UNIVERSIDAD DE SANTIAGO DE COMPOSTELA DEPARTAMENTO DE QUÍMICA INORGÁNICA FACULTAD DE FARMACIA

NUEVOS COMPLEJOS DE Ga(III): SÍNTESIS, IDENTIFICACIÓN ESTRUCTURAL Y PROPIEDADES BIOLÓGICAS

Facundo C. Namor

Memoria presentada para optar al grado de Doctor en Química

por la Universidad de Santiago de Compostela

Santiago de Compostela, Noviembre de 2015

Departamento de Química Inorgánica

UNIVERSIDAD DE SANTIAGO DE COMPOSTELA

AGUSTÍN SÁNCHEZ DÍAZ, CATEDRÁTICO, Y Mª SOLEDAD GARCÍA TASENDE, PROFESORA TITULAR DEL DEPARTAMENTO DE QUÍMICA INORGÁNICA DE LA UNIVERSIDAD DE SANTIAGO DE COMPOSTELA

Hacen constar:

Que el trabajo que se recoge en esta memoria titulada NUEVOS COMPLEJOS DE Ga(III): SÍNTESIS, IDENTIFICACIÓN ESTRUCTURAL Y PROPIEDADES BIOLÓGICAS fue realizado, bajo nuestra dirección, por D. Facundo C. Namor en el Departamento de Química Inorgánica de la Universidad de Santiago de Compostela, y que autorizan su presentación como Tesis Doctoral para la obtención del grado de Doctor en Química por parte del interesado.

Santiago de Compostela, a 9 de Noviembre de 2015.

Asdo.: Agustín Sánchez Díaz

Mª Soledad García Tasende

Facundo C. Namor

A M^a Dina y Eduardo Clemente, siempre. A mi madre, mi viejo y la bestia, en el principio. A Uxi, compañera de senderos.

<u>ÍNDICE</u>

	Página
I- INTRODUCCIÓN	
I.1- EL GALIO	3
I.1.1- Química del Ga en disolución acuosa y similitudes con el ión Fe ³⁺	3
I.1.2- Química de coordinación del ión Ga(III): Revisión estructural	5
I.1.3- Biodistribución y actividad biológica	13
I.1.4- Isótopos y sus aplicaciones médicas	17
I.2- SEMICARBAZONAS Y TIOSEMICARBAZONAS	20
I.2.1- Actividad biológica de semicarbazonas	21
I.2.2- Química de coordinación de semicarbazonas y de algunas	
tiosemicarbazonas	22
I.3- OBJETIVOS Y PLAN DE TRABAJO	28
I.4- BIBLIOGRAFÍA	29
II- REACTIVOS Y TÉCNICAS	
II.1- REACTIVOS UTILIZADOS	37
II.1.1- Disolventes	37
II.1.2- Precursores orgánicos y reactivos comunes	37
II.1.3- Precursores metálicos	38
II.2- TÉCNICAS DE ESTUDIO UTILIZADAS	39
II.2.1- Determinación de puntos de fusión	39
II.2.2- Análisis elemental	39
II.2.3- Espectroscopia infrarroja	39
II.2.4- Difracción de rayos X de monocristal	39
II.2.5- Espectroscopia de resonancia magnética nuclear	42
II.3- BIBLIOGRAFÍA	43
III- LIGANDOS DERIVADOS DE PRECURSORES α-OXO-ÁCIDOS Y COMPLEJOS DE Ga (III)	
III.1- SÍNTESIS	47
III.1.1- Síntesis de ligandos derivados de precursores α-oxo-ácidos	47
III.1.2- Síntesis de complejos de Ga(III) con ligandos derivados de $lpha$ -oxo-ácidos	49
III.2- DIFRACCIÓN DE RAYOS X DE MONOCRISTAL	54
III.2.1- Estructuras cristalinas de ligandos derivados de $lpha$ -oxo-ácidos	54

III.2.2- Estructura cristalina de complejos de Ga(III) y ligandos derivados de $lpha$ -oxo-	
ácidos	71
III.3- ESPECTROSCOPIA VIBRACIONAL IR	101
III.4- ESPECTROSCOPIA DE RESONANCIA MAGNÉTICA NUCLEAR DE ¹ H Y ¹³ C	105
III.5- BIBLIOGRAFÍA	112
IV- LIGANDOS DERIVADOS DE PRECURSORES TIPO SALICILALDEHÍDO Y ANÁLOGOS,	
Y COMPLEJOS DE Ga(III)	
IV.1- SÍNTESIS	115
IV.1.1- Síntesis de ligandos semi y tiosemicarbazona derivados de salicilaldehído y	
compuestos relacionados	115
IV.1.2- Síntesis de complejos de Ga(III) con ligandos derivados del salicilaldehído y	
compuestos relacionados	117
IV.2- DIFRACCIÓN DE RAYOS X DE MONOCRISTAL	120
IV.2.1- Estructura cristalina de ligandos semi y tiosemicarbazona derivadas del	
salicilaldehído y compuestos relacionados	120
IV.2.2- Estructura cristalina de complejos de Ga(III) y ligandos derivados del	
salicilaldehído y compuestos relacionados	134
IV.3- ESPECTROSCOPIA VIBRACIONAL IR	161
IV.4- ESPECTROSCOPIA DE RESONANCIA MAGNÉTICA NUCLEAR DE ¹ H Y ¹³ C	165
IV.5- BIBLIOGRAFÍA	179
V- LIGANDOS DERIVADOS DE LA PIRIDINA Y COMPLEJOS DE Ga(III)	
V.1- SÍNTESIS	183
V.1.1- Síntesis de ligandos semi y tiosemicarbazona derivados de la piridina	183
V.1.2- Síntesis de complejos de Ga(III) con ligandos derivados de la piridina	184
V.2 - DIFRACCIÓN DE RAYOS X DE MONOCRISTAL	186
V.2.1- Estructura cristalina de ligandos semi y tiosemicarbazona derivados de la	
piridina	186
V.2.2- Estructura cristalina de complejos de Ga(III) y ligandos derivados de la	
piridina	204
V.2.2.1- Estructura cristalina del compuesto (H ₂ BIPSC) ₂ [GaCl ₄]Cl	204
V.2.2.2- Estructura cristalina del complejo [Ga(HDAPSC)(H ₂ O) ₂](NO ₃) ₂ .H ₂ O	208
V.2.2.3- Estructura cristalina de complejos de Ga(III) con la	217

tiosemicarbazona de la 2-acetilpiridina	
V.3- ESPECTROSCOPIA VIBRACIONAL IR	227
V.4- ESPECTROSCOPIA DE RESONANCIA MAGNÉTICA NUCLEAR DE ¹ H Y ¹³ C	231
V.4.1- Estudio en disolución de los compuestos H ₂ DAPSC y	
$[Ga(HDAPSC)(H_2O)_2](NO_3)_2 \cdot H_2O$	231
V.4.2- Estudio en disolución de los compuestos HAPTSC, [Ga(APTSC)Cl ₂] y	
[Ga(APTSC) ₂]NO ₃	234
V.4.3- Estudio en disolución de los compuestos HBIPSC y (H ₂ BIPSC) ₂ [GaCl ₄]Cl	
por espectroscopia de RMN	239
V.5- BIBLIOGRAFÍA	244
VI- PROPIEDADES BIOLÓGICAS DE ALGUNOS COMPLEJOS DE Ga(III)	
VI.1- ACTIVIDAD CITOTÓXICA DE ALGUNOS COMPLEJOS DE Ga(III)	249
VI.2- MÉTODOS	249
VI.3- RESULTADOS	251
VI.4- BIBLIOGRAFÍA	254
VII- CONCLUSIONES	257
ANEXO	
Anexo.1- 1-CARBOXAMIDA-5-PIRAZOLONAS	265
Anexo.2- ESTRUCTURA CRISTALINA DE ALGUNOS COMPLEJOS DE TIMe2 ⁺	280
Anexo.3- ESTRUCTURA CRISTALINA DEL COMPLEJO [Ga(fen) ₂ Cl ₂]Cl·3H ₂ O	302
Anexo.4- OBTENCIÓN Y ESTRUCTURA CRISTALINA DE LAS SEMICARBAZONAS	
DERIVADAS DE LOS ÉSTERES METÍLICOS DE LOS ÁCIDOS 2-CETOBUTÍRICO Y	
BENZOILFÓRMICO.	310
Anexo.5- BIBLIOGRAFÍA	317
APÉNDICE 1- DATOS CRISTALOGRÁFICOS Y DE REFINADO DE LAS ESTRUCTURAS	
DESCRITAS EN ESTA MEMORIA	(CDROM)
APÉNDICE 2- ESPECTROS IR	(CDROM)
APÉNDICE 3- ESPECTROS DE RESONANCIA MAGNÉTICA NUCLEAR DE ¹ H Y ¹³ C	(CDROM)
APÉNDICE 4- REFERENCIAS BIBILIOGRÁFICAS DE LAS ESTRUCTURAS RECOGIDAS EN LA	
REVISIÓN ESTRUCTURAL DE Ga(III)	(CDROM)

I– INTRODUCCIÓN

I.1- EL GALIO

El galio (del latín *Gallia*, Francia), fue descubierto mediante espectroscopia por Lecoq de Boisbaudran en 1875 por su espectro característico (dos líneas en el ultravioleta) al examinar una blenda de zinc procedente de los Pirineos. Ese mismo año lo aisló por electrólisis del hidróxido en una disolución de hidróxido potásico (KOH) y le dio el nombre de su país natal *Gallia*, y el suyo propio por un juego de palabras de los que gustaban a los científicos de finales del siglo XIX ya que *gallus* significa gallo, *coq* en francés como su nombre Lecoq.

Antes de su descubrimiento la mayoría de sus propiedades fueron predichas y descritas por Mendeleyev —que lo llamó *eka-aluminio*— basándose en la posición que debía ocupar el elemento en la tabla periódica.

El galio es un metal blando, grisáceo en estado líquido y plateado brillante al solidificar, y sólido deleznable a bajas temperaturas, funde a temperaturas cercanas a la del ambiente (como cesio y rubidio), e incluso cuando se lo coge en la mano por su bajo punto de fusión (28,76 °C). El rango de temperatura en el que permanece líquido es uno de los más altos de los metales (2174 °C separan sus punto de fusión y ebullición) y la presión de vapor es baja incluso a altas temperaturas. El metal se expande un 3,1% al solidificar y flota en su líquido al igual que el hielo en el agua.

Presenta una acusada tendencia a subenfriarse por debajo del punto de fusión (permaneciendo aún en estado líquido) por lo que es necesaria una semilla (un pequeño sólido añadido al líquido) para solidificarlo. La cristalización no se produce en ninguna de las estructuras metálicas simples; la fase estable en condiciones normales es ortorrómbica, con 8 átomos en cada celda unitaria en la que cada átomo sólo tiene otro en su vecindad más próxima a una distancia de 2,44 Å y estando los otros seis a 2,83 Å. En esta estructura el enlace químico formado entre los átomos más cercanos es covalente siendo formalmente la molécula Ga₂ la que realmente forma el entramado cristalino.

El galio corroe a otros metales al difundirse en sus redes cristalinas.

I.1.1- Química del Ga en disolución acuosa y similitudes con el ión Fe³⁺

El Ga es trivalente en disolución acuosa. Este estado de oxidación, asociado con un bajo potencial de reducción, refleja la estabilidad de la configuración electrónica externa $3d^{10}$ del Ga³⁺. Este ión es un ácido duro de acuerdo con la clasificación de Pearson^[1], y por lo tanto tiene gran afinidad por las bases duras de Pearson, particularmente el anión OH⁻. Tiene gran tendencia a formar quelatos a través de enlaces con ligandos O- y N- dadores.

El ión hexahidratado libre $[Ga(H_2O)_6]^{3+}$ se hidroliza casi completamente en zonas de pH cercanas a la neutralidad, para dar un gel de composición Ga(OH)₃, que con el tiempo deviene en una fase cristalina también insoluble de GaO(OH), que se redisuelve a pH alcalino formando $[Ga(OH)_4]^-$. La

existencia de estas especies insolubles en el rango de pH fisiológico parece explicar la baja bioaccesibilidad de galio cuando sus sales se administran por vía oral^[2]. La precipitación de los hidróxidos puede ser prevenida rodeando al Ga³⁺ con una esfera de ligandos apropiados, que le den al catión una mayor estabilidad frente a la hidrólisis (es por ello que, por ejemplo, los preparados farmacológicos de galio contienen usualmente citrato, que estabiliza las disoluciones de las sales inorgánicas de Ga³⁺ y no tiene efecto apreciable sobre la farmacocinética de las mismas^[3]).

El comportamiento en disolución y la química de coordinación del Ga³⁺ tiene más similitudes con los del Fe³⁺ que con los de sus congéneres Al³⁺ o In³⁺. Las similitudes bioquímicas con la especie Fe³⁺, particularmente en lo referente a su comportamiento frente a proteínas y sustancias quelantes, son las responsables en gran medida de la actividad fisiológica del galio. Estas similitudes pueden ser atribuidas en parte a sus radios iónicos comparables, al igual que al grado de covalencia de los enlaces en que participan, también muy similar^[4]. En el apartado I.1.3 se discute en mayor detalle el efecto de estas similitudes entre Ga³⁺ y Fe³⁺ sobre la actividad biológica del primero.

Los compuestos de coordinación, en general, tienen un papel prominente en muchas aplicaciones biomédicas, ya que ofrecen la posibilidad de explorar una variedad mucho mayor de patrones estructurales y de reactividad que los compuestos puramente orgánicos^[5] o inorgánicos. Junto con el diseño de anticancerígenos citotóxicos, el desarrollo de radiofármacos puede ser considerado una de las más importantes aplicaciones de los compuestos organometálicos y de coordinación de los metales de transición y de post-transición.

Los radiofármacos contienen un radionúclido en su composición y se usan en medicina nuclear con fines de diagnóstico y terapéuticos. En diagnóstico se usan fundamentalmente dos técnicas:

- La tomografía computada de emisión monofotónica o SPECT (single photon emission computed tomography), que utiliza radionúclidos emisores de rayos gama que son detectados directamente, de modo parecido a la radiografía de rayos X.
- La tomografía por emisión de positrones o PET (positron emission tomography), que utiliza radionúclidos emisores de positrones, es decir partículas β+, que al aniquilarse con electrones internos del paciente generan a su vez dos fotones que son detectados como pares coincidentes, lo que permite la generación de imágenes tridimensionales.

En este sentido, varios radioisótopos de Ga han mostrado gran aplicabilidad, además de potencial actividad con fines terapéuticos. Pero es necesario, además de conocer el potencial y propiedades de estos radioisótopos, diseñar y obtener compuestos quelantes biocompatibles con ellos, estables termodinámicamente e inertes cinéticamente.

I.1.2- Química de coordinación del ión Ga(III): Revisión estructural

Se realizó una revisión estructural de los complejos de Ga(III) recogidos en la base estructural CSD^[6] hasta el 29 de Julio de 2015, siguiendo los siguientes criterios:

- Incluir solo complejos de Ga(III) homometálicos, ya sea catiónicos, aniónicos o neutros, y sin enlaces Ga-Ga. Satisfechos estos criterios, también se incluyen en esta revisión las estructuras de complejos de Ga(III) que presenten contraiones complejos con átomos metálicos distintos del galio.

- Incluir únicamente complejos de Ga(III) con al menos un sitio de coordinación perteneciente a una molécula orgánica. Es decir que se excluyen los complejos puramente inorgánicos, como los tetrahaluros, aunque la estructura cristalina del compuesto incluya contraiones orgánicos o moléculas de disolventes no acuosos en la estructura.

- Se excluyen los compuestos organometálicos de galio(III), salvo que los enlaces Ga-C presentes involucren carbaniones estables, como acetiluros.

Los resultados de esta revisión estructural se recogen en el Apéndice 4, y se comentan a continuación.

Los principales índices de coordinación (I.C.) encontrados para el galio(III) son I.C. 4 (aproximadamente un 43% de las 1162 estructuras revisadas), I.C. 5 (13%) y I.C. 6 (38%), mientras que un 6 % de las estructuras presentan un I.C. 3. El único I.C. mayor que 6 lo presenta una sola estructura de entre las incluidas, con I.C. 7.

i) Complejos de Ga(III) con I.C. 3: es el índice de coordinación más bajo de los encontrados para los complejos de Ga(III). Los kernels más frecuentes que presentan estas estructuras son GaC₃, GaN₃, GaSi₃, con al menos un 40% de los complejos de Ga(III) con I.C. 3 perteneciente a uno de ellos. En general, se trata de complejos con ligandos monodentados, en los cuales alguno o todos los ligandos suelen ser de naturaleza tal que el metal queda protegido del ataque de otros nucleófilos por el impedimento estérico que aquellos generan (como ejemplo, en la *Figura I.1* se muestran las estructuras de los complejos Tris(bis(trimetilsilil)amido)-galio(III)^[7] y (2,2-(Eten-1,2-diil)difenil)-(2,4,6-tri-t-butilfenil)-galio(III)^[8]). Como puede apreciarse en la Tabla I.1, las 67 estructuras con I.C. 3 de está revisión se distribuyen en 27 kernels diferentes, indicando que no hay una preferencia muy marcada por ninguno (a pesar de que el kernel más frecuente, GaC₃, engloba aproximadamente el 21% de las estructuras, el I.C. 3 no presenta tantos ejemplos como para que la tendencia sea relevante).

En general, la geometría del core de los complejos de Ga(III) tricoordinados es trigonal plana, aunque a veces pueda darse una ligera distorsión hacia una geometría piramidal de base trigonal.

Figura I.1 – (a) Tris(bis(trimetilsilil)amido)-galio(III)^[7] y (b) (2,2-(Eten-1,2-diil)difenil)-(2,4,6-tri-t-butilfenil)-galio(III)^[8].

Tabla I.1 – Kernels y sus correspondientes frecuencias (absoluta f, porcentual f %, absoluta acumulada F y acumulada porcentual F%) presentes en los complejos de Ga(III) con I.C. 3.

Kernels	f	f%	F	F%	Kernels	F	f%	F	F%	Kernels	f	f%	F	F%
GaC₃	14	20.9	14	20.9	GaC₂Te	2	3.0	46	68.7	GaC_2P	1	1.5	59	-
GaN ₃	8	11.9	22	32.8	GaCCIN	2	3.0	48	71.6	GaC_2S	1	1.5	60	-
GaSi₃	5	7.5	27	40.3	GaCIN ₂	2	3.0	50	74.6	GaC₂Se	1	1.5	61	89.6
GaAs₃	3	4.5	30	44.8	GaClSi ₂	2	3.0	52	77.6	GaCH₂	1	1.5	62	-
GaC₂N	3	4.5	33	49.2	GaN₂P	2	3.0	54	80.6	GaN₂O	1	1.5	63	-
GaCN ₂	3	4.5	36	53.7	GaB ₂ Cl	1	1.5	55	-	GaN ₂ Si	1	1.5	64	-
GaCP ₂	3	4.5	39	58.2	GaBN ₂	1	1.5	56	_	GaS₃	1	1.5	65	-
GaP_3	3	4.5	42	62.6	GaBrC ₂	1	1.5	57	-	GaSe₃	1	1.5	66	-
GaC ₂ O	2	3.0	44	65.7	GaC₂I	11	1.5	58	-	GaTe₃	1	1.5	67	100

ii) Complejos de Ga(III) con I.C. 4: es el índice de coordinación más frecuente para este metal, presentando 501 estructuras de las 1162 totales de la revisión. También es el I.C. que mayor variedad de kernels presenta (124 kernels), de los cuales 59 presentan un solo ejempo.

Como se muestra en la Tabla I.2 (en la que, por cuestiones de espacio, se excluyen los kernels menos abundantes), los kernels con I.C. 4 más comunes son GaCl₃N (todos aductos del GaCl₃), GaN₂Cl₂ (de los cuales el 70 % presentan un ligando bidentado N,N-dador), GaN₄, GaN₂H₂, GaCl₃P y GaCCl₃ (siendo las estructuras presentes en los dos últimos kernels todos aductos de GaCl₃, como sucede con el GaCl₃N). Puede decirse que casi el 40 % de todas las estructuras con Ga(III) tetracoordinado se reparten entre estos kernels, que son 6 de los 124 kernels presentados por este I.C. (aproximadamente el 5 % del total). Para el kernel GaN₂H₂ predominan los complejos con 2 ligandos *N*-monodentados, aunque hay algunos ejemplos de complejos con ligandos bidentados de tipo *N*,*N*.

Kernels	f	f%	F	F%	Kernels	f	f%	F	F%	Kernels	f	f%	F	F%
GaCl₃N	52	10.4	52	10.4	GaO₃Si	6	1.2	297	59.3	GaBrNS ₂	3	0.6	360	71.9
GaCl ₂ N ₂	40	8.0	92	18.4	$GaCl_2HN$	5	1.0	302	60.3	GaBrNSe ₂	3	0.6	363	72.4
GaN₄	30	6.0	122	24.4	$GaCl_2S_2$	5	1.0	307	61.3	GaC_2N_2	3	0.6	366	73.0
GaH_2N_2	27	5.4	149	29.7	GaCl₃S	5	1.0	312	62.6	GaC_2NO	3	0.6	369	73.6
GaCl₃P	21	4.2	170	33.9	GaH₃P	5	1.0	317	63.3	GaClN₂O	3	0.6	372	74.2
GaCCl₃	17	3.4	187	37.3	GaNO₃	5	1.0	322	64.3	GaCINO ₂	3	0.6	375	74.8
Gal_2N_2	15	3.0	202	40.3	GaNS₃	5	1.0	327	65.3	GaCINS ₂	3	0.6	378	75.4
GaO_4	15	3.0	217	43.4	GaAsl₃	4	0.8	331	66.1	GaHO₃	3	0.6	381	76.0
GaCl₃O	12	2.4	229	45.7	GaCCl₂N	4	0.8	335	66.9	Gal_2O_2	3	0.6	384	76.6
GaS_4	11	2.2	240	47.9	GaCH₃	4	0.8	339	67.7	Gal_2P_2	3	0.6	387	77.2
GaH₃N	10	2.0	250	49.9	$GaCl_2HP$	4	0.8	343	68.5	Gal_2S_2	3	0.6	390	77.8
GaN_2O_2	10	2.0	260	51.9	$GaCl_2O_2$	4	0.8	347	69.3	GalS₃	3	0.6	393	78.4
GaC₃N	9	1.8	269	53.7	GaN_2Te_2	4	0.8	351	70.1	GaN_2S_2	3	0.6	396	79.0
GaClN₃	9	1.8	278	55.5	$GaBr_2N_2$	3	0.6	354	70.7	GaN₃O	3	0.6	399	79 <i>,</i> 6
GaHN₃	7	1.4	285	56.9	GaBr₃P	3	0.6	357	71.3	GaNSe₃	3	0.6	402	80.2
Gal₃P	6	1.2	291	58.1										

Tabla 1.2 - Kernels más frecuentes y sus correspondientes frecuencias (absoluta f, porcentual f %, absoluta acumulada F y acumulada porcentual F%) presentes en los complejos de Ga(III) con I.C. 4.

Para estos complejos con I.C. 4 la geometría más frecuente es la tetraédrica (como por ejemplo en los complejos (μ_2 -pirazina)-hexacloro-di-galio (III)^[9] y Tricloro-(difenildiaceno)-galio (III)^[10]), generalmente distorsionada, como se observa en las Figuras I.2.(a) y I.2.(b). El grado de distorsión respecto de un entorno tetraédrico ideal está relacionado con la identidad de los átomos coordinantes (que influye en las distancias Ga-no metal y en los ángulos en torno al metal, como en el caso del mencionado (μ_2 -pirazina)-hexacloro-di-galio (III))^[9], y con cuestiones estéricas relacionadas con la naturaleza de los ligandos presentes en la estructura (por ejemplo, los complejos (μ_2 -2,2,3,7,7,8-hexakis(Trimetilsilil)-2,7,8,10-tetrahidro-3H,5H-[1,3,4,2]diazafosfasilo[4',5':4,5][1,4]di-fosfinino[1,2-d][1,3,4,2]diazafosfasilo]-hexacloro-di-galio (III) diclorometano solvato^[11] y Tricloro-(2,6-dimesitilpiridin)-galio (III)^[12]), Figura I.2.(c) y Figura I.2.(d)).

En algunos casos la distorsión del tetraedro que rodea al Ga(III) es tal que casi podría hablarse de una geometría piramidal de base trigonal (como para el complejo tris(azida)- (trimetilamino)-galio(III)^[13]) e inclusive, en casos muy puntuales, de una pirámide de base cuadrada con una posición vacante en la base ((1,3-di-t-butil-2,4-bis(t-butilamido)-2,4-ciclodifosfazano)-cloro-galio(III)^[14]), como se observa en la Figura I.2.(e) y en la Figura I.2.(f), respectivamente.

Figura 1.2 - Algunos complejos de Ga(III) con I.C. 4: (a) (μ_2 -pirazina)-hexacloro-di-galio(III)^[9], (b) Tricloro-(difenildiaceno)-galio(III)^[10], (c) (μ_2 -2,2,3,7,7,8-hexakis(Trimetilsilil)-2,7,8,10-tetrahidro-3H,5H-[1,3,4,2]diaza fosfasilo[4',5':4,5][1,4]difosfinino[1,2-d][1,3,4,2]diazafosfasilo]-hexacloro-di galio(III) diclorometano solvato^[11], (d) Tricloro-(2,6-dimesitilpiridin)-galio(III)^[12], (e) tris(azida)-(trimetilamino)-galio(III)^[13] y (f) (1,3-di-*t*-butil-2,4-bis(*t*-butilamido)-2,4-ciclodifosfazano)-cloro-galio(III)^[14].

iii) Complejos de Ga(III) con *I.C. 5*: La variedad de kernels correspondientes a este I.C. es menor que la presentada por el I.C. 4, distribuyéndose las 151 estructuras de esta revisión con I.C. 5 en 52 kernels distintos. Como puede apreciarse en la Tabla I.2, los kernels más comunes para este índice de coordinación son GaN_2O_2CI , GaN_2O_3 , GaN_4O , GaN_5 y $GaCIN_4$, presentes en más del 40% de las estructuras en que el Ga(III) se halla pentacoordinado.

Tabla I.3 - Kernels y sus correspondientes frecuencias (absoluta f, porcentual f %, absoluta acumulada F y acumulada porcentual F%) presentes en los complejos de Ga(III) con I.C. 5.

Kernel	f	f%	F	F%	Kernel	f	f%	F	F%	Kernel	f	f%	F	F%
GaCIN ₂ O ₂	19	12.6	19	12.6	GaFO ₄	3	2.0	93	61.6	GaCN ₄	2	1.3	119	78.8
GaN_2O_3	15	9.9	34	22.5	GaHN₄	3	2.0	96	63.6	$GaCO_4$	2	1.3	121	80.1
GaN ₄ O	12	7.9	46	30.5	Gal_2N_3	3	2.0	99	65.6	GaH_2N_3	2	1.3	123	
GaN₅	11	7.3	57	37.7	GaN_3O_2	3	2.0	102	67.5	$GaHN_2O_2$	2	1.3	125	
$GaCIN_4$	9	6.0	66	43.7	GaO₅	3	2.0	105	69.5	$GaBr_3N_2$	1	0.7	126	
$GaClN_2S_2$	6	4.0	72	47.7	$GaCl_2HN_2$	2	1.3	107	70.9	$GaBr_3O_2$	1	0.7	127	
$GaCl_2N_3$	4	2.6	76	50.3	$GaCl_2N_2S$	2	1.3	109	72.2	$GaBrN_2O_2$	1	0.7	128	
GaN₄S	4	2.6	80	53.0	$GaCl_2O_3$	2	1.3	111	73.5	$GaCCl_2O_2$	1	0.7	129	85.4
GaNO ₄	4	2.6	84	55.6	$GaCl_3O_2$	2	1.3	113	74.8	$GaCl_3S_2$	1	0.7	130	
$GaCl_2NO_2$	3	2.0	87	57.6	$GaClO_2S_2$	2	1.3	115	76.1	$GaClH_2N_2$	1	0.7	131	
$GaCl_3N_2$	3	2.0	90	59.6	GaClO ₄	2	1.3	117	77.5	GaClHN₃	1	0.7	132	

Kernel	f	f%	F	F%	Kernel	f	f%	F	F%	Kernel	f	f%	F	F%
GaClN ₂ P ₂	1	0.7	133		GaH_2NO_2	1	0.7	140		GalO ₄	1	0.7	146	
GaClN ₃ O	1	0.7	134		GaH_3N_2	1	0.7	141		GalS ₄	1	0.7	147	
$GaClO_2Se_2$	1	0.7	135		$GaHN_2S_2$	1	0.7	142		GaN_2S_3	1	0.7	148	
$GaClP_2S_2$	1	0.7	136	90.1	GaHNO ₃	1	0.7	143		$GaNO_2S_2$	1	0.7	149	
GaClS ₄	1	0.7	137		$GalN_2O_2$	1	0.7	144	95.4	$GaOS_4$	1	0.7	150	
$GaFN_2O_2$	1	0.7	138		GaIN ₄	1	0.7	145		$GaPS_4$	1	0.7	151	100
GaFN ₄	1	0.7	139											

Tabla 1.3 (continuación)- Kernels y sus correspondientes frecuencias (absoluta f, porcentual f %, absoluta acumulada F y acumulada porcentual F%) presentes en los complejos de Ga(III) con I.C. 5.

Las geometrías del entorno de coordinación más comunes para este I.C. son la bipirámide trigonal (que se presenta en el 60 % de los casos aproximadamente), y la pirámide de base cuadrada (que representan el otro 40 % de las estructuras, siendo la mayoría de este grupo de estructuras los complejos en los cuales uno de los ligandos es un derivado porfirínico que actúa como tetradentado, con el átomo de galio ligeramente por encima del anillo). En la Figura I.3 se muestran ejemplos de ambos tipos de geometría, más o menos distorsionadas según el tipo y variedad de ligandos presentes.

Figura 1.3 - Algunos complejos de Ga(III) con I.C. 5: (a) (Metilsulfonato-O)-(2,3,7,8,12,13,17,18- octaetilporfirinato)-galio(III)^[15], (b) catena-[(μ_2 -pirazina)-tri-cloro-galio(III)]^[9], (c) bis(2,4-di-t-butil-6-((2,6- diisopropilfenil)amino)fenolato)-bromo-galio(III) dietiléter solvato^[16] y (d) cloro-bis(quinuclidin)-dihidruro-galio(III)^[17].

Comparando las estructuras de los compuestos de galio pentacoordinados con los tetracoordinados, se advierte para los primeros la prevalencia de complejos con al menos un ligando de denticidad 2 o mayor (aproximadamente un 85%), mientras que para el I.C. 4 aproximadamente el 60% de los complejos contienen unicamente ligandos monodentados coordinando al Ga(III).

También son frecuentes los complejos en los que el galio se une a dos moléculas que actúan como ligandos monodentados y a 3 átomos más (haluro o hidruro), que componen un entorno de bipirámide trigonal entorno al metal. Para esta geometría de coordinación, las distorsiones suelen producirse principalmente por la naturaleza de los átomos que se unen al metal, que condicionan la fuerza y la longitud de los enlaces. Otro factor de distorsión es la rigidez de los ligandos polidentados, en los complejos en que están presentes, que no permite a los átomos coordinantes ubicarse en las posiciones ideales para esta geometría. Lo mismo sucede con las distorsiones halladas para los entornos piramidales de base cuadrada (a excepción de los compuestos porfirínicos antes mencionados cuyas desviaciones a partir de la geometría ideal son mínimas).

iv) Complejos de Ga(III) con **I.C. 6**: El índice de coordinación 6 es tal vez el más relevante, desde el punto de vista estructural, en la química de coordinación del Ga(III). Así, más del 30 % de las estructuras recogidas en esta revisión presentan uno de los siguientes kernels: GaO₆, GaN₄O₂, GaN₂O₄, GaN₃O₃, GaN₆, GaNO₅ (ver Tabla I.4). En particular, el kernel GaO₆ está presente en más del 13 % de las estructuras de esta revisión (156 de 1162 estructuras totales).

Kernels	f	f%	F	F%	Kernels	f	<i>f</i> %	F	F%	Kernels	f	f%	F	F%
GaO_6	156	35.3	156	35.3	$GaCl_3N_3$	3	0.7	410	92.8	GaF_3N_2O	1	0.2	431	-
GaN_4O_2	59	13.3	215	48.6	$GaFN_2O_3$	3	0.7	413	93.4	GaF_3O_3	1	0.2	432	-
GaN_2O_4	51	11.5	266	60.2	GaFO₅	3	0.7	416	94.1	GaF_3ON_2	1	0.2	433	-
GaN_3O_3	50	11.3	316	71.5	$GaBr_3N_3$	2	0.4	418	94.6	GaF_4N_2	1	0.2	434	-
${\sf GaN}_6$	26	5.9	342	77.4	$GaCl_2N_2O_2$	2	0.4	420	95.0	$GaFN_3O_2$	1	0.2	435	-
$GaNO_5$	16	3.6	358	81.0	$GaCl_2N_2S_2$	2	0.4	422	-	$GaFNO_4$	1	0.2	436	-
$GaCl_2N_4$	11	2.5	369	83.5	$GaCIN_5$	2	0.4	424	-	GaHO₅	1	0.2	437	-
GaN_4S_2	11	2.5	380	86.0	GaF_2N_4	2	0.4	426	-	$GaN_2O_2S_2$	1	0.2	438	-
GaF_2O_4	7	1.6	387	87.5	$GaBr_2N_4$	1	0.2	427	-	GaN₅O	1	0.2	439	-
GaS_6	7	1.6	394	89.1	$GaCl_2O_4$	1	0.2	428	-	GaO_3S_3	1	0.2	440	-
GaN_3S_3	5	1.1	399	90.3	GaCINO ₄	1	0.2	429	-	GaO₅S	1	0.2	441	-
$GaCIN_3O_2$	4	0.9	403	91.2	GaF_2NO_3	1	0.2	430	-	GaSe ₆	1	0.2	442	100
GaF_3N_3	4	0.9	407	92.1										

Tabla I.4 - Kernels y sus correspondientes frecuencias (absoluta *f*, porcentual *f* %, absoluta acumulada F y acumulada porcentual F%) presentes en los complejos de Ga(III) con I.C. 6.

En este I.C. es donde más claramente se manifiesta la preferencia del Ga(III) por átomos dadores duros según la clasificación de Pearson. Así, vemos que sólo el 7,5 % de estas estructuras presentan en su entorno de coordinación átomos blandos como el S o el Se.

Entre estas estructuras predominan los complejos con ligandos bidentados que forman anillos quelatos con el metal, con la estabilidad que de ello resulta como posible explicación para la relevancia de este I.C.; por ejemplo, cerca del 15 % de las estructuras hexacoordinadas presenta 3 ligandos O,O-dadores alrededor del metal. También son importantes los complejos con 2 ligandos tridentados (22% de las estructuras con I.C. 6, incluyendo entornos con 2 ligandos N,N,N / N,O,O / N,N,S / O,O,O / N,N,O dadores). También son muy comunes los complejos con ligandos hexadentados (un 16% del total de este I.C.), pentadentados y tetradentados.

Virtualmente todos los complejos de Ga(III) con I.C. 6 presentan un entorno de coordinación octaédrico, con diverso grado de distorsión (dependiendo, principalmente, de la denticidad y rigidez de los ligandos involucrados). Como es de esperar, a medida que disminuye la denticidad del o los ligandos presentes en el complejo, menores son las desviaciones respecto de la geometría octaédrica ideal.

También es de notar que, independientemente de la alta proporción de estructuras con I.C. 6 (menor pero comparable a la presentada por el I.C. 4), la relación entre el número total de estructuras con un I.C. determinado y el número de kernels en que se distribuyen es notablemente más alta que para los otros índices de coordinación considerados. Así,

- $-\frac{N \acute{u}mero\ de\ estructuras\ con\ I.C.6}{N \acute{u}mero\ de\ Kernels\ para\ I.C.6}=11,9$
- $\frac{N\acute{u}mero\ de\ estructuras\ con\ I.C.4}{N\acute{u}mero\ de\ Kernels\ para\ I.C.4} = 4,1$
- $\frac{N \acute{u}mero\ de\ estructuras\ con\ I.C.5}{N \acute{u}mero\ de\ Kernels\ para\ I.C.5} = 2,9$
- $-\frac{N\acute{u}mero\ de\ estructuras\ con\ I.C.3}{N\acute{u}mero\ de\ Kernels\ para\ I.C.3}=2.5$

Es notable el bajo número de estructuras con I.C. 6 en las que el Ga(III) esté coordinado por al menos un anión hidruro, así como también se destaca la ausencia de compuestos con enlaces Ga-As, Ga-Si y Ga-Te, presentes sí entre los compuestos con I.C. igual a 4.

En la Figura I.4 se muestran algunos ejemplos representativos de los kernels antes mencionados.

Figura 1.4 - Algunos complejos de Ga(III) con I.C. 6, sin contraiones ni solvatos: (a) (Benzoato)-dicloro-bis(4-metilpiridin)-galio(III) 4-metilpiridina solvate^[18], (b) tris(3,6-di-t-butil-1,8-diazatriciclo[6.2.2.02,7]dodeca-2,4,6-trien-4,5-diolato)-galio(III) tetrahidrofurano solvate^[19], (c) hexafluorofosfato de (2,2'-(propan-1,3-diil-bis(((piridin-2-iI)metil)imino))diacetato)-galio (III) ^[20], (d) bis(piridine-2,6-dicarboxilato)-galato (III) de 2,9-dimetil-1,10-fenantrolin-1-io dihidratado^[21], (e) nitrato de bis(2-(3-etoxi-2-(hidroxi)benzilideno)hydrazin carboxamidato)-galio (III) dihidrato ^[22] y (f) perclorato de 6,6'-(ciclohexan-1,2-diilbis((imino)metilen))dipiridin-2-carboxilato)-galio(III) metanol solvato hidratado^[23].

Finalmente, cabe mencionar que de entre las 1162 estructuras recogidas en esta revisión, solo hay una en la que el metal presenta I.C 7; se trata del un compuesto polinuclear catena-[bis(μ_2 -bifenil-2,2'-dicarboxilato)-(μ_2 -tereftalato)-bis(1,10-fenantrolina)-di-galio(III) monohidratado]^[24], en el que uno de los ligandos presentes actúa una vez como bidentado y otra con denticidad 1, como se muestra en la Figura I.5.

Figura 1.5.- Entorno de coordinación del Ga(III) con I.C. 7 en el catena-[bis(μ_2 -bifenil-2,2'-dicarboxilato)-(μ_2 -tereftalato)-bis(1,10-fenantrolina)-di-galio(III) monohidratado].

I.1.3- Biodistribución^[25] y Actividad biológica

Se han realizado múltiples estudios acerca del uso de compuestos de platino como agentes quimioterapéuticos; sin embargo, en los últimos años se ha buscado desarrollar compuestos de metales distintos del platino, en un esfuerzo por encontrar complejos metálicos con menores efectos colaterales y actividad citotóxica similar o mejor que la de los complejos de platino. Diversos complejos de Ga(III) se han mostrado como prometedores candidatos para terapias anticancerígenas, debido a las analogías de dicho ion con el Fe(III) (en cuanto a electronegatividad, radio iónico, geometría de coordinación y afinidad con bases de Lewis), que sugieren para el Ga(III) rutas metábolicas similares a las del hierro. Pero, a diferencia del Fe(III), el Ga(III) no presenta actividad redox en medios biológicos, lo que lo capacita como posible agente terapéutico.

En general, las propiedades farmacocinéticas de las sales inorgánicas de Ga(III) han impedido su uso rutinario en quimioterapia. La tendencia de dichas sales a hidrolizarse y formar óxidos de galio insolubles es uno de los mayores obstáculos en la absorción de dicho ion y en su capacidad para atravesar las membranas celulares^[26]. Por ello se investigan maneras de superar su tendencia a hidrolizarse, su baja solubilidad en medios biológicos y, especialmente, su rápida excreción renal^[27]. El porcentaje de saturación de hierro de la transferrina (Tf) varía, en circunstancias normales, entre un 20 y un 45 %^[28]. Por ello, la Tf posee en potencia la capacidad de fijar otros metales que entran en el torrente sanguíneo, lo que ha llevado a la idea de que la Tf podría actuar como "sistema de distribución" de otros iones con propiedades terapéuticas, de diagnóstico o tóxicos, incluidos el Ga³⁺, Bi³⁺, Ru³⁺ y Al^{3+[29]}.

El Galio se une ávidamente a los dos sitios Fe-coordinantes de la apotransferrina presente en la sangre humana, con constantes de estabilidad efectivas de log K_1 =20.3 y log K_2 =19.3 (pH = 7.4; $[HCO_3] = 0.027$). En las mismas condiciones, las constantes correspondientes a la interacción apotransferrina–Fe son log K_1 =22.8 y log K_2 =21.5^[30]. Pero a pesar de su menor afinidad por el Ga³⁺, la Tf es capaz de captar grandes cantidades de este catión. Una vez enlazado el galio a la Tf, es difícilmente desplazado por el hierro^[31]. Los cambios producidos en la conformación de la proteína debido a la unión con el galio parecen ser similares a los producidos por la unión al hierro, manteniéndose de esta manera una estructura espacial adecuada para el posterior reconocimiento por parte de los receptores de Tf^[32]. Este reconocimiento tiene lugar de manera eficaz, pero una menor incorporación a la célula de Ga-Tf, junto con una cinética más lenta de entrada a la misma, sugieren una menor afinidad del receptor de Tf por Ga-Tf que por Fe-Tf^[33, 34]. Se supone que la afinidad del galio por los tejidos tumorales se relaciona con el hecho de que las células malignas tienen una cantidad anormalmente alta de receptores de Tf, debido a la alta demanda de hierro de dichas células^[35, 36, 37, 38]. El complejo Ga-Tf atraviesa la membrana celular por un mecanismo de endocitosis asociado al receptor de Tf; y el catión podría disociarse de la Tf por aumento de la acidez del medio, en el endosoma, al igual que sucede con el hierro^[39]. Una vez que el Ga entra en la célula, se une a ferritina celular (al igual que el Fe), siendo esta transferencia favorecida por la presencia de ATP y en menor medida por ADP. La adición de Tf a un medio de cultivo incrementa marcadamente la citotoxicidad del galio^[40]. Dentro de las células el Ga se halla como fosfato en los lisosomas. En el metabolismo celular, parece que el Ga trivalente actúa como antagonista de varios cationes divalentes, incluidos Mg²⁺, Fe²⁺, Zn²⁺ y Ca^{2+ [41]}. La concentración intracelular de Ga puede ser modificada, bajo ciertas condiciones, por el cis-platino, sales de hierro, oro y zinc.

El tratamiento de células con Ga-Tf produce una disminución en la entrada de hierro a las mismas, junto con un descenso del contenido de ferritina, lo que sugiere que se produce en estas condiciones una saturación de los depósitos de hierro^[42]. Además, se ha sugerido que el galio inhibe la disociación del complejo Fe-Tf interfiriendo con el mecanismo responsable de la acidificación dentro de los endosomas^[43]. La disminución de la disponibilidad de hierro en la célula podría explicar en parte las propiedades citostáticas de las sales de galio, pero el efecto crítico de dichas sales parece estar relacionado de manera más directa con procesos metabólicos hierro dependientes.

Hay fuerte evidencia experimental de que el objetivo biológico principal del galio, una vez dentro de la célula, es la ribonucleótido reductasa. Esta enzima cataliza la etapa limitante de la velocidad en la síntesis del ADN, y está altamente activada en células tumorales. La actividad de esta enzima se debe a un radical libre tirosilo, localizado en la subunidad R2 y estabilizado por el catión Fe³⁺, pero desestabilizado por el Ga^{3+[44, 45]}. Se ha demostrado que el Ga³⁺ puede interactuar directamente con la enzima^[46], y basándose en estudios de inmunoprecipitación se ha sugerido que el galio desplaza al hierro de la subunidad R2^[47]. Así, el galio podría ser responsable de una disminución del flujo de ribonucleósidos al ADN, y de una reducción de las reservas de dNTP (desoxirribonucleótido trifosfato).

El daño celular inducido por las sales de Ga³⁺ se pone de manifiesto como una perturbación del ciclo de reproducción celular. Bajas concentraciones de galio pueden producir efectos citostáticos, más que citotóxicos^[48], mientras que altas concentraciones pueden producir la apoptosis de las células^[49].

La acumulación *selectiva* de Ga³⁺ en tejidos tumorales, base de las técnicas escintigráficas que se discutirán luego, es un fenómeno observable cuando el galio está presente en trazas. El aumento de las dosis al nivel usualmente utilizado con fines terapéuticos elimina casi por completo la acumulación selectiva en tumores de sus sales. De hecho, las dosis intravenosas en bolus de nitrato de galio están limitadas por la nefrotoxicidad acumulativa que generan^[50, 51]. Esta toxicidad renal puede ser soslayada acudiendo a la infusión lenta y continua del fármaco a lo largo de algunos días, con lo cual se evita la alta dosis inicial que satura a la Tf y conduce a la toxicidad renal. Este método de administración (además de la inconveniencia de una infusión continua y prolongada) tiene algunos efectos colaterales que pueden controlarse sin excesiva dificultad, como hipocalcemia, hipomagnesia y anemia; desventajas mucho más serias son los varios casos de neuropatías ópticas y de ceguera que se han reportado al utilizar dicho método de administración^[52].

Por otra parte, la administración de sales de galio vía oral, que permite la acumulación progresiva de Ga³⁺ en los tejidos tumorales a que da lugar la concentración baja pero constante del catión en el plasma, se insinúa como un medio de aumentar la selectividad y mejorar los aspectos prácticos de la terapia. Sin embargo, la absorción intestinal de galio es escasa, debido a la formación de productos insolubles por hidrólisis del catión Ga^{3+ [53, 54]}. A raíz de lo expuesto, se ha trabajado los últimos años en la obtención de complejos de galio con ligandos que cumplan el doble propósito de estabilizar el catión frente a la hidrólisis y facilitar la penetración de las membranas celulares^[55]. Por ejemplo, dos compuestos sintetizados por Keppler *et al* se encuentran en la etapa de ensayos clínicos: el tris(3-hidroxi-2-metil-4H-piran-4-onato) de galio(III) (maltolato de galio), tris(8-quinolinolato) de galio(III) (KP46)^[56, 57, 58].

Los ensayos biológicos realizados *in vitro* sobre diversas sales y complejos de Ga(III), muestran que su actividad biológica se manifiesta en:

i) Cambios en la síntesis y estructura tridimensional del ADN. Se ha demostrado que el Ga trivalente interacciona con moléculas de ADN, cambiando su estructura tridimensional e interfiriendo en la duplicación del mismo. A bajas concentraciones, el Ga se une a restos fosfatos del ADN, y no se observan interacciones entre el metal y las bases nucleicas. A concentraciones altas, aparecen interacciones fuertes entre el metal y adenina o guanina, y con una relación Ga³⁺/ADN > 1/10, interacciones entre el metal y citosina o timina.

El Ga podría interaccionar con ADN compitiendo con el Mg por unirse al mismo. Se ha publicado que la afinidad del galio por el ADN es 100 veces mayor que la del Mg. También se ha demostrado que el galio induce la condensación de cromatina, que es uno de los primeros pasos de la apoptosis, un proceso que el Ga³⁺ es capaz de iniciar^[59].

La inhibición de la síntesis de ADN por el nitrato de galio(III) podría resultar de su capacidad para disminuir la disponibilidad de Fe para la ribonucleótido reductasa, combinada con la inhibición directa de la acción enzimática^[46].

ii) Modificación de la síntesis de proteínas. A concentraciones de galio tales que inhibe el crecimiento celular, todos los procesos de biosíntesis celular se ven reducidos, incluida la síntesis proteica. También se ha reportado que algunas proteínas sufren una modulación específica de su expresión^[60]. La síntesis de receptor celular de Tf se ve disminuida por la presencia de galio, mientras que se inhibe la producción de hemoglobina. Así, por ejemplo, esto explica el desarrollo de la anemia hipocrómica microcítica en pacientes tratados con nitrato de galio(III), y sugiere que el mecanismo de acción quimioterapéutica del Ga³⁺ incluye inhibición de la incorporación de Fe a nivel celular^[61].

iii) Inhibición enzimática. El galio inhibe la acción de varios tipos de enzima: ATPasas (posiblemente debido a la competencia entre galio y magnesio); ADN polimerasas; ribonucleótido reductasa (competencia entre Ga³⁺ y Fe³⁺); proteína tirosina-fosfatasas específicas^[62].

iv) Inhibición del crecimiento celular: Estudios clínicos. El nitrato de galio(III) ha sido utilizado en pacientes refractarios a la quimioterapia convencional, en estudios de fase I o fase II. Se administra en forma intravenosa, ya sea con una dosis de choque (cuya cantidad está limitada por la toxicidad renal) cada tres semanas, o de manera continua en un plazo variable entre 5 y 7 días. Se ha encontrado que es efectivo (en distintos grados) en el tratamiento de: hipercalcemias tumorales^[63]; carcinomas uroteliales metastásicos (en combinación con vinblastina e ifosfamida)^[64]; cáncer de próstata^[65]; timoma, cáncer de colon^[66] y metástasis ósea^[67].

Estudios preclínicos han demostrado acción sinérgica entre Ga(III) y: paclitaxel^[68]; gemcitabina^[69]; vinorelbina^[70]; hidroxiurea^[44]; fludarabina^[71]; interferona- $\alpha^{[72]}$.

Cabe mencionar que el Ga(III) se utiliza no sólo en la búsqueda de agentes antitumorales. Por ejemplo, en el tratamiento de la osteoporosis y de otras enfermedades oseas (caracterizadas por la reabsorción osteoclástica de tejido oseo) se buscan agentes que inhiban la reabsorción ósea, y el Ga(III), utilizado en el tratamiento de hipercalcemias y de la enfermedad de Paget, muestra un alto potencial en dicho sentido^[73]. El Ga(III) aumenta el contenido de calcio y fósforo en lo huesos, y actua directamente y de manera no tóxica sobre los osteoclastos^[74]. También presenta actividad antineoplásica.

La similitud entre los iones Ga³⁺ y Fe³⁺ también explica el uso del primero en la interrupción del metabolismo de un amplio rango de bacterias. Debido a la similitud química de ambos iones en términos de carga, radio iónico, configuración electrónica y números de coordinación típicos, el Ga³⁺ puede sustituir al Fe³⁺ en muchos sistemas biológicos. Como el Ga³⁺ no puede ser reducido en las mismas condiciones que el Fe³⁺, y como las reacciones redox secuenciales son críticas para muchas de las funciones del mismo, dichas funciones pueden inhibirse por sustitución con Ga³⁺.

Como muchos microorganismos requieren Fe para su supervivencia, al actuar como un análogo del mismo, el Ga tiene un papel potencial como antiinfeccioso de amplio espectro^[75]. El hecho de que la captación de Ga por las bacterias se realice mediante el mismo mecanismo que la captación de Fe indica que cualquier presión selectiva de la bacteria por reducir la captación de uno lleve a la disminución de la captación del otro, resultando un cambio mutacional. De hecho, el Ga no parece sufrir los clásicos mecanismos de resistencia asociados a los antibióticos, como la menor captación debida a la permeabilidad restringida de la membrana celular, las bombas de expulsión de drogas o las enzimas de desintoxicación como las beta-lactamasas.^[76, 77]

Como ejemplo, se ha publicado que el Ga³⁺ inhibe el crecimiento y la formación de la biopelícula bacteriana de la *Pseudomonas aeruginosa*, responsable de infecciones pulmonares y de las vías respiratorias, las vías urinarias, heridas, y otras sepsis; esto es posible porque interfiere con la captación bacteriana de Fe³⁺ y con la señalización férrica transmembrana al interactuar con la proteína reguladora *pvdS*. También se ha encontrado que el Ga³⁺ es efectivo contra *Staphylococcus aureus* resistente a la meticilina y *Clostridium difficile*, y contra los organismos causantes de la malaria y la tuberculosis en humanos^[78].

I.1.4- Isótopos y sus aplicaciones médicas

Los isótopos naturales del Ga son ⁶⁹Ga (60.2 %) y ⁷¹Ga(39.8 %). Se conocen adicionalmente otros muchos isótopos radioactivos de Ga, entre los que destacan por sus aplicaciones en medicina el ⁶⁶Ga, ⁶⁷Ga y ⁶⁸Ga.

Hay varios métodos de obtención de ⁶⁷Ga, que incluyen bombardeo con protones, deuterones o partículas α de blancos de Cu o Zn en ciclotrones, usando las reacciones nucleares

 67,68 Zn(p, xn), 65 Cu(α , xn). Su aislamiento se realiza en general por cromatografía de intercambio iónico o por co-precipitación con Fe(OH)₃. Pero debido a las impurezas radioquímicas que acompañan al producto en estos métodos, suele preferirse con fines preparativos el bombardeo con iones pesados (11 B o 12 C) de blancos de Co, para obtener 66 Ga o 67 Ga ${}^{[79]}$.

También se utilizan fuentes de ⁶⁸Ge, con un $t_{1/2}$ de 270.8 días ante la captura electrónica. Actualmente hay disponibles generadores comerciales de este tipo^[80]. El ⁶⁸Ge es fuertemente absorbido por óxidos metálicos y material orgánico, haciendo estos generadores muy seguros. Varios grupos continúan desarrollando generadores con la capacidad de eliminar impurezas catiónicas del eluato. Así, se han desarrollado quelantes bifuncionales basados en los compuestos macrocíclicos ácido 1,4,7-triazaciclononano-N,N,N-triacético y ácido 1,4,7,10-tetraazaciclododecano-N,N,N,Ntetracético (DOTA), unidos a péptidos y otras biomoléculas^[81]. Además de estos guelantes hidrofílicos, también se está utilizando un ligando lipofílico tetradentado de tipo N,S,S,S-dador. Así, se han desarrollado radiopéptidos de ⁶⁸Ga y se han realizado ensayos preclínicos para la detección de receptores de somatostatina, melanocortina-1 y bombesina. Se realizaron estudios clínicos con ⁶⁸Ga-DOTA, tyr3-octreótido, localizándose así tumores neuroendocrinos con mayor sensibilidad que la lograda con el ácido ¹¹¹In-dietilentriaminpentaacético-octreótido^[82]. Muchos de estos complejos muestran no sólo una absorción aumentada en el tejido tumoral, sino que se eliminan rápidamente de la sangre y tienen bajos niveles de acumulación en tejidos distintos de los tejidos objetivo de la administración del radioisótopo, resultando en una alta relación objetivo/no-objetivo de radioactividad^[81].

El ⁶⁷Ga ($t_{1/2}$ = 3.26 d) se utiliza como radionúclido en escintigrafía (⁶⁷GaSPECT) para la detección del mal de Hodgkins y de linfomas no-Hodgkins^[74, 83].

El ⁶⁸Ga es un isótopo emisor de positrones con una vida media de 1.13 h y una alta abundancia de positrones (89%) lo cual lo hace ideal para la técnica de imagen denominada tomografía por emisión de positrones (PET). Su bajo $t_{1/2}$ permite la manipulación química, pero limita la dosis recibida por el paciente. A diferencia de otros isótopos usados en PET, que son producidos en ciclotrones, el ⁶⁸Ga se obtiene en un generador ⁶⁸Ge/⁶⁸Ga lo cual constituye una buena alternativa para los centros de salud que no pueden afrontar el costo de un ciclotrón para realizar PET^[5, 84]

El radionúclido emisor de positrones ⁶⁶Ga (t_{1/2}=9.49 h; β^+ (56.5%)) se puede usar como sustituto del ⁶⁷Ga en un gran número de proteínas, péptidos y pequeñas moléculas marcadas. El marcaje con ⁶⁶Ga permite la utilización de un radiofármaco de Ga con vida media superior a los que utilizan ⁶⁸Ga en PET ^[85].

A pesar de que el Ga normalmente se acumula en el hígado y/o el bazo, concentraciones anormalmente altas podrían sugerir ciertas enfermedades. Por ejemplo, se puede diagnosticar mediante su uso un linfoma tipo Hodgkin o no-Hodgkin por la presencia anormalmente elevada de Ga en el sistema linfático. Después de que un paciente recibe tratamiento contra el cáncer, ya sea radio o quimioterapéutico, una escintigrafía de Ga puede ayudar a encontrar tumores nuevos o recurrentes, o a registrar la reducción de un tumor tratado. También se puede usar una ⁶⁷Ga-escintigrafía para diagnosticar algunas enfermedades pulmonares y sarcoidosis^[86, 87].

El citrato de ⁶⁷Ga inyectable es una solución isotónica esterilizada, no pirogénica, para administración intravenosa. Se prepara para su uso inmediato, a partir de tricloruro de ⁶⁷Ga, citrato de sodio, cloruro de sodio y alcohol benzílico como preservante, y se ajusta el pH al rango 5-8 con ácido clorhídrico y/o hidróxido de sodio acuoso.

El citrato se acumula en tejidos tumorales, infectados e inflamados, aunque inmediatamente después de su administración, se halle mayor concentración del compuesto en la corteza renal. De aquí se desplaza a tejidos óseos y nódulos linfáticos, y luego al hígado y al bazo, de donde es excretado lentamente.

I.2- SEMICARBAZONAS Y TIOSEMICARBAZONAS

En la búsqueda de nuevos principios activos para fármacos utilizados en la lucha contra diversas enfermedades, uno de los enfoques más utilizados es el de buscar complejos metálicos que puedan actuar mediante mecanismos duales e inclusive múltiples, combinando las propiedades farmacológicas tanto del ligando como del metal, de manera cooperativa^[88].

En años recientes, la búsqueda de complejos de Ga(III) que actúen como fármacos anticancerígenos se ha basado en el uso de ligandos quelantes bidentados y tridentados, que combinen como sitios coordinantes átomos de N, S y O. Varios complejos monocatiónicos y homolépticos de Ga(III) con ligandos tridentados han presentado una actividad citotóxica mayor que la de las sales de galio en células tumorales humanas (incluyendo líneas celulares resistentes al platino). Más recientemente, se ha mostrado que complejos catiónicos de Ga(III) con ligandos N,N,O dadores, que incluyen grupos de apoyo piridínicos, amino y fenolatos, pueden actuar como potentes inhibidores de la actividad proteosómica. En este contexto, el uso de semicarbazonas como ligandos quelantes del ion Ga(III) parece una estrategia muy prometedora en la búsqueda de nuevos complejos de este ion^[89].

Las tiosemicarbazonas son una interesante clase de compuestos, ya que presentan un amplio rango de bioactividad, y porque adoptan varios modos de coordinación con átomos metálicos representativos o de transición^[90-93]. Se ha asociado dicha actividad biológica con los precursores tiocarbónilicos de las mismas, con la amino-sustitución que presentan y con su capacidad para coordinarse a centros metálicos^[94]. En muchos casos, tras la coordinación al metal la actividad de las tiosemicarbazonas aumenta, sugiriendose que la complejación puede ser una estrategia satisfactoria para la reducción de las dosis utilizadas^[95].

Las semicarbazonas y tiosemizarbazonas son derivados de compuestos carbonílicos, obtenidos por condensación de estos con semicarbazida o tiosemicarbazida, de fórmula general:

 R_1 , R_2 = H, alquilo, arilo, -OR, -COOR, -CONHR, etc. R_3 , R_4 , R_5 = H, alquilo, arilo. X= O, S

Presentan un amplio perfil farmacológico, aunque en muchos casos, la actividad biológica correspondiente a las tiosemicarbazonas análogas desaparece o disminuye al reemplazar el átomo de azufre por el de oxígeno (aunque no siempre es así; por ejemplo, como agentes antiulcerosos, las semicarbazonas derivadas de furan-, pirrol- y N-metilpirrol carboaldehídos, son más activas que sus correspondientes análogos tiosemicarbazona^[96]). Las semicarbazonas son agentes antichagásicos, antivirales, anticonvulsivos, anticancerígenos, hipnóticos, pesticidas y herbicidas. Se cree que su acción fisiológica puede deberse a su capacidad de unión a metales endógenos, o proceder a través

de reacciones tipo redox, y/o interacciones con ADN, amén de su posible rol como inhibidoras de la replicación del mismo^[97]. Finalmente, las semicarbazonas son de interés en la ciencia de los materiales. Por ejemplo, algunos de sus derivados (obtenidos a partir de benzaldehídos sustituidos con grupos dadores de electrones, anisaldehído, benzofenona, etc.), se están utilizando para desarrollar nuevos materiales con grandes no-linearidades cuadráticas, para su uso en telecomunicación óptica o para el procesado de señales ópticas asociado a la generación de nuevas frecuencias, amplificación de señales y modulación electro-óptica^[98].

I.2.1- Actividad biológica de semicarbazonas

i) Propiedades como anticonvulsivo: Los requerimientos estructurales para que un compuesto sirva como anticonvulsivo, según ensayos realizados con modelos experimentales de epilepsia (inducida por electrochoques o químicamente) son que el principio activo tenga dos átomos dadores de electrones próximos a un grupo hidrofóbico voluminoso (en el primer tipo de modelo), o a uno no tan hidrofóbico ni voluminoso (en el caso del segundo modelo). Así, tienen propiedades anticonvulsivas una gran variedad de semicarbazonas con grupos arilo, arilideno, ariloxi(aril)^[99] y derivadas de la isatina^[100]. De modo general, las semicarbazonas presentan mayor actividad en la epilepsia inducida por electrochoque que en la inducida por administración subcutánea de pentilenotetrazol^[97].

ii) Propiedades antivirales: Una de las estrategias actuales para inhibir la replicación viral en individuos infectados con HIV, es la aplicación de quimioterapia con agentes que interaccionen con la transcriptasa reversa viral y las enzimas HIV-proteasas. Pero debido a los efectos tóxicos inherentes a estas estrategias y a la aparición de variedades virales resistentes a los inhibidores nucleósidos, estos métodos están perdiendo impulso. En cambio se está desarrollando con fuerza el área de los inhibidores no-nucleósidos. Entre estos, se han publicado estudios relacionados con derivados de difeniltioureas, tiosemicarbazonas^[101] y semicarbazonas ^[102], en los cuales se asocia la actividad antiviral con la presencia de grupos NHC(=S)NH y NHC(=O)NH (por ejemplo, tiosemi- y semicarbazonas derivadas de la (±)-3-mentona ^[103]).

También se han constatado la actividad antiviral de algunas semicarbazonas (por ejemplo, la derivada de la 2-acetilpiridina) contra infecciones genitales y encefalitis inducidas en ratones y cobayas^[104].

iii) Propiedades antibacterianas: Las drogas más utilizadas en el tratamiento del mal de Chagas-Massa (provocado por la bacteria *trypanossoma cruzi*), Nifurtimox[®] y Benznidazol[®], presentan efectos colaterales indeseables y son ineficaces en el tratamiento de la dolencia crónica. El tratamiento se ha basado en el uso de fármacos nitroaromáticos poco específicos con actividad apreciable sólo en la fase aguda de la enfermedad, y varios efectos colaterales indeseados. En este

contexto, ha sido de gran importancia la utilización de semicarbazonas análogas al Nifurtimox[®], y de otras derivadas de heterociclos que contienen la función N-óxido^[105], así como también el uso de complejos de vanadio con semicarbazonas^[88].

Por otra parte, la tuberculosis es una de las enfermedades infecciosas más comunes y en los últimos tiempos, la asociación de esta enfermedad con el síndrome de inmunodeficiencia adquirida es tan dramática, que cerca de dos terceras partes de los pacientes con tuberculosis son también HIV-1 seropositivos. Se ha registrado un aumento considerable en el número de casos resistentes a la terapia antitubercular convencional y a la terapia multidrogas. Así, es de gran importancia la actividad potencial de las semicarbazonas en este sentido. Por ejemplo, se ha descubierto que algunos de sus derivados diarílicos (como la di-2-piridilcetona-N4(fenil) semicarbazona) inhiben la proliferación del *Mycobacterium tuberculosis* H₃₇Rv^[106].

iv) Propiedades anticancerígenas: Las semicarbazonas (junto con las tiosemicarbazonas y acetilhidrazonas) derivadas de la ftalimida, o-benzosulfimida, naftalimida y difenimida, han demostrado potencia citotóxica contra la murina y contra el crecimiento de células leucémicas humanas en tumores sólidos^[107].

I.2.2- Química de coordinación de semicarbazonas y de algunas tiosemicarbazonas

En cuanto a la química de coordinación de las semicarbazonas, es ilustrativa la revisión estructural de sus complejos con los metales^[6, 91] Zn²⁺, Sn²⁺, Sn⁴⁺, Pb²⁺, Pb⁴⁺, Bi³⁺, Ge⁴⁺, In³⁺, Sc³⁺, Mn²⁺, Fe³⁺, Fe³⁺, Fe²⁺, Ni²⁺, Co²⁺, Co³⁺, Cu²⁺, Cr³⁺, Ru²⁺, Rh³⁺, Re⁵⁺, VO₄⁻, VO⁺, Pd²⁺, Ce³⁺, Sm³⁺, Th⁴⁺, Nd³⁺, Gd³⁺, UO₂²⁺, que han sido estudiados por difracción de rayos X. Como se puede ver en la enumeración anterior, la mayoría de los compuestos que forman las semicarbazonas, incluyen cationes duros, o frontera (según la clasificación de Pearson). Al comparar el tipo de complejos metálicos que forman las semicarbazonas, con sus correspondientes análogos de tiosemicarbazonas, queda claro que estás últimas tienen mayor afinidad por centros metálicos blandos (Hg²⁺, Cd²⁺, etc.), como cabe esperar de la presencia en el resto tiosemicarbazona de un átomo de azufre. Y esto es importante porque justifica en buena medida las distintas actividades biológicas (o su distinto grado de actividad) de estas dos familias de compuestos.

Existen pocos estudios estructurales de complejos en los que un ligando semicarbazona actúa como ligando monodentado (ver, por ejemplo, Figura I.6).

Algo más comunes son las estructuras de complejos en que las semicarbazonas actúan como ligandos bidentados *O*,*N*. Ejemplo de este comportamiento son los complejos que se muestran en la Figura I.7.

Figura 1.6 - bis(ferrocenoacetilsemicarbazona-O)-dicloro-difenil-estaño(IV)^[108].

Figura 1.7 - (a) (*N*,*O*-ferrocenformilsemicarbazona)-tricloro-fenil estaño(IV) tetrahidrofurano solvato^[108] y (b) Dicloro-oxo-trifenilfosfina-(3-(5-nitrofuril)acroleína semicarbazona) renio(V)^[109].

Más frecuente para estos ligandos es el modo de coordinación tridentado. Las semicarbazonas que cuentan en su estructura con la presencia de "grupos de apoyo" (con frecuencia, átomos dadores en posición β o γ con respecto al átomo de C imínico) pueden actuar como ligandos tridentados a través de su oxígeno carbonílico, su nitrógeno imínico N(3) y el átomo dador adicional. Ejemplo de esto son los compuestos de la Figura I.8.

Figura I.8 - (a) $(O,O'-\alpha$ -oxoglutaril semicarbazonato)-cobre(II) monohidratado^[110], (b) dicloruro de (2-benzoilpiridin semicarbazona) zinc(II)^[111] y (c) *cis*-dioxo-(salicilaldehído semicarbazonato)-vanadio(V)^[112].

De particular interés son los ligandos *bis*-semi y *bis*-tiosemicarbazona derivados de precursores 2,6-dicarbonilpiridínicos. Estos ligandos se obtienen por condensación directa del compuesto dicarbonílico con las semicarbazidas y tiosemicarbazidas (sustituidas o no) correspondientes. En la base de datos estructural CSD^[6] se recogen varias decenas de este tipo de ligandos. En particular hemos de mencionar la bis-semicarbazona de la 2,6-diacetilpiridina, y su análogo bis-tiosemicarbazona (H₂DAPSC y H₂DAPTSC, respectivamente). Según la revisión estructural realizada, la bis-semicarbazona de la 2,6-diacetilpiridina forma más de 30 complejos con distintos metales de la primera serie de transición, lantánidos y algunos actínidos. Aunque en general este ligando actúa como pentadentado, formando con el metal un sistema de anillos quelato coplanares de gran estabiliad, también puede actuar como tridentado y hasta como bidentado; y sus cadenas semicarbazona pueden no ser coplanares, llegando a formar en algún caso un ángulo diedro de aproximadamente 60°. En la Figura I.9 se ilustra lo antedicho.

Figura 1.9 - (a) Cloruro de dicloro-(2,6-diacetilpiridina-bis(semicarbazona)) hierro(III) dihidratado^[112], (b) Bis(2,6-diacetilpiridina bis(semicarbazona)) níquel(II) pentahidratado^[113], (c) Dicloruro de bis(μ_2 -2,6-diacetilpiridina bis(semicarbazonato)-N,N',N'',O)-dicobre(I) octahidratado^[114] y (d) Cloruro de cloro-(3-hidroxi-2,6-diacetilpiridina bis(semicarbazonato)-N,N',N'',O) cobre(II) monohidratado^[114].

Nuestro grupo ha publicado la estructura cristalina del ligando libre H₂DAPTSC metanol solvato^[115], ligando que interviene en al menos 24 complejos con diversos metales, estudiados por difracción de rayos X de monocristal. En la Figura I.10 se muestran algunos ejemplos de complejos del ligando H₂DAPTSC, actuando como ligando bidentado, tridentado o pentadentado.

Figura I.10 - (a) Cloruro de metil-fenil-(2,6-diacetilpiridina bis(tiosemicarbazonato)) estaño(IV) metanol solvato^[115], (b) Difenil-(1,1'-(piridin-2,6-diil)dietanona ditiosemicarbazonato) plomo(IV) metanol solvato^[116], (c) Dimetil-(2,6-diacetilpiridina bis(tiosemicarbazonato)) talio(III)^[117] y (d) Bis(μ_2 -2,6-diacetilpiridina-bis(tiosemicarbazonato)) di-zinc(II) dimetilformamida solvato^[118].

Cabe mencionar brevemente lo encontrado en la bibliografía para compuestos de Ga(III) con tiosemicarbazonas; se han publicado 18 estructuras de complejos de Ga(III) con tiosemicarbazonas, reunidas en las Figuras I.11 y I.12.

En la Figura I.12 se agrupan los complejos derivados de la monoacetilpiridina y la formilpiridina, tanto se hallen sustituidas en el N terminal o no. Como se ve, es el ligando que forma el mayor número de compuestos con Ga(III), y en todos ellos el ligando actúa como N,N,S dador. Así mismo, la mayoría presena un I.C. 6, con dos tiosemicarbazonatos por centro metálico. Frente a este modo de coordinación tan frecuente, destacan los complejos con un solo tiosemicarbazonato y dos cloruros unidos al metal, con I.C 5: (2-acetilpiridin-4,4-dimetiltiosemicarbazonato)-dicloro-galio(III)^[119] y Dicloro-((E)-1-(1-(piridin-2-il)etiliden)tiosemicarbazonato-N,N',S)-galio(III)^[120].

Por su parte, en la Figura I.12 se muestran otros dos grupos de complejos Ga(III) con tiosemicarbazonas. Cuatro de estos complejos son derivados de la monoacetilpirazina (y presentan entornos de coordinación muy parecidos a los que derivan de la monoacetilpiridina). Y finalmente, tres bis-tiosemicarbazonatos, con I.C 5 y de estructura de pirámide de base cuadrada ligeramente distorsionada.

Figura 1.11- Estructuras cristalinas de (a) nitrato de bis(N4-Etill-2-piridinformamida tiosemicarbazonato-N,N',S)-gal(III) DMSO solvato^[121], (b) nitrato de bis(2-acetilpiridin-4-metiltiosemicarbazonato)-galio(III)^[120], (c) nitrato de bis(2-acetilpiridin-4-etiltiosemicarbazonato)-galio(III)^[119], (d) nitrato de bis(2-acetilpiridin-4-feniltiosemicarbazonato)-galio(III) EtOH solvato^[119], (e) nitrato de bis(N(4)-fenil-2-acetilpiridin-tiosemicarbazonato)-galio(III) DMSO solvato^[122], (f) nitrato de bis((E)-1-(1-(2-Piridil)etiliden)tiosemicarbazonato-N,N',S)-galio(III)^[123], (g) tetraclorogalato(III) de bis(2-acetilpiridin-4,4-dimetiltiosemicarbazonato)-galio(III) de bis(2-acetilpiridin-4,4-dimetiltiosemicarbazonato)-galio(III) bis(2-acetilpiridin-4,4-dimetiltiosemicarbazonato)-galio(III)^[119], (h) nitrato de bis(3-aminopiridin-2-carbaldehído tiosemicarbazonato)-galio(III) EtOH solvato^[124], (i) nitrato de bis(N-(2-clorofenil)-N'-(1-(piridin-2-il)etiliden)carbamo hidrazonotioato)-galio(III) hidratado^[101], (j) (2-acetilpiridin-4,4-dimetiltiosemicarbazonato)-dicloro-galio(III)^[119] y (k) Dicloro-((E)-1-(1-(piridin-2-il)etiliden)tiosemicarbazonato-N,N',S)-galio(III)^[120].

Figura 1.12- Estructuras cristalinas de (a) hexafluorofosfato de bis(N,N-dimetilacetilpirazina tiosemicarbazonato-N,N',S)galio(III)^[125], (b) hexafluorofosfato de bis(N-pirrolidinilacetilpirazina tiosemicarbazonato-N,N',S)-gallium(iii) cloroformo solvato^[125], (c) bis(N,2-bis(1-(pirazin-2-il)etiliden)hidrazincarbohidrazonotiolato)-galio(III)^[126], (d) nitrato de bis(N-fenil-N'-(1-(2-pirazinil)etiliden)carbamohidrazonotioato-N,N',S)-galio(III) monohidrato^[127], (e) (N',N'''-butan-2,3-diiliden-bis(Nmetilcarbamohidrazonotioato))-cloro-galio(III)^[128], (f) cloro-(N-metil-N'-(2-(((metilamino)(sulfanil)metilene)hidrazono) acenaftilen-1(2H)-iliden)carbamohidrazonotioato)-galio(III) dimetilsulfóxido solvato^[128] y (g) (N-allyl-N'-(2-(((alilamino)(sulfanil)metilene)hydrazono)acenaftilen-1(2H)-iliden)carbamohidrazonotioato)-cloro-galio(III) tetrahidrofurano solvato.^[128]

Hasta el momento sólo se han publicado dos estructuras de complejos de Ga(III) con ligandos semicarbazona: hexafluorofosfato de [bis-(2-acetilpiridina-N,N-dimetil-semicarbazonato-N,N',O)-galio(III)] dietiléter solvatado^[129] y nitrato de bis(3-etoxisalicilaldehídosemicarbazonato)-galio(III) dihidratado^[22].

I.3- OBJETIVOS Y PLAN DE TRABAJO

La administración de sales inorgánicas de Ga por vía intravenosa o subcutánea, en dosis de choque, está contraindicada en la mayoría de los casos debido a su toxicidad renal. Por otra parte, la administración oral es poco eficiente debido a la escasa absorción intestinal que presentan estas sales inorgánicas. De aquí el interés por encontrar nuevos complejos de galio con actividad biológica que soslayen estas limitaciones terapéuticas de sus compuestos.

Teniendo en cuenta dicho interés, y a la vista de la revisión estructural realizada para las semicarbazonas, que puso de manifiesto la escasez de datos para semicarbazonatos de galio, este trabajo se planteó como objetivo:

- Sintetizar, caracterizar estructuralmente y estudiar las propiedades biológicas de nuevos compuestos de coordinación de galio(III), utilizando semicarbazonas y tiosemicarbazonas como ligandos.

En la prosecución de este objetivo, se estructuró el trabajo de acuerdo a las siguientes etapas:

1.- Síntesis, purificación y caracterización en estado sólido y en disolución de semicarbazonas y tiosemicarbazonas de distintos grupos de compuestos carbonílicos.

2.- Estudio de la reactividad de estos ligandos frente a $GaCl_3$, $GaCl_{3-x}(AcO)_x$ y $Ga(NO_3)_3$ ·H₂O.

3.- Caracterización de los compuestos de Ga obtenidos, tanto en estado sólido como en disolución, mediante la determinación de sus puntos de fusión, espectroscopía infrarroja, análisis elemental y espectroscopía de RMN. En caso de obtenerse monocristales adecuados, estudio de los mismos por difracción de rayos X de monocristal.

4- Ensayar de modo preliminar la actividad anticancerígena de algunos de los productos obtenidos, mediante la determinación de su citotoxicidad frente a la línea celular HeLa-229.

1.4- BIBLIOGRAFÍA

- ^[1] R.G. Pearson, *Coord. Chem. Rev.*, **100**, 1990, 403.
- A.J. Downs, D.G. Tuck, "Chemistry of Aluminium, Gallium, Indium and Thallium", Editor A.J.
 Downs, 1993, Chapman and Hall, capítulos 1 y 8.
- ^[3] P.A.G. Hammersley, M.A. Zivanovic, *Nuklearmedizin*, **19**, 1980, 25.
- ^[4] L.R. Bernstein, *Pharmacol. Rev.*, **50**, No. 4, 1998, 665.
- ^[5] F. Silva, M^a.P.C. Campello, L. Gano, C. Fernandes, I.C. Santos, I. Santos, J.R. Ascenso, M.J. Ferreira, A. Paulo, *Dalton Trans.*, 44, 2015, 3342.
- ^[6] A. G. Orpen, *Acta Cryst.*, **B58**, 398-406, 2002.
- ^[7] P.J. Brothers, R.J. Wehmschulte, M.M. Olmstead, K. Ruhlandt-Senge, S.R. Parkin, P.P. Power, *Organometallics*, **13**, 1994, 2792.
- ^[8] T.Matsumoto, H.Takamine, K.Tanaka, Yoshiki Chujo, *Org. Lett.*, **17**, 2015, 1593.
- ^[9] T.N. Sevastianova, M. Bodensteiner, A.S. Lisovenko, E.I. Davydova, M. Scheer, T.V. Susliakova, I.S. Krasnova, A.Y. Timoshkin, *Dalton Trans.*, **42**, 2013, 11589.
- ^[10] Fabian Rei, Axel Schulz, A.Villinger, *Chem. Eur. J.*, **20**, 2014, 11800.
- ^[11] A. Schulz, A. Villinger, A. Westenkirchner, *Inorg. Chem.*, **53**, 2014, 3183.
- ^[12] H.B. Mansaray, A.D.L. Rowe, N. Phillips, J. Niemeyer, M. Kelly, D.A. Addy, J.I. Bates, S. Aldridge, *Chem. Commun.*, **47**, 2011, 12295.
- ^[13] A. Devi, H. Sussek, H. Pritzkow, M. Winter, R.A. Fischer, *Eur. J. Inorg. Chem.*, 1999, 2127.
- ^[14] I. Schranz, D.F. Moser, L. Stahl, R.J. Staples, *Inorg. Chem.*, **38**, 1999, 5814.
- ^[15] A. Boukhris, C. Lecomte, A. Coutsolelos, R. Guilard, J. Organomet. Chem., **303**, 1986, 151.
- [16] A.V. Piskunov, I.V. Ershova, G.K. Fukin, I.A. Nauk, SSSR, Ser. Khim. (Russ.) (Russ. Chem. Bull.),
 2014, 916.
- ^[17] B. Luo, V.G. Young Jr., W.L. Gladfelter, *Chem. Commun.*, 1999, 123.
- ^[18] S.A. Duraj, A.F. Hepp, R. Woloszynek, J.D. Protasiewicz, M. Dequeant, T. Ren, *Inorg.Chim.Acta*, **365**, 2011, 54.
- ^[19] A.V. Piskunov, I.N. Meshcheryakova, A.V. Maleeva, A.S. Bogomyakov, G.K. Fukin, V.K. Cherkasov, G.A. Abakumov, *Eur. J. Inorg. Chem.*, **20**, 2014, 3252.
- ^[20] D.S. Kissel, J. Florian, C.C. McLauchlan, A.W. Herlinger, *Inorg. Chem.*, **53**, 2014, 3404.
- ^[21] J. Soleimannejad, S. Sheshmani, M. Solimannejad, E. Nazarnia, F. Hosseinabadi, *Zh. Strukt. Khim. (Russ.) (J. Struct. Chem.)*, **55**, 2014, 342.
- ^[22] D. Gambino, M. Fernandez, D. Santos, G.A. Etcheverria, O.E. Piro, F.R. Pavan, C.Q.F. Leite, I. Tomaz, F. Marques, *Polyhedron*, **30**, 2011, 1360.
- ^[23] C.F. Ramogida, J.F. Cawthray, E. Boros, C.L. Ferreira, B.O. Patrick, M.J. Adam, C. Orvig, *Inorg.*
Chem., 54, 2015, 2017.

- ^[24] X.M. Wang, R.Q. Fan, L.S. Qiang, W.Q. Li, P. Wang, H.J. Zhang, Y.L. Yang, *Chem. Commun.*, **50**, 2014, 5023.
- ^[25] M.A. Jakupec, B.K. Keppler, *Curr. Top. Med. Chem.*, **4**, 2004, 1575.
- ^[26] M.R. Kaluđerović, S. Gómez-Ruiz, B. Gallego, E. Hey-Hawkins, R. Paschke, G.N. Kaluđerović, *Eur. J. Med. Chem.*, **45**, 2010, 519.
- ^[27] N. Viola-Villegas, A. Vortherms, R.P. Doyle, *Drug Target Insights*, **3**, 2008, 13.
- G.R. Lee, "Anemia: a Diagnostic Strategy". In Wintrobe's Clinical Hematology; 10th Ed.; Vol. 1;
 G.R. Lee, J. Foerster, J. Lukeus, F. Paraskevas, J.P. Greer, G.M. Rodgers, Williams & Wilkins:
 Baltimore, 1998; pp 908.
- ^[29] Y. Li, B. Liu, C. Zhao, B Yang, *Chin. J. Chem.*, **28**, 2010, 766.
- ^[30] W.R. Harris, V.L. Pecoraro, *Biochemistry*, **22**, 1983, 292.
- ^[31] G. Kubal, A.B. Mason, S.U. Patel, P.J. Sadler, R.C. Woodworth, *Biochemistry*, **32**, 1993, 3387.
- ^[32] H. Sun, M.C. Cox, H. Li, A.B. Mason, R.C. Woodworth, P.J. Sadler, *FEBS Lett.*, **422**, 1998, 315.
- ^[33] U.K. Terner, H. Wong, A.A. Noujaim, B.C. Lentle, J.R. Hill, *Int. J. Nucl. Med. Biol.*, **6**, 1979, 23.
- ^[34] F. Planas-Bohne, D.M. Taylor, J.R. Duffield, *In Vitro Cell Biochem. Funct.*, **3**, 1985, 217.
- ^[35] W. Feremans, W. Bujan, P. Neve, J.P. Delville, L. Schandene, *Am. J. Hematol.*, **36**, 1991, 215.
- ^[36] A. Gallamini, A. Biggi, A. Fruttero, F. Pugno, G. Cavallero, M. Pregno, M. Grasso, C. Farinelli, A. Leone, E. Gallo, *Eur. J. Nucl. Med.*, 24, 1997, 1499.
- ^[37] F. Nejmeddine, M. Raphael, A. Martin, G. Le Roux, J.L. Moretti, N. Caillat-Vigneron, J. Nucl. Med., 40, 1999, 40.
- ^[38] Y. Tsuchiya, A. Nakao, T. Komatsu, M. Yamamoto, K. Shimokata, *Chest*, **102**, 1992, 530.
- ^[39] C.R. Chitambar, Z. Zivkovic-Gilgenbach, *Cancer Res.*, **50**, 1990, 1484.
- ^[40] J.S. Rasey, N.J. Nelson, M.S. Larson, *Eur. J. Cancer Clin. Oncol.*, **18**, 1982, 661.
- [41] P. Collery, "Gallium compounds in cancer therapy. En: Fricker SP, editor. Metals in health and disease.", London: Chapman & Hall, 1994, capítulo 8.
- P.A. Seligman, R.B. Schleicher, G. Siriwardana, J. Domenico, E.W. Gelfand, *Blood*, 82, 1993, 1608.
- ^[43] C.R. Chitambar, P.A. Seligman, *J. Clin. Invest.*, **78**, 1986, 1538.
- ^[44] C.R. Chitambar, W.G. Matthaeus, W.E. Antholine, K. Graff, W.J. O'Brien, *Blood*, **72**, 1988, 1930.
- ^[45] C.R. Chitambar, J. Narasimhan, *Pathobiology*, **59**, 1991, 3.
- ^[46] C.R. Chitambar, J. Narasimhan, J. Guy, D.S. Sem, W.J. O'Brien, *Cancer Res.*, **51**, 1991, 6199.
- ^[47] J. Narasimhan, W.E. Antholine, C.R. Chitambar, *Biochem. Pharmacol.*, **44**, 1992, 2403.
- ^[48] J.S. Rasey, N.J. Nelson, S.M. Larson, *Int. J. Nucl. Med. Biol.*, **8**, 1981, 303.

- ^[49] X.P. Jiang, F. Wang, D.C. Yang, R.L. Elliott, J.F. Head, *In Vivo. Anticancer Res.* 22, 2002, 2685.
- ^[50] A.Y. Bedikian, M. Valdivieso, G.P. Bodey, M.A. Burgess, R.S. Benjamin, S. Hall, E.J. Freireich, *Cancer Treat. Rep.*, **62**, 1978, 1449.
- ^[51] M.K. Samson, R.J. Fraile, L.H. Baker, R. O'Bryan, *Cancer Clin. Trials*, **3**, 1980, 131.
- ^[52] R.P. Warrell Jr., L. Danieu, C.J. Coonley, C. Atkins, *Cancer Treat. Rep.*, **71**, 1987, 47.
- ^[53] P. Collery, H. Millart, D. Lamiable, R. Vistelle, P. Rinjard, G. Tran, B. Gourdier, C. Cossart, J.C.
 Bouana, C. Pechery, J.C. Etienne, H. Choisy, J.M. Dubois de Montrynaud, *Anticancer Res.*, 9, 1989, 353.
- ^[54] P. Collery, H. Millart, J.P. Kleisbauer, D. Paillotin, G. Robinet, A. Durand, S. Claeyssens, J.M. Legendre, A. Leroy, A. Rousseau, C. Pechery, S. Kochman, *Anticancer Res.*, **14**, 1994, 2299.
- ^[55] K. Kumar, S. Schniper, A. González-Sarrías, A.A. Holder, N. Sanders, D. Sullivan, W.L. Jarrett, K. Davis, F. Bai, N.P. Seeram, V. Kumar, *Eur. J. Med. Chem.*, **86**, 2014, 81.
- ^[56] A.V. Rudnev, L.S. Foteeva, C. Kowol, R. Berger, M.A. Jakupec, V.B. Arion, A.R. Timerbaev, B.K.
 Keppler, *J. Inorg. Biochem.*, **100**, 2006, 1819.
- ^[57] É.A. Enyedy, O. Dömötör, K. Bali, A. Hetényi, T. Tuccinardi, B.K. Keppler, J. Biol. Inorg. Chem., 20, 2015, 77.
- ^[58] I. Romero-Canelón, P.J. Sadler, *Inorg. Chem.*, **52**, 2013, 12276.
- ^[59] R.U. Rhaq, J.P. Wereley, C.R. Chitambar, *Exp. Hematol.*, **23**, 1995, 428.
- ^[60] Y. Aoki, M.M. Lipsky, B.A. Fowler, *Toxicol. Appl. Pharmacol.*, **106**, 1990, 462.
- ^[61] C.R. Chitambar, Z. Zivkovic, *Blood*, **69**, 1987, 144.
- ^[62] M.M. Berggren, L.A. Burns, R.T. Abraham, et al, *Cancer Res.*, **53**, 1993, 1862.
- ^[63] R.P. Warrell, R.S. Bockman, "Gallium for bone loss in cancer and metabolic bone deseases". En:
 Collery Ph, Poirier LA, Manfait M, Etienne JC, editores. *Metal ions in biology and medicine*, vol.
 1. Paris: John Libbey Eurotext, (1990) 432.
- ^[64] L.H. Einhorn, B.J. Roth, R. Ansari., et al, J. Clin. Oncol., **12**, 1994, 2271.
- ^[65] A.M. Senderowicz, R. Reid, D. Headlee, et al, *Urol. Int.*, **63**, 1999, 120.
- ^[66] A. Sandler, S. Fox, T. Meyers, et al, *Am. J. Clin. Oncol.*, **21**, 1998, 180.
- ^[67] R.P. Warrell Jr., *Cancer*, **80**, 1997, 1680.
- ^[68] Y. Hata, A. Sandler, P.J. Loehrer, et al, *Oncol. Res.*, **6**, 1994, 19.
- ^[69] M.S. Myette, H.L. Elford, C.R. Chitambar, *Cancer Letters*, **129**, 1998, 199.
- P. Collery, F. Lechenault, E. Juvin, et al, "Synergistic effects between gallium chloride and vinorelbina on U937 malignant cell lines". En Collery P, Brätter P, negretti de Brätter P, Khassanova L, Etienne JC, editores. *Metal ions in Biology and Medicine*, vol. 5. Paris: John Libbey Eurotext, (1998) 588.

- ^[71] J.H. Lundberg, C.R. Chitambar, *Cancer Res.*, **50**, 1990, 6466.
- ^[72] C.R. Chitambar, J.P. Wereley, U.H. Riaz, *Cancer Res.*, **54**, 1994, 3224.
- E. Verron, M. Masson, S. Khoshniat, L. Duplomb, Y. Wittrant, M. Baud'huin, Z. Badran, B. Bujoli,
 P. Janvier, J.C. Scimeca, J.M. Bouler and J. Guicheux, *Brit. J. Pharmacol.*, **159**, 2010, 1681.
- ^[74] P. Melnikova, A.R. Teixeira, A. Malzaca, M. de B. Coelho, *Mat. Chem. and Phys.*, **117**, 2009, 86.
- ^[75] O. Olakanmi, B.E. Britigan, L.S. Schlesinger, *Infect. Immun.*, **68**, 2000, 5619.
- C. Alvarez-Ortega, I. Wiegand, J. Olivares, R.E.W. Hancock, J.L. Martinez, *Virulence*, 2, 2011, 144.
- ^[77] S. Santos Costa, M. Viveiros, L. Amaral, I. Couto, *Open Microbiol. J.*, 2013, **7**(Suppl. 1), 59.
- ^[78] S.P. Valappil, H.H. P. Yiu, L. Bouffier, Ch.K. Hope, G. Evans, J.B. Claridge, S.M. Highama, M.J. Rosseinsky, *Dalton Trans.*, **42**, 2013, 1778.
- ^[79] D. Nayak, S. Lahiri, *Appl. Rad. Isotopes*, **54**, 2001, 189.
- ^[80] G. Bandoli, A. Dolmella, F. Tisato, M. Porchia, F. Refosco, *Coord. Chem. Rev.*, **253**, 2009, 56.
- ^[81] T. Mukai, J. Suwada, K. Sano, M. Okada, F. Yamamoto, M. Maeda, *Bioorg. & Med. Chem.*, **17**, 2009, 4285.
- ^[82] H.R. Maecke, M. Hofmann, U. Haberkorn, J. Nucl. Med., 46, 2005, 172s.
- ^[83] P.L. Zinzani, M. Magagnoli, F. Chierichietti, et al, Ann. Oncol., **10**, 1999, 1181.
- ^[84] C.S. Cutler, M.C. Giron, D.E. Reichert, et al, *Nucl. Med. & Biol.*, **26**, 1999, 305.
- ^[85] M.R. Lewis, D.E. Reichert, R. Laforest, et al, *Nucl. Med. & Biol.*, **29**, 2002, 701.
- ^[86] A Manual of Laboratory and Diagnostic Tests. Fischbach, Frances T. Philadelphia, PA: lippincott-Raven Publishers, 1996.
- ^[87] Illustrated Guide to Diagnostic Tests. Springhouse, PA: Springhouse Corporation, 1998.
- ^[88] J. Benítez, L. Guggeri, I. Tomaz, G. Arrambide, M. Navarro, J. Costa Pessoa, B. Garat, D. Gambino, *J. Inorg. Biochem.*, **103**, 2009, 609.
- ^[89] F. Silva, F. Marques, I.C. Santos, A. Paulo, A.S. Rodrigues, J. Rueff, I. Santos, *J. Inorg. Biochem.*, 104, 2010, 523.
- ^[90] R. Pedrido, M. J. Romero, M. R. Bermejo, A. M. González-Moya, I. García-Lema and G. Zaragoza, *Chem.–Eur. J.*, **14**, 2008, 500.
- ^[91] J.S. Casas, M.S. García-Tasende and J. Sordo, *Coord. Chem. Rev.*, **209**, 2000, 197.
- ^[92] A. Molter and F. Mohr, *Dalton Trans.*, **40**, 2011, 3754.
- ^[93] T. Ismail, D.D. Rossouw, P. Beukes, J.P. Slabbert, G.S. Smith, *Inorg. Chem. Comm.*, **33**, 2013, 154.
- ^[94] B. Shaabani, A. Khandar, M. Dusek, M. Pojarova and F. Mahmoudi, *Inorg. Chim. Acta*, **394**, 2013, 563.
- ^[95] M.X. Li, L.Z. Zhang, C.L. Chen, J.Y. Niu and B.S. Ji, J. Inorg. Biochem., **106**, 2012, 117.

