussed above. The relation between the separation dis-

tances d for both the classical and quantum calculations is explained in the caption

of Fig.[3.3|b).

3.3 ARRAYS OF CO-PLANAR NANORIBBONS

We compare in Fig.[3.4] the absorbance for normal-incidence light of a co-planar
array of nanoribbons with AC [panels (a) and (b)] and ZZ edges [panels (c¢) and (d)],
respectively. The absorbance is here calculated assuming s polarization, whereas the
reflection coefficient of the array is obtained from Eq. (2.12), and it can be safely
reduced to 75 ~ (2wik/a) [@(w)/L], where a = D + d is the period of the array.
The resulting spectra for diverse periodicities exhibit again a high sensitivity to
77 edges when the plasmon energies are above the Fermi level, leading to a significant
reduction of absorption and increasing plasmon broadening [cf. panels (a) and (c)].
At higher doping [panels (b) and (d)], plasmon broadening is limited to the intrinsic
damping (i.e., iy = 20meV) in both AC and ZZ ribbon arrays. Interestingly, the
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Figure 3.4: Absorbance under normal incidence of s polarized light [see Eq. (2.14)]
by a co-planar array of graphene nanoribbons with AC [panels (a) and (b)] and
77 |panels (c) and (d)] edges calculated from our quantum TB-RPA model for
two different Fermi energies (see upper labels) and various carbon-to-carbon edge
separations d. The nanoribbon width and intrinsic decay rate are the same as in

Fig..1] The figure is adapted from Ref. [I01].

inter-ribbon interaction is smaller with ZZ edges, as revealed by the larger redshift
in AC nanoribbons at narrow separations d. In all cases, equivalently to the classical
results presented in section , these energy shifts are larger than in dimers [cf.
for example Figs.[3.2(b) and[3.4|(a)]. Remarkably, the maximum possible absorption
of 50% is reached with ZZ edges in panel (d) at separations of the order of the C-C

bond distance.
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3.4 CONCLUSIONS

In this chapter we have shown that quantum nonlocal effects in narrow graphene
nanoribbons exhibit the following general properties: (i) plasmons are quenched by
77 edges, and they decay through excitation of electronic edge states, when the
energy of the formers are above the Fermi level; (ii) quantum nonlocal effects (gen-
erally identified as blueshifts) increase with decreasing nanoribbon width, although
a classical electromagnetic description produces reasonable results for individual
nanoribbons of widths down to a few nanometers; (iii) nonlocal effects are impor-
tant in interacting nanoribbons at short separations, leading to substantial blueshifts
in the lowest-order dipolar plasmons of closely spaced dimers, in contrast to classical
theory, which predicts a smooth convergence towards the double-width nanoribbon;
(iv) remarkably, the removal of a single row of atoms produces a dramatic increase
in the plasmon energy, observed both in dimers and in arrays; and (v) our realistic
quantum-mechanical calculations yield plasmon energies that are pushed up to the
NIR regime for nanoribbon widths of a few nanometers, similar to those that can
be synthesized by chemical self-assembly [108].

Our results provide a solid theoretical background for understanding the plas-
monic response of single and interacting graphene nanoribbons, where important
quantum nonlocal effects must be considered in the design of potential device ap-

plications in the NIR regime.



CHAPTER 4

NONLINEAR OPTICAL EFFECTS

Nonlinear optics studies the phenomena related with the nonlinear response of a
material to an external electric field [I37]. In the case of doped graphene nanos-
tructures, due to its unique electronic band structure, a strong nonlinear optical
response [79] [77, 138, 139, 140, 14T, 142} 143, 144, 145, 146] can emerge exceeding
that of conventional nonlinear materials. Moreover, nonlinearities can be further
enhanced by interband e-h transitions, finite temperatures, and LSPs (renamed as
“plasmons” for simplicity) [78, B0, 81, 147, (148, 149, 150, 151].

In previous chapters, all the results have been obtained under the assumption
of a linear optical response. Now, we study in detail the nonlinear optical response
of doped graphene nanostructures which can act as plasmon-driven nonlinear en-
hancers. We start our analysis by briefly explaining the properties of three of the
main nonlinear processes: second-harmonic generation (SHG), third-harmonic gen-
eration (THG), and Kerr effect. Then, we concentrate on describing the classical
nonlinear conductivities and polarizabilities of doped graphene through the Boltz-
mann transport equation (BTE), where only intraband transitions are considered
[18, [75, [81), 144], 147, [152], and we compare our results with a quantum-mechanical
approach that implements nonlocal, finite-size, and edge-termination effects in com-
bination with interband transitions. Finally, we show that these features play an
important role in the nonlinear response observable in the plasmons sustained on

nanostructures with a characteristic size D ~ 10 — 20 nm.
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4.1 DESCRIPTION OF NONLINEAR OPTICAL EFFECTS

In doped graphene, the dipole moment per unit area or polarization P(w) depends
on the external ac field E®*(w) = Eg (e ! + e“!) associated with an incident
monochromatic plane wave at frequency w as [137]

ex ex 2 ex 3
X (W) B% (W) + x P (W) E™(w) + P (w) E*(w) + ...

PY(w) +PP(w) + PO (w) + ...,

P(w)

(4.1)

where the quantity y(*)(w) is known as the linear susceptibility, while Y (w), and
x® (w) are the second- and third-order susceptibilities, respectively. Additionally, we
name P (w) = M (w) E**(w) as the linear polarization, which is related to conven-
tional (linear) optics, with P® (w) = y@ (w) E=**(w) and P® (w) = y®) (w) E=* (W)
as the second- and third-order nonlinear polarizations. If we define the areal density

2 we can express directly

of carbon atoms in graphene as [80] n¢ = 3.8 x 10 cm™
the nth-order polarizability as a™(w) = n¢x™(w). The conversion factors from

esu (electrostatic units) to SI of o™ (w) are given in Table

Remarkably, the nonlinear physical processes derived from P®)(w) are different
to those arising from P®)(w). Moreover, second-order nonlinearities cannot occur
in centrosymmetric nanostructures [I37] (7.e., systems with an inversion symmetry
center). Finally, we need to quantize the effects of nonlinear processes in doped
graphene. If we take y"(w) of the order of unity, we find [I53] x?(w) ~ 10~®esu
and y® (w) & 1078 esu, which are much higher than the predicted values in standard

nonlinear materials [I37] [x® (w) ~ 1078 esu and Y®) (w) ~ 107'% esu].

Polarizability esu SI
aM(w) 1cm3 1.113 x 10716 C?m?2 J !
o (w) Lem®statC —! | 3.711 x 10721 C3m 3 J ~2
a® (W) Lem? statC =2 | 1.238 x 1075 Ctm*J 3

Table 4.1: Polarizability unit conversion factors (esu, electrostatic units).
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Figure 4.1: Second- and third-harmonic generation by a graphene nanoisland. (a)
Scheme of the geometry for the SHG (red arrows) and THG (green arrows). Here,
a graphene nanoisland is illuminated by a high-intensity laser beam at frequency w
(yellow beam) and the resulting emitted harmonic waves are collected by the photon
detector. (b),(c) Energy-level diagram describing the SHG [panel (b)] and THG
processes [panel (c)], respectively. The solid horizontal line represents the ground
state while the dashed lines correspond to virtual states. The figure is adapted from

Ref. [81].