- ^[96] Z. Guo, G. Yang, F. Chu, S. Zhang, Y. Yu, *Chin. Med. Sci. J.*, **6**, 1991, 71.
- ^[97] Heloisa Beraldo, *Quim. Nova*, **27**, 2004, 461.
- ^[98] S. Manivannan, S. Dhanuskodi, *J. Cryst. Growth*, **257**, 2003, 305.
- ^[99] J.R. Dimmock, R.N. Puthucode, J. Tuchek, et al., *Drug Develop. Res.*, **46**, 1999, 112.
- ^[100] S.N. Pandeya, P. Yogeeswary, J.P. Stables, et al., *Eur. J. Med. Chem.*, **5**, 2002, 266.
- ^[101] G.L. Parrilha, K.S.O. Ferraz, J.A. Lessa, K. Navakoski de Oliveira, B.L. Rodrigues, J.P. Ramos, E.M. Souza-Fagundes, I. Ott, H. Beraldo, *Eur. J. Med. Chem.*, **84**, 2014, 537.
- ^[102] V. Mishra, S.N. Pandeya, E. DeClercq, et al., *Pharm. Acta Helv.*, **73**, 1998, 215.
- ^[103] V. Mishra, S.N. Pandeya, E. DeClercq, et al., Arch. Pharm. Pharm. Med. Chem., 5, 2002, 183.
- ^[104] R.W Sidwell, J.H. Huffman, T.W. Schafer, C. Shipman, *Chemotherapy*, **36**, 1990, 58.
- ^[105] H. Cerecetto, R. Di Maio, G. Ibarruri, et al., *Il Farmaco*, **53**, 1998, 89.
- ^[106] F.R. Pavan, P.I. da S. Maia, S.R.A. Leite, V.M. Deflon, A.A. Batista, D.N. Sato, S.G. Franzblau,
 C.Q.F. Leite, *Eur. J. Med. Chem.*, **45**, 2010, 1898.
- ^[107] I.H. Hall, O.T. Wong, J.M. Chapman, *Anticancer Drugs*, **6**, 1995, 147.
- ^[108] J.E.J.C. Graudo, N.L. Speziali, A. Abras, M. Horner, C.A.L. Filgueiras, *Polyhedron*, **18**, 1999, 2483.
- ^[109] L. Otero, P. Noblia, D. Gambino, H. Cerecetto, M. Gonzalez, R. Sanchez-Delgado, E.E. Castellano, O.E. Piro, *Z. Anorg. Allg. Chem.*, **629**, 2003, 1033.
- [110] A.P. Rebolledo, O.E. Piro, E.E. Castellano, L.R.S. Teixeira, A.A. Batista, H. Beraldo, J. Mol. Struct., 794, 2006, 18.
- P. Noblia, E.J. Baran, L. Otero, P. Draper, H. Cerecetto, M. Gonzalez, O.E. Piro, E.E. Castellano, T. Inohara, Y. Adachi, H. Sakurai, D. Gambino, *Eur. J. Inorg. Chem.*, 2004, 322.
- ^[112] G.J. Palenik, D.W. Wester, U. Rychlewska, R.C. Palenik, *Inorg. Chem.*, **15**, 1976, 1814.
- ^[113] M. Carcelli, S. Ianelli, P. Pelagatti, G. Pelizzi, *Inorg. Chim. Acta*, **292**, 1999, 121.
- ^[114] A.E. Koziol, R.C. Palenik, G.J. Palenik, D.W. Wester, *Inorg. Chim. Acta*, **359**, 2006, 2569.
- ^[115] J.S. Casas, E.E. Castellano, J. Ellena, M.S. Garcia-Tasende, F. Namor, A. Sanchez, J. Sordo, M.J. Vidarte, *Eur. J. Inorg. Chem.*, 2007, 3742.
- ^[116] J.S. Casas, E.E. Castellano, J. Ellena, M.S. Garcia-Tasende, A. Sanchez, J. Sordo, M.J. Vidarte, *Inorg.Chim.Acta*, **357**, 2004, 2324.
- ^[117] J.S. Casas, E.E. Castellano, J. Ellena, M.S. Garcia-Tasende, A. Sanchez, J. Sordo, E.M. Vazquez-Lopez, M.J. Vidarte, *Z. Anorg. Allg. Chem.*, **629**, 2003, 261.
- ^[118] A. Bino, N. Cohen, *Inorg. Chim. Acta*, 1993, 210.
- ^[119] I.C. Mendes, M.A. Soares, R.G. dos Santos, C. Pinheiro, H. Beraldo, *Eur. J. Med. Chem.*, 44, 2009, 1870.
- ^[120] J. Chan, A.L. Thompson, M.W. Jones, J. Peach, *Inorg. Chim. Acta*, **363**, 2010, 1140.

- ^[121] J.G. da Silva, L.S. Azzolini, S.M.S.V. Wardell, J.L. Wardell, H. Beraldo, *Polyhedron*, **28**, 2009, 2301.
- ^[122] Ying-Ju Fan, Jian-Ping Ma, Zhong-Xi Sun, *Acta Crystallogr., Sect. E: Struct. Rep. Online*, **63**, 2007, m2663.
- ^[123] C.R. Kowol, R. Trondl, P. Heffeter, V.B. Arion, M.A. Jakupec, A. Roller, M. Galanski, W. Berger, B.K. Keppler, *J. Med. Chem.*, **52**, 2009, 5032.
- ^[124] Ying-Ju Fan, Jian-Ping Ma, Zhong-Xi Sun, *Acta Crystallogr., Sect. E: Struct. Rep. Online*, **63**, 2007, m1540.
- ^[125] C.R. Kowol, R. Berger, R. Eichinger, A. Roller, M.A. Jakupec, P.P. Schmidt, V.B. Arion, B.K. Keppler, *J. Med. Chem.*, **50**, 2007, 1254.
- ^[126] Nan Zhang, Yanxue Tai, Mingxue Li, Pengtao Ma, Junwei Zhao, Jingyang Niu, *Dalton Trans.*, 43, 2014, 5182.
- ^[127] C.R. Kowol, E. Reisner, I. Chiorescu, V.B. Arion, M. Galanski, D.V. Deubel, B.K. Keppler, *Inorg. Chem.*, **47**, 2008, 11032.
- ^[128] R.L. Arrowsmith, P.A. Waghorn, M.W. Jones, A. Bauman, S.K. Brayshaw, Z. Hu, G. Kociok-Kohn, T.L. Mindt, R.M. Tyrrell, S.W. Botchway, J.R. Dilworth, S.I. Pascu, *Dalton Trans.*, **40**, 2011, 6238.
- ^[129] C.R. Kowol, R. Eichinger, M.A. Jakupec, M. Galanski, V.B. Arion, B.K. Keppler, *J. Inorg. Biochem.*, 101, 2007, 1946.

II - REACTIVOS Y TÉCNICAS

II.1- REACTIVOS UTILIZADOS

II.1.1- Disolventes

- Acetona, Normasolv y Merck. Utilizada en síntesis y en pruebas de solublidad.
- Acetonitrilo, *Panreac* y J.T. Baker. Utilizado en pruebas de solubilidad.
- Ácido acético glacial, Panreac y Merck. Utilizado en síntesis.
- Agua destilada. Utilizada en síntesis y ensayos biológicos.
- Cloroformo, *Normasolv*. Utilizado en pruebas de solubilidad.
- Diclorometano, Normasolv. Utilizado en pruebas de solubilidad.
- Dimetilsulfóxido, *Scharlau*. Utilizado en recristalización, y para la preparación de disoluciones para los ensayos de citotoxicidad.
- Dimetilsulfóxido deuterado, Aldrich. Utilizado en la preparación de muestras de RMN.
- Etanol, Normasolv.
- Etanol absoluto, Normasolv. Utilizado en síntesis.
- Éter dietílico, Probus. Utilizado en pruebas de solubilidad.
- DMEM (Dulbeco Modified Eagle's Medium). Medio de crecimiento celular.
- Fetal Calf Serum (FCS), *Biostar, S.A.*. Utilizado como medio de cultivo de crecimiento de las células.
- L-Glutamina, *Biostar, S.A.*. Utilizado como medio de cultivo de crecimiento de las células.
- Glutaraldehido, Merck. Utilizado para la fijación de las células a la placa.
- n-Hexano, Sharlau. Utilizado en pruebas de solubilidad.
- Metanol, Normasolv. Utilizado en síntesis, pruebas de solubilidad.
- Polietilenglicol, Panreac. Utilizado como disolvente en los ensayos biológicos.
- Tolueno, Normasolv. Utilizado en síntesis
- Violeta Cristal, Panreac. Utilizado como sistema de tinción celular.

II.1.2- Precursores orgánicos y reactivos comunes

- Clorohidrato de semicarbazida, 99 + %, Aldrich.
- Tiosemicarbazida, 99 + %, Aldrich.
- Piruvato sódico, 98 %, Aldrich.
- Ácido 2-cetobutírico, 99 %, Aldrich.
- Acetato de sodio para análisis, Normapur.
- Ácido 3-metil-2-oxobutanóico, sal sódica, 95 %, Aldrich.
- Ácido benzoilfórmico, 97 %, Aldrich.
- Ácido α-oxo-furanacético, *97%, Fluka*.
- Ácido 3-indolglioxílico, *98%, Aldrich*.

- Perclorato de tetrabutilamonio, 99%, Fluka.
- 1,10-Fenantrolina, 99 + %, Aldrich.
- 2,2'-Bipiridilo, 99+%, Aldrich.
- Hidróxido de sodio químicamente puro, 98 %, Panreac.
- Salicilaldehído, 98%, Aldrich.
- 2,4-Dihidroxibenzaldehído, 98%, Aldrich.
- 2-Hidroxi-1-naftaldehído, Tech, Aldrich.
- 4-Tert-butil-2,6-diformilfenol, *96%, Aldrich*.
- Acetilacetato de metilo, *99 + %, Aldrich*.
- Di-2-piridilcetona, 99%, Aldrich.
- 2,6-Diacetilpiridina, 99 %, Aldrich.
- 2-Acetilpiridina, 99 + %, Aldrich.
- 3-Oxo-pentanoato de metilo, 98 %, Aldrich.
- 2-Etil-acetoacetato de etilo, 90%, Aldrich.
- 2-Acetilbutirolactona, 98%, Fluka.
- 2-Bencil-3-oxo-butanoato de etilo, 97 + %, Aldrich.

II.1.3- Precursores metálicos

- Nitrato de Ga(III) monohidratado, 99.9 %, Aldrich.
- Tricloruro de galio, 99.99 %, Aldrich.
- Acetato de plata, 99%, Fluka.
- Iodometano, 99.5 %, Aldrich.
- Ioduro de talio(I), 99.999 %, Aldrich.
- Nitrato de plata, 99.0 + %, Aldrich.
- Nitrato de indio(III) pentahidratado, 99.99 %, Aldrich.
- Clorodiacetato de galio (III), GaCl(AcO)₂: se preparó una disolución de 14 mmoles (2,45 g) de GaCl₃ en MeOH_{anhidro}, bajo atmósfera de N_{2(g)}, y se la hizo reaccionar con 20 mmoles de acetato de plata, agitando a temperatura ambiente durante 4h. Se obtuvo un precipitado copioso de AgCl que se filtró y secó (M_{AgCl}=4,37g, 30 mmoles). Se trabajó con la disolución resultante (67.5 mL, 0.207M).
- Hidróxido de dimetiltalio(I), TIMe₂(OH): ver Anexo1.2.1.

II.2- TÉCNICAS DE ESTUDIO UTILIZADAS

II.2.1- Determinación de puntos de fusión

El punto de fusión de los ligandos sintetizados en este trabajo se determinó con un aparato BÜCHI. En el caso de los complejos de Ga(III) preparados a partir de dichos ligandos, no se informan los puntos de fusión, ya que en la mayoría de los casos los bajos rendimientos de las reacciones de obtención de los complejos discutidos en este trabajo no permitieron realizar estos ensayos.

II.2.2- Análisis elemental

Las determinaciones analíticas de los porcentajes de carbono, hidrógeno, nitrógeno y azufre de los compuestos caracterizados se han realizado mediante los analizadores PERKIN-ELMER 240 B, LECO CHNS-932, CARLO-ERBA EA 1108 ó FISONS INSTRUMENT 1108 CHNS-O de la Unidad de Análisis Elemetnal de la RIAIDT de la Universidad de Santiago de Compostela.

Los resultados obtenidos para cada compuesto, así como sus valores teóricos de acuerdo con la estequiometría propuesta en cada caso, se informan al final de cada síntesis.

II.2.3- Espectroscopia infrarroja

De los compuestos sintetizados se prepararon pastillas de KBr que se manipularon en ausencia de humedad, registrándose sus espectros de infrarrojo (IR) en el intervalo de 4000 a 400 cm⁻¹ en un espectrofotómetro MATTSON modelo CIGNUS 100 y en un BRUKER modelo IFS-66V para el intervalo 500 a 100 cm⁻¹ de la Unidad de Espectroscopia Vibracional de la RIAIDT de la Universidad de Santiago de Compostela.

Los espectros IR se recogen en el Apéndice 2 de esta memoria, y la asignación de los mismos se recoge en los apartados correspondientes de la misma.

II.2.4- Difracción de rayos X de monocristal

En los casos en los que fue posible la obtención de monocristales adecuados para un análisis estructural mediante difracción de rayos X, se utilizaron los difractómetros Bruker Smart CCD1000 y Bruker Kappa-APEX II de la Unidad de Difracción de Rayos X de la RIAIDT de la Universidad de Santiago de Compostela y, en algún caso, los difractómetros Enraf-Nonius CAD-4 y Enraf-Nonius Kappa CCD del Instituto de Física de San Carlos, de la Universidad de San Carlos, San Pablo, Brasil. Se realizaron correcciones para los efectos de Lorentz, polarización^[1] y absorción^[2-4]. Para la resolución y refinamiento de las estructuras se utilizó el paquete de programas SHELX97^[5]. Estas fueron resueltas o bien por métodos directos o por Patterson. Esto permitió determinar la posición de todos los átomos no hidrógeno, utilizando un refinamiento por mínimos cuadrados de F² usando parámetros de desplazamiento anisotrópico para todos los átomos excepto los de hidrógeno. Generalmente, los

átomos de hidrógeno fueron introducidos en posiciones calculadas y se refinaron utilizando un modelo rígido, excepto los hidrógenos mencionados en la Tabla II.1, que se localizaron a partir de los mapas de diferencias de Fourier, refinándose sus posiciones atómicas y factores de temperatura isotrópico sobre parámetros geométricos restringidos dependientes del átomo pesado al que están unidos.

Las figuras fueron generadas utilizando los programas ORTEP^[6], PLATON^[7] y MERCURY^[8]. Los datos cristalográficos y de refinado de todas las estructuras se recogen en el Apéndice 1.

Tabla II.1- Hidrógenos localizados a partir de los mapas de diferencias de Fourier para las estructuras discutidas en esta memoria.

Compuesto	N ² -H	N ¹ H ₂	Otros
H₂PSC			Los protones de los grupos ácidos: H12A, H22A y H32A
H ₂ IPSC			El protón H3 del grupo ácido
H₃INSC	H2A		El protón del grupo ácido, H2B, y el del grupo indol, H4
H₂αOFSC ^M	H2	H1A y H1B	El H del grupo ácido, H3, y los 3 del furanosilo
H₂αOFSC [™]			Los protones de los grupos acidos, H13 y H23
H₂αOFTSC·H₂O			El protón H1 del grupo acido y los de la molécula de agua de
			cristalización, H1w yH2w
	H22	H11A H11B H21A H21B	
	1122	1117, 1110, 11217, 11210	Los protopos do los moléculos do otopol 114s y 112s
	LI 22	U11A U11D U31A U31D	Los protones de las moleculas de etanol, mis y mis
	nzz	ППА, ППВ, ПZIA, ПZIB	Los protopos de la melacula de agua coordina de UEA y UED
$[Ga(haOrSC)(bipy)h_2OJ(NO_3)_2(1.6h_2O(iV))$			
	H12		птэв, птоя, птов, пт/я у пт/в
	1112		
(H ₂ SSC·1/2MeOH)			H112 y H212 de los grupos OH refinados
(H ₂ STSC)			Todos los protones de la estructura
H ₃ XSSC·1/2H ₂ O			H3 y H2B de los grupos OH, y H1W del agua de cristalización
H₃XSTSC			H1 y H2A de los grupos OH
H ₂ NAFSC·3/2H ₂ O			Los H de las aguas, y H1A y H2A de los grupos OH
	112201-0-111201		
[Ga(HNAFSC)2]CI-2.25H2O (X)	H22N Y H12N	ΠΙΙΆ, ΠΙΙΒ, ΠΖΙΑ Υ ΠΖΙΒ	H11W ý H12W del agua de cristalización
H₂BIPSC ⁺ NO ₃ ⁻		H1A y H1B	
HAPTSC-1/2H ₂ O			H1W y H2W del agua de cristalización
H₂DAPSC·MeOH			H4S del MeOH
H ₂ DAPTSC·MeOH			H4S del MeOH
	H12 v H22		H14 y H24 de los grupos piridínico protopados
			Los H de las moleculas de agua coordinadas y no coord. H2A
			H3B. H4A. H4B. H1w v H2w
[TIMe ₂ (H ₂ O)(MASC _{cic})]·H ₂ O (XVII)			H11W, H12W, H21W, H22W de agua coordinada y de
			cristalización

Tabla II.1(continuación)- Hidrógenos localizados a partir de los mapas de diferencias de Fourier para las estructuras discutidas en esta memoria.

Compuesto	N ² -H	N ¹ H ₂	Otros
[TIMe ₂ (HABLSC _{cic})]·H ₂ O (XVIII)		H1A y H1B	H3 del grupo OH, y H1W y H2W del agua de cristalización
[TIMe ₂ (BMASC _{cic})] (XIX)		H1A y H1B	
[TIMe ₂ (H ₂ INSC)]·2MeOH (XXII)			H1S y H2s de sendas moléculas de MeOH
HMMASC _{cic}			Todos refinados
HEMASC _{cic}			Todos refinados
HBMASC _{cic}			Todos refinados, menos los protones de los metilos
H ₂ ABLSC _{cic}		H1A y H1B	El hidrógeno H3 del anillo pirazolona
HCBSC-Me·1/4H₂O			H1w y H2w del agua de cristalización
HBFSC-Me			Todos refinados

Cuando se detalla la influencia de las interacciones tipo π - π stacking sobre la estructura macromolecular de los compuestos estudiados por difracción de rayos X de monocristal, se da el valor de los siguientes parámetros:

- **Cgl** = centroide número **I**.
- α = ángulo diedro (°) entre los planos π_1 y π_2 .
- β = Ángulo (°) entre el segmento que une los centroides Cgl y CgJ, y el vector normal al plano
 π₁ que pasa por Cgl.
- γ = Ángulo (°) entre el segmento que une los centroides Cgl y CgJ, y el vector normal al plano
 π₂ que pasa por CgJ.
- Cg-Cg = Distancia (Å) entre los centroides Cgl y CgJ.
- **Cgl_Perp** = Distancia (Å) perpendicular entre **CgI** y el plano que contiene a **CgJ**, π_2 .
- **CgJ_Perp** = Distancia (Å) perpendicular entre **CgJ** y el plano que contiene a **CgI**, π_1 .
- Slippage = Distancia (Å) entre CgI y la proyección de CgJ sobre el plano π_1 .

El significado de estos parámetros se ilustra en la *Figura II.1*.

Figura II.1- Párametros utilizados para describir las interacciones de tipo π - π stacking.

II.2.5- Espectroscopia de resonancia magnética nuclear

Los espectros de RMN de ¹H y ¹³C se registraron a temperatura ambiente en los espectrómetros BRUKER DPX 250, BRUKER AMX-300, VARIAN MERCURY 300, VARIAN INOVA 400 y BRUKER AMX-500 de la Unidad de Resonancia Magnética Nuclear de la RIAIDT de la Universidad de Santiago de Compostela. Los desplazamientos químicos (en ppm) fueron referidos a TMS utilizando la señal del disolvente (2,49 ppm en RMN de ¹H y 39,50 ppm en RMN de ¹³C para el DMSO-d₆) como referencia interna.

Los espectros, procesados con el paquete de software MestreC (versión 2.3a), se recogen en el *Apéndice 3*, y su asignación en los capítulos correspondientes de esta memoria.

II.3- BIBLIOGRAFÍA

^[1] Bruker Analytical Instrumentation, SAINT: SAX Area Detector Integration (1996).

^[2] N.W. Alcock, Cryst. Computing ., 217 (1970).

^[3] G.M. Sheldrick, SADABS, Version 2.03, University of Göttingen, Germany, (2002).

^[4] A.C.T. North, D.C. Phillips, F.S. Mathews, *Acta Crystallogr.*, **A24**, 351 (1968).

^[5] G.M. Sheldrick, SHELX97, *An integrated system for solving and refining crystal structures from diffraction data*, University of Göttingen, Utrecht, Netherlands (1999).

^[6] L.J. Farrugia, ORTEP III for window, *J. Appl. Cryst.*, **30**, 565 (1997).

^[7] A.L. Spek, PLATON 99, *A multipurpose crystallographic tool*, Utrecht University, Utrecht, Netherlands (1999).

^[8] I.J. Bruno, J.C. Cole, P.R. Edgington, M.K. Kessler, C.F. Macrae, P. McCabe, J. Pearson y R. Taylor, MERCURY, New software for searching the Cambridge Structural Database and visualising crystal structures, *Acta Crystallogr.*, **B58**, 389 (2002).

III- LIGANDOS DERIVADOS DE PRECURSORES α-OXO-ÁCIDOS Y COMPLEJOS DE Ga (III)

III.1- SÍNTESIS

La síntesis de los ligandos semi- y tiosemicarbazona derivados de compuestos carbonílicos utilizados en este trabajo es una adaptación de un método previamente descripto en la bibliografía^[1]. Se trata, en general, de la adición de una disolución alcohólica del compuesto carbonílico correspondiente sobre una disolución acuosa del clorhidrato de semicarbazida o sobre una suspensión de tiosemicarbazida en etanol, calentando la mezcla en un baño de agua durante un tiempo de 1 a 3 horas, con agitación magnética.

III.1.1- Síntesis de ligandos derivados de precursores α-oxo-ácidos

Semicarbazona del ácido pirúvico (H_2PSC): Sobre una disolución de 10 mmoles (1.10 g) de piruvato sódico en 15.0 mL de H_2O , se añadió una disolución de 10 mmoles (1.11 g) de clorhidrato de semicarbazida 15.0 mL de H_2O . La mezcla de reacción se mantuvo 1 h a reflujo y con agitación magnética. Se mantuvo en reposo toda la noche, apareciendo un precipitado blanco pulverulento, que se filtró y secó. Punto de fusión: 206 - 207 °C. Datos Analíticos (%): experimentales C 33.2, H 4.8, N 28.4; teóricos (calculados para C₄H₇N₃O₃) C 33.1, H 4.9, N 29.0. Parte de la muestra se recristalizó en EtOH, obteniéndose un sólido cristalino cuya

estructura fue resuelta por difracción de rayos X.

Semicarbazona del ácido 2-cetobutírico (H_2CBSC): Se disolvieron 10 mmoles (1.00 g) de ácido 2- cetobutírico y 10 mmoles (1.01 g) de clorhidrato de semicarbazida en 30.0 mL de H_2O . Se le agregaron 20 mmoles (1.50 g) de acetato de sodio y la mezcla se mantuvo a reflujo durante 3 h. La disolución obtenida se dejó evaporar, a temperatura ambiente. Se obtuvo un sólido blanco cristalino de estequiometría

 $H_2CBSC \cdot 1/2H_2O$, cuya estructura fue resuelta por difracción de rayos X de monocristal. Punto de fusión: 181 - 184 °C. Datos Analíticos (%): experimentales C 35.7, H 6.1, N 24.7; teóricos (calculados para $C_5H_7N_3O_{3.5}$) C 35.7, H 6.0, N 25.0.

Semicarbazona del ácido 3-metil-2-oxo-butanóico (H_2IPSC): Se preparó una disolución de 13 mmoles (1.54 g) del ácido 3-metil-2-oxobutanóico en 30.0 mL de H_2O , y sobre ella se agregó una disolución de 13 mmoles (1.53 g) de clorhidrato de semicarbazida en 20.0 mL de H_2O . Se formó inmediatamente un sólido blanco muy fino, que no se redisolvió. Se dejó la mezcla de reacción a reflujo durante 3 h, transcurridas las cuales se filtró y secó el sólido obtenido aislándose un sólido cristalino cuya estructura fue resuelta por difracción de rayos X. Punto de fusión: 169 - 171 °C. Datos Analíticos (%): experimentales C 41.5, H 6.3, N 23.8; teóricos (calculados para C₆H₁₁N₃O₃) C 41.6, H 6.4, N 24.3.

Semicarbazona del ácido benzoilfórmico (H2BFSC): Sobre una disolución de 10 mmoles (2.26

g) de ácido benzoilfórmico en 50.0 mL de H_2O , se agregó una disolución de 10 mmoles (1.11 g) de clorhidrato de semicarbazida en 20.0 mL de H_2O . Se dejó la mezcla de reacción a reflujo y con agitación magnética durante 2 h, obteniéndose un precipitado blanco pulverulento, que se filtró y secó. Punto de fusión: 207 - 208

°C. Datos Analíticos (%): experimentales C 52.6, H 4.4, N 20.4; teóricos (calculados para C₉H₉N₃O₃) C 52.2, H 4.4, N 20.3.

Semicarbazona del ácido α -oxo-furanacético (H₂ α OFSC): Sobre una disolución de 8 mmoles

(1.49 g) de ácido α -oxo-furanacético en 30.0 mL de H₂O se añadió una disolución de 10 mmoles (1.11 g) de clorhidrato de semicarbazida en 20.0 mL de H₂O, formándose un precipitado blanco pulverulento, que se mantuvo con agitación magnética durante una hora, a temperatura ambiente. El sólido así obtenido se

COOH NH O NH

COOH

filtró y llevó a peso constante. Punto de Fusión: 184 - 185 °C (con descomposición). Datos Analíticos (%) experimentales: C 42.4, H 3.5, N 21.4; teóricos (calculados para C₇H₇N₃O₄) C 42.6, H 3.6, N 21.3.

De las aguas madres precipitó un sólido cristalino incoloro, cuya estructura fue resuelta por difracción de rayos X de monocristal.

Semicarbazona del ácido 3-indolglioxílico (H_3INSC): Se preparó una suspensión de 8 mmoles (1.89 g) de ácido 3-indolglioxílico en 30.0 mL de H_2O . Sobre esta suspensión se agregó una disolución de 10 mmoles (1.11 g) de clorhidrato de semicarbazida en 12 mL de H_2O . La suspensión resultante se mantuvo a reflujo durante 3 horas, con agitación magnética. El sólido rojo resultante se filtró y secó.

De las aguas madres se obtuvo un sólido cristalino amarillo, adecuado para su estudio por difracción de rayos X de monocristal. Punto de Fusión: 193 - 194 °C. Datos Analíticos (%): experimentales C 53.8, H 3.9, N 22.7; teóricos (calculados para $C_{11}H_{10}N_4O_3$) C 53.7, H 4.1, N 22.7.

Tiosemicarbazona del ácido α -oxo-furanacético (H₂ α OFTSC): se disolvieron 7 mmoles (0.98 g) de ácido α -oxo- furanacético en 25.0 mL de EtOH. Sobre esta disolución se añadió una suspensión de 7 mmoles (0.64 g) de tiosemicarbazida en 25.0 mL de H₂O, y la disolución resultante se calentó a

reflujo durante 1 h, con agitación magnética. De la disolución, tras 24 h en reposo a temperatura ambiente, precipitó un sólido cristalino de punto de fusión 163 - 164 °C, adecuado para su estudio

соон

COOH

por difracción de rayos X de monocristal. Datos Analíticos (%): experimentales C 36.5, H 4.2, N 18.3, S 13.7; teóricos (calculados para $C_7H_7N_3O_3S \cdot H_2O$) C 36.4, H 3.9, N 18.2, S 13.9.

Tiosemicarbazona del ácido 3-indolglioxílico (H₃INTSC): Se disolvieron 8 mmoles (1.89 g) de ácido 3-indolglioxílico en 30.0 mL de EtOH, y sobre esta disolución se añadió una suspensión de 8 mmoles (0.91 g) de tiosemicarbazida en 20.0 mL de EtOH. La suspensión resultante se mantuvo a reflujo y con agitación magnética durante 4 horas, obteniéndose una disolución de color rojo. Por evaporación lenta del disolvente se obtuvo un sólido cristalino de punto de fusión 200 - 201 °C. Datos Analíticos (%): experimentales: C 50.2, H 4.1, N 21.3, S 11.4; teóricos (calculados para C₁₁H₁₀N₄O₂S): C 50.4, H 3.8, N 21.4, S 12.2.

III.1.2 - Síntesis de complejos de Ga(III) con ligandos derivados de α-oxo-ácidos

Ga(HPSC)(PSC): Se preparó una disolución de 1 mmol (0.17 g) de H₂PSC en 70.0 mL de MeOH_(anhidro), se le agregó 1 mmol (0.33 g) de perclorato de tetrabutilamonio, y se agitó hasta disolución. Posteriormente, en atmósfera de N₂, desde un embudo autocompensado, se le agregó gota a gota, una disolución de 0.5 mmoles (0.14 g) de Ga(NO₃)₃·H₂O en 20.0 mL de MeOH_(anhidro). Al comenzar el agregado de Ga³⁺, apareció una turbidez blanquecina, que se redisolvió a la media hora. Se mantuvo la mezcla de reacción a reflujo durante 5 h, formándose un sólido blanco muy fino, cuya cantidad aumentó progresivamente durante el transcurso de la reacción. La suspensión obtenida se dejó en reposo 24 h, se filtró y secó. Datos Analíticos (%): experimentales C 26.5, H 3.1, N 23.2; teóricos (calculados para GaC₈H₁₁N₆O₆) C 26.9, H 3.1, N 23.5.

[Ga(HCBSC)(CBSC)]:

a) Una disolución de 0.6 mmoles (0.17 g) de Ga(NO₃)₃·H₂O en 30.0 mL de MeOH_(anhidro) se agregó gota a gota sobre una disolución de 0.6 mmoles (0.20 g) de H₂CBSC en 21.0 mL de MeOH_(anhidro) con un embudo autocompensado. La mezcla se mantuvo a reflujo durante 5 h, en atmósfera de N₂, y posteriormente se dejó en reposo 3 días. Al no haber precipitado alguno, se concentró hasta sequedad en línea de vacío y se redisolvió el sólido resultante en 30.0 mL de EtOH. La disolución obtenida se mantuvo a 4 °C, obteniéndose un sólido cristalino incoloro, cuya estructura fue resuelta por difracción de rayos X de monocristal. Punto de fusión: > 250 °C. Datos Analíticos (%): experimentales C 29.8, H 4.0, N 20.3; teóricos (calculados para GaC₁₀H₁₅N₆O₆) C 31.2, H 3.9, N 21.8.

NH₂

b) Sobre una disolución de 1 mmol (0.16 g) de H₂CBSC en 20.0 mL de EtOH se agregó una disolución de 1 mmoles de GaCl(AcO)₂ en 10.0 mL de MeOH, gota a gota y con agitación magnética. Se dejó la mezcla de reacción a reflujo durante 3 h, y se concentró la disolución resultante en la línea de vacío, obteniéndose un sólido blanco pulverulento. Datos Analíticos (%): experimentales C 31.2, H 3.9, N 21.3; teóricos (calculados para GaC₁₀H₁₅N₆O₆) C 31.2, H 3.9, N 21.8.

 $Ga(HBFSC)_2CI \ y \ Ga(HBFSC)(BFSC)$: Sobre una suspensión de 1 mmol (0.21 g) de H₂BFSC en 20.0 mL de EtOH se agregaron, gota a gota, 10.0 mL de una disolución 0.1 M de GaCl(AcO)₂ en MeOH. Se observó la disolución parcial del ligando, obteniéndose una suspensión blanquecina que se dejó 3 h a reflujo, con agitación magnética. A los 15 minutos de iniciado el reflujo, se produjo la disolución total del sólido en suspensión, tomando la disolución un color verde pálido. Por evaporación lenta de la mezcla de reacción, a temperatura ambiente, se obtuvo un sólido blanco, que se filtró y secó. Datos Analíticos (%), correspondientes a la estequiometría Ga(HBFSC)₂CI: experimentales C 42.5, H 2.7, N 15.2; teóricos (calculados para GaC₁₈H₁₆N₆O₆Cl) C 41.8, H 3.1, N 16.2.

El sólido anterior se recristalizó en EtOH. La disolución resultante se dejó evaporar a temperatura ambiente, obteniéndose un sólido blanco pulverulento, que se ajusta a la estequiometría Ga(HBFSC)(BFSC). Datos analíticos (%): experimentales C 45.4, H 3.1, N 17.3; teóricos (calculados para GaC₁₈H₁₅N₆O₆): C 44.9, H 3.1, N 17.5.

Ga(HBFSC)Cl₂: Sobre una disolución de 2 mmoles (0.51 g) de H₂BFSC en 40.0 mL de EtOH_(anhidro) se añadió una disolución de 10 mmoles (1.80 g) de GaCl₃ en 20.0 mL de EtOH_(anhidro) desde un embudo autocompensado. La disolución resultante, de color verde pálido, se mantuvo a reflujo y con agitación magnética, en atmósfera de N₂, durante 5 h, formándose un sólido blanco muy fino, que se filtró y secó. Datos Analíticos (%): experimentales C 31.2, H 2.4, N 12.2; teóricos (calculados para GaC₉H₈N₃O₃Cl₂) C 31.2, H 2.3, N 12.1.

[Ga(HαOFSC)(H₂O)₂CI]CI: se añadieron 5.0 mL de una disolución 0.16 M de GaCl(AcO)₂ en MeOH sobre una disolución de 0.8 mmoles (0.16 g) de H₂αOFSC en 20.0 mL de EtOH. La disolución dorada resultante se dejó a reflujo 3 h, con agitación magnética, obteniéndose una suspensión blanca. Se filtró el sólido obtenido y se secó, resultando ser el ligando libre. De las aguas madres se obtuvo, por evaporación lenta del disolvente a temperatura ambiente, un sólido cristalino de color naranja, apto para su estudio por difracción de rayos X monocristal. Datos analíticos (%): experimentales C 22.4, H 2.7, N 10.7; teóricos (calculados para GaC₇H₁₀N₃O₆Cl₂) C 22.5, H 2.7, N 11.3.

[Ga(HαOFSC)(αOFSC)]:

a) Se preparó una disolución de 1 mmol (0.26 g) de nitrato de galio (III) monohidratado en 10.0 mL de EtOH. Esta disolución se añadió sobre una suspensión beige de 1 mmol (0.21 g) de $H_2\alpha$ OFSC en 20.0 mL del mismo disolvente, obteniéndose una disolución translúcida ligeramente dorada. La mezcla se refluyó durante 18 h, observándose al principio la aparición de opalescencia, seguida de redisolución de la misma (en torno a las 2 primeras horas) y una intensificación progresiva del color. Finalmente, la disolución se concentró por evaporación a presión reducida, obteniéndose un sólido pulverulento beige de estequiometría Ga($H_2\alpha$ OFSC)($H\alpha$ OFSC)(NO_3)₂·3H₂O. Datos analíticos (%): experimentales C 29.4, H 2.8, N 16.9; teóricos (calculados para GaC₁₄ $H_{19}N_8O_{17}$) C 28.8, H 2.3, 16.8 N.

La recristalización del sólido antes descrito, realizada en MeOH, condujo a la obtención de un sólido pulverulento beige claro que parece ser una mezcla compleja de algún compuesto de Ga y el ligando libre, más disolvente. De la recristalización del sólido anterior en EtOH, por evaporación lenta del disolvente a temperatura ambiente, se obtuvo un sólido cristalino anaranjado de estequiometría [Ga(H α OFSC)(α OFSC)] cuya estructura se estudió por difracción de rayos X de monocristal. Datos analíticos (%): experimentales C 36.1, H 2.6, N 17.4; teóricos (calculados para GaC₁₄H₁₁N₆O₈) C 36.5, H 2.4, N 18.2.

b) Se preparó una disolución de 1 mmol (0.20 g) de H₂ α OFSC en 15.0 mL de MeOH, y se le agregó 1 mmol (0.18 g) de 1,10-fenantrolina. Sobre esta disolución se añadió, gota a gota y con agitación magnética, 1 mmol de GaCl(AcO)₂ en 4.25 mL de MeOH. La disolución resultante se refluyó durante 5 h, transcurridas las cuales se dejó evaporar la disolución a temperatura ambiente, obteniéndose un sólido beige de estequiometría Ga(H α OFSC)₂Cl. Datos analíticos (%): experimentales C 34.7, H 2.9, N 16.3; teóricos (calculados para GaC₁₄H₁₂N₆O₈Cl) C 33.7, H 2.8, N 16.8.

Se recristalizó en EtOH el sólido antes caracterizado, obteniéndose por evaporación lenta de las aguas madres un producto naranja cristalino, apto para su estudio por difracción de rayos X de monocristal. Se trata del mismo complejo, [Ga(H α OFSC)(α OFSC)], con la misma estructura cristalográfica que la obtenida en la síntesis del inciso anterior. Datos analíticos (%): experimentales C 36.1, H 2.6, N 17.4; teóricos (calculados para GaC₁₄H₁₁N₆O₈) C 36.5, H 2.4, N 18.2.

 $Ga(H\alpha OFSC)_2CI$: además de obtenerse este compuesto como se ha descripto en el inciso b) de la síntesis anterior, se obtuvo también como se describe a continuación. Sobre una suspensión de 1 mmoles (0.20 g) de H₂ α OFSC en 20.0 mL de EtOH se añadió 1 mmol de GaCl(AcO)₂ en 10.0 mL de MeOH. Al agregar la disolución de Ga³⁺, se produjo la inmediata disolución del ligando en suspensión, adquiriendo la disolución una coloración dorada que persistió durante las 3 h en que se mantuvo a reflujo la mezcla de reacción. Por evaporación lenta del disolvente, a temperatura ambiente, se obtuvo un sólido de color beige. Datos analíticos (%): experimentales C 34.7, H 2.9, N 16.3; teóricos (calculados para $GaC_{14}H_{12}N_6O_8Cl$) C 33.7, H 2.8, N 16.8.

 $Ga(H\alpha OFSC)_2 NO_3 \cdot 3H_2 O \ y \ [Ga(H\alpha OFSC)(bipy)H_2 O](NO_3)_2 \cdot 1.6H_2 O$: Se preparó una disolución de 1 mmol (0.20 g) de $H_2 \alpha OFSC$ en 20.0 mL de MeOH y se le agregó 1 mmol (0.16 g) de bipiridina. Sobre la solución beige obtenida se añadió, gota a gota, una disolución de 1 mmol (0.26 g) de $Ga(NO_3)_3 \cdot H_2 O$ en 10.0 mL de MeOH, formándose una suspensión blanquecina sobre la disolución dorada. Esta suspensión se mantuvo a reflujo durante 5 h, transcurridas las cuales se filtró y secó el sólido beige obtenido cuya estequiometría resulta ser $Ga(H\alpha OFSC)_2 NO_3 \cdot 3H_2 O$. Datos analíticos (%): experimentales C 28.9, H 3.0, N 16.5; teóricos (calculados para $GaC_{14}H_{18}N_7O_{14}$): C 29.1, H 3.1, N 17.0.

De las aguas madres, por evaporación del disolvente a temperatura ambiente, se obtuvo un sólido cristalino de estequiometría [Ga(H α OFSC)(bipy)H₂O](NO₃)₂·1,6H₂O, de color anaranjado, apto para su estudio por difracción de rayos X de monocristal. Datos analíticos (%): experimentales C 34.9, H 3.0, N 16.5; teóricos (calculados para GaC₁₇H_{19.2}N₇O_{12.6}) C 34.4, H 3.3, N 16.5.

[Ga(H₂INSC)₂]NO₃·2EtOH·1/5H₂O: Se preparó una suspensión de 2 mmoles (0.49 g) de H₃INSC g en 25.0 mL de EtOH. Sobre esta suspensión se añadió una disolución de 1 mmol (0.25 g) de Ga(NO₃)₃·H₂O en 10.0 mL de EtOH, y se dejó la mezcla de reacción a reflujo durante 5 h (a los 15 minutos de comenzado el calentamiento, se produjo la disolución total del sólido en suspensión, adquiriendo la disolución un color pardo rojizo). Por evaporación lenta del disolvente a temperatura ambiente, se obtuvo un sólido cristalino de color naranja, cuya estructura molecular fue estudiada difracción de monocristal, corresponde por de rayos X y que al complejo [Ga(H₂INSC)₂]NO₃·2EtOH·0.38H₂O. El análisis elemental de la muestra, posterior al estudio estructural, corresponde a la estequiometría [Ga(H₂INSC)₂]NO₃·3H₂O. Datos analíticos (%): experimentales C 39.5, H 3.0, N 18.6; teóricos (calculados para GaC₂₂H₂₄N₉O₁₂) C 39.1, H 3.6, N 18.6; teóricos (calculados para GaC₂₆H_{30.76}N₉O_{11.38}) C 43.4, H 4.3, N 17.5. La diferencia entre las composiciones teóricas, y la comparación con el análisis experimental parece indicar que el complejo estudiado por difracción de rayos X de monocristal evolucionó con el tiempo al trihidrato, perdiendo las 2 moléculas de etanol que los solvataban.

[Ga(H α OFTSC)(α OFTSC)]·(H₂O): Se preparó una disolución de 1 mmol (0.21 g) de H₂ α OFTSC en 25.0 mL de MeOH. Se le añadió, lentamente y con agitación magnética, 1 mmol de GaCl(AcO)₂ disueltos en 5.0 mL de MeOH. La mezcla de reacción se mantuvo a reflujo durante 5 h, transcurridas

las cuales se dejó evaporar el disolvente a temperatura ambiente, obteniéndose un sólido cristalino de color naranja, apto para su estudio estructural por difracción de rayos X de monocristal. Datos analíticos (%): experimentales C 33.5, H 2.8, N 15.8, S 11.8; teóricos (calculados para $GaC_{14}H_{13}N_6O_7S_2$) C 32.9, H 2.6, N 16.4, S 12.5.

Ga(HαOFTSC)₂(**NO**₃)·**3H**₂**O**: Sobre una disolución de 0.7 mmoles (0.16 g) de H₂αOFTSC en 20.0 mL de MeOH, se añadió una cantidad equimolar de bipiridilo. Sobre la disolución resultante se agregó una disolución de 0.7 mmoles (0.19 g) de Ga(NO₃)₃·H₂O en 10.0 mL de MeOH. La disolución resultante se mantuvo a reflujo durante 4 h, en el transcurso de las mismas se formó un sólido beige, pulverulento, que se filtró y secó. Datos analíticos (%): experimentales C 27.9, H 2.8, N 16.1, S 10.6; teóricos (calculados para GaC₁₄H₁₈N₇O₁₂S₂) C 27.6, H 3.0, N 16.1, S 10.5.

 $Ga(H_2INTSC)_2CI$: Sobre una disolución de 1 mmol (0.26 g) de H_3INTSC en 30.0 mL de MeOH se agregó 1 mmol de GaCl(AcO)₂ disueltos en 2.0 mL de MeOH. Se mantuvo la mezcla de reacción a reflujo y con agitación magnética durante 4 h. La disolución se concentró a temperatura ambiente y presión reducida, obteniéndose un sólido verde-amarillento. Datos analíticos (%): experimentales C 42.8, H 3.2, N 17.8, S 10.3; teóricos (calculados para GaC₂₂H₁₈N₈O₄S₂Cl) C 42.1, H 2.9, N 17.8, S 10.2.

III.2 – DIFRACCIÓN DE RAYOS X DE MONOCRISTAL

III.2.1 - Estructuras cristalinas de ligandos derivados de α-oxo-ácidos

En este apartado se describen las estructuras moleculares de las semicarbazonas derivadas de los ácidos pirúvico (H₂PSC), 2-cetobutírico (H₂CBSC), 3-metil-2-oxo-butírico (H₂IPSC), 3-indolglioxílico (H₃INSC) y α -oxo-furanacético (H₂ α OFSC) y la tiosemicarbazona derivada del ácido α -oxo-furanacético (H₂ α OFTSC). En las Figuras III.1 a III.7 se muestra el contenido de la unidad asimétrica de cada uno de estos ligandos. En la Tabla III.1 se recogen los datos cristalográficos correspondientes, y se enumeran en las Tablas III.2 y III.3 las distancias y ángulos de enlace más relevantes de sus respectivas estructuras.

Figura III.1 - Unidad asimétrica de la semicarbazona del ácido pirúvico (H₂PSC).

Figura III.2 - Unidad asimétrica del hemihidrato de la semicarbazona del ácido 2-cetobutírico (H₂CBSC·1/2H₂O).

Figura III.3 - Unidad asimétrica de la semicarbazona derivada del ácido 3-metil-2-oxo-butírico (H₂IPSC).

Figura III.4 - Unidad asimétrica de la semicarbazona del ácido 3-indolglioxílico (H₃INSC).

Figura III.5 - Unidad asimétrica de la semicarbazona del ácido α -oxo-furanacético, sistema cristalino: monoclínico (H₂ α OFSC^M).

Figura III.6 - Unidad asimétrica de la semicarbazona del ácido α -oxo-furanacético, sistema cristalino: triclínico (H₂ α OFSC^T).

Figura III.7 - Unidad asimétrica del monohidrato de la tiosemicarbazona del ácido α -oxo-furanacético (H₂ α OFTSC·H₂O).

Como se puede apreciar por inspección de las longitudes de enlace C1-O1 en la Tabla III.2, estos ligandos se encuentran principalmente en su forma cetoamida, quedando esta distancia en el rango de 1.23 a 1.26 Å, típico de un enlace carbonílico. Por su parte, el resto tiosemicarbazona del ligando $H_2\alpha$ OFTSC presenta unos parámetros muy parecidos al resto de las tiosemicarbazonas presentadas en esta memoria (H_2 STSC y H_3 XSTSC, Capítulo IV; H_2 DAPTSC y HAPTSC, Capítulo V).

Las distancias y ángulos de enlace interatómicas del resto semicarbazona son muy similares en esta serie de estructuras, y análogas a las encontradas habitualmente en la bibliografía^[2], aunque los ángulos de enlace muestran una dispersión mayor en sus valores que la observada para las longitudes de enlace.

Ligando	H ₂ PSC	H ₂ CBSC·1/2H ₂ O	H ₂ IPSC	H₃INSC	$H_2 \alpha OFSC^{M}$	$H_2 \alpha OFSC^{T}$	H ₂ αOFTSC·H ₂ O
Fórmula	$C_4 \mathrel{H_7} N_3 \mathrel{O_3}$	$C_{10}H_{20}N_6O_7$	$C_6 H_{11} N_3 O_3$	$C_{11} \; H_{10} \; N_4 \; O_3$	$C_7 H_7 N_3 O_4$	$C_7 H_7 N_3 O_4$	$C_7 H_9 N_3 O_4 S$
Masa Molecular	174.15	336.32	173.18	246.23	197.16	197.16	231.24
т (к)	293(2)	200(2) K	293(2)	296(2)	100.0 (1)	100(2)	100(2)
λ (Å)	0.71073	0.71073 A	0.71069	0.71073	0.71069	0.71073	0.71069
Sistema Cristalino	Triclínico	Triclínico	Monoclínico	Monoclinic	Monoclinic	Triclinic	Monoclinic
Grupo Espacial	P-1	P-1	P21/c	P21/c	C2/c	P-1	P21/c
a (Å)	7.3643(15)	7.3160(3)	7.851(5)	7.0139(5)	23.969(5)	7.8177(17)	9.060(5)
b (Å)	7.4217(15)	9.1392(5)	14.772(5)	10.8062(7)	3.690(5)	8.4101(19)	7.341(5)
c (Å)	17.352(4)	12.3621(5)	7.648(5)	13.8772(9)	21.077(5)	12.781(3)	15.552(5)
α(°)	84.09(3)	75.018(3)	90.000	90.000	90.000	94.293(4).	90.000
β(°)	79.05(3)	81.205(3).	104.937(5)	96.406(5)	121.693(5)	102.925(4)	96.461(5)
۷ (°)	83.08(3)	79.407(3)	90.000	90.000	90.000	97.373(4)	90.000
V (Å ³)	921.2(3)	780.01(6)	857.0(8)	1045.24(12)	1586(2)	807.6(3)	1027.8(10)
z	6	2	4	4	8	4	4
D _{calc} . (Mg/m ³)	1.570	1.432	1.342	1.565	1.651	1.622	1.494
μ(mm ⁻¹)	0.135	0.121	0.108	0.118	0.138	0.136	0.314
F(000)	456	356	368	512	816	408	480
Dimensiones (mm)	0.19x0.11x0.08	0.22x0.16x0.08	0.50x0.10x0.07	0.14x0.11x0.09	0.34x0.08x0.08	0.19x0.17x0.10	0.49x0.34x0.23
Intervalo θ (°)	1.20 a 26.47	3.16 a 27.50	2.68 a 26.40	2.39 a 25.68	2.00 a 30.94	2.46 a 27.88	2.64 a 26.37
Intervalos en h, k, l	-8,9; -9,9; 0,21	-9,9; -11,11; -15,15	-9,9; 0,18; 0,9	-8,8; 0,13; 0,16	-34,28; 0,5; 0,30	-10,9; -11,11; 0,16	-11,11; 0,9; 019
N ^o reflex. medidas	9252	6521	6935	11560	9979	13885	14928
No. reflex. únicas	3146	3542	1826	1668	1993	3773	2127
R _{int}	0.0676	0.0556	0.0980	0.0467	0.0257	0.0397	0.0327
R	0.0833	0.0479	0.0876	0.0965	0.0391	0.0428	0.0468
R _w	0.2051	0.1097	0.1209	0.2828	0.1014	0.1094	0.1634
G.O.F.	0.991	1.004	1.120	1.215	1.048	1.114	1.109

Tabla III.1 - Datos cristalográficos de las semicarbazonas derivadas de α -oxo-ácidos.

	$ 100 k. 1 \text{ Molec 2 Molec 3 Molec 3 Molec 3 Molec 4 Molec 2 Molec 3 Molec 4 Molec$			H2PS	L ^a	H ₂ C	BSC	H,IDSC ^a	H_INICC ^a	H-COEC ^{M a}	H₂αOF	SC ^{Ta}	Ξ		_م
$ \begin{array}{ $	$ \begin{array}{ $		Molé	c. 1 Moléc.	.2 Moléc.3	Moléc. 1	Moléc. 2			1240130	Moléc. 1	Moléc. 2	Ē	20011301120	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	1-01 1.228	(6) 1.239(6) 1.225(6)	1.252(2)	1.243(2)	1.238(4)	1.262(6)	1.2509(14)	1.242(2)	1.239(2)	C1-S1	1.693(3)	Ē.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ü	1-N1 1.313	(7) 1.331(5) 1.327(6)	1.325(2)	1.332(2)	1.320(4)	1.330(7)	1.3286(14)	1.325(3)	1.328(3)	C1-N1	1.307(4)	
		ü	1-N2 1.380	(7) 1.370(5) 1.388(6)	1.354(2)	1.367(2)	1.365(4)	1.346(6)	1.3772(13)	1.384(3)	1.378(3)	C1-N2	1.374(3)	
		z	2-N3 1.363	(6) 1.358(5) 1.355(6)	1.362(2)	1.362(2)	1.355(3)	1.373(6)	1.3525(13)	1.355(2)	1.354(2)	N2-N3	1.355(3)	
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	z	3-C2 1.289	(6) 1.277(6) 1.289(6)	1.292(2)	1.284(2)	1.284(4)	1.303(6)	1.3037(13)	1.295(3)	1.293(2)	N3-C2	1.300(3)	
$ \begin{array}{ $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	U	2-C3 1.483	(7) 1.509(7) 1.477(5)	1.497(3)	1.494(2)	1.495(4)	1.512(7)	1.5009(15)	1.506(3)	1.508(3)	C2-C3	1.501(4)	
C3-03 1.218(6) 1.218(6) 1.228(3) 1.228(3) 1.228(4) 1.228(3) 1.228(4) 1.228(4) 1.228(4) 1.228(4) 1.228(4) 1.228(4) 1.228(4) 1.228(4) 1.228(1) <	C3.03 1.218(6) 1.218(6) 1.218(6) 1.218(6) 1.218(6) 1.218(6) 1.218(6) 1.218(6) 1.218(6) 1.218(6) 1.218(6) 1.218(6) 1.218(6) 1.218(6) 1.218(6) 1.218(6) 1.218(7) <	U	3-02 1.316	(6) 1.330(6) 1.3268(4)	1.304(2)	1.307(2)	1.295(4)	1.311(6)	1.3196(14)	1.327(2)	1.320(2)	C3-01	1.319(3)	
Image: 1 Image: 1 <th< td=""><td>Intro of the semicarbase o</td><td>σ</td><td>3-03 1.217</td><td>(6) 1.218(</td><td>6) 1.225(4)</td><td>1.218(2)</td><td>1.223(2)</td><td>1.226(4)</td><td>1.224(6)</td><td>1.2167(15)</td><td>1.209(2)</td><td>1.211(2)</td><td>C3-02</td><td>1.213(4)</td><td></td></th<>	Intro of the semicarbase o	σ	3-03 1.217	(6) 1.218(6) 1.225(4)	1.218(2)	1.223(2)	1.226(4)	1.224(6)	1.2167(15)	1.209(2)	1.211(2)	C3-02	1.213(4)	
$ \frac{\text{H}_{\text{P}}\text{PC}}{\text{Moléc. 1}} \frac{\text{H}_{\text{P}}\text{PC}}{\text{Moléc. 2}} \frac{\text{H}_{\text{C}}\text{BC}-1/24/0}{\text{Moléc. 2}} \frac{\text{H}_{\text{M}}\text{BC}^{-1}}{\text{Moléc. 2}} \frac{112.463}{117.263} \frac{112.463}{119.261}\frac{112.261}{119.261}\frac{123.261}{119.261}\frac{113.263}{119.261}\frac{113.263}{1117.761}\frac{113.861}{118.971}\frac{113.861}{112.761}\frac{113.861}{112.761}\frac{113.861}{112.761}\frac{113.861}{112.761}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.761}{113.771}\frac{113.861}{113.771}\frac{113.76}{113.771}\frac{113.861}{113.771}\frac{113.76}{113.771}\frac{113.861}{113.771}\frac{113.77}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.861}{113.771}\frac{113.77}{113.771}\frac{113.86}{113.771}\frac{113.77}{113.771}\frac{113.86}{113.771}\frac{113.77}{113.771}\frac{113.86}{113.771}\frac{113.77}{113.771}\frac{113.86}{113.771}\frac{113.77}{113.771}\frac{113.86}{113.771}\frac{113.74}{113.77}\frac{113.77}{113.771}\frac{113.74}{113.77}\frac{113.77}{113.7$		a III.3 - Ár	igulos de ei	nlace (°) m	ás relevantes	en las semic	carbazonas y	v la tiosemica	arbazona dei	rivadas de α -o	xo-ácidos.				
Moléc, 1 Moléc, 2 Moléc, 1 Moléc, 2	Moléc. 1 Moléc. 2 Moléc. 3 Moléc. 1 Moléc. 3 Moléc. 1 Moléc. 3 Moléc. 1 Moléc. 1 Moléc. 7 Moléc. 1 Moléc. 1 Moléc. 7			H ₂ PSC ^a		H ₂ CBSC·1	1/2H ₂ 0 ^ª	יי ומכלים			Η₂α	OFSC ^{T a}		EO~ H	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	O1-C1-N1 124.2(5) 124.8(5) 122.8(18) 124.2(5) 123.57(10) 123.25(18) 124.6(3(19) 51.C1-N1 124.4(3) N1-C1-N2 115.9(5) 115.8(4) 116.7(5) 119.3(17) 119.2(4) 117.38(17) 115.39(17) N1-C1-N2 117.5(18) 117.5(18) 117.5(17) 115.39(17) N1-C1-N2 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(19) 119.56(17) N1-C1-N2 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(18) 117.5(19) 119.56(17) N1-C1-N2 117.5(18) 117.5(18) 117.5(19) 119.56(17) N1-C1-N2 117.5(18) 117.5(18) 117.5(18) 117.5(19) 119.56(17) N1-C1-N2 117.5(18) 117.5(18) 112.5(11) 112.5(11) 112.5(11) 112.5(11) 112.5(11) 112.5(11) 112.5(11) 112.5(11) 112.5(11) </th <th></th> <th>Moléc. 1</th> <th>Moléc. 2</th> <th>Moléc. 3</th> <th>Moléc. 1</th> <th>Moléc. 2</th> <th></th> <th></th> <th>1240130</th> <th>Moléc. 1</th> <th>Moléc. 2</th> <th></th> <th>12000-1</th> <th></th>		Moléc. 1	Moléc. 2	Moléc. 3	Moléc. 1	Moléc. 2			1240130	Moléc. 1	Moléc. 2		12000-1	
N1-CL-N2 116.36[5] 115.8(4) 1163(1) 117.82(16) 117.82(16) 117.82(16) 117.82(17) 11639(17) 11639(17) 11639(17) 11639(17) 11639(17) 11639(17) 11639(17) 117.61 117.75(16) 11837(18) 1121 01-C1-N2 119.1(4) 117.9(4) 119.3(5) 119.37(17) 11837(18) 11837(18) 11837(18) 11837(18) 11837(18) 11837(18) 11960(17) 12775(16) 11960(17) 1217 11960(17) 1217 11960(17) 1217 11960(17) 1217 11960(17) 1217 11960(17) 1217 121	Ni-Ci-V2 116.9(5) 115.8(4) 115.43(1) 117.83(13) 117.83(13) 116.39(17) Ni-Ci-V2 117.33(17) 116.39(17) Ni-Ci-V2 117.13 01-Ci-V2 118.9(5) 122.2(4) 118.5(5) 117.60(17) 119.34(10) 118.89(18) 118.97(18) 51-Ci-V2 113.00 Ci-V2V3 119.1(4) 117.9(1 118.5(5) 117.60(17) 119.34(10) 118.89(18) 51-Ci-V2 113.00 Ci-V2V3 119.1(4) 117.9(15) 118.43(15) 118.43(15) 118.43(15) 118.60(17) Ci-V2V3 119.00 N2V3C2 115.8(4) 117.7(4) 117.99(15) 112.34(3) 118.64(10) 112.53(17) 119.66(17) Ci-V2V3 113.00 N2V3C2 115.8(4) 112.16(9) 112.24(10) 112.24(10) 112.53(17) N12.73(17) 113.57(17) N12.73(12) 112.23(12) 112.23(12) 112.23(17) N12.73(12) 112.23(12) 112.23(12) 112.23(12) 112.23(17) N12.73(12) 112.23(12) 112.23(12) 112.23(12) 112.23(12)	01-C1-N1	124.2(5)	121.9(5)	124.8(5)	122.96(16	122.81(18)	124.2(3	121.6(5)	123.57(10)	123.25(18)	124.63(19)	S1-C1-	N1 124	4.4(
01-C1-N2 118.9(5) 122.2(4) 118.5(5) 117.60(17) 119.3(17) 118.3(18) 118.3(18) 51-C1-N2 118.3(18) 51-C1-N2 118.3(18) 51-C1-N2 118.3(18) 51-C1-N2 118.3(18) 51-C1-N2 113.3(17) 119.3(17) C1-N2-N3 119.3(17) 119.3(17) C1-N2-N3 119.3(17) N2-N3-C2 119.3(17) N2-N3-C2 119.3(17) N2-N3-C2 119.3(17) N2-N3-C2 119.3(17) N2-N3-C2 110.3(17) N2-N3-C2 110.3(17) N3-C3-C3 110.3(12) N3-C3-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C1-N2	116.9(5)	115.8(4)	116.7(5)	119.43(17)	117.82(16)	117.6(3)	119.2(4)	117.28(10)	117.85(17)	116.39(17)	N1-C1-	-N2 117	2)9.1
C1-N2-N3 119.1(4) 117.9(4) 119.8(4) 118.4(3) 118.4(3) 118.4(3) 118.4(3) 118.2(9) 117.7(5(16) 119.60(17) C1-N2-N3 119.1(3) N2-N3-C2 117.5(4) 117.7(4) 117.9(16) 117.9(16) 117.9(16) 112.6(17) N2-N3-C2 122.0(13) 122.34(17) 112.6(17) N2-N3-C2 120.1 N3-C2-C3 115.8(4) 114.6(4) 114.38(17) 113.22(16) 122.34(13) 122.34(13) 121.7(13) 112.73(17) N3-C2-C3 120.1 N3-C2-C3 125.15(5) 122.8(5) 122.17(3) 122.2(4) 121.76(9) 122.74(13) N3-C2-C3 122.1 C2-C3-O2 115.7(4) 118.6(19) 115.06(16) 112.15(15) 113.3(3) 114.1(4) 114.88(10) 115.74(18) C2-C3-O2 122.1 C3-C3-O2 122.7(5) 119.2(5) 119.60(17) 123.30(17) 122.37(13) 112.73(13) 112.174(18) 122.402 123.1 C3-C3-O2 122.7(5) 112.3(5) 112.3.5(3) 123.37(5) 122.332(10) 121.74(18) C2-C3-O2 123.1 O3-C3-O2	C1-N2-N3 119.1(4) 117.5(4) 118.56(16) 118.4(3) 119.4(4) 118.2(9) 117.7(16) 119.60(17) C1-N2-N3 119.00 N2-N3-C2 117.5(4) 117.7(4) 117.9(16) 117.9(16) 117.9(16) 117.9(17) 119.60(17) C1-N2-N3 119.00 N2-N3-C2 115.8(4) 117.9(16) 117.9(16) 121.4(3) 118.6(4) 122.3(17) 119.53(17) N2-N3-C2 120.80 N3-C2-C3 115.8(4) 115.8(4) 113.22(16) 122.2(4) 122.9(10) 115.73(17) N3-C2-C3 113.20 C2-C3-O3 121.5(13) 120.52(17) 124.5(17) 122.2(4) 121.76(9) 125.73(17) N3-C2-C3 113.20 C2-C3-O3 115.7(4) 118.66(19) 115.06(16) 112.15(15) 113.20(10) 112.73(17) N3-C2-C3 112.73 C2-C3-O2 112.32(10) 112.32(10) 112.33(10) 112.73(10) 121.74(18) C2-C3-O2 112.73 O3-C3-O2 123.7(5) 123.32(10) 123.32(10) 120.38(18) 121.74(18) C2-C3-O2 113.74 O3-C3-O2 123.75(5) <	01-C1-N2	118.9(5)	122.2(4)	118.5(5)	117.60(17)	119.37(17)	118.2(3)	119.1(4)	119.14(10)	118.89(18)	118.97(18)	S1-C1-	N2 118	3.0(2
N2-N3-C2 117.5(4) 117.1(4) 117.9(15) 117.97(15) 121.4(3) 118.6(4) 121.00(9) 122.31(17) 119.63(17) N2-N3-C2 120. N3-C2-C3 115.8(4) 112.8(4) 114.6(4) 113.22(16) 123.4(3) 122.24(4) 122.73(17) 115.73(17) N2-N3-C2 113. N3-C2-C3 112.8(5) 121.7(3) 120.52(17) 124.76(17) 122.24(4) 121.76(9) 112.73(17) N3-C2-C3 113. C2-C3-O2 115.7(4) 118.0(4) 118.66(19) 115.06(16) 112.15(15) 113.3(3) 114.1(4) 114.88(10) 115.73(17) C2-C3-O2 112. C2-C3-O2 115.7(4) 118.0(4) 118.66(19) 115.06(16) 112.15(5) 122.37(13) 121.77(18) C2-C3-O2 122. C2-C3-O2 113.0(17) 123.60(17) 123.53(13) 123.73(10) 120.38(18) 124.08(18) 02-C3-O1 118. O3-C3-O2 122.77(5) 119.20(177) 123.35(13) 123.32(10) 120.38(18) 02-C3-O1 119. O3-C3-O2 122.77(5) 119.20(5) 123.35(13) 123.32(10)	N2-N3-C2 117.5(4) 117.1(4) 117.9(15) 117.9(15) 117.9(15) 117.3(17) 119.63(17) N2-N3-C2 120.80 N3-C2-C3 115.8(4) 112.8(4) 114.6(4) 114.38(17) 133.22(16) 122.26(10) 112.73(17) 115.73(17) N3-C2-C3 113.22 C2-C3-O3 112.8(5) 122.8(5) 122.8(15) 122.6(3) 122.2(4) 122.74(12) 115.73(17) N3-C2-C3 113.22 C2-C3-O3 118.0(4) 118.0(6) 112.15(15) 113.26(3) 122.24(12) 122.91(18) 122.74(18) N3-C2-C3 112.32 C2-C3-O3 118.0(4) 118.06(17) 112.06(17) 122.2(6) 122.24(12) 114.18(17) N3-C2-C3 112.32 C2-C3-O2 118.0(17) 118.06(17) 118.06(17) 113.06(17) 112.33(10) 116.69(17) 114.18(17) C2-C3-O2 118.07 O3-C3-O2 123.37(5) 123.37(5) 123.32(10) 123.32(10) 120.38(18) 124.08(18) 02-C3-O2 119.7 O3-C3-O1 119.7	C1-N2-N3	119.1(4)	117.9(4)	119.8(4)	118.56(16)	119.42(15)	118.4(3)	119.4(4)	118.29(9)	117.75(16)	119.60(17)	C1-N2-	-N3 119	9.0(2
N3-C2-C3 115.8(4) 112.8(4) 114.6(4) 114.38(17) 133.2(16) 123.4(3) 122.2(4) 122.3(17) 115.73(17) N3-C2-C3 113.3(17) C2-C3-O3 121.5(5) 122.8(5) 122.17(3) 120.52(17) 124.76(17) 122.6(3) 122.7(4) 121.74(18) 121.74(18) C2-C3-O2 122.3 C2-C3-O2 115.7(4) 118.66(19) 115.06(16) 112.15(15) 113.9(3) 114.1(4) 114.88(10) 116.69(17) 122.74(18) C2-C3-O2 123.3 C2-C3-O2 123.7(5) 119.2(5) 119.60(17) 122.09(17) 123.30(17) 123.37(5) 123.32(10) 120.38(18) 124.08(18) 02-C3-O1 118.3 O3-C3-O2 122.7(5) 119.2(5) 119.60(17) 124.42(17) 123.30(17) 123.37(5) 120.38(18) 124.08(18) 02-C3-O1 119.3 R c_0^{-1} b_1^{-1} b_1^{-1} b_1^{-1} b_1^{-1} b_2^{-1} b_1^{-1} b_1^{-1} b_1^{-1} b_2^{-1} b_1^{-1} b_2^{-1} b_1^{-1} b_2^{-1} b_1^{-1} b_2^{-1} b_1^{-1} b_2	N3-C2-C3 115.8(4) 114.6(4) 114.38(17) 113.32(16) 123.4(3) 112.3(17) 115.3(17) N3-C2-C3 113.22 C2-C3-O2 121.5(5) 122.8(5) 121.7(3) 122.6(3) 122.2(4) 122.9(10) 112.73(17) N3-C2-C3 113.22 C2-C3-O2 115.7(4) 118.6(19) 121.5(15) 113.9(3) 114.1(4) 114.88(10) 115.74(18) C2-C3-O2 112.02 C2-C3-O2 115.7(4) 118.6(19) 115.0(17) 122.5(15) 113.9(3) 114.1(4) 114.88(10) 116.69(17) C2-C3-O2 118.0 O3-C3-O2 115.7(5) 119.2(5) 119.60(17) 123.43(3) 123.7(5) 123.32(10) 120.38(18) 124.08(18) C2-C3-O2 119.7 O3-C3-O2 122.7(5) 119.2(5) 119.2(6)(17) 123.43(3) 123.37(10) 120.38(18) 124.08(18) O2-C3-O1 119.7 O3-C3-O2 123.7(5) 119.2(5) 123.35(10) 120.38(18) 124.08(18) O2-C3-O1 119.7 O3-C3-O1 123.7(5) 123.32(10) 120.38(18) 124.08(18) O2-C3-O1 119.7	N2-N3-C2	117.6(4)	117.7(4)	117.1(4)	117.99(16)	117.97(15)	121.4(3)	118.6(4)	121.00(9)	122.31(17)	119.63(17)	N2-N3	- C2 120	0.8(2
C2-C3-03 $121.5(5)$ $122.8(5)$ $121.7(3)$ $120.52(17)$ $124.76(17)$ $122.6(3)$ $122.2(4)$ $121.76(9)$ $122.174(18)$ $121.74(18)$ $22.23-02$ $122.15-12.15$ C2-C3-02 $115.7(4)$ $118.0(4)$ $118.0(61)$ $112.06(16)$ $112.15(15)$ $113.9(3)$ $114.1(4)$ $114.88(10)$ $116.69(17)$ $122.2-23-01$ 118.1 O3-C3-02 $122.7(5)$ $119.2(5)$ $119.2(61)$ $122.309(17)$ $123.5(3)$ $123.7(5)$ $120.38(18)$ $124.08(18)$ $02.2-3-01$ 118.1 O3-C3-02 $122.7(5)$ $119.2(5)$ $119.2(6)$ $122.332(10)$ $120.38(18)$ $124.08(18)$ $02.2-3-01$ 118.1 O3-C3-02 $122.7(5)$ $119.2(5)$ $119.2(6)$ $122.332(10)$ $120.38(18)$ $02.2-3-01$ 118.1 n n_0^2 n_1^2	C2-C3-03 121.5(5) 122.8(5) 121.7(3) 120.52(17) 124.76(17) 122.6(3) 122.7(4) 121.76(9) 122.91(18) 121.74(18) C2-C3-02 122.31 C2-C3-02 118.0(4) 118.06(19) 115.06(16) 112.15(15) 113.9(3) 114.1(4) 114.88(10) 116.69(17) 124.18(17) C2-C3-01 118.0 O3-C3-02 122.7(5) 119.2(5) 119.60(17) 124.42(17) 123.309(17) 123.32(10) 116.69(17) 114.18(17) C2-C3-01 118.0 O3-C3-02 119.2(5) 119.2(6) 124.42(17) 123.309(17) 123.32(10) 120.38(18) 124.08(18) C2-C3-01 119.7 O3-C3-02 122.7(5) 119.2(6) 124.42(17) 123.309(17) 123.32(10) 120.38(18) 124.08(18) C2-C3-01 119.7 n n_0^{-1} n_1^{-1}	N3-C2-C3	115.8(4)	112.8(4)	114.6(4)	114.38(17)	113.22(16)	123.4(3)	122.2(4)	122.96(10)	112.73(17)	115.73(17)	N3-C2-	-C3 113	3.2(2
C2-C3-02 115.7(4) 118.0(4) 118.66(19) 112.15(15) 113.9(3) 114.1(4) 114.88(10) 116.69(17) 114.18(17) C2-C3-01 118. O3-C3-02 122.7(5) 119.2(5) 119.60(17) 123.09(17) 123.5(3) 123.7(5) 123.32(10) 120.38(18) 124.08(18) 02.C3-01 119. a) O_3 O_3 b) O_2° O_3° b) O_2° O_3° 119. N_3 <t< td=""><td>C2-C3-02 115.7(4) 118.0(4) 115.06(16) 115.15(15) 113.9(3) 114.1(4) 114.88(10) 116.69(17) 114.18(17) C2-C3-01 118.0. 03-C3-02 129.7(5) 119.2(5) 119.60(17) 124.42(17) 123.09(17) 123.37(5) 123.32(10) 120.38(18) 124.08(18) 02-C3-01 119.7. 03-C3-02 119.60(17) 124.42(17) 123.09(17) 123.37(5) 123.32(10) 120.38(18) 124.08(18) 02-C3-01 119.7. n n_0^{-5} n_1^{-5} n</td><td>C2-C3-O3</td><td>121.5(5)</td><td>122.8(5)</td><td>121.7(3)</td><td>120.52(17)</td><td>124.76(17)</td><td>122.6(3)</td><td>122.2(4)</td><td>121.76(9)</td><td>122.91(18)</td><td>121.74(18)</td><td>C2-C3-</td><td>02 122</td><td>2.3(3</td></t<>	C2-C3-02 115.7(4) 118.0(4) 115.06(16) 115.15(15) 113.9(3) 114.1(4) 114.88(10) 116.69(17) 114.18(17) C2-C3-01 118.0. 03-C3-02 129.7(5) 119.2(5) 119.60(17) 124.42(17) 123.09(17) 123.37(5) 123.32(10) 120.38(18) 124.08(18) 02-C3-01 119.7. 03-C3-02 119.60(17) 124.42(17) 123.09(17) 123.37(5) 123.32(10) 120.38(18) 124.08(18) 02-C3-01 119.7. n n_0^{-5} n_1^{-5} n	C2-C3-O3	121.5(5)	122.8(5)	121.7(3)	120.52(17)	124.76(17)	122.6(3)	122.2(4)	121.76(9)	122.91(18)	121.74(18)	C2-C3-	02 122	2.3(3
03-C3-O2 122.7(5) 119.2(5) 119.60(17) 124.42(17) 123.09(17) 123.5(3) 123.7(5) 123.32(10) 120.38(18) 124.08(18) 02-C3-O1 119. a) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	03-C3-02 122.7(5) 119.60(17) 124.42(17) 123.5(3) 123.7(5) 123.32(10) 120.38(18) 02-C3-01 119.7(10) a) $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ b) $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ b) $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	C2-C3-O2	115.7(4)	118.0(4)	118.66(19)	115.06(16)	112.15(15)	113.9(3)	114.1(4)	114.88(10)	116.69(17)	114.18(17)	C2-C3-	01 118	3.0(2
$\mathbf{r}_{\mathbf{r}}}}}}}}}}$	$\mathbf{z}_{\mathbf{z}_{1}}^{\mathbf{z}_{2}} = \mathbf{z}_{\mathbf{z}_{2}}^{\mathbf{z}_{2}} = \mathbf{z}_{\mathbf{z}_{2}$	03-C3-O2	122.7(5)	119.2(5)	119.60(17)	124.42(17)	123.09(17)	123.5(3)	123.7(5)	123.32(10)	120.38(18)	124.08(18)	02-C3-	- 01 119	9.7(3
							a)	$z = z^{0}$	(q	-z _o _o					

Todas las estructuras de esta serie de ligandos presentan una planaridad muy pronunciada (como puede apreciarse en la Tabla III.4), aunque en algún caso los enlaces de hidrógeno presentes en las estructuras (vide infra) estabilicen una configuración no planar, como en el caso de H₃INSC, en la que el grupo carboxílico (considerando el plano formado por los átomos C2 C3 O2 O3, con un rms=0.0062) presenta un ángulo de $36.02^{\circ}(0.14)$ respecto al plano principal (formado por los átomos C1 C2 C4 C5 C6 C7 C8 C9 C10 C11 N1 N2 N3 N4 O1, con un rms=0.0687).

		Plano	Rms
	Moléc. 1	C11 C12 C13 C14 N11 N12 N13 O11 O12 O13	0.0946
H₂PSC	Moléc. 2	C21 C22 C23 C24 N21 N22 N23 O21 O22 O23	0.0472
	Moléc. 3	C31 C32 C33 C34 N31 N32 N33 O31 O32 O33	0.0805
	Moléc. 1	C11 C12 C13 C14 N11 N12 N13 O11 O12 O13	0.1039
H2CD3C	Moléc. 2	C21 C22 C23 C24 N21 N22 N23 O21 O22 O23	0.0737
H₂IPSC		C1 C2 C3 C4 N1 N2 N3 O1 O2 O3	0.1361
H₃INSC		C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 N1 N2 N3 N4 O1 O2 O3	0.2264
$H_2 \alpha OFSC^M$		C1 C2 C3 C4 C5 C6 C7 N1 N2 N3 O1 O2 O3 O4	0.1276
	Moléc. 1	C11 C12 C13 C14 C15 C16 C17 N11 N12 N13 O11 O12 O13 O14	0.1048
11240130	Moléc. 2	C21 C22 C23 C24 C25 C26 C27 N21 N22 N23 O21 O22 O23 O24	0.1822
H₂αOFTSC∙	H₂O	C1 C2 C3 C4 C5 C6 C7 N1 N2 N3 O1 O2 O3 S1	0.0693

Tabla III.4 - Coeficientes de planaridad para los ligandos semicarbazona derivados de ácidos α -oxo-carboxílicos.

La conformación respecto al enlace imínico C2-N3 no sigue una tendencia única en estos ligandos, estando determinada principalmente por los enlaces de hidrógeno intra e intermoleculares presentes en cada caso, y en menor medida por factores estéricos. Así, para los ligandos H₂PSC, H₂CBSC, H₂ α OFTSC y para la estructura triclínica del ligando H₂ α OFSC^T, se observa el confórmero *E* respecto al enlace C2-N3, mientras que en el caso de los ligandos H₂IPSC, H₃INSC y de la estructura monoclínica de H₂ α OFSC^M la conformación respecto al enlace *Z*.

Respecto de la conformación en torno al enlace C1-N2, la presencia en todas las estructuras del enlace intramolecular N1-H···N3 hace que todos los ligandos de esta serie presenten el confórmero E (a excepción de la molécula 2 de la unidad asimétrica del ligando H₂PSC, que tiene una conformación Z respecto a este enlace; la pérdida del enlace N1-H···N3 se ve compensada por la formación de 3 enlaces intermoleculares). En la Tabla III.5 se esquematizan estos resultados.

			•
		C2-N3	C1-N2
	Moléc. 1	Ε	Ε
H₂PSC	Moléc. 2	Ε	Ζ
	Moléc. 3	Ε	Ε
	Moléc. 1	Ε	Ε
n ₂ CDSC	Moléc. 2	Ε	Ε
H ₂ IPSC		Ζ	Ε
H₃INSC		Ζ	Ε
H₂αOFSC ^M		Ζ	Ε
$H_2 \alpha OFSC^T$	Moléc. 1	Ε	Ε
	Moléc. 2	Ε	Ε
H₂αOFTSC·	H₂O	Ε	Ε

Tabla III.5 - Conformaciones de las semicarbazonas derivadas de ácidos α-oxo-carboxílicos respecto de los enlaces C2-N3 y C1-N2.

Las distintas conformaciones anteriormente discutidas, junto con la presencia en estos ligandos de varios grupos dadores/aceptores de enlace de hidrógeno, le confieren a estás moléculas una gran flexibilidad, entendida como la capacidad de adoptar múltiples conformaciones de energía parecida. Esto hace que nos encontremos con unidades asimétricas que incluyen dos o tres moléculas, como en el caso de H_2PSC , H_2CBSC y $H_2\alpha OFSC^T$.

A continuación se comentan los enlaces de hidrógeno presentes en esta serie de estructuras. Como veremos, y de manera coherente con la conformación E respecto del enlace C1-N2 usual en todos estos ligandos, el enlace intramolecular N1-H···N3 está presente en todas las estructuras. Además, todos estos ligandos cuentan con al menos 3 grupos dadores de enlace de hidrógeno: N1H₂, N2-H y O2-H. Dado el gran número de enlaces de hidrógeno que esto propicia (y la dificultad para representar estos enlaces de manera clara en una sola figura que de ello resulta), en algunos casos se representan los enlaces de hidrógeno de un ligando en particular en dos figuras separadas, ya sea distinguiendo los enlaces de hidrógeno intramoleculares de los intermoleculares, o los que se dan entre átomos de la unidad asimétrica de los que incluyen moléculas generadas por las operaciones de simetría propias del grupo al que pertenece la estructura.

En la Tabla III.6 se detallan los enlaces de hidrógeno presentes en la estructura cristalina del ligando H₂PSC, y en la Figura III.8 y III.9 se muestran dichos enlaces, intra e intermoleculares respectivamente, en sendas representaciones obtenidas utilizando el programa ORTEP^[3].

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O31 ⁱ	0.86	2.11	2.970(6)	173.4
N11-H11B…O22	0.86	2.56	3.341(6)	152.2
N11-H11B…N13	0.86	2.28	2.637(6)	105.2
N12-H12…O31 ⁱⁱ	0.86	2.24	3.091(6)	169.7
012-H12A…021	0.76(7)	1.87(7)	2.606(5)	162(7)
O12-H12A…N23	0.76(7)	2.41(6)	2.885(6)	122(6)
N21-H21A…O21 ⁱⁱⁱ	0.86	2.14	2.987(5)	168.5
N21-H21B…O33	0.86	2.24	2.994(6)	145.9
N22-H22…O33	0.86	2.02	2.814(6)	152.6
022-H22A…012	0.87(7)	1.92(7)	2.794(5)	174(7)
022-H22A…N23	0.87(7)	2.32(7)	2.629(5)	101(5)
N31-H31A…O11 ^{iv}	0.86	2.24	3.050(6)	157.5
N31-H31B…N33	0.86	2.30	2.657(6)	104.8
N31-H31B…O23 ^v	0.86	2.30	3.128(6)	162.5
N32-H32…O11 ^{vi}	0.86	2.23	3.060(5)	163.5
O32-H32A…N33	0.86	2.167(4)	2.649(4)	115.33(11)
032-H32A…O23 ^v	0.86	2.046(4)	2.784(4)	143.78(10)

Tabla III.6 - Enlaces de hidrógeno (Å y °) para H₂PSC.

ⁱ x, y, z+1; ⁱⁱ x, y+1, z+1; ⁱⁱⁱ -x, -y+2, -z+1; ^{iv} x, y-1, z-1; ^v -x+1, -y, -z+1; ^{vi} x, y, z-1.

Figura III.8 - Enlaces de hidrógeno presentes en la unidad asimétrica del ligando H₂PSC.

Como ya se ha mencionado, la molécula 2 de esta estructura es la única de esta serie en la que no se observa el enlace intramolecular N1-H···N3. En la Figura III.8 se observa que para la posición relativa de las moléculas en la unidad asimétrica, la configuración Z respecto del enlace C1-N2 de la molécula 2 redunda en un número elevado de parejas dador/aceptor de enlaces de hidrógeno intermoleculares con distancias adecuadas para la formación de los mismos, lo cual estabiliza la estructura y explica esta anomalía. De la misma manera se entiende porqué la molécula 1 no presenta el enlace intramolecular O12-H···N13, pero si lo hacen las moléculas 2 y 3.

Los enlaces de hidrógeno que involucran moléculas pertenecientes a distintas unidades asimétricas se muestran en la Figura III.9.

Figura III.9 - Enlaces de hidrógeno generados por simetría a partir de la unidad asimétrica de H₂PSC. ⁱ x, y, z+1; ⁱⁱ x, y+1, z+1; ⁱⁱⁱ -x, -y+2, -z+1; ^{iv} x, y-1, z-1; ^v -x+1, -y, -z+1; ^{vi} x, y, z-1.

La totalidad de los enlaces de hidrógeno presentes en esta estructura generan una red tridimensional como la representada en la Figura III.10, que podría describirse como un apilamiento de placas paralelas al plano ab, que se unen entre sí a través de los enlaces N21-H21A···O21ⁱⁱⁱ, N31-H31B···O23^v y O32-H32A···O23^v.

Figura III.10 - Estructura supramolecular del ligando H₂PSC.

En la Tabla III.7 se detallan los enlaces de hidrógeno que estabilizan las estructura del ligando H₂CBSC. Estas interacciones están representadas en las Figuras III.11 y III.12, y son responsables de la estructura supramolecular del ligando H₂CBSC, representada en la Figura III.13.

Tabla III.7 - Enlaces de hidrógeno (Å y °) para H_2 CBSC.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
01W-H1W…023	0.91	2.05	2.8501(19)	147.4
01W-H2W…011 ⁱ	0.96	2.00	2.866(2)	149.0
N11-H11A…O23 ⁱⁱ	0.88	2.19	3.0334(19)	159.2
N11-H11B…N13	0.88	2.33	2.658(2)	102.5
012-H12…021 ⁱⁱⁱ	0.84	1.75	2.5840(18)	170.4
N12-H12A…O1W	0.88	2.08	2.903(2)	155.1
N21-H21A…O11	0.88	2.56	3.045(2)	115.4
N21-H21A…O22 ⁱⁱ	0.88	2.37	3.249(2)	172.9
N21-H21B…O1W	0.88	2.32	3.176(2)	163.7
N21-H21B…N23	0.88	2.31	2.657(2)	103.6
022-H22…011 ^{iv}	0.84	1.68	2.4973(17)	165.0
N22-H22A…O13 ^v	0.88	2.09	2.939(2)	162.7
¹ y+1 y 7+1. ¹¹ y	v 1 z · ⁱⁱⁱ v	1 v 7 1 · iv	V V+1 7. V V-1	v 7 ⊥1

'-x+1, -y, -z+1; " x, y-1, z; " x+1, y, z-1; " x, y+1, z; * x-1, y, z+1.

Figura III.11.- Enlaces de hidrógeno presentes en unidad asimétrica de la estructura del ligando H₂CBSC.

Figura III.12.- Enlaces de hidrógeno intermoleculares generados por simetría a partir de la unidad asimétrica de H₂CBSC.¹-x+1, -y, -z+1; ^{III} x, y-1, z; ^{IIII} x+1, y, z-1; ^{III} x, y+1, z; ^V x-1, y, z+1.

Observando las dos figuras anteriores, vemos que el posible enlace de hidrógeno intramolecular O2-H···N3 no está presente en ninguna de las dos moléculas, adoptando el grupo OH una disposición que permite la existencia de dos enlaces de hidrógeno intermoleculares.

Como puede apreciarse en la Figura III.13, la estructura supramolecular de la semicarbazona derivada del ácido 2-cetobutírico esta compuesta por una sucesión de bicapas infinitas. Los planos se unen mediante el enlace O1W-H2W···O11ⁱ formando bicapas, paralelas al plano (101), y tienen un espesor aproximado de 3.5 Å, habiendo entre ellas una separación de 3.0 Å aproximadamente. Los metilos terminales de los restos alquílicos se ubican entre cada plano de la estructura.

Figura III.13 - Estructura supramolecular del ligando H₂CBSC.

La Tabla III.8 recoge los enlaces de hidrógeno presentes en la estructura del ligando H₂IPSC. Estos enlaces se muestran en la Figura III.14.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O3 ⁱ	0.86	2.13	2.959(4)	160.5
N1-H1B…N3	0.86	2.27	2.621(4)	104.3
N2-H2…O3	0.90(3)	2.00(3)	2.638(3)	127(3)
02-H2A…01 ⁱⁱ	0.88(5)	1.66(5)	2.523(3)	168(4)
-x+1, γ	+1/2, -z+1	/2; ["] -x+1, y	-1/2, -z+1/2	2.

Tabla III.8 - Enlaces de hidrógeno (Å y °) presentes en la estructura de H₂IPSC.

Además del habitual enlace intramolecular N1-H···N3, en esta estructura encontramos que la configuración Z respecto al enlace C2-N3 permite la existencia del enlace intramolecular N2-H···O3. Además de estas interacciones intramoleculares, existen dos enlaces intermoleculares que dan lugar a la formación de cadenas infinitas en zigzag, paralelas al eje b. La forma ondulada de estas cadenas permite un alto grado de empaquetamiento de la estructura, como se muestra en la Figura III.15.

Figura III.14 - Enlaces de hidrógeno de la estructura de H₂IPSC. ⁱ -x+1, y+1/2, -z+1/2; ⁱⁱ -x+1, y-1/2,-z+1/2.

Figura III.15 - Estructura supramolecular de H₂IPSC, vista a lo largo del eje c.

En la Tabla III.9 se detallan los enlaces de hidrógeno presentes en la estructura del ligando H₃INSC, y en la Figura III.16 se muestran dichos enlaces.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…N3	0.86	2.34	2.671(6)	103.3
N1-H1B…O3 ⁱ	0.86	2.41	3.070(5)	134.3
N2-H2A…O3	1.01(7)	2.06(7)	2.666(5)	116(5)
N2-H2A…O2 ⁱⁱ	1.01(7)	2.46(7)	3.258(5)	135(5)
02-H2B…01 ⁱⁱⁱ	0.91(2)	1.68(2)	2.574(5)	170(7)
N4-H4N…O1 ^{iv}	0.73(6)	2.17(6)	2.882(6)	167(6)
+1/2, z+1/2; "-x+2	1, y-1/2, -z	:+3/2; ^{III} -x+	1, y+1/2, -z	+3/2; ^{iv} x, v

Tabla III.9 - Enlaces de hidrógeno (Å y °) presentes en la estructura de H₃INSC.

Figura III.16 - Enlaces de hidrógeno presentes en la estructura de H₃INSC.ⁱ x,-y+1/2, z+1/2; ⁱⁱ -x+1, y-1/2, -z+3/2; ⁱⁱⁱ -x+1, y+1/2, -z+3/2; ^{iv} x, y+1, z.

Al igual que para el ligando H₂IPSC, en esta estructura encontramos el isómero Z (respecto del enlace C2-N3), y volvemos a encontrar el enlace intramolecular N2-H···O3. Los enlaces intermoleculares presentes en esta estructura generan un arreglo supramolecular en forma de capas paralelas al plano bc. Entre estas capas se acomodan los restos aromáticos, como puede observarse en la Figura III.17.

Figura III.17 - Estructura supramolecular de H₃INSC.

Como ya se ha dicho, para el ligando $H_2\alpha OFSC$ se han obtenido dos muestras diferentes pertenecientes a los sistemas monoclínico y triclínico. A continuación se discuten los enlaces de hidrógeno presentes en cada una de ellas, recogiéndose estos en las Tablas III.10 y III.11, y en las Figuras III.18 y III.20, respectivamente.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O1 ⁱ	0.862(17)	2.029(17)	2.8908(14)	177.1(17)
N1-H1B…N3	0.881(17)	2.246(15)	2.6280(14)	105.9(12)
N2-H2…O3	0.903(18)	1.946(18)	2.6137(13)	129.3(15)
N2-H2…O3 ⁱⁱ	0.903(18)	2.559(18)	3.0262(19)	112.9(14)
N2-H2…O3 ⁱⁱⁱ	0.903(18)	2.459(19)	3.211(2)	140.9(15)
02-H3…O1 ⁱⁱ	0.936(19)	1.69(2)	2.6214(12)	170.4(19)

Tabla III.10 - Enlaces de hidrógeno (Å y °) presentes en la estructura de $H_2 \alpha OFSC^M$.

¹-x+1/2, -y+3/2, -z+2; ^{II}-x+1/2, y-1/2, -z+3/2; ^{III}-x+1/2, y+1/2, -z+3/2.

Figura III.18 - Enlaces de hidrógeno del ligando H₂αOFSC^M.ⁱ -x+1/2, -y+3/2, -z+2; ⁱⁱ -x+1/2, y-1/2, -z+3/2; ⁱⁱⁱ -x+1/2, y+1/2, -z+3/2.

Tabla III.11 - Enlaces de hidrógeno (Å y °) presentes en la estructura de $H_2\alpha OFSC^T$.

d(D-H)	d(H…A)	d(D…A)	<(DHA)
0.86	2.05	2.907(2)	175.1
0.86	2.12	2.940(2)	158.7
0.86	2.29	2.638(2)	104.1
0.86	2.05	2.672(2)	128.6
0.86	2.32	3.100(2)	151.7
0.89(3)	1.89(4)	2.677(2)	148(3)
0.89(3)	2.21(3)	2.603(2)	106(3)
0.86	2.28	3.006(2)	142.6
0.86	2.28	2.639(2)	104.9
	d(D-H) 0.86 0.86 0.86 0.86 0.89(3) 0.89(3) 0.88 0.86 0.86	d(D-H) d(H···A) 0.86 2.05 0.86 2.12 0.86 2.29 0.86 2.05 0.86 2.32 0.89(3) 1.89(4) 0.89(3) 2.21(3) 0.86 2.28 0.86 2.28	d(D-H) d(H···A) d(D···A) 0.86 2.05 2.907(2) 0.86 2.12 2.940(2) 0.86 2.29 2.638(2) 0.86 2.05 2.637(2) 0.86 2.05 2.672(2) 0.86 2.32 3.100(2) 0.89(3) 1.89(4) 2.677(2) 0.89(3) 2.21(3) 2.603(2) 0.89(3) 2.21(3) 3.006(2) 0.86 2.28 3.005(2)

ⁱ-x+1, -y, -z+1; ⁱⁱ x+1, y, z+1; ⁱⁱⁱ x-1, y-1, z-1.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)					
N22-H22…O12 ^{iv}	0.86	2.25	2.938(2)	136.8					
N22-H22…O24	0.86	2.06	2.656(2)	126.2					
022-H23…011	0.87(3)	1.76(3)	2.623(2)	179(3)					
^{iv} x-1, y, z-1.									

Tabla III.11 (continuación)- Enlaces de hidrógeno (Å y ^o) presentes en la estructura de $H_2\alpha OFSC^T$.

La estructura del ligando $H_2\alpha OFSC^M$ contiene al confórmero Z (respecto al enlace imínico) y los enlaces intramoleculares N2-H···O3 y N1-H···N3. Además de estas interacciones intramoleculares, en esta estructura existen cuatro enlaces de hidrógeno intermoleculares. Este conjunto de interacciones estabiliza una estructura supramolecular compuesta por planos extendidos paralelos al plano bc, entre los cuales se acomodan los restos furanosilo, como puede apreciarse en la Figura III.19.

Figura III.19 - Estructura supramolecular del ligando $H_2 \alpha OFSC^M$.

Como puede verse en la Figura III.20, en la estructura de $H_2\alpha OFSC^T$ las dos moléculas del ligando se encuentran en una configuración E respecto al enlace C2-N3, configuración estabilizada por el enlace intramolecular N2-H···O4. También está presente el enlace de hidrógeno intramolecular O12-H13···N13 (aunque en la molécula 2 no se encuentra el enlace análogo, ya que es más favorable el establecimiento de una interacción intermolecular, con un ángulo <(DHA) más relajado), y el habitual enlace N1-H···N3.

Figura III.20 - Enlaces de hidrógeno del ligando H₂αOFSC^{T. i} -x+1,-y,-z+1; ⁱⁱⁱ x+1, y, z+1; ⁱⁱⁱⁱ x-1, y-1, z-1; ^{iv} x-1, y, z-1.

Hay siete enlaces de hidrógeno intermoleculares en esta estructura, dos entre las moléculas de la unidad asimétrica, y 5 generados por simetría. Estas interacciones generan una estructura supramolecular en forma de bicapas infinitas (Figura III.21), paralelas al plano ($\overline{1}$ 01).

Figura III.21 - Estructura supramolecular del ligando $H_2\alpha OFSC^T$.

Finalmente, discutiremos los enlaces de hidrógeno presentes en la estructura cristalina del ligando tiosemicarbazona $H_2\alpha OFTSC \cdot H_2O$. Dichos enlaces se representan en la Figura III.22 y se detallan en la Tabla III.12; en ella se observa como tres de los enlaces de hidrógeno de este compuesto son intramoleculares (y estabilizan el confórmero E,E respecto de los enlaces C1-N2 y C2=N3, como ya se ha comentado). El resto de los enlaces de hidrógeno son intermoleculares. Como

puede verse en la Figura III.23, los enlaces O1-H···O1wⁱ, N1-H···O1wⁱ, O1w-H···O2 y O1w-H···S1ⁱⁱⁱ extienden la estructura en cadenas, paralelas al eje b.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
01-H1…N3	0.82(4)	2.31(3)	2.636(3)	104(3)
01-H1…01W ⁱ	0.82(4)	1.88(4)	2.653(3)	158(3)
N1-H1A…N3	0.86	2.29	2.637(4)	104.6
N1-H1A…O1W ⁱ	0.86	2.06	2.887(3)	160.8
N1-H1B…S1 ⁱⁱ	0.86	2.52	3.368(3)	171.4
01W-H1W…02	0.81(4)	1.99(4)	2.760(3)	159(4)
N2-H2…O3	0.86	2.01	2.660(3)	131.7
01W-H2W…S1 ^{III}	0.81(4)	2.50(4)	3.289(2)	167(3)

Tabla III.12 - Enlaces de hidrógeno (Å y °) presentes en la estructura de $H_2\alpha OFTSC \cdot H_2O$.

Figura III.22 - Enlaces de hidrógeno pertenecientes al compuesto H₂αOFTSC·H₂O.ⁱ -x+1, y+1/2, -z+1/2; "-x, -y+2, -z+1; ^{III} -x+1, -y+1, -z+1.

Figura III.23 - Crecimiento en cadenas paralelas al eje b del compuesto $H_2\alpha$ OFTSC· H_2 O. ⁱ -x+1, y+1/2, -z+1/2; ⁱⁱⁱ -x+1, -y+1, -z+1.

El enlace de hidrógeno restante, N1-H1B···S1ⁱⁱ, hace crecer la estructura del compuesto como una red tridimensional infinita, al unir las moléculas del ligando en dímeros cuyos componentes forman parte de cadenas distintas. La red tridimensional resultante se muestra en la Figura III.24.

Figura III.24 - Estructura supramolecular del compuesto $H_2\alpha OFTSC \cdot H_2O$.

III.2.2- Estructura cristalina de complejos de Ga(III) y ligandos derivados de α-oxo-ácidos

En este apartado se discuten las estructuras cristalinas de los complejos de Ga(III) y ligandos semicarbazona derivados de α -oxo-ácidos estudiadas, comparándolas con los ligandos correspondientes, cuyas estructuras cristalinas ya han sido presentadas anteriormente. En las Figuras III.25 a III.30 se representa el contenido de la unidad asimétrica de los complejos [Ga(HCBSC)(CBSC)] (I), [Ga(H₂INSC)₂]NO₃·2EtOH·0.38H₂O (II), [Ga(H α OFSC)(α OFSC)] (III), [Ga(H α OFSC)(bipy)H₂O](NO₃)₂·1.6H₂O (IV), [Ga(H α OFSC)(H₂O)₂CI]CI (V) y [Ga(H α OFTSC)(α OFTSC)]·H₂O (VI), respectivamente.

Figura III.25 - Unidad asimétrica del complejo [Ga(HCBSC)(CBSC)] (I).

Figura III.26 - Unidad asimétrica del complejo [Ga(H₂INSC)₂]NO₃·2EtOH·0.38H₂O (II).

Figura III.27 - Unidad asimétrica del complejo [Ga(HaOFSC)(aOFSC)] (III).

Figura III.28 - Unidad asimétrica del complejo [Ga(HαOFSC)(bipy)H₂O](NO₃)₂·1.6H₂O (IV).

Figura III.29 - Unidad asimétrica del complejo [Ga(HαOFSC)(H₂O)₂Cl]Cl (V).

Figura III.30 - Unidad asimétrica del complejo [Ga(HαOFTSC)(αOFTSC)]·H₂O (VI).

En la Tabla III.13 se recogen los datos cristalográficos y de refinado de estas estructuras, y en las Tablas III.14 a III.16 se glosan las distancias y ángulos de enlace más relevantes de las mismas.

), (IV), (V) y (VI).	
jos (I), (II), (III	
o de los comple	
os y de refinado	
Datos cristalográfico	
Tabla III.13 - [

Complejo	(1)	(II)	(111)	(1/)	(X)	(IV)
Fórmula	$C_{10}H_{15}GaN_6O_6$	C ₂₆ H ₂₅ GaN ₉ O _{11.38}	$C_{14}H_{11}GaN_6O_8$	C ₁₇ H ₁₆ GaN ₇ O _{12.60}	$C_{14}H_{20}Cl_4Ga_2N_6O_{12}$	$C_{14}H_{11}GaN_6O_7S_2$
Masa Molecular	385.00	715.35	461.01	589.69	745.60	509.13
т (К)	100.0(1)	100.0(2)	100.0(1)	100.0(2)	100.0(1)	100.0(1)
እ (Å)	0.71073	0.71069	0.71069	0.71069	0.71069	0.71069
Sistema Cristalino	Monoclínico	Triclínico	Triclínico	Monoclínico	Monoclínico	Monoclínico
Grupo Espacial	P2 ₁ /c	P-1	P-1	P21/c	P21/c	P2(1)/n
a (Å)	9.3508(4)	8.998(5)	8.367(5)	8.584(5)	7.281(5)	9.961(5)
<i>b</i> (Å)	17.1444(6)	12.302(5)	8.465(5)	10.983(5)	21.188(5)	12.992(5)
c (Å)	9.1664(3)	14.457(5)	12.828(5)	24.374(5)	17.162(5)	14.501(5)
α(゚)	000.06	89.091(5)	90.042(5)	90.000	000.06	000.06
β(°)	95.744(2)	73.000(5)	92.126(5)	98.525(5)	95.969(5)	105.039(5)
۲ (°)	000.06	84.328(5)	116.062(5)	90.000	000.06	90.000
v (ų)	1462.12(9)	1522.7(12)	815.5(8)	2272.5(17)	2633(2)	1812.3(13)
Z	4		2	4	4	4
D _{calc} . (Mg/m ³)	1.749	1.564	1.877	1.731	1.881	1.866
μ(mm ⁻¹)	1.925	766.0	1.752	1.295	2.521	1.805
F(000)	784	732	464	1200	1488	1024
Dimensiones (mm)	0.27x0.08x0.03	0.14 × 0.07 × 0.07	0.112 × 0.104 × 0.085	0.22 × 0.15 × 0.06	0.18 × 0.09 × 0.04	0.28 x 0.25 x 0.20
lntervalo $ heta$ (°)	2.19 a 24.66	1.66 a 26.38	2.68 a 27.10	1.69 a 25.35	1.53 a 26.46	2.14 a 27.10
Intervalos en <i>h,k,l</i>	-10,10; 0,20; 0,10	-10,11; -15,15; 0,18	-10,10; -10,10; 0,16	-10,10; 0,13; 0,29	-9,9; 0,26; 0,21	-12,12; 0,16; 018
N° reflex. medidas	35910	28703	4031	17313	12486	33541
N° reflex. únicas	2477	6199	1199	4158	8552	3987
R _{int}	0.0471	0.0534	0.0570	0.0604	0.0860	0.0389
Ж	0.0297	0.0422	0.0392	0.0479	0.0531	0.0281
Rw	0.0764	0.0941	0.0843	0.1105	0.1132	0.0802
G.O.F.	1.085	1.045	1.028	1.076	0.915	1.134

III - Ligandos derivados de precursores α-oxo-ácidos y complejos de Ga(III)

Tabla III.14- Longitudes de enlace (À	Å) relevantes en l	los complejos (I),	, (II), (III), (IV), (V) y (VI).

	(1) ^(a)	(III) ^(a)	(III) ^(b)	·	(I)() ^(c)	(V) ^(c)	-	()(I) ^(d)
	(1)	(11)	(11)		(10)	Moléc. 1	Moléc. 2		(0)
C11-O11	1.294(3)	1.262(3)	1.280(4)	C1-01	1.274(4)	1.280(7)	1.274(6)	C11-S1	1.695(2)
C11-N11	1.316(4)	1.316(3)	1.325(4)	C1-N1	1.302(5)	1.301(7)	1.302(7)	C11-N11	1.304(3)
C11-N12	1.369(3)	1.379(3)	1.371(4)	C1-N2	1.373(5)	1.381(7)	1.390(7)	C11-N12	1.357(3)
N12-N13	1.353(3)	1.369(3)	1.363(3)	N2-N3	1.350(4)	1.346(6)	1.337(6)	N12-N13	1.357(3)
C12-N13	1.289(3)	1.293(3)	1.299(4)	C2-N3	1.288(5)	1.282(7)	1.290(7)	C12-N13	1.294(3)
C12-C13	1.503(4)	1.538(4)	1.521(4)	C2-C3	1.525(5)	1.532(8)	1.528(8)	C12-C13	1.527(3)
C13-O12	1.284(3)	1.290(3)	1.278(4)	C3-O2	1.295(5)	1.296(7)	1.314(7)	C13-O11	1.281(3)
C13-O13	1.243(3)	1.224(3)	1.228(3)	C3-O3	1.224(5)	1.225(7)	1.225(7)	C13-O12	1.218(3)
C12-C14			1.441(4)	C2-C4	1.430(6)	1.429(8)	1.421(8)	C12-C14	1.428(3)
C21-O21	1.270(3)	1.262(3)	1.260(4)					C21-S2	1.738(2)
C21-N21	1.317(4)	1.305(4)	1.315(4)					C21-N21	1.338(3)
C21-N22	1.368(3)	1.383(4)	1.371(4)					C21-N22	1.323(3)
N22-N23	1.357(3)	1.370(3)	1.361(3)					N22-N23	1.357(2)
C22-N23	1.277(3)	1.295(4)	1.283(4)					C22-N23	1.299(3)
C22-C23	1.521(4)	1.539(4)	1.546(4)					C22-C23	1.518(3)
C23-O22	1.298(3)	1.300(3)	1.287(4)					C23-O21	1.290(3)
C23-O23	1.217(3)	1.224(4)	1.216(4)					C23-O22	1.213(3)
C22-O24			1.420(4)					C22-O24	1.440(3)
Ga-011	1.953(2)	1.993(2)	1.947(2)	Ga-O1	1.990(3)	1.996(4)	1.978(4)	Ga-S1	2.4129(10)
Ga-012	1.995(2)	1.957(2)	1.954(2)	Ga-O2	1.931(3)	1.998(4)	1.959(4)	Ga-011	1.9778(17)
Ga-N13	2.002(2)	2.007(2)	2.001(3)	Ga-N3	2.033(3)	2.067(5)	2.048(5)	Ga-N13	2.098(2)
Ga-021	2.030(2)	1.988(2)	2.049(2)					Ga-S2	2.3526(9)
Ga-O22	1.967(2)	1.945(2)	1.934(2)					Ga-O21	1.9695(17)
Ga-N23	2.044(2)	2.007(2)	2.010(3)		X			Ga-N23	2.0352(19)
				Ga-X1	2.056(3)	2.189(2)	2.209(2)		
				Ga-X2	2.032(3)	1.999(5)	1.999(4)		
				Ga-X3	1.949(3)	2.007(5)	2.035(5)		

(IV): X₁ = N4, X₂ = N5, X₃ = O5. (V) Moléc. 1: X₁ = Cl1, X₂ = O15, X₃ = O16.

(V) Moléc. 2: X₁ = Cl2, X₂ = O25, X₃ = O26.

	(1) ^(a)	(11) ^(a)	(III) (b)		(NA (c)	(V) ^(c)		()(l) ^(d)
	(1)	(1)	(11)		(10)	Moléc. 1	Moléc. 2		(1)
011-Ga-012	157.45(7)	157.14(8)	158.84(9)	01-Ga-O2	156.62(11)	154.13(16)	156.33(16)	\$1-Ga-O11	158.03(5)
O11-Ga-N13	78.27(8)	78.00(8)	78.64(10)	O1-Ga-N3	77.71(12)	77.25(18)	78.28(19)	S1-Ga-N13	81.05(5)
011-Ga-021	91.81(7)	89.45(8)	91.17(9)	01-Ga-X1	91.60(12)	106.46(13)	103.02(13)	\$1-Ga-\$2	93.41(4)
O11-Ga-N23	114.96(8)	98.10(9)	106.65(10)	01-Ga-X2	100.81(12)	88.70(19)	87.91(18)	S1-Ga-N23	105.59(6)
011-Ga-022	90.58(8)	93.73(8)	91.91(9)	01-Ga-X3	92.74(16)	89.30(18)	87.13(18)	S1-Ga-O21	91.75(6)
012-Ga-N13	79.51(8)	79.41(8)	80.64(10)	O2-Ga-N3	79.05(12)	76.92(17)	78.07(19)	O11-Ga-N13	77.22(7)
012-Ga-021	90.67(7)	90.60(8)	89.19(9)	O2-Ga-X1	88.89(12)	99.40(12)	100.62(12)	011-Ga-S2	91.10(6)
012-Ga-N23	87.42(8)	104.29(8)	94.04(10)	O2-Ga-X2	102.21(13)	90.67(18)	91.71(18)	O11-Ga-N23	96.29(7)
012-Ga-022	97.21(7)	94.83(8)	96.27(9)	O2-Ga-X3	91.14(16)	89.11(18)	91.41(18)	011-Ga-021	90.44(8)
N13-Ga-O21	106.08(8)	98.97(9)	102.68(9)	N3-Ga-X1	97.55(12)	174.32(15)	178.46(16)	N13-Ga-S2	110.18(5)
N13-Ga-N23	166.55(8)	175.31(9)	174.67(10)	N3-Ga-X2	176.11(13)	91.8(2)	86.54(19)	N13-Ga-N23	164.99(7)
N13-Ga-O22	100.54(8)	103.26(9)	101.11(9)	N3-Ga-X3	93.29(13)	83.24(18)	88.99(19)	N13-Ga-O21	87.42(7)
O21-Ga-N23	77.00(8)	78.26(9)	76.95(10)	X1-Ga-X2	78.85(13)	92.58(16)	94.32(13)	S2-Ga-N23	83.20(6)
021-Ga-022	153.20(7)	157.72(8)	156.15(9)	X1-Ga-X3	168.97(13)	92.43(14)	90.25(14)	S2-Ga-O21	162.23(5)
N23-Ga-O22	77.81(8)	79.46(9)	79.51(10)	X2-Ga-X3	90.37(14)	175.0(2)	173.91(18)	N23-Ga-O21	79.03(7)

Tabla III.15 - Ángulos de enlace (°) centrados en el metal en los complejos (I), (II), (II), (IV), (V) y (VI).

Tabla III.16 - Ángulos de enlace (°) relevantes en los ligandos presentes en los complejos(I), (II), (III), (IV), (V) y (VI).

	(1) ^(a)	(u) ^(a)	(III) ^(b)		(NA) ^(c)	(V) ^(c)		()(d)
	(1)	(11)	(111)		(10)	Moléc. 1	Moléc. 2		(0)
011-C11-N11	118.6(2)	122.2(2)	119.1(3)	01-C1-N1	123.0(4)	123.7(6)	123.0(6)	S1-C11-N11	121.39(18)
011-C11-N12	124.0(2)	120.1(2)	124.1(3)	01-C1-N2	119.2(3)	117.7(5)	119.1(5)	S11-C11-N12	122.60(17)
N11-C11-N12	117.4(2)	117.7(2)	116.8(3)	N1-C1-N2	117.8(3)	118.5(5)	117.9(5)	N11-C11-N12	116.0(2)
C11-N12-N13	106.8(2)	111.4(2)	107.1(2)	C1-N2-N3	112.9(3)	114.5(5)	113.3(5)	C11-N12-N13	119.08(19)
N12-N13-C12	124.9(2)	125.9(2)	127.2(3)	N2-N3-C2	128.1(3)	127.7(5)	127.8(5)	N12-N13-C12	123.84(19)
N13-C12-C13	111.2(2)	109.7(2)	111.8(3)	N3-C2-C3	110.4(4)	111.1(5)	110.6(5)	N13-C12-C13	111.92(19)
C12-C13-O12	117.1(2)	115.6(2)	115.7(3)	C2-C3-O2	114.9(4)	114.3(5)	114.4(5)	C12-C13-O11	114.45(19)
C12-C13-O13	119.1(2)	119.9(2)	120.5(3)	C2-C3-O3	120.7(4)	119.5(6)	121.1(6)	C12-C13-O12	120.5(2)
012-C13-013	123.7(2)	124.5(3)	123.8(3)	02-C3-O3	124.4(4)	126.1(5)	124.5(5)	011-C13-012	125.0(2)
021-C21-N21	123.3(2)	122.9(3)	124.3(3)					S2-C21-N21	116.92(18)

Tabla III.16 (continuación)- Ángulos de enlace (°) relevantes de los ligandos presentes en los complejos (I), (II), (III), (IV), (V) y (VI).

En todos estos compuestos, el Ga(III) se halla en un entorno octaédrico distorsionado. En la Tabla III.17 se da el rango de variación de los ángulos centrados en el Ga(III) para los seis complejos discutidos en este apartado; consideraremos como posiciones axiales del entorno del metal aquellas que formen un ángulo centrado en el mismo lo más cercano posible a 180°. Como puede observarse, todos estos entornos octaédricos presentan un notable grado de distorsión. Como se discute más adelante, esta distorsión esta asociada con la pertenencia de al menos 3 átomos del entorno de una misma molécula de ligando, con las restricciones geométricas que esto conlleva.

Tabla III.17 - Rango de valores de los ángulos centrados en el metal en (I), (II), (III), (IV), (V) y (VI).

Ángulo teórico octaedro (°)	(I)	(11)	(111)	(IV)	(V)	(VI)
180	153.2 - 166.5	157.1 - 175.3	156.1 - 174.7	156.6 - 176.1	154.1 - 178.5	158.3 - 165.0
90	77.0 - 115.0	78.0 - 104.3	76.9 - 106.6	77.7 - 102.2	77.2 - 106.5	79.0 - 110.2

Como puede apreciarse en la Figura III.25, la unidad asimétrica de [Ga(HCBSC)(CBSC)] consta sólo de una molécula del complejo. En esta molécula, el Ga(III) se encuentra en un entorno octaédrico distorsionado de tipo N₂O₄ (ver Figura III.31) formado por dos ligandos (HCBSC⁻ y CBSC²⁻) que coordinan al átomo de Ga a través del átomo de O del resto semicarbazona, el N imínico y el O desprotonado del grupo carboxílico (estos son los átomos coordinantes de los ligandos semicarbazona derivados de ácidos α -oxo-carboxílicos; son ligandos O,N,O dadores). Uno de los ligandos se halla monodesprotonado, y el otro bidesprotonado, compensando la carga del átomo central y formando, por tanto, un complejo neutro. En toda esta serie de compuestos de coordinación, cuando los ligandos semicarbazona se encuentran monodesprotonados la pérdida del protón se produce en el grupo carboxílico, mientras que cuando se hallan bidesprotonados, se pierde además el protón unido al N2 del resto semicarbazona.

Figura III.31 - Entorno de coordinación del Ga(III) en el complejo (I).

La unidad asimétrica del complejo [Ga(H₂INSC)₂]NO₃·2EtOH·0.38H₂O incluye una molécula del catión complejo monocargado, un anión nitrato, dos moléculas de etanol y 0.38 moléculas de agua de cristalización. El complejo catiónico está formado por dos ligandos H₂INSC⁻ monoaniónicos, que coordinan al átomo de Ga a través de la terna de átomos O,N,O. Así, tenemos 6 átomos N₂O₄ que componen un entorno de coordinación octaédrico distorsionado, mostrado en la Figura III.32.

Figura III.32 - Entorno de coordinación del Ga(III) en el complejo (II).

En la Figura III.27 se representa el contenido de la unidad asimétrica del complejo [Ga(H α OFSC)(α OFSC)]. Como puede apreciarse, la unidad asimétrica de este compuesto contiene solamente una unidad del complejo neutro. Este complejo, al igual que el (I), esta formado por 2 ligandos (uno mono y otro bidesprotonado, H α OFSC⁻ y α OFSC²⁻ respectivamente) que actúan como dadores O,N,O. El metal presenta un índice de coordinación 6, encontrándose en un entorno N₂O₄ octaédrico distorsionado, como puede verse en la Figura III.33.

Figura III.33 - Entorno de coordinación del Ga(III) en el complejo (III).

En el complejo [Ga(H α OFSC)(bipy)H₂O](NO₃)₂·1.6H₂O el Ga(III) tiene un entorno de coordinación de tipo N₃O₃. Se trata de un complejo mixto, donde el Ga(III) está coordinado por un semicarbazonato monodesprotonado H α OFSC⁻ a través de los átomos ONO, una molécula de 2,2'-bipiridina (a través de sus 2 átomos de N) y una molécula de agua en la sexta posición de un entorno octaédrico ligeramente distorsionado, como se muestra en la Figura III.34. Por lo tanto, se trata de un complejo catiónico con carga 2+, carga que se ve compensada por la presencia de 2 aniones NO₃⁻ en la unidad asimétrica. El contenido de esta se completa con 1.6 moléculas de agua de cristalización, distribuidas en 3 posiciones distintas.

Figura III.34 - Entorno de coordinación del Ga(III) en el complejo (IV).

Por su parte, la unidad asimétrica de (V) contiene 2 unidades del complejo catiónico $[Ga(H\alpha OFSC)(H_2O)_2CI]^+$, cuya carga se halla compensada por la presencia de 2 aniones Cl⁻. En este

compuesto, el Ga(III) está coordinado por un ligando semicarbazonato monocargado H α OFSC⁻, un anión Cl⁻ y 2 moléculas de agua. Como se muestra en la Figura III.35, estos átomos forman un entorno octaédrico NO₄Cl distorsionado. Por otra parte, sólo en este compuesto el plano ecuatorial del entorno del metal puede considerarse plano. En los compuestos anteriores y en el complejo (VI), los cuatro átomos que ocupan los vértices de dicho plano se ubican alternadamente por encima y por debajo del plano promedio que los vincula, con desviaciones importantes respecto del mismo, como se detalla en la Tabla III.18.

Figura III.35 - Entorno de coordinación del Ga(III) en el complejo (V).

Tabla III.18 - Desviación del plano ecuatoria	l (Å) de	los átomo	s no axia	les del ento	orno de co	ordinación de los
complejos (I) a (VI).						

(1)	(11)	(111)	(IV)	(V)	(VI)
O11 0.4306 (0.0010)	O11 0.3822 (0.0010)	011 0.3802 (0.0012)	01 -0.3016 (0.0017)	N13 -0.0590 (0.0024)	011 -0.4222 (0.0008)
O12 0.3969 (0.0010)	O12 0.3821 (0.0010)	012 0.3703 (0.0011)	02 -0.3230 (0.0017)	Cl1 -0.0413 (0.0015)	O21 0.3971 (0.0007)
O21 -0.4315 (0.0010)	021 -0.3925 (0.0011)	021 -0.3877 (0.0012)	05 0.2739 (0.0018)	011 0.0339 (0.0020)	S1 -0.3262 (0.0007)
O22 -0.4268 (0.0010)	022 -0.3701 (0.0010)	022 -0.3861 (0.0012)	N4 0.2678 (0.0018)	012 0.0369 (0.0021)	S2 0.3178 (0.0007)
Ga1 0.0308 (0.0007)	Ga1 -0.0018 (0.0008)	Ga1 0.0233 (0.0009)	Ga 0.0828 (0.0013)	Ga1 0.0296 (0.0016)	Ga 0.0335 (0.0006)
rms = 0.3774	rms = 0.3415	rms = 0.3410	rms = 0.2642	rms = 0.0414	rms = 0.3300

La unidad asimétrica del complejo (VI) contiene una molécula del complejo neutro y una molécula de agua, desordenada en dos posiciones O1w y O2w (con 55 y 45 % de ocupación respectivamente). En el complejo el Ga(III) se halla en un entorno de coordinación octaédrico distorsionado de tipo N₂O₂S₂ (Figura III.36), aportando cada uno de los semicarbazonatos presentes (uno monodesprotonado y el otro bidesprotonado) un átomo de N imínico, un O del resto carboxílico y un átomo de S del resto carbotioamida.

Figura III.36 - Entorno de coordinación del Ga(III) en el complejo (VI).

Comparando la figura anterior con las correspondientes a los compuestos (III) a (VI) (complejos con el ligando semicarbazona análogo), se observa que el compuesto (VI) presenta una esfera de coordinación algo más distorsionada (debido a la mayor longitud de los enlaces Ga-S respecto a los enlaces Ga-O).

Respecto a la planaridad de los ligandos semi- y tiosemicarbazona en estos complejos (o de los anillos quelato que forman en torno al metal) encontramos una cierta regularidad en esta serie de compuestos. Al tratarse de ligandos semicarbazona derivados del mismo tipo de precursor, un ácido α -oxo-carboxílico, estos ligandos tridentados coordinan al metal formando 2 anillos quelato (de 5 miembros) contiguos, ubicados en un mismo plano cuyo rms no supera el valor 0.0617 en ningún caso. Para los compuestos (I), (II) y (III), en los que hay dos semicarbazonatos por complejo, estos forman un ángulo diedro cercano a los 90°, como corresponde a la geometría octaédrica de estos sistemas y queda representado en la Figura III.37. Obsérvese que en esta figura se informa de la planaridad de los ligandos considerando únicamente los átomos que forman parte de los anillos quelato. En cualquier caso, aún considerando todos los átomos de los ligandos, estos son virtualmente planos, salvo en el caso del complejo (II), donde los grupos aromáticos (rms₁=0.0120 y rms₂=0.0420) del ligando H₂INSC forman un ángulo de 37° aproximadamente con el resto semicarbazona (rms₁ = 0.0439 y rms₂ = 0.0313).

Comparando el valor de las rms de los ligandos HCBSC⁻ y CBSC²⁻ en el complejo (I) con el valor de la rms obtenida para las dos moléculas de la unidad asimétrica del ligando libre (en ambos casos no se tiene en cuenta la presencia de los grupos etilo sobre el C2), vemos que en el complejo estas moléculas han ganado planaridad. Esto se debe, al igual que sucede en la mayoría de los casos tratados en esta Memoria, a que en el ligando libre algunos grupos funcionales se apartan del plano de la molécula para establecer enlaces de hidrógeno que estabilizan la estructura. En cambio, al formarse los complejos, estas desviaciones desaparecen a favor de la formación de los anillos quelato en torno al metal y la coplanaridad de los anillos contiguos, con la subsiguiente estabilización por deslocalización de la carga de los ligandos semicarbazonato. En el caso del complejo (II) la diferencia es sustancial, ya que en el ligando libre el grupo carboxílico forma un ángulo de 36.02° con el plano de la molécula, presentando los átomos O11 C11 N12 N13 C12 C13 O12 O13 un rms de 0.2951 respecto del plano medio que los vincula. Algo similar ocurre al comparar la planaridad del ligando H₂ α OFSC (el grupo carboxílico forma un ángulo de 17.04° con el plano de la molécula y el rms para los átomos O1 C1 N2 N3 C2 C3 O2 O3 es de 0.1466 en la estructura monoclínica estudiada en el apartado III.2.1) con el complejo (III).

Figura III.37 - Ángulo diedro en el entorno de coordinación del Ga(III) en los complejos I, II y III.

En la Figura III.38 se muestra y definen los planos π_1 y π_2 para [Ga(H α OFSC)(bipy)H₂O]²⁺. En este caso hay un único ligando semicarbazonato, por lo que definimos el plano π_2 como aquel que contiene el anillo quelato que forma la molécula de 2,2´-bipiridina, el átomo central y el átomo de O de la molécula de agua a este coordinada. Observamos que, como era de esperar para un entorno octaédrico, el ángulo diedro es casi de 90°.

De la misma manera, para el complejo (V) definimos el plano π_2 como aquel que incluye los átomos de O de las dos moléculas de agua coordinadas al metal, el átomo central y el anión Cl⁻ a él coordinado. En la Figura III.39 se representa este plano, y se informa del ángulo diedro que forma con el ligando semicarbazonato, pero sólo para la molécula 1 de la unidad asimétrica, ya que es prácticamente idéntica a la molécula 2.

Figura III.39 - Ángulo diedro en el entorno de coordinación del Ga(III) en el complejo (V).

En el complejo [Ga(H α OFTSC)(α OFTSC)]·H₂O cada ligando forma, por coordinación al metal, dos anillos quelatos contiguos de 5 miembros cada uno, que se ubican virtualmente en un mismo plano. Estos planos de coordinación forman un ángulo diedro de 90° aproximadamente, como queda representado en la Figura III.40. Esto no implica necesariamente que los ligandos sean perfectamente planos: por ejemplo, el ligando bidesprotonado del complejo [Ga(H α OFTSC)(α OFTSC)] presenta un ángulo diedro de 12.3° entre el plano del resto furanosilo (rms=0.0011) y el resto de la molécula más el átomo de Ga (rms=0.3320). Pero puede decirse que, al igual que en el ligando libre, los ligandos coordinados tienden a la planaridad.

Figura III.40 - Ángulo entre planos de los ligandos en el entorno de coordinación del Ga(III) para el compuesto (VI).

Como se mencionara al discutir las distintas conformaciones en la estructura cristalina de los ligandos semicarbazona derivados de ácidos α-oxo-carboxílicos libres, en todas ellas la conformación entorno al enlace C1-N2 es la E, con el enlace de hidrógeno intramolecular N1-H···N3 presente en todas esas estructuras. Pero es obvio que el modo de coordinación de estos ligandos requiere el confórmero Z en torno a dicho enlace. Así, en todos los aniones semi- y tiosemicarbazonato presentes en los complejos (I) a (VI), la conformación en torno al enlace C1-N2 es la Z, es decir, la opuesta a la encontrada para los ligandos libres. De la misma manera, en aquellos ligandos en que la conformación en torno al enlace C2-N3 era la Z (H₃INSC y H₂ α OFSC monoclínico), los semicarbazonatos correspondientes han invertido esta conformación en sus complejos, ya que en todos ellos dicha conformación es la E, que posibilita la interacción simultánea al átomo metálico de los átomos O,N,O. En el ligando libre $H_2\alpha$ OFTSC· H_2 O, la conformación respecto de los enlaces C1-N2 y C2-N3 también es la E. En el complejo [Ga(HαOFTSC)(αOFTSC)] la conformación respecto del enlace C1-N2 cambia, necesariamente, ya que de otro modo no sería posible la coordinación simultánea de los átomos S, N3, y O1 al metal. Por lo tanto, ambos tiosemicarbazonatos en este compuesto adoptan las conformaciones Z, E respecto de los enlaces C1-N2 y C2-N3. Esta cuestión se resume en la Tabla III.19.

Tabla III.19.- Conformaciones de las cadenas semicarbazona derivadas de ácidos α -oxocarboxílicos respecto de los enlaces C2-N3 y C1-N2 en los ligandos libres y sus complejos relacionados.

	C1-N2	C2-N3
H ₂ CBSC	E	Ε
HCBSC ⁻ en [Ga(HCBSC)(CBSC)]	z	Ε
CBSC ²⁻ en [Ga(HCBSC)(CBSC)]	z	Ε
H ₃ INSC	Ε	Ζ
H_2INSC^{-} en [Ga(H_2INSC) ₂]NO ₃ ·2EtOH·1/3H ₂ O	Ζ	Ε
H₂αOFSC ^M	Ε	Ζ
HαOFSC ⁻ en [Ga(HαOFSC)(αOFSC)]	Ζ	Ε
αOFSC²⁻ en [Ga(HαOFSC)(αOFSC)]	Ζ	Ε
$H\alpha OFSC^{-}$ en [Ga(H $\alpha OFSC$)(bipy)H ₂ O](NO ₃) ₂ ·1.6H ₂ O	Ζ	Ε
$H\alpha OFSC^{-}$ en [Ga(H $\alpha OFSC$)(H $_2O$) $_2CI$]CI	Ζ	Ε
H₂αOFSTC	Ε	Ε
HαOFTSC ⁻ en [Ga(HαOFTSC)(αOFTSC)]	Ζ	Ε
αOFTSC²⁻ en [Ga(HαOFTSC)(αOFTSC)]	Ζ	Ε

Como puede verse en la Tabla III.14, los valores de las distancias de enlace Ga-N de los complejos (I) a (VI) apenas presentan diferencias, variando entre 2.001(3) y 2.098(5) Å, y son algo menores que el valor medio de la unión Ga-N (2.149 Å) en los complejos recogidos en la base cristalográfica CSD^[4]. En ella encontramos también un valor medio para la distancia Ga-O (1.946 Å) que es coherente con los valores para dicho enlace en los complejos que estamos discutiendo, cuyos valores oscilan entre los 1.931(3) y 2.049(2) Å. En las Figuras III.41 y III.42 se muestran los histogramas extraídos de la CSD^[4] para la distribución de distancias Ga-N y Ga-O respectivamente.

Figura III.41 - Histograma de la distribución de valores para la longitud de enlace Ga-N encontrada en los complejos de la base CSD^[4].

Figura III.42 - Histograma de la distribución de valores para la longitud de enlace Ga-O encontrada en los complejos de la base CSD^[4].

En la Tabla III.20 se comparan algunas longitudes de enlace en los ligandos libres y en sus complejos. Como puede apreciarse, las variaciones no son muy drásticas, siendo en el caso más extremo de hasta 0.049 Å. En todos los casos, las variaciones de estos parámetros al pasar del ligando libre al ligando coordinado tienen el mismo signo para enlaces análogos en los distintos complejos.

Tabla III.20 - Comparación entre algunas distancias de enlace en los ligandos libres y en sus respectivos complejos (I-V).

		C1-N1	C1-01	C1-N2	N2-N3	C2-N3	C2-C3	C3-O2	C3-O3	C2-C4
	Moléc. 1	1.325(2)	1.252(2)	1.354(2)	1.362(2)	1.292(2)	1.497(3)	1.304(2)	1.218(2)	1.500(3)
H ₂ CD3C	Moléc. 2	1.332(2)	1.243(2)	1.367(2)	1.362(2)	1.284(2)	1.494(2)	1.307(2)	1.223(2)	1.501(3)
(1)	Ľ	1.317(4)	1.270(3)	1.368(3)	1.357(3)	1.277(3)	1.521(4)	1.298(3)	1.217(3)	1.491(4)
(1)	L ²⁻	1.316(4)	1.294(3)	1.369(3)	1.353(3)	1.289(3)	1.503(4)	1.284(3)	1.243(3)	1.488(4)
H₃INSC		1.330(7)	1.262(6)	1.346(6)	1.373(6)	1.303(6)	1.512(7)	1.311(6)	1.224(6)	1.453(7)
(11)	L ₁	1.316(3)	1.262(3)	1.379(3)	1.369(3)	1.293(3)	1.538(4)	1.290(3)	1.224(3)	1.440(4)
(11)	L ₂ ⁻	1.305(4)	1.262(3)	1.383(4)	1.370(3)	1.295(4)	1.539(4)	1.300(3)	1.224(4)	1.428(4)
$H_2 \alpha OFSC^M$		1.329(2)	1.251(2)	1.377(2)	1.352(2)	1.304(2)	1.501(2)	1.320(2)	1.217(2)	1.455(2)
	Moléc. 1	1.325(3)	1.242(2)	1.384(3)	1.355(2)	1.295(3)	1.506(3)	1.327(2)	1.209(2)	1.446(3)
nzuOFSC	Moléc. 2	1.328(3)	1.239(2)	1.378(3)	1.354(2)	1.293(2)	1.508(3)	1.320(2)	1.211(2)	1.460(3)
(111)	Ľ	1.315(4)	1.260(4)	1.371(4)	1.361(3)	1.283(4)	1.546(4)	1.287(4)	1.216(4)	1.420(4)
(11)	L ²⁻	1.325(4)	1.280(4)	1.371(4)	1.363(3)	1.299(4)	1.521(4)	1.278(4)	1.228(3)	1.441(4)
(IV)	Ľ	1.302(5)	1.274(4)	1.373(5)	1.350(4)	1.288(5)	1.525(5)	1.295(5)	1.224(5)	1.430(6)
(\)	L en Moléc.1	1.301(7)	1.280(7)	1.381(7)	1.346(6)	1.282(7)	1.532(8)	1.296(7)	1.225(7)	1.429(8)
(*)	L en Moléc. 2	1.302(7)	1.274(6)	1.390(7)	1.337(6)	1.290(7)	1.528(8)	1.314(7)	1.225(7)	1.421(8)

Así, vemos que la longitud del enlace C1-O1 aumenta ligeramente en todos los casos al pasar del ligando libre al complejo, salvo para el complejo (II), en el que esta distancia permanece inalterada respecto del ligando libre H₃INSC. Considerando todos los complejos de esta serie, vemos que la distancia C1-O1 en los ligandos en los que la cadena semicarbazona no se desprotona varía entre 1.260 y 1.280 Å. Respecto de la longitud del enlace C3-O2, vemos que se acorta al pasar del ligando libre a los complejos, de manera consistente con la presencia de una carga negativa sobre el

átomo de O2, que aumenta parcialmente el orden del enlace en cuestión, de la misma manera que produce una disminución de la longitud del enlace C3-O3.

Por su parte, la distancia C1-N1 disminuye al pasar de los ligandos libres a los semicarbazonatos correspondientes, al igual que las distancias C2-C3 y C2-C4. El resto de los enlaces no presenta variaciones significativas. Analizando lo que sucede al pasar del ligando H₂CBSC (L) al complejo (I), vemos que en este último tenemos el ligando en dos estados diferentes: monodesprotonado L⁻, y bidesprotonado L²⁻. La diferencia más significativa entre ellos es la de la distancia C1-O1, que para L⁻ es de 1.270 Å y para el L²⁻ es de 1.294 Å. Este enlace muestra una evolución de la forma ceto a la forma enolato, coherente con la perdida del protón sobre N2 y la subsiguiente deslocalización de la carga.

A su vez, la distancia de enlace C2-N3 es mayor para el ligando L²⁻ que para L⁻, es decir que por deslocalización de la carga generada por perdida del protón N2-H, el enlace imínico ha perdido parte de su carácter de doble enlace.

Encontramos una situación muy similar en el complejo (III), que en esta serie de complejos es el único que presenta la misma estequiometría y el mismo grado de desprotonación en sus ligandos que el complejo (I). También en él se da la diferencia entre la distancias del enlace C1-O1 del ligando L⁻ (de 1.260 Å) con la del ligando L²⁻ (de 1.281 Å), así como la elongación del enlace imínico de L²⁻ (1.299 Å) respecto del mismo enlace en el ligando monodesprotonado (de 1.282 Å). Es de destacar la diferencia en las distancias de enlace C3-O2 en los complejos (I) y (III), donde se deja ver la influencia del grupo no carboxílico que se ubica sobre el C2. Como se muestra en la Figura III.43, en el caso del complejo (I), estas distancias son de 1.298 y 1.294 Å para L⁻ y L²⁻ respectivamente; para el complejo (III), estas distancias son más cortas: 1.288 y 1.278 Å. Este acortamiento podría explicarse por la capacidad para deslocalizar la carga por efectos inductivo y de resonancia del grupo furanosilo presente en el complejo (III), capacidad de la que carece el grupo etilo de los ligandos HCBSC⁻ y CBSC²⁻del complejo (I).

Figura III.43 - Longitudes de enlace (Å) relevantes para los ligandos en los complejos (a) (I) y (b) (III).

Respecto de las distancias de enlace C2-N3, vemos en la Tabla III.20 que al pasar de los ligandos libres a los complejos, este parámetro permanece casi invariable, o apenas se acorta. El ligero acortamiento de esta distancia de enlace en los ligandos monodesprotonados debería estar entonces relacionado con la formación de los anillos quelato. Pero en los dos casos en que la bidesprotonación tiene lugar es cuando menos se modifica este parámetro en comparación con la media encontrada para las distintas moléculas de los respectivos ligandos libres. Considerando que en los ligandos monodesprotonados el enlace C2-N3 es más corto que en los ligandos libres, el que se mantenga invariable para los ligandos bidesprotonados es coherente con la deslocalización de la carga generada por pérdida del protón en N2 (que genera una elongación de este enlace, compensando el acortamiento del mismo por formación del anillo quelato).

En la Tabla III.21 se comparan algunas longitudes de enlace relevantes en los tiosemicarbazonatos del compuesto (VI) con las correspondientes al ligando libre, cuya estructura se discutió en el apartado III.2.1. Las variaciones que se producen en el ligando monodesprotonado y en el bidesprotonado tienen, en general, la misma tendencia, aunque no siempre el mismo grado. Por ejemplo, la distancia C1-S no varía al pasar del ligando libre al ligando monodesprotonado, pero aumenta considerablemente al compararla con el ligando bidesprotonado. Lo mismo sucede con la distancia C1-N1. También se observa como el enlace C1-N2 adquiere una cierta componente de doble enlace en el ligando bidesprotonado, y como la disminución de la longitud de dicho enlace es menos notoria en el ligando monodesprotonado. Todo esto es coherente con la desprotonación de N2 para L². También se observa una disminución en la longitud del enlace C3-O1 en los dos ligandos tiosemicarbazonato, y la disminución del enlace C2-C4 (por deslocalización de la carga generada sobre el O1).

Tabla III.21 - Longitudes de enlace (Å) en la estructura de $H_2\alpha OFTSC \cdot H_2O y$ en los tiosemicarbazonatos del compuesto (VI).

		(\	(1)
	H ₂ αOFISC·H ₂ O	Ľ	L ²⁻
C1-S	1.693(3)	1.695(2)	1.738(2)
C1-N1	1.307(4)	1.304(3)	1.338(3)
C1-N2	1.374(3)	1.357(3)	1.323(3)
N2-N3	1.355(3)	1.357(3)	1.357(2)
C2-N3	1.300(3)	1.294(3)	1.299(3)
C2-C3	1.501(4)	1.527(3)	1.518(3)
C3-O1	1.319(3)	1.281(3)	1.290(3)
C2-C4	1.456(4)	1.428(3)	1.440(3)

En la Tabla III.22 se recogen los enlaces de hidrógeno correspondientes a la estructura cristalina del complejo (I) y se representan en la Figura III.44. Esta estructura presenta 5 enlaces de hidrógeno intermoleculares, en los cuales los átomos N11, N21 y N22 actúan como dadores. El hidrógeno del átomo N22 ha sido localizado y refinado, no modelado. La asignación de este hidrógeno sobre el N22 y no sobre el N12 se ve confirmada por los enlaces de hidrógeno que involucran a estos átomos; así, el átomo N22 sólo puede actuar como dador de un enlace de hidrógeno, con el átomo O13 (que se halla a 2.698(3) Å) de una molécula vecina.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O22 ⁱ	0.77(4)	2.27(3)	2.855(3)	133(3)
N11-H11B…O13 [#]	0.90(3)	2.01(3)	2.913(3)	176(3)
N21-H21A…N12 ⁱⁱⁱ	0.77(4)	2.47(4)	3.224(3)	165(3)
N21-H21B…O23 [™]	0.84(3)	2.05(3)	2.844(3)	158(3)
N22-H22…O13 ^v	0.86(4)	1.83(4)	2.698(3)	176(3)

Tabla III.22 - Enlaces de hidrógeno (Å y °) del complejo [Ga(HCBSC)(CBSC)] (I).

Operaciones de simetría: ¹-x+1, -y, -z; ⁱⁱ x, y, z-1; ⁱⁱⁱ x-1, y, z; ^{iv} -x, y+1/2, -z+1/2; ^v -x, -y, -z+1.

Figura III.44 - Enlaces de hidrógeno del complejo (I).

A su vez, el átomo N12 actúa como aceptor de un átomo de H del N21 de otra molécula del complejo. Estos enlaces intermoleculares generan una red tridimensional infinita, ilustrada en la Figura III.45.

Figura III.45 - Estructura supramolecular del complejo (I).

En la Tabla III.23 se recogen los enlaces de hidrógeno presentes en la estructura cristalina del complejo (II), y se representan en las Figuras III.46 (donde se muestran los enlaces de hidrógeno intermoleculares entre unidades de complejo catiónico) y III.47 (donde se muestran los enlaces entre el complejo, el anión nitrato y las moléculas de EtOH).

Como puede apreciarse, en la estructura cristalina del complejo (II), la mayoría de los enlaces de hidrógeno se establecen entre el complejo catiónico y los aniones NO_3^- o las moléculas de disolvente presentes en la estructura.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
01S-H1S…012	0.71(4)	2.30(4)	2.958(3)	154(5)
02S-H2S…01C	0.78(4)	2.00(4)	2.774(3)	177(4)
N11-H11A…O13 ⁱ	0.86	2.09	2.892(3)	155.3
N11-H11B…O22 ⁱⁱ	0.86	2.21	2.889(3)	135.5
N12-H12…O2S	0.86	2.03	2.661(3)	129.7
N14-H14…O23 ⁱⁱⁱ	0.86	2.60	3.072(3)	115.9
N21-H21C…O1S ^{iv}	0.86	2.05	2.841(4)	152.1
N21-H21D…O1B ^v	0.86	2.13	2.955(3)	159.6
N22-H22…O1A ^v	0.86	2.18	2.863(3)	136.1
N24-H24…O1A ^{vi}	0.86	2.12	2.947(3)	161.3
N24-H24…O1C ^{vi}	0.86	2.39	3.080(3)	138.2

Tabla III.23 - Enlaces de hidrógeno (Å y °) del complejo [Ga(H2INSC)2]NO3·2EtOH·1/3H2O (II).

ⁱ x+1, y, z; ⁱⁱ -x+1, -y, -z+1; ⁱⁱⁱ -x, -y, -z+1; ^{iv} -x, -y+1, -z+1; ^v -x+1, -y+1, -z+1; ^{vi} x, y, z-1.

Figura III.46 - Enlaces de hidrógeno entre unidades del complejo catiónico [Ga(H₂INSC)₂]⁺.

Figura III.47 - Enlaces de hidrógeno entre el complejo catiónico [Ga(H₂INSC)₂]⁺, NO₃⁻ y moléculas de EtOH.

Los enlaces de hidrógeno entre moléculas del complejo catiónico generan cadenas infinitas paralelas al eje a. Estas cadenas se unen en dobles cadenas paralelas mediante enlaces de hidrógeno que involucran a las moléculas de disolvente (el rol de las moléculas de agua de cristalización en la estabilización de la estructura no esta clara, ya que el alto grado de desorden que presentan hace difícil determinar dicho rol, aunque es posible que hagan de puente entre las distintas dobles cadenas, formando así planos infinitos paralelos al plano *ac*).

Finalmente, estas dobles cadenas forman una red tridimensional infinita (como la mostrada en la Figura III.48) mediante puentes nitrato.

En la Tabla III.24 se detallan los enlaces de hidrógeno presentes en la estructura cristalina del complejo (III), y se representan en la Figura III.49.

Figura III.48 - Estructura supramolecular del complejo (II).

Tabla III.24- Enlaces de hidrógeno (Å y °) del complejo [Ga(HαOFSC)(αOFSC)] (III).

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O13 ⁱ	0.78(4)	2.29(4)	3.013(4)	154(4)
N11-H11B…O23 ⁱⁱ	0.79(5)	2.28(5)	2.965(4)	145(4)
N21-H21A…O13 ⁱⁱⁱ	0.80(4)	2.15(4)	2.914(4)	160(3)
N21-H21B…O14 ^{iv}	0.92(5)	2.42(4)	2.788(4)	104(3)
N21-H21B…N12 ^{iv}	0.92(5)	2.13(5)	2.978(4)	152(4)
N22-H22…O24	0.799(18)	2.22(3)	2.724(3)	121(3)
N22-H22…N12 ^{iv}	0.799(18)	2.34(3)	3.043(4)	147(3)

¹x-1, y-1, z; ["] -x, -y, -z+1; ^{""} -x+1, -y+1, -z+2; [™] x, y+1, z.

Figura III.49 - Enlaces de hidrógeno del complejo (III).

En esta estructura hay sólo un enlace de hidrógeno intramolecular, el enlace N22-H22···O24, y 6 enlaces intermoleculares que se establecen con cuatro unidades del complejo neutro generadas por simetría. Todos estos enlaces contribuyen a la formación de capas infinitas paralelas al plano (101), salvo el enlace N11-H11A···O13ⁱ, que une estas capas formando una red tridimensional como la representada en la Figura III.50, estabilizada por interacciones de tipo π - π stacking, cuyos parámetros se recogen en la Tabla III.25.

Figura III.50 - Estructura supramolecular del complejo (III).

Tabla III.25 - Interacciones de	e tipo π-π stackin	g en la estructura de	el compuesto (III).
--	--------------------	-----------------------	---------------------

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	Cgl_Perp(Å)	CgJ_Perp(Å)	Slippage(Å)
Cg2-Cg5 ^v	4.0132	4.54	32.68	28.78	3.517	3.378	
Cg4-Cg6 ^{vi}	4.0924	7.14	31.22	30.86	3.513	3.500	
Cg5-Cg2 [∨]	4.0133	4.54	28.78	32.68	3.378	3.517	
Cg5-Cg5 [∨]	4.0197	0.00	29.76	29.76	3.489	3.489	1.995
Cg6-Cg4 ^{vi}	4.0924	7.14	30.86	31.22	3.500	3.513	
Cg6-Cg6 ^{vi}	3.9587	0.03	26.63	26.63	3.539	3.539	1.775

Anillo(1): Ga1 O11 C11 N12 N13; Anillo(2): Ga1 O12 C13 C12 N13; Anillo(4):Ga1 O22 C23 C22 N23; Anillo(5): O14 C14 C15 C16 C17; Anillo(6): O24 C24 C25 C26 C27. ^v 1-x, -y, 2-z; ^{vi} -x, 1-y, 1-z.

En la Tabla III.26 se recogen los enlaces de hidrógeno del complejo (IV), y se los representa en la Figura III.51. Dentro de la unidad asimétrica sólo se establecen 3 enlaces de hidrógeno: uno intramolecular, N2-H2···O4, y dos entre el complejo catiónico y los aniones nitrato presentes en la misma. Hay además 5 enlaces de hidrógeno intermoleculares que involucran aniones nitrato como aceptores. Estos aniones actúan como puentes entre distintas unidades del complejo catiónico, produciéndose un crecimiento de la estructura en dobles capas paralelas al plano ab, entre las cuales se acomodan los grupos bipiridilo. Esta estructura supramolecular se representa en la Figura III.52. Es posible que estas capas paralelas se unan formando enlaces de hidrógeno con las moléculas de agua que actuarían como puentes, pero no ha sido posible modelar y refinar estas moléculas debido al desorden que presentan (las ocupaciones de O1w, O2w y O3w son del 50, 50 y 60%, respectivamente).

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O1A ⁱ	0.86	2.08	2.933(4)	172.8
N1-H1A…O1B ⁱ	0.86	2.53	3.081(4)	122.4
N1-H1A…N1A ⁱ	0.86	2.63	3.401(5)	150.5
N1-H1B…O2A	0.86	2.16	2.977(5)	158.2
N2-H2…O2B	0.86	2.16	2.909(4)	145.8
N2-H2…O4	0.86	2.22	2.764(4)	120.7
05-H5A…01B ⁱⁱ	0.81(6)	1.80(6)	2.589(5)	166(6)
05-H5B…O2B ⁱⁱⁱ	0.72(5)	2.06(5)	2.758(5)	163(6)
05-H5A…N1A ⁱⁱ	0.81(6)	2.58(6)	3.231(5)	140(5)
05-H5A…01C ⁱⁱ	0.81(6)	2.64(6)	3.041(4)	112(5)
'x+1. v-1. z: " ->	(+1. v-1/2.	-z+1/2: " -	x+1. v+1/2.	-z+1/2.

Tabla III.26 - Enlaces de hidrógeno (Å y °) del complejo [Ga(HαOFSC)(bipy)H₂O](NO₃)₂·1.6H₂O (IV).

Figura III.51 - Enlaces de hidrógeno del complejo (IV).

Figura III.52 - Estructura supramolecular del complejo (IV).

En algunos sitios de la estructura podría darse una situación parecida a la de la Figura III.53, en la cual las moléculas de agua de cristalización podrían estar puenteando entre aniones nitrato, transformando entonces la estructura supramolecular del compuesto en una red tridimensional. También contribuyen a la estabilización de la estructura en forma de red infinita las interacciones de tipo π - π stacking cuyos parámetros se recogen en la Tabla III.27 y se representan en la Figura III.54, y que vinculan moléculas pertenecientes a planos distintos.

Figura III.53 - Distancias (Å) adecuadas para la formación de enlaces de hidrógeno entre moléculas de agua de cristalización desordenadas del compuesto (IV).

Tabla III.27 - Interacciones de tipo π - π stacking presentes en la estructura del compuesto (IV).

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	Cgl_Perp(Å)	CgJ_Perp(Å)	Slippage(Å)
Cg5-Cg6 ^{iv}	3.999(3)	2.99	19.45	16.49	3.834	3.771	
Cg6-Cg5 ^{iv}	3.999(3)	2.99	16.49	19.45	3.771	3.834	
Cg6-Cg6 ^v	3.655(3)	0.00	17.38	17.38	3.488	3.488	1.092

Anillo(5): N4 C8 C9 C10 C11 C12. Anillo(6): N(5) C13 C14 C15 C16 C17.^{IV} 1-x, -y, 1-z; ^V 2-x, -y, 1-z.

Figura III.54 - Interacciones de tipo π - π stacking en la estructura del compuesto (IV).

En la Tabla III.28 se detallan los enlaces de hidrógeno del complejo (V). En esta estructura se mantienen, en ambas moléculas de la unidad asimétrica, los enlaces de hidrógeno intramoleculares presentes en el ligando libre entre el átomo N2 del resto semicarbazona y el átomo O4 del anillo furanosilo. Se establecen además 6 enlaces de hidrógeno entre moléculas del catión complejo [Ga(H α OFSC)(H₂O)₂Cl]⁺, como se muestra en la Figura III.55, que generan una red tridimensional infinita que se representa en la Figura III.56. Dicha red se ve estabilizada por enlaces de hidrógeno no clásicos entre el catión complejo y los aniones cloruro no coordinados, y por la existencia de dos tipos de interacciones π - π stacking entre los anillos furanosilo (cuyos parámetros se detallan en la Tabla III.29), como se muestra en la Figura III.57.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
026-H13A…Cl3 ⁱ	0.829(19)	2.19(2)	3.002(5)	167(6)
026-H13B…013 ⁱ	0.78(6)	1.85(6)	2.612(6)	170(7)
015-H15A…Cl4 ⁱⁱ	0.82(2)	2.26(3)	3.072(5)	169(8)
015-H15B…O23 ⁱⁱ	0.75(7)	1.95(7)	2.693(6)	173(8)
	'x-1, y, z;	" x+1, y, z		

Tabla III.28 - Enlaces de hidrógeno (Å y °) del complejo [Ga(HαOFSC)(H₂O)₂Cl]Cl (V).

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
016-H16A…Cl4	0.91(6)	2.03(6)	2.921(5)	169(5)
O16-H16B…O22	0.75(6)	2.02(7)	2.663(6)	144(7)
025-H17A…012	0.83(2)	1.91(3)	2.694(6)	156(6)
O25-H17B…Cl3	0.98(6)	2.02(6)	2.995(5)	173(5)
N11-H24A…Cl2 ⁱⁱⁱ	0.86	2.61	3.350(5)	145.4
N11-H24B…Cl3 ^{iv}	0.86	2.40	3.192(5)	152.9
N11-H24A…O13 ⁱⁱⁱ	0.86	2.70	3.255(7)	123.6
N22-H25…O24	0.86	2.15	2.696(6)	121.3
N22-H25…Cl4 ^v	0.86	2.51	3.238(5)	143.1
N12-H27…O14	0.86	2.14	2.708(6)	122.9
N12-H27…Cl3 ^{iv}	0.86	2.50	3.239(5)	144.7
N21-H29A…O26 ^{vi}	0.86	2.12	2.967(7)	168.1
N21-H29B…Cl4 ^v	0.86	2.30	3.113(5)	157.8

Tabla III.28 (continuación)- Enlaces de hidrógeno (Å y °) del complejo [Ga(H α OFSC)(H₂O)₂Cl]Cl (V).

ⁱⁱⁱ x, -y+1/2, z+1/2; ^{iv} -x+2, y+1/2, -z+3/2; ^v -x+1, y-1/2, -z+3/2; ^{vi} -x+1, -y, -z+1

Figura III.55 - Enlaces de hidrógeno entre moléculas del complejo catiónico [Ga(HαOFSC)(H₂O)₂Cl]⁺.

Figura III.56 - Estructura supramolecular del compuesto (V).

Tabla III.29 - Interacciones de tipo π - π stacking en la estructura del compuesto (V).

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	Cgl_Perp(Å)	CgJ_Perp(Å)
Cg(3)-Cg(6) ^{viii}	3.630(5)	0.96	22.15	22.40	3.356	3.362
Cg(3)-Cg(6) ^{iv}	3.728(5)	0.96	28.62	28.26	3.284	3.273
Cg(6)-Cg(3) ^v	3.630(5)	0.96	22.40	22.15	3.362	3.356
Cg(6)-Cg(3) ^{vii}	3.729(5)	0.96	28.26	28.62	3.273	3.284

Anillo(3): O14 C14 C15 C16 C17; Anillo(6): O24 C24 C25 C26 C27. ^{iv} -x+2, y+1/2, -z+3/2; ^v -x+1, y-1/2, -z+3/2; ^{vii} 2-x, -1/2+y, 3/2-z; ^{viii} 1-x, 1/2+y, 3/2-z.

Figura III.57 - Enlaces de hidrógeno entre moléculas del catión complejo y aniones cloruro no coordinados, e interacciones de tipo π - π stacking en el compuesto (V). ^{vii} 2-x, -1/2+y, 3/2-z; ^{viii} 1-x, 1/2+y, 3/2-z.

Por último, en la Tabla III.30 se recogen los parámetros de los enlaces de hidrógeno presentes en el compuesto [Ga(H α OFTSC)] (α OFTSC)]·H₂O (VI) y se representan en la Figura III.58.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11B…N21 ⁱⁱ	0.86	2.39	3.240(3)	168.4
N11-H11A…O22 ⁱⁱⁱ	0.86	2.35	2.862(3)	118.6
N11-H11A…O1W ⁱ	0.86	2.04	2.822(7)	151.2
N12-H12…O13	0.71(3)	2.12(3)	2.677(3)	136(3)
N12-H12…O1W ⁱ	0.71(3)	2.26(3)	2.866(6)	145(3)
N12-H12…O2W	0.71(3)	2.66(3)	3.235(6)	140(3)
N21-H21A…O21 ^{iv}	0.86	2.07	2.842(3)	148.4

Tabla III.30 - Enlaces de hidrógeno (Å y °) del compuesto (VI).

ⁱx-1/2, -y+1/2, z-1/2; ⁱⁱ -x+1, -y, -z+2; ⁱⁱⁱ -x+1/2, y-1/2, -z+3/2; ^{iv} x+1/2, -y+1/2, z+1/2.

Los cuatro enlaces de hidrógeno intermoleculares entre complejos generan una estructura infinita de planos plegados paralelos al plano ($10\overline{1}$), como la representada en la Figura III.59.

Figura III.59 - Estructura supramolecular del compuesto (VI).

Estos planos se apilan de manera eficiente gracias a su plegamiento. Por otra parte, es altamente probable que la estructura supramolecular del compuesto sea una red tridimensional, ya que existen múltiples interacciones de tipo π - π stacking (cuyos parámetros se detallan en la Tabla III.31) estabilizando la estructura supramolecular del compuesto (VI). En la Figura III.60 se representan dos de estas interacciones que, al igual que las demás, involucran moléculas de complejo pertenecientes a distintos planos.

Tabla III.31 - Interacciones de tipo π - π *stacking* en la estructura del compuesto (VI).

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	Cgl_Perp(Å)	CgJ_Perp(Å)
Cg3-Cg6 ^{vi}	4.026(2)	10.17	39.11	38.43	3.153	3.123
Cg5-Cg6 ^{vi}	3.640(2)	11.85	26.18	29.36	3.172	3.266
Cg6-Cg3 ^v	4.025(2)	10.17	38.43	39.11	3.123	3.153
Cg6-Cg5 ^v	3.640(2)	11.85	29.36	26.18	3.266	3.172

Anillo(3): Ga O11 C13 C12 N13; Anillo(5): O13 C14 C15 C16 C17; Anillo(6): O23 C24 C25 C26 C27. ^v -1/2+x, 1/2-y, 1/2+z; ^{vi} 1/2+x, 1/2-y, -1/2+z.

Figura III.60- Interacciones Cg3-Cg6^{vi} y Cg5-Cg6^{vi} de tipo π - π stacking en la estructura del compuesto (VI).

III.3- ESPECTROSCOPIA VIBRACIONAL IR

En la Tabla III.32 se recogen las asignaciones correspondientes a los espectros infrarrojo de los ligandos semi- y tiosemicarbazona derivados de α -oxo-ácidos , así como las asignaciones de los espectros de los complejos de Ga(III) correspondientes a dichos ligandos. En las Figuras III.61 y III.62 se muestran los espectros del ligando H₂CBSC·1/2H₂O y del complejo [Ga(HCBSC)(CBSC)], respectivamente.

Figura III.61 - Espectro infrarrojo (500 a 4000 cm⁻¹) del ligando H₂CBSC·1/2H₂O.

Figura III.62 - Espectro infrarrojo (500 a 4000 cm⁻¹) del complejo [Ga(HCBSC)(CBSC)]

En los espectros IR de estos ligandos se observan varias bandas de intensidad media en la región de 3500 a 3100 cm⁻¹, que se asignan a los modos de vibración $\nu_{as}(NH_2)$, $\nu_s(NH_2)$ y $\nu(N-H)$. Aunque en la Tabla III.32 se asignan las bandas más intensas de esta región, el número de bandas presentes en esta zona suele ser mayor (ver Apéndice 3), y varía de un ligando a otro debido a la
Tabla III.32 – Asignaciones	corresponc	lientes a liga	ndos semi- y tio	semicarbazon	a derivados de c	۲-oxo-ácidos	y sus corres	pondiente	es comple	ejos de Ga	(111).	
	N _{as} (NH ₂)	v _s (NH ₂)	(H-N)^	V(D-H)	v(C=O) _{carboxilico} / v(C=O) _{carboxilato}	v(c=o)/v(c=s)	v(C=N)	δ(NH ₂)	v(NO ₃) ^c	v(c-ol) / v(c-o ⁻)	(N-N)v	Furanosilo
H ₂ CBSC ^[5]	3506, 3475	3326	3199	3150-3400	1720	1693	1656	1580		1310	956	
[Ga(HCBSC)(CBSC)]	3525	3456, 3535, 334	9, 3279, 3231, 3214		1694	1673, 1647	1619, 1608	1550, 1509		1336 1	1037, 1028	
H ₂ PSC ^[5]	3470, 3441	3304	3237	3150-3350	1749	1711	1685	1576		1297	966	
[Ga(HPSC)(PSC)]	3475	3320, 3	3287, 3230		1684	1658	1628	1519		1337	1098	
H ₂ αOFSC ^{I5]}	3491	3389	3219, 3253	3100-3400	1744	1720	1684	1598		1264	974	915, 886, 833,758
[Ga(HαOFSC)(αOFSC)]	3546	3444, 3339, 326	0, 3232, 3173, 3139		1708	1670	1637	1508		1290 1	L064, 1018	925, 885, 835, 814
[Ga(HαOFSC)(bipy)(H ₂ O)](NO ₃) ₂ ·H ₂ O	3575	3434, 3353, 3278	3, 3211, 3126, 3093 ^b		1702	1676	1646	1500	1384 vs	1314	1022	922, 882, 813, 778
Ga((HαOFSC) ₂ NO ₃ ·3H ₂ O	3534	3370, 326	4, 3151, 3124	S∕.	1702	1682	1647	1500	1384 vs	1321	1183	
Ga((HαOFSC)₂Cl	3558	3474, 3400, 334	1, 3312, 3234, 3146		1717	1676	1644	1505		1315	1017	922, 885, 814, 770
Ga(HαOFSC) ₂ AcO	3585	3481, 3441, 3	3303, 3230, 3147		1714	1680	1647	1515		1308	1065	923, 885, 813, 762
H ₃ INSC ^[6]	3483	3382	3270/ 3288	3100-3400	1716 ^a	1697 ^a	1662 ^a	1551		1281	1012	
[Ga(HINSC) ₂]NO ₃ ·EtOH	3554	3454, 3338, 3	3260, 3192, 3132		1709?	1673	1643	1506		1296	1045	
H ₂ αOTFSC ^[5]	3469	3306	3175	3150-3350	1726	844	1639	1592		1269	987	920, 885, 821, 760
[Ga(HαOTFSC)(αOTFSC)]·2H ₂ O	≈3540	3420, 3340, 3	312, 3250, 3157 ^b	17.	28, 1716, 1704, 1687	833	1599	1536		1317	1028	916, 885, 818, 761
Ga(HαOTFSC) ₂ (NO ₃)·3H ₂ O	≈3550	3511, 3430, 334	2, 3199, 3188, 3157	17	14, 1696, 1686, 1672	837	1616	1554	1384 vs	1298	1032	926, 885, 821, 772
H ₃ INTSC ^{16]}	3420	3314	3290, 3250	2890-3163	1698	850	1613	1586		1277	957	
Ga(H ₂ INTSC) ₂ CI	3626	3535, 3455, 3	3407, 3322,3184		1676	822	1635, 1610	1550		1304	964	
		g										

^a Colapsadas en una sola banda con varios hombros. ^b Superpuestas con las señales del H₂O.^c Asignada al modo vibracional v3(E')(vd(NO))

presencia de enlaces de hidrógeno que dan lugar en muchos casos a un desdoblamiento de estas bandas. Además, en la misma región aparecen las bandas asociadas al grupo C–OH carboxílico, y al menos en los casos de los ligandos $H_2CBSC \cdot 1/2H_2O$ y $H_2\alpha OTFSC \cdot H_2O$, la presencia de moléculas de agua de cristalización en su estructura daría lugar a la aparición en esta zona de las bandas correspondientes al agua no coordinada. Además de los modos de vibración anteriormente citados, los espectros IR de todos estos ligandos presentan en común las bandas correspondientes a los siguientes modos de vibración:

- $v_{as}(NH_2)$, $v_s(NH_2)$, v(N-H) y v(O-H), en la zona del espectro comprendida entre 2900 y 3500 cm⁻¹, donde se encuentran en todos los casos varias bandas superpuestas.

ν(C=O) del grupo carboxílico, que aparece en el rango de 1700 a 1750 cm⁻¹.

- ν (C=O) del resto semicarbazona (en el rango 1690-1720 cm⁻¹); y ν (C=S) en el caso de los ligandos tiosemicarbazona (840-860 cm⁻¹),

- ν (C=N) en el rango 1650-1690 cm⁻¹, tanto para ligandos semi- como tiosemicarbazona, salvo para el ligando H₃INTSC, que presenta esta banda a 1613 cm⁻¹.

- $\delta(NH_2)$, correspondiente al pandeo del grupo $-NH_2$ terminal de las cadenas semi- y tiosemicarbazonas, que aparece en el rango 1550-1590 cm⁻¹,

- $v(C-OH)_{carboxílico}$, en el rango 1260-1310 cm⁻¹,

- ν(N-N), en el rango 950-1010 cm^{-1 [7]}.

Por la mismas razones expuestas para los ligandos libres, es difícil asignar las bandas de la región que va de 2900 a 3600 cm⁻¹ en los espectros de los complejos y confirmar la desaparición de la banda asignada al modo de vibración v(O-H).

La desprotonación del grupo carboxílico y la coordinación al metal a través del O en todos estos complejos (con la consiguiente disminución de la longitud del enlace C3-O2, confirmada por difracción de rayos X para las estructuras [Ga(HCBSC)(CBSC)], [Ga(H α OFSC)(α OFSC)], $[Ga(H\alpha OFSC)(bipy)(H_2O)]$ $(NO_3)_2 \cdot H_2O_7$ $[Ga(H\alpha OFSC)CI(H2O)_2]CI,$ $[Ga(H_2INSC)_2]NO_3 \cdot EtOH,$ [Ga(HαOTFSC)(αOTFSC)]·2H₂O) se pone de manifiesto en el desplazamiento a energías mayores de la banda correspondiente a v(C-OH), con variaciones de hasta +57 cm⁻¹. La misma correlación entre longitudes de enlace y constantes de fuerza se encuentra para el grupo C=O (C=S) del resto semicarbazona (tiosemicarbazona) al pasar de los ligandos libres a los complejos: la elongación del enlace C1-O1 (C-S1) se corresponde con una disminución del número de onda. Asimismo, la banda correspondiente al modo v(C=N) se desplaza a números de onda menores al pasar de los ligandos libres a los complejos, reflejando el ligero aumento de la distancia interatómica C=N en los complejos del apartado III.2.2 al ser comparados con los correspondientes ligandos libres. También puede observarse el desplazamiento a mayores números de onda del modo v(N-N), siendo este cambio coherente con la ligera disminución de la longitud de enlace que tiene lugar para este grupo al formarse los complejos, como puede comprobarse en la Tabla III.20. El que estas señales se comporten del mismo modo tanto para los complejos cuyas estructuras fueron estudiadas por difracción de rayos X de monocristal como para las que no, nos permite inferir que el modo de coordinación de los ligandos semi- y tiosemicarbazonato es el mismo para todos los complejos estudiados en este apartado, en lo que se refiere al grupo carboxilato presente en ellos.

La disminución del número de onda del modo $\delta(NH_2)$ parece estar relacionada con la pérdida del enlace de hidrógeno intramolecular N1-H···N3 presente en todos los ligandos libres. Dicho enlace de hidrógeno impone una fuerte restricción a la deformación del grupo –NH₂, restricción que desaparece al cambiar la conformación en torno al enlace C1-N2 (que posibilita la coordinación del metal de manera simultanea a través de los átomos O1 y N3, como ya se discutiera en el apartado III.2.2). De no ser por este efecto, lo esperable sería un desplazamiento de la banda $\delta(NH_2)$ a mayores energías, coherente con la evolución a la forma enolato de la cadena semicarbazona, posterior a la coordinación al metal. La redistribución electrónica que esta evolución conlleva sí se pone de manifiesto en la menor longitud de los enlaces C1-N1 en todos los complejos, comparada con la de los ligandos libres. Asimismo, el aumento de la densidad electrónica en las cadenas semicarbazona provoca un aumento en el número de onda a que aparecen las bandas correspondientes a los modos vibracionales $v_{as}(NH_2)$ y $v_s(NH_2)$. Lo mismo rige para los pares tiosemicarbazona – tiosemicarbazonato estudiados.

En el caso de los compuestos $[Ga(H\alpha OFSC)(bipy)(H_2O)](NO_3)_2 \cdot H_2O$, $Ga(H\alpha OFSC)_2NO_3 \cdot 3H_2O$, $[Ga(H_2INSC)_2]NO_3 \cdot EtOH$ y $Ga(H\alpha OTFSC)_2(NO_3) \cdot 3H_2O$, la banda mas intensa del espectro es la correspondiente al ion nitrato no coordinado, que aparece a 1384 cm⁻¹, asignada al modo $v3(E')(vd(NO))^{[8]}$.

III.4 – ESPECTROSCOPIA DE RMN DE ¹H Y ¹³C

La asignación de los espectros correspondientes a los ligandos semi- y tiosemicarbazona utilizados en este trabajo y que han podido ser estudiados por resonancia magnética nuclear de ¹H y ¹³C se basa en la realizada previamente para algunos de estos ligandos^[9,10], para ligandos tiosemicarbazona análogos^[11,12,13] o para algunos compuestos relacionados^[14,15]. Los espectros se recogen en el Apéndice 4. En este apartado se discuten los espectros de RMN de ¹H y ¹³C de semicarbazonas derivadas de algunos α -oxo-ácidos y algunos de sus complejos correspondientes. La no disponibilidad de muestra en el caso de algunos complejos, tanto derivados de semi- como tiosemicarbazonas, hace que no aparezcan en este apartado aunque hayan sido discutidos en la sección estructural.

Como se ilustra en el esquema 1, las semicarbazonas y tiosemicarbazonas no sustituidas tienen en común dos grupos funcionales de interés para la resonancia magnética de ¹H: el grupo azometínico N^2 -H y el grupo $-N^1H_2$ terminal.

- Las señales correspondientes a los hidrógenos del grupo $-N^{1}H_{2}$ terminal, presentan diferencias al comparar semicarbazonas con sus análogos tiosemicarbazona. En el caso de las semicarbazonas, generalmente, la libre rotación a temperatura ambiente en torno al enlace C-N del grupo cetoamida hace que los dos núcleos de H den lugar a una única señal muy ancha. En cambio, para las tiosemicarbazonas, generalmente, para cada grupo $-N^{1}H_{2}$ terminal aparecen dos señales anchas que integran por un protón cada una.

- Tanto para los ligandos semicarbazona como para las tiosemicarbazonas, la señal correspondiente al H localizado sobre el N azometínico aparece, salvo excepciones, en el rango de 9.43 a 10.62 ppm.

Las asignaciones realizadas para los espectros de ¹H de los ligandos semicarbazona derivados de α -oxo-ácidos (H₂PSC, H₂CBSC, H₃INSC y H₂ α OFSC) se recogen en la Tabla III.33. Como puede apreciarse, las principales señales aparecen con desplazamientos muy similares, diferenciándose el ligando H₃INSC en la multiplicidad de la señal correspondiente a los hidrógenos del grupo $-N^{1}H_{2}$. Como ya se dijo para las semicarbazonas en general, la libre rotación a temperatura ambiente en torno al enlace C-N del grupo cetoamida hace que los dos núcleos de H den lugar a una única señal

muy ancha. En el caso de los ligandos discutidos en este apartado, esta generalidad sólo se cumple para H₃INSC, presentando los ligandos H₂PSC, H₂CBSC y H₂ α OFSC dos señales anchas con integración igual a 1. El compuesto H₃INSC posee además un sustituyente indol, cuyo grupo N⁴-H da lugar a la aparición, a campo bajo, de una señal singlete adicional con un desplazamiento de 11.40 ppm).

Tabla III.33 – Asignaciones de los espectros de RMN d	e ⁺H de H₂PSC, H₂CBSC, H₃INSC y H₂αOFSC, en DMSO-d
---	--

	COO ² H	N ² H	N^1H_2	R
H₂PSC	12.00 (1) s.a.	9.89 (1) s.	7.30 (1) s.a.	1.96 (3) s. [C ⁴ H ₃]
			6.67 (1) s.a.	
H₂CBSC	11.86 (1) s.a.	10.08 (1) s.	7.33 (1) s.m.a.	2.52 (¿) c. ³ J=7.5 [C⁴H₂]*
			6.66 (1) s.m.a.	0.89 (3) t. ³ J=7.5 [C ⁵ H ₃]
H₃INSC	12.30 a (≈ 0.3)	10.62(1) s.	6.56 s.m.a. (2)	11.40 (1) s. $[N^{4}H]$, 8.14(1) d. ³ J=7.6 $[C^{6}-H]$, 7.79(1) d. ³ J=2.8 $[C^{5}-H]$
				7.41(1) d. ${}^{3}J$ =7.9 [C ⁹ - H], 7.15(1) t. ${}^{3}J$ =7.0 [C ⁸ - H], 7.09(1) t. ${}^{3}J$ =7.1 [C ⁷ - H]
H₂αOFSC	12.43 (1) s.m.a.	10.04 (1) s.	7.39 (1) s.m.a.	7.99 (1) d. ³ J = 1.8 [C ⁵ - H], 7.23 (1) d. ³ J = 3.6 [C ⁷ - H],
			7.05 (1) s.m.a.	6.69 (1) d.d. ³ J = 1.9, ³ J = 3.6 [C⁶-H]
Señal parcial	mente solapada co	n la correspon	diente al DMSO.	

Los protones correspondientes a los grupos carboxílicos de los cuatro ligandos aparecen en el rango de 11.8 a 12.5 ppm, y son en general singletes anchos. El intercambio que sufren estos protones ácidos con las trazas de agua contenidas en las muestras se refleja, por ejemplo, en la baja integración de esta señal en el caso de H₃INSC, y en lo ancho de la señal correspondiente al agua en este caso (ver Apéndice 4, Figura A4.1.3).

El que los ligandos H₂PSC, H₂CBSC y H₂ α OFSC se comporten de manera diferente al ligando H₃INSC y al resto de las semicarbazonas estudiadas en esta memoria en lo relativo a la señal correspondiente a los hidrógenos del grupo $-N^1H_2$, podría tener relación con la existencia de un enlace de hidrógeno intramolecular N¹-H···N³ (cuya existencia no estaría relacionada tanto con una rotación restringida en torno al enlace C¹-N¹ –como en el caso de las tiosemicarbazonas- como con la mayor basicidad del N³, en comparación con la basicidad de dicho átomo en el resto de las semicarbazonas estudiadas: Téngase en cuenta el menor efecto aceptor de electrones del radical furanosilo en H₂ α OFSC en comparación con el indol en H₃INSC o el 2 hidroxi-benceno de los ligandos tipo salicilaldehído (Apartado IV.4), así como el ligero efecto dador de electrones de los radicales alquílicos de H₂PSC y H₂CBSC). En la Figura III.63 se ilustra la diferencia en las señales debidas al grupo $-N^{1}H_{2}$ para los ligandos H₂PSC y H₃INSC (también a campos bajos se resalta la presencia de las señales debidas al protón ácido del grupo carboxílico de ambos ligandos, y se destaca la señal correspondiente al grupo N²-H).

Figura III.63 – Señales correspondientes a los protones de los grupos – COO^2 -H, N²-H y –N¹H₂ para (a) H₂PSC y (b) H₃INSC, en DMSO-d₆.

Como se aprecia en la figura, el protón del grupo N²-H del ligando H₃INSC está algo más desapantallado que el del ligando H₂PSC, lo cual puede tener relación con el carácter aceptor de carga del grupo indol, que puede deslocalizar la densidad electrónica de manera eficiente, provocando así la mayor acidez del grupo carboxílico y el desapantallamiento del grupo N²-H.

En la Tabla III.34 se recogen las asignaciones realizadas sobre los espectros RMN de ¹³C correspondientes a los ligandos derivados de compuestos α -oxo-ácidos, ateniéndose a la numeración convenida en la tabla anterior. Como puede apreciarse en esta tabla, el desplazamiento de las señales correspondientes a los carbonos C¹ y C³ muestra una regularidad mayor que la seguida por las señales de los carbonos C². Esto puede deberse a la influencia del radical R sobre la densidad electrónica del grupo imínico. La señal a campo más bajo corresponde al átomo de carbono carboxílico.

Tabla III.34 – Asignaciones correspondientes a los espectros de RMN de ¹³C para los ligandos H2PSC, H2CBSC,H3INSC y H2 α OFSC, en DMSO-d6.

En la Tabla III.35 se detallan las asignaciones realizadas sobre los espectros de RMN de ¹H de los complejos derivados de los ligandos anteriormente discutidos, para los cuales fue posible realizar su estudio en disolución: [Ga(HPSC)(PSC)] y [Ga(HCBSC)(CBSC)]; también se incluyen, con fines comparativos, las asignaciones de las señales más importantes de los respectivos ligandos.

Tabla III.35 – Asignación de las señales más relevantes de los espectros de RMN de ¹H correspondientes a los complejos [Ga(HPSC)(PSC)] y [Ga(HCBSC)(CBSC)], en DMSO-d₆.

	COO ² H	N ² H	N^1H_2	R
H₂PSC	12.00 (1) s.a.	9.89 (1) s.	7.30 (1) s.a., 6.67 (1) s.a.	1.96 (3) s. [C ⁴ H ₃]
[Ga(HPSC)(PSC)]	11.88 (≈0.1) s.m.a. *	9.87 (≈0.1) s. *	7.24 (4) s.a.	2.14 (6) s. [C ⁴ H ₃]
H₂CBSC	11.86 (1) s.a.	10.08 (1) s.	7.33 (1) s.m.a., 6.66 (1) s.m.a.	2.52 (2) c. ${}^{3}J$ =7.5 [C ⁴ H ₂] ⁺ , 0.89 (3) t. ${}^{3}J$ =7.5 [C ⁵ H ₃]
[Ga(HCBSC)(CBSC)]	11.84 (≈0.1) *	10.05 (≈0.2) *	7.23 s.m.a. (4)	2.60 (2) c. ${}^{3}J$ =7.3 [C ${}^{4}H_{2}$] ⁺ , 1.07 (3) t. ${}^{3}J$ =7.3[C ${}^{5}H_{3}$]

+ Señal parcialmente solapada con la correspondiente al DMSO-d₆. * Intercambia con el agua. Esquemas de numeración:

En las Figuras III.64 y III.65 (donde se muestran los espectros de RMN de ¹H de los ligandos H_2PSC y H_2CBSC , respectivamente, y de sus complejos con Ga (III)) podemos apreciar que en disolución de DMSO-d₆ estos complejos se disocian parcialmente, generando espectros en los que aparecen

restos de señales coincidentes con los grupos $-N^2H$ y $-O^2H$, con valores de δ muy parecidos a los de los ligandos libres (generalmente, estas señales en los complejos se desplazan a campos más bajos).

Figura III.64 – Espectros de RMN de ¹H (a) del complejo [Ga(HPSC)(PSC)] y (b) del ligando H₂PSC, en DMSO-d₆.

Figura III.65 – Espectros de RMN de ¹H para (a) el complejo [Ga(HCBSC)(CBSC)] y (b) el ligando H₂CBSC, en DMSO-d₆.

El intercambio con el agua, sumado a la desprotonación inicial del grupo carboxílico, hace que las señales correspondientes a dichos grupos en los complejos desaparezcan en el espectro. Una de las diferencias entre los complejos en discusión y sus respectivos ligandos libres se encuentra en la multiplicidad de las señales correspondientes al grupo $-N^1H_2$; mientras que en los ligandos libres, como ya se ha mencionado, aparecen como dos singletes anchos, en los complejos estas señales se colapsan, dando lugar a un singlete ancho que integra por dos protones, con un desplazamiento parecido al de la señal más desapantallada presente en los ligandos libres. Esto puede explicarse por la coordinación simultánea al metal de los átomos O¹, N³ y O², que no permite la existencia del enlace intramolecular N¹-H…N³ (enlace responsable en los ligandos libres de la no identidad magnética de los protones del –NH₂ terminal del resto semicarbazona). Por otra parte, la cesión de carga al metal a través del grupo vecino C \cong O hace que disminuya la posibilidad de que haya un orden de enlace mayor a uno para el enlace C¹-N¹, todo lo cual implica la equivalencia de los dos hidrógenos del grupo $-N^1H_2$. También se observa que, en ambos complejos, las señales correspondientes a los sustituyentes alquílicos de los ligandos se desplazan ligeramente a campo bajo, lo que puede atribuirse a la redistribución de carga en el ligando semicarbazona por efecto de la coordinación al metal.

En la Tabla III.36 se detallan las asignaciones realizadas sobre los espectro de RMN de ¹³C para los complejos [Ga(HPSC)(PSC)] y [Ga(HCBSC)(CBSC)].

Tabla III.36 – Asignaciones correspondientes a los espectros de RMN de ¹³C para los complejos[Ga(HPSC)(PSC)] y [Ga(HCBSC)(CBSC)] y sus ligandos correspondientes, en DMSO-d6.

	C ³	C ¹	C ²	C ⁴	C ⁵
H ₂ PSC	164.9	156.3	136.0	11.4	
	164.0	156.3	136.0	11.5	
	168.8	156.3	134.7	10.6	
H ₂ CBSC	164.6	156.4	140.4	17.7	10.0
	168.8	156.3	139.2	17.7	9.9
	163.6	156.3	140.3	18.5	
0²н 					
	R =	——C⁴I	H ₃ —	-C⁴H₂—	—C⁵H₃
	gando =	H₂PSC		H ₂ CBS	кС

La aparición de señales correspondientes al ligando libre junto con señales asignables a los complejos pone de manifiesto la disociación parcial que estos últimos sufren en disolución de DMSOd₆. Al comparar los espectros de ¹³C de los ligandos H₂PSC y H₂CBSC con los de los complejos de Ga(III) correspondientes, vemos que no se producen grandes variaciones en el valor de δ para las señales correspondientes a los grupos involucrados en la coordinación, aunque los cambios observados (por ejemplo, el desapantallamiento de aproximadamente 4 ppm experimentado por el carbono c³ del grupo carboxílico) son coherentes con la transferencia de carga del ligando al metal, produciéndose un ligero desapantallamiento de casi todas las señales.

III.5- Bibliografía

- ^[1] P.K. Chang, J. Org. Chem., **23 (12)**, 1958, 1951.
- ^[2] J.S. Casas, M.S. García-Tasende, J.Sordo, *Coord. Chem. Rev.*, **209**, 2000, 197.
- ^[3] L.J. Farrugia, ORTEP III for window, *J. Appl. Cryst.*, **30**, 1997, 565.
- ^[4] A. G. Orpen, *Acta Cryst.*, **B58**, 2002, 398.
- ^[5] S. Yu, S. Wang, Q. Luo, L. Wang, Z. Peng, X. Gao, *Polyhedron*, **12 (9)**, 1993, 1093.
- ^[6] P. Naumov, F. Anastasova, *Spectrochim. Acta, Part A*, **57**, 2001, 469.
- ^[7] A.K. Mishra, S.B. Mishra, N.K. Kaushik, *J. Coord. Chem.*, **60**, 2007, 1691.

^[8] K. Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds, fourth ed., Wiley, New York*, 1986, pp. 121.

^[9] P. Noblía, E.J. Baran, L. Otero, P. Draper, H. Cerecetto, M. González, O.E. Piro, E.E. Castellano, T. Inohara, Y. Adachi, H. Sakurai, D. Gambino, *Eur. J. Inorg. Chem.*, 2004, 322.

^[10] P. Noblía, M. Vieites, B.S. Prajón-Costa, E.J. Baran, H. Cerecetto, P. Draper, M. González, O.E. Piro,
E.E. Castellano, A. Azqueta, A. López de Ceráin, A. Monte-Vega, D. Gambino, *J. Inorg. Biochem.*, 99, 2005, 443.

^[11] V. Vrdoljak, D. Milić, M. Cindrić, D. Matković-Čalogović, D. Cinčić, *Polyhedron*, **26**, 2007, 3363.

^[12] I. Đilović, M. Rubčić, V. Vrdoljak, S. Kraljević Pavelić, M. Kralj, I. Piantanida, M. Cindrić, *Bioorg. Med. Chem.*, **16**, 2008, 5189.

^[13] M. Sen Sarma, S. Mazumder, D. Ghosh, A. Roy, A. Duthie, E.R.T. Tiekink, *Appl. Organomet. Chem.*, **21**, 2007, 890.

- ^[14] S.R. Salman, J.C. Lindon, R.D. Farrant, T.A. Carpenter, *Magn. Reson. Chem.*, **31**, 1993, 991.
- ^[15] T. Dziembowska, Z. Rozwadowski, A. Filarowski, P.E. Hansen, *Magn. Reson. Chem.*, **39**, 2001, S67.

IV - LIGANDOS DERIVADOS DE PRECURSORES TIPO SALICILALDEHÍDO Y ANÁLOGOS, Y COMPLEJOS DE Ga(III)

IV.1 - SÍNTESIS

IV.1.1 - Síntesis de ligandos semi- y tiosemicarbazona derivados de salicilaldehído y compuestos relacionados

Semicarbazona del salicilaldehído (H₂SSC): Se disolvieron 40 mmoles (4.50 g) del clorhidrato de semicarbazida en 75.0 mL de H₂0, y la disolución resultante se llevó a neutralidad con NaOH (ac) al 5%. Esta disolución se calentó en un baño de parafina a 95 °C y sobre ella se le agregó, gota a gota, una disolución de 38 mmoles de salicilaldehído (6.0 mL, δ =1.1464 g/mL) en 75.0 mL de EtOH. La suspensión blanca obtenida se mantuvo a reflujo durante 2 h adquiriendo tonalidad rojiza. Posteriormente se filtró el sólido obtenido y se recristalizó en una mezcla EtOH:H₂O

(1:1). Punto de fusión: 219 - 221 °C. Datos Analíticos (%): experimentales C 53.8, H 4.9, N 23.1; teóricos (calculados para $C_8H_9N_3O_2$) C 53.6, H 5.1, N 23.4.

De una reacción entre este ligando y la sal $In(NO_3)_3$ ·5H₂O (relación 1:1, realizada en MeOH a temperatura ambiente), precipitó un sólido incoloro adecuado para su estudio por difracción de rayos X de monocristal, resultando ser el ligando libre solvatado H₂SSC·1/2MeOH.

Semicarbazona del 2,4-dihidroxibenzaldehído (H₃XSSC): Sobre una suspensión de 14 mmoles

(2.76 g) de 2,4 dihidroxibenzaldehído en 50.0 mL de EtOH se agregó una disolución de 20 mmoles (2.22 g) de clorhidrato de semicarbazida en 15.0 mL de H_2O . La disolución resultante se dejó a reflujo durante 1 hora, obteniéndose un sólido amarillo pulverulento, que se filtró y secó. De las aguas madres de la reacción, por evaporación lenta del disolvente, se obtuvo un sólido cristalino de color amarillo pálido, apto para su estudio por difracción de rayos X de monocristal (estructura

cristalina correspondiente a $H_3XSSC \cdot 1/2H_2O$). Punto de fusión: > 180 °C (D). Datos Analíticos (%): experimentales C 47.1, H 5.0, N 19.8; teóricos (calculados para C₈H₁₀N₃O_{3.5}) C 47.1, H 4.9, N 20.6.

Semicarbazona del 2-hidroxi-1-naftaldehído (H₂NAFSC): Sobre una suspensión de 7.5 mmoles

(1.72 g) de 2-hidroxi-1-naftaldehído en 30.0 mL de EtOH se añadió una disolución de 10 mmoles (1.11 g) de clorhidrato de semicarbazida en 15.0 mL de H₂O. La suspensión resultante se agitó y calentó a reflujo durante 3 h. Se filtró el sólido color verde formado, y se secó a vacío. Punto de fusión: 224 -226 °C. Datos Analíticos (%): experimentales C 62.2, H 5.2, N 18.5; teóricos (calculados para C₁₂H₁₁N₃O₂) C 62.9, H 4.8, N 18.3.

La estructura cristalina de este compuesto ($H_2NAFSC \cdot 1, 5H_2O$) fue resuelta a partir de una muestra cristalina obtenida como producto secundario en una reacción de este ligando con TIMe₂(OH).

Bis-semicarbazona del 4-tert-butil-2,6-diformilfenol (H₃DBZSC): Se preparó una disolución de

3 mmoles (1.01 g) de 4-tert-butil-2,6-diformilfenol en 30.0 mL de MeOH, y sobre ésta se agregó una disolución de 10 mmoles (1.11 g) de clorhidrato de semicarbazida en 10.0 mL de H₂O. La disolución resultante se mantuvo a reflujo, con agitación magnética, durante 4 horas, transcurridas las cuales se aisló de la mezcla de reacción un sólido amarillo pulverulento que se secó a vacío. Punto de fusión > 180 °C (D).

ante 4 horas, ción un sólido HN OH NH2 on > 180 °C (D). OH_{NH_2} H2N

Datos Analíticos (%): experimentales C 48.7, H 7.1, N 23.3; teóricos (calculados para C₁₄H₂₀N₆O₃·HCl) C 47.1, H 5.9, N 23.5.

Tiosemicarbazona del salicilaldehído (H_2STSC): Sobre una disolución de 6 mmoles (1.22 g) de salicilaldehído en 30.0 mL de EtOH se añadieron 20.0 mL de una suspensión de 10 mmoles (0.91 g) de tiosemicarbazida en EtOH. La suspensión obtenida se calentó a reflujo y con agitación magnética durante 4 h. La disolución resultante se dejó reposar a temperatura ambiente, obteniéndose un sólido pulverulento de punto de fusión 226 -228 °C.

De una reacción entre H₂STSC y GaCl(AcO)₂ en relación molar 1:1, realizada en MeOH durante 4 h a reflujo, se aisló un sólido cristalino adecuado para su estudio por difracción de rayos X de monocristal, cuya estequiometría es la del

ligando libre, H_2 STSC. Datos Analíticos (%): experimentales: C 48.4, H 4.1, N 21.5, S 17.0; teóricos (calculados para C₈H₉N₃OS): C 49.2, H 4.6, N 21.5, S 16.4.

Tiosemicarbazona del 2,4-dihidroxibenzaldehído (H₃XSTSC): Se disolvieron 6.5 mmoles (1.38 g) de 2,4-dihidroxibenzaldehído en 50.0 mL de EtOH. Sobre esta disolución se agregó una suspensión

de 10 mmoles (0.91 g) de tiosemicarbazida en EtOH. La mezcla de reacción se refluyó durante 1 h, obteniéndose una disolución que tras evaporar lentamente, a temperatura ambiente, originó un sólido cristalino de punto de fusión 235 - 236 °C, adecuado para su estudio por difracción de rayos X de monocristal, de formula H₃XSTSC. Datos Analíticos (%): experimentales C 45.2, H 4.4, N 20.1, S 15.4; teóricos (calculados para C₈H₉N₃O₂S) C 45.5, H 4.3, N 19.9, S 15.2.