4.1.1 SECOND-HARMONIC GENERATION

We start our general analysis of the nonlinear effects by qualitatively describing the
second-harmonic generation process. According to Eq. (4.1), the modulus of the

second-order polarization can be rewritten as
P (w) = 2X(()2) (W) E3 + Xéi) (W) E] (e’QW - ezi“t) ) (4.2)

The first term after the equal sign corresponds to a contribution at zero frequency
(detailed in the subindex of the susceptibility), which does not lead the re-emission
of any photon. Thus, a static electric field may arise inside graphene. This process
is known as “optical rectification” On the other hand, the second term after the
equal sign corresponds to a contribution at the double frequency of the incident
light, so that a photon at the second-harmonic frequency 2w can be generated. The
corresponding energy-level diagram is depicted in Fig.4d.1(b). Here, two photons
at frequency w impinging over a triangular graphene nanoisland [see Fig.|4.1|(a)] are
converted into a photon of frequency 2w in a single quantum-mechanical process with

two virtual states involved. Besides the generation of a second-harmonic, the main
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re-emission of photons from graphene occurs at frequency w due to the dominant
linear response. Interestingly, this nonlinear optical mechanism is commonly used
in lasers for doubling the frequency of their fundamental mode such as in solid-state
lasers (e.g., Nd:YAG lasers operate at A = 1064nm and by SHG we can obtain the

typical green-colored emission at 532 nm).

4.1.2 THIRD-HARMONIC GENERATION AND KERR EFFECT

Now we focus on the full expression of the third-order polarization. For simplicity,
in this case we consider a monochromatic external ac field E™*(w) = Eg cos(wt).

Therefore, we have

1 3

PO (w) = Zxéi) (w)E3 cos(3wt) + fof’) (w) E3 cos(wt). (4.3)
Analogously to what it is detailed in section (4.1.1)), the first term in Eq. (4.3)) after
the equal sign corresponds to a contribution at frequency 3w. Namely, three photons
at frequency w are destroyed, and a third-harmonic is generated. Fig.|4.3|c) describes

the energy-level diagram of the process.

On the other hand, the second term after the equal sign in Eq. corresponds
to a contribution at the same harmonic of the incident light. This nonlinear term
contributes to the variation of the refractive index n = /¢ of the graphene nanos-
tructure at high intensities. This process is commonly known as ac Kerr effect [154].
Hence, if we only consider the first-harmonic terms up to third-order, the graphene
polarization from Eq. at the incident frequency w reads

3
Pu(w) & [\ (w) + X (@) EE| By cos(w). (4.4)
If we take into account the relation given in Eq. ((1.15)) between the dielectric function
e and the local graphene conductivity o(w) = —iwx(w), with x(w) = ¥V (w) +
(3/4)x3)(w)EZ, we can find straightforwardly the relation

3T 3)

+ WXUJ (w)E3, (4.5)

n(w) = no(w)
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where ¢ is the graphene thickness and ng(w) = \/ 1+ 4myy (w)/t is the linear refrac-
tive index. We observe that third-order nonlinearities introduce a linear dependence

of the refractive index with the intensity of the external field.

4.2 CLASSICAL NONLINEAR OPTICAL CONDUCTIVITIES

In this section we present an easy to handle way to obtain the nonlinear con-
ductivities in graphene within the framework of classical electrodynamics [see sec-
tion ([1.4.1])]. More specifically, we assume the electrostatic where the characteristic
size of our nanostructure fulfills D < A\. We use a unified approach based upon the
BTE valid for extended graphene which describes the evolution of the doping carrier
distribution function fl((n) (R, t) of nth-order at position R and momentum k. Within
this theory k and R obey the classical equations of motion: R = vy = (1/)0e, /K,
and hk(R,t) = —eE(R,t), where E(R,t) is the sum of the external field Eo(t)
and the induced field EP4(R,t) generated by the extra charge carriers [see sec-
tion ([1.5.2)]. We focus in energy scales < 1€V, then the linearization of the graphene
dispersion relation around the Dirac points given in Eq. is fulfilled. Besides, we
assume a temperature 7' = 0 and incident photon energies < 2Fy, so that interband
e-h transitions can be neglected. Combining all the former conditions, the doping

carrier dynamics are described by [153]

R~ CB(R, 1) Vi (R )0k V0 (R 1) =~ [[OR, 1)~ 10 )]

h
(4.6)
where the right-hand side corresponds to scattering mechanisms, f,go)(ek) is the
Fermi-Dirac distribution [see Eq. ], and 7 is the graphene relaxation time.
Eq. fully describes the microscopic dynamics of the doping carriers on which
other macroscopic quantities are strongly related. For example, the surface current
in graphene upon illumination of the external ac field given in section can be

expressed as [S1]

2k
T F(R, 1. (4.7)

JW(R, 1) = —egygs/

where g, = g; = 2 are the valley and spin degeneracies. The nonlinear set of Eqgs. (4.6])
and (4.7) can be solved perturbatively in the Fourier space by expanding the wave
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vector k in order to get the relation between J™(w) and E(w) (i.e., the linear and
nonlinear conductivities). Interestingly, at zeroth-order expansion in k, the first-
order or linear surface current remains

i€2 EF

mh? w4+ it !

E(w), (4.8)

from which the local linear conductivity directly arises coinciding with that from
the Drude model [see Eq. (1.16])].

For the second-order current, this model does not allow us to consider the ef-
fect of the fundamental frequency. However, in order to get the expression for the
second-harmonic we have that the zeroth-order expansion in k vanishes [81], so that
the dominant term is the first-order term which corresponds to a nonlocal contri-
bution (i.e.,the current depends on the electric field gradient). Thus, we can find a

expression for the second-harmonic (see Ref. [81] for a detailed derivation) given by

I (W) = 082 (W) B (@) Vi Ey(w)
(4.9)

B 3ie*vi
 8h? (w+ir™1)

) 1
3 §5ij5kz — Oipdji + §5il5jk Ej(w)ViEi(w),

where ijkl denote in-plane vector indexes, and d;; is the Kronecker delta. As a
clarifying example, in the z = 0 graphene plane, for an ac electric field polarized

along the ¢ = x direction, we have

@) B 3ievd {E <8EI 58Ey> g <1(‘9Ex_6Eyﬂ i1
Fra(0) = 8mh? (w+ir-1)* [ "\ Oz * 3 Jdy T Ey 3 dy or )| (4.10)

where for simplicity we omit the frequency dependence of the electric field compo-
nents.