Tiosemicarbazona del 2-hidroxi-1-naftaldehído (H₂NAFTSC): Sobre una suspensión de 7 mmoles (1.72 g) de 2-hidroxi-1-naftaldehído en 30.0 mL de EtOH se añadió una suspensión de 10 mmoles (0.91 g) de tiosemicarbazida en 20.0 mL de EtOH. La suspensión resultante se agitó y calentó a reflujo 3 h. El sólido obtenido se filtró y secó. Punto de fusión: 221 - 223 °C. Datos Analíticos (%): experimentales C 59.2, H 4.9, N 16.3, S 14.1; teóricos (calculados para $C_{12}H_{11}N_3OS$) C 58.8, H 4.5, N 17.1, S 13.1.

Bis-tiosemicarbazona del 4-tert-butil-2,6-diformilfenol (H₃DBZTSC): Se disolvieron 3 mmoles

(1.01 g) de 4-tert-butil-2,6-diformilfenol en 30.0 mL de MeOH. Sobre esta disolución se agregó una suspensión de 10 mmoles (0.91 g) de tiosemicarbazida en 20.0 mL de MeOH. La mezcla de reacción se mantuvo con agitación y a reflujo durante 4 h. Se filtro y secó el sólido pulverulento resultante. Punto de fusión > 135 °C (D). Datos Analíticos (%): experimentales C 43.2, H 5.8, N 21.7, S 16.5; teóricos (calculados para $C_{14}H_{20}N_6OS_2\cdot 2H_2O$) C 43.3, H 6.2, N 21.6, S 16.5.

IV.1.2 - Síntesis de complejos de Ga(III) con ligandos derivados del salicilaldehído y compuestos relacionados

[Ga(HSSC)₂]NO₃·MeOH: Sobre una disolución de 20 mmoles (0.40 g) de H₂SSC en 100.0 mL de MeOH_(anhidro) se agregó gota a gota, desde un embudo autocompensado y en atmósfera de N₂, una disolución de 10 mmoles (0.30 g) de Ga(NO₃)₃·H₂O en 26.0 mL de MeOH_(anhidro). La mezcla de reacción se mantuvo a reflujo durante 8 h y posteriormente en reposo durante 2 días, a temperatura ambiente. La disolución se concentró en la línea de vacío, hasta llegar a 1/3 del volumen inicial y se dejó reposar a temperatura ambiente, hasta obtener un precipitado cristalino de color verde, cuya estructura fue resuelta por difracción de rayos X de monocristal. Punto de fusión: >250 °C. Datos Analíticos (%): experimentales C 39.2, H 3.8, N 19.0; teóricos (calculados para GaC₁₇H₂₀N₇O₈) C 39.3, H 3.9, N 18.8.

$[Ga(HSSC)_2]CI \cdot H_2O:$

a) Sobre una suspensión de 1 mmol (0.18 g) de H₂SSC en 20.0 mL de EtOH) se agregó, gota a gota, una disolución de 1 mmol de GaCl(AcO)₂ en 10.0 mL de MeOH, obteniéndose una disolución de color verde pálido. La mezcla de reacción se mantuvo a reflujo 3 h, con agitación magnética continua. Transcurrido este tiempo, se dejó evaporar lentamente la disolución a temperatura ambiente,

obteniéndose un sólido cristalino de color verde, adecuado para ser estudiado por difracción de rayos X de monocristal. Datos Analíticos (%): experimentales C 40.2, H 3.7, N 17.4; teóricos (calculados para $GaC_{16}H_{18}N_6O_5Cl$) C 40.1, H 3.8, N 17.5.

b) Se repitió la síntesis anterior, en las mismas condiciones, añadiendo además 1 mmol de acetilacetato de metilo, obteniéndose un producto con los mismos parámetros cristalográficos de la estructura correspondiente al sólido obtenido en la síntesis anteriormente descripta.

Ga(H₂XSSC)(HXSSC): Se preparó una disolución de 1.5 mmoles (0.38 g) de Ga(NO₃)₃·H₂O en 20.0 mL de MeOH y se agregó lentamente sobre una disolución de 1.5 mmoles (0.29 g) de H₃XSSC en 50.0 mL de MeOH a reflujo. La mezcla de reacción se dejó a reflujo y con agitación magnética durante 4 h. Por evaporación lenta del disolvente a temperatura ambiente se obtuvo un sólido pulverulento de color amarillo. Datos analíticos (%): experimentales C 40.3, H 3.9, N 19.0; teóricos (calculados para GaC₁₆H₁₅N₆O₆): C 42.0, H 3.3, N 18.4.

 $[Ga(H_2XSSC)_2]NO_3$ ·EtOH: Se preparó una disolución de 3.0 mmoles (0.58 g) de H₃XSSC en 20.0 mL de EtOH, y se le agregaron 3.0 mmoles (0.76 g) de Ga(NO₃)₃·H₂O disueltos en 10 mL del mismo disolvente. La disolución amarilla resultante se dejó a reflujo y con agitación magnética durante 4 horas, observándose la intensificación del color de la misma. Por evaporación lenta del disolvente a temperatura ambiente, se obtuvo un sólido cristalino de color rojo, apto para su estudio por difracción de rayos X de monocristal. Datos analíticos (%): experimentales C 36.9, H 4.2, N 16.7; teóricos (calculados para GaC₁₈H₂₂N₇O₁₀): C 38.2, H 3.9, N 17.3.

 $Ga(H_2XSSC)_2CI \cdot 4H_2O$: Sobre una disolución de 3.0 mmoles (0.58 g) de H_3XSSC en 20.0 mL de EtOH se agregaron 3.0 mmoles de $GaCl(AcO)_2$ en 6,5 mL MeOH. La disolución resultante se mantuvo a reflujo y con agitación magnética durante 4 h. Por evaporación lenta del disolvente a temperatura ambiente, se obtuvo un sólido pulverulento de color verde. Datos analíticos (%): experimentales C 34.1, H 4.5, N 14.8; teóricos (calculados para $GaC_{16}H_{24}N_6O_{10}CI$): C 34.0, H 4.3, N 14.9.

[Ga(HNAFSC)₂]Cl·2,25H₂O: Sobre una suspensión de 1 mmol (0.23 g) de H₂NAFSC en 30.0 mL de MeOH se agregaron 1 mmol GaCl(AcO)₂ disueltos en 2.0 mL de MeOH, observándose la disolución total del sólido en suspensión. Se dejó la mezcla de reacción a reflujo y con agitación magnética durante 4 h. Se concentró la disolución a temperatura ambiente y presión reducida hasta 1/3 de su volumen inicial, obteniéndose un sólido pulverulento de color amarillo. Datos analíticos (%): experimentales C 47.7, H 3.7, N 13.7; teóricos (calculados para GaC₂₄H₂₅N₆O_{6.25}Cl): C 47.8, H 4.2, N 13.9. En una segunda fracción se obtuvieron cristales amarillos en forma de placas (muy pequeña

cantidad) aptos para su estudio por difracción de rayos X de monocristal, correspondientes al compuesto de estequiometría [Ga(HNAFSC)₂]Cl·2,25(H₂O).

[Ga(H₂DBZSC)(HDBZSC)]·H₂O: Se preparó una suspensión 2 mmoles (0.71 g) de H₃DBZSC·HCl en 30.0 mL de MeOH y sobre ella se añadió una disolución de 2 mmoles (0.51 g) de Ga(NO₃)₃·H₂O en 10.0 mL de MeOH. La suspensión resultante se mantuvo a reflujo y con agitación magnética durante 4 h. Se filtró el sólido amarillo obtenido (posiblemente una mezcla de productos, cuyo análisis elemental sugiere una estequiometría Ga(HDBZSC)(NO₃)(H₂O)₃. Datos analíticos (%): experimentales C 34.1, H 4.1, N 18.7; teóricos (calculados para GaC₁₄H₂₅N₇O₉): C 33.3, H 4.9, N 19.4.

Se dejaron evaporar lentamente las aguas madres, a temperatura ambiente. Se obtuvo así un sólido cristalino de color amarillo, apto para su estudio por difracción de rayos X de monocristal, cuya estructura corresponde al complejo [Ga(H_2DBZSC)(HDBZSC)]· H_2O .

 $[Ga(H_2DBZSC)_2]Cl·H_2O$: Se preparó una suspensión 2 mmoles (0.71 g) de H₃DBZSC·HCl en 30.0 mL de MeOH. Sobre esta suspensión se agregaron 2 mmoles de GaCl(AcO)₂ disueltos en 4.0 mL de MeOH y se mantuvo la suspensión resultante a reflujo y con agitación magnética durante 4 h. Se filtró el sólido amarillo obtenido. Este sólido muestra una estequiometría Ga(H₂DBZSC)Cl₂·H₂O·MeOH con los siguientes datos analíticos: Datos analíticos (%): experimentales C 35.1, H 4.9, N 16.8; teóricos (calculados para GaC₁₅H₂₅Cl₂N₆O₅): C 35.3, H 4.9, N 16.5.

Se dejó evaporar lentamente el filtrado, a temperatura ambiente, obteniéndose así un sólido cristalino en forma de placas de color amarillo, apto para su estudio por difracción de rayos X de monocristal, cuya estructura corresponde al complejo [Ga(H₂DBZSC)₂]Cl·H₂O.

IV.2 – DIFRACCIÓN DE RAYOS X DE MONOCRISTAL

IV.2.1 - Estructura cristalina de ligandos semi- y tiosemicarbazona derivadas del salicilaldehído y compuestos relacionados

En esta sección se describen las estructuras de los ligandos semi- y tiosemicarbazona derivados del salicilaldehído y ligandos relacionados. Así, en las Figuras IV.1 a IV.5 se representa el contenido de la unidad asimétrica de la semicarbazona derivada del salicilaldehído (H₂SSC·1/2MeOH), la tiosemicarbazona del salicilaldehído (H₂STSC), la semi- y la tiosemicarbazona del 2,4-dihidroxibenzaldehído (H₃XSSC·1/2H₂O y H₃XSTSC respectivamente), y la semicarbazona del 2-hidroxi-1-naftaldehído (H₂NAFSC·3/2H₂O). En la Tabla IV.1 se muestran los datos cristalográficos de estas estructuras, y en las Tablas IV.2 a IV.5 las longitudes y ángulos de enlace más relevantes.

Cabe mencionar que en la bibliografía aparecen estudiadas las estructuras cristalinas de $H_2NAFSC^{[1]}$, $H_2SSC^{[2]}$, $H_2SSC\cdotAcOH^{[3]}$, $H_2STSC\cdotH_2O^{[4]}$, $H_2STSC^{[5]}$ y $H_3XSTSC^{[6]}$, aunque estas difieren cristalográficamente de las presentadas en esta memoria, ya sea por el sistema cristalino que presentan, o por tener moléculas solvatadas. En el caso de H_2STSC y H_3XSTSC , presentamos sendas estructuras con el mismo sistema cristalino y grupo espacial que las publicadas, ya que difieren en las dimensiones de la celdilla unidad correspondiente.

Figura IV.1 - Unidad asimétrica del ligando H₂SSC·1/2MeOH.

Figura IV.2 - Unidad asimétrica del ligando H₂STSC.

Figura IV.3 - Unidad asimétrica del ligando H₃XSSC·1/2H₂O.

Figura IV.5 - Unidad asimétrica del ligando H₂NAFSC·3/2H₂O.

Ligando	H₂SSC·1/2MeOH	H₂STSC	H ₃ XSSC·1/2H ₂ O	H₃XSTSC	H ₂ NAFSC·3/2H ₂ O
Fórmula	${\sf C}_{17}{\sf H}_{18}{\sf N}_6{\sf O}_5$	$C_8 H_9 N_3 O S$	${\sf C}_8{\sf H}_{10}{\sf N}_3{\sf O}_{3.5}$	$\mathrm{C_8~H_9~N_3~O_2~S}$	$C_{24} H_{28} N_6 O_7$
Masa Molecular	386.37	195.25	204.18	211.25	512.52
т (К)	100(2)	100.0(1)	100.0(1)	100.0(1)	100.0(1)
λ (Å)	0.71069	0.71069	0.71069	0.71069	0.71073
Sistema Cristalino	Monoclínico	Monoclínico	Monoclínico	Monoclínico	Monoclínico
Grupo Espacial	P2(1)/c	C 2/c	C 2/c	C 2/c	P 21/c
<i>a</i> (Å)	9.531(5)	28.162(5)	22.051(5)	21.598(5)	13.6369(5)
b (Å)	13.955(5)	6.706(5)	6.635(5)	3.984(5)	17.5941(6)
c (Å)	13.897(5)	19.405(5)	13.541(5)	22.443(5)	10.7215(4)
α(°)	90.000	90.000	90.000	90.000	90.000
β(°)	98.094(5)	93.752(5)	118.852(5)	110.552(5)	112.633(2)
γ (°)	90.000.	90.000	90.000	90.000	90.000
V (Å ³)	1830.0(13)	3657(3)	1735.2(15)	1808(2)	2374.29(15)
Z	4	16	8	8	4
D _{calc} . (Mg/m ³)	1.402	1.331	1.563	1.552	1.434
μ (mm ⁻¹)	0.106	0.257	0.125	0.333	0.108
F(000)	808	1560	856	880	1080
Dimensiones (mm)	0.24 x 0.12 x 0.12	0.45 x 0.10 x 0.07	0.31 x 0.26 x 0.12	0.32 x 0.06 x 0.03	0.27 x 0.07 x 0.05
Intervalo θ (°)	2.08 a 25.68	2.10 a 25.35 deg.	2.11 a 26.37	1.94 a 28.48	1.62 to 26.45
Intervalos en h, k, l	-11,11; 0,17; 016	-33,33; 0,8; 0,23	-27,24; 0,8; 0,16	-28,26; 0,5; 0,29	17,15; 0,22; 0,13
No. reflex. medidas	22509	25437	13461	10837	44507
No. reflex. únicas	3467	3331	1775	2264	4876
R _{int}	0.1055	0.0688	0.0444	0.0801	0.0856
R	0.0667	0.0546	0.0915	0.0538	0.0558
R _w	0.1619	0.1407	0.2173	0.1377	0.1170
G.O.F.	1.028	1.108	1.188	1.002	1.034

Tabla IV.1 - Datos cristalográficos de las semi- y tiosemicarbazonas derivadas del salicilaldehído y ligandos relacionados.

	H ₂ SSC·1	/2MeOH		H ₂ NAFS	C·3/2H₂O	Esquema de numeración utilizado
	Molécula 1	Molécula 2	n ₃ x33C·1/2n ₂ O	Molécula 1	Molécula 2	C ₄
C1-01	1.248(5)	1.248(5)	1.251(6)	1.255(3)	1.253(3)	$C_3 O_2$
C1-N1	1.331(5)	1.324(5)	1.339(6)	1.330(3)	1.329(3)	N ₃
C1-N2	1.356(5)	1.354(5)	1.356(6)	1.359(3)	1.355(3)	N ₂ C ₁ O ₁
N2-N3	1.375(4)	1.376(4)	1.378(5)	1.372(3)	1.379(3)	N ₁
N3-C2	1.282(5)	1.280(5)	1.283(6)	1.290(3)	1.291(3)	
C2-C3	1.453(5)	1.448(5)	1.445(6)	1.455(3)	1.450(3)	
C3-C4	1.402(6)	1.399(6)	1.411(6)	1.388(4)	1.390(3)	
C4-02	1.371(5)	1.360(5)	1.364(5)	1.354(3)	1.357(3)	
C6-O3			1.367(6)			

Tabla IV.2 - Longitudes de enlace (Å) relevantes en la estructura de las semicarbazonas derivadas del salicilaldehído y ligandos relacionados.

Tabla IV.3 - Longitudes de enlace (Å) relevantes en la estructura de las tiosemicarbazonas derivadas del salicilaldehído y ligandos relacionados.

	H₂S	тѕс		Esquema de n
	Molécula 1	Molécula 2	- n ₃ ,515C	
C1-S1	1.692(4)	1.687(4)	1.699(3)	C;
C1-N1	1.331(5)	1.323(5)	1.335(3)	02
C1-N2	1.344(5)	1.352(5)	1.328(3)	
N2-N3	1.374(4)	1.373(4)	1.394(3)	
N3-C2	1.286(5)	1.292(5)	1.284(3)	
C2-C3	1.444(5)	1.447(5)	1.438(3)	
C3-C4	1.412(5)	1.406(5)	1.413(3)	
C4-01	1.367(4)	1.366(4)	1.361(3)	
C6-O2			1.359(3)	

umeración utilizado:

ÌÌ C₄ 01

N₃ С

	H ₂ SSC·1	/2MeOH		H₂NAFS0	C•3/2H₂O
	Molécula 1	Molécula 2	- H ₃ XSSC·1/2H ₂ O	Molécula 1	Molécula 2
01-C1-N1	122.2(4)	122.5(4)	122.2(4)	122.5(2)	122.5(2)
N1-C1-N2	119.3(4)	119.0(4)	118.6(4)	118.8(2)	118.9(2)
01-C1-N2	118.5(4)	118.6(4)	119.2(4)	118.8(2)	118.7(2)
C1-N2-N3	121.1(3)	121.5(3)	121.4(4)	121.3(2)	122.1(2)
N2-N3-C2	115.9(3)	115.8(3)	114.3(4)	116.4(2)	115.9(2)
N3-C2-C3	122.7(4)	123.0(4)	122.6(4)	121.8(2)	122.3(2)
C2-C3-C4	123.1(4)	122.4(4)	122.8(4)	120.6(2)	121.5(2)
C3-C4-O2	121.3(4)	121.9(4)	121.2(4)	122.6(2)	122.0(2)

Tabla IV.4 - Ángulos de enlace (°) relevantes en la estructura de las semicarbazonas derivadas del salicilaldehído y ligandos relacionados.

Tabla IV.5 - Ángulos de enlace (°) relevantes en la estructura de las tiosemicarbazonas derivadas del salicilaldehído y ligandos relacionados.

	H₂S	TSC		Esquema de numeración u
	Molécula 1	Molécula 2	H37213C	
\$1-C1-N1	122.0(3)	122.5(3)	122.1(2)	
N1-C1-N2	118.7(3)	117.8(3)	118.2(2)	N ₃
S1-C1-N2	119.3(3)	119.7(3)	119.73(19)	$N_2 \sim C_1 \sim S_1$
C1-N2-N3	121.6(3)	120.3(3)	121.9(2)	N ₁
N2-N3-C2	115.8(3)	116.7(3)	114.2(2)	
N3-C2-C3	122.6(3)	121.6(3)	123.4(2)	
C2-C3-C4	123.1(3)	122.5(3)	123.2(2)	
C3-C4-O1	120.8(3)	121.5(3)	121.0(2)	

Como puede apreciarse por inspección de las longitudes de enlace C1-O1 y C1-S en las Tablas IV.2 y IV.3, estos ligandos se encuentran principalmente en su forma cetoamida y tioamida, encontrándose el valor de estas distancias en los rangos 1.248-1.255 Å y 1.688-1.699 Å respectivamente. Puede apreciarse en estas tablas que todas las longitudes de enlace análogas pertenecientes a los restos semicarbazona (y tiosemicarbazona) son muy parecidas, habiendo muy poca dispersión en los valores. Lo mismo sucede con los ángulos de enlace, como puede apreciarse en las Tablas IV.4 y IV.5. Por otra parte, si comparamos las longitudes de enlace del compuesto $H_2SSC \cdot 1/2MeOH$ con las de las estructuras correspondientes a H_2SSC y $H_2SSC \cdot AcOH$ ya publicados^[2,3] (ver Tabla IV.6), vemos que las diferencias no son significativas, y lo mismo puede decirse de las

diferencias entre la estructura presentada en esta memoria para H₂STSC y la discutida en la literatura para el mismo el mismo ligando^[5] (estas estructuras se diferencian en el contenido de la unidad asimétrica y en el entramado de enlaces de hidrógeno que presentan).

	H ₂ SSC·1,	2MeOH	H-SSC ^[2]	H-SSC-AcOH ^[3]
	Molécula 1	Molécula 2	112550	12550 40011
C1-O1	1.248(5)	1.248(5)	1.227	1.247
C1-N1	1.331(5)	1.324(5)	1.358	1.327
C1-N2	1.356(5)	1.354(5)	1.370	1.345
N2-N3	1.375(4)	1.376(4)	1.390	1.378
N3-C2	1.282(5)	1.280(5)	1.294	1.278
C2-C3	1.453(5)	1.448(5)	1.465	1.450
C3-C4	1.402(6)	1.399(6)	1.388	1.390
C4-02	1.371(5)	1.360(5)	1.347	1.352

Tabla IV.6 - Longitudes de enlace (Å) relevantes de la semicarbazona del salicilaldehído.

La presencia en las tres semicarbazonas del salicilaldehído bajo discusión de los enlaces intramoleculares O2-H···N3 y N1-H···N3, hace que los tres compuestos presenten los mismos confórmeros respecto de los enlaces C2-C3, C2-N3 y C1-N2.

La planaridad de esta serie de ligandos se ve influenciada por la formación de enlaces de hidrógeno intermoleculares. Así, en el ligando H₃XSTSC el resto tiosemicarbazona forma un ángulo diedro de 26.40 ° (0.09) con el plano de la molécula. Para el ligando H₃XSSC hallamos un ángulo formado por el resto semicarbazona y el plano de la molécula de 15.81 ° (0.10). La molécula 2 de la unidad asimétrica de H₂NAFSC·3/2H₂O presenta una ángulo diedro de aproximadamente 7 ° entre el resto semicarbazona y la parte aromática del ligando, en tanto que el resto carbamida de la molécula 1 forma un ángulo de 12.34 ° (0.05) con el plano molecular. Finalmente, son virtualmente planos los ligandos semi- y tiosemicarbazona derivados del salicilaldehído; en la Tabla IV.7 se detallan las desviaciones cuadráticas medias y los ángulos diedros que dan cuenta de la planaridad de estos ligandos.

En cuanto a los distintos confórmeros respecto de los enlaces C1-N2 y N3-C2, todos estos ligandos se encuentran en la conformación E. Como puede verse en la discusión que sigue respecto a los enlaces de hidrógeno presentes en estas estructuras, esto se debe a la presencia en todos estos ligandos de los enlaces de hidrógeno intramoleculares N1-H…N3 y el O_{arom}-H…N3, que estabilizan las conformaciones mencionadas.

		Plano (rms)	Ángulo diedro (°)
н ссс	Moléc. 1	π : C11 C12 C13 C14 C15 C16 C17 C18 N11 N12 N13 O11 O12 (0.0981)	-/-
112550	Moléc. 2	π : C21 C22 C23 C24 C25 C26 C27 C28 N21 N22 N23 O21 O22 (0.0799)	-/-
LL STSC	Moléc. 1	π : C11 C12 C13 C14 C15 C16 C17 C18 N11 N12 N13 O1 S1 (0.0548)	-/-
1125150	Moléc. 2	π : C21 C22 C23 C24 C25 C26 C27 C28 N21 N22 N23 O2 S2 (0.1214)	-/-
		π ₁ : C1 O1 N1 N2 (0.0003)	π Δπ = 15 81(0 10) ⁰
H3733C		π ₂ : C2 C3 C4 C5 C6 C7 C8 N2 N3 O2 O3 (0.0488)	$n_1 n_2 = 13.81(0.10)$
		π ₁ : S N2 N1 N3 C1 (0.0113)	$\pi \wedge \pi = 26.40(0.09)^{\circ}$
1373130		π ₂ : O1 C6 C2 N3 C7 C4 C3 C8 C5 O2 (0.0399)	$n_1 n_2 = 20.40(0.03)$
	Molác 1	π ₁ : O11 N13 N12 N11 C11 (0.0182)	π Δ π = 12 05(0 05) ⁰
	WOIEC. I	π_2 : O12 N13 C14 C12 C15 C17 C110 C13 C111 C112 C18 C16 C19 (0.0217)	$n_1 + n_2 = 13.03(0.03)$
n2IVAF3C -	Molác 2	π ₁ : O21 N23 N22 N21 C21 (0.0182)	π Δ π = 6 02/0.06 ⁰
	worec. z	π_2 : O22 C212 N23 C22 C24 C210 C26 C211 C23 C25 C27 C29 C28 (0.0283)	$n_1 \cdot \cdot \cdot n_2 = 0.93(0.00)^{-1}$

Tabla IV.7 - Coeficientes de planaridad para los ligandos semicarbazona y tiosemicarbazona derivados del salicilaldehído, y ángulos diedros intramoleculares en el caso de los ligandos H₃XSSC, H₃XSTSC y H₂NAFSC.

En la Tabla IV.8 se detallan los enlaces de hidrógeno presentes en la estructura del ligando $H_2SSC \cdot 1/2H_2O$. Estos enlaces se muestran en la Figura IV.7.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O21 ⁱ	0.86	2.05	2.897(5)	167.4
N11-H11B…N13	0.86	2.41	2.726(5)	102.5
N11-H11B…O22 [#]	0.86	2.25	2.981(5)	143.4
N12-H12A…O21 ^{III}	0.86	2.04	2.846(5)	156.2
N21-H21A…O11 ^{iv}	0.86	2.04	2.867(5)	160.9
N21-H21B…N23	0.86	2.39	2.717(5)	103.2
N21-H21B…O12 ^v	0.86	2.28	2.999(5)	141.0
N22-H22A…O11 ^{vi}	0.86	1.99	2.816(4)	160.2
O12-H112…N13	0.93(6)	1.81(6)	2.673(4)	153(5)
O22-H212…N23	0.93(7)	1.83(7)	2.662(5)	147(6)

Tabla IV.8 - Enlaces de hidrógeno (Å y °) para H₂SSC·1/2MeOH.

ⁱ x-1, -y+1/2, z+1/2; ⁱⁱ x, -y+1/2, z+1/2; ⁱⁱⁱ x-1, y, z; ^{iv} x+1, -y+1/2, z-1/2; ^v x, -y+1/2, z-1/2; ^{vi} x+1, y, z.

Figura IV.7 - Enlaces de hidrógeno del ligando H₂SSC·1/2MeOH.

Los seis enlaces intermoleculares presentes en esta estructura generan planos infinitos paralelos al plano ac, originando una estructura supramolecular en capas apiladas a lo largo del eje b. Las moléculas de disolvente podrían actuar como dadores de enlace de hidrógeno (considérense por ejemplo las distancias O1s-O11^{iv} y O2s-O21, de 2.844 y 2.753 Å respectivamente) en interacciones que estabilizarían dichos planos. En la Figura IV.8 se muestra una vista de este arreglo supramolecular. Es posible que la interacción de tipo π - π stacking cuyos parámetros se recogen en la Tabla IV.9 y se representa en la Figura IV.9 vincule estos planos formando una red tridimensional infinita.

Figura IV.8 - Estructura supramolecular del ligando H₂SSC·1/2MeOH.

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	Cgl_Perp(Å)	CgJ_Perp(Å)	Slippage(Å)
Cg2-Cg2 ^{viii}	3.536(3)	0.03	17.12	17.12	3.379	3.379	1.041
	Anil	lo(2): C	23 C24 C	25 C26 C	27 C28. ^{viii} 1-x,	1-y, 1-z.	
	R C		Cg2VIII			0	

Tabla IV.9 - Interacciones tipo π - π stacking presentes en la estructura de H₂SSC·1/2MeOH.

Figura IV.9 - Interacción tipo π - π stacking en la estructura de H₂SSC·1/2MeOH.

En la Tabla IV.10 se detallan los enlaces de hidrógeno para el ligando H₂STSC, y se representan gráficamente en la Figura IV.10.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O2 ⁱ	0.92(6)	2.06(6)	2.957(4)	166(5)
N11-H11B…N13	0.87(4)	2.40(4)	2.706(4)	101(3)
N11-H11B…S2 ⁱⁱ	0.87(4)	2.73(4)	3.355(3)	131(3)
N12-H12A…S1 ⁱⁱⁱ	0.95(5)	2.39(5)	3.310(3)	161(4)
01-H12B…N13	0.91(5)	1.83(5)	2.660(4)	151(4)
N21-H21A…N23	0.80(4)	2.40(4)	2.670(5)	101(3)
N21-H21A…S1 ^{iv}	0.80(4)	2.70(4)	3.282(4)	132(4)
N21-H21B…O1 ⁱⁱ	0.90(5)	2.00(5)	2.900(4)	176(4)
N22-H22A…S2 ⁱⁱ	0.83(4)	2.57(4)	3.385(3)	165(4)
O2-H22B…N23	0.90(4)	1.85(4)	2.633(4)	143(4)

Tabla IV.10 - Enlaces de hidrógeno (Å y °) para H₂STSC.

ⁱ -x+1/2, <u>y+1/2</u>, -z+1/2; ⁱⁱ -x+1/2, -y+1/2, -z+1; ⁱⁱⁱ -x+1, <u>y</u>, -z+1/2; ^{iv} -x+1/2, <u>y-1/2</u>, -z+1/2.

Figura IV.10 - Enlaces de hidrógeno del ligando H₂STSC.

Como puede verse en la figura anterior, y como ya se adelantara, la conformación E,E respecto de los enlaces C1-N2 y C2-N3, está estabilizada por los enlaces de hidrógeno intramoleculares N1-H···N3 y O1-H···N3 (presentes en las dos moléculas de la unidad asimétrica). Por otra parte, hay seis enlaces de hidrógeno intermoleculares (tres por cada molécula de la unidad asimétrica) que generan una red tridimensional que podría ser descripta como una sucesión de planos infinitos paralelos al plano ac, que se apilan a lo largo del eje b unidos por los enlaces N21-H21A···S1^{iv} y N11-H11A···S2ⁱ. En la Figura IV.11 se muestra una representación de esta red tridimensional.

Figura IV.11 - Estructura supramolecular del ligando H₂STSC.

En la Tabla IV.11 se detallan los enlaces de hidrógeno del ligando $H_3XSSC \cdot 1/2H_2O$, y se representan en la Figura IV.12.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O1 ⁱ	0.86	2.08	2.894(5)	157.0
N1-H1B…N3	0.86	2.40	2.723(5)	103.0
N1-H1B…O2 ⁱⁱ	0.86	2.55	3.147(5)	126.9
01W-H1W…01 ⁱⁱⁱ	0.84(8)	2.29(8)	3.044(8)	149(7)
N2-H2…O1 ^{iv}	0.86	2.05	2.854(5)	155.7
O2-H2B…N3	0.86(7)	1.92(7)	2.661(5)	144(6)
O3-H3…O3 [♥]	0.75(14)	2.18(12)	2.651(8)	121(11)

Tabla IV.11 - Enlaces de hidrógeno (Å y °) del ligando H₃XSSC·1/2H₂O.

Además de los dos enlaces de hidrógeno intramoleculares, hay 5 enlaces intermoleculares (uno de ellos vincula al átomo O3 de dos moléculas vecinas, que actúa como dador y aceptor). Estos enlaces de hidrógeno intermoleculares generan la red tridimensional infinita representada en la Figura IV.13.

Figura IV.12 - Enlaces de hidrógeno correspondientes al ligando H₃XSSC·1/2H₂O.

Figura IV.13 - Estructura supramolecular del ligando H₃XSSC·1/2H₂O.

En la Tabla IV.12 se detallan los enlaces de hidrógeno presentes en la estructura del ligando H₃XSTSC, y se representan en la Figura IV.14. A diferencia de lo que sucede en la estructura del ligando H₃XSSC, el átomo de O que se halla en posición *para* respecto del resto tiosemicarbazona participa en sendos enlaces de hidrógeno, como aceptor y dador, pero vinculado al átomo de N terminal de una molécula y al átomo de S de otra, respectivamente.

Tabla IV.12 - Enlaces de hidrógeno (Å y °) del ligando H₃XSTSC.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
01-H1…N3	0.90(4)	1.91(4)	2.688(3)	144(3)
N1-H1A…N3	0.86	2.36	2.697(3)	103.9
N1-H1A…O1 ⁱ	0.86	2.19	2.951(3)	148.1
N1-H1B…O2 [#]	0.86	2.60	3.030(3)	112.3
N2-H2···S ⁱⁱⁱ	0.86	2.58	3.397(2)	159.0
O2-H2A…S ^{iv}	0.93(4)	2.35(4)	3.275(2)	171(3)

ⁱ -x+1, y, -z+3/2; ⁱⁱ x+1/2, y+1/2, z; ⁱⁱⁱ -x+1, -y+2, -z+1; ^{iv} x-1/2, y-3/2, z.

Figura IV.14 - Enlaces de hidrógeno del ligando H₃XSTSC.

Como en el caso anterior, encontramos los dos enlaces de hidrógeno intramoleculares típicos de esta serie, y 4 enlaces intermoleculares, que generan una red tridimensional infinita, que se muestra en la Figura IV.15.

Figura IV.15 - Estructura supramolecular del ligando H₃XSTSC.

Completando este apartado, se detallan los enlaces de hidrógeno del ligando $H_2NAFSC \cdot 3/2H_2O$ en la Tabla IV.13.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
O12-H1A…N13	0.98(4)	1.73(4)	2.586(3)	143(3)
O22-H2A…N23	0.88(3)	1.83(3)	2.616(3)	148(3)
N11-H11A…O12 ⁱ	0.86	2.07	2.929(3)	178.2
N11-H11B…N13	0.86	2.38	2.712(3)	103.3
N11-H11B…O1W ⁱⁱ	0.86	2.29	2.976(3)	137.4
01W-H11W…011	1.04(5)	1.79(5)	2.819(2)	171(4)
N12-H12…O2W ⁱⁱⁱ	0.86	2.05	2.885(3)	163.4
01W-H12W…O21 ^{iv}	0.88(4)	1.99(4)	2.845(3)	166(3)
N21-H21A…O22 ⁱⁱ	0.86	2.16	3.020(3)	175.7
N21-H21B…N23	0.86	2.40	2.730(3)	103.3
N21-H21B…O1W ⁱⁱ	0.86	2.22	2.928(3)	140.2
N22-H22…O3W ^v	0.86	2.07	2.907(3)	165.5
02W-H21W…011	0.890(18)	1.834(18)	2.722(3)	175(3)
O3W-H31W…O21	0.873(18)	1.880(18)	2.752(3)	176(3)

Tabla IV.13 - Enlaces de hidrógeno (Å y °) del ligando H₂NAFSC·3/2H₂O.

ⁱ x, -y+3/2, z-1/2; ⁱⁱ x, -y+3/2, z+1/2; ⁱⁱⁱ -x+1, -y+1, -z; ^{iv} x, y, z-1; ^v -x+2, -y+1, -z+2.

El enlace N11-H11A···O12ⁱ hace que las moléculas de ligando 1 de la unidad asimétrica se unan formando cadenas infinitas paralelas al eje c; lo mismo sucede con las moléculas del ligando 2 y el enlace N21-H21A···O22ⁱⁱ. Estas cadenas se extienden sobre planos paralelos al plano bc, manteniéndose el tipo de molécula presente en las cadenas de un mismo plano, y siguiendo un orden de apilamiento a lo largo del eje a de tipo "...1-1-2-2-1-1...", como se representa en la Figura IV.16. Las cadenas de tipo 1 se unen entre sí mediante los enlaces de hidrógeno que involucran a la molécula O2w (las cadenas no se unen directamente a cadenas vecinas, sino a cadenas de un plano vecino) formándose bicapas paralelas al plano *bc*, como la representada en la Figura IV.17. Lo mismo sucede con las cadenas de tipo 2, que forman bicapas paralelas a las anteriores mediante enlaces de hidrógeno que involucran (como dador y aceptor) a las moléculas de agua O3w.

Figura IV.16 - Cadenas de tipo 1 y 2 presentes en la estructura de H₂NAFSC·3/2H₂O.

Figura IV.17 - Bicapas de moléculas 1 presentes en la estructura del ligando H₂NAFSC·3/2H₂O.

Finalmente, estas bicapas se unen alternadamente, apilándose a lo largo del eje a, mediante los enlaces de hidrógeno que involucran a la molécula O1w, formando una red tridimensional como la representada en la Figura IV.18.

Figura IV.18 - Estructura supramolecular del ligando H₂NAFSC·3/2H₂O.

IV.2.2- Estructura cristalina de complejos de Ga(III) y ligandos derivados del salicilaldehído y compuestos relacionados

En este apartado se discuten las características principales de las estructuras cristalinas estudiadas para 6 complejos de Ga(III) con semicarbazonas derivadas del salicilaldehído, el 2-hidroxi-1-naftaldehído y el 2,6-diformil-4-t-butil-fenol. Así, en las Figuras IV.19 a IV.24 se muestra el contenido de las unidades asimétricas correspondientes a las estructuras de los complejos $[Ga(HSSC)_2]NO_3 \cdot MeOH$ (VII), $[Ga(HSSC)_2]CI \cdot H_2O$ (VIII), $[Ga(H_2XSSC)_2]NO_3 \cdot EtOH$ (IX), $[Ga(HNAFSC)_2]CI \cdot 2.25H_2O$ (X), $[Ga(H_2DBZBSC)(HDBZBSC)] \cdot H_2O$ (XI) y $[Ga(H_2DBZBSC)_2]CI \cdot 1/2H_2O$ (XII). En la Figura IV.25 se muestra la molécula completa del compuesto (XII). En la Tabla IV.14 se recogen los datos cristalográficos y de refinado de estas estructuras, y en las Tablas IV.15 a IV.17 las longitudes y ángulos de enlace más relevantes de las mismas.

Figura IV.19 - Unidad asimétrica del complejo [Ga(HSSC)₂]NO₃·MeOH (VII).

Figura IV.20 - Unidad asimétrica del complejo [Ga(HSSC)₂]Cl·H₂O (VIII).

Figura IV.21 - Unidad asimétrica del complejo [Ga(H₂XSSC)₂]NO₃·EtOH (IX).

Figura IV.22 - Unidad asimétrica del complejo [Ga(HNAFSC)₂]Cl·2.25H₂O (X).

Figura IV.23 - Unidad asimétrica del complejo [Ga(H2DBZBSC)(HDBZBSC)]·H2O (XI).

Figura IV.24 - Unidad asimétrica del complejo [Ga(H₂DBZBSC)₂]Cl·1/2H₂O (XII).

Figura IV.25.- Estructura molecular del complejo (XII).

Como puede verse en la Figura IV.19, la unidad asimétrica del compuesto contiene una unidad del complejo catiónico [Ga(HSSC)₂]⁺, un anión [Ga(HSSC)₂]NO₃·MeOH (VII) nitrato y una molécula de metanol. El catión complejo contiene 2 ligandos semicarbazonato monocargados, desprotonados en el grupo -OH. Por su parte, la unidad asimétrica del complejo [Ga(HSSC)₂]Cl·H₂O (VIII) (Figura IV.20) contiene una molécula del catión complejo monocargado, un anión cloruro y una molécula de agua de cristalización. Vemos en la Figura IV.21 que la unidad asimétrica del complejo [Ga(H₂XSSC)₂]NO₃·EtOH (IX) contiene una unidad del complejo catiónico $[Ga(H_2XSSC)_2]^{\dagger}$, 1 molécula de EtOH, y un anión NO₃⁻ en dos posiciones diferentes, con ocupaciones del 50 %. La unidad asimétrica del complejo (X) (Figura IV.22) consta de una molécula compleja [Ga(HNAFSC)₂]⁺, un anión cloruro en dos posiciones y 2.25 moléculas de agua en 4 posiciones distintas O1w, O2w, O3w y O4w (con ocupaciones de 100, 30, 50 y 45 % respectivamente). En la Figura IV.23 queda representada la unidad asimétrica del complejo [Ga(H₂DBZBSC)(HDBZBSC)]·H₂O (XI), que contiene una unidad del complejo neutro, y una molécula de agua desordenada en 4 posiciones. Finalmente, en la Figura IV.24 se muestra la unidad asimétrica del complejo (XII) que contiene la mitad del complejo catiónico [Ga(H₂DBZBSC)₂]⁺, medio anión Cl⁻ y media molécula de agua no coordinada y desordenada en 3 posiciones.

De manera análoga a lo que sucedía con los complejos de Ga(III) con semicarbazonas derivadas de α -oxo-ácidos, el primer grupo en desprotonarse en los ligandos de los complejos que ahora nos ocupan es el grupo de apoyo, en este caso el grupo -OH en posición *orto* al resto semicarbazona. En la presente serie de complejos, todos los ligandos están monodesprotonados, y siempre en el grupo O2-H, de mayor acidez que el N2-H. Otra característica compartida por estos complejos es que en ellos el metal está coordinado por dos de estos semicarbazonatos monocargados, cada uno de los cuales forma dos anillos quelato con el metal, de cinco y seis miembros respectivamente (las dos generalizaciones precedentes no son válidas para el complejo (XI), en el cual uno de los ligandos está bidesprotonado, habiéndose perdido también el H del N2 de uno de los restos semicarbazona de uno de los ligandos, componiendo un complejo neutro, el único de esta serie). El entorno del metal en todos estos compuestos es octaédrico distorsionado, de tipo N₂O₄.
Complejo	(IIV)	(III)	(XI)	(x)	(IX)	(IIX)
Fórmula	C ₁₇ H ₂₀ Ga N ₇ O ₈	$C_{16}~\text{H}_{18}~\text{Cl}~\text{Ga}~\text{N}_{6}~\text{O}_{5}$	C_{18} H_{22} Ga N_7 O_{10}	C ₂₄ H ₂₂ Cl Ga N ₆ O _{6.25}	C ₂₈ H ₁₅ Ga N ₁₂ O ₇	C ₂₈ H ₃₈ Cl Ga N ₁₂ O ₇
Masa Molecular	520.12	479.53	566.15	595.65	702.04	759.87
т (к)	293(2)	100(2)	100.0(1)	100(2)	100(2)	100.0(1)
እ (Å)	0.71073	0.71073	0.71069	0.71069	0.71069	0.71069
Sistema Cristalino	Monoclínico	Ortorrómbico	Triclínico	Monoclínico	Triclínico	Ortorrómbico
Grupo Espacial	P2 ₁ /c	Pbca	P -1	C2/c	P-1	Pnna
a (Å)	17.157(2)	8.883(3)	10.055(5)	35.651(5)	12.980(5)	21.951(5)
(ڀ) <i>q</i>	13.1360(10)	11.903(4)	11.197(5)	15.957(5)	13.444(5)	13.007(5)
c (Å)	9.3807(9)	34.236(10)	12.085(5)	9.091(5)	14.568(5)	14.273(5)
a (°)	000.06	000.06	66.899(5)	000.06	115.929(5)	90.000
(°)	96.411(6)	000.06	80.970(5)	98.540(5)	90.135(5)	90.000
۲ (°)	000.06	000.06	66.305(5)	000.06	118.032(5)	90.000
v (ų)	2100.9(4)	3619.9(19)	1146.0(9)	5114(3)	1947.6(12)	4075(2)
z	4	8	2	80	2	4
D _{calc} . (Mg/m ³)	1.644	1.760	1.507	1.547	1.196	1.439
μ (mm ⁻¹)	1.372	1.713	1.261	1.233	0.759	1.511
F(000)	1064	1952	528	2432	708	1808
Dimensiones (mm)	0.10 × 0.06 × 0.02	0.23 × 0.19 × 0.10	0.13 × 0.10 × 0.02	0.50 x 0.23 x 0.22	0.18 × 0.11 × 0.07	0.15 × 0.11 × 0.06
Intervalo θ (°)	3.03 a 25.12	2.38 a 26.37	1.83 a 28.47	2.15 a 26.46	1.61 a 23.29	1.70 a 26.37
Intervalos en <i>h, k, l</i>	-20,20; -15,15; -11,11	0,11; 0,14; 0,42	-13,13; -13,15; 0,16	-44,44; 0,20; 0,11	-14,14; -14,13; 0,16	0,27; 0,16; 0,17
No. reflex. medidas	12656	65450	12161	36707	49387	22493
No. reflex. únicas	3733	3702	6421	5231	5495	4106
Rint	0.1139	0.0578	0.0433	0.0385	0.0582	0.0904
ж	0.0586	0.0279	0.0587	0.0390	0.1332	0060.0
R _w	0.1336	0.0592	0.1654	0.1080	0.4081	0.2697
G.O.F.	1.013	1.104	1.013	1.116	1.853	1.052

Tabla IV.14 - Datos cristalográficos y de refinado de los complejos (VIII), (VIII), (IX), (X), y (XII).

(a)
$\widehat{=}$
Č
>
Ξ
~
\leq
~
Ĕ
~
Ξ
2
Ĺ,
\geq
s (
jo.
ple
Ē
00
S
<u> </u>
d e
ЗS
Ë.
a
ist
5
as
Ъ
Ę
Ę
s
SE
~
Ъ
es
Ľ
Чa
<u>e</u>
e
ás
Ξ
Å.
- 0)
ũ
Ē
e
β
SS
p
iti
р В С
2
15
2
a
Įq.
Ta

	2	(11	Ś	(()	0	č	0	X)	(1	(IIX)
	Ъ.	L2 ⁻	٦'	L2	Ľ'	L2 ⁻	Ľ'	L2 ⁻	Ľ'	L2	5
Ga-01	2.079(4)	2.022(4)	2.0074(16)	2.0243(17)	2.036(4)	2.067(4)	2.021(2)	2.043(2)	2.024(8)	2.012(7)	2.017(5)
Ga-02	1.883(4)	1.878(4)	1.9270(17)	1.8878(17)	1.876(3)	1.896(4)	1.894(2)	1.915(2)	1.908(8)	1.873(7)	1.915(4)
Ga-N3	1.998(5)	2.021(5)	2.026(2)	2.013(2)	2.009(4)	2.015(4)	2.019(3)	2.019(3)	2.017(9)	2.015(9)	2.022(5)
C1-01	1.251(7)	1.263(7)	1.272(3)	1.260(3)	1.270(6)	1.266(6)	1.267(4)	1.270(4)	1.268(14)	1.294(15)	1.265(7)
C1-N1	1.311(8)	1.329(7)	1.309(3)	1.319(3)	1.314(6)	1.329(6)	1.319(4)	1.314(4)	1.320(15)	1.341(15)	1.318(9)
C1-N2	1.359(7)	1.347(8)	1.366(3)	1.363(3)	1.341(6)	1.349(6)	1.354(4)	1.352(4)	1.323(15)	1.321(15)	1.369(8)
N2-N3	1.371(6)	1.378(6)	1.378(3)	1.381(3)	1.389(5)	1.371(6)	1.390(4)	1.374(4)	1.382(12)	1.390(12)	1.394(7)
C2-N3	1.301(7)	1.279(7)	1.289(3)	1.290(3)	1.287(6)	1.298(6)	1.286(4)	1.293(4)	1.302(14)	1.291(15)	1.290(8)
C2-C3	1.428(8)	1.431(9)	1.445(3)	1.439(3)	1.433(7)	1.427(7)	1.427(4)	1.435(4)	1.435(15)	1.465(15)	1.434(10)
C3-C4	1.425(8)	1.415(9)	1.415(3)	1.414(3)	1.423(7)	1.414(7)	1.405(4)	1.404(4)	1.398(14)	1.410(15)	1.418(9)
C4-02	1.323(7)	1.319(7)	1.333(3)	1.325(3)	1.322(6)	1.343(6)	1.313(4)	1.324(4)	1.319(12)	1.333(13)	1.339(7)

		(III/)		(1X)	(X)	(1X1)	(XII)*	Esquema de numeración utilizado:	
		1	/	(xn)	(x)	1	/mx/	•	
1	011-Ga-012	166.92(17)	167.04(7)	169.78(14)	166.30(9)	163.5(3)	167.15(17)		
	011-Ga-021	84.71(16)	87.25(7)	84.23(15)	86.77(10)	83.7(3)	88.7(3)		
	011-Ga-022	91.13(19)	91.17(7)	87.32(15)	85.57(10)	90.5(3)	90.42(19)	0	
	011-Ga-N13	77.59(17)	78.39(7)	78.13(16)	78.50(10)	78.9(3)	78.2(2)	7	
	011-Ga-N23	90.82(17)	93.25(7)	91.43(15)	98.00(10)	101.4(4)	96.18(19)	0 ₂₁ Ga 0 ₁₁	
	012-Ga-021	89.00(19)	88.14(7)	93.13(15)	93.79(10)	89.4(3)	90.42(19)		
	012-Ga-022	97.3(2)	95.54(8)	97.23(16)	97.38(11)	99.4(3)	93.2(3)	0 ₁₂ N ₁₃	
	012-Ga-N13	91.47(18)	89.94(7)	91.95(16)	87.79(10)	87.7(3)	89.1(2)		
	012-Ga-N23	99.16(17)	97.70(8)	97.68(16)	95.50(10)	91.9(4)	96.18(19)		
	021-Ga-022	167.67(17)	169.30(7)	165.11(14)	162.44(10)	165.9(3)	167.15(17)		
	021-Ga-N13	94.10(18)	94.81(7)	88.27(15)	91.72(9)	100.4(3)	96.18(19)		
	021-Ga-N23	78.48(18)	78.53(7)	77.94(15)	77.98(9)	78.8(3)	78.2(2)		
	022-Ga-N13	96.3(2)	95.23(8)	101.98(16)	102.18(10)	91.1(3)	96.18(19)		
	022-Ga-N23	90.0(2)	91.01(8)	90.07(16)	87.47(10)	89.8(3)	89.1(2)		
	N13-Ga-N23	166.9(2)	169.64(8)	163.54(16)	169.35(10)	179.1(3)	172.3(3)		

IX)
<u>ک</u> (ا
<u>×</u>
Ń
(IX),
Ê
Σ
VII),
os (
olejo
ğ
sco
2
ser
öpi
gan
os li
a C
par
es
ant
elev
s re
má
(₀)
ace
enla
de
0S (
lug
. Án
17-
N.
bla
Tat

	2	(11.	Ś	(11)	(1)	0	X	6	X)	((IIX)
	L'.	L2 ⁻	Ľ,	L2 [`]	Ľ.	L2 [`]	L1 [']	L2 [.]	Ľ'	L2 ⁻	5
01-C1-N1	123.9(6)	121.2(6)	122.2(2)	123.2(2)	121.6(5)	121.7(5)	122.0(3)	123.0(3)	120.3(12)	121.7(11)	122.4(6)
01-C1-N2	119.0(5)	119.8(6)	118.4(2)	119.2(2)	119.0(4)	119.6(5)	119.8(3)	118.9(3)	119.4(10)	120.0(9)	119.7(6)
N1-C1-N2	117.1(6)	119.0(6)	119.4(2)	117.6(2)	119.3(5)	118.7(5)	118.2(3)	118.1(3)	120.2(12)	117.9(11)	117.9(6)
C1-N2-N3	115.3(5)	114.8(5)	114.70(19)	114.38(19)	115.0(4)	115.4(4)	114.0(2)	115.2(3)	116.0(9)	115.3(9)	112.5(5)
N2-N3-C2	119.5(5)	120.3(5)	119.5(2)	119.5(2)	119.9(4)	119.7(4)	118.1(3)	118.1(3)	118.6(8)	119.5(9)	119.5(5)
N3-C2-C3	124.2(5)	124.6(6)	123.2(2)	123.2(2)	124.1(5)	123.5(5)	124.5(3)	123.7(3)	122.4(9)	123.2(10)	121.3(5)
C2-C3-C4	123.4(5)	123.2(6)	124.2(2)	124.2(2)	123.5(5)	124.9(5)	121.2(3)	121.9(3)	123.7(10)	121.2(10)	125.0(6)
C3-C4-O2	124.0(6)	123.2(6)	123.7(2)	124.1(2)	124.7(5)	122.3(4)	125.1(3)	124.4(3)	123.6(10)	125.9(9)	121.6(6)

Esquema de numeración utilizado:

La distorsión del entorno octaédrico está relacionada nuevamente con la pertenencia de átomos del entorno a una misma molécula. Cada ligando semicarbazonato coordina al Ga(III) a través de la terna de átomos ONO, imponiéndole a la geometría del entorno del metal unos parámetros condicionados por los correspondientes a la geometría del ligando. Así, si consideramos el ángulo formado por átomos en vértices opuestos del octaedro, y centrados en el metal, vemos en la Tabla IV.16 que el valor de dichos ángulos se aparta de los 180° teóricos y varía entre los 162.44° y los 179.1° (aunque por lo general está por debajo de los 170°). Por su parte, los ángulos que serían rectos en un entorno octaédrico ideal varían para estos compuestos entre 77.6° y 102.2°. En la Figura IV.26 se muestra el entorno de los 6 compuestos incluidos en este apartado, con los ángulos del plano ecuatorial detallados.

Figura IV.26.- Entornos de coordinación y ángulos del plano ecuatorial del entorno del metal en los compuestos (VII) a (XII).

Además, podemos ver en la Tabla IV.18 el ángulo diedro que forman los planos que incluyen los átomos pertenecientes a los respectivos ligandos que forman los anillos quelato entorno al Ga(III).

Tabla IV.18 - Planaridad de los ligandos en el entorno de coordinación del Ga(III), y ángulo diedro entre ligandos de los complejos (VII), (VIII), (IX), (X), (XI).

Como se aprecia en dicha tabla, en la mayoría de los complejos los átomos pertenecientes a un mismo ligando y comprometidos en la formación de anillos quelato entorno al metal, se encuentran en arreglos de marcada planaridad, salvo para el caso del complejo (XII), que se discute aparte. Los planos que incluyen los ligandos de los complejos (VII), (VIII), (IX), (X), (XI) presentan un ángulo muy próximo a los 90º esperados en este tipo de entorno, y los anillos quelato formados por cada ligando se acomodan en un arreglo virtualmente planar, siendo el mayor ángulo diedro entre estos anillos de un mismo ligando de 7.19º, para el compuesto (IX).

Es destacable lo que sucede en el entorno de coordinación del complejo (XII). En este compuesto, los átomos que coordinan al metal vuelven a componer un entorno octaédrico distorsionado, en el que el ángulo diedro entre los planos que vinculan a los átomos coordinantes de un mismo ligando semicarbazonato es de 90° aproximadamente (Figura IV.27). Sin embargo, y a diferencia de los complejos anteriores, los anillos quelato no son planos, como puede apreciarse en la Figura IV.28. Esto se debe a que el ligando presenta un ángulo diedro de aproximadamente 33.8° entre el plano que contiene al grupo fenóxido y el plano del resto semicarbazona. Aún así, el entorno de coordinación N₂O₄ no presenta diferencias apreciables con el del resto de los ligandos.

Figura IV.27 - Ángulo diedro entre distintos ligandos del complejo (XII).

Figura IV.28 - Anillos quelato del entorno de coordinación del Ga(III) en el complejo (XII).

Asimismo, en este compuesto las moléculas de ligando se apartan de la planaridad observada para los semicarbazonatos de los otros compuestos de esta serie. En la Tabla IV.19 se recogen los coeficientes de planaridad de los semicarbazonatos presentes en los compuestos (VII) a (XII). La no planaridad del ligando presente en el complejo (XII) parece obedecer a cuestiones de empaquetamiento y fuerzas de enlace débiles (enlaces de hidrógeno). La torsión de los ligandos en este complejo permite que las moléculas se acerquen lo suficiente como para que se establezcan los enlaces de hidrógeno que se discutirán más adelante, compensando así las repulsiones entre los grupos tert-butilo de una molécula del complejo y un anillo bencénico de la molécula vecina.

Otra característica destacable del complejo [Ga(H₂DBZBSC)₂]Cl·1/2H2O, compartida por el complejo (XI), está relacionada con el modo de coordinación del ligando H₃DBZBSC. Se trata de una bis-semicarbazona que coordina al átomo de Ga con sólo uno de sus restos semicarbazona, adquiriendo el otro resto una conformación que minimiza el congestionamiento estérico. Como se verá más adelante, el que el ligando no actúe como quelante pentacoordinado no tiene que ver tanto con la preferencia del Ga(III) por los entornos octaédricos, como con la presencia del átomo exocíclico O2, que reduce considerablemente el tamaño del hueco.

Ligando	Plano	Rms
	C11 C12 C13 C14 C15 C16 C17 C18 N11 N12 N13 O11 O12	0.0680
	C21 C22 C23 C24 C25 C26 C27 C28 N21 N22 N23 O21 O22	0.0759
	C11 C12 C13 C14 C15 C16 C17 C18 N11 N12 N13 O11 O12	0.1203
	C21 C22 C23 C24 C25 C26 C27 C28 N21 N22 N23 O21 O22	0.0610
	C11 C12 C13 C14 C15 C16 C17 C18 N11 N12 N13 O11 O12 O13	0.1031
	C21 C22 C23 C24 C25 C26 C27 C28 N21 N22 N23 O21 O22 O23	0.0964
	C11 C12 C13 C14 C15 C16 C17 C18 C19 C110 C111 C112 N11 N12 N13 O11 O12	0.0667
	C21 C22 C23 C24 C25 C26 C27 C28 C29 C210 C211 C212 N21 N22 N23 O21 O22	0.1267
H ₂ DBZSC ⁻ en (XI)**	C21 C22 C23 C24 C25 C26 C27 C28 C29 C210 N22 N23 N24 N25 O21 O23	0.0685
H-DB7SC ⁻ en (XII)	π ₁ : C1 N1 N2 N3 O1 O2	0.0710
	π_2 *:C2 C3 C3 C5 C6 C7 C8 C9 C10 C11 N4 N5 N6 O3	0.1051

Tabla IV.19 - Coeficientes de planaridad de los ligandos presentes en los compuestos (VII) a (XII).

* forma un ángulo diedro de 29.69 (0.13) ° respecto a π_1 .

** sólo se da el valor rms para el ligando cuyos átomos han sido completamente refinados.

En la Tabla IV.20 se resumen las conformaciones que presentan los ligandos en los complejos (VII) a (XII) respecto de los enlaces C1-N2 y C2-N3, y se las compara con las halladas en la estructura cristalina de los ligandos libres (no se estudió mediante esta técnica la estructura del ligando H₃DBZBSC, por no haberse obtenido cristales adecuados para la aplicación de la misma). Los ligandos libres tienen conformación E respecto de ambos enlaces, estando estas conformaciones estabilizadas por los enlaces de hidrógeno intramoleculares que involucran al N terminal del resto semicarbazona,

el O2 y el N imínico. La conformación E respecto del enlace C2-N3 se mantiene en todos los semicarbazonatos, pero se invierte en la conformación respecto del enlace C1-N2 en todos los restos semicarbazona que están coordinados al metal. La razón de esta inversión con pérdida del enlace de hidrógeno intramolecular es evidente, ya que de no producirse, no sería posible la actuación del ligando como quelante tridentado.

Tabla IV.20 - Conformaciones de las cadenas semicarbazona en ligandos derivados del salicilaldehído y compuestos afines, y en sus complejos (VII) a (XII).

	C1-N2	C2-N3
$H_2SSC \equiv H_2L$	Ε	Ε
HL1 [°] en el complejo (VII)	Ζ	Ε
HL₂ ⁻ en el complejo (VII)	Ζ	Ε
HL1 ⁻ en el complejo (VIII)	Ζ	Ε
HL ₂ en el complejo (VIII)	Ζ	Ε
$H_3XSSC \equiv H_3L$	Ε	Ε
H ₂ L ₁ en el complejo (IX)	Ζ	Ε
H ₂ L ₂ en el complejo (IX)	z	Ε
$H_2NAFSC \equiv H_2L$	E	Ε
HL1 en el complejo (X)	Ζ	Е
HL ₂ en el complejo (X)	z	Ε
$H_3DBZBSC \equiv H_3L$	-/-	-/-
Cadena 1 de HL ₁ ²⁻ en el complejo (XI)	Z	Ε
50% de la cadena semicarbazona 2 de HL_1^{2} en el complejo (XI)	Ε	Ε
50 % de la cadena 2 de HL ₁ ²⁻ en el complejo (XI)	Ε	Ε
Cadena 1 de H ₂ L ₂ en el complejo (XI)	Ζ	Ε
Cadena 2 de H ₂ L ₂ en el complejo (XI)	Ε	Ε
Cadena 1 de H ₂ L ⁻ en el complejo (XII)	Ζ	Ε
Cadena 2 de H ₂ L ⁻ en el complejo (XII)	Ε	Ε

Como ya se mencionara en el apartado III.2.2, las longitudes de enlace típicas para las uniones Ga-O y Ga-N en compuestos de coordinación son de 1.946 Å y 2.149 Å, respectivamente. Como puede apreciarse en la Tabla IV.15, en esta serie de complejos la distancia de enlace Ga-O varía entre 1.873 y 2.079 Å (la distancia de enlace promedio Ga-O1 es de 2.032 Å, y la correspondiente al enlace Ga-O2 de 1.896 Å). Cabe mencionar que la distancia de enlace Ga-O2 es ligeramente menor en el caso de estos compuestos que el valor medio encontrado para este enlace (1.960 Å) en los

complejos de Ga(III) con semicarbazonatos derivados de α -oxo-ácidos. Por su parte, la distancia de enlace Ga-N en estos compuestos es algo menor que la encontrada en la base de datos CSD^[7], variando entre los 1.998 y los 2.026 Å.

Respecto de las longitudes de enlace en los restos semicarbazona, en la Tabla IV.21 se comparan los valores de estos enlaces en los complejos y sus valores en los ligandos libres. Como puede apreciarse en dicha tabla, estas longitudes no experimentan grandes variaciones al pasar de los ligandos libres a los complejos, aunque sí siguen tendencias claras. Así, al observar lo que sucede con la distancia C1-O1, podemos ver que este enlace experimenta una ligera evolución hacia la forma enol. Más acentuada es la disminución en la distancia C4-O2 al pasar de los ligandos libres a los semicarbazonatos (donde siempre tenemos el O2 desprotonado, pues el protón de este grupo es el primero que se pierde, como ya se ha comentado), aunque son variaciones en la longitud de enlace que no superan los 0.052 Å.

Tabla IV.21 - Longitudes de enlace en los ligandos libres y en los semicarbazonatos relacionados con los complejos (VII) a (XII).

		C1-01	C1-N1	C1-N2	N2-N3	C2-N3	C2-C3	C3-C4	C4-02
HISSO	M. 1	1.248(5)	1.331(5)	1.356(5)	1.375(4)	1.282(5)	1.453(5)	1.402(6)	1.371(5)
H233C	M. 2	1.248(5)	1.324(5)	1.354(5)	1.376(4)	1.280(5)	1.448(5)	1.399(6)	1.360(5)
()/III)	L1 ⁻	1.251(7)	1.311(8)	1.359(7)	1.371(6)	1.301(7)	1.428(8)	1.425(8)	1.323(7)
(VII)	L_2^-	1.263(7)	1.329(7)	1.347(8)	1.378(6)	1.279(7)	1.431(9)	1.415(9)	1.319(7)
(\/!!!)	L1 ⁻	1.272(3)	1.309(3)	1.366(3)	1.378(3)	1.289(3)	1.445(3)	1.415(3)	1.333(3)
(VIII)	L2 ⁻	1.260(3)	1.319(3)	1.363(3)	1.381(3)	1.290(3)	1.439(3)	1.414(3)	1.325(3)
H₃XSSC		1.251(6)	1.339(6)	1.356(6)	1.378(5)	1.283(6)	1.445(6)	1.411(6)	1.364(5)
(17)	L1 ⁻	1.270(6)	1.314(6)	1.341(6)	1.389(5)	1.287(6)	1.433(7)	1.423(7)	1.322(6)
(17)	L_2^-	1.266(6)	1.329(6)	1.349(6)	1.371(6)	1.298(6)	1.427(7)	1.414(7)	1.343(6)
	M. 1	1.255(3)	1.330(3)	1.359(3)	1.372(3)	1.290(3)	1.455(3)	1.388(4)	1.354(3)
n ₂ NAF3C	M. 2	1.253(3)	1.329(3)	1.355(3)	1.379(3)	1.291(3)	1.450(3)	1.390(3)	1.357(3)
()	L ₁	1.267(4)	1.319(4)	1.354(4)	1.390(4)	1.286(4)	1.427(4)	1.405(4)	1.313(4)
(^)	L2 ⁻	1.270(4)	1.314(4)	1.352(4)	1.374(4)	1.293(4)	1.435(4)	1.404(4)	1.324(4)
	L٥	1.265(13)	1.313(16)	1.333(15)	1.352(12)	1.286(13)	1.468(14)	1.414(14)	
(XI)*	L_1^-	1.268(14)	1.341(15)	1.321(15)	1.390(12)	1.291(15)	1.465(15)	1.410(15)	1.333(13)
	L_2^-	1.294(15)	1.320(15)	1.323(15)	1.382(12)	1.302(14)	1.435(15)	1.398(14)	1.319(12)
(Y II)*	L٥	1.223(8)	1.317(10)	1.364(9)	1.380(7)	1.275(8)	1.454(8)	1.400(9)	
(,,,,)	L_2^-	1.265(7)	1.318(9)	1.369(8)	1.394(7)	1.290(8)	1.434(10)	1.418(9)	1.339(7)

*Para los compuestos (XI) y (XII), los datos referidos a L⁰ son los parámetros del resto semicarbazona no coordinado de la estructura correspondiente (ver Figuras IV.23 y IV.25).

Asimismo, se observa una ligera disminución de la longitud del enlace C2-C3 y un aumento de la distancia C3-C4. El enlace imínico aumenta ligeramente su longitud, al pasar de los ligandos libres a los semicarbazonatos coordinados. Aunque este aumento no es sustancial, se observa una tendencia a la elongación de este enlace, al contrario de lo que pasaba en los complejos de Ga(III) con semicarbazonatos derivados de α -oxo-ácidos, donde la tendencia era a la disminución de la distancia C2-N3.

Ya se comentó que el complejo (XI) es el único de esta serie en el que los semicarbazonatos que coordinan al metal tienen un grado distinto de desprotonación. Como podemos comprobar en la Tabla IV.21, las longitudes de enlace de los restos semicarbazona confirman la asignación hecha respecto de cuál es la cadena semicarbazona que sufre la desprotonación del grupo N2-H. Como es de esperar, la carga generada por la perdida del H mencionado repercute en la longitud de los enlaces del resto semicarbazona. Así, observamos que la distancia C1-O1 es mayor en el ligando bidesprotonado que en el monocargado, al igual que la longitud del enlace imínico. También se observa como se acortan los enlaces C1-N1 y N2-N3 por efecto de la mayor densidad electrónica deslocalizada sobre el plano del ligando bidesprotonado L²⁻.

En la Tabla IV.22 se detallan los enlaces de hidrógeno presentes en la estructura del complejo $[Ga(HSSC)_2]NO_3 \cdot MeOH$ (VII), y se representan en la Figura IV.29. Como puede observarse, a excepción de los enlaces O41S-H41S···O2^v y N21-H21B···O11^{iv}, todos estas interacciones involucran una molécula del complejo y una de disolvente o un anión nitrato. Cada anión nitrato puentea tres moléculas del catión complejo y una molécula de metanol, como se muestra en la Figura IV.30.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O2 ⁱ	0.86	2.19	2.975(9)	152.4
N12-H12A…O1 ⁱⁱ	0.86	1.94	2.772(7)	163.2
N21-H21A…O1 ⁱⁱⁱ	0.86	2.10	2.873(8)	149.9
N21-H21B…O11 ^{iv}	0.86	2.22	2.978(6)	147.7
N22-H22A…O41S	0.86	1.96	2.749(13)	152.4
O41S-H41S…N22	0.82	2.17	2.749(13)	127.5
041S-H41S…O2 ^v	0.82	2.51	3.034(19)	122.7

Tabla IV.22 - Enlaces de hidrógeno (Å y °) presentes en la estructura cristalina del complejo (VII).

ⁱ -x, -y+1, -z-1; ⁱⁱ x, -y+1/2, z-1/2; ⁱⁱⁱ -x, -y+1, -z; ^{iv} x, -y+1/2, z+1/2; ^v -x, y-1/2, -z-1/2.

Figura IV.29 - Enlaces de hidrógeno del complejo (VII).

Figura IV.30 - Enlaces de hidrógeno con el anión nitrato como aceptor en la estructura del complejo (VII). ⁱ -x, -y+1, -z-1; ⁱⁱⁱ -x, -y+1, -z; ^{iv} x, -y+1/2, z+1/2; ^{vi} -x, y+1/2, -z-1/2.

Son los enlaces entre unidades del catión complejo $[Ga(HSSC)_2]^+$ y aniones NO₃⁻ los que extienden la estructura formando bicapas infinitas paralelas al plano bc, como queda representado en la Figura IV.31.

Figura IV.31- Estructura supramolecular del complejo (VII).

Los enlaces de hidrógeno presentes en la estructura cristalina del complejo (VIII) se detallan en la Tabla IV.23, y se representan en la Figura IV.32.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
01W-H1A…Cl ⁱ	0.95(5)	2.35(5)	3.271(2)	164(4)
01W-H1B…011 ⁱⁱ	0.90(4)	2.01(4)	2.882(3)	162(3)
N11-H11A…Cl ⁱⁱⁱ	0.86	2.42	3.267(2)	167.6
N11-H11B…O1W ^{iv}	0.86	2.11	2.779(3)	134.5
N12-H12A…O12 ^v	0.86	2.00	2.807(3)	156.8
N21-H21A…Cl ^{vi}	0.86	2.49	3.350(2)	177.5
N21-H21B…Cl ^{vii}	0.86	2.82	3.526(2)	140.4
N22-H22A…Cl ^{vii}	0.86	2.37	3.138(2)	149.1

Tabla IV.23 - Enlaces de hidrógeno (Å y °) presentes en la estructura cristalina del complejo (VIII).

ⁱ x+1/2, y, -z+1/2; ⁱⁱ -x+1/2, y+1/2, z; ⁱⁱⁱ -x, y-1/2, -z+1/2; ^{iv} x, y-1, z; ^v -x+3/2, y-1/2, z; ^{vi} -x+1, y-1/2, -z+1/2; ^{vii} x+1, y, z;

Figura IV.32 - Enlaces de hidrógeno del complejo (VIII).

Como puede apreciarse en la Figura IV.33, el anión Cl⁻ actúa como aceptor en cinco enlaces de hidrógeno, vinculando tres moléculas de complejo y una molécula de agua de cristalización.

Figura IV.33 - Enlaces de hidrógeno con el anión cloruro como aceptor en la estructura del complejo (VIII). ^{viii} -x, y+1/2, 1/2-z; ^{ix} 1-x, y+1/2, 1/2-z; ^x x-1, y, z; ^{xi} x-1/2, y, 1/2-z.

Los enlaces N11-H11B····O1W^{iv}, N21-H21A····Cl^{vi}, N21-H21B····Cl^{vii}, N22-H22A····Cl^{vii} y O1W-H1A····Clⁱ extienden la estructura a lo largo del eje b, mientras que los enlaces N11-H11A····Clⁱⁱⁱ y N21-H21A····Cl^{vi} lo hacen a lo largo del eje a, formando placas infinitas paralelas al plano ab, estabilizadas por interacciones de tipo π - π stacking (Tabla IV.24 y Figura IV.34), que se unen en bicapas mediante enlaces de hidrógeno con los aniones Cl⁻, como se muestra en la Figura IV.35.

Tabla IV.24 - Interacciones de tipo π - π stacking en la estructura del compuesto (VIII).

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	Cgl_Perp(Å)	CgJ_Perp(Å)	Slippage(Å)
Cg5-Cg6 ^v	3.7358(19)	5.18	28.45	23.95	3.414	3.285	
Cg6-Cg5 ^{viii}	3.7359(19)	5.18	23.95	28.45	3.285	3.414	

Anillo(5): C13 C14 C15 C16 C17 C18; Anillo(6): C23 C24 C25 C26 C27 C28. ^v -x+3/2, y-1/2, z; ^{viii} 3/2-x, 1/2+y, z.

Figura IV.34 - Interacción de tipo π - π stacking en el compuesto (VIII).

Figura IV.35 - Estructura supramolecular del complejo (VIII).

En la Tabla IV.25 se recogen los parámetros asociados al entramado de enlaces de hidrógeno presente en la estructura cristalina del complejo (IX), y se representan en la Figura IV.36 los enlaces de hidrógeno entre moléculas del complejo de dicha estructura.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O11 ⁱⁱⁱ	0.86	2.17	2.964(6)	152.8
N11-H11B…O2A ⁱⁱ	0.86	2.16	2.845(8)	136.1
N11-H11B…O23 ^{iv}	0.86	2.47	3.158(6)	137.2
N12-H12A…O2B ⁱⁱ	0.86	2.03	2.797(8)	147.4
N12-H12A…O2C	0.86	2.07	2.849(9)	150.7
N21-H21A…O21 ^v	0.86	2.15	2.972(5)	160.9
N21-H21B…O1B	0.86	2.00	2.830(12)	162.1
N22-H22A…O1C	0.86	1.92	2.761(8)	165.6
O1S-H1SO22	0.85(2)	2.06(2)	2.805(6)	146(6)
013-H13A…O1S ^{vi}	0.83(2)	1.81(2)	2.641(6)	179(6)
023-H23…013 ^{vii}	0.79(7)	2.09(7)	2.840(6)	158(7)

Tabla IV.25 - Enlaces de hidrógeno (Å y °) del complejo (IX).

ⁱⁱⁱ -x+1, -y+2, -z+2; ⁱⁱⁱ -x+1, -y+2, -z+1; ^{iv} x, y+1, z; ^v -x+2, -y+2, -z+1; ^{vi} -x+2, -y+1, -z+2; ^{vii} x-1, y, z.

Los cuatro enlaces de hidrógeno entre moléculas del complejo catiónico $Ga(H_2XSSC)_2]^+$ dan lugar a la formación de capas infinitas paralelas al plano ab, estabilizados parcialmente por las interacciones débiles de tipo π - π stacking (Figura IV.37) cuyos parámetros se recogen en la Tabla IV.26.

Figura IV.36 - Enlaces de hidrógeno entre moléculas del complejo $[Ga(H_2XSSC)_2]^+$ en la estructura (IX).

Tabla IV.26 - Interacciones de tipo π - π stacking presentes en la estructura del compuesto (IX).

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	Cgl_Perp(Å)	CgJ_Perp(Å)	Slippage
Cg3-Cg5 ^{vi}	3.821(3)	3.97	30.78	27.57	3.387	3.283	
Cg5-Cg3 ^{vi}	3.821(3)	3.97	27.57	30.78	3.283	3.387	
Cg5-Cg5 ^{vi}	3.716(4)	0.03	26.69	26.69	3.320	3.320	1.669

Anillo(3): Ga O12 C14 C13 C12 N13; Anillo(5): C13 C14 C15 C16 C17 C18. ^{vi} -x+2, -y+1, -z+2.

Figura IV.37 - Interacciones de tipo π - π stacking en el compuesto (IX).

Las capas antes mencionadas, apiladas a lo largo del eje c, se unen mediante enlaces de hidrógeno que involucran a la molécula de etanol de cristalización (O1S-H1S···O22 y O13-H13A···O1S^{vi}), formando una red tridimensional con canales paralelos al eje c en los cuales se ubican los aniones nitrato, que además de neutralizar las cargas del complejo catiónico, participan en cinco enlaces de hidrógeno, estabilizando la estructura tridimensional representada en la Figura IV.38.

Figura IV.38 - Estructura supramolecular del complejo (IX).

En la Tabla IV.27 se recogen los parámetros de los enlaces de hidrógeno de la estructura cristalina del compuesto [Ga(HNAFSC)₂]Cl·2H₂O (X).

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…Cl1	0.88(4)	2.33(4)	3.198(3)	166(3)
N11-H11B…O21 ⁱ	0.78(4)	2.19(4)	2.942(4)	163(4)
01W-H11W…O22 ⁱⁱ	0.838(19)	2.11(2)	2.939(4)	168(5)
N12-H12N…O1W	0.879(19)	1.92(2)	2.783(4)	166(5)
O1W-H12W…Cl1 ⁱⁱⁱ	0.85(2)	2.42(4)	3.237(3)	160(9)
N21-H21A…Cl1 ^{iv}	0.82(4)	2.42(4)	3.230(3)	171(4)
N21-H21B…Cl2	0.84(6)	2.53(6)	3.259(4)	145(5)
N21-H21B…O3W	0.84(6)	2.02(6)	2.824(6)	159(6)
N22-H22N…Cl2	0.81(4)	2.52(4)	3.223(3)	147(3)
N22-H22N…O2W	0.81(4)	2.07(4)	2.831(6)	158(4)
		III	1 - 1 2. ^{iv} v	

Tabla IV.27- Enlaces de hidrógeno (Å y °) del compuesto (X).

x, -y+1, z+1/2; x, -y+1, z-1/2; -x+1, -y+1, -z+2; x, y, z-1.

En esta estructura hay un sólo enlace de hidrógeno entre moléculas del catión complejo, N11-H11B····O21ⁱ, y es responsable de la formación de cadenas infinitas (ver Figura IV.39) paralelas el eje c, estabilizadas por interacciones débiles de tipo π-π stacking, como se comentará en breve.

Figura IV.39 - Enlace de hidrógeno entre moléculas del complejo catiónico del compuesto (X).

Dichas cadenas se unen en dobles cadenas infinitas mediante enlaces de hidrógeno que involucran al anión cloruro en la posición etiquetada como Cl1 (recuérdese que el contraión de esta estructura está desordenado en dos posiciones con ocupaciones del 50%). En la Figura IV.40 se

representan todos los enlaces de hidrógeno en los que el átomo Cl1 actúa como aceptor; como puede observarse, dicho átomo hace de puente para cuatro moléculas del catión complejo y para dos moléculas de agua de cristalización.

Figura IV.40- Enlaces de hidrógeno del compuesto (X) en los que el átomo Cl1 actúa como aceptor. ^{vi} 1-x, y, 3/2-z; ^{vii} x, y , 1+z; ^{viii} 1-x, y, 5/2-z.

Finalmente, enlaces de hidrógeno que involucran a la otra posición del anión cloruro y al resto de las moléculas de agua de cristalización, unen estas dobles cadenas haciendo crecer la estructura en la dirección del eje b, generándose así una estructura supramolecular en forma de bicapas infinitas paralelas al plano bc, como la representada en la Figura IV.41. Estas bicapas se ven estabilizadas por al menos 2 interacciones de tipo π - π stacking, representadas en la Figura IV.42. Los parámetros correspondientes a dichas interacciones se detallan en la Tabla IV.28.

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	Cgl_Perp(Å)	CgJ_Perp(Å)
Cg3-Cg6 ⁱ	3.812(3)	1.57	30.41	29.14	3.330	3.288
Cg6-Cg3 ⁱⁱ	3.812(3)	1.57	29.14	30.41	3.287	3.330

Tabla IV.28 - Interacciones de tipo π - π stacking en la estructura del compuesto (X).

Anillo(3): Ga1 O12 C14 C13 C12 N13; Anillo(6): C17 C18 C19 C110 C112 C111. "x, 1-y, -1/2+z; x, 1-y, 1/2+z

Figura IV.41 - Estructura supramolecular del compuesto (X).

Figura IV.42 - Interacciones tipo π - π stacking en el compuesto (X).

Los enlaces de hidrógeno correspondientes al compuesto (XI) no se discuten en detalle, ya que como ya se adelantara en el apartado de técnicas experimentales, la calidad del cristal y,

consecuentemente, de los datos sobre los cuales se resolvió esta estructura, no permitieron el refinado completo de la misma.

En la Tabla IV.29 se detallan los enlaces de hidrógeno presentes en la estructura cristalina del compuesto (XII). En la Figura IV.43 se representan dichos enlaces.

D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O2 ⁱⁱ	0.86	2.27	2.990(7)	141.6
N1-H1B…O3 ⁱⁱⁱ	0.86	2.22	2.984(7)	147.7
N2-H2A…Cl ^{iv}	0.86	2.53	3.080(6)	122.3
N5-H5…O3 ^v	0.86	2.10	2.914(8)	158.3
N6-H6A…Cl ^{vi}	0.86	2.52	3.185(8)	134.7
N6-H6B…N4	0.86	2.24	2.612(9)	106.4

Tabla IV.29 - Enlaces de hidrógeno del compuesto (XII).

ⁱⁱⁱ -x+3/2, y-1/2, -z+1/2; ⁱⁱⁱ x-1/2, -y+1/2, z-1/2; ^{iv} x, y, z-1; ^v -x+2, -y+1, -z+1; ^{vi} -x+2, y+1/2, z-1/2.

Figura IV.43 - Enlaces de hidrógeno del compuesto (XII).

El anión cloruro vincula 4 moléculas del catión complejo $[Ga(H_2DBZBSC)_2]^+$, en un arreglo de gran congestión estérica, como puede apreciarse en la Figura IV.44, donde sólo se muestra la mitad de cada catión complejo.

Figura IV.44 - Enlaces de hidrógeno con el anión Cl⁻ como aceptor en la estructura del compuesto (XII). ^{vii} x, y, z+1; ^{viii} 3/2-x, -y, z+1; ^{ix} 2-x, y-1/2, z+1/2; ^x x-1/2, 1/2-y, z+1/2.

Como ya se comentara, los ligandos semicarbazonato de este complejo se apartan de la planaridad observada para el resto de los compuestos de esta serie. La presencia del sustituyente tert-butilo sobre el anillo aromático genera, en este arreglo particular, unas repulsiones estéricas (y con ellas una distorsión de la configuración planar usual en estos ligandos) que deben estar compensadas por los enlaces de hidrógeno descritos anteriormente. Además, y como puede apreciarse en la Figura IV.45, la cercanía entre los grupos tert-butilo y anillos bencénicos de moléculas de complejo vecinas da lugar a la formación de una interacción doble de tipo C-H… π , lo que podría compensar en parte el efecto desfavorable de la congestión estérica que dicha cercanía implica. Los parámetros del enlace C-H… π en cuestión se recogen en la Tabla IV.30.

Los enlaces de hidrógeno entre unidades del catión complejo generan una estructura supramolecular (ver Figura IV.46) en forma de red tridimensional con canales paralelos al eje b,

dentro de los cuales se ubican los cloruros y las moléculas de agua de cristalización, posiblemente vinculadas a los cationes complejos mediante enlaces de hidrógeno (no se pudieron refinar los átomos de H correspondientes a las moléculas de agua de cristalización por estar éstas desordenadas).

Interacción	H…Cg(Å)	H-Perp(Å)	γ(°)	X-H…Cg(°)	X…Cg Å	X-H,Pi
C14-H14B…Cg5 ^{xi}	2.94	2.865	13.16	144	3.761(11)	59
	Anillo(5): C3 C4 C5 C6	5 C7 C8. *	^d 2-x, 1-y, -z.		
م					٩	
~					20	
A					2	So
~			0	~	00	Γ _ρ
	-~	C1.	AXIP OF		-	P-\$
		e H14B ^{xi}	the	and the second s	25	
7	6	2 20		and and	。 [。] \	3
N	2	a de d	2	Cg5~2	0	Ø
~8 Y	2	and a	D	- HA	ľ	6
	25	6	CH14	4B		To
2 200	2 p	Co of	SC14			5
8000	~	ъ			Ĩ	A Do-
5	P				- A	
200	000					
	δ				ď	

Tabla IV.30 - Interacción C-H··· π en la estructura del compuesto (XII).

Figura IV.45 - Interacciones C-H···π en el compuesto (XII).

Figura IV.46 - Estructura supramolecular del compuesto (XII).

IV.3- ESPECTROSCOPIA VIBRACIONAL IR

En la Tabla IV.31 se recoge la asignación de las bandas de los espectro IR pertenecientes a ligandos semi- y tiosemicarbazona (y sus correspondientes complejos con Ga(III)) derivados del salicilaldehído, del 2,4-dihidroxi-benzaldehído, del 4-tert-butil-2,6-diformilfenol y del 2-hidroxi-1naftaldehído. En las Figuras IV.47 y IV.48 se muestran, a modo de ejemplo, los espectros del ligando H_2SSC y del complejo [Ga(HSSC)₂]NO₃·MeOH. Como puede apreciarse, los espectros IR de los ligandos presentan varias bandas en común:

- la banda correspondiente al modo v(C=O) del resto semicarbazona (en el rango 1670-1700 cm⁻¹), y al modo v(C=S) en los ligandos tiosemicarbazona (820-870 cm⁻¹),

- La banda correspondiente al enlace imínico ν(C=N), en el rango 1610-1640 cm⁻¹, tanto para ligandos semi- como tiosemicarbazona,

- La banda correspondiente a la vibración del enlace C-OH, v(C-OH)_{fenol}, en el rango 1112-1317 cm⁻¹,

- La señal correspondiente a la deformación del grupo -NH₂ terminal de las cadenas semi- y tiosemicarbazonas, δ (NH₂), en el rango 1580-1610 cm⁻¹,

- La banda correspondiente al modo vibracional ν(N-N), en el rango 940-980 cm⁻¹,

- La banda correspondiente a la oscilación fuera del plano de los hidrógenos aromáticos,

 $v(C-H)_{f.d.p.}$, en el rango 640-850 cm⁻¹,

- La zona del espectro comprendida entre 2900 y 3500 cm⁻¹, donde se encuentran en todos los casos varias bandas superpuestas, correspondientes a los modos vibracionales $v_{as}(NH_2)$, $v_s(NH_2)$, v(N-H) y v(O-H).

Figura IV.47 - Espectro infrarrojo (500 a 4000 cm⁻¹) del ligando H₂SSC.

sus correspondientes	
lestos relacionados, y	
alicilaldehído y compu	
azona derivados del s	
os semi- y tiosemicarb	
spondientes a ligando	
 Asignaciones corre 	de Ga(III).
Tabla IV.3	complejos i

	V _{as} (NH ₂)	v _s (NH ₂)	V(N-H)	v(O-H)	v(C=O)	v(C=N)	6(NH2)	v(NO ₃)****	v(c-oh)	v(N-N)	v(C=S)	v(C-H) _{f.d.p.}
H ₂ SSC ^[8,9]	3493	3279	3155	3000-3200	1695	1621	1591		1267	946		759
[Ga(HSSC) ₂]NO ₃ ·MeOH	3547	3346	3173		1678	1603	1556	1384 vs	1302	906		803, 763 ?
[Ga(HSSC) ₂]Cl·H ₂ O	3560	3334	3150		1682	1603	1544		1290	904		803, 752 ?
H ₃ XSSC ^[8,9]	3476	3285	3236	2900-3300	1683	1632	1583		1317, 1219	977		847, 668
[Ga(H ₂ XSSC) ₂]NO ₃ ·EtOH	3606	3500, 3414, 3345, 3	301, 3235, 3182 *		1654	1616	1550	1384 vs	1447, 1384, 1233 ?	992		841, 756, 608 ?
[Ga(H ₂ XSSC) ₂]Cl·4H ₂ O	≈ 3520	3415, 3273, 31	l97, 3158 **		1658	1620	1545		1419, 1230	066		846, 758, 611 ?
Ga(H ₂ XSSC)(HXSSC)	≈ 3590, 3474	3412, 3333, :	3292, 3204		1683, 1667	1627, 1611	1579, 1502		1448, 1434, 1230 b ?	993, 977		846/835, 761/735, 613/609 ?
H ₂ NAFSC ^[8,9]	3451	3348	3180	2900-3200	1671	1624	1602	>	1278	955		818, 742
[Ga(HNAFSC) ₂]Cl·2H ₂ O	≈ 3519 sh	3419, 3386, 3336,	3270, 3165 ***		1667 sh, 1655	1619, 1609	1547		1299	971		824, 749
H ₃ DBZSC ^[8,9]	3479	3329	3201	3000-3500	1678	1621	1586		1122	946		754
H ₂ STSC ^[8,9,10]	3492	3321	3175	3000-3200		1615	1604		1266	949	831	752
H ₃ XSTSC ^[8, 9, 10]	3478	3343	3178*	2700-3400		1632	1606		1165, 1238	977	862	640-810
H ₂ NAFTSC ^[8,9,10]	3450	3260	3166	3000-3300		1610	1595		1279	952	820	650 - 780
H ₃ DBZTSC ^[6,7,8]	3436	3261	3158	3100-3500		1617	1599		1112	951	825, 842	755
* solapadas en una única e	snvolvente, y su	uperpuestas con las	s señales correspo	ondientes al g	rupo OH del disc	olvente						

**** asignada al modo vibracional v3(E')(vd(NO))

^{**} solapadas en una única envolvente generada por las señales correspondientes a las moléculas de agua

^{***} solapadas con las señales correspondientes a las moléculas de agua

Figura IV.48 - Espectro infrarrojo (500 a 4000 cm⁻¹) del complejo [Ga(HSSC)₂]NO₃·MeOH.

En los espectros IR de los complejos:

- La desaparición de la banda v(O-H) (debida a la desprotonación del grupo fenólico, confirmada por difracción de rayos X) no puede ser claramente establecida, debido al gran número de señales que aparecen en esta zona del espectro y que dan cuenta de los modos vibracionales correspondientes al grupo –NH₂ terminal y al grupo –NH- de las cadenas semi- y tiosemicarbazona. Lo que sí se observa es un desplazamiento a energías mayores de la vibración del enlace C-O⁻ comparada con el valor correspondiente a v(C-OH) en los ligandos libres. En el caso de los complejos que involucran al ligando H₃XSSC hay más de una señal asignada a esta vibración debido a la existencia sobre el anillo aromático de un segundo grupo –OH, que no se desprotona; el ligero desplazamiento a mayores números de onda de la banda v(C-OH) correspondiente a este segundo oxhidrilo puede estar relacionado con la deslocalización de la carga que aparece sobre el O2 al desprotonarse dicho grupo.

- Las señales correspondientes al grupo C=O se desplazan a menores números de onda al pasar de los ligandos libres a los complejos, mostrando una cierta evolución a la forma enolato. Estas variaciones, de entre -13 y -29 cm⁻¹ para el modo v(C=O), se corresponden con el aumento de la longitud de enlace C1-O1 al pasar de los ligandos libres a los complejos (ver apartado IV.2.2).

- La banda correspondiente a la vibración del enlace imínico ν(C=N) se mueve a números de onda menores al pasar de los ligandos a los complejos, como consecuencia del rol del átomo de N3 como sitio de coordinación al metal (lo que sustrae densidad electrónica del doble enlace C=N, hecho confirmado por el ligero aumento en la longitud de dicho enlace, como puede apreciarse en al Tabla IV.16 del apartado IV.2.2).

- La deslocalización a lo largo de la cadena de la carga generada por pérdida del protón sobre O2 parece no afectar demasiado al resto semicarbazona. Así, la banda correspondiente al modo v(N-N) se mueve a menores números de onda al pasar de los ligandos libres a los complejos. Nótese que en el caso de los ligandos derivados de α -oxo-ácidos esta banda se desplaza a mayores números de onda al pasar de los mismos a los complejos correspondientes. Esto se debe a que en dichos complejos suele desprotonarse el N2-H de la cadena semi- o tiosemicarbazona, al contrario de lo que ocurre con los semicarbazonatos que ahora nos ocupan, en los cuales la desprotonación ocurre sólo en el átomo O2.

- La evolución de la forma ceto a la forma enol que acompaña a la coordinación se ve reflejada principalmente en el desplazamiento de las bandas correspondientes a los modos $v_{as}(NH_2)$ y $v_s(NH_2)$ hacia mayores números de onda.

- Y al igual que ocurría para los complejos del apartado III.3, la banda correspondiente a $\delta(NH_2)$ se mueve a zonas de menor energía, presumiblemente por la ausencia en los complejos del enlace de hidrógeno intramolecular N1-H···N3, que imponía una cierta restricción sobre el balanceo fuera del plano de los hidrógenos correspondientes al grupo -NH₂ terminal.

- En el caso de los compuestos $[Ga(HSSC)_2]NO_3 MeOH y [Ga(H_2XSSC)_2]NO_3 EtOH, la banda mas intensa del espectro es la correspondiente al ion nitrato no coordinado, que aparece a 1384 cm⁻¹, asignada al modo v3(E')(vd(NO))^[9].$

IV.4 - ESPECTROSCOPIA DE RMN de ¹H Y ¹³C

En la Tabla IV.32 se recogen las asignaciones para los espectros de RMN de ¹H correspondientes a ligandos semi- y tiosemicarbazona derivados del salicilaldehído (H₂SSC y H₂STSC)^[12-16], del 2,4-dihidroxibenzaldehído (H₃XSSC y H₃XSTSC) y del 2-hidroxi-1-naftaldehído (H₂NAFSC)^[13,14,15,17,18]. Estas asignaciones se basan en asignaciones previas, recogidas en la literatura, y en experimentos de correlación C-H.

Tabla IV.32 - Asignaciones de los espectros de RMN de ¹H, en DMSO-d₆, de los ligandos H₂SSC, H₃XSSC, H₂NAFSC, H₂STSC y H₃XSTSC.

	0 ² –H	N ² -H	C ² –H	Aromáticos	N ¹ -H	-O ³ H
H₂SSC	9.96 (1) s.a.	10.17 (1) s.	8.13 (1) s.	6.81 (1) t. ³ J=7.33 [C ⁷ -H] 7.17 (1) t. ³ J=6.74 [C ⁶ -H] 7.75 (1) d. ³ J=7.03 [C ⁸ -H] 6.85 (1) d. ³ J=7.91 [C ⁵ -H]	6.38 (2) s.a.	
H₃XSSC	9.94a(1)	9.94a(1)	8.01(1)	7.48d(1) ³ J=8.2 [C⁸ -H] 6.28(1) [C⁵ -H] 6.24(1) d. ³ J=8.8 [C⁷-H]	6.28(2)	9.64 (1) s.a.
H₂NAFSC	11.20 (1) s.m.a.	10.24 (1) s.	8.86 (1) s.	8.37 (1) d. ³ J=8.5 [C ¹⁰ -H] 7.83 (1) d. ³ J=7.9 [C ⁷ -H] 7.82 (1) d. ³ J=9 [C ⁶ -H] 7.55 (1) t. ³ J=7.6 [C ⁹ -H] 7.34 (1) t. ³ J=7.6 [C ⁸ -H] 7.19 (1) d. ³ J=9.1 [C ⁵ -H]	6.40 (2) s.a.	•
H₂STSC	9.85 (1) s.a.	11.33 (1) s.a.	8.31 (1) s.	7.86 (1) * [C⁸ – H] 7.16 (1) t. ³ J=7.5 [C⁶ – H] 6.81 (1) d. ³ J=8.5 [C⁵ – H] 6.75 (1) t. ³ J=7.5 [C⁷ – H]	8.07 (1) s.a. 7.88 (1) s.a.*	
H₃XSTSC	9.73 (1) s.	11.15 (1) s.	8.22 (1) s.	7.64 (1) d. [C⁸ -H] 6.27 (1) s. [C⁵ -H] 6.24 (1) d. [C⁷ -H]	7.92 (1) s.a. 7.72 (1) s.a.	9.73 (1) s.