Similarly, we can calculate the contributions to the THG and Kerr effect. Here,
the third-order currents are local (i.e.,the spatial variations in flgg) (R, t) are negli-
gible). In the case of third-harmonic current we have [153]

Jietvd

(3) (3 3 _ 3
5o (W) = o3, (W) B (w) = A2 Er (0 + ir 1) (20 + 171 (3w + irl)E (@), (411)

and for the Kerr effect, the current reads [153]
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9ietvd
3 () = ¢ () E3(w) — P 3
W) = o WE ) = e e Y o i N r i @ (412

Remarkably, the two former equations slightly differ from a previous study [146].
In fact, by neglecting the scattering term in Eq. (4.6)), and redefining the external
ac field as E*(t) = [ iooo dw Eg exp(—iwt + t/7), we recover the purely intraband

expressions given in Ref. [146].

4.3 CLASSICAL NONLINEAR OPTICAL

POLARIZABILITIES

The versatility of the electrostatic scaling law presented in section enables
us to directly obtain simple expressions for the nonlinear polarizabilities similar to
that in Eq. for the linear polarizability. First, we generalize the continuity
equation from Eq. considering nonlinearities at order n for the harmonic s as

P (Row) = —V-IDR,w). (4.13)

We start by analyzing the second-order nonlinear polarizability for SHG processes.
Here, we assume polarization along the in-plane direction ¢ over a doped graphene
nanostructure with size D and by implementing Eq. (4.10) into Eq. (4.13]), we have

. 5 1
/)121231(2) (w) = —n%)(w) DV, {{35@% — 0i0j1 + 361-1534 Ej(w)VLE, (w)} , (4.14)

where we define, in an analogous manner to Eq. (1.36]), the second-order parameter

9 i 3ie3v2
Mo (w) = — .
20D 87h? (w + it~ 1)

(4.15)

If we now consider (i) the dimensionless coordinate §# = i/D | (ii) the change of vari-
ables given in Eq. (1.38]), (iii) the approximation of dominant lowest-order dipolar
mode j = 1 [see section. (1.5.4)], and (iv) Egs. (2.3)) and (2.4)) for a single nanostruc-
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ture (I = 1), we can express the second-order dipole moment as

pS) o(w) = =5 (w) D*d3(w) &, (4.16)

where

1 ) ) 1
62 = l)d%(wl)/z d2R VZ {{3(5”5]61 — 5ik5jl + géildjk Ej(wl)VkEl(wl)} s (417)

is a dimensionless coefficient obtained at the frequency of the lowest-order mode
wi. Analogously to the fitting coefficients n; and &; presented in section , &
only depends on the specific geometry considered and can be calculated once and
for all specific sizes, doping level, and dielectric environment. Finally, implementing
Eq. into Eq. , we attain an electrostatic scaling-law for the second-order
polarizability

0 (1) = —ns) () D2£f§2’ (4.18)

[1 = n(w)/m]

where n(w) is given by Eq.(1.36). Note that for nanoribbons, the second-order
polarizability is per unit length, where L — oo is the ribbon length, so that on
the right-hand side of Eq. , the dependence with D is linear. Furthermore,
under our assumptions of negligible interband e-h transitions and 7" = 0, we have
0, P (w) ox D2E .

Using the same formalism, at third-order the polarizability readily leads to

_ néf:) (w) Dgfi’&

a®)(w) = L2 Sl
= @

(4.19)
where 7®)(w) = ic®) (w)/sw encloses the dependence on the nonlinear conductivity
for s = 1 (Kerr) and s = 3 (THG), respectively. Moreover, we have a, ) (w) oc

D52E.*? and the dimensionless coefficient

1
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4.4 COMPARISON CLASSICAL-QUANTUM NONLINEAR

EFFECTS

In this section we compare the classical nonlinear response of nanostructured doped
graphene using the formalism presented in sections and with a quantum-
mechanical TB-RPA treatment similar to that given in section and explained
in detail elsewhere [I53] that includes interband e-h transitions, in combination
with finite-size, nonlocal, and edge effects at a temperature T' = 300 K. Here, we
focus our study on self-standing triangular graphene nanoislands with D ~ 10nm
although more extended results for bigger sizes and even for other geometries like
nanoribbons are detailed in Ref. [I53]. The choice of a triangular shape permits us to
use straightforwardly the electrostatic scaling law formalism for the classical linear,
second- and third-order nonlinear polarizabilities [see Egs. (1.43)), (4.18)), and (4.19)]
and also to study islands containing either AC or ZZ edges [see Fig.i4.2(b)]. Fur-
thermore, we compare the contributions to the lowest-order dipolar mode sustained
by the graphene island excited by normal-incident illumination with an electric ac

field polarized as the yellow arrow in Fig.}4.2{(a).

For the classical calculations, the fitting coefficients ny, &1, &, and &3 are computed
once using the commercial finite-difference code COMSOL®. We assume a local
dielectric function [see Eq. (1.15)] where the linear conductivity is obtained from
the Drude model [see Eq. ] and the graphene thickness ¢ = 0.5nm is well
converged with respect to the ¢ — 0 limit. For our triangular nanoislands we find
m ~ —0.093, & =~ 0.541, & ~ 0.117 —1i0.006, and &5 ~ 0.916 +10.022. In the case of
nanoribbons, we have [153] 7, ~ —0.071 and & ~ 0.951 for linear order [which are
in good agreement with the purely analytical values presented in section and
also with those given in section ], and & ~ 1.297 +10.0362. Note that since the

nanoribbon is a centrosymmetrical structure, aéi) (w) = 0.

The spectra shown in Figs.|4.2(c)-(f) display the evolution of the dipolar plasmon
assuming either a linear [panel (c)| or nonlinear [panels (d)-(f)] optical response for
different doping levels Fr of the graphene nanoisland [see the color code in panel
(c)]. The intrinsic damping rate is iy = 50 meV. At first glance, we observe in these

four panels that, unlike the case of nanoribbons shown in Fig.[3.1] for low doping the
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classical plasmons (filled curves) are blueshifted in comparison with the ones from
the quantum model (solid curves for AC and dashed curves for ZZ edges). This is
because in the classical approach we are assuming only intraband e-h transitions
and also T = 0 (i.e., Drude model for the linear response), and thus, they present
the same behavior as in Fig.[l.9(a). In Fig.[d.2c) we plot the linear absorption
cross-section [see Eq. ] normalized to the triangle area. At low levels of doping
when fw, > Er we find dramatic differences between the classical and quantum
curves, similarly to the results observed in Chapter[3] for nanoribbons. Moreover,
we also find that ZZ curves are more quenched than in the AC-edged case due to
the presence of electronic edge-states. However, despite the enhancement of Ey, the

spectra of ZZ-edged nanotriangles preserve a remarkable smaller amplitude.

The results of the second-order nonlinear polarizability associated with SHG are
plotted in Fig.[4.2(d). We observe that classical theory clearly underestimates the
nonlinear response compared with the quantum-mechanical treatment, which implies
that nonlocal and finite-size effects dominate in the SHG. This happens because the
classical description relies only on nonlocal effects over extended graphene. Con-
versely, the quantum approach is not limited by this geometrical handicap and also
accounts for the responses of both fundamental and second-harmonic frequencies,
which significantly enhances the SHG [80].