*señales superpuestas

Esquema de numeración:

X = O¹ => H₃XSSCX = S => H₃XSTSC

165

Los protones que aparecen a mayores frecuencias en los espectros de esta serie de ligandos se asignan a los grupos -N²H, excepción hecha de la señal asignada al grupo -O²H en el espectro del ligando H₂NAFSC. El alto desplazamiento de esta última señal podría deberse a la mayor capacidad de deslocalización de carga del naftaleno comparado con el benceno, lo que unido a la posibilidad de ceder carga por resonancia del grupo -OH cuando se halla como sustituyente de un anillo aromático, provoca una mayor polarización del enlace -O²H en el H₂NAFSC comparado con el mismo grupo de H₂SSC (ver Figura IV.49, donde se muestra que hay al menos dos estructuras más contribuyendo al híbrido de resonancia en H₂NAFSC que en H₂SSC).

Figura IV.49 - Algunas estructuras resonantes contribuyentes a los híbridos de resonancia que representan a los ligandos H₂NAFSC y H₂SSC, respectivamente.

En la Figura IV.50 se recogen los espectros de RMN de ¹H (en el rango de 5 a 12 ppm) de los ligandos H₂NAFSC y H₂SSC. En dicha figura puede observarse que la influencia del sustituyente sobre la cadena semicarbazona sólo es apreciable para el protón del grupo imínico (C²-H), que en el caso del ligando derivado del hidroxinaftaldehído se mueve a campos bajos, comparado con el protón análogo del H₂SSC, mientras que las señales correspondientes a los grupos N²-H y N¹H₂ permanecen casi inalteradas.

El que las señales correspondientes al grupo N²-H sean las más desapantalladas en los espectros correspondientes a las tiosemicarbazonas estudiadas, así como la diferencia en los valores de δ con las mismas señales pertenecientes a los análogos oxigenados, parece tener relación con el mayor carácter de doble enlace de la unión C¹-N¹ en las primeras.

Figura IV.50 - Señales de RMN de ¹H, en DMSO-d₆, correspondientes a los hidrógenos de los grupos -N¹H₂, C²-H y O²-H para (a) H₂NAFSC y (b) H₂SSC.

Todas las semicarbazonas de esta serie presentan un singlete ancho para la señal correspondiente a los protones del grupo N¹H₂, mientras que las tiosemicarbazonas presentan dos singletes anchos para estos mismos núcleos, a la vez que están más desapantallados, como se muestra en la Figura IV.51, donde se comparan la zona que va de 6 a 12 ppm de los espectros correspondientes a los ligandos H₂SSC y H₂STSC. En la misma figura, al igual que en la Figura IV.52 (en la que se comparan los espectros de los ligandos H₃XSSC y H₃XSTSC en el rango de 6 a 12 ppm), puede observarse como la señal correspondiente al grupo -N¹H₂ terminal se desapantalla al comparar una semicarbazona con el ligando tiosemicarbazona análogo. También se encuentran a campos más bajos las señales correspondientes a los grupos C²-H y N²-H.

La diferencia en el número de señales que genera el grupo -N¹H₂ terminal en semi- y tiosemicarbazonas (un singlete con integración 2 y dos singletes con integración 1, respectivamente), podría deberse a que en las semicarbazonas el equilibrio ceto-enólico está más desplazado hacia la forma ceto de lo que en las tiosemicarbazonas lo está hacia la forma tiona. El mayor carácter parcial de doble enlace del enlace C-N_{terminal} de estas últimas, restringe la libre rotación entorno a dicho enlace, y favorece la formación de un enlace de hidrógeno intramolecular N¹-H_a···N³, conduciendo a la no equivalencia magnética de los hidrógenos del grupo terminal -N¹H₂.

Del análisis de los datos incluidos en la Tabla IV.32 se puede concluir que la presencia de distintos sustituyentes sobre los anillos aromáticos parece afectar poco (o no afectar) a la posición de

Figura IV.51 - Espectros de RMN de ¹H de los ligandos (a) $H_2SSC y$ (b) H_2STSC , entre 6 y 12 ppm, en DMSO- d_6 . Esquema de numeración:

Figura IV.52- Espectros de RMN de ¹H de los ligandos (a) $H_3XSSC y$ (b) H_3XSTSC , entre 6 y 12 ppm, en DMSO-d₆. Esquema de numeración:

las señales correspondientes a las respectivas cadenas semi/tiosemicarbazona, siendo estas influenciadas más bien por la presencia de un átomo de oxígeno o de un átomo de S sobre el C¹, con los efectos inductivos y carácter de doble enlace de C¹ \rightarrow X que esta diferencia comporta. Por lo demás, las señales correspondientes a los protones aromáticos aparecen en la zona esperada del espectro, presentando los valores más altos (en ppm) los protones del ligando H₂NAFSC.

En la Tabla IV.33 se muestran los desplazamientos de las señales asignadas en los espectros de RMN de ¹³C de estos 5 ligandos. Las señales más desapantalladas de los espectros correspondientes a estos cinco ligandos se asignan al C¹ del grupo semicarbazona o tiosemicarbazona, presentando un mayor desapantallamiento el C¹ de los ligandos que contienen el grupo tioamida.

Tabla IV.33 - Asignaciones de los espectros de RMN de 13 C, en DMSO-d₆, de los ligandos H₂SSC, H₃XSSC, H₂NAFSC y H₂XSTSC.

		\mathbf{C}^{1}	\mathbf{C}^{4}	C ²	C _e	C ³	C ¹¹	C ⁷	C ¹²	C	C ⁸	C ¹⁰	C⁵
	H₂SSC	156.5	155.8	137.4	130.1	120.6		119.2			126.6		115.9
	H₃XSSC	159.6	156.6	138.7	157.4	112.1		107.5			128.2		102.3
	H ₂ NAFSC	156.1	155.9	139.9	131.4	109.8	131.3	128.7	128.0	127.5	123.3	122.0	118.5
	H₂STSC	177.9	156.5	140.0	131.1	120.3	-	119.3		•	126.9	-	116.1
	H₃XSTSC	177.1	158.0	140.8	160.5	111.8		107.8			128.4		102.3
Esquema	de numeraci	ón:			ふべ		×.						
	H H C	5 0 ² t	4	N1H.	ноз се	H C C C	_O²H	N ¹ H-		H		ч	N ¹ H-
	Щ н_с, с,	[−] ^β [−] C ³ −C ²	N ³ 		н	C ⁸	C ²		н.			2 N ³ N ²	C ¹
	H	н	Η̈́			Ή	н Г	н́	н	- C ² C ²	c¹⁰ H	н	
										 H			
	х	(= 0 ¹ =>	H₂SSC			$X = O^1 =$	> H₃XSS0	:			H₂NAFS	С	
	х	(=S =>H	H₂STSC			X = S =	> H₃XSTS	sc					

La señal asignada al C⁴ aromático (sobre el cual se encuentra el grupo -O²H) es la segunda señal más desapantallada. Como puede apreciarse, las semicarbazonas presentan una marcada regularidad en la posición de las señales correspondientes al C⁴ y a los átomos de C del resto semicarbazona, C¹ y C². Notablemente altos son los desplazamientos correspondientes al C⁶ de los ligandos H₃XSTSC y H₃XSSC (sobre el que se ubica para estos ligandos un segundo grupo hidroxilo, -O³H, que produce por efecto inductivo un desapantallamiento de aproximadamente 30 ppm respecto de los otros ligandos). Asimismo, estos dos ligandos presentan la señal correspondiente a C⁵ apantallada en más de 10 ppm respecto de la misma señal en los ligandos H₂SSC y H₂NAFSC. Esto puede explicarse por la existencia de, al menos, dos estructuras resonantes adicionales que contribuyen al híbrido de resonancia de los ligandos con dos grupos hidroxilo sobre el anillo, estructuras en las cuales se ubica una carga negativa tanto sobre el C⁵ como sobre el C⁷, como se muestra en la Figura IV.53. Como sustituyente sobre un anillo aromático, el grupo -OH actúa como aceptor de electrones por efecto inductivo (lo cual explica el desapantallamiento de los átomos C⁴ y C⁶), pero lo hace como dador de electrones por efecto de resonancia, dando cuenta del apantallamiento de los átomos C⁵ y C⁷.

Figura IV.53 - Algunas estructuras resonantes contribuyentes a los híbridos de resonancia que representan a los ligandos H₃XSSC y H₂SSC, respectivamente.

Finalmente, se observa que los espectros de RMN de ¹³C de las semicarbazonas y tiosemicarbazonas de compuestos análogos difieren notablemente sólo en la posición del C¹, y apenas en un par de ppm en el caso del carbono imínico C², manteniéndose casi invariables el resto de las señales.

En la Tabla IV.34 se recogen las asignaciones de los espectros de RMN de ¹H de los complejos de Ga(III) con los ligandos H₂SSC, H₃XSSC y H₂NAFSC que han podido ser estudiados en disolución, incluyéndose los datos de los ligandos libres con fines comparativos. A diferencia de lo que sucedía con los complejos [Ga(HPSC)(PSC)] y [Ga(HCBSC)(CBSC)], que se disocian parcialmente en DMSO-d₆ (apartado III.4), estos complejos parecen ser estables en disolución. A juzgar por el tipo de coordinación que estos ligandos semicarbazona muestran en estado sólido, la mayor estabilidad de estos complejos comparados con aquellos con ligandos derivados de precursores α -oxo-ácidos

podría radicar en la formación de sistemas de anillos quelato fusionados y conjugados con el anillo aromático del precursor.

La deslocalización de la carga en estos sistemas (con la mayor basicidad de los sitios coordinantes que esto conlleva) podría ser la causa de que el DMSO no lograra desplazar a los ligandos en las disoluciones de los complejos que nos ocupan. Como puede observarse en la Tabla IV.34, la coordinación al metal induce varios cambios comunes respecto a los espectros de los 3 ligandos involucrados (H₂SSC, H₃XSSC y H₂NAFSC):

- en todos los casos se produce la desprotonación del grupo -O²H;

- las señales correspondientes al grupo N²-H en los complejos se mueven a campos más bajos (aproximadamente +2 ppm), y son las señales más desapantalladas en los espectros de todos los complejos;

- las señales asociadas a los grupos $N^{1}H_{2}$ y C^{2} -H se desplazan a campos más bajos;

- las señales correspondientes a los hidrógenos aromáticos se desplazan a campos ligeramente más altos.

Tabla IV.34 - Asignación de los espectros de RMN de ¹H , en DMSO-d₆, de los complejos de Ga (III) con los ligandos H_2SSC , H_3XSSC y H_2NAFSC , junto con la correspondiente a los ligandos libres.

	N ² -H	0 ² –H	C ² -H	Aromáticos	N ¹ -H	-0 ³ -H
H₂SSC	10.17 (1) s.	9.96 (1) s.a.	8.13 (1) s.	6.81 [C⁷ -H] a 7.75 [C⁸ -H]	6.38 (2) s.a.	
[Ga(HSSC)₂]NO₃·MeOH	≅ 12,3 s.m.a.	$\sqrt{2}\sqrt{5}$	8.47 (1) s.	6.57 [C⁵ -H] a 7.32 [C⁸ -H]	7.81 (2) s.a.	
[Ga(HSSC)₂]Cl·H₂O	≅ 12,3 s.m.a.		8.48 (1) s.	6.57 [C⁵ -H] a 7.28 [C⁸ -H]	7.58 (2) s.a.	
H₃XSSC	9.94a(1)	9.94a(1)	8.01(1)	6.24 [C ⁷ -H] a 7.48 [C ⁸ -H]*	6.28(2)*	9.64a(1) s.a.
[Ga(H₂XSSC)₂]NO₃·EtOH	9.95 (1) s.	- 1	8.27 (1)	5.89 [C⁵ -H] a 7.10 [C⁸ -H]	7.65 (2) s.a.	11.92 s.a.
[Ga(H ₂ XSSC) ₂]Cl·3H ₂ O	9.99 (1) s.a.	-	8.33 (1) s.	5.93 [C⁵ -H] a 7.09 [C⁸ -H]	7.63 (2) s.a.	12 s.m.a.
[G2(H-XSSC)(HXSSC)]	9.93 s.a. †	-	8.28 s.	5.90 [C⁵ -H] a 7.09 [C⁸ -H]	7.68 (1) s.a.	11.96 s.a.
	9.96 (1) s.	-	7.99 (1) s.	6.26 [C⁵ -H] ⁺ a 7.47 [C⁸ -H]	6.26†	9.63 (1) s.a.
H₂NAFSC	10.24 (1) s.	11.20 (1) s.m.a.	8.86 (1) s.	7.19 [C⁵-H] a 8.37 [C¹⁰ -H]	6.40 (2) s.a.	
[Ga(HNAFSC) ₂]Cl·2H ₂ O	≈ 12.5 s.m.a.	-	9.54 (1) s.	6.85 [C⁵-H] a 8.03 [C¹⁰-H]	7.85 (2) s.a.	

*Señales solapadas. † Señales solapadas. Esquema de numeración:

El que las señales aromáticas se apantallen es coherente con que el resto de las señales se desapantallen al pasar de los ligandos a los complejos. Analizando por ejemplo el par $H_2SSC/[Ga(HSSC)_2]NO_3$ ·MeOH, observamos que mientras que para los grupos N²-H, C²-H y N¹H₂ la cesión de carga al metal polariza los enlaces (desapantallando las señales correspondientes), el mismo fenómeno hace que las corrientes de anillo que contribuyen al campo magnético local de los protones aromáticos se debiliten, apantallando las señales correspondientes. Además, la carga negativa generada por la desprotonación del grupo O²-H, si bien esta involucrada en la estabilización del metal, puede resonar sobre el anillo, aumentando la densidad electrónica sobre los carbonos C⁵ y C⁷ en comparación con C⁶ y C⁸, de la manera que se muestra en la Figura IV.54 (en el ligando libre sucede lo mismo, salvo que en ese caso cada estructura contribuyente al híbrido de resonancia es un zwiterion con una carga positiva formal sobre el O²), y haciendo que los protones ubicados sobre C⁵ y C⁷ se hallen a campos más altos que los de C⁶ y C⁸.

Figura IV.54 - Algunas estructuras contribuyentes al híbrido de resonancia del semicarbazonato HSSC.

También puede entenderse que el protón ubicado sobre C⁸ sea el más desapantallado de los protones del anillo si, como se ilustra en la Figura IV.55, dicho protón estuviera dentro de la zona de desprotección asociada a la anisotropía magnética del enlace imínico. Todas estas consideraciones son válidas también para las señales correspondientes al semicarbazonato.

Figura IV.55- Efecto de la anistropía magnética del grupo $C^2 = N^3$ sobre el protón de C^8 -H, para el ligando H₂SSC.

En la Figura IV.56 se muestran los espectros del complejo $[Ga(HSSC)_2]NO_3 \cdot MeOH y$ del ligando H_2SSC en el rango 6.0 – 13.0 ppm. Como puede apreciarse en la figura, el espectro del complejo muestra señales de baja integración coincidentes en su desplazamiento con las señales del ligando libre. Esto indica que, si bien el complejo es estable en disolución de DMSO-d₆, un pequeño porcentaje se disocia en este disolvente. El espectro de RMN de ¹H correspondiente al complejo [Ga(HSSC)_2]Cl·H_2O es muy similar (ver Apéndice 4, Figuras A4.1.15 y A4.1.16).

Figura IV.56 - Espectros de RMN de ¹H, en DMSO-d₆, de (a) [Ga(HSSC)₂]NO₃·MeOH y (b) H₂SSC, en el rango 6.0-13.0 ppm.

En la Figura IV.57 vemos los espectros de ¹H correspondientes a los complejos [Ga(H₂XSSC)₂]NO₃·EtOH, [Ga(H₂XSSC)(HXSSC)] y al ligando libre H₃XSSC.

Figura IV.57 - Espectros de RMN de ¹H, en DMSO-d₆, de (a) $[Ga(H_2XSSC)_2]NO_3 \cdot EtOH$, (b) $[Ga(H_2XSSC)(HXSSC)]$ y (c) H_3XSSC , entre 5 y 12 ppm.
Vemos que de entre los protones aromáticos, el más desapantallado es el que esta ubicado sobre el C⁸. El que la señal correspondiente al protón ubicado sobre el carbono C⁸ esté más desapantallado que el ubicado sobre C⁵, siendo que este experimenta el efecto inductivo de los dos grupos hidroxilo ubicados sobre carbonos vecinos a él podría deberse (al igual que sucedía con el protón de C⁸-H del ligando H₂SSC) a que cae en la zona de desprotección del grupo C²=N³, como se ilustra en la Figura IV.58.

Figura IV.58- Efecto de la anistropía magnética del grupo C²=N³ sobre el protón de C⁸-H, para el ligando H₃XSSC.

La ausencia de señales asignables al ligando libre en el espectro del complejo [Ga(H₂XSSC)₂]NO₃·EtOH (a) indica que para dicho complejo no hay disociación apreciable. Sin embargo, el espectro del complejo [Ga(H₂XSSC)(HXSSC)] (b) muestra señales del ligando libre y del complejo [Ga(H₂XSSC)₂]⁺, en relación molar 4:1, indicando no sólo la disociación parcial del complejo y la protonación de los semicarbazonatos liberados, sino también la existencia de intercambio de protones entre el ligando semicarbazonato dianiónico del complejo y el agua (cuya señal es ancha, ver Apéndice 4, figura A4.1.19), sugiriendo la existencia de un proceso de protonación inducida por la hidrólisis del metal.

Finalmente, en la Figura IV.59 se comparan los espectros de RMN de ¹H del ligando H₂NAFSC y del complejo [Ga(HNAFSC)₂]CI·2H₂O, en la zona comprendida entre los 6 y los 13 ppm. Como se comentara anteriormente, este par ligando/complejo sigue las tendencias de este grupo de compuestos, salvo en lo tocante al mayor desapantallamiento del grupo O²-H respecto del grupo N²-H en el ligando libre. Como se aprecia en dicha figura, al pasar del ligando libre al complejo, las señales correspondientes a los grupos N¹-H₂ y C²-H se mueven a campo bajo (debido a la cesión de carga del ligando hacia el metal), desapareciendo la correspondiente al grupo O²-H por desprotonación del mismo. Las señales correspondientes a los hidrógenos aromáticos se apantallan ligeramente. En cuanto al grado de desapantallameinto de las señales aromáticas, cabe decir que tanto en el caso del ligando libre como del semicarbazonato, los grupos -O²H y (-O²)⁻ actúan como dadores de carga por resonancia: en ambos casos, la carga negativa se ubica sobre los átomos de carbono C⁵, C⁸ y C¹⁰.

Figura IV.59 - Espectros de RMN de ¹H de (a) $[Ga(HNAFSC)_2]CI \cdot 2H_2O y$ (b) H_2NAFSC , entre 6 y 13.5 ppm, en DMSO-d₆.

En la Figura IV.60 se muestran algunas de las estructuras contribuyentes al híbrido de resonancia del semicarbazonato HNAFSC.

Figura IV.60 - Algunas estructuras contribuyentes al híbrido de resonancia del semicarbazonato HNAFSC .

Así, la deslocalización de uno de los pares libres del oxígeno sobre los anillos fusionados aumenta la densidad electrónica sobre los átomos de carbono C⁵, C⁸ y C¹⁰, apantallando los protones ubicados sobre ellos, y por efecto inductivo, desapantallando los protones ubicados sobre C⁶, C⁷ y C⁹. Esto no explica porqué el protón C¹⁰-H es el más desapantallado de los protones aromáticos: esto podría deberse, al igual que sucedía con los protones de los carbonos C⁸ de los ligandos H₂SSC y H₃XSSC, a que se encuentra en la zona de desprotección debida a la anisotropía magnética del grupo C²=N³ (ver Figura IV.61), aunque no se trate del carbono Cβ al enlace imínico.

Figura IV.61 - Efecto de la anisotropía magnética del grupo $C^2=N^3$ sobre el protón de C^{10} -H, para el ligando H₂NAFSC.

Vemos también como la señal correspondiente a los protones del grupo $N^{1}H_{2}$ en el espectro del complejo queda solapada con el doble doblete en que se resuelve el doblete con integración 2 debido a los hidrógenos de C⁶-H y C⁷-H del ligando libre.

Para terminar con los complejos derivados de ligandos relacionados con el salicilaldehído, examinaremos brevemente los datos de RMN de ¹³C de dichos complejos; en la Tabla IV.35 se recoge la asignación realizada para los mismos. Al igual que sucedía en RMN de ¹H, los espectros de ¹³C de los complejos [Ga(HSSC)₂]NO₃·MeOH y [Ga(HSSC)₂]Cl·H₂O por un lado, y los de [Ga(H₂XSSC)₂]NO₃·EtOH y [Ga(H₂XSSC)₂]Cl·3H₂O por el otro, son prácticamente idénticos.

Tabla IV.35 - Asignación de los espectros de RMN de ¹³C , en DMSO-d₆, de los complejos de Ga(III) con los ligandos H_2SSC , H_3XSSC y H_2NAFSC , junto con la correspondiente a los ligandos libres.

				<u> </u>								
	\mathbf{C}^{1}	\mathbf{C}^{4}	C ²	C ⁶	C ⁸	C ³	C ⁷	C ⁵	C ¹¹	C ¹²	C	C ¹⁰
H ₂ SSC	156.5	155.8	137.4	130.1	126.6	120.6	119.2	115.9				
[Ga(HSSC)₂]NO₃·MeOH	157.8	165.1	152.2	134.2	133.7	115.6	115.7	121.2				
[Ga(HSSC)₂]Cl·H₂O	158.6	165.1	151.2	133.7	133.5	115.6	116.0	121.2				
H₃XSSC	159.6	156.6	138.7	157.4	128.2	112.1	107.5	102.3				
[Ga(H₂XSSC)₂]NO₃·EtOH	157.7	167.6	151.9	163.7	135.5	108.9	106.0	105.8				
[Ga(H ₂ XSSC) ₂]Cl·3H ₂ O	157.9	167.5	151.2	163.6	135.3	109.0	106.0	105.9				
[Ga(H-XSSC)(HXSSC)]	157.7	167.5	151.9	163.7	135.5	108.9	106.1	105.8				
	159.6	156.6	138.7	157.4	128.2	112.1	107.5	102.3				
H₂NAFSC	156.1	155.9	139.9	131.4	123.3	109.8	128.7	118.5	131.3	128.0	127.5	122.0
[Ga(HNAFSC) ₂]Cl·2H ₂ O	157.9	166.6	147.7	135.4	122.6	105.6	129.0	124.5	133.3	126.2	127.9	119.0

Esquema de numeración:

 H_2SSC

 H_2NAFSC

Comparando los datos de los complejos con los de los ligandos libres, observamos que:

- Para los pares H₂SSC/[Ga(HSSC)₂]⁺ y H₂NAFSC/[Ga(HNAFSC)₂]⁺, la señal asignada C¹ permanece casi invariable, experimentando solo un ligero desapantallamiento. Esto podría explicarse por el efecto de la deslocalización de la carga que la planaridad del sistema de anillos quelato conjugado con el anillo aromático permite, compensando así la cesión de carga al metal a través del O¹ y la mayor componente de la forma enol en el equilibrio ceto-enólico, comparado con el ligando libre. Los valores para esta señal en los espectro de los complejos [Ga(H₂XSSC)₂]NO₃·EtOH y [Ga(H₂XSSC)₂]Cl·3H₂O son prácticamente iguales a los de los otros complejos, aunque en este caso se produce un ligero apantallamiento respecto del ligando libre.

- Las señales correspondientes al carbono imínico en los seis complejos aparecen fuertemente desapantalladas, notándose aquí el efecto de la cesión de carga al metal a través del N³, y la disminución del orden de enlace $C^2=N^3$ por deslocalización. Este resultado coincide con lo observado en estado sólido (ver apartado IV.2.2), siendo una evidencia más de la estabilidad relativa en disolución de estos complejos. También se desapantallan las señales asignadas al C⁴, siendo las que aparecen a campos más bajos. Esto se explica por el efecto inductivo del grupo hidroxilo desprotonado y coordinado al metal, ubicado sobre este átomo en los complejos estudiados.

- El resto de las señales se desapantalla ligeramente o permanece invariable, a excepción de las correspondientes a los átomos C³ y C⁷, que se mueven a campos algo más altos. El que estas señales se apantallen al desprotonarse el ligando puede explicarse (al igual que se hizo al tratar este aspecto para los ligandos libres) por medio de algunas de las estructuras que contribuyen al híbrido de resonancia de los semicarbazonatos en cuestión, como se muestra en las Figuras IV.62 para los semicarbazonatos HSSC⁻ y H₂XSSC⁻.

Figura IV.62- Algunas estructuras contribuyentes a los híbridos de resonancia de los semicarbazonatos HSSC⁻ y H₂XSSC⁻.

Estas estructuras predicen, para el anillo aromático, una mayor densidad electrónica sobre C^3 , C^5 y C^7 . El que C^5 se desapantalle en relación con el ligando libre podría deberse al efecto inductivo del grupo fenóxido.

En la Figura IV.63 se muestran algunas estructuras contribuyentes al híbrido de resonancia del semicarbazonato HNAFSC⁻. Observamos que la deslocalización de la carga sobre el sistema aromático predice correctamente el comportamiento de las señales correspondientes a 7 de los 10 carbonos involucrados. La señal que más se aparta de lo esperado según este análisis es la correspondiente a C⁵, que en lugar de apantallarse se desapantalla unos 6 ppm, posiblemente debido al efecto inductivo del grupo fenóxido (al igual que en los casos anteriores).

Figura IV.63 - Algunas estructuras contribuyentes al híbrido de resonancia del semicarbazonato HNAFSC.

IV.5- BIBLIOGRAFÍA

^[1] Y.M. Hijji, O. Oladeinde, R.J. Butcher, J.P. Jasinski, *Acta Crystallogr., Sect.: Struct. Rep. Online*, **65**, 2009, o1111.

^[2] Sheng-Zhi Hu, *Jiegou Huaxue (Chin.) (Chinese J. Struct. Chem.)*, **18**, 1999, 476.

^[3] K.A. Abboud, S.P. Summers, G.J. Palenik , *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.,* **51**, 1995, 1707.

^[4] H.H. Monfared, A.-C. Chamayou, S. Khajeh, C. Janiak, *Cryst. Eng. Comm.*, **12**, 2010, 3526.

^[5] S.B. Novakovic, B. Fraisse, G.A. Bogdanovic, A.S. Bire, *Cryst. Growth Des.*, **7**, 2007, 191.

^[6] M. Yildiz, H. Unver, D. Erdener, A. Kiraz, N.O. Iskeleli, *J. Mol. Struct.*, **919**, 2009, 227.

^[7] A. G. Orpen, Acta Cryst., B58, 398-406, 2002.

^[8] J. Patole, S. Padhye, M.S. Moodbidri, N. Shirsat, *Eur. J. Med. Chem.*, **40**, 2005, 1052.

^[9] A.K. Mishra, S.B. Mishra, N.K. Kaushik, J. Coord. Chem., 60, 2007, 1691.

^[10] T.D. Thangadurai, K. Natarajan, *Transition Met. Chem.*, **27**, 2002, 840.

^[11] K. Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds, fourth ed., Wiley, New York*, 1986, pp. 121.

^[12] P. Noblía, E.J. Baran, L. Otero, P. Draper, H. Cerecetto, M. González, O.E. Piro, E.E. Castellano, T. Inohara, Y. Adachi, H. Sakurai, D. Gambino, *Eur. J. Inorg. Chem.*, 2004, 322.

^[13] P. Noblía, M. Vieites, B.S. Prajón-Costa, E.J. Baran, H. Cerecetto, P. Draper, M. González, O.E. Piro,
E.E. Castellano, A. Azqueta, A. López de Ceráin, A. Monte-Vega, D. Gambino, *J. Inorg. Biochem.*, 99, 2005, 443.

^[14] V. Vrdoljak, D. Milić, M. Cindrić, D. Matković-Čalogović, D. Cinčić, *Polyhedron*, **26**, 2007, 3363.

^[15] I. Đilović, M. Rubčić, V. Vrdoljak, S. Kraljević Pavelić, M. Kralj, I. Piantanida, M. Cindrić, *Bioorg. Med. Chem.*, **16**, 2008, 5189.

^[16] M. Sen Sarma, S. Mazumder, D. Ghosh, A. Roy, A. Duthie, E.R.T. Tiekink, *Appl. Organomet. Chem.*,
21, 2007, 890.

^[17] S.R. Salman, J.C. Lindon, R.D. Farrant, T.A. Carpenter, *Magn. Reson. Chem.*, **31**, 1993, 991.

^[18] T. Dziembowska, Z. Rozwadowski, A. Filarowski, P.E. Hansen, *Magn. Reson. Chem.*, **39**, 2001, S67.

V - LIGANDOS DERIVADOS DE LA PIRIDINA Y COMPLEJOS DE Ga(III)

V.1 - SÍNTESIS

V.1.1 - Síntesis de ligandos semi- y tiosemicarbazona derivados de la piridina

Semicarbazona de la di-2-piridilcetona (HBIPSC): Se preparó una disolución de 10 mmoles

(1.84 g) de di-2-piridilcetona en 20.0 mL de EtOH, y sobre ella se agregó una disolución de 10 mmoles (1.11 g) de clorhidrato de semicarbazida en 10 mL de H_2O . La mezcla resultante se calentó a reflujo y agitó durante 3 h. La disolución obtenida se dejó en reposo a 4 °C durante 48 h, aislándose un sólido pulverulento amarillo pálido, de punto de fusión de 214-216 °C. Datos Analíticos

(%): experimentales: C 59.4, H 4.9, N 29.2; teóricos (calculados para C₁₂H₁₁N₅O): C 59.7, H 4.6, N 29.0.

De las aguas madres se obtuvo un sólido cristalino adecuado para su estudio mediante difracción de rayos X de monocristal, que resulto ser el ligando libre HBIPSC.

Se obtuvieron, además, monocristales de (H₂BIPSC)NO₃ aptos para su estudio por difracción de rayos X en una reacción entre el ligando HBIPSC y la sal Ga(NO₃)₃ (1:1), en MeOH. Datos Analíticos (%): experimentales C 47.4, H 4.1, N 27.6; teóricos (calculados para $C_{12}H_{12}N_6O_4$) C 47.4, H 4.0, N 27.6.

Bis-semicarbazona de la 2,6-diacetilpiridina (H2DAPSC): Sobre una disolución a reflujo de 9

mmoles (1.50 g) de 2,6-diacetilpiridina en 30.0 mL de EtOH:H₂O 1:1 se agregó una disolución de 18 mmoles (2.05 g) de clorhidrato de semicarbazida en 15.0 mL de H₂O neutralizada con NaOH_(aq). A los 15 minutos se formó un precipitado blanco. La mezcla de reacción se dejó a reflujo, con agitación, durante 2 h, transcurridas las cuales, se filtró y

secó el sólido obtenido. Punto de fusión: >250 °C. Datos Analíticos (%): experimentales C 46.1, H 5.7, N 33.8; teóricos (calculados para $C_{11}H_{15}N_7O_2$) C 47.6, H 5.4, N 35.3.

De las aguas madres de una reacción entre el ligando libre y $GaCl(AcO)_2$ en relación 1:1, realizada en MeOH, se obtuvieron por evaporación a temperatura ambiente cristales (en pequeña cantidad) aptos para su análisis estructural por difracción de rayos X de monocristal, resultando ser el solvato del ligando libre, H₂DAPSC·MeOH.

Tiosemicarbazona de la 2-acetilpiridina **(HAPTSC)**: se disolvieron 50 mmoles (5.59 mL, δ =1.082 g/mL) de 2-acetilpiridina en 50.0 mL de EtOH. Esta disolución se agregó sobre una suspensión de 50 mmoles (4.55 g) de tiosemicarbazida en 75 mL de H₂O a 90 °C. La mezcla de reacción se agitó y calentó a reflujo durante 2 horas, obteniéndose una disolución que se dejo reposar 24 h a 4 °C. Se aisló un sólido

cristalino e incoloro, apto para su estudio por difracción de rayos X de monocristal. Punto de fusión: 155–156 °C. Datos Analíticos (%): experimentales: C 47.3, H 5.7, N 27.9, S 15.9; teóricos (calculados para HAPTSC·0,5H₂O, C₈H₁₁N₄O_{0.5}S): C 47.3, H 5.5, N 27.6, S 15.8.

Bis-tiosemicarbazona de la 2,6-diacetilpiridina (H₂DAPTSC): Sobre 25.0 mL de una disolución

etanólica de 1 mmol (1.86 g) de 2,6-diacetilpiridina se añadieron unas gotas de ácido acético glacial. Sobre esta disolución se añadió una suspensión de 2.2 mmoles (2.10 g) de tiosemicarbazida en una mezcla de 90 mL de MeOH y 40 mL de EtOH. La mezcla de reacción se mantuvo a reflujo y con agitación magnética durante 4 horas, se dejó

enfriar y se filtró el sólido amarillo obtenido. Punto de fusión: 265 °C. Datos Analíticos (%): experimentales: C 43.6, H 5.4, N 30.4; teóricos (calculados para C₁₁H₁₅N₇S₂): C 42.7, H 4.9, N 31.7.

Por recristalización en metanol se obtuvieron cristales apropiados para su estudio por difracción de rayos X de monocristal que corresponden al ligando solvatado, H₂DAPTSC·MeOH. Por otra parte, en una reacción de este ligando y Ga(NO₃)₃.H₂O en relación 1:1, realizada en MeOH, se obtuvieron en una tercera fracción monocristales del ligando libre H₂DAPTSC. En ambos casos, la cantidad de cristales obtenida fue insuficiente para su ulterior caracterización, al margen de las estructuras cristalinas, discutidas en el apartado V.2.1.

V.1.2 - Síntesis de complejos de Ga(III) con ligandos derivados de la piridina

 $(H_2BIPSC)_2[GaCl_4]CI$: Se preparó una disolución de 1 mmol (0.24 g) de HBIPSC en 20.0 mL de MeOH. Sobre esta se agregó, gota a gota desde un embudo autocompensado, una disolución de 1 mmol (0.17 g) de GaCl₃ en 5.0 mL de MeOH. La mezcla de reacción se mantuvo a reflujo y con agitación magnética durante 1.5 horas. Por evaporación lenta del disolvente, a temperatura ambiente, se obtuvo un sólido cristalino incoloro apto para su estudio mediante difracción de rayos X de monocristal. Datos analíticos (%): experimentales C39.2, H 3.3, N 18.9; teóricos (calculados para GaC₂₄H₂₄N₁₀O₂Cl₅): C 39.4, H 3.3, N 19.1.

 $[Ga(HDAPSC)(H_2O)_2](NO_3)_2 H_2O$: Se preparó una disolución de 7 mmoles (0.19 g) de $Ga(NO_3)_3 H_2O$ en 15.0 mL de MeOH. Esta disolución se añadió gota a gota sobre una suspensión de 7 mmoles (0.20 g) de H_2DAPSC en 30.0 mL de MeOH. La suspensión resultante, de color amarillo intenso, se mantuvo a reflujo, con agitación magnética, durante 2 h. Posteriormente se filtró el sólido resultante y se concentró la disolución por evaporación a presión reducida, hasta un tercio del volumen inicial. Esta disolución se mantuvo en reposo a 4 °C, obteniéndose un sólido cristalino de

color verde pálido, apto para su estudio por difracción de rayos X de monocristal. Datos analíticos (%): experimentales C 25.3, H 3.9, N 24.5; teóricos (calculados para GaC₁₁H₂₀N₉O₁₁): C 25.2, H 3.8, N 24.0.

[Ga(APTSC)Cl₂]: Sobre 2 mmoles (0.39 g) de HAPTSC disueltos en 10.0 mL de EtOH_(anhidro), se agregó una disolución de 10 mmoles (1.76 g) de GaCl₃ en 10.0 mL de EtOH_(anhidro). La mezcla de reacción se mantiene a reflujo y con agitación magnética durante 1 h. La disolución resultante se concentró a temperatura ambiente y presión reducida, hasta obtenerse un aceite que se redisolvió en acetona. Por evaporación lenta del disolvente se obtuvo un sólido cristalino amarillo, apto para su estudio por difracción de rayos X de monocristal. Datos analíticos (%): experimentales C 28.8, H 2.7, N 16.7, S 9.5; teóricos (calculados para GaC₈H₉N₄SCl₂): C 28.8, H 2.7, N 16.8, S 9.6.

 $[Ga(APTSC)_2]NO_3$: Se preparó una disolución de 1 mmol (0.19 g) de HAPTSC en 15.0 mL de EtOH, se calentó a reflujo, con agitación magnética, y sobre ella se agregó una disolución de 1 mmol (0.26 g) de Ga(NO₃)₃·H₂O en 10.0 mL de EtOH, adquiriendo la disolución resultante un color amarillo intenso. La mezcla de reacción se mantuvo a reflujo durante 2 h. Por evaporación lenta del disolvente a temperatura ambiente, se obtuvo un sólido cristalino de color amarillo, apto para su estudio por difracción de rayos X de monocristal. Datos analíticos (%): experimentales C 36.2, H 3.4, N 23.5, S 11.9; teóricos (calculados para GaC₁₆H₁₈N₉O₃S₂): C 37.1, H 3.5, N 24.3, S 12.4.

V.2 - DIFRACCIÓN DE RAYOS X DE MONOCRISTAL

V.2.1 - Estructura cristalina de ligandos semi- y tiosemicarbazona derivados de la piridina

En este apartado se describen las estructuras cristalinas de la semicarbazona derivada de la 2,2'-bipiridilcetona (HBIPSC), del nitrato de la semicarbazona de la 2,2'-bipiridilcetona monoprotonada (H₂BIPSC)NO₃, del hemihidrato de la tiosemicarbazona de la 2-acetilpiridina (HAPTSC·1/2H₂O), cuya estructura ha sido parcialmente discutida en la literatura^[1], de la bis-semicarbazona de la 2,6-diacetilpiridina (H₂DAPSC·MeOH) y de la bis-tiosemicarbazona de la 2,6-diacetilpiridina, de la cual presentamos dos estructuras cristalinas (H₂DAPTSC y H₂DAPTSC·MeOH^[2]). En las Figuras V.1 a V.6 se muestra el contenido de la unidad asimétrica de la estructura cristalina de dichos ligandos. En la Tabla V.1 se recogen los datos cristalográficos correspondientes, y en las Tablas V.2 y V.3 sus longitudes y ángulos de enlace más relevantes.

Figura V.2 - Unidad asimétrica del ligando (H₂BIPSC)NO₃.

Figura V.3 - Unidad asimétrica del ligando HAPTSC·1/2H₂O.

Figura V.4 - Unidad asimétrica del ligando H₂DAPSC·MeOH.

Figura V.5 - Unidad asimétrica del ligando H₂DAPTSC.

Figura V.6 - Unidad asimétrica del ligando H₂DAPTSC·MeOH.

Ligando	HBIPSC	(H ₂ BIPSC)NO ₃	HAPTSC·1/2H₂O	H₂DAPSC·MeOH	H ₂ DAPTSC	H₂DAPTSC·MeOH
Fórmula	$C_{12}H_{11}N_5O$	$C_{12}H_{12}N_6O_4$	$C_{16}H_{22}N_8OS_2$	$C_{12}H_{19}N_7O_3$	$C_{11}H_{15}N_7S_2$	$C_{12}H_{19}N_7OS_2$
Masa Molecular	241.26	304.28	406.54	309.34	309.42	341.46
т (к)	100.0(1)	293(2)	110 К	110(2)	300(2)	120.0(1)
λ (Å)	0.71069	0.71069	0.71069 A	0.71069	0.71069	1.5418
Sistema Cristalino	Monoclínico	Monoclínico	Monoclínico	Monoclínico	Triclínico	Monoclínico
Grupo Espacial	C2/c	P21/c	P21/c	P21/c	P-1	P21/c
a (Å)	22.637(5)	7.614(5)	16.700(5)	12.497(5)	7.180(5)	10.493(5)
<i>b</i> (Å)	9.146(5)	15.587(5)	9.331(5)	16.069(5)	9.352(5)	10.590(5)
<i>c</i> (Å)	22.697(5)	11.296(5)	12.424(5)	7.491(5)	11.352(5)	14.745(5)
α(°)	90.000	90.000	90.000	90.000	88.534(5)	90.000
β(°)	92.077(5)	98.831(5)	97.656(5)	90.665(5)	74.693(5)	98.420(5)
γ (°)	90.000	90.000	90.000	90.000	71.389(5)	90.000
V (Å ³)	4696(3)	1324.7(11)	1918.7(14)	1504.2(13)	695.3(7)	1620.8(12)
Z	16	4	4	4	2	4
D _{calc} . (Mg/m ³)	1.365	1.526	1.407	1.366	1.478	1.399
μ(mm⁻¹)	0.094	0.119	0.302	0.102	0.385	0.341
F(000)	2016	632	856	656	324	720
Dimensiones (mm)	0.27 x 0.16 x 0.14	0.51 x 0.38 x 0.22	0.62 x 0.59 x 0.10	0.40 x 0.07 x 0.05	0.44 x 0.20 x 0.12	0.11 x 0.08 x 0.05
Intervalo θ (°)	1.80 a 26.02	2.24 a 26.37	2.46 a 27.58	2.06 a 26.37	2.3026 a 26.0345	1.96 a 24.71
Intervalos en h, k, l	-27,27; 0,11; 0,28	-9,9; 0,19; 0,14	-21,21; 0,12; 0,16	-15,15; 0,20; 0,9	-7,8; -10,11; 0,13	-12,12; 0,12; 017
No. reflex. medidas	38190	11241	33333	24323	11297	10955
No. reflex. únicas	4927	2821	4432	3078	2652	2901
R _{int}	0.1382	0.0257	0.0370	0.1148	0.0354	0.0636
R	0.1139	0.0318	0.0320	0.0515	0.0590	0.0758
Rw	0.2908	0.0881	0.0826	0.1134	0.1554	0.1948
G.O.F.	1.070	1.090	1.062	1.010	1.056	1.082

Tabla V.1 - Datos cristalográficos y de refinado de los ligandos HBIPSC, (H2BIPSC)NO3, HAPTSC·1/2H2O,H2DAPSC·MeOH, H2DAPTSC y H2DAPTSC·MeOH.

Como puede apreciarse por inspección de las longitudes de enlace C1-O1 y C1-S (Tabla V.2), estos ligandos se encuentran principalmente en su forma cetoamida y tioamida. La longitud del enlace C1-O1 en los ligandos semicarbazona incluidos en este apartado varía entre 1.220(5) y 1.250(3) Å, en buen acuerdo con el valor de 1.24 Å típico para el doble enlace $C=O^{[3]}$. Por su parte, las distancias C=S en las tiosemicarbazonas varían entre 1.594(4) y 1.700(2) Å, sugiriendo una cierta componente de la forma tiol, siendo el valor típico para el doble enlace C=S de carbotiamidas de 1.72 Å^[3]. Las longitudes y ángulos de enlace pertenecientes a los restos semicarbazona de los ligandos HBIPSC, (H₂BIPSC)NO₃ y H₂DAPSC·MeOH son muy similares entre sí, presentando sólo pequeñas variaciones: Una mayor longitud de los enlaces C-O en la bis-semicarbazona o una mayor

у Н ₂ DAPTSC·MeOH.
H ₂ DAPTSC
² DAPSC·MeOH,
APTSC-1/2H ₂ O, H
(H ₂ BIPSC)NO ₃ , H ₁
levantes en HBIPSC,
de enlace (Å) re
.2 - Longitudes
Tabla V

	HBII	PSC ^(a)			HAPTSC-:	1/2H ₂ O ^(b)		C.MaOu ^(c)		H.DADTCC ^(c)	
	Moléc. 1	Moléc. 2			Moléc. 1	Moléc. 2					
C1-01	1.226(6)	1.220(5)	1.2305(15)	C1-S1	1.7005(15)	1.6917(15)	C1-01	1.248(3)	C1-S1	1.676(4)	1.673(4)
C1-N1	1.342(6)	1.319(6)	1.3359(16)	C1-N1	1.3218(18)	1.3212(19)	C9-02	1.250(3)	C9-S2	1.595(4)	1.694(4)
C1-N2	1.381(6)	1.378(6)	1.3919(15)	C1-N2	1.3539(18)	1.3593(18)	C1-N1	1.329(4)	C1-N1	1.320(5)	1.334(5)
N2-N3	1.382(5)	1.375(5)	1.3446(14)	N2-N3	1.3765(16)	1.3700(16)	C9-N7	1.324(4)	C9-N7	1.324(5)	1.321(5)
N3-C2	1.277(6)	1.288(6)	1.2976(15)	N3-C2	1.2831(19)	1.2846(18)	C1-N2	1.360(4)	C1-N2	1.343(5)	1.369(5)
C2-C3	1.504(7)	1.498(7)	1.4817(16)	C2-C3	1.4868(19)	1.4868(19)	C9-N6	1.371(4)	C9-N6	1.357(5)	1.360(4)
C2-C8	1.492(7)	1.501(7)	1.4932(16)	C2-C8	1.497(2)	1.496(2)	N2-N3	1.366(3)	N2-N3	1.361(4)	1.366(5)
C3-N4	1.345(6)	1.332(6)	1.3585(15)	C3-N4	1.3435(18)	1.3410(18)	N6-N5	1.372(3)	N6-N5	1.374(4)	1.385(4)
C8-N5	1.324(6)	1.333(6)	1.3502(15)				N3-C2	1.292(4)	N3-C2	1.276(5)	1.296(5)
							N5-C8	1.282(4)	N5-C8	1.280(4)	1.288(5)
							C2-C3	1.493(4)	C2-C3	1.480(5)	1.494(5)
							C8-C7	1.483(4)	C8-C7	1.483(5)	1.493(5)
							C3-N4	1.350(4)	C3-N4	1.354(4)	1.355(5)
							C7-N4	1.347(4)	C7-N4	1.330(4)	1.339(5)
							C2-C10	1.497(4)	C2-C10	1.502(5)	1.502(5)
							C8-C11	1.501(4)	C8-C11	1.491(5)	1.494(5)
(a)				(q)						(c)	2
C			°C S	تر ری ری	<i>, </i> 4			C _{1C}	^{, C2 ∕ C3 ∕ N³}	CC7_C8_N5_N	² ² ² ²
N3/ N3/ N2	~			N3 / 12					N3 / N2	0 ⁴	
Ľ, Ľ	-0'			N ¹ /C ¹ /S	.=				N ¹ , X1	_	X= 0,S

Malác										
MIDIEC	1 Moléc. 2			Moléc. 1	Moléc. 2	H2UAPSU	LOaM.		H2UAP ISC	
N1-C1-O1 124.1(4)) 124.1(4)	125.42(11)	N1-C1-S1	121.76(11)	122.51(11)	N1-C1-01	123.4(3)	N1-C1-S1	124.4(3)	124.1(3)
N1-C1-N2 116.1(4)) 116.7(4)	116.95(10)	N1-C1-N2	118.28(12)	117.44(12)	N7-C9-O2	123.8(3)	N7-C9-S2	122.4(3)	123.0(3)
01-C1-N2 119.7(5,) 119.1(4)	117.63(11)	S1-C1-N2	119.96(11)	120.04(11)	N1-C1-N2	118.5(3)	N1-C1-N2	117.0(3)	115.5(4)
C1-N2-N3 119.4(4)) 119.5(4)	121.87(10)	C1-N2-N3	118.01(11)	117.60(12)	N7-C9-N6	118.2(3)	N7-C9-N6	116.4(4)	118.4(3)
N2-N3-C2 119.0(4) 119.5(4)	119.56(10)	N2-N3-C2	119.50(12)	119.13(12)	01-C1-N2	118.1(3)	S1-C1-N2	118.6(3)	120.4(3)
N3-C2-C3 113.0(4)) 112.9(4)	113.81(10)	N3-C2-C3	115.35(12)	114.01(12)	02-C9-N6	118.0(2)	S2-C9-N6	121.2(3)	118.6(3)
N3-C2-C8 127.2(5) 127.7(4)	126.33(10)	N3-C2-C8	126.87(13)	125.04(13)	C1-N2-N3	120.3(2)	C1-N2-N3	119.7(3)	119.8(3)
C2-C3-N4 115.6(4)) 116.6(4)	117.17(10)	C2-C3-N4	115.90(12)	116.83(12)	C9-N6-N5	119.6(2)	C9-N6-N5	117.9(3)	118.4(3)
C2-C8-N5 117.1(4) 115.2(4)	115.78(10)				N2-N3-C2	119.4(2)	N2-N3-C2	120.0(3)	119.5(3)
						N6-N5-C8	117.6(2)	N6-N5-C8	117.8(3)	118.0(3)
						N3-C2-C3	127.4(3)	N3-C2-C3	128.1(3)	127.4(3)
		4				N5-C8-C7	115.8(3)	N5-C8-C7	114.6(3)	114.7(3)
						C2-C3-N4	117.8(3)	C2-C3-N4	118.4(3)	118.6(3)
						C8-C7-N4	115.3(2)	C8-C7-N4	116.4(3)	116.3(3)
						C3-N4-C7	119.4(2)	C3-N4-C7	119.4(3)	118.8(3)
Esquema de num	eración:									
	<u> </u>									Z-
N5 C3 C3	N			C8 / C	2_C3^N4			C10 ~	C2 ^{C3} N ⁴ C7	, c ₈ ^ N₅ ^ G _{9 ^ G9 ^ X2}
N3				z					N3 / N2	-0-
-5, z	o'			Ż	-c- s				-0 / -0/ X	2
(c)					(4)				-	<

Tabla V.3 - Ángulos de enlace (°) relevantes en HBIPSC, (H₂BIPSC)NO₃, HAPTSC·1/2H₂O, H₂DAPSC·MeOH, H₂DAPTSC y H₂DAPTSC·MeOH.

longitud del enlace imínico en el ligando (H₂BIPSC)NO₃. Lo mismo puede decirse de las tiosemicarbazonas presentes en este apartado, para las cuales las variaciones son aún menores. En el caso de las estructuras derivadas de la 2,6-diacetilpiridina (H₂DAPSC·MeOH, H₂DAPTSC y H₂DAPTSC·MeOH), es notable la regularidad en los valores de todos los parámetros, (exceptuando la diferencia entre los enlaces C=O y C=S), así como la constancia en las configuraciones espaciales de los restos semi/tiosemicarbazona, lo cual se ilustra en la Figura V.7.

Figura V.7 - Longitudes de enlace relevantes en las estructuras de los ligandos a) H₂DAPTSC, b) H₂DAPTSC·MeOH y c) H₂DAPSC·MeOH.

Para la semicarbazona de la 2,2´-dipiridilcetona HBIPSC, la configuración respecto del enlace C1-N2 es la E para las dos moléculas de la unidad asimétrica, como resultado del enlace de hidrógeno intramolecular entre el N terminal y el N imínico de cada resto semicarbazona. Respecto a la configuración en torno al enlace imínico, en este ligando no tiene sentido el análisis ya que tenemos dos radicales iguales sobre el C2.

Para la sal (H₂BIPSC)NO₃, volvemos a encontrar el confórmero E respecto del enlace C1-N2, nuevamente a favor de la formación del enlace de hidrógeno intramolecular N1-H···N3. Sin embargo, al hallarse protonado el átomo N4, la posición de los sustituyentes del C2 respecto del enlace imínico no es indiferente, hallándose el ligando en la configuración E en torno a dicho enlace, posibilitando la formación de un segundo enlace de hidrógeno intramolecular N4-H···N3.

En la Molécula 1 del ligando HAPTSC (la situación es la misma para la Molécula 2) encontramos que los átomos N14 y N13 se hallan en posición *trans*. Esto podría deberse en parte a que la orientación *cis* para estos átomos implicaría impedimentos estéricos entre el grupo metilo ubicado sobre C12 y el átomo H14 aunque, una vez más, lo más probable es que las configuraciones de estos compuestos están íntimamente asociadas al número y tipo de enlaces de hidrógeno de la estructura. Así, como sucede para todos los ligandos tiosemicarbazona y semicarbazona libres, el enlace intramolecular N1-H…N3 estabiliza la configuración E respecto del enlace C1-N2.

Para la bis-tiosemicarbazona H₂DAPTSC, el resto tiosemicarbazona que contiene al átomo etiquetado como S1 es aproximadamente paralelo a la línea que une los átomos C5 y N4 (nos

referiremos a este resto como "cadena cerrada" del ligando), determinando la configuración *trans* de los átomos C10 y N4. En cambio, el resto tiosemicarbazona que contiene al átomo S2 ("cadena abierta" del ligando) es aproximadamente perpendicular a la línea que pasa por los átomos C5 y N4, conduciendo a la configuración *cis* de los átomos N4 y C11. Estas orientaciones, junto con:

- la configuración Z en torno al enlace C2-N3 (en la cadena cerrada),

- la configuración E respecto al enlace C8-N5 (en la cadena abierta), y

- las orientaciones trans de los enlaces N-N y C=S en ambos brazos

permiten que se establezcan tres enlaces de hidrógeno intramoleculares, con la consiguiente estabilización de la estructura. Lo mismo sucede con las cadenas tiosemicarbazona en la estructura H₂DAPTSC·MeOH y con las cadenas semicarbazona de H₂DAPSC·MeOH.

Si bien el ligando H₂DAPSC no había sido previamente caracterizado estructuralmente, la bibliografía recoge la caracterización estructural por difracción de rayos X de monocristal de tres compuestos relacionados con el ligando H₂DAPTSC: la bis(1-hexametileniminil-tiosemicarbazona de la 2,6-diacetilpiridina^[4] (H₂L¹·H₂O), la bis(1-etil-tiosemicarbazona) de la 2,6-diacetilpiridina^[5] (H₂L²), y la bis(2-metil-tiosemicarbazona) de la 2,6-diacetilpiridina^[6] (H₂L³). Si analizamos los confórmeros que presentan las estructuras de estos ligandos y las del compuesto H₂DAPTSC que aquí presentamos, vemos que la disposición de los restos tiosemicarbazona es variable, quedando la misma determinada por dos factores: (i) la necesidad de minimizar las repulsiones estéricas asociadas a los sustituyentes presentes sobre N1 o N2, y (ii) el entramado de enlaces de hidrógeno intra e intermoleculares presentes en cada caso. Las diferentes configuraciones del resto tiosemicarbazona para estos tres compuestos y para el ligando H₂DAPTSC se ilustran en la Figura V.8.

Figura V.8 - Diferentes configuraciones del resto tiosemicarbazona para bistiosemicarbazonas derivadas de la 2,6-diacetilpiridina.

Siguiendo el esquema de numeración utilizado para H₂DAPTSC, y considerando como N7 el átomo de N terminal de la "cadena abierta", vemos que los tres compuestos presentan uno de sus restos tiosemicarbazona en dicha configuración, caracterizada por:

- la orientación trans de los átomos N4/N5 respecto del enlace C7-C8,
- la configuración E respecto del enlace C8=N5,

- la configuración E respecto del enlace C9-N6.

En cambio, otro resto tiosemicarbazona presente en estos ligandos varia en cuanto a sus configuraciones respecto a los enlaces C2-C3, C2=N3 y/o C1-N2, como puede apreciarse en la Figura V.8.

Mientras que los ligandos presentes en las estructuras H₂DAPSC·MeOH, H₂DAPTSC y H₂DAPTSC·MeOH, y la Molécula 1 de HAPTSC son prácticamente planos (todos los átomos no hidrógeno forman un plano molecular cuyo rms es de 0.1137, 0.2124, 0.1342 y 0.0675, respectivamente), los ligandos HBIPSC y (H₂BIPSC)NO₃ y la Molécula 2 de HAPTSC se apartan de la planaridad. En el caso de los ligandos derivados de la 2,2´-bipiridilcetona esto se debe en parte a interacciones débiles (enlaces de hidrógeno e interacciones de tipo C-H···π), y en parte a impedimentos estéricos entre átomos pertenecientes a los anillos piridínicos. Por ejemplo, en el compuesto HBIPSC, las dos moléculas presentan configuración *trans* para los pares de átomos N13/N14 y N23/N24 (los átomos N13/N15 y N23/N25 se hallan en posición *cis*, estabilizada por el enlace de hidrógeno intramolecular N2-H···N5). Esta configuración respecto del enlace C12-C13 (C22-C23) evita el solapamiento de los átomos de H localizados sobre los dos Cβ respecto al átomo C12 (C22), Aún así, existe una fuerte congestión estérica entre los pares de átomos N14/H19 y N24/H29 (con distancias N···H de 2.574 y 2.528 Å respectivamente, ambas menores que la suma de radios de van der Waals, de 2.75 Å ^[7]), como se muestra en la Figura V.9. Para minimizar estas repulsiones, el ligando pierde planaridad.

Figura V.9 - Repulsiones entre anillos piridínicos del ligando HBIPSC.

A diferencia de lo que sucedía en el ligando anterior, en el compuesto (H₂BIPSC)NO₃ los átomos N3 y N4 se hallan en posición *cis*, al igual que los átomos N3 y N5, configuración estabilizada por los enlaces de hidrógeno intramoleculares N4-H···N3 y N2-H···N5 (de los cuales en el compuesto anterior sólo era posible la existencia del segundo, ya que el ligando no estaba protonado). Esto hace que las repulsiones entre los anillos piridínicos del ligando se manifiesten para los átomos H4/H9 (cuya distancia de 2.27 Å es menor que la suma de los radios de van der Waals, de 2.40 Å), como se

representa en la Figura V.10. Esto explicaría en parte, la no planaridad del ligando, al igual que en el caso anterior.

Figura V.10 - Repulsiones entre anillos piridínicos del compuesto (H₂BIPSC)NO₃.

Como se discutirá más adelante, en el caso de HAPTSC·1/2H₂O, la no planaridad de la molécula 2 podría ser consecuencia de los enlaces de hidrógeno (y de otras interacciones débiles) presentes en la estructura de este ligando.

En la Tabla V.4 se detallan los ángulos diedros presentes en cada una de las semicarbazonas derivadas de 2,2´-bipiridilcetona y en la Molécula 2 del ligando HAPTSC. En la Tabla V.5 se detallan los enlaces de hidrógeno del ligando HBIPSC, y se muestran en la Figura V.11.

	Plano	Ángulo diedro (°)	
	P [!] : C12 C18 C19 C110 C111 C112 N15 (rms=0.017)	P ¹ ^P ¹¹ =24.13(0.10)	
	P": C11 C12 N11 N12 N13 O1 (rms=0.021)	P ^{II} ^P ^{III} =33.31(0.17)	
	P ^{III} : C12 C13 C14 C15 C16 C17 N14 (rms =0.008)	P ¹ ^P ¹¹¹ =52.34(0.13)	
HBIPSC	P ^{IV} : C22 C23 C24 C25 C26 C27 N24 (rms =0.008)	P ^{IV} ^P ^V =32.05(0.19)	
	P ^V : C21 C22 N21 N22 N23 O2 (rms =0.026)	P ^V ^P ^{VI} =21.84(0.10)	
	P ^{VI} : C22 C28 C29 C210 C211 C212 N25 (rms=0.005)	P ^{IV} ^P ^{VI} =51.46(0.14)	
	<u>、</u> (1)		
	P': C1 C2 C3 C8 N1 N2 N3 O1 (rms=0.021)	P'^P"=13.67(0.06)	
(H₂BIPSC)NO₃	P ^{II} : C3 C4 C5 C6 C7 N4 (rms=0.005)	P ¹ ^P ^{III} :34.89(0.05)	
	P ^{III} : C8 C9 C10 C11 C12 N5 (rms=0.015)	P ^{II} ^P ^{III} :44.47(0.05)	
Molécula 2 de	P': C21 C22 C28 N21 N22 N23 S2 (rms = 0.0675)	$P^{I}AP^{II} = 21 31(0.07)$	
HAPTSC	P ^{II} : C23 C24 C25 C26 C27 C22 N24 (rms = 0.0398)	rh - 51'91(0'01)	

Tabla V.4 - Ángulos diedros en HBIPSC y (H₂BIPSC)NO₃ y para la Molécula 2 del ligando HAPTSC.

Tabla V.5 - Enlaces de hidrógeno (Å y °) del ligando HBIPSC.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O1 ⁱ	0.86	2.09	2.941(5)	171.7
N11-H11B…O2	0.86	2.20	2.820(5)	128.5
N11-H11B…N13	0.86	2.29	2.651(6)	105.5
N12-H12…N15	0.86	2.01	2.650(6)	130.4
	'-x+1/2,	-y-3/2, -z+	1	

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N21-H21A…O2 ⁱⁱ	0.86	2.12	2.977(6)	177.7
N21-H21B…O1 ⁱⁱⁱ	0.86	2.24	2.840(6)	127.0
N21-H21B…N23	0.86	2.29	2.654(6)	105.3
N22-H22…N25	0.86	2.00	2.642(6)	130.7
C19-H19…N14	0.93	2.57	2.962(6)	106
C29-H29…N24	0.93	2.53	2.947(7)	108
C110-H110…O2 ^{iv}	0.93	2.36	3.192(6)	149

Tabla V.5 (continuación)- Enlaces de hidrógeno (Å y °) del ligando HBIPSC.

'-x+1/2, -y-1/2, -z+1; ^{III} x, y+1, z; ^{IV} x, -y, 1/2+y.

Además del enlace de hidrógeno intramolecular N1-H···N3 típico del resto semicarbazona, este ligando presenta otro enlace intramolecular entre el átomo N12 (N22) y el átomo de N piridínico N15 (N25). Los enlaces intermoleculares N11-H11A···O1ⁱ, N11-H11B···O2, N21-H21A···O2ⁱⁱ y N21-H21B···O1ⁱⁱⁱ generan el crecimiento de la estructura en cadenas infinitas paralelas al eje b. Estas cadenas podrían estar unidas a cadenas vecinas mediante interacciones débiles de tipo C-H···π (Tabla V.6), generándose así planos infinitos paralelos al plano (101).

Tabla V.6 - Interacción de tipo C-H··· π presente en la estructura del ligando HBIPSC.

		$\overline{\mathcal{N}}$				
Interacción	H…Cg(Å)	H-Perp(Å)	γ(°)	X-H…Cg(°)	X…Cg(Å)	X-H,Pi
C17 -H17…Cg4	2.99	2.870	16.53	123	3.581(5)	49
Δ	nillo(4) · N25	C28 C29 C21	0 C 2 1 1 C	212 ^V 1-V V 3	3/2-7	-

Figura V.11 - Enlaces de hidrógeno del ligando HBIPSC.

Si además se tienen en cuenta los enlaces de hidrógeno no clásicos cuyos datos se recogen en la Tabla V.5, la estructura supramolecular del ligando HBIPSC puede ser descripta como una red tridimensional infinita (Figura V.12).

Figura V.12 - Estructura supramolecular del ligando HBIPSC.

En la Tabla V.7 se detallan los enlaces de hidrógeno presentes en la estructura del ligando (H₂BIPSC)NO₃ , y se representan en la Figura V.13.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O4 ⁱ	0.888(18)	2.129(18)	2.9544(16)	154.4(14)
N1-H1B…N3	0.888(17)	2.394(16)	2.7076(16)	101.0(12)
N1-H1B…O2 ⁱⁱ	0.888(17)	2.023(17)	2.8927(17)	166.1(15)
N2-H2…N5	0.86	2.07	2.7070(16)	130.5
N4-H4A…N3	0.86	2.29	2.6408(17)	104.8
N4-H4A…O2 ⁱⁱ	0.86	1.94	2.7554(14)	157.4
C5-H5…O1 ⁱⁱⁱ	0.93	2.58	3.191(3)	124
C6-H6…O1 ⁱⁱⁱ	0.93	2.60	3.190(3)	122
C6-H6…O3 ^{iv}	0.93	2.44	3.016(3)	120
C7-H7…O3 ^{iv}	0.93	2.46	3.033(2)	120
C7-H7…O4 ⁱⁱ	0.93	2.48	3.207(3)	135
C9-H9…O4 ^v	0.93	2.41	3.300(3)	159
C11-H11…O1 ^{vi}	0.93	2.53	3.442(3)	166

Tabla V.7.- Enlaces de hidrógeno (Å y °) del ligando (H₂BIPSC)NO₃.

ⁱ -x+2, y-1/2, -z+1/2; ⁱⁱ -x+2, -y+1, -z+1; ⁱⁱⁱ x, y, 1+z; ^{iv} 2-x, -1/2+y, 3/2-z; ^v x, 3/2-y, 1/2+z; ^{vi} 1-x, 1/2+y, 1/2-z.

En esta estructura se presentan 3 enlaces de hidrógeno intramoleculares: el enlace típico N1-H…N3, el enlace entre el N2 y el átomo de nitrógeno imínico no protonado, y un tercer enlace con el átomo de nitrógeno piridínico protonado como dador y el N3 como aceptor. Como puede verse en la Figura V.13, todos los enlaces son intramoleculares o entre el ligando protonado y aniones nitrato generados por las operaciones de simetría i y ii, que actúan como puentes entre distintas moléculas del ligando. Estos puentes extienden la estructura formando cadenas infinitas (ver Figura V.14) paralelas al eje c. Estas cadenas se unen formando planos paralelos al plano bc mediante enlaces de hidrógeno no clásicos de tipo C-H…O, cuyos parámetros se detallan en la Tabla V.7. Finalmente, los enlaces de hidrógeno no clásicos C9-H9…O4^v y C11-H11…O1^{vi} unen estos planos apilados a lo largo del eje a, formando una red tridimensional como la que se muestra en la Figura V.15.

Figura V.14 - Cadenas paralelas al eje c de la estructura del ligando (H₂BIPSC)NO₃.

Figura V.15 - Estructura supramolecular del ligando (H₂BIPSC)NO₃.

En la Tabla V.8 se detallan los enlaces de hidrógeno presentes en la estructura del ligando HAPTSC·1/2H₂O, y quedan representados en la Figura V.16.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
O1W-H1W…S1 ⁱ	0.82(2)	2.53(2)	3.3299(16)	165(2)
O1W-H2W…N24 ⁱⁱ	0.83(3)	2.17(3)	2.9472(19)	158(2)
N11-H11A…N13	0.86	2.28	2.6293(18)	104.2
N11-H11A…S2 ^{III}	0.86	2.66	3.3775(17)	141.2
N11-H11B…O1W ⁱⁱⁱ	0.86	2.06	2.8847(18)	160.9
N12-H12S2 ⁱ	0.86	2.62	3.4632(17)	168.8
N21-H21A…N23	0.86	2.25	2.6040(18)	104.8
N21-H21A…S1 ⁱⁱⁱ	0.86	2.85	3.5492(19)	139.1
N21-H21B…N14 ^{iv}	0.86	2.15	2.9077(19)	147.4
N22-H22…S1 ⁱ	0.86	2.62	3.4620(17)	167.6

Tabla V.8 - Enlaces de hidrógeno (Å y °) del ligando HAPTSC·1/2H₂O.

ⁱ -x+1, -y+1, -z+1; ⁱⁱ -x, -y+1, -z+1; ⁱⁱⁱ -x+1, y-1/2, -z+3/2; ^{iv} x, -y+1/2, z+1/2.

Como puede apreciarse en la Tabla V.8, cada molécula de ligando de la unidad asimétrica actúa como dador de H en cuatro enlaces de hidrógeno diferentes (dos intramoleculares), que implican cinco moléculas de ligando y una molécula de agua generadas por las operaciones de simetría del grupo, mientras que el agua de cristalización de la unidad asimétrica actúa como dador en dos enlaces de hidrógeno más. Este complicado entramado de enlaces de hidrógeno hace que la estructura cristalina del compuesto crezca en las tres direcciones del espacio, generando una red

tridimensional como la representada en la Figura V.17, estabilizada además por una interacción de tipo π - π stacking, cuyos parámetros se detallan en la Tabla V.9.

Tabla V.9 - Interacciones de tipo π - π stacking presentes en la estructura de HAPTSC·1/2H₂O.

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	Cgl_Perp(Å)	CgJ_Perp(Å)	Slippage(Å)
Cg2-Cg2 ^{vi}	3.858(2)	0.00	26.85	26.85	3.442	3.442	1.742
		Anillo(2	2): N24 C2	3 C24 C25	C26 C27. ^{vi} -x, -y, 1	L-z.	

Figura V.16 - Enlaces de hidrógeno del compuesto HAPTSC·1/2H₂O.

Figura V.17 - Estructura supramolecular del compuesto HAPTSC·1/2H₂O.

En la Tabla V.10 se detallan los enlaces de hidrógeno presentes en la estructura del compuesto H₂DAPSC·MeOH. Como ya se adelantara al discutir las configuraciones de las cadenas

semicarbazona de este ligando, existen tres enlaces de hidrógeno intramoleculares en esta estructura. Además, dentro de la unidad asimétrica se establece un enlace de hidrógeno entre el ligando y la molécula de disolvente, y finalmente encontramos 5 enlaces de hidrógeno intermoleculares.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O2 ⁱ	0.88	2.09	2.945(3)	163.1
N1-H1B…O2 ⁱⁱ	0.88	2.44	2.993(3)	121.2
N1-H1B…N3	0.88	2.34	2.684(4)	103.1
01S-H4S…01 ⁱⁱⁱ	0.97(4)	1.94(4)	2.852(4)	156(5)
N2-H2…N4	0.88	1.92	2.610(3)	134.7
N6-H6A…O1 ⁱ	0.88	2.03	2.894(3)	166.7
N7-H7A…O2 ^{iv}	0.88	2.21	2.998(3)	148.1
N7-H7B…O1S	0.88	2.21	3.021(4)	153.4
N7-H7B…N5	0.88	2.33	2.679(3)	103.6

Tabla V.10 - Enlaces de hidrógeno (Å y °) del compuesto H₂DAPSC·MeOH.

'-x+1,-y+1,-z+2; "x-1,y,z; "-x+1,-y+1,-z+1; "-x+2,-y+1,-z+1

Las interacciones N1-H···O2ⁱ y N6-H···O1ⁱ forman dímeros como el que se muestra en la Figura V.18, disponiéndose ambas moléculas en un mismo plano, y dejando un espacio entre ellas en el cual se ubican los grupos –C11H₃. Estos dímeros se unen entre sí mediante los enlaces O1S-H···O1ⁱⁱⁱ y N7-H7B···O1S, formando cadenas infinitas paralelas al eje c, como se ilustra en la Figura V.18, donde se han resaltado dichos enlaces.

Figura V.18 - (a) Dímeros y (b) cadenas formados por enlaces de hidrógeno en la estructura de H_2DAPSC ·MeOH.

Finalmente, los enlaces N1-H1B···O2ⁱⁱ y N7-H7A···O2^{iv} unen las mencionadas cadenas formando planos infinitos paralelos al plano ac, como se muestra en la Figura V.19. Puede entonces describirse la estructura supramolecular del ligando H₂DAPSC·MeOH como un apilamiento de planos infinitos paralelos al eje ac (estabilizados por interacciones débiles de tipo C-H···π, cuyos parámetros se recogen en la Tabla V.11).

Figura V.19 - Organización en capas infinitas paralelas al plano ac, presentes en la estructura del compuesto H₂DAPSC·MeOH.

Tabla V.11 - Interacciones de tipo C-H··· π (Å y °) presentes en la estructura de H₂DAPSC·MeOH.

X-H…Cg(J)	H…Cg	H-Perp	Gamma	X-H···Cg	X…Cg	Х-Н,Рі	
C5-H5…Cg1 ^v	2.85	2.771	13.15	140	3.607(4)	41	
C11-H11A…Cg1 ⁱⁱⁱ	2.93	2.852	13.21	149	3.784(5)	58	
^v x, 3/2-y, -1/2+z; ⁱⁱⁱ 1-x, 1-y, 1-z.							

En la Tabla V.12 se recogen los enlaces de hidrógeno del compuesto $H_2DAPTSC$, y se representan en la Figura V.20.

Tabla V.12 - Enlaces de hidrógeno (Å y °) del compuesto H₂DAPTSC.

D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…S2 ⁱ	0.86	2.64	3.354(4)	140.7
N1-H1A…N3	0.86	2.27	2.621(5)	104.3
N1-H1B…S2 ⁱⁱ	0.86	2.65	3.406(4)	148.0
N2-H2…N4	0.86	1.97	2.631(4)	133.1
N7-H7A…N5	0.86	2.25	2.602(4)	104.8
N6-H6A…S1 ⁱⁱ	0.86	2.94	3.398(3)	115.3
N7-H7B…S1 ⁱⁱⁱ	0.86	2.99	3.558(4)	125.1

¹x-1, y+1, z+1; ["]-x+2, -y, -z+2; ["]x+1, y, z-1.

Figura V.20 - Enlaces de hidrógeno intermoleculares del compuesto H₂DAPTSC.

Como puede observarse en dicha figura, en esta estructura hay cuatro enlaces intermoleculares. Dos de estos enlaces (N1-H1B···S2ⁱⁱ y N6-H6A···S1ⁱⁱ) generan dímeros "escalonados", cuyos miembros se ubican en planos paralelos separados 3.3 Å.

Por su parte, los enlaces N1-H1A···S2ⁱ y N7-H7B···S1ⁱⁱⁱ unen estos dímeros en bicapas infinitas paralelas al plano (101), como se ilustra en la Figura V.21.

Figura V.21 - Estructura en bicapas infinitas paralelas del compuesto H₂DAPTSC.

En la Tabla V.13 se detallan los enlaces de hidrógeno presentes en la estructura del compuesto H₂DAPTSC·MeOH. Como puede apreciarse en dicha tabla y en la Figura V.22, en esta estructura hay 3 enlaces de hidrógeno intramoleculares; en la misma figura se puede observar también como los enlaces N7-H···O1Sⁱⁱⁱ y O1S-H···S1 asocian dos moléculas del ligando en pares puenteados por dos moléculas de MeOH.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…N3	0.86	2.26	2.622(4)	105.6
N1-H1B…S2 ⁱ	0.86	2.53	3.384(3)	172.6
N2-H2…N4	0.86	1.96	2.640(4)	134.6
N6-H6A…S2 ⁱⁱ	0.86	2.65	3.498(3)	171.0
N7-H7A…N5	0.86	2.30	2.649(4)	104.4
N7-H7A…O1S ⁱⁱⁱ	0.86	2.29	3.031(4)	144.4
N7-H7B…S1 ^{iv}	0.86	2.57	3.431(3)	177.8
01S-H11S1	0.74(5)	2.51(5)	3.235(4)	170(5)

Tabla V.13 - Enlaces de hidrógeno (Å y °) del compuesto H₂DAPTSC·MeOH.

ⁱx-1, -y+1/2, z-1/2; ⁱⁱ -x+2, -y+1, -z; ⁱⁱⁱ -x+2, -y, -z; ^{iv} x+1, -y+1/2, z+1/2.

Figura V.22 - Asociación de moléculas del ligando puenteadas por moléculas de MeOH mediante enlaces de hidrógeno del compuesto H₂DAPTSC·MeOH.

Finalmente, los enlaces N1-H1B···S2ⁱ, N6-H6A···S2ⁱⁱ y N7-H7B···S1^{iv} extienden la estructura para generar planos infinitos como el representado en la Figura V.23, paralelos al plano ($\overline{1}$ 02).

Figura V.23 - Estructura en planos infinitos del compuesto H₂DAPTSC·MeOH.

V.2.2- Estructura cristalina de complejos de Ga(III) y ligandos derivados de la piridina

V.2.2.1 - Estructura cristalina del compuesto (H₂BIPSC)₂[GaCl₄]Cl

En la Figura V.24 se representa el contenido de la unidad asimétrica del compuesto $(H_2BIPSC)_2[GaCl_4]Cl$ (XIII), donde H_2BIPSC^+ es la semicarbazona de la 2,2'-bipiridilcetona protonada. Se trata de una sal, donde la carga de las dos moléculas orgánicas protonadas se ve compensada por la presencia en la estructura de los aniones cloruro y $[GaCl_4]^-$. En la Tabla V.14 se recogen los datos cristalográficos y de refinado para este compuesto, y en la Tabla V.15 se recogen las longitudes y ángulos de enlace más relevantes del mismo, comparadas con los parámetros correspondientes de la estructura cristalina estudiada para el ligando libre y el nitrato del ligando protonado. Los ángulos de enlace Cl(i)-Ga-Cl(j) (con i, j = 1,2,3,4) del compuesto (XIII) varían entre 107.84(2)° y 110.79(2)°, en buen acuerdo con la geometría tetraédrica del anión tetraclorogalato.

Figura V.24 - Contenido de la unidad asimétrica del compuesto (H₂BIPSC)₂[GaCl₄]Cl (XIII).

Fórmula	$GaC_{24}H_{24}C_{15}N_{10}O_2$	Z	2
Masa Molecular	731.50	D _{calc} . (Mg/m ³)	1.658
т (к)	100.0(1)	μ (mm ⁻¹)	1.439
λ (Å)	0.71073	F(000)	740
Sistema Cristalino	Triclínico	Dimensiones (mm)	0.48 x 0.47 x 0.24
Grupo Espacial	P-1	Intervalo θ (°)	2.13 a 27.19
a (Å)	10.164(2)	Intervalos en h, k, l	-12,13;-13,13;0,19
b (Å)	10.827(2)	No. reflex. medidas	24943
<i>c</i> (Å)	15.123(3)	No. reflex. únicas	6451
α(°)	80.875(4)	R _{int}	0.0278
β(°)	84.221(3)	R	0.0235
γ (°)	63.157(3)	R _w	0.0604
V (ų)	1465.4(6)	G.O.F.	1.095

Tabla V.14 - Datos cristalográficos y de refinado del compuesto (H₂BIPSC)₂[GaCl₄]Cl (XIII).

Las distancias Ga-Cl varían entre 2.164(5) y 2.187 (6) Å, valores ligeramente mayores al valor medio de 2.161±0.002 encontrado para el enlace Ga-Cl en tetraclorogalatos recogidos en la base de datos CSD^[8].

Comparando las longitudes de enlace relevantes en las tres estructuras, vemos que las diferencias son despreciables para casi todos los enlaces. Si acaso, encontramos ligeras variaciones para algunos de estos parámetros al comparar la estructura del ligando libre con las estructuras de los ligandos protonados.

Tabla V.15 - Longitudes (Å) y ángulos (°) de enlace relevantes en el ligando libre y protonado en las estructuras del compuesto (XIII), HBIPSC y (H_2BIPSC)(NO_3), y parámetros del anión [$GaCl_4$]⁻ en (XIII).

H₂BIPSC ⁺ en (XIII)		H₂BIPSC ⁺ en	HBI	PSC			
	Moléc. 1	Moléc. 2	(H ₂ BIPSC)NO ₃	Moléc. 1	Moléc. 2		
C1-0	1.2349(19)	1.2310(19)	1.2305(15)	1.226(6)	1.220(5)	Ga-Cl1	2.1636(5)
C1-N1	1.322(2)	1.332(2)	1.3359(16)	1.342(6)	1.319(6)	Ga-Cl2	2.1873(6)
C1-N2	1.387(2)	1.393(2)	1.3919(15)	1.381(6)	1.378(6)	Ga-Cl3	2.1644(5)
N2-N3	1.3390(18)	1.3418(18)	1.3446(14)	1.382(5)	1.375(5)	Ga-Cl4	2.1778(5)
C2-N3	1.294(2)	1.302(2)	1.2976(15)	1.277(6)	1.288(6)		
C2-C3	1.471(2)	1.483(2)	1.4817(16)	1.504(7)	1.498(7)		
C2-C8	1.489(2)	1.483(2)	1.4932(16)	1.492(7)	1.501(7)		
C3-N4	1.354(2)	1.3537(19)	1.3585(15)	1.345(6)	1.332(6)		
C8-N5	1.353(2)	1.3521(19)	1.3502(15)	1.324(6)	1.333(6)		
O-C1-N1	125.86(15)	125.45(14)	125.42(11)	124.1(4)	124.1(4)	Cl1-Ga-Cl2	107.84(2)
O-C1-N2	117.16(14)	117.36(14)	117.63(11)	119.7(5)	119.1(4)	Cl1-Ga-Cl3	110.20(2)
N1-C1-N2	116.98(14)	117.19(13)	116.95(10)	116.1(4)	116.7(4)	Cl1-Ga-Cl4	109.35(2)
C1-N2-N3	121.91(13)	121.26(13)	121.87(10)	119.4(4)	119.5(4)	Cl2-Ga-Cl3	109.76(2)
N2-N3-C2	118.94(13)	119.96(13)	119.56(10)	119.0(4)	119.5(4)	Cl2-Ga-Cl4	108.84(2)
N3-C2-C3	114.75(13)	113.13(13)	113.81(10)	113.0(4)	112.9(4)	Cl3-Ga-Cl4	110.79(2)
N3-C2-C8	125.53(13)	127.42(13)	126.33(10)	127.2(5)	127.7(4)		
C2-C3-N4	117.57(13)	117.63(13)	117.17(10)	115.6(4)	116.6(4)		
C2-C8-N5	115.65(14)	116.18(13)	115.78(10)	117.1(4)	115.2(4)		
C3-C2-C8	119.69(13)	119.39(13)	119.87(9)	119.9(4)	119.4(4)		

Esquema de numeración:

Lo mismo sucede con los ángulos de enlace. Por otra parte, las configuraciones entorno a los enlaces C1-N2 y C2-N3 en los ligandos protonados del compuesto XIII también se mantienen invariables respecto de las configuraciones halladas para las dos moléculas del ligando protonado en el compuesto (H₂BIPSC)NO₃.Todo esto indica que la presencia de los aniones [GaCl₄]⁻ y Cl⁻ en la estructura cristalina del compuesto (XIII) no afecta a la estructura del ligando protonado, lo cual es coherente con la ausencia de interacciones fuertes entre dichos aniones y el catión H₂BIPSC⁺.

En la Tabla V.16 se recogen los enlaces de hidrógeno presentes en la estructura cristalina del compuesto (XIII), y en la Figura V.25 se representan los enlaces de hidrógeno clásicos. En dicha figura se aprecia cómo los enlaces N11-H…O2ⁱⁱ y N21-H…O1^{iv} unen las moléculas de H₂BIPSC⁺ en dímeros.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N24-H24…Cl5 ⁱ	0.915(18)	2.231(19)	3.0771(15)	153.6(15)
N11-H11A…O2 [#]	0.86	2.03	2.8819(18)	170.5
N11-H11B…Cl5 ^{III}	0.86	2.66	3.4730(15)	157.8
N11-H11B…N13	0.86	2.35	2.6959(19)	104.1
N12-H12…N15	0.78(2)	2.18(2)	2.747(2)	130.5(19)
N14-H14…Cl5 ⁱⁱⁱ	0.86(2)	2.39(2)	3.1402(15)	145.8(18)
N14-H14…N13	0.86(2)	2.34(2)	2.6567(18)	102.3(15)
N21-H21A…O1 ^{iv}	0.86	2.12	2.9321(18)	156.3
N21-H21B…Cl5 ⁱ	0.86	2.54	3.3496(15)	156.8
N21-H21B…N23	0.86	2.37	2.7059(19)	103.5
N22-H22…N25	0.83(2)	2.01(2)	2.649(2)	133.8(18)
C29-H29…Cl3 ^v	0.93	2.81	3.678(2)	155
C211-H211…Cl1 ^v	0.93	2.80	3.653(2)	152

Tabla V.16 - Enlaces de hidrógeno (Å y °) del compuesto (XIII).

Figura V.25 - Enlaces de hidrógeno clásicos en el compuesto (XIII).

Como puede observarse en la Figura V.26, hay cuatro enlaces de hidrógeno que tienen al anión Cl⁻ como aceptor; puede decirse que los dímeros antes descritos se unen entre sí a través de estos "puentes Cl⁻", formando cadenas infinitas paralelas al eje a.

Figura V.26 - Enlaces de hidrógeno del compuesto (XIII) en los que el Cl⁻ actúa como aceptor. ^v 1+x, 1+y, z; ^{vi} 1+x, y, -1+z.

Entre estas cadenas se ubican los aniones $[GaCl_4]^{-}$. La presencia de estos aniones parece estabilizar la estructura supramolecular del compuesto a través de enlaces de hidrógeno no clásicos C-H···Cl (los parámetros de dos de ellos, que vinculan moléculas de H₂BIPSC⁺ pertenecientes a la misma cadena, se recogen en la Tabla V.16; es posible que existan al menos 3 enlaces más de tipo C-H···Cl, asociando a través del mismo anión $[GaCl_4]^{-}$ moléculas de la semicarbazona protonada pertenecientes a cadenas diferentes, como se muestra en la Figura V.27). De esta manera, podría decirse que los aniones $[GaCl_4]^{-}$ contribuyen a la formación de planos infinitos paralelos entre si (como se muestra en la Figura V.28) y paralelos al plano (011). Esta estructura supramolecular se ve reforzada por la existencia de interacciones de tipo π - π stacking entre anillos piridínicos pertenecientes a planos contiguos (cuyos parámetros se detallan en la Tabla V.17).

Figura V.27 - Posibles interacciones no clásicas de tipo C-H···Cl asociadas al anión GaCl₄⁻ en la estructura del compuesto (XIII).

Figura V.28- Estructura supramolecular del compuesto (XIII).

Tabla V.17 - Interacciones de tipo π - π stacking en la estructura del compuesto (XIII).

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	CgI_Perp(Å)	CgJ_Perp(Å)	Slippage(Å)
Cg1-Cg3 ^v	4.0839(13)	9.85	31.61	26.87	3.643	3.478	
Cg3-Cg1 ^v	4.0840(13)	9.85	26.87	31.61	3.478	3.643	
Cg4-Cg4 ^{vi}	3.7741(12)	0.00	32.20	32.20	3.193	3.193	2.011

Anillo(1): N14 C13 C14 C15 C16 C17; Anillo(3): N24 C23 C24 C25 C26 C27; Anillo(4): N25 C28 C29 C210 C211 C212. * -x, 1-y, 1-z; ^{vi} -x, -y, 1-z

V.2.2.2 - Estructura cristalina del complejo [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O

En la Figura V.29 se muestra el contenido de la unidad asimétrica del compuesto $[Ga(HDAPSC)(H_2O)_2](NO_3)_2 \cdot H_2O$ (XIV), y en la Tabla V.18 se recogen los datos cristalográficos y de refinado de la estructura cristalina.

Figura V.29 - Unidad asimétrica del compuesto [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O (XIV).

Fórmula	C ₁₁ H ₁₄ Ga N ₉ O ₁₁	Z	2
Masa Molecular	518.03	D _{calc} . (Mg/m ³)	1.800
т (К)	120.0(1)	μ (mm ⁻¹)	1.521
λ (Å)	0.71069	F(000)	524
Sistema Cristalino	Triclínico	Dimensiones (mm)	0.10 x 0.08 x 0.06
Grupo Espacial	P-1	Intervalo θ (°)	1.93 a 23.27
a (Å)	7.934(5)	Intervalos en h, k, l	-8,8; -12,12; 0,13
b (Å)	11.589(5)	No. reflex. medidas	17488
<i>c</i> (Å)	11.761(5)	No. reflex. únicas	2722
α(°)	109.293(5)	R _{int}	0.0819
β(°)	103.809(5)	R	0.0694
γ (°)	99.462(5)	R _w	0.1889
V (Å ³)	955.6(8)	G.O.F.	1.104

Tabla V.18 - Datos cristalográficos y de refinado del compuesto (XIV).

La Figura V.29 muestra que la unidad asimétrica del compuesto (XIV) contiene el complejo catiónico $[Ga(HDAPSC)(H_2O)_2]^{2+}$, dos aniones NO_3^- y una molécula de agua de cristalización. En el complejo catiónico, el Ga(III) se halla en un entorno de tipo N_3O_4 (Figura V.30), formado por el ligando H_2DAPSC monodesprotonado (por pérdida del H enlazado al N6) y dos moléculas de agua coordinadas al metal, con geometría de bipirámide pentagonal apenas distorsionada. Este tipo de entorno e índice de coordinación es muy inusual para el Ga(III); la literatura recoge un sólo compuesto de Ga(III) con índice de coordinación 7, como ya se ha mencionado en la introducción de esta memoria (apartado I.1.2), el catena-[bis(μ_2 -bifenil-2,2'-dicarboxilato)-(μ_2 -tereftalato)-bis(1,10-fenantrolina)-di-galio(III) monohidratado]^[9]. Este índice de coordinación tan elevado es posible debido a que se trata de un ligando bis-semicarbazona coordinado de modo pentadentado al metal, dando lugar a la formación de 4 anillos quelato contiguos (de 5 miembros cada uno) en un arreglo planar que permite una gran estabilización por deslocalización de la carga. Este arreglo planar se representa en la Figura V.30.

El plano π de la Figura V.30 forma un ángulo diedro de 89.96°(0.12) con el plano que contiene a los átomos N(4), O(3), O(4) y Ga(1) (rms=0.0081).

En las Tablas V.19 y V.20 se detallan las longitudes (Å) y ángulos (°) relevantes en la estructura cristalina de este compuesto.

enlace	Longitud de enlace (Å)	enlace	Longitud de enlace (Å)
Ga1-01	2.091(4)	C2-N3	1.273(7)
Ga1-O2	2.157(4)	C2-C3	1.473(7)
Ga1-O3	1.897(4)	C3-N4	1.349(7)
Ga1-O4	1.938(4)	C7-N4	1.335(7)
Ga1-N3	2.211(5)	C7-C8	1.480(8)
Ga1-N4	2.198(4)	C8-N5	1.279(7)
Ga1-N5	2.185(5)	N5-N6	1.388(6)
C1-N1	1.321(7)	C9-N6	1.358(7)
C1-01	1.263(6)	C9-N7	1.336(7)
C1-N2	1.362(7)	C9-O2	1.263(6)
N2-N3	1.367(6)		

Tabla V.19 - Longitudes de enlace (Å) relevantes en la estructura del compuesto (XIV).

Tabla V.20 - Ángulos de enlace (°) relevantes en la estructura del compuesto (XIV).

Parámetro	Ángulo	Parámetro	Ángulo	Parámetro	Ángulo	Parámetro	Ángulo
01-Ga1-O2	74.46(13)	O3-Ga1-O4	178.45(14)	01-C1-N1	122.7(5)	N4-C7-C8	114.1(4)
01-Ga1-O3	91.51(15)	O3-Ga1-N3	92.44(16)	01-C1-N2	119.6(5)	C7-C8-N5	112.5(5)
01-Ga1-O4	86.98(15)	O3-Ga1-N4	91.79(16)	N1-C1-N2	117.6(5)	C8-N5-N6	120.1(4)
O1-Ga1-N3	72.84(14)	O3-Ga1-N5	92.59(16)	C1-N2-N3	114.5(4)	N5-N6-C9	111.9(4)
O1-Ga1-N4	142.73(15)	O4-Ga1-N3	86.77(16)	N2-N3-C2	123.1(4)	N6-C9-N7	115.2(5)
O1-Ga1-N5	146.68(16)	O4-Ga1-N4	89.19(15)	N3-C2-C3	112.6(5)	N6-C9-O2	122.4(5)
O2-Ga1-O3	93.66(15)	O4-Ga1-N5	88.87(16)	C2-C3-N4	114.6(4)	N7-C9-O2	122.5(5)
02-Ga1-O4	86.29(15)	N3-Ga1-N4	69.93(16)	C3-N4-C7	121.1(4)		
O2-Ga1-N3	146.86(15)	N3-Ga1-N5	139.89(16)				
O2-Ga1-N4	142.23(15)	N4-Ga1-N5	70.15(16)				
O2-Ga1-N5	72.28(14)						

En el apartado V.2.1 se discutió la estructura del ligando H₂DAPSC·MeOH. En la Tabla V.21 se comparan las longitudes de los enlaces más relevantes del ligando libre con las correspondientes al complejo (XIV).

	H₂DAPSC	HDAPSC ⁻ en (XIV)		H ₂ DAPSC	HDAPSC ⁻ en (XIV)
C1-N1	1.329(4)	1.321(7)	C9-N7	1.324(4)	1.336(7)
C1-O1	1.248(3)	1.263(6)	C9-O2	1.250(3)	1.263(6)
C1-N2	1.360(4)	1.362(7)	C9-N6	1.371(4)	1.358(7)
N2-N3	1.366(3)	1.367(6)	N5-N6	1.372(3)	1.388(6)
C2-N3	1.292(4)	1.273(7)	C8-N5	1.282(4)	1.279(7)
C2-C3	1.493(4)	1.473(7)	C7-C8	1.483(4)	1.480(8)

Tabla V.21- Longitudes de enlace (Å) relevantes del ligando H₂DAPSC en el ligando libre y en el complejo (XIV).

Como era de esperar, las distancias C-O de los dos restos semicarbazona aumentan al pasar del ligando libre al ligando coordinado en el catión complejo [Ga(HDAPSC)(H₂O)₂]²⁺. Además, se observa cierta disminución en la longitud de los enlaces imínicos, principalmente en la cadena que no se desprotona. Por otra parte, la pérdida del H sobre N5 influye sobre los parámetros de la cadena a la que pertenece. Así, se produce una disminución en la longitud del enlace C9-O2 y un aumento de la longitud del enlace N5-N6 que no se aprecian en los parámetros correspondientes de la cadena no desprotonada. Nótese como en el resto no desprotonado, la variación del enlace imínico es importante, al contrario de lo que sucede para el mismo enlace en la cadena desprotonada, aunque esta diferencia parece estar justificada por la mayor longitud del enlace C2=N3 en el ligando libre, relacionada con la existencia en el mismo del enlace de hidrógeno intramolecular N2-H···N4, que podría estar debilitando el enlace imínico.

Se pueden destacar algunas características del catión complejo [Ga(HDAPSC)(H₂O)₂]²⁺:

- Si comparamos las distancias de enlace del ligando presente en este complejo con complejos análogos del mismo ligando con otros metales^[11-14] vemos que las longitudes de enlace del ligando no presentan variaciones significativas, independientemente de la naturaleza y tamaño de los cationes involucrados, y del grado de desprotonación del ligando. También es de destacar la diferencia entre las longitudes de enlace Ga-O y Ga-N de este complejo con las encontradas para el compuesto [bis-(2-acetilpiridina-N,N-dimetil-semicarbazonato)-N,N,O-galio(III)] hexafluorofosfato^[10]. En el caso de [Ga(HDAPSC)(H₂O)₂]²⁺, dichas distancias son mayores, probablemente debido a la rigidez del ligando; en cambio, en el complejo con la semicarbazona derivada de la 2-acetilpiridina, la coordinación a dos ligandos tridentados permite que las distancias metal-O/N se parezcan más a los valores medios hallados en la base CSD^[8].

- Las distancias Ga-O en este complejo están en el rango usual, salvo para el enlace Ga-O2, cuya longitud es algo mayor que el valor medio encontrado en la base CSD^[8] (1.946 Å), y mayor también que todas las longitudes de enlaces entre Ga(III) y un átomo de O de un grupo carbonílico en los complejos incluidos en esta memoria. Comparando entre si las distancias Ga-O de este complejo,

211

vemos que la longitud de los enlaces entre el metal y las moléculas de agua de las posiciones axiales es marcadamente menor que la de los enlaces del Ga(III) con los átomos de oxígeno de los restos semicarbazona.

- También es mayor la longitud de los enlaces Ga-N en este complejo catiónico que el valor medio hallado en la CSD^[8] (2.149 Å) y que la longitud de los enlaces Ga-N en el resto de los complejos incluidos en esta memoria.

- Casi todos los ángulos entre átomos del ligando que forman parte de los anillos quelato muestran una desviación del ángulo ideal correspondiente a su hibridación, y esta desviación busca disminuir las distancias Ga-O y Ga-N. Este efecto parece estar directamente relacionado con el tamaño del ion metálico. En la Figura V.31 se muestra una vista perpendicular al plano ecuatorial del entorno de coordinación de 4 complejos mononucleares del ligando H₂DAPSC: [Ga(HDAPSC)(H₂O)₂]²⁺, [Zn(H₂DAPSC)(H₂O)₂]^{2+ [11]}, [Bi(DAPSC)(H₂O)]^{+ [12]} y [Pb(H₂DAPSC)Cl₂]. En estos compuestos, los radios iónicos de los metales involucrados siguen la serie Ga³⁺ \approx Zn²⁺ < Bi³⁺ < Pb^{2+ [15]}; observando la Figura V.31, vemos que la suma de los ángulos interiores de los anillos quelato que forma el ligando en cada caso sigue la misma tendencia, al igual que la distancia O1·····O2.

Figura V.31- Ángulos de enlace relevantes del ligando en los entornos de coordinación de los cationes complejos (a) $[Ga(HDAPSC)(H_2O)_2]^{2+}$, (b) $[Zn(H_2DAPSC)(H_2O)_2]^{2+}$, (c) $[Bi(DAPSC)(H_2O)]^+$ y del complejo neutro (d) $[Pb(H_2DAPSC)Cl_2]$.

- Aunque el número de coordinación ha de tener alguna influencia sobre los aspectos que acabamos de analizar, estos podrían deberse principalmente a la rigidez del ligando. Si bien éste es capaz de variar sus parámetros para coordinar cationes de distintos tamaños, impone sobre las longitudes y ángulos de enlace centrados en el metal unas restricciones que pueden provocar valores inusuales (en comparación con las interacciones metal-O y metal-N en el resto de complejos incluidos en esta memoria) en las longitudes y/o ángulos de enlace del entorno de coordinación del metal en cuestión.
- Otra característica notable en el compuesto (XIV) es la escasa diferencia que hay en las longitudes de los enlaces del resto semicarbazona monodesprotonado y el resto que conserva el H sobre el N2. Esto puede deberse a la gran deslocalización de la carga que permite el sistema aromático del ligando, a diferencia de lo que sucede con los otros complejos de esta memoria en que los ligandos de un mismo complejo tienen distinta carga, como [Ga(HCBSC)(CBSC)], [Ga(HαOFSC)(αOFSC)], [Ga(H₂DBZBSC)(HDBZBSC)] y [Ga(HαOFTSC)(αOFTSC)].

En cuanto a las configuraciones del ligando en este complejo, vemos que estas han cambiado respecto del ligando libre, en la Tabla V.22 se recogen las configuraciones del ligando en $H_2DAPSC \cdot MeOH \ y \ [Ga(HDAPSC)(H_2O)_2]^{2+}$.

	C3-C2	C2-N3	C1-N2	C7-C8	C8-C5	C9-N6
H ₂ DAPSC	z	× ZL	Ε	Ε	Ε	Ε
HDAPSC ⁻ en (XIV)	z	E	SZ	Ζ	Ε	z

Tabla V.22 - Configuraciones relevantes de H₂DAPSC y HDAPSC⁻ en el complejo (XIV).

Como ya se comentara en el apartado V.2.1, las configuraciones que presentan los restos semicarbazona del ligando libre posibilitan la formación de tres enlaces de hidrógeno intramoleculares, con las estabilización que esto conlleva. En cambio, para actuar como quelante pentadentado en el complejo (XIV), las configuraciones del ligando deben cambiar de la manera detallada en la Tabla V.22.

En la Tabla V.23 se detallan los enlaces de hidrógeno presentes en este compuesto..

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O1 ⁱ	0.86	2.14	2.996(6)	174.2
N1-H1A…O2 ⁱ	0.86	2.58	3.089(5)	118.6
N1-H1B…O8B ⁱⁱ	0.86	2.02	2.866(6)	166.6
01W-H1W…08A ⁱⁱⁱ	0.86(2)	2.32(6)	2.954(6)	130(7)

Tabla V.23 - Enlaces de hidrógeno (Å y °) del compuesto (XIV).

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
01W-H1W…08C ⁱⁱⁱ	0.86(2)	2.34(2)	3.190(6)	174(7)
N2-H2…O8A ⁱⁱ	0.86	2.06	2.915(6)	174.7
01W-H2W…09A ⁱⁱⁱ	0.85(2)	2.12(2)	2.963(6)	175(9)
01W-H2W…O9B ⁱⁱⁱ	0.85(2)	2.45(7)	3.053(6)	128(7)
03-H3A…08C ^{iv}	0.84(2)	2.24(3)	3.041(6)	161(5)
O3-H3B…N6 ^v	0.86(2)	1.80(4)	2.635(5)	165(12)
O4-H4A…O9B	0.84(2)	1.77(2)	2.599(5)	166(6)
04-H4B…O1W ^{vi}	0.84(2)	1.78(3)	2.591(5)	163(6)
N7-H7A…O8B ^{vii}	0.86	1.93	2.792(6)	175.4

Tabla V.23 (continuación) - Enlaces de hidrógeno (Å y °) del compuesto (XIV).

ⁱ -x+1, -y, -z+2; ⁱⁱ -x+2, -y, -z+1; ⁱⁱⁱ -x+1,-y+1,-z+1; ^{iv} x, y, z+1; ^v -x+1, -y+1, -z+2; ^{vi} x, y-1, z; ^{vii} x-1, y, z+1; ^{viii} x-1, y, z.

Como se ilustra en la Figura V.32, los enlaces N(1)-H(1A)····O(1)⁽ⁱ⁾ y N(1)-H(1A)····O(2)⁽ⁱ⁾ unen dos cationes complejos $[Ga(HDAPSC)(H_2O)_2]^{2+}$ formando unidades diméricas. Localmente, la carga de estos dímeros se estabiliza por la presencia en su entorno de cuatro aniones nitrato, vinculados al dímero por enlaces de hidrógeno que involucran también a las moléculas de agua de cristalización. Se forman así conjuntos virtualmente planos, de estequiometría $[Ga(HDAPSC)(H_2O)_2]_2(H_2O)_2(NO_3)_4$, como se representa en la *Figura V.33*.

Figura V.32 - Dímeros del catión complejo $[Ga(HDAPSC)(H_2O)_2]^{2+}$ formados por enlaces de hidrógeno en la estructura (XIV).

Figura V.33 - Unidad [Ga(HDAPSC)(H₂O)₂]₂(H₂O)₂(NO₃)₄, formada por enlaces de hidrógeno. ^{ix} 1+x, y-1, z; x -x, 1-y,2-z.

Estas unidades se disponen en planos paralelos al plano (112), y como se muestra en la Figura V.34, no interaccionan con otras unidades del mismo plano. Sin embargo, unidades pertenecientes a planos contiguos se ven vinculadas a través de enlaces de hidrógeno que involucran a las moléculas de agua coordinadas al metal. Así, vemos en la Figura V.35 cómo una de las moléculas de agua coordinadas al átomo metálico, rotulada como O3, establece un enlace de hidrógeno con un nitrato y otro con una molécula de complejo de un plano distinto al suyo, mientras que la otra molécula de agua coordinada al Ga(III), rotulada como O4, establece solo dos enlaces de hidrógeno (con un anión y una molécula de agua de cristalización pertenecientes al plano más cercano, distinto a aquel al que pertenece, como se muestra en la Figura V.36).

Figura V.34 - Arreglo planar, paralelo al plano (112), de unidades $[Ga(HDAPSC)(H_2O)_2]_2(H_2O)_2(NO_3)_4$ en el complejo (XIV).

Figura V.35 - Enlaces de hidrógeno que involucran al átomo O3 en el complejo (XIV).

Figura V.36 - Enlaces de hidrógeno que involucran al átomo O4 en el complejo (XIV).

Los trece enlaces de hidrógeno presentes en la estructura de este compuesto generan una red tridimensional representada en la Figura V.37.

Figura V.37 - Estructura supramolecular del compuesto (XIV).

V.2.2.3 – Estructura cristalina de complejos de Ga(III) con la tiosemicarbazona de la 2-acetilpiridina

En este apartado discutiremos las características más relevantes en la estructura de dos complejos de Ga(III) con la tiosemicarbazona de la 2-acetilpiridina (HAPTSC). Aunque la estructura cristalina de estos dos complejos, [Ga(APTSC)Cl₂]^[16] (XV) y [Ga(APTSC)₂]NO₃^[17] (XVI) fue publicada anteriormente, su estructura no fue discutida en profundidad, ni se presentaron estudios de dichos compuestos en disolución. En las Figuras V.38 y V.39 se muestra el contenido de la unidad asimétrica de dichos compuestos.

Figura V.38 - Unidad asimétrica del compuesto [Ga(APTSC)Cl₂] (XV).

Figura V.39 - Unidad asimétrica del compuesto [Ga(APTSC)₂]NO₃ (XVI).

La unidad asimétrica del compuesto (XV) contiene sólo una molécula del complejo neutro [Ga(APTSC)Cl₂]. En este complejo, el átomo de Ga(III) se encuentra pentacoordinado, con un entorno de tipo N₂SCl₂, con geometría de bipirámide trigonal distorsionada. El metal se une a dos átomos de N del ligando monodesprotonado (el N piridínico y el N imínico del resto tiosemicarbazona), al átomo de S del resto carbotioamida, y a dos aniones cloruro, que completan la carga.

Como puede apreciarse en la Figura V.39, la unidad asimétrica del compuesto (XVI) contiene una unidad del complejo catiónico $[Ga(APTSC)_2]^+$ y un anión NO_3^- . En este complejo catiónico el

Ga(III) se encuentra coordinado por dos tiosemicarbazonatos monodesprotonados, que coordinan al metal por medio del N piridínico, el N imínico y el átomo de S. Así, en este complejo el metal se halla en un entorno octaédrico distorsionado, de tipo N_4S_2 .

En la Tabla V.24 se recogen los datos cristalográficos y de refinado de estas dos estructuras.

	(XV)	(XVI)		(XV)	(XVI)
Fórmula	$C_8 H_9 Cl_2 Ga N_4 S$	${\sf C}_{16}{\sf H}_{18}{\sf Ga}{\sf N}_9{\sf O}_3{\sf S}_2$	Z	8	4
Masa Molecular	333.88	518.23	D _{calc} . (Mg/m ³)	1.848	1.702
т (к)	293(2)	100.0(1)	μ(mm ⁻¹)	2.888	1.608
λ (Å)	0.71069	0.71069	F(000)	1328	1056
Sistema Cristalino	Monoclínico	Monoclínico	Dimensiones (mm)	0.58 x 0.46 x 0.17	0.15 x 0.11 x 0.06
Grupo Espacial	C2/c	P21/c	Intervalo θ (°)	2.44 a 28.00	1.75 a 30.54
a (Å)	16.274(5)	11.710(5)	Intervalos en h, k, l	-21,11; -13,13; -20,21	-16,16; 0,13; 0,25
b (Å)	10.300(5)	9.697(5)	No. reflex. medidas	7313	63505
<i>c</i> (Å)	16.345(5)	17.910(5)	No. reflex. únicas	2799	6190
α(°)	90.000	90.000	R _{int}	0.0281	0.0578
β(°)	118.854(5)	95.903(5)	R	0.0256	0.0352
γ (°)	90.000	90.000	R _w	0.0637	0.0757
V (ų)	2399.6(16)	2022.9(15)	G.O.F.	0.954	1.056

Tabla V.24 - Datos cristalográficos y de refinado de los complejos (XV) y (XVI).

En las Tablas V.25 y V.26 se recogen las longitudes y ángulos de enlace relevantes para los compuestos (XV) y (XVI).

Como puede apreciarse en la Tabla V.25, la distancia de enlace Ga-S en estos dos compuestos está en el rango de 2.346-2.371 Å. Estos valores son ligeramente mayores que la distancia media Ga-S encontrada en la base de datos CSD^[8], que es de 2.312(3) Å. En la Figura V.40 se muestra el histograma para la distribución de distancias Ga-S en dicha base de datos.

Por otra parte, existen en la literatura tres estudios estructurales de complejos de Ga(III) con ligandos tiosemicarbazona: dicloro-[(2-acetilpiridina)-4,4-(3-metil pentametilen) tiosemicarbazonato- N^1,N^2,S]galio(III)^[18] = [GaL¹]Cl₂, bis(2-acetilpiridina N,N-dimetiltiosemicarbazonato)-galio(III) tetracloro galato^[19] = [GaL²₂][GaCl₄], y bis(acetilpirazina N,N-dimetiltiosemicarbazonato-N,N',S)-galio(III) hexa fluorofosfato^[20] = [GaL³₂](PF₆). En estos tres compuestos las longitudes de enlace Ga-S son de 2.344 Å para [GaL¹]Cl₂, 2.355 y 2.373 Å para [GaL²₂][GaCl₄], y de 2.353 y 2.332 Å para [GaL³₂](PF₆), en buen acuerdo con los valores obtenidos para este parámetro en los compuestos presentados en este apartado.

		(X)	VI)	Esquema de numeración:
	(XV)	L1.	L ₂	
Ga-S	2.3457(8)	2.3713(12)	2.3550(8)	C2 C3 N4
Ga-N3	2.0448(17)	2.0546(17)	2.0525(17)	N2 N3
Ga-N4	2.1000(17)	2.1169(18)	2.1048(16)	N1 S Ga
Ga-Cl1	2.2035(10)			
Ga-Cl2	2.2115(9)			
C1-S	1.729(2)	1.742(2)	1.741(2)	
C1-N1	1.342(3)	1.340(2)	1.339(2)	
C1-N2	1.321(3)	1.330(2)	1.338(2)	
N2-N3	1.373(2)	1.367(2)	1.369(2)	
C2-N3	1.298(2)	1.296(2)	1.297(2)	
C2-C3	1.491(3)	1.475(2)	1.473(2)	
C3-N4	1.344(3)	1.354(2)	1.354(2)	

Tabla V.25 - Longitudes de enlace (Å) relevantes en la estructura de los compuestos (XV) y (XVI).

Tabla V.26 - Ángulos de enlace (°) relevantes en la estructura de los compuestos (XV)^a y (XVI)^b.

	(XV)		(XVI)		(XVI)
S-Ga-N3	81.94(5)	S1-Ga-S2	98.88(3)	S1-C11-N11	117.15(14)
S-Ga-N4	158.53(5)	S1-Ga-N13	82.29(4)	S1-C11-N12	126.77(14)
S-Ga-Cl1	99.95(3)	S1-Ga-N14	158.46(4)	N11-C11-N12	116.07(17)
S-Ga-Cl2	98.29(3)	S1-Ga-N23	104.14(4)	C11-N12-N13	113.48(15)
N3-Ga-N4	76.70(7)	S1-Ga-N24	91.15(5)	N12-N13-C12	119.00(15)
N3-Ga-Cl1	123.12(5)	S2-Ga-N13	98.25(4)	N13-C12-C13	114.94(16)
N3-Ga-Cl2	124.25(5)	S2-Ga-N14	90.87(4)	C12-C13-N14	115.47(16)
N4-Ga-Cl1	93.65(6)	S2-Ga-N23	82.53(5)	S2-C21-N21	116.64(14)
N4-Ga-Cl2	91.90(6)	S2-Ga-N24	158.91(4)	S2-C21-N22	126.92(14)
Cl1-Ga-Cl2	111.80(4)	N13-Ga-N14	77.31(6)	N21-C21-N22	116.43(17)
S-C1-N1	116.92(16)	N13-Ga-N23	173.37(6)	C21-N22-N23	112.75(15)
S-C1-N2	126.54(16)	N13-Ga-N24	101.46(6)	N22-N23-C22	118.44(15)
N1-C1-N2	116.53(19)	N14-Ga-N23	96.11(6)	N23-C22-C23	114.85(16)
C1-N2-N3	112.81(17)	N14-Ga-N24	86.24(6)	C22-C23-N24	114.89(15)
N2-N3-C2	118.57(17)	N23-Ga-N24	77.03(6)		
N3-C2-C3	114.75(18)				

C2-C3-N4 114.36(17)

Figura V.40 - Histograma de la distribución de valores para la longitud de enlace Ga-S encontrada en los complejos de Ga(III) recogidos en la base CSD^[8].

Las distancias Ga-N en estos dos complejos están en el rango 2.045-2.117 Å, con un valor medio ligeramente menor, pero en buen acuerdo con el valor medio hallado en la base CSD^[8] para el enlace Ga-N, de 2.149 Å. Por su parte, las distancias Ga-Cl en el complejo [Ga(APTSC)Cl₂] son de aproximadamente 2.20 Å, virtualmente igual al valor medio hallado entre todos los compuestos recogidos en la base de datos CSD^[8], 2.206(3) Å (en la Figura V.41 se muestra el histograma para la distribución de distancias Ga-Cl en dicha base de datos). En el complejo [GaL²₂][GaCl₄]^[19], las distancias Ga-Cl son de 2.17 Å aproximadamente, pero se trata de un anión tetraclorogalato(III).

Figura V.41 - Histograma de la distribución de valores para la longitud de enlace Ga-Cl encontrada en los complejos de Ga(III) recogidos en la base CSD^[8].

A continuación discutiremos los cambios experimentados por los ligandos tras su desprotonación y coordinación al metal. En la Tabla V.27 se comparan las longitudes de enlace relevantes de la estructura cristalina del ligando HAPTSC libre con las correspondientes a este ligando en los compuestos (XV) y (XVI).

Tabla V.27 - Longitudes de enlace (Å) relevantes en los tiosemicarbazonatos de los compuestos (XV) y (XVI), y en el ligando HAPTSC (HL) libre.

		XIII	х	IV	Esquema de numeración:
	п	Ľ	L1 ⁻	L2 ⁻	
C1-S	1.689	1.729(2)	1.742(2)	1.741(2)	
C1-N1	1.321	1.342(3)	1.340(2)	1.339(2)	
C1-N2	1.360	1.321(3)	1.330(2)	1.338(2)	 N ₃
N2-N3	1.370	1.373(2)	1.367(2)	1.369(2)	`N₂H │
C2-N3	1.286	1.298(2)	1.296(2)	1.297(2)	
C2-C3	1.481	1.491(3)	1.475(2)	1.473(2)	···2···1 0
C3-N4	1.341	1.344(3)	1.354(2)	1.354(2)	

Al comparar la distancia C1-S en el ligando libre y en los complejos, vemos que la misma aumenta considerablemente. También aumentan las distancias C1-N1 y C2-N3, y disminuye la distancia C1-N2, lo cual es razonable, dado que se genera una carga sobre el N2 por perdida de un protón, que se deslocaliza sobre todo el ligando. El resto de los enlaces no presentan variaciones significativas.

Respecto de las conformaciones E,Z de estos tiosemicarbazonatos, analizaremos lo que sucede respecto de los enlaces C1-N2, C2-N3 y C2-C3. En la Tabla V.28 se recoge dicho análisis.

Tabla V.28 - Configuraciones respecto de los enlaces C1-N2, C2-N3 y C2-C3 en el ligando HAPTSC (HL) y en sus complejos (XV) y (XVI).

	C1-N2	C2-N3	C2-C3
HL	Ε	Ε	Ε
L en (XV)	Ζ	Ε	Ζ
L ₁ en (XVI)	Ζ	Ε	Ζ
L2 ⁻ en (XVI)	Ζ	Ε	Ζ

La coordinación simultánea de los átomos S, N3 y N4 al mismo catión metálico implica necesariamente la inversión de las configuraciones respecto de los enlaces C1-N2 y C2-C3.

El entorno de coordinación del Ga(III) en el complejo neutro [Ga(APTSC)Cl₂] (Figura V.42) es del tipo N_2SCl_2 y tiene geometría de bipirámide trigonal distorsionada.

Figura V.42 - Entorno de coordinación del Ga(III) en el compuesto (XV).

Mientras que los dos átomos de Cl, el N3 y el átomo de Ga se encuentran en el plano ecuatorial (rms = 0.0486) de la bipirámide, el N4 y el S ocupan las posiciones apicales de la misma, formándose un ángulo S-Ga-N4 de 158.53(5)° (quedando explicada la desviación de los 180° teóricos por el pequeño *bite* del ligando).

El ligando forma dos anillos quelato contiguos de 5 miembros al coordinar al átomo central. Estos anillos se ubican en un mismo plano, que coincide con el plano molecular, como se muestra en la Figura V.43. Este plano forma un ángulo diedro de aproximadamente 87° con el plano ecuatorial de la bipirámide del entorno de coordinación.

π : S C1 N1 N2 N3 C2 C8 C3 C4 C5 C6 C7 N4 Ga (rms = 0.776)π': Cl1 Cl2 N3 Ga (rms = 0.0486) $π^π' = 87.54°(0.04)$

Figura V.43 - Planaridad del ligando (rms) y ángulo diedro (°) en el entorno de coordinación del Ga(III) en el compuesto (XV).

El entorno de coordinación del Ga(III) en el compuesto (XVI) (representado gráficamente en la Figura V.44) es octaédrico distorsionado y del tipo N₄S₂. En dicha figura se muestran también los ángulos del plano ecuatorial.

Figura V.44 - Entorno de coordinación del Ga(III) en el compuesto (XVI).

Cada tiosemicarbazonato forma también dos anillos quelato por coordinación al metal, contiguos y de 5 miembros. Estos anillos se ubican en un plano que coincide con el plano molecular del ligando. Como puede verse en la Figura V.45, los ligandos forman un ángulo diedro de aproximadamente 89°, coherente con la geometría del entorno.

 $\begin{aligned} \pi_1:&S1\ C11\ N12\ N13\ C12\ C13\ N14\ Ga(rms=0.0503)\\ \pi_2:&S2\ C21\ N22\ N23\ C22\ C23\ N24\ Ga(rms=0.0355)\\ \pi_1^{}\pi_2 &= 88.98^{\circ}(0.04) \end{aligned}$

Figura V.45 - Planos de los anillos quelato en el entorno del Ga(III) en el compuesto (XVI).

En la Tabla V.29 se detallan los enlaces de hidrógeno del compuesto (XV). Como puede apreciarse, esta estructura presenta sólo dos tipos de enlaces de hidrógeno convencionales.

Tabla V.29 - Enlaces de hidrógeno (Å y °) del compuesto (XV).

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)		
N1-H1A…N2 ⁱ	0.86	2.22	3.076(3)	172.4		
N1-H1B…S ⁱⁱ	0.86	2.74	3.542(2)	156.4		
C5 ^{vii} -H5 ^{vii} …Cl2	0.93	2.938	3.661	135.7		
C6 ^{ix} -H6 ^{ix} …Cl1	0.93	3.037	3.733	132.9		
ⁱ -x, y, -z+3/2; ⁱⁱ -x, -y, -z+1, ^{vii} 1-x, -y, 2-z ; ^{ix} 1-x, y, 3/2-z.						

El enlace N1-H…N2ⁱ vincula unidades complejas formando dímeros, que mediante la interacción N1-H…Sⁱⁱ se unen formando cadenas infinitas paralelas al eje c, como la representada en la Figura V.46.

Figura V.46 - Crecimiento en cadenas de la estructura del compuesto (XV).

Estas cadenas se unen entre sí gracias a dos tipos de interacciones débiles (mostradas en la Figura V.47):

- enlaces de hidrógeno no convencionales C-H···Cl entre anillos aromáticos y aniones cloruro de cadenas vecinas, detallados en la Tabla V.29.

- una interacción de tipo π - π stacking entre anillos piridínicos (Tabla V.30), que también refuerza la unión entre cadenas vecinas.

Tabla V.30 - Interacciones de tipo π - π stacking en la estructura del compuesto (XV).

Figura V.47 - Enlaces de hidrógeno no convencionales y efecto π - π stacking en el compuesto (XV).

Estas interacciones débiles entre cadenas dan lugar al crecimiento de la estructura en planos infinitos paralelos al plano ac, como los representados en la Figura V.48.

Figura V.48 - Estructura supramolecular del compuesto (XVI).

Terminando con esta serie de complejos de Ga(III) con ligandos tiosemicarbazona, en la Tabla V.31 se detallan los enlaces de hidrógeno del compuesto (XVI), y se representan en la Figura V.49. Como puede apreciarse, en los 4 enlaces de hidrógeno los grupos -NH₂ funcionan como dadores mientras que átomos de oxígeno pertenecientes al contraión funcionan como aceptores. Por otra parte, cada anión nitrato presente en la estructura hace de nexo para 4 unidades del complejo catiónico [Ga(APTSC)₂]⁺, como se muestra en la Figura V.50.

N11-H11A01A ⁱ		u(IIIIA)	d(D…A)	<(DHA)
NII IIIA VIA	0.86	2.28	2.981(2)	139.4
N11-H11B…O1A ⁱⁱ	0.86	2.05	2.907(2)	172.5
N21-H21A…O1C ⁱⁱⁱ	0.86	0.86 2.14		142.5
N21-H21B…O1B ^{iv}	0.86	2.07	2.902(2)	162.6
x+1, -y, -z+1; " x, y-	1, z; "' -x+2	, y-1/2, -z+	3/2; " x, -y+	·1/2, z+1/2
			N11 O==	01a [#] 01a

Tabla V.31 - Enlaces de hidrógeno (Å y °) del compuesto (XVI).

Figura V.49 - Enlaces de hidrógeno presentes en la estructura del compuesto (XVI).

Figura V.50 - Enlaces de hidrógeno que implican al anión NO₃⁻ en el compuesto (XVI). ^v x, 1+y, z; ^{vi} x, 1/2-y, z-1/2; ^{vii} 2-x, y+1/2, 3/2-z.

Esto genera una red tridimensional infinita como la representada en la Figura V.51 a cuya estabilización contribuyen interacciones débiles de tipo π - π stacking y enlaces de hidrógeno débiles de tipo C-H··· π .

Figura V.51 - Estructura tridimensional del compuesto (XVI).

V.3 – ESPECTROSCOPIA VIBRACIONAL IR

En la Tabla V.32 se recoge la asignación de las bandas de los espectro IR pertenecientes a ligandos HBIPSC, H₂DAPSC, HAPTSC y H₂DAPTSC así como las asignaciones de los espectros pertenecientes a los compuestos [Ga(APTSC)₂]NO₃, [Ga(APTSC)Cl₂], [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O y (H₂BIPSC)₂[GaCl₄]Cl. En la Figura V.52 y V.53 se muestran los espectros del ligando H₂DAPSC·MeOH y del complejo [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O, respectivamente.

Figura V.52 - Espectro infrarrojo (500 a 4000 cm⁻¹) del ligando H₂DAPSC·MeOH.

Como puede apreciarse, los espectros IR de todos estos ligandos y complejos (al igual que lo que sucedía con los compuestos discutidos en los apartados anteriores) presentan varias bandas en la región alta del espectro, entre 2900 y 3500 cm⁻¹, correspondientes a las modos de stretching

	v _{as} (NH ₂)	v _s (NH ₂)	(H-N)^	v(C=O)	v(C=N)	6(NH ₂)	v(ring)	v(NO ₃)*	(N-N)^	v(C=S)	v(C-H) _{f.d.p.}
HAPTSC ^[21]	3464	3375	3185, 3261		1609	1583	1434		1052	837, 850	783
[Ga(APTSC) ₂]NO ₃	≈3540	3410, 338	39, 3300, 3162		1602	1556	1434	1384 vs	1031	812	780
[Ga(APTSC)Cl ₂]	≈3520	≈3480, 34	11, 3294, 3158		1603	1558	1434		1024	815	786
H ₂ DAPTSC ^{[22}	3419	3269	3147, 3231		1597	1574	1443		1104	834, 815	729
HBIPSC	3437 vs	3288	3212	1720	1661br, vs	1588, 1576 vs			1062		680-800
(H2BIPSC)2[GaCl4]Cl	3501 sh, 3400 sh,	3352, 3305, 3225,	3164, 3097, 2927, 2855	1718 br, vs	1605 s	1586, 1574 m			1093m		680-800
H ₂ DAPSC ^[22,23]	3476	3359	3208, 3275	1702	1582,	1568	1434		1106		760
[Ga(HDAPSC)(H ₂ O) ₂](NO ₃) ₂ ·H ₂ O	≈ 3530	3163, 3228, 3	303, 3363, ≈ 3430	1663	1597	1534	1443	1384 vs	1099		775

Tabla V.32 - Asignaciones correspondientes a ligandos semi- y tiosemicarbazona derivados de la piridina y sus complejos de Ga(III).

* asignada al modo vibracional v3(E')(vd(NO))

simétrico y asimétrico del grupo -NH₂ terminal, y al modo de vibración v(N-H) del grupo –NH-N-. Aparecen también las señales correspondientes al agua, al menos en el caso del complejo [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O. Este último complejo, al igual que [Ga(APTSC)₂]NO₃, presenta una banda muy intensa en 1384 cm⁻¹, que viene a confirmar la presencia del anión nitrato no coordinado. También es de difícil asignación la zona que va de 1100 a 1600 cm⁻¹, donde aparecen (entre otras) las bandas correspondientes a las tensiones del anillo piridínico, junto con las bandas correspondientes al enlace imínico.

En cuanto a la posición de las bandas correspondientes al stretching del enlace imínico v(C=N) para los ligandos HAPTSC y H₂DAPTSC, puede decirse que para ambos ligandos es muy parecida: 1609 cm⁻¹ para HAPTSC y 1597 cm⁻¹ para H₂DAPTSC. La diferencia podría tal vez atribuirse a la presencia, en el caso del segundo ligando, de un enlace intramolecular N2-H···N4, que sustraería densidad electrónica del doble enlace C=N. Por otra parte, ambos ligandos presentan dos bandas asignadas al stretching del grupo C=S: 850 y 837 cm⁻¹ para HAPTSC; 834 y 815 cm⁻¹ para H₂DAPTSC. La presencia de dos bandas para este modo vibracional en ambos ligandos parece obedecer a motivos diferentes. Para el ligando HAPTSC, la unidad asimétrica del cristal muestra dos moléculas del ligando, en las cuales el átomo de azufre actúa como aceptor en enlaces de hidrógeno de manera diferente en ambos casos; también es distinta la situación de los restos tiosemicarbazona en el ligando H₂DAPTSC, tanto en configuraciones como en cuanto a los enlaces de hidrógeno en que participan. La banda correspondiente a v(N-N) aparece en posiciones muy parecidas en ambos ligandos; esto es coherente con la similitud en las longitudes de enlace N-N en ambos compuestos (apartado V.2.1).

Al comparar los complejos $[Ga(APTSC)_2]NO_3$ y $[Ga(APTSC)Cl_2]$ con el ligando HAPTSC, se observa que:

i- disminuye la energía del modo v(C=S) al pasar del ligando libre a los complejos, lo cual es coherente con una ligera evolución de la forma tiona a la forma tiol, de la que también da cuenta el aumento de la longitud del enlace C1-S1 (apartado V.2.2);

ii- el ligero aumento en la longitud de los enlaces C=N en los complejos (apartado V.2.2) se corresponde con un ligero desplazamiento a menores energías del modo v(C=N) respecto del ligando libre; lo mismo puede decirse respecto del modo v(N-N), que presenta una disminución mayor en su posición al pasar del ligando HAPTSC a los complejos correspondientes.

Al comparar el espectro del ligando HBIPSC con el del complejo $(H_2BIPSC)_2[GaCl_4]Cl$, vemos que sólo se presentan diferencias importantes para las bandas correspondientes a los enlaces C=N y N-N, ya que el ligando (monoprotonado) participa sólo como contraión del anión complejo $[GaCl_4]^2$ y del Cl⁻, sin coordinarse al metal. Para los modos v(C=N) y v(N-N) se registra una disminución de 56

cm⁻¹ y un aumento de 31 cm⁻¹ respectivamente, coherentes con la formación del enlace de hidrógeno intramolecular N2-H…N4, y la deslocalización de la carga que este conlleva.

Finalmente, comparemos los espectros correspondientes al ligando H₂DAPSC·MeOH y al complejo [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O. Como era de esperar, la señal correspondiente al grupo C=O (que al pasar del ligando libre al complejo evoluciona parcialmente hacia la forma enol) se mueve a menores números de onda, pasando de 1702 cm⁻¹ en el ligando libre a 1663 cm⁻¹ en el complejo. Por su parte, el enlace imínico, cuya longitud disminuye por coordinación al metal, muestra un desplazamiento a mayores longitudes de onda al pasar del ligando al complejo; esta disminución se debe a que en el ligando libre ambos átomos de N imínicos están implicados en sendos enlaces de hidrógeno intramoleculares, que al pasar al complejo se pierden; ver apartado V.2.2). Por otra parte, la cesión de carga hacia el metal da cuenta de la disminución de la energía del modo vibracional δ (NH₂) al comparar el ligando libre con el complejo. La banda más intensa del espectro del complejo corresponde al modo v3(E')(v_d(NO)) del anión nitrato (1384 cm⁻¹) presente en la estructura.

V.4 – ESPECTROSCOPIA DE RESONANCIA MAGNÉTICA NUCLEAR de ¹H y ¹³C

V.4.1 - Estudio en disolución de los compuestos H2DAPSC y [Ga(HDAPSC)(H2O)2](NO3)2·H2O

En la Figura V.54 se muestra el espectro de RMN de ¹H del ligando H₂DAPSC y en la Tabla V.33 se detalla la asignación realizada para dicho espectro, junto con la asignación del espectro de ¹H correspondiente al complejo [Ga(HDAPASC)(H₂O)₂](NO₃)₂·H₂O.

Figura V.54 - Espectro de RMN de 1H del ligando H₂DAPSC, en DMSO-d₆.

Tabla V.33- Asignación de los espectro de RMN de ¹H correspondientes al ligando H₂DAPSC y el complejo $[Ga(HDAPASC)(H_2O)_2](NO_3)_2 \cdot H_2O$, en DMSO-d₆.

	\sim \cup \sim				
	N ² -H, N ⁶ -H	С ⁴ -Н, С ⁶ -Н	C⁵-H	N ¹ -H, N ⁷ -H	C ¹⁰ H ₃ ,C ¹¹ H ₃
H₂DAPSC	9.43 (2) s	8.20 (2) d	7.70 (1) t	6.59 (4) sa	2.30 (6) s
$[Ga(HDAPSC)(H_2O)_2](NO_3)_2 \cdot H_2O$	9.44 (2) s	8.21 (2) d	7.71 (1) t	6.59 (4) sa	2.29 (6) s

Esquema de numeración:

Los datos correspondientes al ligando libre, tanto de RMN de ¹H como de ¹³C (Tabla V.34), concuerdan con los disponibles en la bibliografía^[24]. Las señales del espectro de RMN de ¹H correspondiente al complejo se encuentran en las mismas posiciones que las del ligando libre, indicando una total disociación del complejo en disolución de DMSO-d₆, y la protonación del ligando.

El comportamiento del ligando H₂DAPSC en disolución muestra diferencias claras respecto del mismo ligando en estado sólido. Así, por ejemplo, los grupos N²-H y N⁶-H dan lugar, en disolución de DMSO-d₆, a un único singlete con integración 2 a 9,43 ppm. Sin embargo, en estado sólido, las distintas configuraciones de las cadenas semicarbazona están estabilizadas por un enlace de hidrógeno intramolecular N²-H²···N⁴ (Figura V.55). Esta disposición generaría señales distintas para los grupos N²-H y N⁶-H si las configuraciones E, E, Z y Z respecto de los enlaces C²-N³, C²-C³, C⁷-C⁸ y C⁸-N⁵ del sólido se mantuvieran en disolución.

Figura V.55 - Estructura molecular del ligando H₂DAPSC en estado sólido.

En el mismo sentido cabe señalar que para este ligando los enlaces de hidrógeno intramoleculares $N^1-H^1_b\cdots N^3$ y $N^7-H^7_b\cdots N^5$ presentes en el sólido también desaparecen en disolución, al menos parcialmente, ya que de otra manera deberían aparecer al menos dos señales para los hidrógenos de los grupos terminales $-N^1H_2$ y $-N^7H_2$.

De acuerdo con estudios realizados sobre la piridina^[25,26], cabría esperar que los protones ubicados sobre átomos de carbono en posición β respecto al N del anillo piridínico estuvieran menos desapantallados que el protón del Cy (según los cálculos realizados en dichos estudios, el átomo de nitrógeno atrae sobre sí electrones π de los carbonos α y γ , pudiendo incrementar ligeramente la densidad electrónica π sobre el carbono β). Sin embargo, para el ligando H₂DAPSC sucede lo contrario. Esto podría explicarse por la cesión de carga al resto semicarbazona por resonancia, como se muestra en la Figura V.56. Así, al contrario de lo que sucede para la piridina no sustituida, vemos como los protones ubicados sobre los carbonos en posición β están más desapantallados que los de los carbonos en posición γ .

En la Tabla V.34 se recoge la asignación realizada sobre los espectros de RMN de ¹³C del ligando H₂DAPSC y el complejo [Ga(HDAPASC)(H₂O)₂](NO₃)₂·H₂O; como sucedía con los espectros de ¹H, los desplazamientos químicos de ambos compuestos son prácticamente idénticos, como corresponde a la total disociación y protonación propuesta para el complejo.

Figura V.56 - Algunas estructuras contribuyentes al hibrido de resonancia del ligando H₂DAPSC.

Como puede observarse, las señales más desapantalladas de ambos espectros corresponden a los átomos de carbono del grupo carbamida y a los carbonos C^3 y C^7 , es decir, los carbonos en posición α al nitrógeno piridínico.

Tabla V.34 - Asignación de los espectros de RMN de ¹³C correspondientes al ligando H₂DAPSC y al complejo $[Ga(HDAPASC)(H_2O)_2](NO_3)_2 \cdot H_2O$, en DMSO-d₆.

		C ¹ , C ⁹	C ³ , C ⁷	C ² , C ⁸	C ⁴ , C ⁶	C⁵	C ¹⁰ , C ¹¹
	H₂DAPSC	156.9	153.9	144.8	119.4	136.4	11.4
	[Ga(HDAPASC)(H ₂ O) ₂](NO ₃) ₂ ·H ₂ O	157.0	154.0	144.8	119.5	136.5	11.4
Esquema de numeraciór	ו:						
		H	н с с ⁵ н				

De los otros carbonos del anillo (más apantallados que los carbonos imínicos C^2 y C^8), y en buen acuerdo con la bibliografía^[24], el más desprotegido es el C^5 , es decir el carbono en posición y a

 N^4 . Esto indica que no hay una correlación directa entre los desplazamientos químicos correspondientes a los protones aromáticos en el espectro de RMN de ¹H y el de los carbonos correspondientes en el espectro de RMN de ¹³C. Esta falta de linealidad podría estar relacionada, entre otros motivos, con la deslocalización de los electrones π del anillo hacia las cadenas semicarbazona, que podría afectar más a las señales correspondientes a los protones que a las de los átomos de carbono.

V.4.2 - Estudio en disolución de los compuestos HAPTSC, [Ga(APTSC)Cl₂] y [Ga(APTSC)₂]NO₃

En la Tabla V.35 se recogen las asignaciones de los espectros correspondientes al ligando HAPTSC^[25,26] y a sus complejos [Ga(APTSC)Cl₂] y [Ga(APTSC)₂]NO₃. La señal más desapantallada en el espectro del ligando libre es, una vez más, la correspondiente al grupo N²-H. Y como ya se ha discutido, en el ligando libre el carácter parcial de doble enlace de C¹...N¹ junto con la formación de enlaces de hidrógeno generan dos singletes anchos (que indican el distinto entorno electrónico de ambos protones) asignados al grupo N¹-H₂, correspondiendo el más desapantallado al protón involucrado en el enlace de hidrógeno intramolecular N¹-H…N³. Las señales del grupo terminal -N¹H₂, a 8.40 y 8.14 ppm, aparecen a campos más bajos que las señales análogas en el espectro de H₂DAPSC.

De los varios confórmeros que este ligando puede presentar respecto del enlace $C^2=N^{3}$ ^[24] (ver Figura V.57), en estado sólido los enlaces de hidrógeno intermoleculares estabilizaban el confórmero E (apartado V.2.1). En cambio, en disolución parece haber un equilibrio entre los confórmeros E y Z, con una relación 25:1, según las integraciones respectivas de la señal del protón del grupo N²-H.

	N ² -H	C ⁷ -H	C ⁴ -H	N ¹ -H ₂	C⁵-H	C⁵-H	C ⁸ -H
	10.32 (1) s	8.56 (1) d	8.42 (1) d	8.40 (1) sa [H _a]	7.77 (1) td	7.36 (1) dd	2.37 (3) s
HAPTSC		³ J=4.6	³ J=8.0	8.14 (1) sa [H _b]	³ J=7.87, ⁴ J=1.50		
	-	8.20 (1) m	7.91 (1) d	7.99 (2) sa	8.20 (1) m	7.58 (1) td	2.79 (3) s
[Ga(APTSC) ₂]NO ₃			³ J=5.3			³ J=6.0, ⁴ J=2.1	
	-	8.92 (1) d	8.10 (1) d	7.94 (2) sa	8.32 (1) t	7.83 (1) t	2.54 (3) s
[Ga(APTSC)Cl ₂]		³ J=5.3					

Tabla V.35 - Espectros de RMN de ¹H para HAPTSC, [Ga(APTSC)₂]NO₃ y [Ga(APTSC)Cl₂], en DMSO-d₆.

La señal correspondiente al confórmero E aparece a 10.32 ppm, mientras que la correspondiente al confórmero Z – y que tiene una integración del 4 % respecto a la anterior – aparece a 14.13 ppm, en buen acuerdo con lo encontrado en la bibliografía^[24]. La prevalencia del confórmero E podría ser un efecto de la concentración, ya que el confórmero E tiene más dadores de enlace de hidrógeno libres que el confórmero Z. Así, la estabilización por enlaces intermoleculares para el confórmero E podría superar la estabilización que le dan los enlaces de hidrógeno intramoleculares al confórmero Z.

Figura V.57 - Algunos confórmeros del ligando HAPTSC, considerando el enlace imínico como referencia.

De acuerdo con los estudios realizados sobre la piridina antes mencionados^[25,26], los protones ubicados sobre el anillo aromático deberían experimentar desapantallamientos tales que dieran, para sus respectivos desplazamientos químicos, el orden siguiente: $\delta_{H\alpha} > \delta_{H\gamma} > \delta_{H\beta}$. Esta tendencia se cumple, tanto para el ligando libre como para los complejos, salvo por el alto desapantallamiento del protón ubicado sobre el átomo de carbono C⁴ del anillo: como podemos ver en la tabla anterior, este núcleo se halla más desapantallado que el otro protón β al N piridínico, llegando a estar, en el caso del ligando libre, más desapantallado que el protón γ al N⁴. Este desapantallamiento adicional del protón C⁴-H podría deberse a la vecindad del doble enlace C²=N³, ya que este protón, si es correcta la configuración *syn* respecto del enlace C²-C³ que proponemos para el ligando, quedaría dentro de la zona de desprotección debida a la anisotropía magnética de dicho grupo, de la manera en que se ilustra en la Figura V.58a (vemos en la Figura V.58b que si la configuración entorno a C²-C³ fuera la contraria a la propuesta, el protón C⁴-H quedaría en la zona de protección debida al enlace imínico, apantallándose).

Figura V.58 - Isómeros (a) *syn* y (b) *anti* respecto del enlace C^2-C^3 del ligando HAPTSC.

Es notable el comportamiento de la señal asignada al protón ubicado sobre C⁷ al pasar del espectro de RMN de ¹H del ligando libre a los de los complejos; en la Figura V.59 se muestra la zona entre 7 y 10,5 ppm de dichos espectros. En el espectro del ligando libre, dicha señal aparece a 8,56 ppm.

Figura V.59 - Espectros de RMN de ¹H de (a) [Ga(APTSC)₂]NO₃, (b) HAPTSC y (c) [Ga(APTSC)Cl₂] entre 7 y 10.5 ppm, en DMSO-d₆.

En el caso del complejo [Ga(APTSC)Cl₂], este protón se desapantalla ya que, al coordinarse al metal, el ligando cede carga y se genera una densidad de carga positiva sobre el N piridínico que justifica el desapantallamiento del H⁷. Esto mismo desapantallamiento sería de esperar para el complejo catiónico [Ga(APTSC)2]⁺, aunque en menor medida, ya que es probable que el Ga(III) tenga mayor densidad de carga positiva en el caso del complejo neutro. Sin embargo, en el espectro del complejo [Ga(APTSC)₂]⁺, observamos que la señal correspondiente al protón H⁷ se desplaza a campo alto. Como puede apreciarse en la Figura V.60, el protón H⁷ de cada semicarbazonato se halla, en virtud de la geometría de este complejo, en la zona de protección magnética debida a la anisotropía del enlace C²=N³ del otro semicarbazonato. La distancia entre el protón H28 (numerado según se detalla en el apartado V.2.2.3; H⁷ en este apartado) y el centroide (N13,C12) es de 3.09 Å, mientras que la distancia entre el H18 y el centroide (N23,C22) es de 2.83 Å.

Figura V.60 - (a) Efecto de la anisotropía magnética del enlace $C^2 = N^3$ sobre el H28 (en la presente sección denominado H7) en el complejo $[Ga(APTSC)_2]NO_3$ y (b) distancia entre el H28 y el centroide del enlace imínico del otro semicarbazonato del complejo $[Ga(APTSC)_2]NO_3$, en estado sólido.

Por su parte, el protón H^4 se apantalla ligeramente al formarse los complejos. Esto podría deberse a que el efecto de la anisotropía magnética del grupo $C^2=N^3$ disminuye al ceder carga el ligando al metal, debilitándose el desapantallamiento que este protón sufría en el ligando libre, y superando este efecto al desapantallamiento que cabría esperar debido a la cesión de carga del ligando al metal.

En la Figura V.59 observamos también como las otras señales aromáticas (correspondientes a los protones H⁵ y H⁶) se mueven a campos bajos, como consecuencia de la transferencia de carga del ligando al átomo central. Finalmente, la ausencia de la señal correspondiente al protón H² da cuenta de la resistencia de los complejos a disociarse y protonarse en disolución de DMSO.

En la Tabla V.36 se recogen las asignaciones realizadas sobre los espectros de RMN de ¹³C del ligando libre HAPTSC y sus complejos [Ga(APTSC)₂]NO₃ y [Ga(APTSC)Cl₂]; en la Figura V.61 se muestra la zona de los espectros de RMN de ¹³C correspondientes al ligando libre y a [Ga(APTSC)₂]NO₃ comprendida entre 110 y 180 ppm. Tanto para el ligando como para los complejos, la señal más desapantallada del espectro corresponde al carbono C¹ (que se apantalla ligeramente al coordinarse el ligando al metal a través del átomo de azufre). El carbono del grupo imínico también se apantalla ligeramente a resultas de la cesión de carga al metal. En cuanto a los carbonos del anillo aromático (cuyas señales se han coloreado en la Figura V.61 de rojo o azul, según se muevan a campos bajos o altos respecto del ligando libre, respectivamente) se observa que los carbonos α al N⁴ se apantallan, y los carbonos β y y se desapantallan.

	C1	C ³	C²	C ⁷	C⁵	C ₆	C ⁴	C ⁸
HAPTSC	179.0	154.6	148.4	148.1	136.3	123.9	120.8	12.1
[Ga(APTSC)₂]NO₃	176.3	146.2	145.2	144.2	142.2	127.0	123.9	14.3
[Ga(APTSC)Cl]	176.1	145.5	145.7	142.7	143.1	126.2	123.3	13.1

Tabla V.36 - Espectros de RMN de ¹³C para HAPTSC, [Ga(APTSC)₂]NO₃ y [Ga(APTSC)Cl₂], en DMSO-d₆.

Esquema de numeración:

El apantallamiento del C¹ parece tener relación con la desprotonación del grupo N²-H y la deslocalización de la carga negativa generada. Podría pensarse que el ligando evoluciona hacia la forma tio-enolato, incrementándose el orden de enlace para C-N, y aumentando la densidad electrónica sobre el C¹, a pesar de que el ligando como un todo ceda carga al metal. La deslocalización de la carga negativa generada sobre N² también explicaría el apantallamiento de C².

En cuanto a la variación en la posición de las señales correspondientes a los carbonos del anillo, la situación es algo más compleja. Mientras que el desapantallamiento de los carbonos β y γ es de esperar, debido a la transferencia de carga del ligando al metal, el apantallamiento de los carbonos α al N⁴ podría deberse, en alguna medida, al efecto de la anisotropía magnética del enlace C=N del otro semicarbazonato, como se explicó para la señal del protón C⁴-H; al menos el C⁷ se encuentra en la zona de apantallamiento generada por la anisotropía magnética de dicho enlace.

Figura V.61 - Espectros de RMN de ¹³C de los compuestos (a) HAPTSC y (b) [Ga(APTSC₂)]NO₃ en DMSO-d₆.

V.4.3 - Estudio en disolución de los compuestos HBIPSC y (H₂BIPSC)₂[GaCl₄]Cl.

Las asignaciones de los espectros de RMN de ¹H de los compuestos HBIPSC (HL) y $(H_2L)_2[GaCl_4]Cl$ (recogidas en la Tabla V.37) se llevaron a cabo mediante estudios de correlación C-H, NOESY y COSY. En la Figura V.62 se muestra la zona de dichos espectros comprendida entre 6.5 y 12.0 ppm, con el código de colores que se muestra en los esquemas de numeración de la Tabla V.37.

H² H⁴ H¹² H⁹ H⁶ H¹⁰ H⁵ H⁷ H¹¹ H1 11.83 (1) s 8.77 (1) d 8.51 (1) d 8.16 (1) d 7.94 (1) td 7.89 (1) td 7.51 (1) td 7.45 (1) d HL 7.40 (1) td 6.80 (2) sa 7.68 (1) dd 11.38 (1) s 8.86 (1) dd 8.70 (1) d 8.04 (1) d 8.13 (1) td 8.23 (1) td 7.67 (1) d 7.73 (1) t 7.13 (2) sma H_2L^+ æ H₂N H₅N H₂L⁺ ΗL H⁷ \mathbf{H}^{4} H¹² H² H¹⁰ H^1 (b) 12.0 11.5 11.0 10.5 9.5 9.0 8.5 8.0 7.5 7.0 10.0 H^2 H⁹ H¹² H^4 н (a) 12.0 9.5 9.0 8.0 11.5 11.0 10.5 10.0 8.5 7.5 7.0

Tabla V.37 - Espectros de RMN de ¹H del ligando HBIPSC (HL) y de H_2L^+ en $(H_2L)_2[GaCl_4]Cl$, en DMSO-d₆.

La señal correspondiente al grupo N²-H es la más desapantallada en ambos espectros, desplazándose 0.45 ppm a campo alto al pasar de HL a H_2L^+ , y aparece fuera del rango usual para esta señal en las otras semicarbazonas de esta memoria (que va de 9.43 a 10.62 ppm). El mayor desapantallamiento de esta señal para HL puede atribuirse a la presencia, en disolución, del enlace de hidrógeno de este protón con el átomo de nitrógeno de uno de los anillos piridínicos, en buen acuerdo con lo encontrado en estado sólido (Apartado V.2.1).

Por su parte, la señal correspondiente al grupo $N^{1}H_{2}$ muestra diferencias claras al comparar ambos espectros: para HL, se trata de un singlete ancho, mientras que en el ligando protonado, el grupo amino terminal da lugar a 2 singletes muy anchos parcialmente solapados, cuya integración total es 2. Esta diferencia pudiera indicar la existencia en $H_{2}L^{+}$ de un enlace de hidrógeno intramolecular N^{1} -H····N³, además de un aumento en el orden de enlace C^{1} -N¹, por deslocalización de la densidad electrónica de los anillos piridínicos sobre el resto semicarbazona. La señal correspondiente al protón ubicado sobre N5 en el ligando protonado correspondiente al complejo ($H_{2}BIPSC$)[GaCl₄]Cl no aparece en el espectro correspondiente debido al intercambio con el agua presente en el disolvente (ver el ensanchamiento de la señal correspondiente al agua en el espectro de la Figura A4.1.23, del Apéndice 4).

El orden de las señales de los protones piridínicos está en buen acuerdo con la bibliografía^[27], tanto para el ligando HBIPSC como para H₂BIPSC⁺, a excepción de la señal correspondiente al H⁹ en el espectro de HBIPSC, que se halla a campos ligeramente más bajos de lo esperado. Se espera que las señales aromáticas sigan para cada anillo piridínico un orden de desplazamientos químicos tal que $\delta_{H\alpha} > \delta_{H\gamma} > \delta_{H\beta}$ ($\delta_{H12} > \delta_{H10} > \delta_{H9} = \delta_{H11}$, etc.), y que al protonarse el ligando este orden se mantenga, aunque desapantallándose todas las señales (principalmente las correspondientes a Hy y H β).

Al pasar de HL a H_2L^+ , y como se muestra en la Figura V.63, los desapantallamientos de los protones aromáticos son algo más pronunciados para el anillo que se protona que para el del N⁴.

Figura V.63- Espectros de RMN de ¹H de (a) HBIPSC y (b) (H₂BIPSC)[GaCl₄]Cl entre 7.3 y 9.0 ppm, en DMSO-d₆.

Además, la señal correspondiente al H⁹ aparece ahora en el orden esperado según la bibliografía^[27]. Así mismo, la señal correspondiente a H¹⁰ queda a campo más bajo que la de H⁶, y la de H¹¹ a campo más bajo que H⁷ y H⁵. También H¹² se desapantalla más que H⁴, disminuyendo la diferencia de desplazamientos químicos para las señales correspondientes.

El que la señal correspondiente a H⁹ en el ligando libre se encuentre a campos más bajos que los predichos por la literatura sugiere la posibilidad de que, en disolución, prevalezca la configuración *syn* respecto del enlace C²-C⁸ para dicho ligando. Como se muestra en la figura V.64, esta configuración dejaría al H⁹ en la zona de desapantallamiento generada por la anisotropía del enlace imínico C2=N3, explicando en parte su desapantallamiento.

Figura V.64 - Efecto de la anisotropía magnética del enlace imínico sobre el H⁹ en el ligando HBIPSC.

El que las señales correspondientes al anillo piridínico del N⁴ también se desapantallen al pasar de HL a H_2L^+ parece indicar que, a diferencia de lo que ocurre en estado sólido, en disolución la protonación podría darse en uno u otro anillo.

En la Tabla V.38 se recogen los espectros de RMN de ¹³C correspondientes a HL y a $(HL_2)[GaCl_4]Cl$, y en la Figura V.65 se muestran dichos espectros en la zona comprendida entre 123 y 157 ppm. En el espectro correspondiente a H_2L^+ , se han coloreado en rojo las señales que se desplazan a campo bajo respecto de HL, y en azul las correspondientes a los átomos de carbono que se apantallan.

Como ya se comentara, la asignación de estos espectros se basó en estudios NOESY, COSY y de correlación HMQC y HMBC. Los carbonos piridínicos siguen, para ambos anillos de HL, el orden de desapantallamiento esperado, $\delta_{C\alpha} > \delta_{C\gamma} > \delta_{C\beta}$ de acuerdo con la bibliografía^[27].

	C1	C ⁸	C ³	C ⁴	C ¹²	C ²	C ⁶	C ¹⁰	C ⁷	C⁵	C ¹¹	C ⁹
HL	155.91	155.47	151.39	148.08	149.01	140.31	137.12	136.82	126.30	124.00	123.30	122.99
H₂L⁺	155.72	150.94	148.79	148.12	145.57	136.02	139.41	141.81	126.37	125.26	124.80	124.22

Tabla V.38 - Espectros de RMN de ¹³C correspondientes a HBIPSC (HL) y (H₂BIPSC)[GaCl₄]Cl (H₂L⁺), en DMSO-d₆.

Figura V.65 - Espectros de RMN de ¹³C correspondientes a (a) HL y (b) (H₂L)[GaCl₄]Cl, entre 123 y 157 ppm, en DMSO-d₆.

Esquema de numeración

La señal más desapantallada en ambos espectros corresponde a C¹. Y, al igual que sucedía para los otros ligandos derivados de la piridina, los carbonos en posición α al nitrógeno piridínico y unidos a C² (en este caso C³ y C⁸) están más desapantallados que el carbono del grupo imínico. Por su parte, en cada anillo, el C α al N más desapantallado es el que se une a C², es decir C⁸ y C³ más desapantallados que C¹² y C⁴, respectivamente; esto podría deberse al efecto inductivo de N³ que se suma, en el caso de C³ y C⁸, al efecto inductivo de N⁴ y N⁵. Así, la señal correspondiente al átomo de carbono C^8 está unos 6 ppm más desapantallado que la del átomo C^{12} , y la de C^3 más de 3 ppm a campo bajo respecto de la señal correspondiente a C⁴.

Al pasar de HL a H_2L^+ , se sigue manteniendo el orden esperado ($\delta_{C\alpha} > \delta_{C\gamma} > \delta_{C\beta}$) en ambos anillos. Sin embargo, se observa que se apantallan los carbonos C⁸, C¹² y C³, mientras que el otro carbono α a un nitrógeno piridínico (C⁴) casi no varía su posición respecto de HL. Es posible que existan equilibrios tautoméricos como el de la Figura V.66, que podrían explicar, al menos en parte, este comportamiento. Así, el desapantallamiento de C², C³ y C⁸ al menos podría deberse al efecto inductivo del N3⁺ sobre dichos carbonos en el tautómero II.

Figura V.66 - Algunos tautómeros del ligando protonado H₂BIPSC⁺.

V.5- BIBLIOGRAFÍA

^[1] M. Carcelli, D. Delledonne, A. Fochi, G. Pelizzi, M. C. Rodriguez-Arguelles, U. Russo, *J. Organomet. Chem.*, **544**, 1997, 29.

^[2] J.S. Casas, E.E. Castellano, J. Ellena, M.S. García-Tasende, F. Namor, A. Sánchez, J. Sordo, M.J. Vidarte, *Eur. J. Inorg. Chem.*, 2007, 3742.

^[3] Frank H. Allen, Olga Kennard, David G. Watson, Lee Brammer, A. Guy Orpen and Robin Taylor, J.

Chem. Soc., Perkin Trans. 2, 1987, S1.

^[4] G. F. de Sousa, D. X. West, C. A. Brown, J. K. Swearingen, J. Valdés-Martínez, R. A. Toscano, S. Hernández-Ortega, M. Hörner, A. J. Bortoluzzi, *Polyhedron*, **19**, 2000, 841.

^[5] M. Vázquez , L. Fabbrizzi, A. Taglietti, R. M. Pedrido, A. M. González-Noya, M. R. Bermejo, *Angew*. *Chem. Int. Ed.*, 2004, 1962.

^[6] M. A. Ali, A. H. Mirza, W. B. Ejau, P.v. Bernhardt, *Polyhedron*, **25**, 2006, 3337.

^[7] http://www.ccdc.cam.ac.uk/products/csd/radii/table.php4

^[8] A. G. Orpen, Acta Cryst., B58, 398-406, 2002.

^[9] X.M. Wang, R.Q. Fan, L.S. Qiang, W.Q. Li, P. Wang, H.J. Zhang, Y.L. Yang, *Chem. Commun.*, **50**, 2014, 5023.

^[10] A.P. Rebolledo, O.E. Piro, E.E. Castellano, L.R.S. Teixeira, A.A. Batista, H. Beraldo, *J. Mol. Struct.*, **794**, 2006, 18.

^[11] N.C. Kasuga, K. Sekino, M. Ishikawa, A. Honda, M. Yokoyama, S. Nakano, N. Shimada, C. Koumo, K. Nomiya, *J. Inorg. Biochem.*, **96**, 2003, 298.

^[12] K. Nomiya, K. Sekino, M. Ishikawa, A. Honda, M. Yokoyama, N.C. Kasuga, H. Yokoyama, S. Nakano, K. Onodera, *J. Inorg. Biochem.*, **98**, 2004, 601.

^[13] G.J. Palenik, D.W. Wester, U. Rychlewska, R.C. Palenik, *Inorg. Chem.*, **15**, 1976, 1814.

^[14] A. Bino, R. Frim, M.van Genderen, *Inorg. Chim. Acta*, **127**, 1987, 95.

^[15] J.E. Huheey et al, *Química inorgánica, Principios, estructura y reactividad,* Cuarta edición, Oxford University Press, 1997.

^[16] Ying-Ju Fan, Jian-Ping Ma, Zhong-Xi Sun, *Acta Crystallogr., Sect. E: Struct. Rep. Online*, **63**, 2007, m2663.

^[17] Ying-Ju Fan, Jian-Ping Ma, Zhong-Xi Sun, *Acta Crystallogr., Sect. E: Struct. Rep. Online*, **63**, 2007, m1540.

^[18] F. Kratz, B. Nuber, J. Weiβ and B.K. Keppler, *Synth. React. Inorg. Met.-Org. Chem.*, **21(10)**, 1991, 1601.

^[19] V.B. Arion, M. Jakupec, M. Galanski, P. Unfried, B.K. Keppler, *J. Inorg. Biochem.*, **91**, 2002, 298.

^[20] C.R. Kowol, R. Berger, R. Eichinger, A. Roller, M.A. Jakupec, P.P. Schmidt, V.B. Arion, B.K. Keppler, *J. Med. Chem.*, **50**, 2007, 1254. ^[21] D. Kovala-Demertzi, P.N. Yadav, J. Wiecek, S. Skoulika, T. Varadinova, M.A. Demertzis, *J. Inorg. Biochem.*, **100**, 2006, 1558.

^[22] G.F. de Sousa, V.M. Deflon, M.T. do P. Gambardella, R.H.P. Fransico, J.D. Ardisson, E. Niquet, *Inorg. Chem.*, **45**, 2006, 4518.

^[23] P. Kaur, A. Sarangal, E. McInnes, W.T. Robinson, *J. Coord. Chem.*, **57**, 2004, 797.

^[24] K. Nomiya, K. Sekino, M. Ishikawa, A. Honda, M. Yokoyama, N.C. Kasuga, H. Yokoyama, S. Nakano,

K. Onodera, J. Inorg. Biochem., 98, 2004, 601.

^[25] I. C. Smith y W. G. Schneider, *Can. J. Chem.*, **39**, 1961, 1158.

^[26] V. M. S. Gil y J. N. Murrell, *Trans. Faraday Soc.*, **60**, 1964, 248.

^[27] J.K. Swearingen, D.X. West, *Transition Met. Chem.*, **26**, 2001, 252.

VI - PROPIEDADES BIOLÓGICAS DE ALGUNOS COMPLEJOS DE Ga(III)

VI.1- ACTIVIDAD CITOTÓXICA DE ALGUNOS COMPLEJOS DE Ga(III)

Como ya se mencionara en la Introducción de esta memoria, en los últimos años se ha trabajado en la obtención de complejos de galio(III) con ligandos que cumplan el doble propósito de estabilizar el catión frente a la hidrólisis y facilitar su paso a través de las membranas celulares (en un intento por mejorar la farmacocinética presentada por las sales inorgánicas de Ga(III)). Por ejemplo, dos compuestos sintetizados por Keppler *et al* fueron sometidos a ensayos clínicos: el tris(3-hidroxi-2-metil-4H-piran-4-onato) de galio(III) (maltolato de galio) y tris(8-quinolinolato) de galio(III) (KP46)^[1]. Asimismo, en un trabajo del mismo grupo se describen la síntesis y estudios biológicos de tres complejos de galio(III) con ligandos semicarbazona, tiosemicarbazona y selenosemicarbazona respectivamente, que comparten el mismo precursor (2-acetil piridina), encontrándose una gran actividad citostática para el complejo correspondiente al ligando selenosemicarbazona, en las líneas celulares 41M (carcinoma de ovario) y SK-BR-3(carcinoma de mama)^[2].

Se realizaron experimentos de citotoxicidad con algunos complejos de Ga(III) obtenidos en la realización de este trabajo, para tener una idea acerca de su posible potencia y eficacia como agentes antitumorales.

VI.2- MÉTODOS

- Línea celular y condiciones de cultivo: los estudios de citotoxicidad de los compuestos se llevaron a cabo en la línea celular HeLa-229, una línea de origen epitelial de adenocarcinoma de cérvix humano. Estas células se cultivaron en medio de crecimiento DMEM (Dulbeco Modified Eagle's Medium), suplementado con un 10% de FCS (Fetal Calf Serum) y L-Glutamina 2 mM, en un incubador a 37 °C con un 5% de CO₂.

- **Estudio de la citotoxicidad de los compuestos:** se evaluó la inhibición del crecimiento celular inducida por los compuestos usando un sistema basado en una tinción celular por cristal violeta y su posterior acetilación^[3].

Las células se sembraron en una placa estéril de 96 pocillos a una densidad de 4000 células/pocillo en 100 µL de medio y se incubaron durante 4-6 horas en el medio de crecimiento. Posteriormente se añadieron los compuestos disueltos en agua y al cabo de 48 horas de incubación a 37 °C se procedió a la fijación de las células placa con 10 µL de una disolución de glutaraldehído al 11%, manteniéndolas en agitación a temperatura ambiente, durante 15 minutos. Una vez fijadas se retiró el medio y se lavaron 3-4 veces con agua destilada.

A continuación se procedió a la tinción de las células con 100 μL de una disolución de cristal violeta al 0.1%. Esta solución se preparó disolviendo 0.1 g de cristal violeta en 100 mL de tampón

compuesto por: ácido fosfórico 200 mM, ácido fórmico 200 mM y ácido 2-(N-morfolino)etanosulfónico (MES) 200 mM a pH 6. Se mantuvo la placa en agitación a temperatura ambiente durante 15 minutos. Se retiró el colorante, se lava 3-4 veces con agua destilada y se procedió a su secado.

Posteriormente se añadieron 100 µL de ácido acético al 10% y se mantuvo bajo agitación durante 15 minutos, a temperatura ambiente, para que la coloración fuese homogénea en todos los pocillos. Finalmente se realizó una lectura de la absorbancia a una longitud de onda de 595 nm utilizando un espectrofluorímetro multiplataforma TECAN Ultra Evolution.

Todos los experimentos se realizaron con puntos por triplicado. El rango de medida de absorbancia se valoró entre un punto que contenía 4000 células en DMEM en ausencia de factores de crecimiento (se mantiene estable la concentración celular) y otro punto que contenía el medio de crecimiento habitual (que permite medir el crecimiento máximo a las 48h).

Se incluyeron en todos los experimentos controles con el DMSO en el que van disueltos los compuestos, en los cuales se observó una inhibición del crecimiento del 8-10 % con respecto a un control en el que las células se encuentran en el medio de crecimiento habitual. Los compuestos se adicionaron a las placas tras ser filtrados a través de una membrana con un tamaño de poro de 0.20 µm para garantizar la esterilidad.

- Análisis y expresión de los resultados: los experimentos se realizaron por triplicado. Los datos se expresaron como % de inhibición del crecimiento. Este % de inhibición se calculó en base a la fórmula:

% inhibición =
$$100 - \frac{A0 \cdot 100}{AT}$$

donde AO es la absorbancia observada en los pocillos con el compuesto objeto de estudio y AT es la absorbancia observada en los pocillos con medio de crecimiento en ausencia de compuesto.

Se evaluó la potencia inhibitoria de los compuestos ensayados mediante el cálculo de la curva concentración-% inhibición de los mismos y se ajustó a la ecuación:

$$y = \frac{E_{m\acute{a}x}}{1 + \left(\frac{IC_{50}}{x}\right)^n}$$

donde **y** es la inhibición observada a una concentración **x**, $\mathbf{E}_{máx}$ se corresponde con el efecto máximo; \mathbf{IC}_{50} es la concentración a la cual se obtiene una inhibición del crecimiento celular del 50% y **n** es la pendiente de la curva. Este ajuste no lineal se realizó con el programa de regresión GraphPad Prism Versión 2.01, 1996 (GraphPad Software Inc.). Los parámetros utilizados para la evaluación de los compuestos fueron la potencia inhibitoria (IC₅₀) y la eficacia (expresada como % máximo de inhibición alcanzado por los compuestos). Los resultados obtenidos en estos estudios se presentan contrastados con los resultados correspondientes al *Cisplatino* en las mismas condiciones.

VI.3- RESULTADOS

Se evaluó la citotoxicidad de los complejo [Ga(HSSC)]NO₃·MeOH, [Ga(H₂INTSC)₂]Cl, [Ga(HCBSC)(CBSC)], [Ga(APTSC)₂]NO₃, [Ga(HNAFSC)₂]Cl·2H₂O y [Ga(fen)₂Cl₂]Cl·3H₂O. A efectos comparativos se evaluó también la citotoxicidad que presentan los ligandos libres y el cisplatino.

Se realizó un ensayo preliminar para determinar el grado de inhibición del crecimiento celular producido por una elevada concentración de cada compuesto (complejos y ligandos).

Como se muestra en la Tabla VI.1, los complejos [Ga(HSSC)]NO₃·MeOH, [Ga(H₂INTSC)₂]Cl y los ligandos H₂SSC, H₃INTSC, H₂CBSC y H₂NAFSC mostraron una baja capacidad citotóxica (% inhibición celular \leq 52%) a dicha concentración, por lo que no fueron ensayados con posterioridad para obtener las curvas correspondientes de % inhibición frente a la concentración.

Tabla VI.1- Inhibición del crecimiento celular (%) obtenido para los complejos $[Ga(HSSC)_2]NO_3$.MeOH y $[Ga(H_2INTSC)_2]CI$ y los ligandos H_2SSC , H_3INTSC , H_2CBSC y H_2NAFSC .

Compuesto	Máx. concentración ensayada (µM)	Inhibición del crecimiento celular (% ± SD)
[Ga(HSSC) ₂]NO ₃ .MeOH	100 4	8±3
[Ga(H ₂ INTSC) ₂]Cl	100	5±2
H ₂ SSC	100	39±2
H ₃ INTSC	100	52±3
H ₂ NAFSC	100	42±2
H ₂ CBSC	10000	27±5

El ligando H₂CBSC no es citotóxico frente a la linea celular HeLa-229 dado que a la concentración ensayada (10 mM) la inhibición del crecimiento es inferior al 30%. Los ligandos H₂SSC, H₃INTSC γ HNAFSC son más citotóxicos ya que a concentración 100 μM inhiben el crecimiento celular entre un 40 y un 50%. A esta misma concentración los complejos [Ga(HSSC)₂]NO₃.MeOH γ [Ga(H₂INTSC)₂]Cl mostraron una nula inhibición del crecimiento celular.

Por el contrario, los complejos [Ga(HCBSC)(CBSC)], [Ga(APTSC)₂]NO₃, [Ga(HNAFSC)₂]Cl·2H₂O y [Ga(fen)₂Cl₂]Cl·3H₂O y los ligandos HAPTSC y 1,10-fenantrolina se sometieron a ensayos posteriores para evaluar la potencia inhibitoria. Todos mostraron inhibición del crecimiento celular concentración-dependiente. Las curvas obtenidas se muestran en la Figura VI.1 y en la Tabla VI.2 se recoge la eficacia inhibitoria máxima ($E_{máx}$) y la potencia inhibitoria del crecimiento celular (IC_{50}).

Compuesto	E _{máx} (% inhibición ± SD)	IC ₅₀ (μM ± SD)
[Ga(HNAFSC) ₂]Cl·2H ₂ O	76±1	24±4
[Ga(HCBSC)(CBSC)]	76±4	184±13
[Ga(APTSC) ₂]NO ₃	88±1	5.5±0.4
[Ga(fen) ₂ Cl ₂]Cl·3H ₂ O	87±1	3.5±0.2
HAPTSC	84±2	8.9±0.6
1,10-fenantrolina	86±2	6.9±0.3
Cisplatino	76±5	0.77±0.09

Tabla VI.2 - Eficacia y potencia inhibidora (en % inhibición e IC₅₀) del crecimiento celular.

Para el compuesto $[Ga(HNAFSC)_2]Cl\cdot 2H_2O$, el valor de IC_{50} obtenido puede ser superior al real (sobrevalorado) debido a que no se alcanzó el efecto inhibitorio máximo (ver figura VI.1) ya que, dada la baja solubilidad del complejo, la concentración más alta ensayada fue 100 µM. El resto de los compuestos presentan una $E_{máx}$ mayor que el cisplatino, sin embargo la potencia inhibitoria es, en todos los casos, inferior. Nótese que el valor de IC_{50} para los complejos es inferior, en todos los casos, que el de los ligandos libres correspondientes; es decir, la coordinación al metal mejora la actividad citotóxica.

El elevado valor de IC_{50} para [Ga(HCBSC)(CBSC)] sugiere una muy baja actividad para este compuesto.

Teniendo en cuenta los valores de IC_{50} , la potencia inhibitoria para los compuestos ensayados sigue el siguiente orden:

HAPTSC < 1,10-fenantrolina < [Ga(APTSC)₂]NO₃ < [Ga(fen)₂Cl₂]Cl·3H₂O < Cisplatino

Figura VI.1 - Inhibición del crecimiento celular en la línea HeLa-229 inducida por (a) el complejo [Ga(HCBSC)(CBSC)], (b) HAPTSC, (c) $[Ga(APTSC)_2]NO_3$, (d) $[Ga(HNAFSC)_2]Cl\cdot2H_2O$, (e) 1,10-fenantrolina, (f) $[Ga(fen)_2Cl_2]Cl\cdot3H_2O$ y (g) *Cisplatino*.

VI.4- BIBLIOGRAFÍA

^[1] A.V. Rudnev, L.S. Foteeva, C. Kowol, R. Berger, M.A. Jakupec, V.B. Arion, A.R. Timerbaev, B.K. Keppler, *Journal of Inorganic Biochemistry*, **100**, 2006, 1819-1826

^[2] C.R. Kowol, R. Eichinger, M.A. Jakupec, M. Galanski, V.B. Arion, B.K. Keppler, *Journal of Inorganic Biochemistry*, **101**, 2007, 1946–1957.

^[3] Kueng W, Silber E and Eppenberger U. Quantification of cells cultured on 96-well plates. Analytical Biochemistry 1989;182:16-19.

VII- CONCLUSIONES

De lo discutido en esta Memoria y teniendo en cuenta todo el trabajo realizado, puede concluirse que:

- 1- El uso de disolventes polares próticos, tiempos moderados de reacción y calentamiento a reflujo favorecen, en general, la formación y la cristalización de los ligandos semi- y tiosemicarbazona preparados.
- 2- En las estructuras cristalinas de estos ligandos, los restos semi- y tiosemicarbazona son planos, y presentan una conformación E respecto del enlace C1-N2, favoreciendo la formación del enlace de hidrógeno intramolecular N1-H···N3. Buena parte de estos compuestos presentan estructuras supramoleculares tridimensionales, debido al alto número de enlaces de hidrógeno intermoleculares que pueden formar, y a veces, forman capas infinitas entre las cuales se acomodan grupos alquílicos o arílicos.
- 3- Las condiciones de síntesis más adecuadas para la obtención de complejos de Ga(III) con los ligandos semi- y tiosemicarbazona preparados incluyen también el uso de disolventes polares próticos, tiempos moderados de reacción, temperaturas de reflujo y relaciones molares de sal metálica/ligando 1:1. Incluso en dichas condiciones, los rendimientos de las reacciones son bajos y se obtienen varias fracciones, muchas de las cuales son mezclas de compuestos, lo que podría estar relacionado con la tendencia a la hidrólisis ácida del catión y a la presencia de equilibrios en disolución.
- 4- La formación de complejos de Ga(III) con semi- y tiosemicarbazonas parece depender grandemente del tipo de ligando utilizado. En nuestro caso, los más efectivos han sido los ligandos tridentados, con átomos dadores "duros" según el criterio de Pearson y capaces de coordinar al metal formando anillos quelato. Más concretamente, ligandos dadores O,N,O, en donde uno de los átomos de O pertenece a un grupo desprotonable. También funcionan bien los ligandos de tipo S,N,O-dadores (con el O perteneciente a un grupo ácido) o S,N,N-dadores, perteneciendo uno de los átomos de N a un anillo piridínico. En el caso de las semicarbazonas derivadas de α-oxo-ácidos, resultaron menos reactivos aquellos ligandos que presentan un grupo alquílico voluminoso sobre el C2.
- 5- De las tres sales de galio empleadas, Ga(NO₃)₃·H₂O, GaCl₃ y GaCl(AcO)₂, el nitrato y el cloroacetato mostraron una reactividad similar frente a los ligandos ensayados, dando lugar,

incluso, a la formación del mismo compuesto en el caso de algunos ligandos. Cuando se empleó el $GaCl_3$, la dificultad para obtener compuestos puros y fácilmente aislables fue mayor que en los otros dos casos.

- 6- Una amplia mayoría de los nuevos complejos de Ga(III) cuya estructura cristalina se discute en esta Memoria, presentan un I.C. 6, con dos ligandos tridentados unidos al metal, formando cada uno dos anillos quelato y resultando un kernel común a todos ellos, GaN₂O₄. Esto es coherente con lo expuesto en la revisión estructural del Capítulo I y sugiere que cuando el tipo de ligando lo permite, este índice de coordinación y la presencia de átomos "duros" en el core son los preferidos por este metal. La geometría de la esfera de coordinación de estos complejos presenta una distorsión apreciable respecto de la octaédrica ideal, debido a la pertenencia de 3 átomos dadores a la misma molécula, lo cual conlleva ciertas restricciones estéricas. Aun así, se verifica que el ángulo diedro formado por los dos ligandos se aproxima a los 90°, y se observa un aumento en la planaridad de los ligandos tras la coordinación al Ga(III).
- 7- La conformación E respecto al enlace C1-N2 de los ligandos libres, cambia a Z al coordinarse al metal. Por otra parte, la conformación con relación al doble enlace C2=N3, que era variable en los ligandos libres, en los complejos es siempre E cuando los ligandos son tridentados. Esto se debe a que la coordinación simultánea al metal a través de tres átomos, determina qué confórmeros se hallarán presentes en los complejos.
- 8- Atendiendo al grado de desprotonación de los ligandos presentes en los complejos de Ga(III) obtenidos, éstos pueden clasificarse en cuatro grupos:
- a) Un primer grupo formado por once complejos catiónicos que contienen dos ligandos monodesprotonados en un grupo ajeno a los fragmentos semi- o tiosemicarbazona.
- b) Otro grupo formado por siete complejos neutros, que contiene un ligando monodesprotonado como en el caso anterior, y otro doblemente desprotonado porque pierde también un protón del fragmento semi- o tiosemicarbazona.
- c) Seis complejos que, con independencia de tener uno o dos ligandos, sólo uno se encuentra monodesprotonado. La pérdida del protón se produce en un grupo ajeno al fragmento semio tiosemicarbazona si tal grupo existe, o en el citado fragmento si se trata de un derivado de la piridina.

d) Los complejos singulares [Ga(1,10-fen)₂Cl₂]Cl·3H₂O γ (H₂BIPSC)₂[GaCl₄]Cl donde no hay desprotonación.

Esto sugiere que, en las condiciones de reacción utilizadas, no hay un comportamiento claramente predominante en cuanto a la desprotonación del grupo N2-H del resto semi- o tiosemicarbazona, ni puede correlacionarse esta desprotonación con el tipo de sal metálica ni ligando utilizados.

- 9- Al relacionar el grado de desprotonación de los ligandos con la variación, al coordinarse, en las longitudes de enlace de los mismos, se encuentra que:
- a) Cuando la desprotonación ocurre únicamente en el grupo ajeno al resto semi- o tiosemicarbazona, se observa un ligero aumento de la distancia C1-O1, mientras que la distancia C1-S1 permanece inalterada. También tiene lugar un pequeño acortamiento del enlace C1-N1, ambos cambios coherentes con una ligera evolución de la forma ceto a la forma enol. El resto de las longitudes de enlace en los ligandos cambia muy poco y no muestra tendencias claras.
- b) Cuando la desprotonación tiene lugar en el grupo N2-H, las distancias C1-O1/C1-S1 muestran un aumento mayor que en el caso anterior. Esto se debe a que la desprotonación del grupo N2-H va acompañada de una evolución más pronunciada de las formas ceto/tiona a las enol/tiol. Además, en el caso de los ligandos tiosemicarbazona se aprecia un ligero aumento de la longitud de los enlaces C1-N1 y C1-N2.
- 10- En cuanto a las distancias galio-átomo coordinado cabe destacar que:
- a) Están en buen acuerdo con las correspondientes distancias promedio halladas en la base estructural CSD, aunque en el caso de los compuestos discutidos, las distancias Ga-O y Ga-N son ligeramente menores, en general, lo cual es razonable, dado que siempre se trata de ligandos desprotonados, lo que aumenta su "dureza".
- b) Las distancias Ga-O1 son menores para los ligandos bidesprotonados que para los monodesprotonados y muy parecidas a las distancias Ga-O2 (del grupo de apoyo). En cambio, en los ligandos monodesprotonados, las distancias del enlace Ga-O1 es mayor que la del Ga-O2.
- c) Las distancias Ga-S son ligeramente mayores que la reportada en promedio en la bibliografía, mientras que las distancias Ga-N son ligeramente menores.

- 11- Entre los complejos discutidos, destacan aquellos con derivados de la monoacetil y de la diacetilpiridina. El complejo [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O presenta un I.C. 7, inusual para Ga(III). Este índice de coordinación elevado esta favorecido por tratarse de un ligando pentadentado que al coordinarse da lugar a la formación de 4 anillos quelato contiguos (de 5 miembros cada uno) en una disposición plana que permite una gran estabilización por deslocalización de la carga. Por su parte, el complejo [Ga(APTSC)Cl₂] es el único ejemplo con I.C. 5 entre los complejos presentados. Tiene dos anillos quelato contiguos, y vecinos al anillo piridínico, lo cual permite una alta deslocalización una vez desprotonado el resto tiosemicarbazona.
- 12- El estudio en disolución de estos complejos, en los casos en los que fue posible, mostró una baja tendencia, a la disociación en disolución de DMSO-d₆, lo cual indica la estabilidad de los mismos en este disolvente dador. El único complejo con un comportamiento claramente diferente es [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O, cuyos espectros de RMN de ¹H y de ¹³C en DMSO-d₆ son prácticamente idénticos a los del ligando libre.
- 13- De los ensayos biológicos realizados, se desprende que los ligandos presentan una potencia inhibitoria menor que los complejos, es decir, que la coordinación al metal aumenta su citotoxicidad. Teniendo en cuenta los valores de IC₅₀ obtenidos, la potencia inhibitoria para los compuestos ensayados sigue la secuencia:

 $\mathsf{HAPTSC} < 1, 10 - \mathsf{fenantrolina} < [\mathsf{Ga}(\mathsf{APTSC})_2]\mathsf{NO}_3 < [\mathsf{Ga}(\mathsf{fen})_2\mathsf{Cl}_2]\mathsf{Cl}\cdot\mathsf{3H}_2\mathsf{O} < \mathsf{Cisplatino}$

ANEXO

Durante la realización de este trabajo se han buscado caminos de síntesis alternativos para la obtención de nuevos compuestos de Ga(III). En este anexo se discute la obtención y estructura cristalina de algunos compuestos obtenidos en dicha búsqueda, durante la cual se obtuvieron varias sustancias cuyas estructuras no están recogidas en la bibliografía y tienen interés en sí mismas.

Anexo.1- 1-CARBOXAMIDA-5-PIRAZOLONAS

En la búsqueda de nuevos ligandos semicarbazona con heteroátomos como grupos de apoyo en su estructura, se abordó la preparación de semicarbazonas derivadas de diversos β-cetoésteres. Sin embargo, en todas las condiciones experimentales ensayadas, la reacción de condensación va acompañada de la ciclación por ataque del N2 de la semicarbazona sobre el carbono carbonílico del grupo éster. Se obtuvo así una serie de 1-carboxamida-5-pirazolonas, cuya estructura general se muestra en el siguiente esquema:

A continuación se describe la síntesis y la estructura cristalina de las pirazolonas obtenidas:

Anexo.1.1 - Síntesis de 1-carboxamida-5-pirazolonas

3-Metil-1-carboxamida-5-pirazolona (**HMASC**_{cic}): Sobre una suspensión de 30 mmoles (3.32 mL, δ =1.076 g/mL) de acetilcetato de metilo en 30.0 mL de H₂O, se añadió una disolución de 30 mmoles (3.34 g) de clorhidrato de semicarbazida y 30 mmoles (1.2 g) de NaOH en 20.0 mL de H₂O. La mezcla de reacción se mantuvo a reflujo y con agitación magnética durante 3 h, obteniéndose un precipitado blanco pulverulento, que se filtró y secó. Datos Analíticos (%): experimentales C 42.3, H 5.3, N 30.2; teóricos (calculados para C₅H₇N₃O₂) C 42.5, H 5.0, N 29.8. De las aguas madres precipitó un sólido cristalino, cuya estructura fue resuelta por difracción de rayos X de monocristal.

3-Etil-1-carboxamida-5-pirazolona (**HPMASC**_{cic}): Sobre una disolución de 30 mmoles (3.33 mL, δ =1.037 g/mL) de 3-oxo-pentanoato de metilo en 10.0 mL de EtOH, se agregó una disolución de 30 mmoles (3.34 g) de clorhidrato de semicarbazida y 30 mmoles (1.2 g) de NaOH en 20.0 mL de H₂O. La mezcla de reacción se mantuvo a temperatura ambiente y con agitación durante 2 h, tras lo cual se mantuvo 24 h en reposo, a temperatura ambiente. De la mezcla de reacción se separó un sólido

cristalino (adecuado para su estudio por difracción de rayos X de monocristal) que se filtró y secó. Datos Analíticos (%): experimentales: C 45.6, H 5.8, N 27.4; teóricos (calculados para $C_6H_9N_3O_2$): C 46.4, H 5.8, N 27.1.

4-Etil-3-metil-1-carboxamida-5-pirazolona (**HEMASC**_{cic}): Sobre una suspensión de 25 mmoles (4.10 mL, δ=0.981 g/mL) de 2-etil-acetoacetato de etilo en 15.0 mL de EtOH, se añadió una disolución de 25 mmoles (2.79 g) de clorhidrato de semicarbazida y 25 mmoles (1.01 g) de NaOH en 20.0 mL de H₂O. Se dejó la mezcla de reacción a temperatura ambiente y con agitación magnética durante 2 horas. Tras 24 horas en reposo, se obtuvo un sólido cristalino impurificado con semicarbazida, y una segunda fracción cristalina, apta para su estudio por difracción de rayos X de monocristal. Datos Analíticos (%): experimentales: C 49.5, H 6.8, N 24.7; teóricos (calculados para C₇H₁₁N₃O₂): C 49.7, H 6.5, N 24.8.

4-(2-Hidroxi-etil)-3-metil-1-carboxamida-5-pirazolona (HABLSC_{cic}): Se preparo una disolución de 20 mmoles (2.15 mL, δ=1.190 g/mL) de 2-acetilbutirolactona en 50.0 mL de EtOH, y sobre ella se añadió una disolución de 20 mmoles (2.23 g) de clorhidrato de semicarbazida en 10 mL de agua, neutralizada con 20 mmoles (0.80 g) de NaOH. Tras 0.5 h de agitación magnética a temperatura ambiente, se formó un precipitado blanco pulverulento, que se filtró y secó. Este sólido se recristalizó en EtOH, obteniéndose un sólido cristalino adecuado para su estudio por difracción de rayos X de monocristal. Datos Analíticos (%): experimentales: C 44.8, H 6.1, N 22.5; teóricos (calculados para $C_7H_{11}N_3O_3$): C 45.4, H 6.0, N 22.7.

3,4-dimetil-1-carboxamida-5-pirazolona (**HMMASC**_{cic}): Sobre una suspensión de 30 mmoles (4.20 mL, δ =1.076 g/mL) de 2-metilacetoacetato de etilo en 30.0 mL de H₂O, se añadió una disolución de 30 mmoles (3.34 g) de clorhidrato de semicarbazida y 30 mmoles (1.2 g) de NaOH en 20.0 mL de H₂O. La mezcla de reacción se mantuvo a reflujo y con agitación magnética durante 3 h, obteniéndose un precipitado blanco pulverulento, que se filtró y secó.. Datos Analíticos (%): experimentales C 42.3, H 5.3, N 30.2; teóricos (calculados para C₅H₇N₃O₂) C 42.5, H 5.0, N 29.8. De las aguas madres precipitó un sólido cristalino, cuya estructura fue resuelta por difracción de rayos X de monocristal.

4-(bencil)-3-metil-1-carboxamida-5-pirazolona (**HBMASC**_{cic}): Se preparo una disolución de 20 mmoles (4,40 g) de 2-bencil-3-oxo-butanoato de etilo en 20.0 mL de EtOH, y sobre ella se añadió gota a gota una disolución de 20 mmoles (2.23 g) de clorhidrato de semicarbazida y 20 mmoles (0.80 g) de NaOH en 30 mL de agua. Se mantuvo 1 h con agitación magnética a temperatura ambiente y a

266

reflujo durante 2.5 h, formándose una disolución translucida ligeramente beige. Al enfriar se formó un sólido pulverulento amarillo, que se recristalizó en EtOH, obteniéndose un sólido cristalino incoloro adecuado para su estudio por difracción de rayos X de monocristal. Datos Analíticos (%): experimentales: C 44.8, H 6.1, N 22.5; teóricos (calculados para C₇H₁₁N₃O₃): C 45.4, H 6.0, N 22.7.

Anexo.1.2- Estructura cristalina de algunas 1-carboxiamida-5-pirazolonas

En este apartado discutiremos las características principales de las estructuras de las 5pirazolonas estudiadas por difracción de rayos X monocristal. En las Figuras Anexo.1.1 a Anexo.1.6 se muestra el contenido de la unidad asimétrica de los ligandos HMASC_{cic}, HMMASC_{cic}, HEMASC_{cic}, HPMASC_{cic}, HBMASC_{cic} y H₂ABLSC_{cic}. En la Tabla Anexo.1.1 se muestran los datos cristalográficos y de refinado correspondientes a estas pirazolonas, y en las Tablas Anexo.1.2 y Anexo.1.3 se recogen las longitudes y ángulos de enlace más relevantes de estas estructuras.

Figura Anexo.1.1- Unidad asimétrica del ligando HMASCcic.

Figura Anexo.1.3- Unidad asimétrica del ligando HEMASC_{cic}.

Figura Anexo.1.6- Unidad asimétrica del ligando H₂ABLSC_{cic}.

Ligando	HMASC _{cic}	HMMASC _{cic}	HEMASC _{cic}	HPMASC _{cic}	HBMASC _{cic}	H ₂ ABLSC _{cic}
Fórmula	C ₅ H ₇ N ₃ O ₂	C ₆ H ₉ N ₃ O ₂	C ₇ H ₁₁ N ₃ O ₂	C ₆ H ₉ N ₃ O ₂	$C_{12}H_{13}N_3O_2$	C ₇ H ₁₁ N ₃ O ₃
Masa Molecular	141.14	155.16	169.19	155.16	231.25	185.19
Т (К)	293(2)	293(2)	120.0(1)	293(2)	100.0(1)	293(2)
λ (Å)	0.71069	0.71073	0.71069	0.71073	0.71069	0.71073
Sistema Cristalino	Triclínico	Monoclínico	Monoclínico	Triclínico	Triclínico	Triclínico
Grupo Espacial	P-1	P21/c	C2/c	P-1	P-1	P-1
a (Å)	6.002(5)	7.6080(15)	19.036(5)	5.9647(14)	5.551(5)	7.542(2)
b (Å)	7.314(5)	7.8773(16)	7.120(5)	7.6922(18)	14.143(5)	8.285(2)
c (Å)	7.590(5)	12.123(2)	11.994(5)	8.883(2)	14.342(5)	8.303(2)
α (°)	90.069(5)	06	90.000	82.760(4)	86.401(5)	60.450(4)
β (°)	100.805(5)	(E)66.66	97.511(5)	77.596(4)	89.313(5)	71.248(5)
۸ (°)	107.234(5)	06	90.00	70.324(4)	84.076(5)	83.213(5)
V (ų)	312.0(4)	715.5(2)	1611.7(14)	374.18(15)	1117.7(11)	426.9(2)
Z	2		8	2	4	2
D _{calc} . (Mg/m ³)	1.502	1.440	1.395	1.377	1.374	1.441
μ (mm ⁻¹)	0.119	0.111	0.105	0.106	0.097	0.114
F(000)	148	328	720	164	488	196
Dimensiones (mm)	0.47 × 0.18 × 0.16	0.50 x 010 x 0.07	0.73 × 0.33 × 0.23	0.31 × 0.22 × 0.13	0.42 x 0.16 x 0.02	0.32 x 0.31 x 0.18
Intervalo θ (°)	2.74 a 25.67	2.72 a 26.36	2.16 a 26.37	2.35 a 26.37	1.45 a 26.37	2.83 a 26.37
Intervalos en h, k, l	-7,6; -8,8; 0,9	-9,9; 0,9; 0,15	-23,23; 0,8; 0,14	-7,7; -9,9; 0,11	-6<,6; -17,17; -16,17	-8,9; -8,10; 0,10
No. reflex. medidas	2685	6935	6876	4257	15433	4888
No. reflex. únicas	1181	1826	1776	1514	4523	1749
R _{int}	0.0201	0.0980	0.0211	0.0253	0.0378	0.0201
Я	0.0397	0.0451	0.0328	0.0366	0.0452	0.0407
Rw	0.1162	0.1121	0.0891	0.0935	0.1043	0.112
G.O.F.	1.108	1.056	1.060	1.033	1.023	1.069

Tabla Anexo.1.1 - Datos cristalográficos de los ligandos pirazolona estudiados.