Finally, the third-order nonlinear polarizabilities regarding THG and Kerr effect
are depicted in Figs.[.2(e) and (f), respectively. For the THG, we find reasonable
agreement between classical and quantum approaches, especially at high levels of
doping. However, for the Kerr effect the classical curves are significantly smaller
except for very low doping. Remarkably, both for THG and Kerr effect, the ZZ-
edged nanoislands are strongly quenched at any doping level. This behavior is not
found in nanoribbons at high levels of doping [153], where the ZZ spectra converge to
the AC-edged curves. Furthermore, the slightly better agreement between classical
and quantum calculations for THG in comparison to SHG can be explained by the
fact that the main contribution to the third-order conductivity is local. Finally,
in the Kerr effect, the four oscillating waves at the fundamental frequency can be
enhanced by the graphene plasmon. This enhancement is not considered in the

classical description, resulting in a significantly weaker Kerr effect.
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Figure 4.2: Linear and nonlinear plasmonic response of equilateral graphene nano-
triangles. (a) Geometry of the nanoisland considered where the light polarization
is indicated by a yellow arrow. (b) Scheme of the edge terminations considered in
the quantum-mechanical model ~AC (left) and ZZ (right)-, and the uniform slab
used in the classical results (center). (c-f) Spectra of the linear polarizability (c),
and nonlinear polarizabilities for SHG (d), THG (e), and Kerr effect (f), as ob-
tained from the quantum model for AC (solid curves) and ZZ (dashed curves) edge
terminations, compared with classical results (filled curves). The different Fermi
energies considered here are numerically colored following the code given in panel
(c). In all cases, the size and intrinsic decay rate are D ~ 10nm and Ay = 50 meV,
respectively. The figure is adapted from Ref. [153].
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4.5 (CONCLUSIONS

In this chapter, we have observed that doped graphene is a very nonlinear material
with plasmons producing extraordinary nonlinear optical effects. We have started a
detailed study of these nonlinear effects by describing the physical relevance of three
important processes: SHG, THG, and Kerr effect. The strength of these nonlinear
processes in doped graphene is remarkably higher than in standard nonlinear mate-
rials which assesses the potential versatility of doped graphene for nonlinear optical
devices.

In section we have obtained the expressions of the classical second-, third-
harmonic, and Kerr effect conductivities using the BTE. Under this formalism, we
have only considered intraband e-h transitions over extended graphene layers at T' =
0. For the second-harmonic (resulting from a nonlocal contribution), our expression
matches previous results found in the literature, while for the (local) third-harmonic
and Kerr effect we properly introduce scattering mechanisms in the BTE and then,
different expressions are attained. Moreover, using these nonlinear conductivities,
in section we have extended the electrostatic scaling law formalism given in
Chapter[I] to get simple expressions for the nonlinear polarizabilities.

Finally, in section , we have compared the classical nonlinear model ap-
proach with a quantum-mechanical one that includes interband e-h transitions, as
well as nonlocal and finite-size effects, where doped AC- and ZZ-edged triangular
nanoislands are considered. Although we have focused on sizes D ~ 10nm, these
effects cannot be easily ignored up to larger dimensions (D ~ 20nm) or in other
geometries like nanoribbons [I53]. Interestingly, we have found that the classical
approach clearly underestimates the SHG and Kerr effect except for low levels of
doping, while for the THG a reasonable agreement is observed. We thus conclude
that a quantum-mechanical description predicts a significantly higher nonlinear re-

sponse of doped graphene, which could be useful for future nonlinear optical devices.



CHAPTER 5

MOLECULAR SENSING WITH
GRAPHENE

Structural vibrations in molecules produce infrared spectral features that can be
regarded as specific barcodes, therefore allowing the resolution of their chemical
identity. However, since the size of the molecules is much smaller than the optical
wavelength of the incident light, their interaction is extremely weak. Fortunately, as
mentioned in Chapter[l} the tight confinement and large field enhancement produced
by graphene LSPs (renamed as “plasmons” for simplicity) offer a solution to increase
this interaction. By exposing certain target molecules to these graphene plasmons,
the former greatly improve their ability to absorb or inelastically scatter light in
the NIR regime in order to change their roto-vibrational energy [see Appendix for
more details|. This is the underlying principle of the spectroscopy techniques known
as surface-enhanced infrared absorption (SEIRA) [I55] and surface-enhanced Ra-
man scattering (SERS) [I56] [I57]. These techniques permit a full characterization
of the roto-vibrational molecular structure with a sensitivity that goes down to the
single molecule detection limit [I58|, 159} 160]. Besides, the very broad absorption
band ranging from THz to NIR frequencies [34} 64, 83] [161] and strong field confine-
ment convert doped graphene as an ideal platform for spectrometer-free sensing and
chemical identification of molecules as a function of the graphene doping level. This
is because the molecular roto-vibrational transitions lie in the NIR where doped

graphene nanostructures with characteristic size in the range of tens to hundreds of
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nanometers support intense plasmons [162].

In this chapter, we study in detail the great potential of graphene plasmons
for SEIRA and SERS. We focus on the detection of molecules nearby self-standing
graphene nanodisks. Based on realistic numerical simulations of the graphene nan-
odisks, we show that the recorded signal integrated over a broadband spectral range
is sufficient to provide chemical identification when it is examined as a function
of the graphene doping level Eg. Interestingly, our results pave the way for the
development of cost-effective revolutionary sensors capable of identifying spectral

signatures of molecules without using spectrometers and laser sources.

5.1 SEIRA

This spectroscopy technique discovered in 1980 [163] exploits the induced electric
field enhancement exerted by a plasmonic nanostructure in order to increase by
~ 10—1000 times the intensity of infrared absorption by a molecule [163] 164} 165].
Here, we consider a single generic molecule of pyridine (CsH5N) placed at a short
distance h over a uniformly doped graphene nanodisk with diameter D = 300 nm
and externally illuminated by a normal plane wave with associated electric field
E, as depicted in Fig.[5.1{a). The classical response of the graphene nanodisk is
obtained from the full-numerical solutions of Maxwell’s equations using BEM [see
section ((1.4.1)]. We assume that the dielectric function of graphene is given by
Eq. for a thickness ¢ = 0.1 nm, whereas the graphene conductivity is taken
from the local-RPA model at T = 300K [see Eq. (1.18)]. The relaxation time 7 is
estimated from the dec Drude model [see last paragraph of section ((1.4.1])]. Remark-
ably, this parameter ultimately determines the energy resolution A7~! that charac-
terizes spectrometer-free sensing of molecular resonances [i.e., the sensing resolution
is determined by the plasmon quality factor () = w,7, and this is in turn propor-
tional to the graphene mobility, as shown in Fig.|5.3(b)]. Moreover, we observe from
Fig.[5.1(b), where we plot the absorption cross-section of the disk normalized to its
area [see Eq. (1.30)] for Er = 0.4¢V and p = 2000 cm?/(V s), that the disk plasmons
are clearly resolvable exhibiting a dominant, low-energy feature of dipolar character
(see inset). In Fig.|[5.1{(c) we represent the absorption spectrum of pyridine. For sim-

plicity, the available experimental data of the electric polarizability of the molecule
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Figure 5.1: Surface-enhanced infrared absorption (SEIRA) spectroscopy with
graphene plasmons. (a) Sketch of the structure here considered, consisting of a
self-standing uniformly doped graphene nanodisk with diameter D = 300nm and
a single pyridine molecule on top. (b) Absorption cross-section spectrum of the
nanodisk normalized to the graphene area for a Fermi energy Er = 0.4€eV and
mobility z = 2000cm?/(V's). The inset shows the near-field intensity of the lowest-
energy dipolar plasmon in the x — z plane. (¢) Absorption cross-section of a pyridine
molecule. (d) Change in the absorption cross-section induced the pyridine molecule
placed near the nanodisk edge at rp = (150,0,1)nm [see axes in panel (a)], as a
function of the photon and graphene Fermi energies. The inset shows a line scan
along a segment in the region where the main molecular absorption features A and
B cross the lowest-order dipolar disk plasmon (green dashed curve). The figure is
adapted from Ref. [93].
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[166] is fitted to a sum of Lorentzians as

1 Rj
mo = I 3 s 5.1

o () h?2 Zj Wi — w(w + iv) (5-1)
where x; and w; are fitting parameters (see complete data in Table1 of Ref. [93]),
and we assume a fixed bandwidth (intrinsic damping) Ay = 0.7meV. We observe
from Fig.[5.1|(c) that two of these Lorentzians (modes j = 2, 3) dominate the spectral
range at photon energies hwy ~ 0.087¢eV and hwp ~ 0.092 ¢V, respectively. In any

case, the polarizability is very small oo ~ 10722 cm?.

Upon normal-incidence illumination, the pyridine molecule placed at the posi-
tion ry experiences a total enhanced local field E¢(rg,w) = Ey + E™(rg,w) +
E*(ry,w), given by the superposition of Eg, the field induced by the graphene
nanodisk E™(rq, w), and the self-induced field of the molecule E**(ry,w). The lat-
ter is negligibly small for most molecules, so that it is disregarded in what follows.
Assuming dominant the absorption process over scattering made by the graphene
nanodisk [see Fig.[1.9(a)], the absorption cross-section obtained from the optical
theorem [26] of the whole system formed by the molecule and graphene is given by

the superposition

() % i {[fo) + A - 5 (5.2

Here, fo(w) is the far-field amplitude only with graphene, f;(w) is the far-field ampli-
tude only with the molecule, and 7 is the direction of the incident polarization. Tak-
ing into account that the dipole moment of the molecule is ppo(w) = el (w) E'°¢(w)
and f1(w) = k*pmoi(w), we find straightforwardly that the shift on the absorption
cross-section of the molecule or SEIRA cross-section is

2

Eind(r(),w) | (53)

Ao_abs(w) _ yabs (w) — Ugfs(w) = 4drklm{ama(w)} ‘ E,

gr—+mol

where we approximate the increase in the local field intensity as [E™4(rg, w)/Fol?.
We observe from Eq. ((5.3) that the inclusion of graphene permits a linear enhance-
ment of Ac®(w) with the induced intensity, and this behavior is in turn more re-

markable when the impinging radiation is on resonance with the plasmon frequency.
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Figure 5.2: Doping dependence in the absorption cross-section of molecules in
SEIRA spectroscopy. We represent in panel (c¢) the SEIRA cross-section normalized
to the graphene disk area (Ac®™/Area) produced by the interaction of a layer of
pyridine molecules with the graphene disk considered in Fig.[5.1 The molecules
are placed at a distance h = 1nm above the graphene plane [see panel (a)] with
a density of one molecule per nm? and covering an area that extends well beyond
the nanodisk edge. The lower-right inset in the panel (c) shows a zoom of a high-
photon-energy region in which weaker pyridine resonances are observable. Panel (b)
shows the h dependence of the absorption cross-section for photon and Fermi ener-
gies corresponding to the absolute maximum of Ao®™/Area. The figure is adapted
from Ref. [03].
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In Fig.[5.1(d) we plot Ac®*(w) for a pyridine molecule placed at ry = (150,0,1) nm
over the edge of the graphene nanodisk (z = 0 plane), with a conservative value
of the mobility p = 2000 cm?/(V's). We observe that Ac®™(w) is clearly enhanced
along the dipolar plasmon (green dashed) curve of the graphene nanodisk, which
shifts in energy with varying doping level since fuw,, o Eé/ ®. Interestingly, Acaps(w)
experiencies an enhancement of ~ 10 with respect to the absorption cross-section
of the isolated molecule.

In practical applications, one is interested in sensing a small concentration of
molecules placed over a range of distances from the graphene nanodisk. Here, we con-
sider a circular monolayer of pyridine molecules with diameter D, = 450 nm and
a density of 1y, = 1molecule/ nm? separated a distance h = 1nm from graphene
see Fig.[5.2a)]. The change in the SEIRA cross-section is simply given now by

Eind(ro, w) 2

B : (5.4)

Ac™ (W) = 41N klm{amol(w)}/ d?rg
S

where the integral is extended over the surface layer S of pyridine molecules. The re-
sulting values normalized to the graphene area are shown in Fig.[5.2{c) as a function
of the photon energies and Fr. The important message from this plot is that there
is a one-to-one correlation between the molecular resonant photon energies and Eg
at which the dipolar plasmon overlaps with those resonances. More precisely, this
leads to peaks in Ao (w) at Ep ~ 0.34 and 0.39 eV, corresponding to the molecular
resonances of energies iwy == 0.087 eV and hwg ~ 0.092 €V, respectively.

In Fig.[5.2{b) we plot the maximum values of Ac®(w) as a function of the
separation distance h. We observe that the results are qualitatively similar over
distances up to a few nanometers from the graphene, and therefore, the technique
should be robust against the uncertainty in the exact location of the molecules,
provided their separation is in the < 10 nm range.

The above mentioned one-to-one correlation between molecular resonances and
Ex suggests that it is possible to obtain spectral information by recording the ab-
sorption as a function of Ep, rather than hw. Indeed, upon illumination by spec-
trally broad sources (e.g.,an infrared lamp), this graphene-based sensor device can
discriminate resonant photon energies by examining the Fermi levels at which the

measured (spectrally unresolved) absorbed power is peaked. The plasmons of the
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Figure 5.3: Molecular sensitivity of the doping-dependent frequency-integrated ab-
sorption in SEIRA spectroscopy. We analyze the integral over NIR photon energies

(0—1€V) of the SEIRA cross-section (i.e., o™ = k[ (1) dw Ao®s) produced by a layer
of pyridine molecules as a function of Er for (a) several molecule-graphene distances
with fixed graphene mobility g = 2000cm?/(V's), and (b) fixed distance h = 1nm
and different values of p. The figure is adapted from Ref. [93].

graphene nanodisk act as amplifiers of the incident light at gate-controlled photon
energies. We illustrate this concept by calculating the integral over IR photon en-
ergies (0 — 1eV) of the SEIRA cross-section, o™ = hf(l) dw Ao, In Fig.(a)
we plot the results for several molecule-layer/graphene distances which suggest that
the sensor can perform similarly well up to a distance < 10nm. Additionally, we
explore in Fig.[5.3(b) a range of feasible graphene mobilities ranging from the con-
servative value that we use in Fig.[5.1} to higher-quality graphene. Although the
former is already capable of giving sufficient molecule-specific information to resolve
the presence of pyridine molecules, we note that currently attainable high-quality
graphene enables further discrimination of weak vibrational features (e.g.,it allows
us to resolve the A and B resonances, which are separated by ~ 5meV). We thus
conclude that the spectral resolution of this spectrometer-free technique is limited
by the intrinsic graphene plasmon damping ~ hr 1.