	нилос	ылласс	HEMASC	HDMASC	HBMASC _{cic}		
	HIVIASC _{cic}	HIVINIASC _{cic}	HEIMASC _{cic}	HP WASC _{cic}	Molécula 1	Molécula 2	H ₂ ADL3C _{cic}
C1-01	1.220(2)	1.222(2)	1.2271(14)	1.222(2)	1.228(2)	1.233(2)	1.221(2)
C1-N1	1.319(2)	1.322(3)	1.3299(15)	1.319(2)	1.330(3)	1.318(3)	1.319(2)
C1-N2	1.403(2)	1.407(3)	1.4096(16)	1.407(2)	1.404(2)	1.410(3)	1.407(2)
N2-N3	1.369(2)	1.376(2)	1.3758(13)	1.373(2)	1.391(2)	1.382(2)	1.375(2)
N3-C2	1.334(2)	1.343(3)	1.3443(16)	1.333(2)	1.364(2)	1.354(3)	1.346(2)
C2-C3	1.365(3)	1.370(3)	1.3776(16)	1.365(2)	1.370(3)	1.379(3)	1.371(2)
C3-C4	1.407(2)	1.408(3)	1.4190(18)	1.408(2)	1.433(3)	1.417(3)	1.418(2)
C4-02	1.248(2)	1.256(2)	1.2556(14)	1.248(2)	1.249(2)	1.254(2)	1.253(2)
C4-N2	1.398(2)	1.410(2)	1.4021(14)	1.399(2)	1.399(2)	1.400(2)	1.400(2)

Tabla Anexo.1.2 - Longitudes de enlace (Å) relevantes de los ligandos pirazolona^a.

^a Esquema de numeración utilizado:

Tabla Anexo.1.3 - Ángulos de enlace (°) relevantes de los ligandos pirazolona^ª.

	HMASC	HMMASC	HEMASC	HDMASC	HBMASC _{cic}		HARISC
		InvitviA3C _{cic}	TENASC _{cic}		Molécula 1	Molécula 2	
N1-C1-O1	126.77(15)	127.01(19)	127.03(11)	126.94(14)	126.78(18)	126.46(19)	127.02(16)
N1-C1-N2	114.43(13)	114.06(17)	113.85(10)	114.19(13)	113.22(17)	114.80(17)	114.52(15)
01-C1-N2	118.80(13)	118.91(18)	119.11(10)	118.87(13)	119.99(17)	118.74(17)	118.46(16)
C1-N2-N3	119.84(13)	120.14(15)	119.79(9)	120.11(11)	119.75(15)	119.86(15)	119.39(13)
N2-N3-C2	108.33(13)	107.72(16)	107.93(10)	108.56(11)	106.52(15)	107.84(15)	107.91(13)
N3-C2-C3	109.48(15)	110.58(18)	110.35(10)	109.14(13)	110.85(17)	109.80(17)	110.16(15)
C2-C3-C4	108.38(14)	107.37(17)	107.04(10)	108.78(13)	107.22(16)	107.33(17)	107.35(14)
C3-C4-O2	133.59(15)	132.79(18)	132.18(10)	134.24(14)	131.08(17)	131.56(18)	131.77(15)
C3-C4-N2	104.61(14)	105.53(16)	105.59(9)	104.42(12)	105.27(16)	105.88(16)	105.42(14)
02-C4-N2	121.79(15)	121.68(17)	122.22(11)	121.34(14)	123.64(17)	122.56(17)	122.80(15)
C4-N2-N3	109.16(13)	108.78(15)	109.09(10)	109.04(12)	109.87(15)	108.83(15)	109.05(13)
C4-N2-C1	130.84(13)	131.00(16)	131.11(9)	130.57(12)	130.28(16)	131.21(16)	131.53(15)

Tanto las longitudes como los ángulos de enlace (Tablas Anexo.1.2 y Anexo.1.3) son muy similares entre sí, y muestran valores dentro de los rangos usuales recogidos en la bibliografía^[1]. Así, la longitud de los enlaces C1-N1 es comparable al valor típico encontrado para pirazolonas con un grupo carbotiamida sobre el N2, de 1.323 Å. Sus longitudes de enlace C1-N2 son apenas mayores que la de los tio-derivados análogos, de aproximadamente 1.39 Å^[2], y la longitud del enlace C1-O1, de 1.225 Å de valor medio, es comparable a la encontrada en la literatura, de 1.22 Å^[3], y presenta muy poca dispersión, quedando en el rango de 1.220-1.233 Å para estos ligandos. En cuanto al anillo pirazolona, el enlace C2-C3 esta en buen acuerdo con el valor medio para un enlace C=C en este tipo de heterociclos, de 1.369 Å^[1], lo que confirma la presencia mayoritaria del tautómero enamina, con el H sobre el N3. Asimismo, la longitud del enlace C4-O2 en esta serie de ligandos cae en el rango 1.248-1.256 Å, lo cual concuerda con la distancia típica para el enlace C=O, de 1.244 Å y con lo hallado en la bibliografía para este tipo de compuesto^[1,3]. Cabe destacar que en esta serie, la longitud del enlace C2-N3 es sensible al tipo y tamaño del sustituyente sobre el C2. Las mismas analogías se presentan en el análisis de los ángulos de enlace.

En todas estas estructuras, el enlace C1-N1 está en posición *syn* respecto al enlace C4-O2. Esta configuración está favorecida por la presencia en todos estos ligandos del enlace de hidrógeno intramolecular N1-H…O2.

En la Tabla Anexo.1.4 se recogen coeficientes de planaridad de estos ligandos.

	-		
		Plano	rms
HMASCcic		C1 C2 C3 C4 N1 N2 N3 O1 O2	0.0177
HMMASCcic		C1 C2 C3 C4 N1 N2 N3 O1 O2	0.0337
HEMASCcic		C1 C2 C3 C4 N1 N2 N3 O1 O2	0.0259
HPMASCcic		C1 C2 C3 C4 N1 N2 N3 O1 O2	0.0273
	Molécula 1	C11 C12 C13 C14 N11 N12 N13 O11 O12	0.0686
HBINASCUL	Molécula 2	C21 C22 C23 C24 N21 N22 N23 O21 O22	0.0772
H₂ABLSC		C1 C2 C3 C4 N1 N2 N3 O1 O2	0.0391

Tabla Anexo.1.4 - Planaridad de los ligandos pirazolona

Todas estas moléculas son planas, apartándose del plano molecular solo los átomos pertenecientes a los sustituyentes ubicados sobre los átomos C2 y/o C3, cuando estos radicales tienen más de un átomo no hidrógeno.

En la Tabla Anexo.1.5 se recogen los enlaces de hidrógeno presentes en todas estas estructuras.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)	D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
HMASC _{cic} ^a					HBMASC _{cic} ^e				
N1-H1A…O1 ⁱ	0.86	2.08	2.923(2)	165.1	N11-H11A…O12	0.91(3)	1.94(2)	2.708(2)	142(2)
N1-H1B…O2	0.86	2.02	2.703(2)	135.3	N11-H11B…O11 ⁱ	0.91(2)	2.02(2)	2.926(3)	173(2)
N3-H3A…O2 ⁱⁱ	0.86	1.86	2.704(3)	167.5	N13-H13-O22	0.90(2)	1.93(3)	2.778(2)	156(2)
HMMASC _{cic} ^b					N21-H21A…O11 ⁱⁱ	0.91(3)	2.42(3)	3.050(2)	126(2)
N1-H1A…O1 ⁱ	0.89(3)	2.04(3)	2.922(2)	172(2)	N21-H21A…O22	0.91(3)	2.07(3)	2.763(3)	132(2)
N1-H1B…O2	0.90(2)	1.97(2)	2.713(2)	137.9(19)	N21-H21B…O12 ⁱⁱⁱ	0.94(2)	1.91(3)	2.838(3)	168(2)
N3-H3…O2 ⁱⁱ	0.93(3)	1.87(3)	2.769(2)	162(2)	N23-H23-021 ^{iv}	0.94(3)	1.82(3)	2.745(2)	166(2)
HEMASC _{cic} ^c					H ₂ ABLSC _{cic} ^f				
N1-H1A…O2	0.872(18)	2.011(18)	2.7183(17)	137.4(15)	N3-H3-03 ⁱ	0.85(2)	1.95(2)	2.786(2)	166(2)
N1-H1B…O1 ⁱ	0.872(19)	2.064(19)	2.931(2)	172.5(15)	N1-H1A…O1 ⁱⁱ	0.89(3)	2.06(3)	2.928(2)	166(2)
N3-H3…O2 ⁱⁱ	0.894(17)	1.862(17)	2.6963(17)	154.3(15)	N1-H1B…O2	0.88(2)	2.10(2)	2.757(2)	131.1(18)
HPMASC _{cic} ^d					N1-H1B…O2 ^{III}	0.88(2)	2.57(2)	3.116(2)	121.0(17)
N1-H1A…O1 ⁱ	0.86	2.06	2.9070(18)	167.4	03-H3···O2 ^{iv}	0.82	2.02	2.763(2)	151.0
N1-H1B…O2	0.86	2.01	2.6878(18)	135.6					
N3-H3N…O2 ⁱⁱ	0.86	1.90	2.7175(17)	157.3					

Tabla Anexo.1.5 - Enlaces de hidrógenos (Å y °) de los ligandos pirazolona.

a:[']-x+2, -y+1, -z+2; ^{''} x+1, y, z.

b: ⁱ -x, -y, -z+1; ⁱⁱ x, -y+1/2, z+1/2.

c: ⁱ -x+1, -y, 1-z; ⁱⁱ x, 1-y, z-1/2.

d:ⁱ-x, -y+2, -z+2;ⁱⁱ x+1, y, z

e: '-x-1, -y+1, -z+1; " x+1, y, z; " -x, -y+2, -z; " -x, -y+1, -z.

f: ⁱ x, y-1, z+1; ⁱⁱ -x+1, -y, -z+1; ⁱⁱⁱ -x+1, -y+1, -z; ^{iv} -x+1,-y+2,-z.

En todas estas estructuras están presentes el enlace intramolecular N1-H···O2 y el enlace intermolecular N1-H···O1. Este último enlace es responsable de la formación de dímeros cuasi planares (como por ejemplo el de la Figura Anexo.1.7, correspondiente al compuesto HABLSC_{cic}). También es común a todas estas estructuras (a excepción de H₂ABLSC_{cic}) el enlace intermolecular N3-H3···O2.

Figura Anexo.1.7- Dímero formado mediante el enlace de hidrógeno N1-H…O1ⁱⁱ en la estructura del compuesto H₂ABLSC_{cic}.

Los sustituyentes ubicados sobre C2 y/o C3 influyen de manera notoria sobre las estructuras supramoleculares de esta serie de pirazolonas. Así, vemos que en el caso de HMASC_{cic} y HPMASC_{cic} (sustituidos con un grupo metilo y un grupo etilo sobre C2, respectivamente) el enlace N3-H3···O2⁽ⁱⁱ⁾ extiende la estructura en cadenas infinitas paralelas al eje a, en arreglos virtualmente planos (ver Figura Anexo.1.8) y paralelos al plano ($02\overline{1}$) en ambos casos, ya que los sustituyentes ubicados sobre C2 no ejercen un impedimento estérico que desestabilice esta situación. En el caso de HMASC_{cic}, estas cadenas se unen mediante interacciones de tipo π - π stacking (cuyos parámetros se recogen en la Tabla Anexo.1.6), formando planos plegados infinitos, paralelos al plano ($01\overline{1}$).

Tabla Anexo.1.6 - Interacción de tipo π - π stacking presente en la estructura de HMASC_{cic}.

Figura Anexo.1.8- Crecimiento en cadenas de la estructura cristalina de los compuestos (a) HMASC_{cic} y (b) HPMAS_{cic} debido a los enlaces de hidrógeno N1-H···O1ⁱ y N3-H3···O2ⁱⁱ.

Respecto de HPMASC_{cic}, las interacciones de tipo π - π stacking y C-H··· π cuyos parámetros se detallan en las Tablas Anexo.1.7 y Anexo.1.8 (representadas en la Figura Anexo.1.9), hacen que cada cadena se una a otras 4 (dos por encima del plano que ocupa, y dos por debajo), generándose así una red tridimensional como la representada en la Figura Anexo.1.10.

Tabla Anexo.1.7 - Interacciones de tipo π - π stacking presente en la estructura de HPMASC_{cic}.

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	Cgl_Perp(Å)	CgJ_Perp(Å)	Slippage(Å)
Cg1-Cg1 ⁱⁱⁱ	3.6121(12)	0.00	16.55	16.55	3.463	3.462	1.029

Anillo(1): N2 N3 C2 C3 C4. ⁱⁱⁱ -x, 2-y, 1-z; ^{iv} 1-x, 1-y, 1-z.

Interacción	H…Cg(Å)	H-Perp(Å)	γ(°)	X-H…Cg(°)	X…Cg(Å)	X-H,Pi
C5-H5A-Cg1 ^{iv}	2.82	2.802	5.66	138	3.5953(18)	52

Tabla Anexo.1.8 - Interacciones C-H··· π presentes en la estructura del compuesto HPMASC_{cic}.

Anillo(1): N2 N3 C2 C3 C4. Tv 1-x, 1-y, 1-z.

Figura Anexo.1.9- Interacciones de tipo π - π stacking y C-H··· π presentes en la estructura de HPMASC_{cic}.

Figura Anexo.1.10- Estructura supramolecular del ligando HPMASC_{cic}, generada por enlaces de hidrógeno e interacciones de tipo π - π stacking y C-H··· π .

En cambio, para los compuestos HMMAS_{cic} y HEMASC_{cic}, encontramos que cada ligando tiene sendos grupos alquílicos sobre C2 y C3 (en el caso de HMMASC_{cic}, dos grupos metilo; para HEMASC_{cic}, hallamos un grupo metilo sobre C2, y un grupo etilo sobre C3). Esta doble sustitución hace que moléculas vecinas, vinculadas por el enlace N3-H3···O2ⁱⁱ, no puedan ubicarse en el mismo plano, ya que deben minimizar las repulsiones Me/Me o Me/Et (según el ligando), como se muestra en la Figura Anexo.1.11.

Figura Anexo.1.11- Repulsión estérica entre sustituyentes alquílicos sobre C2 y C3 para los compuestos (a) HMMASC_{cic} y (b) HEMASC_{cic}.

Para los ligandos HMASC_{cic} y HPMASC_{cic} la formación de cadenas infinitas implica un ángulo diedro nulo entre unidades diméricas unidas por el enlace N3-H3···O2⁽ⁱⁱ⁾. Las repulsiones estéricas entre grupos metilo de moléculas diferentes pertenecientes a dímeros unidos por el enlace N3-H3···O2ⁱⁱ en el ligando HMMASC_{cic} conducen a un ángulo diedro entre dímeros contiguos de aproximadamente 58°. Y para el caso de HEMASC_{cic} (en el cual las repulsiones Me/Et son aún más importantes), dicho ángulo es de aproximadamente 126°. Esto conduce a que la estructura supramolecular del compuesto HMMASC_{cic} pueda describirse como un apilamiento compacto de planos plegados infinitos, paralelos al plano *bc*, que se forman por crecimiento de la estructura en la dirección del eje c mediante el enlace N3-H3···O2ⁱⁱ, y en la dirección del eje b por el enlace N1-H···O1ⁱ. Si además tenemos en cuenta la presencia de interacciones de tipo π - π stacking (Tabla Anexo.1.9), podemos describir la estructura supramolecular del ligando HMMASC_{cic} como una red tridimensional infinita como la representada en la Figura Anexo.1.12.

Figura Anexo.1.12- Estructura supramolecular del ligando HMMASC_{cic}.

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	CgI_Perp(Å)	CgJ_Perp(Å)	Slippage(Å)
Cg1-Cg1 ⁱⁱⁱ	3.6757(14)	0.00	20.87	20.87	3.434	3.434	1.310

Tabla Anexo.1.9 - Interacciones de tipo π - π stacking presente en la estructura de HMMASC_{cic}.

Anillo(1): N2 N3 C2 C3 C4. ^{III} 1-x, 1-y, 1-z.

El mayor tamaño de uno de los sustituyentes alquílicos del compuesto HEMASC_{cic} puede ser la causa de que el plegamiento de los planos (unidades diméricas unidas por puentes de hidrógeno intermoleculares) que se forman sea más suave, y de que dichos planos dejen huecos más grandes que en el caso de HMMASC_{cic}, permitiéndoles interpenetrarse (de la manera en que se detalla en la Figura Anexo.1.13) para generar una estructura supramolecular en forma de capas plegadas e interpenetradas (apiladas como se ilustra en la Figura Anexo.1.14), paralelas al plano *bc*.

Figura Anexo.1.13- Interpenetración de capas independientes de la estructura supramolecular del compuesto HEMASC_{cic}, donde se omiten lo sustituyentes alquílicos para mayor claridad.

Figura Anexo.1.14- Estructura supramolecular del compuesto HEMASC_{cic}.

La doble sustitución sobre C2 y C3 se repite en la estructura del compuesto H₂ABLSC_{cic}, con la diferencia que uno de los sustituyentes es el radical –CH₂-CH₂-OH. Como es de esperar, los efectos estéricos debido a los dos sustituyentes vuelven a estar presentes y condicionan el crecimiento de la estructura, sumándose el impacto en dicho crecimiento debido a la presencia de un grupo dador/aceptor de enlace de hidrógeno adicional. Volvemos a encontrarnos con que el enlace N1-H…O1ⁱⁱ genera dímeros cuasi planares; pero mientras que para HMASC_{cic} y HPMASC_{cic} estos dímeros se "encadenaban" de manera que sus anillos pirazolona quedaban enfrentados y prácticamente en el mismo plano (ver Figura Anexo.1.8), en el caso de H₂ABLSC_{cic} los dímeros se disponen escalonadamente sobre planos que distan 2.17 Å, ya que el enlace N1-H…O2 de los primeros ha sido reemplazado en el último por el enlace N3-H…O3ⁱ, que junto al enlace N1-H…O2ⁱⁱⁱ extiende la estructura en cadenas como la representada en la Figura Anexo.1.15, que se ubican sobre el plano (211), y que se unen entre sí mediante el enlace O3-H…O2^{iv}, formando planos infinitos paralelos al plano *bc*, como se muestra en la Figura Anexo.1.16..

Figura Anexo.1.15- Crecimiento en cadenas de la estructura del compuesto H₂ABLSC_{cic} debido a los enlaces N3-H···O3ⁱ y N1-H···O2ⁱⁱⁱ.

Figura Anexo.1.16- Estructura supramolecular del compuesto H₂ABLSC_{cic}.

La estructura antes descripta se ve estabilizada por la presencia dos interacciones de tipo π - π stacking, cuyos parámetros se detallan en la Tabla Anexo.1.10. Mientras que la interacción Cg1-Cg1^{vi} vincula moléculas del ligando H₂ABLSC_{cic} pertenecientes al mismo plano, la interacción Cg1-Cg1^v relaciona dichos planos entre sí, pudiendo entonces describirse la estructura supramolecular de H₂ABLSCcic como una red tridimensional infinita formada por planos paralelos al plano bc unidos mediante interacciones débiles de tipo π - π stacking.

I III III III III III III III III III

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	Cgl_Perp(Å)	CgJ_Perp(Å)	Slippage(Å)
 Cg1-Cg1 ^v	3.9181(15)	0.00	25.56	25.56	3.534	3.534	1.691
Cg1-Cg1 ^{vi}	3.7851(14)	0.00	20.33	20.33	3.549	3.549	1.315

Anillo(1): N2 N3 C2 C3 C4. ^v -x, 1-y, 1-z; ^v 1-x, 1-y, 1-z.

Como ya se ha comentado, la unidad asimétrica del compuesto HBMASC_{cic} contiene dos moléculas (M1 y M2). También aquí encontramos la formación de dímeros por puentes de hidrógeno en los que se asocian moléculas M1 por un lado y moléculas M2 por otro. Estos dímeros (que se pueden considerar planos si excluimos los grupos fenilo) forman un ángulo diedro de aproximadamente 90°, como se aprecia en la Figura Anexo.1.17.

Figura Anexo.1.17- Dímeros formados por enlaces de hidrógeno en el compuesto HBMASC_{cic}.

A diferencia de lo que ocurría en los ligandos previamente discutidos, en los que los dímeros se formaban siempre (excepto para el caso de H₂ABLSC_{cic}) mediante el enlace N1-H···O1, y la estructura se extendía mediante el enlace N3-H···O2, en el caso de HBMASC_{cic}, encontramos que uno de los dímeros posibles se forma a expensas del enlace N3-H···O2, y que el átomo N21 participa como dador en dos enlaces de hidrógeno a moléculas diferentes. Esto hace que los sustituyentes metilo y bencilo ubicados sobre C2 y C3 respectivamente, no lleguen a encontrarse en situación de

solaparse. Los enlaces N21-H···O11ⁱⁱ y N13-H···O22 extienden la estructura a lo largo del eje a, al tiempo que los enlaces N21-H···O12ⁱⁱⁱ, N23-H···O21^{iv} y N13-H···O22 lo hacen a lo largo del eje b, generándose así una estructura supramolecular de planos infinitos paralelos al plano ab, compactamente apilados a lo largo del eje c, como se muestra en la Figura Anexo.1.18.

Figura Anexo.1.18- Estructura supramolecular del compuesto HBMASC_{cic}.

El alto empaquetamiento de estos planos podría verse estabilizado en parte por la existencia de un enlace de hidrógeno no clásico de tipo C-H··· π , cuyos datos se detallan en la Tabla Anexo.1.11, que vincula moléculas del ligando HBMASC_{cic} pertenecientes a planos contiguos.

Tabla Anexo.1.11- Enlace de hidrógeno no clásico C-H···π presente en la estructura de HBMASC_{cic}.

Interacción	H…Cg(Å)	H-Perp(Å)	γ(°)	X-H…Cg(°)	X…Cg(Å)	X-H,Pi
C29-H29…Cg2 ^v	2.93(2)	2.794	17.54	122.8(17)	3.578(4)	50

Anillo (2): C17 C18 C19 C110 C111 C112. ^v 1-x, 1-y, -z.

Anexo.2- ESTRUCTURA CRISTALINA DE ALGUNOS COMPLEJOS DE TIMe2⁺

Con la intención de obtener una ruta alternativa de síntesis de complejos de Ga(III) por reemplazo metálico, se prepararon complejos de TIMe₂⁺ con algunos de los ligandos semicarbazona y pirazolona discutidos anteriormente, para hacerlos reaccionar posteriormente con sales de Ga(III).Este procedimiento alternativo de síntesis de complejos de Ga(III) resultó infructuoso, pero algunos de los complejos de TIMe₂⁺ preparados resultaron adecuados para su análisis mediante difracción de rayos X de monocristal. Las síntesis de estos compuestos, así como su estudio estructural, se comentan a continuación.

Anexo.2.1- Síntesis de complejos de TIMe₂⁺

Para la síntesis de estos compuestos se utilizó hidróxido de dimetiltalio, preparado en disolución acuosa por reacción de TIMe₂I y Ag₂O.

Síntesis del loduro de dimetiltalio TIMe₂I^[4]: una suspensión de 72 mmoles (24 g) de TII seco y en polvo en 25 mL de éter seco que contenía además 80 mmoles (11,3 g) de CH₃I, se agito a temperatura ambiente (en atmósfera de N₂) mientras se añadían gota a gota 150 mmoles de CH₃Li en 110 mL de éter. Al finalizar la reacción la disolución tomó color negro. Se dejó reposar una hora y seguidamente la disolución etérea clara, ligeramente marrón, se filtró y se trató con ácido iodhídrico diluido. Se obtuvo así un precipitado blanco de TIMe₂I, que se lavó con éter y agua y secó a vacío. Datos analíticos (%) para TIMe₂I: teóricos (calculados para TIC₂H₆I) C 6,63, H 1,67; experimentales C 6,60, H 1,70.

Síntesis del óxido de plata Ag_2O : a una disolución acuosa de 28 mmoles (4,81 g) de $AgNO_3$ en 30 ml de agua se le añadieron 50 mmoles (2 g) de NaOH disueltos en agua, con agitación magnética, obteniéndose inmediatamente un precipitado marrón oscuro, que se filtró, lavó y secó.

Síntesis del TIMe₂OH: Sobre una suspensión de 13.3 mmoles (4,81 g) de TIMe₂I en 60 mL de agua se añadieron 25 mmoles (5,9 g) de Ag₂O, y la mezcla obtenida se mantuvo en la oscuridad, a temperatura ambiente y con agitación durante 15 h. La disolución incolora resultante de la filtración se utilizó como reactivo para la síntesis de complejos de TIMe₂⁺, suponiendo un rendimiento del 100 % para esta etapa de la síntesis (es decir, considerando que se obtuvo una disolución acuosa de TIMe₂OH 0,22 M)

[TIMe₂(H₂O)(MASC_{cic})]·H₂O: sobre una suspensión 1,4 mmoles (0,19 g) de HMASC_{cic} en 20 mL de agua se añadieron 6,4 ml de una disolución acuosa de TIMe₂OH 0,22 M (1.4 mmoles) gota a gota y con agitación magnética. Al finalizar la adición la mezcla de reacción se tornó traslúcida, se dejó la mezcla a temperatura ambiente y con agitación durante 15 h. A una alícuota de 5 mL de esta mezcla se le añadieron 5 mL de EtOH, dejándose en reposo 2 días. Se obtuvieron de esta forma cristales

aptos para su estudio por difracción de rayos X de monocristal. Datos analíticos (%) para $[TIMe_2(H_2O)(MASC_{cic})] \cdot H_2O$: experimentales C 20.9, H 4,1, N 10,2; teóricos (calculados para $TIC_7H_{16}N_3O_4)$ C 20,5, H 3,9, N 10.2.

[TIMe₂(HABLSC_{cic})]·H₂O: sobre una disolución de 1 mmol (0,18 g) de HABLSC_{cic} en 50 mL de agua se añadieron 4,5 ml de una disolución acuosa de TIMe₂OH 0,22 M (1 mmol) gota a gota y con agitación magnética. Al finalizar la adición de la sal de TIMe₂⁺ se dejó la mezcla a temperatura ambiente y con agitación durante 15 h. A una alícuota de 5 mL de esta mezcla de reacción se le añadieron 5 mL de EtOH, y se dejó en reposo 2 días. Se obtuvieron de esta forma cristales aptos para su estudio por difracción de rayos X de monocristal. Datos analíticos (%) para [TIMe₂(HABLSC_{cic})]·H₂O: experimentales C 24.7, H 4,3, N 9,5; teóricos (calculados para TIC₉H₁₈N₃O₄) C 24,8, H 4,2, N 9.6.

[TIMe₂(BMASC_{cic})]: sobre una suspensión de color blanco de 0.6 mmoles (0,137 g) de HBMASC_{cic} en 15 mL de agua se añadieron 4,5 ml de una disolución acuosa de TIMe₂OH 0,22 M (1 mmoles) gota a gota y con agitación magnética. La suspensión resultante se mantuvo a temperatura ambiente y con agitación durante 24 h, al final de las cuales se añadieron 20 mL de MeOH, obteniéndose una mezcla translúcida e incolora. Se mantuvo la agitación 15 h más y por evaporación se obtuvo un precipitado cristalino apto para su estudio por difracción de rayos X de monocristal. Datos analíticos (%) para [TIMe₂(BMASC_{cic})]: experimentales C 36.6, H 4.0, N 9.1; teóricos (calculados para TIC₁₄H₁₈N₃O₂) C 36.2, H 3.9, N 9.0.

[TIMe₂(HCBSC)]·2H₂O: sobre una suspensión blanquecina de 1.4 mmoles (0,22 g) de H₂CBSC en 20 mL de agua se añadieron 12,7 ml de una disolución acuosa de TIMe₂OH 0,22 M (2.8 mmoles) gota a gota y con agitación magnética. La mezcla de reacción, translúcida, se mantuvo a temperatura ambiente y con agitación durante 15 h. Seguidamente se tomó una alícuota de 5 mL de esta mezcla y se le añadieron 5 mL de EtOH, dejándose en reposo hasta obtenerse, tras 48 horas, cristales aptos para su estudio por difracción de rayos X de monocristal, de composición [TIMe₂(HCBSC)]·2H₂O. Datos analíticos (%) experimentales C 21.5, H 3.8, N 10.7; teóricos (calculados para TIC₇H₁₈N₃O₅) C 19.6, H 4.2, N 9.8; y (calculados para TIC₇H₁₄N₃O₃) C 21.4, H 3.6, N 10.7. Los datos obtenidos son coherentes con la pérdida de las dos moléculas de agua, lo cual es razonable teniendo en cuenta que estos cristales se deterioran rápidamente se retiran de la disolución.

[TIMe₂(HPSC)]: sobre una suspensión blanquecina de 1.4 mmoles (0,20 g) de H₂PSC en 20 mL de MeOH se añadieron 6,4 ml de una disolución acuosa de TIMe₂OH 0,22 M (1.4 mmoles) gota a gota y con agitación magnética. La mezcla de reacción, translúcida y ligeramente ocre, se dejó a
temperatura ambiente y con agitación durante 15 h. De la mezcla en reposo y a temperatura ambiente se obtuvieron, en una tercera fracción, cristales aptos para su estudio por difracción de rayos X de monocristal, de composición [TIMe₂(HPSC)] (los datos analíticos para la primera fracción sugieren una mezcla del complejo y el ligando libre en relación aprox. 5:1, mientras que la segunda fracción parece ser principalmente semicarbazida).

[TIMe₂(H₂INSC)]·2MeOH: sobre una suspensión ocre de 1.4 mmoles (0,34 g) de H₂INSC en 20 mL de MeOH se añadieron 6,4 ml de una disolución acuosa de TIMe₂OH 0,22 M (1.4 mmoles) gota a gota y con agitación magnética. La mezcla de reacción, translúcida y ligeramente ocre, se mantuvo a temperatura ambiente y con agitación durante 15 h. De esta mezcla precipitó un sólido blancuzco pulverulento, cuyo análisis concuerda con la estequiometría TIMe₂(H₂INSC): Datos analíticos % experimentales C 32.6, H 3.3, N 11.4; teóricos (calculados para TIC₁₃H₁₅N₄O₃); experimentales C 32.5, H 3.2, N 11.7.

De las aguas madres de la reacción, en reposo a temperatura ambiente, se obtuvieron cristales aptos para su estudio por difracción de rayos X de monocristal, de composición [TIMe₂(H₂INSC)]·2MeOH.

Anexo.2.2- Estructura cristalina de complejos de TIMe₂⁺

Se discuten en este apartado las estructuras cristalinas de los complejos $[TIMe_2(H_2O)(MASC_{cic})] \cdot H_2O$ (XVIII), $[TIMe_2(HABLSC_{cic})] \cdot H_2O$ (XIX), $[TIMe_2(BMASC_{cic})]$ (XX), $[TIMe_2(HCBSC)] \cdot 2H_2O$ (XXI), $[TIMe_2(HPSC)]$ (XXII) y $[TIMe_2(H_2INSC)] \cdot 2MeOH$ (XXIII). En las Figuras Anexo.2.1 a Anexo.2.6 se representa el contenido de la unidad asimétrica de la estructura cristalina de dichos compuestos, y en la Tabla Anexo.2.1 se recogen sus datos cristalográficos y de refinado.

Figura Anexo.2.1 - Unidad asimétrica del compuesto [TIMe₂(H₂O)(MASC_{cic})]·H₂O (XVIII).

Figura Anexo.2.2 - Unidad asimétrica del compuesto [TIMe₂(HABLSC_{cic})]·H₂O (XIX).

Figura Anexo.2.3 - Unidad asimétrica del compuesto [TIMe2(BMASCcic)] (XX).

Figura Anexo.2.4 - Unidad asimétrica del compuesto [TIMe₂(HCBSC)]·2H₂O (XXI).

Figura Anexo.2.5 - Unidad asimétrica del compuesto [TIMe₂(HPSC)] (XXII).

Figura Anexo.2.6 - Unidad asimétrica del compuesto [TIMe2(H2INSC)]·2MeOH (XXIII).

En ninguno de estos complejos el entorno de coordinación del metal es tan sencillo como se muestra en la unidad asimétrica, ya que en todos los casos se establecen además interacciones TI···O que, aunque más débiles que un enlace covalente, no carecen de importancia. Así, como se discute a continuación, el índice de coordinación del TI en todos estos complejos es 6 o 7, lo cual no es sorprendente ya que este metal suele presentar una gran variedad de índices de coordinación y de geometrías de entorno. La asociación de pares de complejos dando lugar al arreglo cuadrangular **::·TI-O···TI-O···**: es común a los 6 compuestos de esta serie, con unas características especiales en el caso de los complejos (XXI), (XXII) y (XXIII). En todos ellos, la geometría del entorno de coordinación del TI es de bipirámide pentagonal distorsionada, con una posición ecuatorial vacante en los compuestos en que el índice de coordinación es 6. En las Tablas Anexo.2.2 y Anexo.2.3 se detallan las longitudes y ángulos de enlace relevantes de los complejos de TIMe₂⁺ con pirazolonas y semicarbazonas derivadas de α -oxo-ácidos, respectivamente, incluyendo las interacciones TI···O cuya longitud es mayor que la suma de radios covalentes (2.30 Å)^[5] pero menor que la suma de radios de Van der Waals (3.48 Å)^[5].

Ξ
ð
\sim
B
Ä
=
-
\leq
\sim
S
0
st
ΰ
⊐
g
5
0
C
S
<u> </u>
d)
م
ĕ
-
S
ĕ
Æ
ē
<u>_</u>
e
ъ
>
S
0
<u>.</u>
ff
-ic
60
a
ä
5
S
ö
Ħ
ö
Ч.
N.
-
- n
Š
бха
рехо
Anexo
a Anexo
ila Anexo
ibla Anexo
Fabla Anexo

Complejo	(III/X)	(XIX)	(xx)	(IXX)	(IIXX)	(IIIXX)
Fórmula	C ₇ H ₁₆ N ₃ O ₄ TI	C ₉ H ₁₈ N ₃ O ₄ TI	C ₂₈ H ₃₆ N ₆ O ₄ Tl ₂	C ₇ H ₁₄ N ₃ O ₅ TI	C ₂₄ H ₄₈ N ₁₂ O ₁₂ TI ₄	C ₁₅ H ₂₃ N ₄ O ₅ TI
Masa Molecular	410.60	436.63	929.39	424.58	1514.22	543.74
т (к)	120(2)	120.0(1)	110(2)	120(2)	100(2)	120(2)
እ (Å)	0.71069	0.71069	0.71069	0.71073	0.71069	0.71069
Sistema Cristalino	Monoclínico	Monoclínico	Ortorrómbico	Triclínico	Monoclínico	Monoclínico
Grupo Espacial	C2/c	P2(1)/n	Pbca	P-1	P2(1)/n	P2(1)/n
a (Å)	19.371(5)	12.015(5)	8.884(5)	8.474(2)	9.581(5)	12.648(5)
b (Å)	10.672(5)	7.354(5)	16.204(5)	10.146(3)	12.944(5)	9.098(5)
<i>c</i> (Å)	13.074(5)	16.048(5)	21.459(5)	16.640(4)	17.281(5)	16.458(5)
α (°)	000.06	90.00	90.000	93.307(4)	000.06	000.06
(°) B	115.347(5)	103.017(5)	90.000	97.980(4)	105.518(5)	100.423(5)
۲ (°) ۲	000.06	000.06	90.00	107.142(4)	000.06	000.06
v (ų)	2442.6(16)	1381.5(12)	3089(2)	1346.5(6)	2065.0(15)	1862.6(14)
Z	8		4	4	2	4
D _{calc} . (Mg/m ³)	2.233	2.099	1.998	2.094	2.435	1.939
μ (mm ⁻¹)	13.225	11.698	10.461	12.005	15.625	8.703
F(000)	1536	824	1760	792	1392	1048
Dimensiones (mm)	0.16 × 0.09 × 0.08	0.39 x 0.23 x 0.21	0.48 × 0.26 × 0.17	0.15 x 0.12 x 0.08	0.73 x 0.37 x 0.21	0.11 × 0.10 × 0.10
Intervalo $ heta$ (°)	2.23 a 28.28	1.92 a 27.48	1.90 a 28.30	2.11 a 27.88	1.99 a 26.37	1.88 a 27.88
Intervalos en <i>h, k, l</i>	-25,23; 0,14; 0,17	-15,15; 0,9; 0,20	0,11; 0,21; 0,28	-11,10; -13,13; 0,21	-11,11; 0,16; 0,21	-16,16; 0,11; 0,21
No. reflex. medidas	44628	18599	56616	23013	32103	33785
No. reflex. únicas	3030	3141	3836	6334	4204	4437
R _{int}	0.0593	0.0406	0.0518	0.0526	0.0591	0.0627
Я	0.0284	0.0224	0.0193	0.0323	0.0227	0.0267
Rw	0.0528	0.0616	0.0391	0.0784	0.0499	0.0520
G.O.F.	1.169	1.107	1.241	1.019	1.080	1.086

Anexo.2- Estructura cristalina de algunos complejos de TIMe₂⁺.

El etiquetado de los átomos incluidos en dichas tablas se refiere a las Figuras Anexo.2.7 y Anexo.2.8, que incluyen también los ángulos correspondientes al plano ecuatorial del entorno del metal.

Tabla Anexo.2.2 - Longitudes y ángulos de enlace (Å y °) relevantes en el entorno de coordinación del TI en los complejos (XVIII) a (XX). Átomos etiquetados de acuerdo con la Figura Anexo.2.7.

	(XVIII)	(XIX)			(XX)
TI1-C6	2.111(6)	TI1-C8	2.125(5)	Tl1-C13	2.111(4)
Tl1-C7	2.126(6)	TI1-C9	2.116(6)	Tl1-C14	2.123(4)
TI1-N3	2.512(4)	TI1-N3	2.570(4)	TI1-N3	2.565(3)
TI1-01	2.588(4)	Tl1-01	2.556(4)	Tl1-01	2.552(2)
Tl1-02w	2.719(4)	Tl1-01 ⁱ	2.748(4)	Tl1-01 ⁱ	2.665(3)
TL1-01 ^v	2.875	TL1-02 ^v	3.249	TL1-02 ⁱⁱⁱ	2.933
		TL1-O1w ^v	2.815		
C6-TI1-C7	172.6(2)	C8-Tl1-C9	168.5(2)	C13-Tl1-C14	174.99(16)
01-TI1-N3	63.61(13)	N3-TI1-O1	63.81(12)	01-TI1-N3	63.02(9)
N3-Tl1-O2w	94.93	01-TI1-01 ⁱ	69.21	N3-TI1-O2 [™]	146.43
02w-Tl1-01 ^v	124.74	01 ⁱ -Tl1-O2 ^v	83.05	02 ¹¹¹ -Tl1-O1 ¹	79.68
01 ^v -Tl1-01	76.61	02 ^v -Tl1-01w ^v	52.28	01 ⁱ -Tl1-O1	71.05
		O1w ^v -Tl1-N3	92.09		

(c) (XX): ⁱ-x, -y, 1-z; ⁱⁱⁱ 1/2-x, 1/2+y, z

Figura Anexo.2.7 - Entorno de coordinación del TI en los complejos (a) XVIII, (b) XIX y (c) XX.

Anexo.2.8.									
Moléc. 1	(ixxi)	Moléc. 2	(ixx)	Moléc. 1	(IIXX)	Moléc. 2	(IIXX)	IXX)	(
TI1-C16	2.107(9)	TI2-C26	2.110(8)	TI1-C15	2.121(6)	TI2-C25	2.100(6)	TI1-C12	2.109(4)
TI1-C17	2.104(8)	TI2-C27	2.116(8)	TI1-C16	2.104(6)	TI2-C26	2.113(6)	TI1-C13	2.107(4)
TI1-011	2.716(5)	TI2-021	2.631(5)	TI1-011	2.715(4)	TI2-021	2.817	TI1-01	2.729(3)
TI1-012	2.540(5)	TI2-022	2.638(5)	TI1-012	2.480(4)	TI2-022	2.455(4)	TI1-02	2.678(3)
TI1-N13	2.648(6)	TI2-N23	2.608(6)	TI1-N13	2.552(5)	TI2-N23	2.654(4)	TI1-N3	2.677(3)
TI1-021	2.753(5)	TI2-03w	2.830(6)	TI1-021 ^{vi}	2.806	TI2-022 ⁱ	2.619(4)	TI1-01 ⁱ	2.865
T11-05w	2.971(11)	TI2-05w	2.986(11)					ТI1-02 ^ї	2.723(3)
C16-T11-C17	172.2(3)	C26-TI1-C27	172.4(3)	C15-T11-C16	167.4(3)	C25-T12-C26	166.1(3)	C12-T11-C13	174.10(16)
011-TI1-N13	59.70(16)	021-TI2-N23	61.63(16)	011-TI1-N13	61.38(13)	021-TI2-N23	58.31	01-TI1-N3	59.81(9)
N13-T 1-012	61.88(17)	N23-TI2-O22	60.80(16)	N13-T11-012	63.41(12)	N23-TI2-022	62.25(12)	N3-TI1-O2	58.89(9)
012-TI1-021	80.20(16)	022-TI2-03w	85.20(17)	012-TI1-021 ^{vi}	73.38	022-TI2-022 ⁱ	63.83(14)	02-TI1-01 ⁱ	66.63
021-Tl1-05w	77.5(2)	03w-Tl2-05w	73.5(2)	021 ^{vi} -TI1-011	161.83	022 ⁱ -TI2-021	174.59	01 ⁱ -TI1-O2 ⁱⁱ	106.04
05w-TI1-011	81.0(2)	05w-Tl2-021	79.1(2)					02 ¹¹ -11-01	67.99(9)
			C25 02	1 N23				L	

Tabla Anexo.2.3 - Longitudes y ángulos de enlace (Å y °) relevantes en el entorno de coordinación del TI en los complejos (XXI) a (XXIII). Átomos etiquetados según Figura

Como puede apreciarse en la Figura Anexo.2.1, la unidad asimétrica del compuesto (XVIII) contiene una molécula del complejo $[TIMe_2(H_2O)(MASC_{cic})]$ y una molécula de agua de cristalización. Además de las interacciones representadas en la Figura Anexo.2.1, el átomo de TI interacciona con el O1 de un complejo vecino (siendo la distancia de este átomo al átomo de TI de 2.87 Å). Esta interacción da lugar a la formación de dímeros como el representado en la Figura Anexo.2.9. La esfera de coordinación del átomo metálico se completa con una molécula de agua que se ubica a 2,72 Å del centro metálico. Se alcanza así un índice de coordinación 6 con geometría de bipirámide pentagonal distorsionada con una posición vacante (Figura Anexo.2.7).

En la Figura Anexo.2.2 se muestra el contenido de la unidad asimétrica del compuesto (XIX): una molécula del complejo y una molécula de agua de cristalización. En dicha figura se observa que la pirazolona interacción con el TIMe₂⁺ a través de sus átomos O1 y N3 (desprotonado). En la Figura Anexo.2.7 vemos como la esfera de coordinación del TI se completa con una molécula de agua, el átomo O1 de una molécula de un complejo vecino (interacción que asocia ambas moléculas de complejo en dímeros, como puede observarse en la Figura Anexo.2.9) y un átomo O2 de una tercera molécula de complejo, alcanzando así un índice de coordinación 7 para el átomo metálico. El entorno de coordinación, tipo C₂NO₄, tiene geometría de bipirámide pentagonal distorsionada (el ángulo C8-TI-C9 es de 168.48°, mientras que la desviación de los 72° ideales para los ángulos del plano ecuatorial se ilustra en la Figura Anexo.2.7).

.En el compuesto (XX) el modo de coordinación del pirazolonato es el mismo que en el compuesto (XIX), es decir que interactúa con el $TIMe_2^+$ a través de los átomos O1 y N3. Además, el catión establece sendas interacciones con un átomo O1 de un complejo vecino (lo que resulta en la formación del dímero al igual que en los dos casos anteriores, pero con distancias TI-O del orden de un enlace covalente) y con el O2 de una tercer molécula del complejo, como puede apreciarse en la Figura Anexo.2.7. El entorno de coordinación vuelve a tener geometría de bipirámide pentagonal distorsionada con una posición ecuatorial vacante, al igual que en el compuesto (XVIII).

En la Figura Anexo.2.4 se representa el contenido de la unidad asimétrica del compuesto (XXI): dos unidades del complejo [TIMe₂(HCBSC)] y 4 moléculas de agua, una de ellas desordenada en dos posiciones. Esta última molécula de agua O4W interacciona con el átomo metálico TI(1) (ocupación del 40%), y O5w (con una ocupación del 60 %) lo hace con ambos centros metálicos, como se muestra en la Figura Anexo.2.8. Por otra parte, la molécula de agua O3w se encuentra a 2.83 Å del átomo TI2, ocupando la séptima posición de un entorno con geometría de bipirámide pentagonal distorsionada, que es la geometría del entorno de coordinación de ambos centros metálicos de la unidad asimétrica. Este complejo también se asocia en dímeros, pero de un modo distinto a los tres complejos anteriores. Como puede apreciarse en la Figura Anexo.2.9, los complejos (XVIII), (XIX) y (XX) formaban dímeros en los que el arreglo :::TI-O:::TI-O:::

átomos de TI y O pertenecientes a las dos moléculas que forman el dímero, mientras que en el caso del compuesto (XXI) se trata de un dímero "abierto" en el que uno de los átomos de O de la unidad **:::TI-O:::TI-O:::** pertenece a una de las moléculas de agua de cristalización presentes en la estructura dicho compuesto.

Figura Anexo.2.9.- Formación de dímeros debida a interacciones TI···O para los compuestos (a) (XVIII), (b) (XIX), (c) (XX) y (d) (XXI).

En el compuesto (XXII) (cuya unidad asimétrica contiene dos unidades del complejo [TIMe₂(HPSC)]) no hay un átomo que coordine al metal del modo en que lo hacían las moléculas O4w/O5w en el compuesto anterior, como puede apreciarse en la Figura Anexo.2.10, quedando esta posición vacante. Así, el índice de coordinación del TI en esta estructura vuelve a ser 6, con una geometría para el entorno del TI de bipirámide pentagonal distorsionada en la que queda vacante una de las posiciones ecuatoriales. En la Figura Anexo.2.10 se detallan los ángulos del plano ecuatorial del entorno de coordinación del TI, todos apartados de los 72º esperados en este tipo de geometría; el ángulo C-TI-C es de aproximadamente 167º. Por otra parte, y a diferencia de lo observado para los compuestos (XVIII) a (XXI), para este complejo las interacciones TI···O dan lugar a la formación de tetrámeros como el representado en la Figura Anexo.2.10; la molécula "2" de la unidad asimétrica forma un dímero similar a los de los complejos (XVIII) a (XX), en el que esta presente la unidad **:::TI-O···TI-O···** pero con distancias de enlace TI-O del orden de un enlace covalente, y estos dímeros interaccionan con dos moléculas "1", a través de interacciones TI···O21.

Figura Anexo.2.10 - Formación de unidades tetraméricas mediante interacciones TI…O en el compuesto (XXII). ¹ 1-x, 1-y, 1-z; ^{iv} 1+x, y, z; ^{vi} -x, 1-y, 1-z.

En el compuesto (XXIII) el índice de coordinación del TI es 7, presentando su entorno de coordinación una geometría de bipirámide pentagonal distorsionada (El ángulo C-TI-C es de 174.10°, los valores de los ángulos del plano ecuatorial del entorno del TI se detallan en la Figura Anexo.2.8). A diferencia de lo que sucede con el resto de los complejos de esta serie, el compuesto (XXIII) se asocia en cadenas infinitas a través de las interacciones TI1···O1 y TI2···O2 (siendo O1 y O2 átomos de una molécula vecina a la del TI involucrado). El modo en que estas interacciones extienden la estructura en cadenas infinitas se muestra en la Figura Anexo.2.11.

Figura Anexo.2.11 - Formación de cadenas debido a interacciones TI/O en el compuesto (XXIII). ⁱ 3/2-x, -1/2+y, 3/2-z; ⁱⁱ 3/2-x, 1/2+y, 3/2-z.

La coordinación al catión $TIMe_2^+$ afecta la configuración y parámetros de los ligandos, en distinta medida, según se trate de una pirazolona o de una semicarbazona. Como ejemplo, discutiremos los cambios que se producen para los ligandos HMASCcic y H₃INSC cuando forman parte de los compuestos (XVIII) y (XXI), respectivamente.

Al comparar las longitudes de enlace del ligando libre HMASC_{cic} (apartado Anexo.1.2) con las correspondientes longitudes de enlace del pirazolonato del compuesto (XVIII) vemos que el factor de cambio más importante es la pérdida del H del N3 del ligando libre. Esto genera una carga negativa que afecta a todos los enlaces del anillo pirazolona, sin afectar demasiado al grupo carbamida. Así, véase en la Tabla Anexo.2.4 como varían los parámetros para esta molécula al coordinarse al metal,

donde las diferencias más notorias son las elongaciones de los enlaces C2-C3 y C4-O2, mientras C3-C4 se acorta.

	HMASC _{cic}	[TIMe ₂ (H ₂ O)(MASC _{cic})]·H ₂ O
C1-N1	1.32	1.33
C1-O1	1.22	1.23
C1-N2	1.40	1.40
N2-N3	1.37	1.39
C2-N3	1.33	1.33
C2-C3	1.36	1.40
C3-C4	1.41	1.38
C4-O2	1.25	1.29
C4-N2	1.40	1.40

Tabla Anexo.2.4 - Longitudes de enlace (Å) en el ligando HMASC_{cic} libre y en el compuesto (XVIII).

En cualquier caso, las variaciones no son muy significativas, como tampoco lo son para los ángulos. La misma situación se encuentra al comparar los pirazolonatos de los compuesto (XIX) y (XX) con los respectivos ligandos libres. Vale mencionar que no se produce inversión de la configuración en torno al enlace C1-N2 porque en el ligando libre (para las tres pirazolonas en discusión) la configuración (que deja a los átomos O1 y N3 en *syn*) es la requerida para que el ligando actúe como bidentado en el complejo correspondiente. Tampoco se ve afectada de modo significativo la planaridad de estas moléculas.

Algo similar sucede al comparar la estructura del ligando libre H₂CBSC·1/2H₂O con la del semicarbazonato HCBSC presente en el compuesto (XXI), al menos en lo que respecta a las distancias y ángulos de enlace. La única variación significativa que se observa es el acortamiento del enlace C3-O2 (desde 1.30 a 1.26 Å) al pasar del ligando libre al complejo, acompañado de un ligero incremento en la longitud del enlace C3-O3, lo cual era de esperar dado que este es el grupo que se desprotona. Otra diferencia atañe a la configuración del ligando respecto del enlace C1-N2. En el ligando libre, esta configuración era la E, consecuencia de la formación del enlace de hidrógeno intramolecular N1-H···N3; en el complejo, esta configuración debe invertirse, ya que es el confórmero Z el que coordina al catión $TIMe_2^+$ en el compuesto (XXI). Se alcanzan las mismas conclusiones al analizar las estructuras cristalinas de los pares (ligando-libre/complejo): H₂PSC/TIMe₂(HPSC) y H₃INSC/TIMe₂(H₂INSC)]·2H₂O. En el Apéndice 2 se detallan todas las longitudes y ángulos de enlaces de las estructuras de este apartado.

Cabe mencionar el distinto efecto que sobre los parámetros de los ligandos provoca la coordinación a los cationes TIMe₂⁺ y Ga(III). Por ejemplo, en la Figura Anexo.2.12 se muestran las longitudes de enlace y los ángulos de enlace relevantes del ligando semicarbazonato HCBSC⁻ cuando forma parte del complejo [Ga(HCBSC)(CBSC)] y del complejo [TIMe₂(HCBSC)]·2H₂O. Como puede apreciarse en dicha figura, para un mismo grado de desprotonación del ligando (se trata de un semicarbazonato monoaniónico, que ha perdido el protón del grupo carboxílico), hay diferencias sustanciales en la longitud de algunos enlaces, así como ligeras variaciones en los ángulos del ligando.

Figura Anexo.2.12 - Parámetros del ligando HCBSC⁻ en los compuestos (a) [Ga(HCBSC)(CBSC)] y (b) [TIMe₂(HCBSC)].

Las diferencias en las longitudes de enlace se deben a la mayor acidez del Ga(III) comparada con la del catión TIMe₂⁺: vemos como los enlaces C21-O21 y C23-O22 son más largos para el complejo de Ga. Por su parte, los ángulos de enlace del ligando en el complejo de TIMe₂⁺ son algo mayores que en el complejo de Ga(III) debido al mayor volumen del catión.

En la Tabla Anexo.2.5 se da cuenta de los distintos parámetros de los enlaces de hidrógeno presentes en la estructura cristalina del compuesto (XVIII). Como puede verse en la tabla, todos los enlaces de hidrógeno involucran al menos a una de las moléculas de agua de la unidad asimétrica, a excepción del enlace intramolecular N1-H1B···O2.

Como ya se comentara, en los complejos pertenecientes a esta serie existen interacciones TI···O más débiles que un enlace covalente clásico, pero que modifican el entorno de coordinación y el tipo de asociación entre moléculas de complejo. En el caso del complejo (XVIII), la presencia de la interacción TI···O1 da lugar a la formación de dímeros. Por otra parte, los enlaces de hidrógeno vinculan a las moléculas de agua formando agregados de cuatro moléculas en un arreglo cuadrangular que hace de puente entre seis moléculas del complejo (Figura Anexo.2.13).

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O1W ⁱ	0.86	2.14	2.997(7)	173.1
N1-H1B…O2	0.86	2.01	2.696(6)	136.6
01W-H11W…02	0.85(2)	1.90(3)	2.744(6)	168(8)
O1W-H12W…O2W ⁱⁱ	0.85(2)	1.92(3)	2.760(6)	169(8)
02W-H21W…01W ⁱⁱⁱ	0.86(2)	2.07(5)	2.865(6)	153(9)
O2W-H22W…O2 ^{iv}	0.848(19)	1.88(2)	2.732(6)	178(6)

Tabla Anexo.2.5 - Enlaces de hidrógeno (Å y °) del compuesto (XVIII).

ⁱ -x+3/2, -y+1/2, -z+1; ⁱⁱ x+1/2, y-1/2, z; ⁱⁱⁱ -x+3/2, -y+3/2, -z+1; ^{iv} -x+3/2, y+1/2, -z+3/2.

Cada dímero del complejo (XVIII) interacciona (mediante el enlace N1-H1A···O1Wⁱ y la interacción Tl···O2w) con 6 de los mencionados arreglos tetramoleculares (Figura Anexo.2.14), que lo vinculan a su vez con otros 16 dímeros, generándose así una red tridimensional (Figura Anexo.2.15).

Figura Anexo.2.13 - Enlaces de hidrógeno entre agregados tetramoleculares de agua y unidades del complejo [TIMe₂(MASC_{cic})]. ^{ix} x, 1-y, -1/2+z; ^x 2-x, 1-y, 1-z; ^{xi} 1/2+x, 1/2+y, z; ^{xii} 2-x, y, 3/2-z.

Figura Anexo.2.14 - Interacciones entre dímeros $[TIMe_2(MASC_{cic})]_2$ y agregados tetramoleculares de agua de solvatación. ^v 1-x, 1-y, 1-z; ^{vi} -1/2+x, 1/2+y, z; ^{vii} -1/2+x, 3/2-y, -1/2+z; ^{viii} 3/2-x, -1/2+y, 3/2-z.

Figura Anexo.2.15 - Estructura supramolecular del compuesto (XVIII).

En la Tabla Anexo.2.6 se recogen los enlaces de hidrógeno presentes en la estructura cristalina del compuesto (XIX). Como puede apreciarse en dicha tabla, hay un solo enlace intramolecular, N1-H1A···O2, y dentro de la unidad asimétrica sólo se establece el antedicho enlace y el enlace con la molécula de agua de cristalización presente en la estructura, O1W-H2W···O2. Al margen de estas interacciones, se establecen 3 enlaces de hidrógeno con moléculas generadas por simetría. Todos estos enlaces de hidrógeno se representan en la Figura Anexo.2.16.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O2	0.92(5)	1.92(5)	2.679(6)	138(4)
N1-H1B…O2 ⁱⁱ	0.77(7)	2.14(7)	2.901(6)	171(6)
01W-H1W…O3 ⁱⁱⁱ	0.77(8)	1.95(8)	2.718(5)	172(7)
01W-H2W…O2	0.80(6)	1.90(7)	2.700(5)	171(6)
03-H3…01W ^{iv}	0.85(11)	1.91(11)	2.748(6)	166(10)
-x+1, -γ+2, -z+1; " -x	+1/2, y+1/2	, -z+1/2; 🏼 -:	x+1, -y+1, -:	z; ^{iv} x, y-1, z

Tabla Anexo.2.6- Enlaces de hidrógeno (Å y °) del compuesto (XIX).

El enlace N1-H1B···O2ⁱⁱ hace que la estructura crezca en cadenas infinitas paralelas al eje b (como la representada en la Figura Anexo.2.17) que se unen entre si mediante los enlaces O1W-H1W···O3ⁱⁱⁱ, O1W-H2W···O2 y O3-H3···O1W^{iv}, formando planos infinitos paralelos al plano (101). Pero si tenemos en cuenta las 3 interacciones débiles Tl1···O presentes en este compuesto, vemos que la estructura supramolecular del mismo es una red tridimensional infinita como se muestra en la Figura Anexo.2.18.

Figura Anexo.2.16 - Enlaces de hidrógeno presentes en la estructura cristalina del compuesto (XIX).

Figura Anexo.2.17 - Formación de cadenas por enlaces de hidrógeno en el compuesto (XIX).

Figura Anexo.2.18 - Estructura supramolecular del compuesto (XIX).

En la Tabla Anexo.2.7 se detallan los parámetros de los 2 enlaces de hidrógeno correspondientes a la estructura cristalina del compuesto (XX). Se trata del enlace intramolecular N1-H…O2 (presente en los tres pirazolonatos que se discuten en este apartado) y de un enlace de hidrógeno que involucra una molécula del complejo generada por simetría. Estos enlaces se representan en la Figura Anexo.2.19.

	D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
	N1-H1A…O2 ⁱⁱ	0.86(4)	1.97(4)	2.820(4)	170(4)
	N1-H1B…O2	0.82(5)	2.02(5)	2.701(4)	139(4)
		" x-1/2	, -y-1/2, -z+	-1.	
0-0		0			
<u> </u>		02			2
a	M	denter the		09	1 P
Jo-		NI	~ L	2	1
0		Charles,	1 1 02" Y	HC/	
00			A A	P	ġ
	5 -0		J.	\$	
	6		Į	9	

Tabla Anexo.2.7- Enlaces de hidrógeno (Å y °) del compuesto (XX).

Figura Anexo.2.19 - Enlaces de hidrógeno presentes en el compuesto (XX).

Como ya se comentara, la interacción Tl1-O1ⁱ es responsable de la formación de dímeros [TIMe₂(BMASC_{cic})]₂, como puede verse en la Figura Anexo.2.7. Por su parte, la interacción Tl1-O2ⁱⁱⁱ hace crecer la estructura en planos infinitos paralelos al plano ab, como se muestra en la Figura Anexo.2.20. Estos planos se ven estabilizados por el enlace de hidrógeno N1-H1A···O2ⁱⁱ.

Figura Anexo.2.20 - Estructura supramolecular del compuesto (XX).

El compuesto (XXI) presenta un enlace de hidrógeno intermolecular entre moléculas del complejo de la unidad asimétrica, y 5 enlaces más con moléculas del complejo generadas por simetría. Estos enlaces de hidrógeno se detallan en la Tabla Anexo.2.8.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O2W ⁱ	0.86	2.23	3.001(8)	149.2
N11-H11B…O23 ⁱⁱ	0.86	2.09	2.870(8)	150.1
N12-H12…O23 ⁱⁱ	0.86	2.16	2.878(8)	141.1
N21-H21A…O12	0.86	1.97	2.808(8)	165.6
N21-H21B…O13 ⁱⁱⁱ	0.86	2.13	2.891(8)	148.1
N22-H22…O13 ⁱⁱⁱ	0.86	2.02	2.776(8)	146.9
ⁱ -x, -y+1, -	z+1; ["] x-1,	y+1, z; " -x	:+1, -y+1, -z	

Tabla Anexo.2.8- Enlaces de hidrógeno (Å y °) del compuesto (XXI).

Los enlaces N11-H11B····O23^{II}, N12-H12···O23^{II}, N21-H21B···O13^{III} y N22-H22···O13^{III} extienden la estructura en dobles cadenas como la representada en la Figura Anexo.2.21, virtualmente paralelas al plano (221).

Figura Anexo.2.21 - Crecimiento en dobles cadenas debido a enlaces de hidrógeno del compuesto (XXI).

Existen además en la unidad asimétrica de este compuesto 4 moléculas de agua (una de las cuales se halla desordenada en dos posiciones) cuyos átomos de hidrógeno no se han podido refinar, que se encuentran a distancias apropiadas para la formación de enlaces de hidrógeno, como se detalla en la Tabla Anexo.2.9, y se ilustra en la Figura Anexo.2.22.

Por su parte, y como se muestra en la Figura Anexo.2.4, ambos centros metálicos establecen interacciones débiles con átomos de O de las moléculas de agua de cristalización: Tl1…O4w, Tl1…O5w, Tl2…O5w y Tl2…O3w. A través de estas interacciones, las dobles cadenas paralelas antes

descritas se unen formando una red tridimensional con grandes huecos en los que se ubican los grupos etilo, como la representada en la Figura Anexo.2.23.

Tabla Anexo.2.9.- Distancias (Å) entre moléculas de agua y átomo de oxígeno capaces de formar enlaces de hidrógeno en el compuesto (XXI).

Interacción	Distancia (Å)	Operación de simetría	Interacción	Distancia (Å)	Operación de simetría
01w…02w ^{iv}	2.768	1-x, 1-y, 1-z	02w…022 ^{vi}	2.892	x-1, y, z
01w…03w ^{iv}	2775	1-x, 1-y, 1-z	02w…05w	2.946	
01w…03w ^v	2.804	x, y+1, z	03w…011 ^{iv}	2.731	1-x, 1-y, 1-z
01w…022 ^v	2.742	x, y+1, z	04w…05w ^{iv}	2.922	1-x, 1-y, 1-z
02w…04w	2.728		04w…011	2.995	

Figura Anexo.2.22 - Moléculas de agua de cristalización con distancias apropiadas para la formación de enlaces de hidrógeno en la estructura (XXI).

Figura Anexo.2.23 - Estructura supramolecular del compuesto (XXI).

Nos ocuparemos ahora de los enlaces de hidrógeno del complejo [TIMe₂(HPSC)] (XXII). Esta estructura no presenta enlaces de hidrógeno intramoleculares; los 7 enlaces de hidrógeno que

estabilizan la estructura son intermoleculares y generados por simetría, como se detalla en la *Tabla Anexo.2.10*.

	D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
	N11-H11A…O12 ⁱⁱ	0.86	2.46	3.092(6)	131.1
	N11-H11A…N21 ⁱⁱⁱ	0.86	2.62	3.443(7)	159.8
	N11-H11B…O23 ⁱⁱ	0.86	2.21	2.979(7)	148.0
	N12-H12…O23 [#]	0.86	1.96	2.772(6)	156.5
	N21-H21A…O12 ^{iv}	0.86	2.17	2.886(6)	139.9
	N21-H21B…O13 ^v	0.86	2.09	2.878(6)	151.8
_	N22-H22…O13 ^v	0.86	2.14	2.882(6)	143.9

Tabla Anexo.2.10- Enlaces de hidrógeno (Å y °) del compuesto (XXII).

ⁱ -x+1, -y+1, -z+1; ⁱⁱ x+1/2, -y+3/2, z+1/2; ⁱⁱⁱ x-1/2, -y+3/2, z+1/2; ^{iv} x+1, y, z; ^v -x+1, -y+2, -z+1.

Las interacciones débiles TI···O presentes en este compuesto forman agregados tetramoleculares del complejo [TIMe₂(HPSC)] estabilizados por el enlace de hidrógeno N21-H21A···O12^{iv}, como se ilustra en la Figura Anexo.2.24. El resto de los enlaces de hidrógeno vinculan estos agregados generando una red tridimensional infinita cono se muestra en la Figura Anexo.2.25.

Figura Anexo.2.24 - Agregados tetramoleculares del complejo (XXII).

Figura Anexo.2.25 - Estructura supramolecular del compuesto (XXII).

Para finalizar con la discusión de las estructuras de este apartado, en la Tabla Anexo.2.11 se detallan los enlaces de hidrógeno del compuesto (XXIII).

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N4-H4…O3 ⁱⁱⁱ	0.86	2.12	2.934(4)	158.7
N2-H2…O1S	0.86	2.05	2.839(5)	151.9
N1-H1A…O3 ^{iv}	0.86	2.30	2.870(4)	123.5
N1-H1B…O1S	0.86	2.18	2.953(5)	149.1
02S-H2S…O3 ⁱⁱⁱ	0.97(5)	1.81(6)	2.776(5)	174(5)
O2S-H2SN4	0.97(5)	2.74(5)	3.151(5)	106(4)
01S-H1S…02S	0.92(5)	1.77(5)	2.684(5)	169(4)
"-x+	1/2, y+1/2	!, -z+3/2; [₩]	x, y+1, z.	

Tabla Anexo.2.11 - Enlaces de hidrógeno (Å y °) del compuesto (XXIII).

Como ya se ha comentado, las interacciones TI···O1ⁱ y TI···O2ⁱⁱ extienden la estructura del compuesto en cadenas infinitas paralelas al eje b, estabilizadas por el enlace de hidrógeno N1-H1A···O3^{iv}, como se muestra en la Figura Anexo.2.26. Estas cadenas interaccionan entre si a través del resto de enlaces de hidrógeno intermoleculares (y una interacción C-H···π), generando planos infinitos paralelos al plano ab (como el representado en la Figura Anexo.2.27) en los cuales las moléculas de disolvente actúan como puentes entre cadenas.

Figura Anexo.2.26 - Formación de cadenas en la estructura del compuesto (XXIII).

Figura Anexo.2.27 - Estructura supramolecular del compuesto (XXIII).

Anexo.3- ESTRUCTURA CRISTALINA DEL COMPLEJO [Ga(fen)₂Cl₂]Cl·3H₂O

En este apartado se describe la estructura del complejo de Ga(III) [Ga(fen)₂Cl₂]Cl·3H₂O. Cabe mencionar que se ha publicado la estructura del mismo complejo^[6] pero solvatado con una molécula de acetonitrilo y una de agua, cristalográficamente diferente del aquí descripto. Los parámetros del complejo en sí son prácticamente iguales en ambas estructuras, aunque no así la estructura macromolecular del cristal.

Anexo.3.1- Obtención de [Ga(1,10-fen)₂Cl₂]Cl·3H₂O

Síntesis de 2,2'-bipiridilo bis-semicarbazona ($H_2BIPIBSC$): Sobre una suspensión de color marrón de 5 mmoles (1,10 g) 2,2'bipiridilo en 20 mL de EtOH se agregó una disolución de 10 mmoles (1.10 g) de clorhidrato de semicarbazida en 10.0 mL de H_2O , redisolviéndose el sólido marrón y dando lugar a una disolución rojiza. La mezcla de reacción se dejó a reflujo, con agitación, durante

3 h, transcurridas las cuales, se filtró y secó el sólido obtenido, el sesquiclorhidrato del ligando, H₂BIPIBSC·1.5HCl·H₂O. Datos Analíticos (%): experimentales C 43.6, H 4.4, N 28.1; teóricos (calculados para $C_{14}H_{17.5}N_8O_3Cl_{1.5}$) C 42.1, H 4.4, N 28.1.

Obtención de **[Ga(1,10-fen)₂Cl₂]Cl·3H₂O**: Se preparó una suspensión de 0.7 mmoles (0.28 g) de H₂BIPIBSC·1.5HCl·H₂O en 20.0 mL de MeOH y se calentó a reflujo. Se agregaron sobre ella 0.4 mmoles de GaCl(AcO)₂ en 2.0 mL de MeOH. La mezcla de reacción se mantuvo a reflujo y con agitación magnética durante 1.5 h sin observarse cambio alguno. Seguidamente se agregaron sobre la mezcla de reacción 0.8 mmoles (0.14 g) de 1,10-fenantrolina disueltos en 20.0 mL de MeOH, y se mantuvo el sistema a reflujo durante 2 h adicionales, observándose la disolución del sólido en suspensión. Por evaporación lenta del disolvente, a temperatura ambiente se obtuvo como segunda fracción un sólido cristalino incoloro, apto para su estudio estructural por difracción de rayos X de monocristal, y que resulto ser el complejo [Ga(1,10-fen)₂Cl₂]Cl·3H₂O. Datos analíticos (%): experimentales C 47.3, H 3.3, N 9.2; teóricos (calculados para [Ga(1,10-fen)₂Cl₂]Cl·4H₂O, GaC₂₄H₂₄N₄Cl₃O₄): C 47.4, H 4.0, N 9.2.

Anexo.3.2- Estructura cristalina de [Ga(1,10-fen)₂Cl₂]Cl·3H₂O

En la Figura Anexo.3.1 se representa el contenido de la unidad asimétrica del compuesto [Ga(fen)₂Cl₂]Cl·3H₂O (XVII), y en la Figura Anexo.3.2 el catión complejo completo junto con el contraión correspondiente y las moléculas de agua de cristalización. En la Tabla Anexo.3.1 se recogen los datos cristalográficos y de refinado de esta estructura cristalina, y en la Tabla Anexo.3.2 se detallan las longitudes y ángulos de enlace más relevantes del compuesto.

Figura Anexo.3.1 - Unidad asimétrica del compuesto [Ga(fen)₂Cl₂]Cl·3H₂O (XVII).

Figura Anexo.3.2 - Representación ORTEP del compuesto (XVII). ⁱ 1-x, y, ½-z; ⁱⁱ 1-x, -y, 1-z; ⁱⁱⁱ 1-x, y, 3/2-z

Tabla Anexo.3.1 - Datos cristalográficos y de refinado del compuesto (XVII).

Fórmula	$C_{24} H_{16} C_{13} Ga N_4 O_3$	Z	4
Masa Molecular	584.48	D _{calc} . (Mg/m ³)	1.515
т (К)	100.0(1)	μ(mm⁻¹)	1.420
λ (Å)	0.71069	F(000)	1176
Sistema Cristalino	Monoclínico	Dimensiones (mm)	0.27 x 0.12 x 0.10
Grupo Espacial	C2/c	Intervalo θ (°)	2.01 a 32.03
a (Å)	15.671(5)	Intervalos en h, k, l	-23,22; 0,20; 0,18
b (Å)	13.449(5)	No. reflex. medidas	39106
<i>c</i> (Å)	12.359(5)	No. reflex. únicas	4468
α (°)	90.000	R _{int}	0.0334
β(°)	100.322(5)	R	0.0422
°) γ	90.000	R _w	0.1344
V (ų)	2562.6(16)	G.O.F.	1.077

Enlace	Longitud de enlace	Enlace	Ángulo de enlace	
Ga-Cl1	2.2884(8)	N1-Ga-N2	79.40(7)	- Esquema de numeración:
Ga-N1	2.0675(19)	N1-Ga-N1 ⁱ	167.37(9)	Cl ₁
Ga-N2	2.1052(18)	N1-Ga-N2 ⁱ	91.42(7)	
		N1-Ga-Cl1	95.84(5)	Ga
		N1-Ga-Cl1 ⁱ	92.71(5)	N ₁ ⁱ ·····N ₂
		N2-Ga-N2 ⁱ	87.33(10)	
		N2-Ga-Cl1	174.00(5)	ⁱ 1-y y 1/2-7
		N2-Ga-Cl1 ⁱ	89.16(6)	1 ^, ÿ, 1/2 ⁻ 2
		Cl1-Ga-Cl1 ⁱ	94.74(4)	

Tabla Anexo.3.2 - Longitudes (Å) y ángulos (°) de enlace relevantes del compuesto (XVII).

La unidad asimétrica del compuesto (XVII) contiene medio catión complejo $[Ga(fen)_2Cl_2]^+$, medio anión Cl⁻ y una molécula y media de agua de cristalización, desordenada en 5 posiciones (donde las ocupaciones para las densidades etiquetadas como O1w, O2w, O3w, O4w y O5w son del 30, 20, 25, 50 y 25% respectivamente). En el catión complejo, el átomo de Ga(III) se encuentra en un entorno octaédrico ligeramente distorsionado, de tipo N₄Cl₂, formado por los átomos de N de dos moléculas de 1,10-fenantrolina y dos aniones Cl⁻, como puede apreciarse en la *Figura Anexo.3.3*, donde también se detallan los ángulos correspondientes a lo que hemos considerado el plano ecuatorial de dicho entorno. El ángulo centrado en el metal que forman los átomos apicales Cl1ⁱ y N2ⁱ es de 174 °.

Figura Anexo.3.3 - Entorno de coordinación del Ga(III) en el compuesto (XVII).

La distorsión del entorno octaédrico se debe a la presencia en el mismo de dos tipos de átomos diferentes, y fundamentalmente al *bite* de la molécula de fenantrolina. Definiendo dos planos que contengan, respectivamente, a cada una de las moléculas de fenantrolina, el átomo central y uno de los aniones Cl⁻ coordinados a este, vemos que forman un ángulo diedro de aproximadamente 89°, como queda representado en la Figura Anexo.3.4.

Figura Anexo.3.4 - Ángulo diedro entre planos del entorno de coordinación del Ga(III) en el compuesto (XVII). ⁱ -x, y,1/2-z.

Respecto de las longitudes de enlace relevantes de esta estructura, solo nos referiremos a las distancias Ga-N y Ga-Cl, comparando estos parámetros con los de los compuestos de Ga(III) y fenantrolina incluidos en la Tabla Anexo.3.3. En la Tabla Anexo.3.4 se recogen las distancias de enlace Ga-N y Ga-Cl (cuando dicho enlace está presente) del compuesto (XVII) y los compuestos de la Tabla Anexo.3.3, junto con los valores medios de las distancias de enlace Ga-N y Ga-Cl de la base de datos CSD^[7].

Tabla Anexo.3.3 - Compuestos de Ga(III) y fenantrolina hallados en la base de datos CSD.

Compuesto	Estructura	Código CSD y referencia
[Ga(fen)₂(Br)₂]₂(NH₄)(Br)₃ ·8H₂O	Real Art	GEDWIW ^[11]
[Ga(fen)(H₂PO₄)(HPO₄)] _n ∙nH₂O	Old Gal Old	JEBCUP ^{[12}
([Ga(fen)(H ₂ PO ₄)(HPO ₄)] ₂)n ·3nH ₂ O	Contraction of the second seco	JEBDAW ^[12]
[Ga(fen)pyCl(C₅Cl₄O₂)]·3py		RUVLOJ ^[13]
[(Me₅Cp)(CO)₂FeGa(fen) Cl](BPh₄)·2MeCN		ULEZIU ^[14]
[(Me₅Cp)(CO)₂FeGa(fen) (<i>p</i> -Me-C ₆ H₄-S)] ⁺ (BPh₄) ⁻	Start Contraction	ULEZOA ^[14]

Tabla Anexo.3.3 (continuación)- Compuestos de Ga(III) y fenantrolina hallados en la base de datos CSD.

Como puede apreciarse en la Tabla Anexo.3.4, en general, las distancias de enlace Ga-N para compuestos en que los átomos de N pertenecen al ligando 1,10-fenantrolina no son sensibles a la naturaleza o número de ligandos que coordinen al átomo de Ga.

	Ga-N1	Ga-N2	Ga-Cl1
(XVII)	2.067(2)	2.105(2)	2.288(2)
CMPHGA	2.118	2.434	2.440
FEYKEA	2.088	2.123	-/-
FIVTOU	2.099	2.100	-/-
GEDWIW	2.088	2.096	-/-
JEBCUP	2.091	2.091	-/-
JEBDAW	2.083	2.131	-/-
RUVLOJ	2.113	2.155	2.329
ULEZIU	2.057	2.065	2.209
ULEZOA	2.068	2.069	-/-
CSD	2.1	.49	2.206

Tabla Anexo.3.4 - Longitudes de enlace (Å) Ga-N y Ga-Cl del compuesto (XVII) y compuestos relacionados extraídos de la bibliografía.

Respecto de los ángulos de enlace en el compuesto (XVII), el ángulo N-Ga-N, para dos átomos de N pertenecientes a la misma molécula de 1,10-fenantrolina, es el que más se desvía de los 90 ° esperados para este tipo de entorno de coordinación, siendo dicho ángulo de 79.40°, como consecuencia del pequeño bite del ligando aromático.

En el compuesto (XVII), las moléculas de fenantrolina coordinadas al Ga(III) y pertenecientes a dos moléculas vecinas del catión complejo se encuentran vinculadas por una interacción de tipo π - π stacking (cuyos parámetros se detallan en la Tabla Anexo.3.5 y que se representan en la Figura Anexo.3.5), con la consiguiente estabilización de la estructura que esto conlleva.

Interacción	Cg-Cg(Å)	α(°)	β(°)	γ(°)	Cgl_Perp(Å)	CgJ_Perp(Å)	Slippage(Å)
Cg5-Cg5 ^{iv}	3.6246(19)	0.00	14.58	14.58	3.508	3.508	0.913

Tabla Anexo.3.5 - Interacciones de tipo π - π stacking en la estructura del compuesto (XVII).

Anillo(5): C4 C5 C6 C7 C11 C12. ^{iv} 1/2-x, 1/2-y, -z.

Figura Anexo.3.5 - Interacciones de tipo π - π stacking en la estructura del compuesto (XVII).

En esta estructura, los únicos dadores de enlace de hidrógeno clásicos posibles serían las moléculas de agua de cristalización. Debido al alto grado de desorden de dichas moléculas (cuya suma es de 3 por cada complejo, distribuidas en 10 posiciones distintas de la celdilla unidad) sus hidrógenos no han sido calculados. Sin embargo sí es posible analizar la distancia de estas moléculas a posibles aceptores de enlace de hidrógeno. En la Tabla Anexo.3.6 se recoge dicho análisis.

	01w	O2w	O3w	O4w	05w	Cl2
01w		2.898 ^b		2.505 ^b , 2.958 ^c	2.789 ^c	3.537 ^b
O2w	2.898 ^b , 2.898 ^d					3.363 ^e
O3w			3.223ª			3.148 ^ª
O4w	2.505 ^b , 2.958 ^c					
O5w	2.789 ^c			2.855 ^e		
CI2	3.537 ^b	3.363	3.148 ^ª			
а	1/2-x, 1/2-y, 1-z;	^b 1-x, -y, 1	1-z; ^c x, y,	z; ^d x, -y, 1/2+z; ^e	1-x, y, 3/2	2-z.

Tabla Anexo.6 - Distancias (Å) entre aniones Cl y moléculas de agua de cristalización en el compuesto (XVII).

Es muy probable que las interacciones entre estos átomos generen un entramado de enlaces de hidrógeno responsables de la estructura supramolecular del compuesto (XVII), representada en la Figura Anexo.3.6, como una red tridimensional infinita con canales virtualmente paralelos al vector (1,0,1), que acomodan en su interior las moléculas del complejo catiónico $[Ga(fen)_2Cl_2]^+$. Por su parte, los cationes complejos se asocian entre si mediante las interacciones de tipo π - π stacking ya comentadas, y posiblemente al resto de la red tridimensional a través de enlaces de hidrógeno no convencionales C-H···Cl (Tabla Anexo.3.7). La estructura supramolecular resultante se muestra en la Figura Anexo.3.7.

D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)		
C1-H1…Cl1	0.93	2.76	3.338(3)	121		
C8-H8…Cl1 ^v	0.93	2.75	3.473(3)	135		
^v -1/2+x, -1/2+y, z.						

Tabla Anexo.3.7 - Enlaces de hidrógeno (Å y °) C-H…Cl del complejo (XVII).

Figura Anexo.3.6 - Red tridimensional con tubos infinitos formados por aniones Cl⁻ y moléculas de agua de cristalización del compuesto (XVII).

Figura Anexo.3.7 - Estructura supramolecular del compuesto (XVII).

Anexo.4- OBTENCIÓN Y ESTRUCTURA CRISTALINA DE LAS SEMICARBAZONAS DERIVADAS DE LOS ÉSTERES METÍLICOS DE LOS ÁCIDOS 2-CETOBUTÍRICO Y BENZOILFÓRMICO

En este apartado se describe la síntesis y se discuten las estructuras de los ésteres correspondientes a dos de los ligandos del Capítulo III de esta tesis.

Anexo.4.1-Obtención de los ésteres metílicos

Obtención de la semicarbazona del benzoilformiato de metilo **(HBFSC-Me)**: Sobre una disolución de 1,2 mmoles (0.25 g) de H₂BFSC en 50.0 mL de MeOH_(anhidro) se agregó una disolución de 0.6 mmoles (1.50 g) de Ga(NO₃)₃·H₂O en 20.0 mL de MeOH_(anhidro), desde un embudo autocompensado. La mezcla, translúcida e incolora, se dejó a reflujo, y con agitación magnética, durante 6 h. Se concentró la disolución a 1/3 de su volumen original en la línea de vacío, apareciendo un precipitado. blanco muy fino que se filtró y secó.

De las aguas madres precipitó un sólido cristalino, cuya estructura resuelta por difracción de Rayos X de monocristal, muestra que se trata de la semicarbazona del benzoilformiato de metilo (HBFSC-Me).

Obtención de la semicarbazona del 2-cetobutirato de metilo (HCBSC-Me·1/4H₂O): Sobre una disolución de 2 mmoles (0.32g) de H₂CBSC en 25 mL de MeOH_(anhidro) se agregó una disolución de 2 mmoles de GaCl(ACO)₂ en 9.6 mL de MeOH_(anhidro), desde un embudo autocompensado. La mezcla de reacción se dejó a reflujo y con agitación magnética durante 5h. La disolución resultante se mantuvo en reposo a temperatura ambiente, obteniéndose un sólido cristalino incoloro, apto para su estudio por difracción de rayos X de monocristal, que resulto ser el éster metílico del ligando libre HCBSC-Me·1/4H₂O.

Anexo.4.2- Estructuras cristalinas de las semicarbazonas del benzoilformiato de metilo y del 2cetobutirato de metilo

En la Tabla Anexo.4.1 se recogen los datos cristalográficos y de refinado de estas estructuras, y en las Tablas Anexo.4.2 y Anexo.4.3 sus longitudes y ángulos de enlace más relevantes. En las Figuras Anexo.4.1 y Anexo.4.2 se muestra el contenido de la unidad asimétrica de estos ligandos.

Las cuatro moléculas de la unidad asimétrica de HCBSC-Me·1/4H₂O y la molécula de HBFSC-Me presentan unos valores muy parecidos en las longitudes y ángulos de enlace del resto semicarbazona y del grupo éster.

En lo referente a la presencia de confórmeros en estas estructuras, se ha de analizar la situación en torno a cuatro enlaces: el enlace C1-N2, el enlace imínico C2-N3, y los enlaces C2-C3 y C3-O2. En la Tabla Anexo.4.4 se presentan los resultados de este análisis.

Figura Anexo.4.1 - Unidad asimétrica del ligando HCBSC-Me·1/4H₂O.

Figura Anexo.4.2- Unidad asimétrica del ligando HBFSC-Me.

Tabla Anexo.4.1 - Datos cristalográficos y de r	efinamiento d	de los ligandos HCBSC	-Me·1/4H ₂ O y HBFSC-Me.
---	---------------	-----------------------	-------------------------------------

Ligando	HCBSC-Me·1/4H ₂ O	HBFSC-Me	Ligando	HCBSC-Me·1/4H ₂ O	HBFSC-Me
Fórmula	$C_{24}H_{46}N_{12}O_{13}$	$C_{10}H_{11}N_3O_3$	z	2	4
Masa Molecular	710.73	221.22	D _{calc} . (Mg/m ³)	1.396	1.395
т (К)	100.0(1)	293(2)	μ(mm ⁻¹)	0.114	0.106
λ (Å)	0.71073	0.71073	F(000)	756	464
Sistema Cristalino	Triclínico	Monoclínico	Dimensiones (mm)	0.61 x 0.51 x 0.12	0.38 x 0.27 x 0.12
Grupo Espacial	P-1	P21/c	Intervalo θ (°)	2.10 a 26.49	2.03 a 26.44
a (Å)	8.255(2)	10.612(2)	Intervalos en h, k, l	-9,10; -17,17; 0,19	-13,12; 0,11; 0,14
b (Å)	14.142(3)	8.9030(18)	No. reflex. medidas	27360	9052
<i>c</i> (Å)	15.451(4)	11.780(2)	No. reflex. únicas	6966	2166
α(°)	82.226(4)	90	R _{int}	0.0332	0.0348
β(°)	75.444(4)	108.79(3)	R	0.0523	0.0406
۷ (°)	76.277(4)	90	R _w	0.1501	0.0932
V (ų)	1690.6(7)	1053.6(4)	G.O.F.	1.116	1.020

		HRESC-Mo			
	Molécula 1	Molécula 2	Molécula 3	Molécula 4	TIDI SC-IVIE
C1-01	1.237(2)	1.246(2)	1.237(2)	1.241(2)	1.217(2)
C1-N1	1.334(2)	1.323(2)	1.334(2)	1.323(2)	1.325(2)
C1-N2	1.375(2)	1.382(2)	1.372(2)	1.382(2)	1.379(2)
N2-N3	1.360(2)	1.358(2)	1.363(2)	1.355(2)	1.346(2)
N3-C2	1.287(2)	1.284(2)	1.283(2)	1.287(2)	1.286(2)
C2-C3	1.492(3)	1.490(2)	1.505(3)	1.494(3)	1.491(3)
C3-O2	1.329(2)	1.322(2)	1.327(2)	1.329(2)	1.325(2)
C3-O3	1.212(2)	1.216(2)	1.211(2)	1.210(2)	1.184(2)
O2-C4	1.452(2)	1.448(2)	1.437(2)	1.440(2)	1.443(3)

Tabla Anexo.4.2 - Longitudes de enlace (Å) relevantes para los ligandos HCBSC-Me·1/4H₂O y HBFSC-Me*.

*Esquema de numeración utilizado:

Tabla Anexo.4.3 - Ángulos de enlace (Å) relevantes para los ligandos HCBSC-Me·1/4H₂O y HBFSC-Me*.

	HCBSC-Me·1/4H ₂ O					
	Molécula 1	Molécula 2	Molécula 3	Molécula 4	TIDI SC-IVIC	
N1-C1-O1	123.70(17)	124.49(16)	123.90(17)	124.39(16)	124.96(18)	
N1-C1-N2	117.66(17)	117.08(16)	117.51(16)	117.94(16)	113.62(17)	
01-C1-N2	118.64(17)	118.44(16)	118.59(16)	117.67(17)	121.42(17)	
C1-N2-N3	118.99(15)	118.14(15)	119.22(15)	119.08(15)	117.82(16)	
N2-N3-C2	118.75(16)	118.39(15)	118.41(16)	118.68(16)	117.95(16)	
N3-C2-C3	115.58(17)	116.12(16)	112.91(16)	112.69(16)	113.23(17)	
C2-C3-O2	114.25(16)	114.72(15)	109.92(16)	111.51(16)	111.23(16)	
C2-C3-O3	121.75(18)	121.51(17)	124.87(17)	125.06(17)	125.51(18)	
02-C3-O3	124.00(18)	123.77(17)	125.21(17)	123.43(17)	123.24(19)	
C3-O2-C4	116.03(15)	115.05(14)	117.35(17)	116.26(15)	115.85(18)	

El esquema de numeración utilizado es el de la Tabla Anexo.4.2.

Tabla Anexo.4.4 - Isómeros de los ligandos HCBSC-Me·1/4H₂O y HBFSC-Me respecto de los enlaces C1-N2, C2-N3, C2-C3 y C3-O2.

		HRESC-Mo			
	Molécula 1	Molécula 2	Molécula 3	Molécula 4	TIDI SC-IVIE
C1-N2	Е	Е	Е	Е	Ζ
N3-C2	Ε	Ε	Ε	Ε	Ε
C2-C3	Ζ	Ζ	Ε	Ε	Ε
C3-O2	Ζ	Ζ	Ζ	Ζ	Ζ

*Esquema de numeración utilizado:

Como puede verse en la Tabla Anexo.4.4, todas las moléculas de la unidad asimétrica de HCBSC-Me·1/4H₂O se encuentran en la configuración E respecto al enlace C1-N2, que es lo usual para el resto semicarbazona, ya que posibilita (o está estabilizada por) la formación del enlace de hidrógeno intramolecular N1-H···N3. En el caso del ligando HBFSC-Me, esta configuración se pierde a favor del isómero Z estabilizado, como veremos, por la formación de 4 enlaces de hidrógeno intermoleculares. En relación con las variaciones en la configuración respecto del enlace C2-C3 para las moléculas de HCBSC-Me, un análisis de la estructura muestra que estas variaciones se producen para minimizar repulsiones estéricas entre moléculas muy próximas dentro de la unidad asimétrica. Las configuraciones respecto de los enlaces C2-N3 y C3-O2 son las mismas en todos los casos, E y Z, respectivamente.

El anillo bencénico del ligando HBFSC-Me (rms=0.0107) presenta un ángulo diedro de $68.19^{\circ}(0.06)$ respecto del plano de la molécula (que para los átomos C1 C2 C3 C4 N1 N2 N3 O1 O2 O3 tiene un rms=0.0326). Esta desviación de la planaridad minimiza la repulsión estérica entre el anillo y el resto semicarbazona, primando este efecto sobre la estabilización que resulta de la deslocalización de la nube electrónica sobre toda la molécula. Por su parte, las moléculas 1, 2 y 4 del ligando HCBSC-Me son planas (sus rms son 0.0366, 0.0896 y 0.0304, respectivamente), mientras que la molécula 3 presenta un ángulo diedro de 17.79°(0.13) entre el grupo éster (rms = 0.0023) y el resto de la molécula (rms = 0.0120).

En la Tabla Anexo.4.5 se detallan los enlaces de hidrógeno de la estructura HCBSC-Me·1/4H₂O, y se representan en la Figura Anexo.4.3.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)	D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
01W-H1W…043 ⁱ	0.90(4)	1.90(4)	2.784(2)	168(3)	N22-H22…O11 ^{vi}	0.86	2.06	2.899(2)	165.8
O1W-H1W…N43 ⁱ	0.90(4)	2.54(3)	3.058(2)	118(3)	N31-H31A…O21 ^{vii}	0.86	2.14	2.997(2)	172.1
01W-H2W…023 ⁱ	1.03(5)	1.88(5)	2.896(2)	167(4)	N31-H31B…N33	0.86	2.31	2.653(2)	104.3
N11-H11A…O41 [#]	0.86	2.13	2.967(2)	163.1	N32-H32…O41 ⁱⁱ	0.86	2.06	2.902(2)	164.8
N11-H11B…N13	0.86	2.31	2.653(2)	104.2	N41-H41A…O11 ^{viii}	0.86	2.09	2.944(2)	169.2
N12-H12…O21 ⁱⁱⁱ	0.86	2.09	2.929(2)	166.4	N41-H41B…N43	0.86	2.32	2.661(2)	104.1
N21-H21A…O31 ⁱ ^v	0.86	2.05	2.908(2)	174.5	N41-H41B…O1W ⁱ	0.86	2.07	2.909(2)	166.0
N21-H21B…O1W ^v	0.86	2.11	2.900(2)	153.5	N42-H42…O31 ^{viii}	0.86	2.10	2.941(2)	164.1
N21-H21B…N23	0.86	2.27	2.625(2)	104.9					

Tabla Anexo.4.5 - Enlaces de hidrógeno (Å y °) del ligando HCBSC-Me·1/4H₂O.

[']-x+1, -y+1, -z+1; ^{''} x, y, z-1; ^{'''} x+1, y, z-1; ^{''} x-1, y+1, z+1; ^{''} x, y+1, z+1; ^{''} x-1, y, z+1; ^{'''} x+1, y-1, z-1; ^{'''''} x, y, z+1.

Como puede apreciarse en la Figura Anexo.4.3, en todas las moléculas de la unidad asimétrica está presente el enlace de hidrógeno intramolecular N1-H···N3, consistente con la configuración E respecto al enlace C1-N2 en todas ellas.

Figura Anexo.4.3.- Enlaces de hidrógeno del ligando HCBSC-Me·1/4H₂O.