In all the previous results, we have assumed for simplicity that the target molecules
are not adsorbed near the graphene nanodisk so that the optical properties of the
latter do not change. A variation in Er due to the molecules can be a serious prob-
lem that might limit the applicability of our proposed sensing technique as it adds

an element of uncertainty in the determination of the graphene Dirac point [see sec-
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tion ([1.3.2))]. We anticipate several possible strategies to deal with this uncertainty:
(i) the entire spectrum changes when moving Er, and therefore, it should be suf-
ficient to resolve spectral distances associated with the molecular features; (ii) in
many practical situations, one is interested in discriminating between a certain finite
number of different detected molecules, then the proposed sensor can be calibrated
for each of them; and (iii) the possible charge transfer between the molecule and
graphene can be drastically reduced by the addition of a thin transparent insulat-
ing layer, which according to Fig.[5.3(a) can have a thickness of several nanometers
without causing a serious reduction in sensing capabilities. These strategies can be

also extended to the SERS spectroscopy that we present below.

5.2 SERS

This spectroscopy technique based on the Raman scattering [see Appendix was
first used in 1974 [167] precisely with pyridine molecules. The authors observed
reversible Raman-shifts originated from the direct adsorption of the molecules onto
a layer of a plasmonic material (silver in this case) by applying an external po-
tential. Raman scattering is a nonlinear second-order process proportional both
to the incident light intensity and to the emission from the inelastically frequency-
shifted transition dipole [I68]. Unfortunately, owing to the non-resonant nature
of this effect, the cross-sections of single Raman-active molecules are very small
(~ 10720 cm?). Therefore, similarly to SEIRA, an enhancement in the local field
intensity provided by a plasmonic layer is needed in order to increase the intensity
of the Raman signal.

In our case, we follow a similar procedure as in section , and we use the
dipolar plasmon of the graphene nanodisk in order to amplify the Raman signal of
a certain generic molecule at position rg. Remarkably, we supplement the system
with a resonant silicon cavity [169] that amplifies the intensity of the incident pump
light with energy fuwpump = 0.422¢€V (i.e., the emission line of an Er:YAG laser) [see
Fig.[5.4(a)]. The SERS enhancement with respect to the isolated molecule is given
by
E"(ro, Wpump) ’
Eq

(5.5)

2 tot (R w
EFSERS:‘ ’p (R, 1)

po(w1)
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Figure 5.4: Surface-enhanced Raman scattering (SERS) with graphene plasmons.
(a) Sketch of the system under consideration, consisting of a silicon sphere (diameter
1530 nm, eg; = 12) placed at a distance d = 9nm above a graphene disk (diameter
D = 300 nm), which is in turn placed at a distance h = 1 nm above a Raman active
molecule. The system is illuminated with a 0.422¢eV light plane wave (i.e., A\ =~
2.94 pm) that is resonant with a mode of the sphere (i.e.,the sphere works as a
nanofocuser, similarly to previous designs [169]). (b) SERS enhancement factor
EFsgrs (relative to an isolated molecule), as a function of Raman-shift Avg and
graphene Fermi energy Fp for a molecule placed along the symmetry axis. (c)
SERS enhancement as a function of the position of the molecule relative to the
graphene disk for doping and Raman shift conditions corresponding to the open
circle in panel (b). The figure is adapted from Ref. [93].

where w; is the final frequency of the molecule after the Raman transition [see
Eq. ] Moreover, E™(rq, wyump) is the induced field at the incident light fre-
quency, mainly controlled by the silicon cavity, whereas p**(R,w;) = po(wi) +
p™(R,w;) is the total superposition of the free-molecule Raman transition dipole
moment po(w;), and the dipole induced by the molecule on the surrounding struc-
ture p™4(R, w;). For simplicity, in our calculation of E4(r, wyump) We only consider
the silicon cavity and neglect the graphene nanodisk. This happens because the Mie
resonant quality factor of the silicon sphere is so high that the non-resonant effect
of the graphene nanodisk can be neglected. Similarly, we obtain p™(R,w;) as the
dipole induced on the graphene nanodisk placed at R without taking into account
the silicon cavity. This is possible since the graphene nanodisk supports resonant
plasmons at the Raman-shifted frequency hw;. Thus, as graphene appears on res-
onance with the final roto-vibrational energy of the molecule, we can neglect the

effect of the silicon sphere. Furthermore, like in SEIRA, we neglect the self-induced
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polarization of the molecule.

In Fig.[5.4(b) we plot the enhancement factor EFgggrs as a function of the molecule
Raman-shift Avg and Ep for the system depicted in Fig.|[5.4{(a), with an edge-to-edge
distance between the silicon sphere and the nanodisk d = 9nm, and a separation be-
tween the molecule and the nanodisk A~ = 1 nm. Under these conditions, the silicon
cavity produces an enhancement of |[E™(ry, wpump)/Fo|? &~ 2200. The important
message of this plot is that if we fix Avg, for each value of Er we have a different
value of EFgggrs, and there is a specific one for which EFggrg is maximum (partic-
ularly here ~10%). Furthermore, the actual value strongly depends on the molecule
position relative to the nanodisk [see Fig.|5.4{c)], yielding again qualitatively similar

performance for molecule-graphene distances in the < 10 nm region.

5.3 CONCLUSIONS

In this chapter, we have presented a new infrared sensing strategy that avoids the
use of costly and inefficient optical elements (e.g., spectrometers and laser sources)
and simply involves infrared lamps and electrical doping of graphene through an
externally-applied gate voltage. We have shown the ability of graphene nanodisks
to resolve the chemical identity of adsorbed molecules from the measurement of
broadband-integrated absorption and Raman scattering signals enhanced by the
electrically tunable plasmons of this material. Their narrowness is sufficient to re-
solve the frequency of the molecular resonances in the integrated intensity as a
function of the controlled doping level. This control is an important practical as-
pect of our proposed sensor. We contemplate a gating device in which a bottom
gate is combined with a contact for the graphene. Electrical connectivity could be
provided by a thin transparent insulating layer, as recently used to demonstrate ac-
tive control of the plasmons sustained on the graphene nanodisk [71]. Alternatively,
we expect similar results for graphene nanoribbons, whose plasmon frequencies and
characteristics for transversal polarization are similar to those of the nanodisks, with
the additional advantage that the former structures can be contacted in a region far
from the active sensing area.

Remarkably, the large confinement and induced intensity amplification associ-

ated with graphene plasmons leads to SEIRA and SERS intensity enhancements
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reaching ~ 10% and ~ 10%, respectively, which foster the use of graphene to improve
traditional sensing techniques based on spectrally resolved infrared absorption and
Raman scattering. The roto-vibrational energy resolution of the proposed sensing
scheme is determined by the spectral width of graphene plasmons (i.e.,it is essen-
tially limited by the plasmonic quality factor of the material) and can reach a few
meV under currently realistic conditions.

In summary, graphene plasmons provide a versatile platform for sensing, thus
opening new possibilities for exploiting their large electro-optical tunability, and in
particular, the realization of label-free chemical identification without the involve-

ment of spectrometers and laser sources.






CHAPTER 6

CONCLUSIONS

In this thesis, we have realized an in-depth study of the plasmonic response of
graphene under different novel conditions. We have focused on theoretical concepts
that could be useful for the design of future graphene plasmonic devices. We thus
proceed to summarize in this final chapter the overall conclusions of our work.

In Chapter[I] we have concisely introduced the general properties of graphene.
We have started with a brief review of its history and the most common techniques
of synthesis. Afterwards, we have studied its peculiar optoelectronic properties
resulting from the singular linear band structure. Additionally, we have classically
described the different types of surface Dirac plasmons that graphene, either within
a finite geometry (LSPs) or as an extended layer (SPPs), can sustain under uniform
doping conditions. Finally, we have presented a general electrostatic scaling law to
find directly the classical LSP frequencies of a given graphene nanostructure as a
function of its doping level, characteristic size, and dielectric environment.

In Chapter[2] we have studied the classical behavior of graphene Dirac plasmons
under diverse geometric schemes, as well as under realistic inhomogeneous doping
configurations. First, we have derived a novel method based on the plasmon wave
function of an individual uniformly doped nanoribbon to study the interaction of
multiple nanoislands. Remarkably, our model possesses a better degree of accuracy
than the typical dipole-dipole interacting model. Later, we have shown how the
inhomogeneities in the doping distribution affect the LSPs sustained on graphene

nanoribbons, nanodisks, and the SPPs of extended layers. Specifically, we find
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that for a nanoribbon doped with a uniform electric field, the plasmonic dispersion
differs with respect to the uniform doping case, with the induced charge density
piling up near the center of the nanoribbon. Furthermore, we have observed that
doping with a single electron is sufficient to excite a LSP in nanodisks, whose energy
considerably differ from those under a uniform doping. Finally, we have noticed
that a periodic doping of extended graphene induces the creation of plasmon bands.
Besides, we observed that a periodic doping through a distribution of equally-signed
or alternately-signed point charges boosts the radiative emission of an optical emitter
in the vicinity of graphene by taking advantage of the Van Hove singularities.

In Chapter[3, we have shown the importance of quantum nonlocal effects in
narrow nanostructures. In particular, we have focused on graphene nanoribbons,
whose lowest-order dipolar LSPs are remarkably quenched when their energies are
above the Fermi level. We have used a quantum mechanical model based on a
TB-RPA approach where we can distinguish between AC and ZZ edges, so that we
could observe that nonlocal effects are important in interacting nanoribbons at short
separations, leading to substantial blueshifts in the LSPs. Finally, we have found
that the removal of a single row of carbon atoms induces a dramatic increase in the
LSP energy, observed both in co-planar dimers and arrays of nanoribbons.

In Chapter[d] we have shown the remarkable nonlinear response of LSPs in doped
graphene. Combining the electrostatic scaling formalism presented in Chapter[I]and
the BTE, we have obtained simple expressions for the conductivities and polarizabil-
ities related with three important nonlinear processes: SHG, THG, and Kerr effect.
Finally, we have compared the plasmonic response of graphene nanotriangles using
a classical and a quantum-mechanical model. Interestingly, the classical approach
clearly underestimates the SHG and Kerr effect in narrow ribbons and small islands
except for low levels of doping, whereas for the THG we find a reasonable agreement.

Finally, in Chapter[d] we have introduced a new NIR sensing technique that
only requires infrared lamps and doped graphene nanodisks, thus allowing us to
resolve the chemical identity of the molecules adsorbed near the disk. We have
observed that the energy resolution of the roto-vibrational modes expected from our
technique is determined by the spectral width of graphene LSPs. Interestingly, due
to the large confinement and induced intensity amplification associated with LSPs,

we have reached enhancements of ~ 10% and ~ 10* in SEIRA and SERS, respectively.



APPENDIX A

EFFECT OF THE DIELECTRIC
ENVIRONMENT ON GRAPHENE

In this appendix, we discuss the electrostatic response of an extended 2D graphene
layer placed in the interface between two different dielectric media (permittivity
g1 on top and €5 below). For our purpose, we calculate the electrostatic potential
created by an external point charge () over graphene. We assume that graphene lies
on the z = 0 plane with the charge placed on top at a distance d. We aim at solving
the equations given by the third expression of Eq. and E(r) = —V&(r) (the

frequency dependence is avoided for simplicity).

If we assume negligible the conductivity of graphene, the electric field at its

boundaries satisfies the conditions

&1 Ez €2 Ez
lim E, = lim E, . (A.1)
z—07t 2z—0~
Ey Ey

We apply the method of charge images [111], so that in the region z > 0 the
electrostatic potential can be written as the sum of two terms: the potential gener-
ated by the real charge )y placed at d, and the one generated by the image charge
Q) at d' = —d [see Fig.[A.1]. On the other hand, in the region z < 0, the potential

depends on the one induced by an image charge Q) localized at d” = d. Therefore,
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we can claim that
1 (Qo Qo>
Dz >0)=—
<Z ) €1 (Rl Ry
el
9 R17

with Ry = /224 (2 —d)? and Ry = /2?2 + (2 +d)?. We change to cylindrical

coordinates (z’.e., V=0,p+p 10 0+ 0. z), then the electrostatic electric field can

(A.2)
P(z <0) =

be expressed as

Ue—d) | _Gierd |
Pt =Pt

EZ(Z>0):511{[

_ 1 Qi—d)
EZ(Z < 0) - c {[02 + (Z _ d)2]3/2}
(A.3)
1 Qop Qop
&@>O)Q{MLuz—@$“+hﬂ+@+@ﬂm}

Bole <0) = 1{M4%QI®$“}

If we impose now the continuity conditions given in Eq. (A.1)), we straightforwardly
find that Qo — Q) = Qp, and (Qo + Q) /e1 = Qf /2. Combining these two expres-

sions we obtain

Qo = Qo (81_82),

€1+ &2
262 >
= o <51 +e3/)

Restricted to the graphene plane (z = 0), we have that Ry = Ry = \/p? + d*> =

Therefore, the electrostatic potential remains
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Figure A.1: Scheme of the system used for calculating the electrostatic potential at
a certain point (orange cross) in the z > 0 region caused by an external point charge
Qo (upper blue dot) placed at a certain distance d over the graphene plane (z = 0).
The graphene layer acts as an interface between two different dielectric media with
permittivities €; and e. We apply the method of charge images [I11], so that we

need to consider the potential generated by the real charge )y and the image charge
Q; placed at d' = —d.
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fQ/ (A.5)
) ===
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If we implement Eq. (A.4]) into Eq. (A.5)), and we consider continuous the electro-
static potential at the boundary, we finally find that

Bz —0) = > @

= A.
c1+e R (A-6)

This expression contains the dependence of graphene on the dielectric environment
which is extensively used in all the electrostatic calculations made throughout this

thesis.






APPENDIX B

DERIVATION OF THE LSP RESONANCE
FREQUENCY FROM THE
ELECTROSTATIC SCALING LAW

In this appendix, we derive the LSP frequency given in Eq. (1.47) from the elec-

trostatic scaling law formalism. Implementing the Drude model conductivity [see

Eq. (1.16)] into Eq. (1.36]), we have

2 2 Ep 1 1

nw) = 7 (61 +e3) D 2w? (1 +iy/w)’ (B.1)

For nn = n; (the subindex j corresponds to different eigenstates or electromagnetic

modes) we can express the LSP frequency as

e € 2 1 | [Ep 1
2 =ierm = B e @0
R\ el + & m™;) | D 1+ 17/wp

If we safely assume that v < wEWde, we can use the approximation 1/y/1+ 0 ~

1 — 0/2, where we name § = ﬁy/wrl?rude

Eq. (1.48)), we can rewrite Eq. (B.2) as

. Thus, considering the definition given in

Drude ._ , ,Drude 17/2
w N w; (1 — w}]))rude) . (B.3)

p
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This expression can be reformulated as a second-order polynomial equation = =
y(1 —a/x), with 2z = W)™, y = WP™* and a = iy/2. We can directly find the

solution

2 y
where we have used the approximation /1 — k ~ 1 — k/2, being k = (4da/y) < 1.

Therefore, after recovering the proper variables, we finally obtain the expression of
the LSP frequency in the electrostatic regime shown in Eq. (1.47))

4
x:y[1+ 1—alzg{2—y}:y—a, (B.4)

Drude ~_ , ,Drud :
wp A W — iy /2. (B.5)
Remarkably, for nanostructures with characteristic size comparable to the incident

light wavelength, retardation effects become important and the final LSP frequency
is redshifted [see Fig.[1.9|(a)].



APPENDIX C

INFRARED ABSORPTION AND RAMAN
SCATTERING

It is known from Quantum Mechanics that an electron bound to an atom pos-
sesses only certain energy levels corresponding to its electronic states. For ex-
ample, for a hydrogen atom, the electronic energy levels are determined by [170]
el = —13.6/n%eV where n = 1,2,3... is the principal quantum number. The
bound energy is expressed as a negative number because we need that much energy
to unbind the electron from the hydrogen nucleus. Due to this quantization of the
energy levels, for radiative electronic transitions the electron can only absorb pho-
tons with energies exactly matching the gap between two different electronic states.

The energy of these photons typically falls in the visible and UV regimes.

In the case of molecules, the scheme of energy levels is more complicated. In
addition to electronic transitions, we need to consider that the constituting atoms
can vibrate with respect to the “equilibrium distance”, and the whole molecule can
rotate with respect to its mass center. Hence, the internal energy of the molecule
e under the Born-Oppenheimer approximation [I71] is given by the superposition

of the electronic, vibrational, and rotational energies as
6int — 6el + Evib + €rot (C 1)
A schematic representation of the electronic, vibrational, and rotational energy levels

123



124 APPENDIX C. INFRARED ABSORPTION AND RAMAN SCATTERING

is shown in Fig.[C.1ja). Here, we observe that an electronic state of a generic
molecule (purple curve) possess multiple vibrational energy levels (red horizontal
lines), and among them, multiple rotational levels (green horizontal lines in the
inset) show up with a much smaller difference of energy. Radiative vibrational
transitions may occur by the absorption of photons in the NIR while, for rotational
transitions, the required photon energies fall in the far IR and microwave regimes.
Remarkably, in a vibrational transition, the molecule can also change its rotational
energy level, giving rise to the roto-vibrational transition spectrum.

Here, we focus on the vibrational transitions of a generic molecule. The way a
molecule vibrates is called a vibrational mode. For molecules containing N atoms,
there are 3N — 5 vibrational modes for linear samples, whereas for nonlinear ones
3N — 6 degrees of freedom arise. We know that when a photon interacts with a
molecule with the appropriate energy, it can be absorbed so that the molecule gets
excited to a higher vibrational energy. This process is called infrared absorption, and
the schematic representation of the transition between the two vibrational energy
levels involved is depicted within a vertical blue arrow in Fig.|C.1{(a).

When we consider that after a certain relaxation time, the molecule decays back
to a lower energy level emitting a second photon, then the process is called light
scattering. Interestingly, this second photon does not need to be equally energetic
as the initial photon. When the molecule returns to the original energy level from a
virtual state, the emitted and absorbed photons present the same energy. We name
this process as elastic or Rayleigh scattering, which strongly depends on the size of
the target molecule and, as an example, it is the responsible of the blue color of the
sky [I72]. In Fig.[C.1{(b) we show the energy-level diagram of the process.

On the other hand, if the molecule decays back to a roto-vibrational energy level
different to the one it originated from, the emitted and absorbed photons may have
different energy. In this case, we talk about inelastic or Raman scattering [172]
which is typically very weak (~ 1 of 107 photons). When the final roto-vibrational
level of the molecule presents a higher energy than the initial level, this means that
the emitted photon is shifted to a lower frequency (redshift); namely, it presents
a Stokes Raman-shift [see blue arrows on the left in Fig.[C.1|(c)]. In the case of a
final less energetic roto-vibrational energy level, the emitted photon is shifted to a

higher frequency (blueshift) and presents anti-Stokes Raman-shift [see blue arrows
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Figure C.1: Energy-level diagram of infrared absorption, Rayleigh scattering, and
Raman scattering. (a) Sketch of the infrared absorption of a photon by a generic
molecule that undergoes a transition (blue vertical arrow) from a lower energetic
vibrational energy level to a higher one (red horizontal lines). The purple curve
corresponds to the electronic energy of the molecule while the inset represents the
rotational energies (green horizontal lines) lying between each vibrational energy
level. (b) Elastic or Rayleigh scattering of a molecule. The molecule is excited
up to a virtual state (black dashed line) and decays back to the same vibrational
energy level emitting a photon with the same energy as the incident photon. (c)
Inelastic or Raman scattering of a molecule. Here, the molecule decays back to a
vibrational level with higher (lower) energy than the original level thus producing
Stokes (anti-Stokes) Raman scattering.

on the right in Fig.[C.1{(c)]. Usually, in spectroscopy these shifts are expressed in

cm ™! using the relation
Avg(em™) = A(wpump — w1) X (8065.544 cm ™! eV_l) : (C.2)

where fiwpump is the incident or pump photon energy (in eV), and Aw; is the energy
of the photon emitted by the molecule (also in eV). Thus, positive values of Avg

correspond to Stokes shifts, and negative values to anti-Stokes ones.
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