Por otra parte, la molécula de agua presente en la estructura actúa como dador en tres enlaces de hidrógeno, y como aceptor en dos. Estos enlaces y el resto de enlaces intermoleculares del sistema, generan una estructura supramolecular (Figura Anexo.4.4) en forma de planos plegados y con un alto grado de compactación, paralelos al plano ab.

En la Figura Anexo.4.4 se han omitido todos los átomos de H, menos los que pertenecen a grupos dadores de enlace de hidrógeno, y se han utilizado dos colores diferentes para diferenciar las moléculas pertenecientes a dos capas contiguas de la estructura del compuesto HCBSC-Me.

Figura Anexo.4.4 - Estructura supramolecular del ligando HCBSC-Me·1/4H₂O.

En la Tabla Anexo.4.6 se detallan los enlaces de hidrógeno de la estructura correspondiente al ligando HBFSC-Me. Estos enlaces se representan en la Figura Anexo.4.5. Como ya se adelantó al hablar de las distintas conformaciones de estos ligandos, en esta molécula no existe el enlace intramolecular habitual en el resto semicarbazona. Esta situación se ve compensada por la formación de cuatro enlaces intramoleculares, que dan lugar al crecimiento de la estructura en cadenas infinitas paralelas al eje b.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)		
N1-H1A…O3 ⁱ	0.85(2)	2.47(2)	3.020(2)	122.9(19)		
N1-H1B…O1 ⁱ	0.90(3)	2.17(3)	2.964(3)	146(2)		
N1-H1B…N3 ⁱ	0.90(3)	2.43(3)	3.185(2)	142(2)		
N2-H2…O1 ⁱ	0.86(2)	2.00(2)	2.812(2)	157(2)		
i_{y+1} $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$						

Tabla Anexo.4.6 - Enlaces de hidrógeno (Å y °) del ligando HBFSC-Me.

'-x+1, y-1/2, -z+1/2.

Figura Anexo.4.5 - Enlaces de hidrógeno del ligando HBFSC-Me.ⁱ -x+1, y-1/2, -z+1/2.

Existe además un enlace de hidrógeno no clásico de tipo C-H··· π , cuyos parámetros se recogen en la Tabla Anexo.4.7. Este enlace podría vincular cadenas vecinas de la forma que se ilustra en la Figura Anexo.4.6, para dar lugar a la formación de planos infinitos (Figura Anexo.4.7) paralelos al plano *ab*.

Tabla Anexo.4.6 - Interacción de ti	po C-H…π presente en	la estructura del ligando	HBFSC-Me

Interacción	H…Cg(Å)	H-Perp(Å)	γ(°)	X-H…Cg(°)	X…Cg(Å)	X-H,Pi
C4-H4B…Cg1 ⁱⁱ	2.94(3)	2.911	8.02	128(3)	3.595(4)	44

Anillo(1): C5 C6 C7 C8 C9 C10. "-x, 1-y, 1-z.

Figura Anexo.4.6 - Interacción de tipo C-H··· π en la estructura del compuesto HBFSC-Me.

Figura Anexo.4.7 - Estructura supramolecular del ligando HBFSC-Me.

Anexo.5- Bibliografía

^[1] F.H. Allen, O. Kennard, D.G. Watson, J. Chem. Soc. Perkin Trans, II, 1987, S1.

^[2] J.S. Casas, E.E. Castellano, J. Ellena, M.S. García-Tasende, A. Sánchez, J. Sordo, A. Touceda, S. Vázquez Rodríguez, *Polyhedron*, **26**, 2007, 4228.

^[3] A.A. Kaczor, T. Wróbel, Z. Karczmarzyk, W. Wysocki, A. Fruzinski, M. Brodacka, D. Matosiuk, M. Pitucha, *Lett. Org. Chem*, **11**, 2014, 40.

^[4] H. Gilman, R.G. Jones, J. Am. Chem. Soc., **68**, 1946, 517 - 520.

^[5] http://www.ccdc.cam.ac.uk/products/csd/radii/table.php4

^[6] W. Jiang, J.D. Gorden, C.R. Goldsmith, *Inorg. Chem.*, **51**, 2012, 2725.

^[7] A. G. Orpen, Acta Cryst., B58, 398-406, 2002.

^[8] A.T.McPhail, R.W.Miller, C.G.Pitt, G.Gupta, S.C.Srivastava, J. Chem. Soc., Dalton Trans., 1976, 1657.

^[9] Yu-Lin Yang, Zhong-Cheng Mu, Wei Wang, Ling Ye, Chao Chen, Zhuo Yi, Wen-Qin Pang, *Gaodeng Xuexiao Huaxue Xuebao (Chin.) (Chem. J. Chin. Uni.)*, **25**, 2004, 793.

^[10] Zhi-En Lin, Jie Zhang, Shou-Tian Zheng, Guo-Yu Yang, *Microporous Mesoporous Mater.*, **72**, 2004, 43.

^[11] P.C.Junk, B.W.Skelton, A.H.White, *Aust. J. Chem.*, **59**, 2006, 147.

^[12] Wen-Jung Chang, Pai-Ching Chang, Hsien-Ming Kao, Kwang-Hwa Lii, *J. Solid State Chem.*, **178**, 2005, 3722.

^[13] Y.G.Lawson, N.C.Norman, A.G.Orpen, M.J.Quayle, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, **53**, 1997, 1805.

^[14] K. Ueno, T. Watanabe, H. Ogino, *Appl. Organomet. Chem.*, **17**, 2003, 403.

Cerrando esta memoria, algo que se abre para siempre. Quiero mencionar aquello que durante la realización de este trabajo sobrepasó lo que a mi suerte cabía pedirle, dejándome muy adentro un algo parecido al debe... su pariente luminoso, el agradecimiento.

A los directores de mi tesis, Prof. Agustín Sánchez Díaz y Prof. M^a Soledad García Tasende, por los conocimientos transmitidos, por su apoyo y guía constantes, por su paciencia inquebrantable y más allá de lo esperable, por ser y dar más de lo que debían. Pero sobre todo por su enorme calidad de gente, su integridad monolítica, su ejemplo profesional y personal,

Al Prof. José Sergio Casas, por su recibimiento y buen talante, por su aporte frecuente y certero, su tiempo y apoyo,

A los que fueron mis compañeros en el día a día del laboratorio, a todos y cada uno de ellos; a la Dra. M^a de los Ángeles Touceda Varela, Tou, compañera de trinchera,

A todos los profesores del Departamento de Química Inorgánica de la USC y al personal no docente del mismo (en especial al Lic. José Manuel Suárez Bello y Cristina), al personal no docente de la Facultad de Farmacia,

Al personal del servicio de Rayos X del CACTUS, por su paciencia y buena predisposición,

A la Universidad Nacional de La Plata, por mi formación, en todo sentido,

A la Prof. Dra. Ángela F. Danil de Namor, por su ayuda, por su fuerte efecto motivacional, por despertar en mí esta vocación,

A mis amigos, muro contra la nada,

A Uxi y su familia, por la felicidad y el propósito, por el cariño y el cobijo, por ser luminosos y quererme,

De todos, el mérito que este trabajo pudiera tener. Míos los errores. Gracias!!!!!

Llegado un punto, cuando el sacrificio en forma de distancia y tiempo sobrepasa lo tolerable, el agradecimiento se tiñe con algo de culpa. Pero el día, lo ido, el mundo renacen constantemente. Mirando a lo que viene... Gracias Familia!!!! Por ser quienes son, y por serlo tan intensamente.

Santiago de Compostela, Noviembre de 2015.

APÉNDICE 1 – DATOS CRISTALOGRÁFICOS Y DE REFINADO DE LAS ESTRUCTURAS DESCRITAS EN ESTA MEMORIA

A1.1- Estructura cristalina de los ligandos descritos en esta memoria.

A1.1.1- Estructura cristalina de la semicarbazona del ácido pirúvico (H₂PSC).

Figura A1.1- Unidad asimétrica de la estructura cristalina del ligando H₂PSC.

Fórmula	${\sf C}_4 \: {\sf H}_7 \: {\sf N}_3 \: {\sf O}_3$	α (°)	84.09(3)	Intervalo θ (°)	1.20 a 26.47
Masa Molecular	174.15	β(°)	79.05(3)	Intervalos en h, k, l	-8,9; -9,9; 0,21
т (К)	293(2)	γ (°)	83.08(3)	No. reflex. medidas	9252
λ (Å)	0.71073	V (Å ³)	921.2(3)	No. reflex. únicas	3146
Sistema Cristalino	Triclínico	ZONT	6	R _{int}	0.0676
Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.570	R	0.0833
a (Å)	7.3643(15)	μ(mm ⁻¹)	0.135	R _w	0.2051
b (Å)	7.4217(15)	F(000)	456	G.O.F.	0.991
c (Å)	17.352(4)	Dimensiones (mm)	0.19x0.11x0.08		

Tabla A1.1.1- Datos cristalográficos y de refinado del ligando H₂PSC.

Tabla A1.1.2- Distancias interatómicas (Å) de H₂PSC.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-O11	1.228(6)	C21-N21	1.331(6)	C31-N32	1.388(6)	N12-H12	0.8600
C11-N11	1.313(7)	C21-N22	1.370(6)	C32-N33	1.289(6)	N21-H21A	0.8600
C11-N12	1.380(7)	C22-N23	1.277(6)	C32-C33	1.477(5)	N21-H21B	0.8600
C12-N13	1.289(6)	C22-C24	1.484(7)	C32-C34	1.484(7)	N22-N23	1.358(5)
C12-C13	1.483(7)	C22-C23	1.509(7)	C33-O33	1.225(4)	N22-H22	0.8600
C12-C14	1.488(7)	C23-O23	1.218(6)	C33-O32	1.3268(4)	N31-H31A	0.8600
C13-O13	1.217(6)	C23-O22	1.330(6)	C34-H34A	0.9600	N31-H31B	0.8600
C13-O12	1.316(6)	C24-H24A	0.9600	C34-H34B	0.9600	N32-N33	1.355(6)
C14-H14A	0.9600	C24-H24B	0.9600	C34-H34C	0.9600	N32-H32	0.8600

C14-H14B	0.9600	C24-H24C	0.9600	N11-H11A	0.8600	012-H12A	0.76(7)
C14-H14C	0.9600	C31-O31	1.225(6)	N11-H11B	0.8600	022-H22A	0.87(7)
C21-O21	1.239(6)	C31-N31	1.327(6)	N12-N13	1.363(6)	O32-H32A	0.8569(3)

Tabla A	41.1.3- Ángulos de	e enlace (°) de H_2 PSC.	

	Ángulo		Ángulo		Ángulo
011-C11-N11	124.2(5)	O22-C23-C22	118.0(4)	C11-N11-H11B	120.0
011-C11-N12	118.9(5)	C22-C24-H24A	109.5	H11A-N11-H11B	120.0
N11-C11-N12	116.9(5)	C22-C24-H24B	109.5	N13-N12-C11	119.1(4)
N13-C12-C13	115.8(4)	H24A-C24-H24B	109.5	N13-N12-H12	120.4
N13-C12-C14	125.4(5)	C22-C24-H24C	109.5	C11-N12-H12	120.4
C13-C12-C14	118.8(4)	H24A-C24-H24C	109.5	C12-N13-N12	117.6(4)
013-C13-O12	122.7(5)	H24B-C24-H24C	109.5	C21-N21-H21A	120.0
O13-C13-C12	121.5(5)	031-C31-N31	124.8(5)	C21-N21-H21B	120.0
O12-C13-C12	115.7(4)	O31-C31-N32	118.5(5)	H21A-N21-H21B	120.0
C12-C14-H14A	109.5	N31-C31-N32	116.7(5)	N23-N22-C21	117.9(4)
C12-C14-H14B	109.5	N33-C32-C33	114.6(4)	N23-N22-H22	121.1
H14A-C14-H14B	109.5	N33-C32-C34	127.5(5)	C21-N22-H22	121.1
C12-C14-H14C	109.5	C33-C32-C34	117.9(4)	C22-N23-N22	117.7(4)
H14A-C14-H14C	109.5	033-C33-O32	119.60(17)	C31-N31-H31A	120.0
H14B-C14-H14C	109.5	O33-C33-C32	121.7(3)	C31-N31-H31B	120.0
O21-C21-N21	121.9(5)	O32-C33-C32	118.66(19)	H31A-N31-H31B	120.0
O21-C21-N22	122.2(4)	С32-С34-Н34А	109.5	N33-N32-C31	119.8(4)
N21-C21-N22	115.8(4)	С32-С34-Н34В	109.5	N33-N32-H32	120.1
N23-C22-C24	128.6(5)	H34A-C34-H34B	109.5	C31-N32-H32	120.1
N23-C22-C23	112.8(4)	C32-C34-H34C	109.5	C32-N33-N32	117.1(4)
C24-C22-C23	118.6(4)	H34A-C34-H34C	109.5	C13-O12-H12A	120(5)
023-C23-O22	119.2(5)	H34B-C34-H34C	109.5	C23-O22-H22A	122(5)
O23-C23-C22	122.8(5)	C11-N11-H11A	120.0	C33-O32-H32A	109.17(2)

Tabla A1.1.4- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de H₂PSC.

	x	У	z	U(eq)
C11	2608(9)	6046(7)	9753(3)	42(2)
C12	1583(7)	9413(6)	8267(3)	29(1)
C13	1255(8)	9450(7)	7449(3)	32(1)
C14	1336(9)	11157(7)	8647(3)	40(2)

C21	1316(7)	7343(7)	5179(3)	29(1)
C22	3551(8)	3561(7)	6116(3)	31(1)
C23	4138(8)	3220(7)	6910(3)	34(1)
C24	4019(8)	2099(7)	5567(3)	35(1)
C31	3106(8)	735(7)	930(3)	33(1)
C32	2621(7)	3364(7)	2548(3)	30(1)
C33	2906	3018	3373	33(1)
C34	1777(10)	5195(7)	2296(4)	53(2)
N11	2601(8)	4617(6)	9367(3)	62(2)
N12	2334(7)	7733(6)	9352(3)	40(1)
N13	2040(6)	7828(6)	8596(2)	35(1)
N21	878(7)	7769(6)	4468(2)	37(1)
N22	2137(6)	5610(5)	5310(2)	32(1)
N23	2686(6)	5140(5)	6014(2)	31(1)
N31	3579(7)	-874(6)	1287(3)	44(1)
N32	2904(6)	2231(5)	1369(2)	35(1)
N33	3122(6)	1988(6)	2132(2)	31(1)
011	2810(6)	5968(5)	10443(2)	51(1)
012	1675(7)	7897(5)	7120(2)	46(1)
013	641(6)	10840(5)	7108(2)	48(1)
021	992(5)	8445(5)	5690(2)	39(1)
022	3632(6)	4507(5)	7411(2)	42(1)
023	5038(6)	1822(5)	7109(2)	46(1)
031	2807(6)	978(5)	254(2)	47(1)
032	3618	1374	3613	51(1)
033	2484(6)	4198(5)	3838(2)	47(1)

Tabla A1.1.5- Factores anisotrópicos de temperatura (Å²) de H₂PSC.

	U11	U22	U33	U23	U13	U12	
C11	75(5)	26(3)	26(3)	-3(2)	-20(3)	3(3)	
C12	36(3)	23(3)	28(3)	-4(2)	-9(2)	4(2)	
C13	47(4)	24(3)	24(3)	-3(2)	-9(3)	2(2)	
C14	66(4)	26(3)	30(3)	-4(2)	-17(3)	2(3)	
C21	38(3)	24(3)	24(3)	-3(2)	-10(2)	5(2)	
C22	45(4)	23(3)	24(3)	-1(2)	-13(3)	5(2)	
C23	48(4)	28(3)	27(3)	-1(2)	-13(3)	3(3)	
C24	54(4)	26(3)	27(3)	-7(2)	-18(3)	9(3)	
C31	48(4)	28(3)	24(3)	-8(2)	-9(3)	2(3)	
C32	41(3)	27(3)	24(3)	-4(2)	-9(2)	3(2)	

	D-H···	A d(D-	H) d(H…A)	d(D…A) <	(DHA)	
1.6- Enlaces de hidrógeno (Å, °) de H ₂ PSC.						
033	82(3)	34(2)	24(2)	-10(2)	-15(2)	8(2)
032	87(4)	37(2)	30(2)	-9(2)	-21(2)	21(2)
031	85(3)	34(2)	26(2)	-6(2)	-23(2)	1(2)
023	72(3)	34(2)	32(2)	-3(2)	-22(2)	16(2)
022	67(3)	32(2)	30(2)	-7(2)	-23(2)	13(2)
021	66(3)	25(2)	29(2)	-7(2)	-21(2)	9(2)
013	80(3)	33(2)	31(2)	-3(2)	-22(2)	8(2)
012	81(3)	32(2)	27(2)	-10(2)	-24(2)	14(2)
011	95(4)	34(2)	27(2)	-3(2)	-24(2)	2(2)
N33	43(3)	30(2)	21(2)	-4(2)	-10(2)	1(2)
N32	64(3)	20(2)	22(2)	-3(2)	-15(2)	5(2)
N31	81(4)	29(3)	22(2)	-5(2)	-18(2)	2(2)
N23	45(3)	29(2)	21(2)	1(2)	-15(2)	3(2)
N22	54(3)	19(2)	24(2)	-4(2)	-17(2)	10(2)
N21	63(3)	24(2)	24(2)	-1(2)	-18(2)	11(2)
N13	56(3)	28(2)	21(2)	-4(2)	-12(2)	0(2)
N12	71(4)	27(2)	25(2)	-6(2)	-20(2)	3(2)
N11	136(6)	26(3)	32(3)	-4(2)	-39(3)	0(3)
C34	89(5)	30(3)	38(4)	0(3)	-17(3)	12(3)
C33	45(4)	25(3)	27(3)	-4(2)	-11(3)	6(2)

		·		
D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O31 ⁱ	0.86	2.11	2.970(6)	173.4
N11-H11B…O22	0.86	2.56	3.341(6)	152.2
N11-H11B…N13	0.86	2.28	2.637(6)	105.2
N12-H12…O31 ⁱⁱ	0.86	2.24	3.091(6)	169.7
012-H12A…021	0.76(7)	1.87(7)	2.606(5)	162(7)
O12-H12A…N23	0.76(7)	2.41(6)	2.885(6)	122(6)
N21-H21A…O21 ⁱⁱⁱ	0.86	2.14	2.987(5)	168.5
N21-H21B…O33	0.86	2.24	2.994(6)	145.9
N22-H22…O33	0.86	2.02	2.814(6)	152.6
022-H22A…012	0.87(7)	1.92(7)	2.794(5)	174(7)
O22-H22A…N23	0.87(7)	2.32(7)	2.629(5)	101(5)
N31-H31A…O11 ^{iv}	0.86	2.24	3.050(6)	157.5
N31-H31B…N33	0.86	2.30	2.657(6)	104.8
N31-H31B…O23 ^v	0.86	2.30	3.128(6)	162.5
N32-H32…O11 ^{vi}	0.86	2.23	3.060(5)	163.5

O32-H32A…N33	0.86	2.167(4)	2.649(4)	115.33(11)
032-H32A…023 ^v	0.86	2.046(4)	2.784(4)	143.78(10)
C14-H14B…O13	0.96	2.41	2.851(6)	108
C24-H24B…O23	0.96	2.50	2.894(6)	105
C24-H24B…O32 ^v	0.96	2.38	3.2868	156
C34-H34B…O33	0.96	2.42	2.830(8)	105
ⁱ x, y, z+1; ⁱⁱ x, y+1, z+1; ⁱⁱⁱ	-x, -y+2, -z	+1; ^{iv} x, y-1,	z-1; ^v -x+1,	-y, -z+1; ^{vi} x, y, z-1.

A1.1.2- Estructura cristalina de la semicarbazona del ácido 2-cetobutírico (H₂CBSC·1/2H₂O).

Figura A1.2- Unidad asimétrica de la estructura cristalina del ligando H₂CBSC·1/2H₂O.

Tabla A1.1.7- Datos cristalográficos y	y de refinado de	el ligando I	H₂CBSC·	1/2H ₂ O.

Fórmula	$C_{10}H_{20}N_6O_7$	α(°)	75.018(3)	Intervalo θ (°)	3.16 a 27.50
Masa Molecular	336.32	β(°)	81.205(3).	Intervalos en h, k, l	-9,9; -11,11; -15,15
т (К)	200(2) K	γ (°)	79.407(3)	No. reflex. medidas	6521
λ (Å)	0.71073 A	V (Å ³)	780.01(6)	No. reflex. únicas	3542
Sistema Cristalino	Triclínico	z	2	R _{int}	0.0556
Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.432	R	0.0479
a (Å)	7.3160(3)	μ(mm ⁻¹)	0.121	R _w	0.1097
b (Å)	9.1392(5)	F(000)	356	G.O.F.	1.004
c (Å)	12.3621(5)	Dimensiones (mm)	0.22x0.16x0.08		

Tabla A1.1.8- Distancias interatómicas (Å) de H ₂ CBSC·1/2H ₂

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
011-C11	1.252(2)	N12-C11	1.354(2)	C12-C13	1.497(3)
O12-C13	1.304(2)	N12-N13	1.362(2)	C12-C14	1.500(3)
013-C13	1.218(2)	N13-C12	1.292(2)	C14-C15	1.520(3)

021-C21	1.243(2)	N21-C21	1.332(2)	C22-C23	1.494(2)
O22-C23	1.307(2)	N22-N23	1.362(2)	C22-C24	1.501(3)
O23-C23	1.223(2)	N22-C21	1.367(2)	C24-C25	1.521(3)
N11-C11	1.325(2)	N23-C22	1.284(2)		

Tabla A1.1.9- Ángulos de enlace (°) de H₂CBSC·1/2H₂O.

	Ángulo	-	Ángulo		Ángulo
C11-N12-N13	118.56(16)	N13-C12-C14	128.23(17)	N21-C21-N22	117.82(16)
C12-N13-N12	117.99(16)	C13-C12-C14	117.33(15)	N23-C22-C23	113.22(16)
012-C13-C12	115.06(16)	013-C13-O12	124.42(17)	N23-C22-C24	127.11(16)
C12-C14-C15	112.20(17)	013-C13-C12	120.52(17)	C23-C22-C24	119.67(16)
011-C11-N11	122.96(16)	N23-N22-C21	119.42(15)	023-C23-O22	123.09(17)
011-C11-N12	117.60(17)	C22-N23-N22	117.97(15)	023-C23-C22	124.76(17)
N11-C11-N12	119.43(17)	O21-C21-N21	122.81(18)	022-C23-C22	112.15(15)
N13-C12-C13	114.38(17)	O21-C21-N22	119.37(17)	C22-C24-C25	112.92(17)

Tabla A1.1.10- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de H₂CBSC·1/2H₂O.

	x	y	Z	U(eq)
011	3559(2)	-1726(2)	4351(1)	38(1)
012	7840(2)	-639(2)	-186(1)	40(1)
013	7646(2)	1904(2)	-753(1)	40(1)
021	-513(2)	-840(2)	7842(1)	41(1)
022	2025(2)	6282(2)	5801(1)	45(1)
023	2696(2)	4636(2)	4698(1)	35(1)
N11	4564(2)	-2943(2)	2940(1)	34(1)
N12	4869(2)	-406(2)	2732(1)	32(1)
N13	5809(2)	-410(2)	1693(1)	28(1)
N21	1228(2)	-247(2)	6158(1)	38(1)
N22	147(2)	1568(2)	7197(1)	29(1)
N23	1033(2)	2594(2)	6380(1)	27(1)
C11	4302(3)	-1723(2)	3369(2)	28(1)
C12	6345(3)	852(2)	1093(2)	28(1)
C13	7347(3)	748(2)	-41(2)	29(1)
C14	6015(3)	2388(2)	1374(2)	35(1)
C15	4132(3)	3303(3)	1068(2)	52(1)
C21	265(3)	104(2)	7085(2)	30(1)
C22	889(3)	3964(2)	6507(2)	26(1)
C23	1960(3)	4974(2)	5576(2)	30(1)
C24	-189(3)	4591(2)	7465(2)	32(1)
C25	963(3)	4384(3)	8433(2)	48(1)
01W	3753(2)	1704(2)	4194(1)	47(1)

	U11	U22	U33	U23	U13	U12
011	54(1)	32(1)	26(1)	-9(1)	12(1)	-11(1)
012	57(1)	30(1)	30(1)	-9(1)	12(1)	-8(1)
013	55(1)	30(1)	29(1)	-4(1)	13(1)	-14(1)
021	50(1)	33(1)	40(1)	-15(1)	17(1)	-16(1)
022	70(1)	33(1)	33(1)	-14(1)	21(1)	-20(1)
023	47(1)	30(1)	25(1)	-9(1)	10(1)	-6(1)
N11	41(1)	32(1)	27(1)	-10(1)	7(1)	-9(1)
N12	43(1)	27(1)	23(1)	-7(1)	8(1)	-9(1)
N13	28(1)	33(1)	22(1)	-5(1)	2(1)	-6(1)
N21	49(1)	33(1)	36(1)	-19(1)	13(1)	-12(1)
N22	36(1)	27(1)	24(1)	-10(1)	10(1)	-9(1)
N23	28(1)	29(1)	23(1)	-7(1)	2(1)	-5(1)
C11	30(1)	27(1)	24(1)	-1(1)	0(1)	-5(1)
C12	30(1)	29(1)	23(1)	-5(1)	0(1)	-7(1)
C13	31(1)	30(1)	25(1)	-6(1)	2(1)	-9(1)
C14	43(1)	34(1)	27(1)	-10(1)	8(1)	-13(1)
C15	54(2)	35(1)	63(2)	-16(1)	8(1)	-3(1)
C21	30(1)	30(1)	30(1)	-12(1)	3(1)	-7(1)
C22	28(1)	26(1)	23(1)	-5(1)	0(1)	-3(1)
C23	34(1)	27(1)	25(1)	-8(1)	4(1)	-2(1)
C24	36(1)	26(1)	30(1)	-10(1)	8(1)	-5(1)
C25	61(2)	53(2)	31(1)	-18(1)	2(1)	-8(1)
01W	65(1)	38(1)	39(1)	-19(1)	3(1)	-1(1)

Tabla A1.1.11- Factores anisotrópicos de temperatura ($Å^2$) de H₂CBSC·1/2H₂O.

Tabla A1.1.12- Enlaces de hidrógeno (Å, °) de H₂CBSC·1/2H₂O.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
01W-H1W…023	0.91	2.05	2.8501(19)	147.4
01W-H2W…011 ⁱ	0.96	2.00	2.866(2)	149.0
N11-H11A…O23 ⁱⁱ	0.88	2.19	3.0334(19)	159.2
N11-H11B…N13	0.88	2.33	2.658(2)	102.5
012-H12…021 ^{III}	0.84	1.75	2.5840(18)	170.4
N12-H12A…O1W	0.88	2.08	2.903(2)	155.1
N21-H21A…O11	0.88	2.56	3.045(2)	115.4
N21-H21A…O22 ⁱⁱ	0.88	2.37	3.249(2)	172.9
N21-H21B…O1W	0.88	2.32	3.176(2)	163.7

N21-H21B…N23	0.88	2.31	2.657(2)	103.6		
022-H22…011 ^{iv}	0.84	1.68	2.4973(17)	165.0		
N22-H22A…O13 ^v	0.88	2.09	2.939(2)	162.7		
¹ -x+1, -y, -z+1; ^u x, y-1, z; ^{uu} x+1, y, z-1; ^{vv} x, y+1, z; ^v x-1, y, z+1.						

A1.1.3- Estructura cristalina de la semicarbazona del ácido α-oxo-furanacético (H₂IPSC).

Figura A1.3- Unidad asimétrica de la estructura cristalina del ligando H₂IPSC.

Fórmula	$C_{6} \; H_{11} \; N_{3} \; O_{3}$	α(°)	90.000	Intervalo θ (°)	2.68 a 26.40
Masa Molecular	173.18	β(°)	104.937(5)	Intervalos en h, k, l	-9,9; 0,18; 0,9
т (К)	293(2)	v (°)	90.000	No. reflex. medidas	6935
λ (Å)	0.71069	V (Å ³)	857.0(8)	No. reflex. únicas	1826
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.0980
Grupo Espacial	P21/c	D _{calc} . (mg/m ³)	1.342	R	0.0876
a (Å)	7.851(5)	μ(mm ⁻¹)	0.108	R _w	0.1209
b (Å)	14.772(5)	F(000)	368	G.O.F.	1.120
c (Å)	7.648(5)	Dimensiones (mm)	0.50x0.10x0.07		

Tabla A1.1.13- Datos cristalográficos y de refinado del ligando H₂IPSC.

Tabla A1.1.14- Distancias interatómicas (Å) de H₂IPSC.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-01	1.238(4)	C3-O3	1.226(4)	С5-Н5В	0.9600	N1-H1B	0.8600
C1-N1	1.320(4)	C3-O2	1.295(4)	C5-H5C	0.9600	N2-N3	1.355(3)
C1-N2	1.365(4)	C4-C6	1.515(4)	C6-H6A	0.9600	N2-H2	0.90(3)
C2-N3	1.284(4)	C4-C5	1.532(5)	C6-H6B	0.9600	O2-H2A	0.88(5)
C2-C3	1.495(4)	C4-H4	0.9800	C6-H6C	0.9600	N1-H1A	0.8600
C2-C4	1.509(4)	C5-H5A	0.9600				

	Ángulo		Ángulo		Ángulo		Ángulo
01-C1-N1	124.2(3)	C2-C4-C6	113.2(3)	C4-C5-H5C	109.5	C1-N1-H1A	120.0
01-C1-N2	118.2(3)	C2-C4-C5	110.1(3)	H5A-C5-H5C	109.5	C1-N1-H1B	120.0
N1-C1-N2	117.6(3)	C6-C4-C5	110.3(3)	H5B-C5-H5C	109.5	H1A-N1-H1B	120.0
N3-C2-C3	123.4(3)	C2-C4-H4	107.7	C4-C6-H6A	109.5	N3-N2-C1	118.4(3)
N3-C2-C4	117.9(3)	C6-C4-H4	107.7	C4-C6-H6B	109.5	N3-N2-H2	123(2)
C3-C2-C4	118.7(3)	С5-С4-Н4	107.7	H6A-C6-H6B	109.5	C1-N2-H2	118(2)
O3-C3-O2	123.5(3)	C4-C5-H5A	109.5	C4-C6-H6C	109.5	C2-N3-N2	121.4(3)
O3-C3-C2	122.6(3)	C4-C5-H5B	109.5	H6A-C6-H6C	109.5	C3-O2-H2A	110(3)
02-C3-C2	113.9(3)	H5A-C5-H5B	109.5	H6B-C6-H6C	109.5		

Tabla A1.1.15- Ángulos de enlace (°) de H₂IPSC.

Tabla A1.1.16- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de H₂IPSC.

	x	у	Z	U(eq)
C1	5275(4)	3019(2)	2550(5)	40(1)
C2	7944(4)	1200(2)	1882(4)	37(1)
С3	6967(4)	364(2)	2145(5)	42(1)
C4	9701(4)	1101(2)	1442(5)	43(1)
C5	11073(5)	722(3)	3081(6)	70(1)
C6	10358(5)	1975(2)	811(5)	55(1)
N1	6173(4)	3662(2)	1987(4)	57(1)
N2	5864(4)	2151(2)	2531(4)	41(1)
N3	7371(3)	2004(2)	2020(4)	39(1)
01	3956(3)	3155(1)	3118(4)	54(1)
02	7548(4)	-368(2)	1565(4)	64(1)
03	5734(3)	376(2)	2855(4)	64(1)

Tabla A1.1.17- Factores anisotrópicos de temperatura ($Å^2$) de H₂IPSC.

	U11	U22	U33	U23	U13	U12	
C1	41(2)	24(2)	57(2)	-1(2)	15(2)	3(2)	
C2	40(2)	26(2)	48(2)	-1(1)	15(2)	2(2)	
C3	43(2)	27(2)	58(2)	2(2)	18(2)	2(2)	
C4	45(2)	31(2)	60(2)	-6(2)	24(2)	1(2)	
C5	48(2)	64(3)	100(4)	24(2)	23(2)	17(2)	
C6	53(2)	45(2)	73(3)	5(2)	27(2)	-6(2)	
N1	64(2)	23(2)	96(3)	7(2)	44(2)	1(2)	

N2	38(2)	24(2)	67(2)	2(1)	24(2)	0(1)
N3	38(2)	29(2)	53(2)	-2(1)	16(1)	0(1)
01	49(2)	26(1)	94(2)	3(1)	33(2)	5(1)
02	74(2)	24(1)	112(2)	-11(1)	56(2)	-5(1)
03	68(2)	27(1)	115(2)	-3(1)	55(2)	-4(1)

Tabla A1.1.18- Enlaces de hidrógeno (Å, °) de H₂IPSC.

d(D-H)	d(H…A)	d(D…A)	<(DHA)			
0.86	2.13	2.959(4)	160.5			
0.86	2.27	2.621(4)	104.3			
0.90(3)	2.00(3)	2.638(3)	127(3)			
0.88(5)	1.66(5)	2.523(3)	168(4)			
'-x+1, y+1/2, -z+1/2; "-x+1, y-1/2, -z+1/2.						
	d(D-H) 0.86 0.86 0.90(3) 0.88(5) +1/2, -z+1	d(D-H) d(H···A) 0.86 2.13 0.86 2.27 0.90(3) 2.00(3) 0.88(5) 1.66(5) +1/2, -z+1/2; "-x+1, y	d(D-H) d(H···A) d(D···A) 0.86 2.13 2.959(4) 0.86 2.27 2.621(4) 0.90(3) 2.00(3) 2.638(3) 0.88(5) 1.66(5) 2.523(3) +1/2, -z+1/2; "-x+1, y-1/2, -z+1/2; -x+1, y-1/2, -z+1/2;			

A1.1.4- Estructura cristalina de la semicarbazona del ácido α -oxo-furanacético (H₂ α OFSC^M).

Figura A1.4- Unidad asimétrica de la estructura cristalina del ligando $H_2 \alpha OFSC^M$.

Tabla A1.1.19- Datos cristalográficos y de refinado del ligando $H_2\alpha OFSC^M$.

Fórmula	$C_7 H_7 N_3 O_4$	α (°)	90.000	Intervalo θ (°)	2.00 a 30.94
Masa Molecular	197.16	β (°)	121.693(5)	Intervalos en h, k, l	-34,28; 0,5; 0,30
т (К)	100.0 (1)	γ (°)	90.000	No. reflex. medidas	9979
λ (Å)	0.71069	V (ų)	1586(2)	No. reflex. únicas	1993
Sistema Cristalino	Monoclínico	z	8	R _{int}	0.0257
Grupo Espacial	C2/c	D _{calc} . (mg/m ³)	1.651	R	0.0391
a (Å)	23.969(5)	μ(mm ⁻¹)	0.138	R _w	0.1014
b (Å)	3.690(5)	F(000)	816	G.O.F.	1.048
c (Å)	21.077(5)	Dimensiones (mm)	0.34x0.08x0.08		

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-01	1.2509(14)	C3-O2	1.3196(14)	C7-O4	1.3667(14)
C1-N1	1.3286(14)	C4-C5	1.3652(15)	С7-Н7	0.954(16)
C1-N2	1.3772(13)	C4-O4	1.3693(13)	N1-H1A	0.862(17)
C2-N3	1.3037(13)	C5-C6	1.4221(17)	N1-H1B	0.881(17)
C2-C4	1.4547(15)	C5-H5	0.962(16)	N2-N3	1.3525(13)
C2-C3	1.5009(15)	C6-C7	1.3473(17)	N2-H2	0.903(18)
C3-O3	1.2167(15)	С6-Н6	0.961(16)	O2-H3	0.936(19)

Tabla A1.1.20- Distancias interatómicas (Å) de $H_2 \alpha OFSC^M$.

Tabla A1.1.21- Ángulos de enlace (°) de $H_2\alpha OFSC^M$.

	Ángulo		Ángulo		Ángulo
01-C1-N1	123.57(10)	C5-C4-C2	134.87(10)	O4-C7-H7	114.7(9)
01-C1-N2	119.14(10)	O4-C4-C2	115.39(9)	C1-N1-H1A	120.0(11)
N1-C1-N2	117.28(10)	C4-C5-C6	106.54(10)	C1-N1-H1B	118.1(10)
N3-C2-C4	116.24(9)	С4-С5-Н5	125.9(9)	H1A-N1-H1B	121.9(15)
N3-C2-C3	122.96(10)	С6-С5-Н5	127.6(9)	N3-N2-C1	118.29(9)
C4-C2-C3	120.75(9)	C7-C6-C5	106.52(10)	N3-N2-H2	121.3(11)
03-C3-O2	123.32(10)	С7-С6-Н6	128.0(10)	C1-N2-H2	120.0(11)
O3-C3-C2	121.76(9)	С5-С6-Н6	125.5(10)	C2-N3-N2	121.00(9)
O2-C3-C2	114.88(10)	C6-C7-O4	110.67(10)	СЗ-О2-НЗ	105.8(12)
C5-C4-O4	109.67(10)	С6-С7-Н7	134.6(10)	C7-O4-C4	106.60(9)
		NO.			

Tabla A1.1.22- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de H₂ α OFSC^M.

	x	У	z	U(eq)
C1	2208(1)	6934(3)	8898(1)	12(1)
C2	1144(1)	4567(3)	6998(1)	11(1)
C3	1533(1)	5305(3)	6639(1)	12(1)
C4	494(1)	2956(3)	6572(1)	12(1)
C5	66(1)	2203(3)	5837(1)	15(1)
C6	-510(1)	793(4)	5782(1)	17(1)
C7	-396(1)	751(4)	6480(1)	17(1)
N1	1821(1)	5797(3)	9134(1)	16(1)
N2	1967(1)	6706(3)	8145(1)	13(1)
N3	1369(1)	5191(3)	7701(1)	12(1)
01	2768(1)	8229(3)	9320(1)	16(1)

03	2030(1)	7128(3)	6946(1)	17(1)
02	1308(1)	3722(3)	5987(1)	16(1)
04	215(1)	2081(3)	6976(1)	16(1)

Tabla A1.1.23- Factores anisotrópicos de temperatura (Å²) de $H_2\alpha OFSC^M$.

	U11	U22	U33	U23	U13	U12
C1	13(1)	14(1)	10(1)	0(1)	7(1)	1(1)
C2	13(1)	12(1)	10(1)	0(1)	7(1)	1(1)
С3	13(1)	14(1)	9(1)	2(1)	6(1)	2(1)
C4	12(1)	14(1)	12(1)	0(1)	7(1)	1(1)
C5	15(1)	16(1)	12(1)	-2(1)	6(1)	-1(1)
C6	14(1)	17(1)	17(1)	-5(1)	6(1)	-2(1)
C7	12(1)	20(1)	20(1)	-4(1)	8(1)	-3(1)
N1	14(1)	26(1)	10(1)	-3(1)	7(1)	-4(1)
N2	12(1)	18(1)	8(1)	-1(1)	6(1)	-1(1)
N3	11(1)	14(1)	10(1)	-1(1)	5(1)	1(1)
01	13(1)	25(1)	11(1)	-2(1)	7(1)	-3(1)
03	17(1)	22(1)	13(1)	-2(1)	9(1)	-5(1)
02	16(1)	24(1)	12(1)	-4(1)	9(1)	-2(1)
04	13(1)	23(1)	13(1)	-2(1)	8(1)	-3(1)

Tabla A1.1.24- Enlaces de hidrógeno ((Å, °) de H₂αOFSC [™] .
---------------------------------------	-------	-----------------------------

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O1 ⁱ	0.862(17)	2.029(17)	2.8908(14)	177.1(17)
N1-H1B…N3	0.881(17)	2.246(15)	2.6280(14)	105.9(12)
N2-H2…O3	0.903(18)	1.946(18)	2.6137(13)	129.3(15)
N2-H2…O3 ^{II}	0.903(18)	2.559(18)	3.0262(19)	112.9(14)
N2-H2…O3 ^{III}	0.903(18)	2.459(19)	3.211(2)	140.9(15)
02-H3…01 [#]	0.936(19)	1.69(2)	2.6214(12)	170.4(19)
·-x+1/2, -γ+3/2,	-z+2; " -x+1/2	2, y-1/2, -z+3	/2; ^{III} -x+1/2, y	+1/2, -z+3/2.

A1.1.5- Estructura cristalina de la semicarbazona del ácido α -oxo-furanacético (H₂ α OFSC^T).

Figura A1.5- Unidad asimétrica de la estructura cristalina del ligando $H_2 \alpha OFSC^T$.

Tabla A1.1.25- Datos cristalográficos y de refinado del ligando $H_2\alpha OFSC^T$.

Fórmula	$C_7H_7N_3O_4$	α(°)	94.293(4).	Intervalo θ (°)	2.46 a 27.88
Masa Molecular	197.16	β (°)	102.925(4)	Intervalos en h, k, l	-10,9; -11,11; 0,16
т (к)	100(2)	γ (°)	97.373(4)	No. reflex. medidas	13885
λ (Å)	0.71073	V (Å ³)	807.6(3)	No. reflex. únicas	3773
Sistema Cristalino	Triclinic	z	4	R _{int}	0.0397
Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.622	R	0.0428
a (Å)	7.8177(17)	μ(mm ⁻¹)	0.136	Rw	0.1094
b (Å)	8.4101(19)	F(000)	408	G.O.F.	1.114
c (Å)	12.781(3)	Dimensiones (mm)	0.19x0.17x0.10		

Tabla A1.1.26- Distancias interatómicas (Å) de $H_2\alpha OFSC^T$.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-O11	1.242(2)	C15-H15	0.9300	C23-O23	1.211(2)	N11-H11A	0.8600
C11-N11	1.325(3)	C16-C17	1.335(3)	C23-O22	1.320(2)	N11-H11B	0.8600
C11-N12	1.384(3)	C16-H16	0.9300	C24-C25	1.351(3)	N12-N13	1.355(2)
C12-N13	1.295(3)	C17-O14	1.366(2)	C24-O24	1.382(2)	N12-H12	0.8600
C12-C14	1.446(3)	C17-H17	0.9300	C25-C26	1.426(3)	N21-H21A	0.8600
C12-C13	1.506(3)	C21-O21	1.239(2)	C25-H25	0.9300	N21-H21B	0.8600
C13-O13	1.209(2)	C21-N21	1.328(3)	C26-C27	1.346(3)	N22-N23	1.354(2)
C13-O12	1.327(2)	C21-N22	1.378(3)	C26-H26	0.9300	N22-H22	0.8600
C14-C15	1.357(3)	C22-N23	1.293(2)	C27-O24	1.366(2)	O12-H13	0.89(3)
C14-O14	1.374(2)	C22-C24	1.460(3)	С27-Н27	0.9300	O22-H23	0.87(3)
C15-C16	1.423(3)	C22-C23	1.508(3)				

Tabla A1.1.27- Ángulos de enlace (°) de $H_2\alpha OFSC^T$.

	Ángulo		Ángulo	·	Ángulo
011-C11-N11	123.25(18)	O14-C17-H17	124.8	C26-C27-H27	124.8
011-C11-N12	118.89(18)	C11-N11-H11A	120.0	O24-C27-H27	124.8
N11-C11-N12	117.85(17)	C11-N11-H11B	120.0	O21-C21-N21	124.63(19)
N13-C12-C14	129.77(18)	H11A-N11-H11B	120.0	O21-C21-N22	118.97(18)
N13-C12-C13	112.73(17)	N13-N12-C11	117.75(16)	N21-C21-N22	116.39(17)
C14-C12-C13	117.48(17)	N13-N12-H12	121.1	N23-C22-C24	128.54(17)
013-C13-O12	120.38(18)	C11-N12-H12	121.1	N23-C22-C23	115.73(17)
O13-C13-C12	122.91(18)	C12-N13-N12	122.31(17)	C24-C22-C23	115.72(16)
O12-C13-C12	116.69(17)	С13-О12-Н13	117(2)	023-C23-O22	124.08(18)
C15-C14-O14	109.79(17)	C17-O14-C14	106.43(16)	O23-C23-C22	121.74(18)
C15-C14-C12	134.93(19)	C25-C24-O24	109.22(18)	022-C23-C22	114.18(17)
O14-C14-C12	115.28(17)	C25-C24-C22	134.50(19)	C21-N21-H21A	120.0
C14-C15-C16	106.10(19)	024-C24-C22	116.26(16)	C21-N21-H21B	120.0
С14-С15-Н15	126.9	C24-C25-C26	107.10(19)	H21A-N21-H21B	120.0
С16-С15-Н15	126.9	С24-С25-Н25	126.5	N23-N22-C21	119.60(17)
C17-C16-C15	107.20(19)	C26-C25-H25	126.5	N23-N22-H22	120.2
С17-С16-Н16	126.4	C27-C26-C25	106.54(19)	C21-N22-H22	120.2
С15-С16-Н16	126.4	C27-C26-H26	126.7	C22-N23-N22	119.63(17)
C16-C17-O14	110.46(18)	C25-C26-H26	126.7	С23-О22-Н23	110.0(18)
С16-С17-Н17	124.8	C26-C27-O24	110.34(18)	C27-O24-C24	106.80(16)

Tabla A1.1.28- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de H₂ α OFSC^T.

	x	У	Z	U(eq)
C11	4240(3)	2156(2)	5458(2)	16(1)
C12	4086(3)	5640(2)	7165(2)	14(1)
C13	5067(3)	6162(2)	8320(2)	17(1)
C14	3000(3)	6733(2)	6615(2)	15(1)
C15	2724(3)	8264(3)	6858(2)	20(1)
C16	1474(3)	8632(3)	5950(2)	22(1)
C17	1072(3)	7332(3)	5225(2)	22(1)
C21	-2631(3)	1757(2)	-615(2)	16(1)
C22	-19(3)	4008(2)	1787(2)	14(1)
C23	1277(3)	3634(2)	2769(2)	16(1)
C24	-448(3)	5647(2)	1821(2)	16(1)
C25	368(3)	7077(3)	2374(2)	19(1)

C26	-725(3)	8258(3)	2018(2)	21(1)
C27	-2147(3)	7473(3)	1280(2)	21(1)
N11	5181(2)	1413(2)	6214(1)	19(1)
N12	3742(2)	3605(2)	5772(1)	17(1)
N13	4399(2)	4250(2)	6810(1)	16(1)
N21	-2136(3)	339(2)	-405(1)	24(1)
N22	-1784(2)	3061(2)	117(1)	16(1)
N23	-627(2)	2827(2)	1033(1)	16(1)
011	3776(2)	1608(2)	4491(1)	21(1)
013	5037(2)	7465(2)	8779(1)	21(1)
012	6024(2)	5129(2)	8820(1)	22(1)
014	1991(2)	6137(2)	5605(1)	19(1)
021	-3766(2)	1975(2)	-1417(1)	20(1)
023	1752(2)	4567(2)	3584(1)	22(1)
022	1817(2)	2221(2)	2657(1)	20(1)
024	-2015(2)	5871(2)	1133(1)	19(1)

Tabla A1.1.29- Factores anisotrópicos de temperatura ($Å^2$) de $H_2\alpha OFSC^T$.

	U11	U22	U33	U23	U13	U12	
C11	16(1)	18(1)	15(1)	1(1)	3(1)	4(1)	
C12	15(1)	16(1)	12(1)	1(1)	3(1)	2(1)	
C13	14(1)	20(1)	16(1)	1(1)	3(1)	1(1)	
C14	16(1)	19(1)	10(1)	1(1)	2(1)	3(1)	
C15	26(1)	19(1)	16(1)	1(1)	5(1)	5(1)	
C16	28(1)	19(1)	21(1)	6(1)	7(1)	11(1)	
C17	23(1)	26(1)	17(1)	5(1)	3(1)	11(1)	
C21	18(1)	17(1)	14(1)	1(1)	2(1)	3(1)	
C22	15(1)	16(1)	12(1)	3(1)	3(1)	3(1)	
C23	16(1)	18(1)	15(1)	2(1)	5(1)	4(1)	
C24	15(1)	22(1)	11(1)	2(1)	1(1)	4(1)	
C25	19(1)	22(1)	14(1)	1(1)	1(1)	1(1)	
C26	27(1)	18(1)	19(1)	1(1)	5(1)	5(1)	
C27	27(1)	18(1)	22(1)	5(1)	5(1)	11(1)	
N11	25(1)	18(1)	12(1)	-1(1)	-1(1)	10(1)	
N12	19(1)	19(1)	11(1)	-1(1)	-2(1)	7(1)	
N13	14(1)	20(1)	12(1)	-1(1)	2(1)	1(1)	

N21	31(1)	17(1)	19(1)	-1(1)	-8(1)	4(1)
N22	20(1)	16(1)	11(1)	1(1)	-1(1)	4(1)
N23	14(1)	21(1)	11(1)	2(1)	1(1)	3(1)
011	28(1)	23(1)	12(1)	-1(1)	-1(1)	12(1)
013	24(1)	19(1)	18(1)	-3(1)	1(1)	5(1)
012	27(1)	18(1)	17(1)	-1(1)	-4(1)	9(1)
014	24(1)	20(1)	13(1)	0(1)	-2(1)	10(1)
021	22(1)	23(1)	14(1)	1(1)	-3(1)	5(1)
023	25(1)	24(1)	14(1)	0(1)	-2(1)	7(1)
022	25(1)	21(1)	15(1)	2(1)	-1(1)	11(1)
024	18(1)	19(1)	17(1)	1(1)	-1(1)	5(1)

Tabla A1.1.30- Enlaces de hidrógeno (Å, °) de $H_2 \alpha OFSC^T$.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)				
N11-H11A…O11 ⁱ	0.86	2.05	2.907(2)	175.1				
N11-H11B…O21 ⁱⁱ	0.86	2.12	2.940(2)	158.7				
N11-H11B…N13	0.86	2.29	2.638(2)	104.1				
N12-H12…O14	0.86	2.05	2.672(2)	128.6				
N12-H12…O23	0.86	2.32	3.100(2)	151.7				
012-H13…021 ^{II}	0.89(3)	1.89(4)	2.677(2)	148(3)				
O12-H13…N13	0.89(3)	2.21(3)	2.603(2)	106(3)				
N21-H21A…O13 ^{III}	0.86	2.28	3.006(2)	142.6				
N21-H21B…N23	0.86	2.28	2.639(2)	104.9				
N22-H22…O12 ^{iv}	0.86	2.25	2.938(2)	136.8				
N22-H22…O24	0.86	2.06	2.656(2)	126.2				
022-H23…011	0.87(3)	1.76(3)	2.623(2)	179(3)				
'-x+1, -γ, -z+1; " x+1, γ, z+1; " x-1, γ-1, z-1; ^{iv} x-1, γ, z-1.								

A1.1.6- Estructura cristalina de la semicarbazona del ácido 3-indolglioxílico (H₃INSC).

Figura A1.6- Unidad asimétrica de la estructura cristalina del ligando H₃INSC.

Fórmula	$C_{11}H_{10}N_4O_3$	α (°)	90.000	Intervalo θ (°)	2.39 a 25.68
Masa Molecular	246.23	β (°)	96.406(5)	Intervalos en h, k, l	-8,8; 0,13; 0,16
т (к)	296(2)	γ (°)	90.000	No. reflex. medidas	11560
λ (Å)	0.71073	V (Å ³)	1045.24(12)	No. reflex. únicas	1668
Sistema Cristalino	Monoclinic	z	4	R _{int}	0.0467
Grupo Espacial	P21/c	D _{calc} . (mg/m ³)	1.565	R	0.0965
a (Å)	7.0139(5)	μ(mm ⁻¹)	0.118	R _w	0.2828
b (Å)	10.8062(7)	F(000)	512	G.O.F.	1.215
c (Å)	13.8772(9)	Dimensiones (mm)	0.14x0.11x0.09		

Tabla A1.1.31- Datos cristalográficos y de refinado del ligando H₃INSC.

Tabla A1.1.32- Distancias interatómicas (Å) de H₃INSC.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-01	1.262(6)	C4-C5	1.380(7)	C6-C7	1.378(8)	С9-Н10	0.9300
C1-N1	1.330(7)	C4-C11	1.449(7)	C6-H7	0.9300	N1-H1B	0.8600
C1-N2	1.346(6)	C5-N4	1.347(7)	C7-C8	1.400(8)	N1-H1A	0.8600
C2-N3	1.303(6)	С5-Н4	0.9300	С7-Н8	0.9300	N2-N3	1.373(6)
C2-C4	1.453(7)	C10-N4	1.368(7)	C8-C9	1.374(8)	N2-H2A	1.01(7)
C2-C3	1.512(7)	C10-C6	1.394(7)	С8-Н9	0.9300	N4-H4N	0.73(6)
C3-O3	1.224(6)	C10-C11	1.413(7)	C9-C11	1.405(7)	02-Н2В	0.91(2)
C3-O2	1.311(6)						
A1.1.33-	Ángulos de enla	ce (°) de H	₃INSC.	Dy I			

Tabla A1.1.33-	Ángulos de enlace	(°)) de H₃INSC.	
----------------	-------------------	-----	--------------	--

	Ángulo		Ángulo		Ángulo
01-C1-N1	121.6(5)	N4-C10-C6	129.4(5)	N4-C10-C6	118.1(5)
01-C1-N2	119.1(4)	N4-C10-C11	107.7(4)	N4-C10-C11	135.8(5)
N1-C1-N2	119.2(4)	C6-C10-C11	122.9(5)	C6-C10-C11	106.1(4)
N3-C2-C4	117.8(4)	C7-C6-C10	117.2(5)	C7-C6-C10	120.0
N3-C2-C3	122.2(4)	С7-С6-Н7	121.4	С7-С6-Н7	120.0
C4-C2-C3	120.1(4)	С10-С6-Н7	121.4	C10-C6-H7	120.0
03-C3-O2	123.7(5)	C6-C7-C8	121.1(5)	C6-C7-C8	119.4(4)
O3-C3-C2	122.2(4)	С6-С7-Н8	119.5	С6-С7-Н8	110(4)
O2-C3-C2	114.1(4)	С8-С7-Н8	119.5	С8-С7-Н8	130(4)
C5-C4-C11	106.1(4)	C9-C8-C7	121.7(5)	C9-C8-C7	118.6(4)
C5-C4-C2	126.4(4)	С9-С8-Н9	119.2	С9-С8-Н9	110.0(4)
C11-C4-C2	127.5(4)	С7-С8-Н9	119.2	С7-С8-Н9	122(4)
N4-C5-C4	110.0(4)	C8-C9-C11	119.1(5)	C8-C9-C11	128(4)

N4-C5-H4	125.0	C8-C9-H10	120.5	C8-C9-H10	110(5)
C4-C5-H4	125.0	C11-C9-H10	120.5	C11-C9-H10	

Tabla A1.1.34- Coordenadas atómicas (x 10⁴) y factores isotrópicos de temperatura (Å² x 10³) de H₃INSC.

	x	У	z	U(eq)
C1	6900(7)	1969(5)	9588(4)	15(1)
C2	6642(7)	5127(5)	8954(3)	14(1)
C3	5817(7)	5065(4)	7900(4)	15(1)
C4	7085(7)	6318(4)	9411(3)	14(1)
C5	6852(7)	7463(5)	8973(4)	17(1)
C6	8859(7)	8424(5)	11345(4)	18(1)
C7	9389(8)	7675(5)	12133(4)	22(1)
C8	9186(8)	6388(5)	12069(4)	22(1)
C9	8471(7)	5818(5)	11220(4)	17(1)
C10	8121(7)	7845(5)	10485(4)	15(1)
C11	7918(7)	6547(5)	10398(4)	15(1)
N1	7331(7)	2073(4)	10543(3)	20(1)
N2	6710(6)	3000(4)	9042(3)	16(1)
N3	7002(6)	4136(4)	9478(3)	14(1)
N4	7472(7)	8358(4)	9609(3)	18(1)
01	6667(5)	927(3)	9182(3)	20(1)
02	4619(5)	5963(3)	7629(3)	18(1)
03	6204(6)	4223(3)	7365(2)	19(1)

Tabla A1.1.35- Factores anisotrópicos de temperatura ($Å^2$) de H_3 INSC.

	U11	U22	U33	U23	U13	U12	
C1	20(2)	12(2)	14(2)	-3(2)	5(2)	0(2)	
C2	15(2)	12(2)	15(2)	0(2)	2(2)	1(2)	
С3	20(2)	10(2)	16(2)	0(2)	1(2)	-3(2)	
C4	17(2)	10(2)	14(2)	0(2)	2(2)	0(2)	
C5	26(3)	12(2)	13(2)	2(2)	1(2)	1(2)	
C6	22(3)	12(2)	20(3)	-5(2)	2(2)	-1(2)	
C7	25(3)	25(3)	17(3)	-8(2)	0(2)	-1(2)	
C8	29(3)	22(3)	15(3)	5(2)	2(2)	4(2)	
C9	19(2)	13(2)	19(3)	1(2)	0(2)	1(2)	
C10	22(3)	10(2)	15(2)	-3(2)	2(2)	0(2)	

C11	14(2)	16(3)	15(2)	-2(2)	5(2)	2(2)
N1	33(3)	11(2)	15(2)	5(2)	0(2)	0(2)
N2	28(2)	8(2)	12(2)	-3(2)	2(2)	1(2)
N3	18(2)	10(2)	15(2)	-5(2)	2(2)	1(2)
N4	27(2)	7(2)	18(2)	3(2)	-1(2)	1(2)
01	34(2)	9(2)	15(2)	0(1)	-1(2)	0(2)
02	27(2)	10(2)	16(2)	0(1)	-3(2)	3(1)
03	35(2)	9(2)	12(2)	-1(1)	1(2)	2(2)

Tabla A1.1.36- Enlaces de hidrógeno (Å, °) de H₃INSC.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…N3	0.86	2.34	2.671(6)	103.3
N1-H1B…O3 ⁱ	0.86	2.41	3.070(5)	134.3
N2-H2A…O3	1.01(7)	2.06(7)	2.666(5)	116(5)
N2-H2A···O2 ⁱⁱ	1.01(7)	2.46(7)	3.258(5)	135(5)
02-H2B…01 ⁱⁱⁱ	0.91(2)	1.68(2)	2.574(5)	170(7)
N4-H4N…O1 ^{iv}	0.73(6)	2.17(6)	2.882(6)	167(6)
	D-H···A N1-H1A···N3 N1-H1B···O3 ⁱ N2-H2A···O3 N2-H2A···O2 ⁱⁱ O2-H2B···O1 ⁱⁱⁱ N4-H4N···O1 ^{iv}	D-H···A d(D-H) N1-H1A···N3 0.86 N1-H1B···O3 ⁱ 0.86 N2-H2A···O3 1.01(7) N2-H2A···O2 ⁱⁱ 1.01(7) O2-H2B···O1 ⁱⁱⁱ 0.91(2) N4-H4N···O1 ^{iv} 0.73(6)	D-H···A d(D-H) d(H···A) N1-H1A···N3 0.86 2.34 N1-H1B···O3 ⁱ 0.86 2.41 N2-H2A···O3 1.01(7) 2.06(7) N2-H2A···O2 ⁱⁱ 1.01(7) 2.46(7) O2-H2B···O1 ⁱⁱⁱ 0.91(2) 1.68(2) N4-H4N···O1 ^{iv} 0.73(6) 2.17(6)	D-H···A d(D-H) d(H···A) d(D···A) N1-H1A···N3 0.86 2.34 2.671(6) N1-H1B···O3 ⁱ 0.86 2.41 3.070(5) N2-H2A···O3 1.01(7) 2.06(7) 2.666(5) N2-H2A···O2 ⁱⁱ 1.01(7) 2.46(7) 3.258(5) O2-H2B···O1 ⁱⁱⁱ 0.91(2) 1.68(2) 2.574(5) N4-H4N···O1 ^{iv} 0.73(6) 2.17(6) 2.882(6)

A1.1.7- Estructura cristalina de la tiosemicarbazona del ácido α-oxo-furanacético (H₂αOFTSC·H₂O).

Figura A1.7- Unidad asimétrica de la estructura cristalina del ligando H₂αOFTSC·H₂O.

Fórmula	$C_7 \; H_9 \; N_3 \; O_4 \; S$	α (°)	90.000	Intervalo θ (°)	2.64 a 26.37
Masa Molecular	231.24	β (°)	96.461(5)	Intervalos en h, k, l	-11,11; 0,9; 019
т (К)	100(2)	γ (°)	90.000	No. reflex. medidas	14928
λ (Å)	0.71069	V (ų)	1027.8(10)	No. reflex. únicas	2127
Sistema Cristalino	Monoclinic	z	4	R _{int}	0.0327

Tabla A1.1.37- Datos cristalográficos y de refinado del ligando $H_2\alpha OFTSC \cdot H_2O$.

Grupo Espacial	P21/c	D _{calc} . (mg/m ³)	1.494	R	0.0468
a (Å)	9.060(5)	μ(mm ⁻¹)	0.314	R _w	0.1634
b (Å)	7.341(5)	F(000)	480	G.O.F.	1.109
c (Å)	15.552(5)	Dimensiones (mm)	0.49x0.34x0.23		

Tabla A1.1.38- Distancias interatómicas (Å) de $H_2\alpha OFTSC \cdot H_2O$.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-N1	1.307(4)	C3-O2	1.213(4)	C6-C7	1.334(4)	N2-N3	1.355(3)
C1-N2	1.374(3)	C3-01	1.319(3)	C6-H6	0.9300	N2-H2	0.8600
C1-S1	1.693(3)	C4-C5	1.354(4)	C7-O3	1.375(4)	01-H1	0.82(4)
C2-N3	1.300(3)	C4-O3	1.385(3)	C7-H7	0.9300	01W-H2W	0.81(4)
C2-C4	1.456(4)	C5-C6	1.431(4)	N1-H1A	0.8600	O1W-H1W	0.81(4)
C2-C3	1.501(4)	С5-Н5	0.9300	N1-H1B	0.8600		

Tabla A1.1.39- Ángulos de enlace (°) de $H_2\alpha OFTSC \cdot H_2O$.

	Ángulo		Ángulo		Ángulo		Ángulo
N1-C1-N2	117.6(2)	01-C3-C2	118.0(2)	С7-С6-Н6	126.7	N3-N2-C1	119.0(2)
N1-C1-S1	124.4(2)	C5-C4-O3	109.8(2)	С5-С6-Н6	126.7	N3-N2-H2	120.5
N2-C1-S1	118.0(2)	C5-C4-C2	133.9(3)	C6-C7-O3	111.1(3)	C1-N2-H2	120.5
N3-C2-C4	129.6(2)	O3-C4-C2	116.3(2)	С6-С7-Н7	124.5	C2-N3-N2	120.8(2)
N3-C2-C3	113.2(2)	C4-C5-C6	106.6(3)	03-С7-Н7	124.5	С3-01-Н1	121(2)
C4-C2-C3	117.2(2)	C4-C5-H5	126.7	C1-N1-H1A	120.0	H2W-01W-H1W	103(4)
02-C3-O1	119.7(3)	C6-C5-H5	126.7	C1-N1-H1B	120.0	C7-O3-C4	105.8(2)
O2-C3-C2	122.3(3)	C7-C6-C5	106.7(3)	H1A-N1-H1B	120.0		

Tabla A1.1.40- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de $H_2\alpha OFTSC \cdot H_2O$.

	x	У	Z	U(eq)
C1	2460(3)	8866(3)	5184(2)	18(1)
C2	5783(3)	6929(3)	4583(2)	18(1)
С3	6211(3)	6334(4)	3722(2)	20(1)
C4	6869(3)	6653(3)	5335(2)	18(1)
C5	8302(3)	6092(4)	5442(2)	26(1)
C6	8759(3)	6108(4)	6353(2)	26(1)
C7	7592(3)	6665(4)	6735(2)	29(1)
N1	1715(3)	8885(3)	4414(2)	22(1)

N2	3885(2)	8196(3)	5258(1)	18(1)
N3	4450(2)	7603(3)	4537(1)	18(1)
01	5283(2)	6685(3)	3026(1)	25(1)
02	7360(2)	5528(3)	3651(1)	26(1)
01W	7402(2)	3151(3)	2279(1)	23(1)
03	6394(2)	7015(3)	6133(1)	24(1)
S1	1803(1)	9663(1)	6089(1)	19(1)

Tabla A1.1.41- Factores anisotrópicos de temperatura ($Å^2$) de $H_2\alpha OFTSC \cdot H_2O$.

	U11	U22	U33	U23	U13	U12
C1	19(1)	16(1)	19(1)	2(1)	3(1)	0(1)
C2	19(1)	14(1)	22(1)	1(1)	5(1)	0(1)
С3	23(1)	19(1)	19(1)	-3(1)	5(1)	-4(1)
C4	19(1)	17(1)	19(1)	1(1)	4(1)	0(1)
C5	24(2)	33(2)	20(1)	1(1)	4(1)	7(1)
C6	19(1)	32(2)	25(2)	2(1)	-1(1)	3(1)
C7	25(2)	39(2)	21(1)	4(1)	-2(1)	7(1)
N1	18(1)	28(1)	20(1)	-2(1)	2(1)	7(1)
N2	16(1)	21(1)	17(1)	-1(1)	3(1)	4(1)
N3	20(1)	18(1)	17(1)	0(1)	6(1)	-1(1)
01	25(1)	32(1)	18(1)	-4(1)	4(1)	3(1)
02	26(1)	29(1)	24(1)	-6(1)	6(1)	5(1)
01W	32(1)	22(1)	16(1)	0(1)	3(1)	2(1)
03	21(1)	37(1)	15(1)	2(1)	3(1)	9(1)
S1	20(1)	24(1)	14(1)	0(1)	4(1)	4(1)

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
01-H1…N3	0.82(4)	2.31(3)	2.636(3)	104(3)
01-H1…O1W ⁱ	0.82(4)	1.88(4)	2.653(3)	158(3)
N1-H1A…N3	0.86	2.29	2.637(4)	104.6
N1-H1A…O1W ⁱ	0.86	2.06	2.887(3)	160.8
N1-H1B…S1 ⁱⁱ	0.86	2.52	3.368(3)	171.4
01W-H1W…02	0.81(4)	1.99(4)	2.760(3)	159(4)
N2-H2…O3	0.86	2.01	2.660(3)	131.7
O1W-H2W…S1 ⁱⁱⁱ	0.81(4)	2.50(4)	3.289(2)	167(3)

ⁱ -x+1, y+1/2, -z+1/2; ⁱⁱ -x, -y+2, -z+1; ⁱⁱⁱ -x+1, -y+1, -z+1.

A1.1.8- Estructura cristalina de la semicarbazona del salicilaldehído (H₂SSC·1/2MeOH).

Figura A1.8- Unidad asimétrica de la estructura cristalina del ligando H₂SSC·1/2MeOH.

Fórmula	$C_{17}H_{18}N_6O_5$	α(°)	90.000	Intervalo θ (°)	2.08 a 25.68
Masa Molecular	386.37	β (°)	98.094(5)	Intervalos en h, k, l	-11,11; 0,17; 016
т (К)	100(2)	γ (°)	90.000.	No. reflex. medidas	22509
λ (Å)	0.71069	V (Å ³)	1830.0(13)	No. reflex. únicas	3467
Sistema Cristalino	Monoclínico	z v v v	4	R _{int}	0.1055
Grupo Espacial	P2(1)/c	D _{calc} . (mg/m ³)	1.402	R	0.0667
a (Å)	9.531(5)	μ(mm ⁻¹)	0.106	R _w	0.1619
b (Å)	13.955(5)	F(000)	808	G.O.F.	1.028
c (Å)	13.897(5)	Dimensiones (mm)	0.24 x 0.12 x 0.12		

Tabla A1.1.43- Datos cristalográficos y de refinado del ligando H₂SSC·1/2MeOH.

Tabla A1.1.44- Distancias interatómicas (Å) de H₂SSC·1/2MeOH.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-O11	1.248(5)	C14-O12	1.371(5)	C21-N22	1.354(5)	C25-C26	1.372(6)
C11-N11	1.331(5)	C14-C15	1.383(6)	C22-N23	1.280(5)	C26-C27	1.380(6)
C11-N12	1.356(5)	C15-C16	1.377(6)	C22-C23	1.448(5)	C27-C28	1.388(6)
C12-N13	1.282(5)	C16-C17	1.391(6)	C23-C28	1.386(6)	N12-N13	1.375(4)
C12-C13	1.453(5)	C17-C18	1.382(6)	C23-C24	1.399(6)	N22-N23	1.376(4)
C13-C18	1.393(6)	C21-O21	1.248(5)	C24-O22	1.360(5)	C1S-O1S	1.225(8)
C13-C14	1.402(6)	C21-N21	1.324(5)	C24-C25	1.392(6)	C1S-O2S	1.266(8)

Tabla A1.1.45- Ángulos de enlace (°) de H₂SSC·1/2MeOH.

	Ángulo		Ángulo		Ángulo
O11-C11-N11	122.24	C15-C16-C17	120.74	O22-C24-C23	121.94
O11-C11-N12	118.54	C18-C17-C16	119.04	C25-C24-C23	119.84
N11-C11-N12	119.34	C17-C18-C13	121.44	C26-C25-C24	120.64
N13-C12-C13	122.74	O21-C21-N21	122.54	C25-C26-C27	120.54
C18-C13-C14	118.34	O21-C21-N22	118.64	C26-C27-C28	119.14
C18-C13-C12	118.64	N21-C21-N22	119.04	C23-C28-C27	121.64
C14-C13-C12	123.14	N23-C22-C23	123.04	C11-N12-N13	121.13
O12-C14-C15	118.14	C28-C23-C24	118.54	C12-N13-N12	115.93
O12-C14-C13	121.34	C28-C23-C22	119.24	C21-N22-N23	121.53
C15-C14-C13	120.54	C24-C23-C22	122.44	C22-N23-N22	115.83
C16-C15-C14	120.04	022-C24-C25	118.24	01S-C1S-O2S	118.26

Tabla A1.1.46- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de H₂SSC·1/2MeOH.

	x	У	z	U(eq)
C11	1447(4)	2137(3)	6065(3)	17(1)
C12	3894(4)	1347(3)	4576(3)	18(1)
C13	5360(4)	1083(3)	4541(3)	19(1)
C14	6391(4)	1059(3)	5367(3)	18(1)
C15	7780(4)	827(3)	5286(3)	21(1)
C16	8162(4)	623(3)	4389(3)	23(1)
C17	7158(5)	631(3)	3559(4)	27(1)
C18	5770(4)	857(3)	3645(3)	24(1)
C21	9294(4)	2682(3)	3314(3)	17(1)
C22	6842(4)	3393(3)	4829(3)	18(1)
C23	5391(4)	3669(3)	4881(3)	19(1)
C24	4407(4)	3829(3)	4051(3)	19(1)
C25	3028(4)	4101(3)	4146(3)	24(1)
C26	2616(4)	4193(3)	5048(3)	23(1)
C27	3569(4)	4036(3)	5876(3)	24(1)
C28	4948(4)	3771(3)	5784(3)	23(1)
N11	2158(4)	2016(3)	6951(3)	25(1)
N12	2029(3)	1836(3)	5282(2)	19(1)
N13	3426(3)	1559(2)	5371(3)	18(1)

N21	8541(4)	2763(3)	2442(3)	24(1)
N22	8715(3)	2973(2)	4100(2)	19(1)
N23	7322(3)	3258(2)	4024(3)	18(1)
011	252(3)	2520(2)	5925(2)	22(1)
012	6059(3)	1267(2)	6272(2)	23(1)
021	10524(3)	2354(2)	3440(2)	22(1)
022	4763(3)	3751(2)	3140(2)	26(1)
C1S	10408(6)	171(4)	2155(5)	51(2)
025	11348(7)	659(5)	2674(5)	41(2)
015	9684(7)	571(5)	1473(5)	35(2)

Tabla A1.1.47- Factores anisotrópicos de tem	nperatura (Ų) de H₂SSC·1/2MeOH.

	U11	U22	U33	U23	U13	U12
C11	11(2)	24(2)	17(2)	-1(2)	2(2)	-3(2)
C12	16(2)	17(2)	20(2)	-1(2)	-1(2)	-1(2)
C13	15(2)	19(2)	22(2)	0(2)	5(2)	-2(2)
C14	18(2)	16(2)	19(2)	-3(2)	2(2)	-3(2)
C15	14(2)	24(2)	22(3)	1(2)	-1(2)	-3(2)
C16	16(2)	19(2)	35(3)	1(2)	8(2)	0(2)
C17	27(2)	27(3)	30(3)	-5(2)	13(2)	2(2)
C18	23(2)	24(2)	23(3)	1(2)	1(2)	0(2)
C21	15(2)	17(2)	19(2)	-1(2)	2(2)	0(2)
C22	15(2)	19(2)	19(2)	0(2)	0(2)	1(2)
C23	17(2)	15(2)	24(2)	-4(2)	4(2)	-4(2)
C24	18(2)	18(2)	21(2)	-6(2)	4(2)	-4(2)
C25	16(2)	26(2)	29(3)	-1(2)	4(2)	-3(2)
C26	13(2)	23(2)	35(3)	-5(2)	8(2)	-3(2)
C27	21(2)	28(3)	24(3)	-3(2)	7(2)	-2(2)
C28	22(2)	21(2)	26(3)	1(2)	3(2)	0(2)
N11	17(2)	42(2)	18(2)	1(2)	3(2)	10(2)
N12	11(2)	29(2)	17(2)	-5(2)	-4(1)	1(1)
N13	12(2)	19(2)	24(2)	-1(2)	3(1)	1(1)
N21	16(2)	36(2)	19(2)	-2(2)	1(2)	8(2)
N22	13(2)	27(2)	16(2)	-2(2)	1(1)	3(1)
N23	13(2)	18(2)	22(2)	-2(2)	1(2)	1(1)
011	15(1)	32(2)	18(2)	2(1)	3(1)	4(1)
012	15(2)	35(2)	19(2)	-3(1)	1(1)	0(1)
021	13(1)	30(2)	21(2)	0(1)	1(1)	2(1)
022	18(2)	40(2)	18(2)	-6(1)	2(1)	1(1)
C1S	37(3)	30(3)	86(5)	-8(3)	10(3)	-3(3)

025	38(4)	31(4)	49(5)	-4(3)	-3(3)	6(3)
015	36(4)	34(4)	30(4)	7(3)	-14(3)	-7(3)

	D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
	N11-H11A…O21 ⁱ	0.86	2.05	2.897(5)	167.4
	N11-H11B…N13	0.86	2.41	2.726(5)	102.5
	N11-H11B…O22 ⁱⁱ	0.86	2.25	2.981(5)	143.4
	N12-H12A…O21 ⁱⁱⁱ	0.86	2.04	2.846(5)	156.2
	N21-H21A…O11 ^{iv}	0.86	2.04	2.867(5)	160.9
	N21-H21B…N23	0.86	2.39	2.717(5)	103.2
	N21-H21B…O12 ^v	0.86	2.28	2.999(5)	141.0
	N22-H22A…O11 ^{vi}	0.86	1.99	2.816(4)	160.2
	012-H112…N13	0.93(6)	1.81(6)	2.673(4)	153(5)
	O22-H212…N23	0.93(7)	1.83(7)	2.662(5)	147(6)
ⁱ x-1, -y+1/2, z+1/	′2; ^{II} x, -y+1/2, z+1/2;	^{III} x-1, y, z;	^{iv} x+1, -y+2	1/2, z-1/2; *	′ x, -y+1/2,

A1.1.9- Estructura cristalina de la semicarbazona del 2,4 dihidroxibenzaldehído (H₃XSSC·1/2H₂O).

Figura A1.9- Unidad asimétrica de la estructura cristalina del ligando H₃XSSC·1/2H₂O.

Tabla A1.1.49	 Datos cristalográficos y 	de refinado del	ligando H ₃ XSSC·1,	/2H₂O.

Fórmula	$C_8 \; H_{10} \; N_3 \; O_{3.5}$	α (°)	90.000	Intervalo θ (°)	2.11 a 26.37
Masa Molecular	204.18	β (°)	118.852(5)	Intervalos en h, k, l	-27,24; 0,8; 0,16
т (к)	100.0(1)	γ (°)	90.000	No. reflex. medidas	13461
λ (Å)	0.71069	V (Å ³)	1735.2(15)	No. reflex. únicas	1775
Sistema Cristalino	Monoclínico	z	8	R _{int}	0.0444
Grupo Espacial	C 2/c	D _{calc} . (mg/m ³)	1.563	R	0.0915
a (Å)	22.051(5)	μ (mm⁻¹)	0.125	R _w	0.2173
b (Å)	6.635(5)	F(000)	856	G.O.F.	1.188
c (Å)	13.541(5)	Dimensiones (mm)	0.31 x 0.26 x 0.12		

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
N3-C2	1.283(6)	O3-C6	1.367(6)	C3-C4	1.411(6)	C6-C7	1.388(6)
N3-N2	1.378(5)	O3-H3	0.75(14)	C3-C2	1.445(6)	C1-N1	1.339(6)
O2-C4	1.364(5)	C5-C6	1.383(7)	C2-H2A	0.9300	N1-H1A	0.8600
O2-H2B	0.86(7)	C5-C4	1.385(6)	01-C1	1.251(6)	N1-H1B	0.8600
N2-C1	1.356(6)	C5-H5	0.9300	C8-C7	1.379(6)	C7-H7	0.9300
N2-H2	0.8600	C3-C8	1.394(6)	C8-H8	0.9300	01W-H1W	0.84(8)

Tabla A1.1.50- Distancias interatómicas (Å) de $H_3XSSC \cdot 1/2H_2O$.

Tabla A1.1.51- Ángulos de enlace (°) de H₃XSSC·1/2H₂O.

	Ángulo		Ángulo		Ángulo
C2-N3-N2	114.3(4)	C4-C3-C2	122.8(4)	O3-C6-C7	119.6(4)
C4-O2-H2B	111(4)	N3-C2-C3	122.6(4)	C5-C6-C7	121.1(4)
C1-N2-N3	121.4(4)	N3-C2-H2A	118.7	01-C1-N1	122.2(4)
C1-N2-H2	119.3	С3-С2-Н2А	118.7	01-C1-N2	119.2(4)
N3-N2-H2	119.3	02-C4-C5	118.0(4)	N1-C1-N2	118.6(4)
С6-О3-Н3	144(10)	02-C4-C3	121.2(4)	C1-N1-H1A	120.0
C6-C5-C4	119.5(4)	C5-C4-C3	120.9(4)	C1-N1-H1B	120.0
C6-C5-H5	120.2	C7-C8-C3	122.2(4)	H1A-N1-H1B	120.0
C4-C5-H5	120.2	С7-С8-Н8	118.9	C8-C7-C6	118.7(4)
C8-C3-C4	117.5(4)	СЗ-С8-Н8	118.9	C8-C7-H7	120.6
C8-C3-C2	119.6(4)	03-C6-C5	119.3(4)	С6-С7-Н7	120.6
		0	\mathcal{O}		

Tabla A1.1.52- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de H₃XSSC·1/2H₂O.

	x	Y	Z	U(eq)
N3	1571(2)	1163(6)	1003(3)	13(1)
02	2892(2)	1177(6)	1483(3)	17(1)
N2	862(2)	1007(7)	352(3)	17(1)
03	4589(2)	888(7)	5330(3)	25(1)
C5	3734(2)	1038(8)	3402(4)	17(1)
С3	2516(2)	1163(7)	2890(4)	12(1)
C2	1788(2)	1131(7)	2069(4)	12(1)
01	-76(2)	563(6)	-1345(3)	21(1)
C4	3044(2)	1117(7)	2586(4)	12(1)
C8	2716(2)	1132(7)	4036(4)	16(1)

C6	3908(2)	1008(8)	4529(4)	18(1)
C1	553(2)	1000(8)	-790(4)	16(1)
N1	933(2)	1466(7)	-1285(3)	18(1)
C7	3402(2)	1092(7)	4857(4)	14(1)
01W	5000	1709(12)	7500	77(3)

Tabla A1.1.53- Factores anisotrópicos de temperatura ($Å^2$) de H₃XSSC·1/2H₂O.

	U11	U22	U33	U23	U13	U12
C1	15(2)	19(3)	15(2)	3(2)	6(2)	0(2)
C2	12(2)	14(2)	14(2)	-3(2)	8(2)	-2(2)
C3	13(2)	13(2)	11(2)	0(2)	6(2)	-1(2)
C4	14(2)	10(2)	14(2)	0(2)	9(2)	-5(2)
C5	13(2)	22(3)	19(2)	3(2)	9(2)	-4(2)
C6	11(2)	19(3)	18(2)	3(2)	3(2)	-6(2)
C7	17(2)	14(2)	9(2)	-2(2)	5(2)	-2(2)
C8	17(2)	16(2)	15(2)	-4(2)	9(2)	-2(2)
N1	15(2)	27(2)	13(2)	-1(2)	7(2)	-5(2)
N2	9(2)	29(2)	13(2)	4(2)	5(2)	-1(2)
N3	9(2)	13(2)	12(2)	2(2)	3(2)	-1(2)
01	12(2)	34(2)	13(2)	7(2)	3(1)	-5(2)
02	11(2)	31(2)	12(2)	2(2)	6(1)	-1(2)
03	12(2)	47(3)	13(2)	2(2)	3(1)	-1(2)
01W	177(11)	29(4)	27(4)	0	52(5)	0

Tabla A1.1.54- Enlaces de hidrógeno (Å, °) de $H_3XSSC \cdot 1/2H_2O$.

D-H···A	d(D-H)	d(H···A)	d(D…A)	<(DHA)
N1-H1A…O1 ⁱ	0.86	2.08	2.894(5)	157.0
N1-H1B…N3	0.86	2.40	2.723(5)	103.0
N1-H1B…O2 ⁱⁱ	0.86	2.55	3.147(5)	126.9
01W-H1W…01 ⁱⁱⁱ	0.84(8)	2.29(8)	3.044(8)	149(7)
N2-H2…O1 ^{iv}	0.86	2.05	2.854(5)	155.7
O2-H2B…N3	0.86(7)	1.92(7)	2.661(5)	144(6)
03-H3…O3 ^v	0.75(14)	2.18(12)	2.651(8)	121(11)
/, -z-1/2; " -x+1/2, -y+1,	/2, -z; ^Ⅲ x+1	/2, y+1/2, z	+1; ^{iv} -x, -y,	-z; ^v -x+1, -

A1.1.10- Estructura cristalina de la semicarbazona del 2-hidroxi-1-naftaldehído (H₂NAFSC·3/2H₂O).

Figura A1.10- Unidad asimétrica de la estructura cristalina del ligando H₂NAFSC·3/2H₂O.

Fórmula	$C_{24}H_{28}N_6O_7$	α (°)	90.000	Intervalo θ (°)	1.62 to 26.45
Masa Molecular	512.52	β(°)	112.633(2)	Intervalos en h, k, l	17,15; 0,22; 0,13
т (к)	100.0(1)	γ (°)	90.000	No. reflex. medidas	44507
λ (Å)	0.71073	V (Å ³)	2374.29(15)	No. reflex. únicas	4876
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.0856
Grupo Espacial	P 21/c	D _{calc} . (mg/m ³)	1.434	R	0.0558
a (Å)	13.6369(5)	μ(mm ⁻¹)	0.108	R _w	0.1170
b (Å)	17.5941(6)	F(000)	1080	G.O.F.	1.034
c (Å)	10.7215(4)	Dimensiones (mm)	0.27 x 0.07 x 0.05		

Tabla A1.1.55- Datos cristalográficos y de refinado del ligando H₂NAFSC·3/2H₂O.

Tabla A1.1.56- Distancias interatómicas (Å) H₂NAFSC·3/2H₂O.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C110-C112	1.418(4)	C18-C19	1.400(4)	C26-H26	0.9300	N22-C21	1.355(3)
C110-C19	1.367(4)	C18-H19	0.9300	C27-C28	1.363(4)	N22-H22	0.8600
C110-H111	0.9300	C19-H110	0.9300	C27-H28	0.9300	N23-C22	1.291(3)
C111-C112	1.436(4)	C210-C29	1.368(4)	C28-H29	0.9300	N23-N22	1.379(3)
C111-C16	1.420(4)	C210-H211	0.9300	C29-C28	1.402(4)	011-C11	1.255(3)
C12-C13	1.455(3)	C211-C27	1.414(4)	C29-H210	0.9300	O12-C14	1.354(3)
C12-H12A	0.9300	C212-C210	1.422(3)	N11-C11	1.330(3)	012-H1A	0.98(4)
C13-C112	1.432(4)	C212-C211	1.438(3)	N11-H11A	0.8600	01W-H11W	1.04(5)
C14-C13	1.388(4)	C212-C23	1.441(3)	N11-H11B	0.8600	01W-H12W	0.88(4)
C14-C15	1.411(4)	C22-C23	1.450(3)	N12-C11	1.359(3)	021-C21	1.253(3)
C15-C16	1.356(4)	C22-H22A	0.9300	N12-H12	0.8600	O22-C24	1.357(3)

С15-Н15	0.9300	C24-C23	1.390(3)	N13-C12	1.290(3)	O22-H2A	0.88(3)
C16-H16	0.9300	C24-C25	1.405(3)	N13-N12	1.372(3)	O2W-H21W	0.890(18)
C17-C111	1.412(4)	С25-Н25	0.9300	N21-C21	1.329(3)	O2W-H22W	0.830(18)
C17-C18	1.366(4)	C26-C211	1.419(4)	N21-H21A	0.8600	O3W-H31W	0.873(18)
С17-Н18	0.9300	C26-C25	1.351(4)	N21-H21B	0.8600	O3W-H32W	0.798(18)

Tabla A1.1.57- Ángulos de enlace (°) de $H_2NAFSC \cdot 3/2H_2O$.

	Ángulo		Ángulo		Ángulo
C11-N11-H11A	120.0	С18-С19-Н110	119.4	C27-C211-C26	121.5(2)
C11-N11-H11B	120.0	C19-C110-C112	121.4(3)	C27-C28-C29	119.2(3)
C11-N12-H12	119.4	С19-С110-Н111	119.3	C27-C28-H29	120.4
C11-N12-N13	121.3(2)	С19-С18-Н19	120.3	C28-C27-C211	121.6(3)
C110-C112-C111	117.2(3)	C21-N21-H21A	120.0	С28-С27-Н28	119.2
C110-C112-C13	123.7(2)	C21-N21-H21B	120.0	C28-C29-H210	119.3
C110-C19-C18	121.2(3)	C21-N22-H22	118.9	C29-C210-C212	121.4(3)
С110-С19-Н110	119.4	C21-N22-N23	122.1(2)	С29-С210-Н211	119.3
С111-С16-Н16	119.7	C210-C212-C211	116.9(2)	С29-С28-Н29	120.4
С111-С17-Н18	119.3	C210-C212-C23	123.8(2)	H11A-N11-H11B	120.0
С112-С110-Н111	119.3	C210-C29-C28	121.4(3)	H11W-01W-H12W	107(3)
C112-C13-C12	120.3(2)	С210-С29-Н210	119.3	H21A-N21-H21B	120.0
C12-N13-N12	116.4(2)	C211-C212-C23	119.3(2)	H21W-O2W-H22W	103(3)
C13-C112-C111	119.1(3)	С211-С26-Н26	119.6	H31W-O3W-H32W	102(3)
C13-C12-H12A	119.1	С211-С27-Н28	119.2	N11-C11-N12	118.8(2)
C13-C14-C15	121.2(3)	С212-С210-Н211	119.3	N13-C12-C13	121.8(2)
C14-C13-C112	119.0(2)	C212-C23-C22	120.1(2)	N13-C12-H12A	119.1
C14-C13-C12	120.6(2)	C22-N23-N22	115.9(2)	N13-N12-H12	119.4
С14-С15-Н15	119.6	C23-C22-H22A	118.8	N21-C21-N22	118.9(2)
C14-O12-H1A	107(2)	C23-C24-C25	121.5(2)	N23-C22-C23	122.3(2)
C15-C16-C111	120.6(3)	C24-C23-C212	118.3(2)	N23-C22-H22A	118.8
С15-С16-Н16	119.7	C24-C23-C22	121.5(2)	N23-N22-H22	118.9
C16-C111-C112	119.2(3)	C24-C25-H25	119.5	O11-C11-N11	122.5(2)
C16-C15-C14	120.8(3)	C24-O22-H2A	106.7(19)	O11-C11-N12	118.8(2)
C16-C15-H15	119.6	C25-C26-C211	120.9(3)	O12-C14-C13	122.6(2)
C17-C111-C112	119.4(3)	C25-C26-H26	119.6	O12-C14-C15	116.2(3)
C17-C111-C16	121.4(3)	C26-C211-C212	118.9(2)	O21-C21-N21	122.5(2)
C17-C18-C19	119.3(3)	C26-C25-C24	121.0(3)	O21-C21-N22	118.7(2)

С17-С18-Н19	120.3	C26-C25-H25	119.5	022-C24-C23	122.0(2)
C18-C17-C111	121.5(3)	C27-C211-C212	119.6(2)	O22-C24-C25	116.5(2)
С18-С17-Н18	119.3				

Tabla A1.1.58- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de H₂NAFSC·3/2H₂O.

	x	У	Z	U(eq)
011	5771(1)	6405(1)	321(2)	20(1)
012	6072(2)	6473(1)	5743(2)	27(1)
N13	6098(2)	5826(1)	3590(2)	16(1)
N12	5974(2)	5805(1)	2259(2)	17(1)
N11	6089(2)	7116(1)	2199(2)	21(1)
C14	6199(2)	5767(2)	6287(3)	19(1)
C11	5942(2)	6453(2)	1555(3)	17(1)
C12	6192(2)	5179(2)	4192(2)	16(1)
C15	6223(2)	5715(2)	7612(3)	23(1)
C17	6583(2)	3643(2)	8236(3)	31(1)
C110	6533(2)	3708(2)	5624(3)	27(1)
C13	6289(2)	5124(2)	5589(3)	16(1)
C111	6472(2)	4358(2)	7599(3)	22(1)
C112	6434(2)	4400(2)	6244(3)	19(1)
C18	6659(2)	2988(2)	7593(3)	38(1)
C16	6365(2)	5036(2)	8255(3)	24(1)
C19	6640(3)	3028(2)	6280(3)	40(1)
022	8402(1)	6417(1)	3993(2)	21(1)
021	8975(1)	6401(1)	9585(2)	19(1)
C212	8763(2)	4340(2)	3903(3)	16(1)
N23	8684(2)	5806(1)	6331(2)	16(1)
N22	8837(2)	5801(1)	7679(2)	15(1)
N21	8498(2)	7088(1)	7657(2)	20(1)
C22	8778(2)	5159(1)	5821(2)	14(1)
C24	8518(2)	5705(1)	3585(3)	17(1)
C210	8954(2)	3660(1)	4675(3)	20(1)
C26	8571(2)	4946(2)	1754(3)	21(1)
C211	8704(2)	4276(2)	2540(3)	17(1)
C21	8769(2)	6441(2)	8343(2)	15(1)

C23	8665(2)	5078(1)	4426(3)	15(1)
C25	8484(2)	5633(2)	2265(3)	20(1)
C27	8832(2)	3557(2)	2034(3)	22(1)
C29	9095(2)	2979(2)	4151(3)	27(1)
C28	9035(2)	2921(2)	2819(3)	29(1)
01W	7361(2)	7289(1)	-52(2)	19(1)
02W	3966(2)	5758(1)	-1474(2)	31(1)
O3W	10833(2)	5755(1)	11334(2)	29(1)

Tabla A1.1.59- Factores anisotrópicos de temperatura ($Å^2$) de H₂NAFSC·3/2H₂O.

	U11	U22	U33	U23	U13	U12
011	20(1)	28(1)	13(1)	-2(1)	7(1)	-6(1)
012	39(1)	23(1)	22(1)	-6(1)	17(1)	-9(1)
N13	13(1)	23(1)	16(1)	-2(1)	8(1)	-3(1)
N12	21(1)	20(1)	11(1)	-2(1)	7(1)	-5(1)
N11	29(1)	20(1)	14(1)	-1(1)	10(1)	-4(1)
C14	17(1)	23(2)	19(2)	-3(1)	8(1)	-7(1)
C11	10(1)	25(2)	14(1)	0(1)	5(1)	-2(1)
C12	8(1)	21(2)	17(1)	-1(1)	5(1)	-4(1)
C15	20(1)	30(2)	20(2)	-8(1)	11(1)	-11(1)
C17	22(2)	48(2)	27(2)	15(2)	14(1)	11(1)
C110	28(2)	32(2)	24(2)	8(1)	15(1)	11(1)
C13	7(1)	26(2)	15(1)	-1(1)	2(1)	-3(1)
C111	12(1)	36(2)	20(2)	7(1)	6(1)	1(1)
C112	9(1)	31(2)	20(2)	3(1)	8(1)	2(1)
C18	43(2)	37(2)	43(2)	22(2)	26(2)	17(2)
C16	14(1)	44(2)	13(1)	-1(1)	5(1)	-7(1)
C19	52(2)	32(2)	44(2)	10(2)	28(2)	17(2)
022	28(1)	19(1)	19(1)	2(1)	13(1)	4(1)
021	21(1)	24(1)	14(1)	0(1)	7(1)	4(1)
C212	7(1)	21(2)	19(1)	-1(1)	3(1)	1(1)
N23	12(1)	25(1)	12(1)	0(1)	6(1)	-2(1)
N22	19(1)	15(1)	13(1)	4(1)	7(1)	3(1)
N21	26(1)	20(1)	15(1)	1(1)	9(1)	6(1)
C22	10(1)	14(2)	16(1)	0(1)	4(1)	2(1)
C24	13(1)	17(2)	20(1)	-1(1)	6(1)	2(1)

C210	22(1)	21(2)	20(1)	-4(1)	11(1)	-3(1)
C26	12(1)	34(2)	16(1)	0(1)	7(1)	3(1)
C211	8(1)	25(2)	18(1)	-2(1)	5(1)	-2(1)
C21	9(1)	22(2)	14(1)	0(1)	6(1)	0(1)
C23	8(1)	20(2)	16(1)	-1(1)	5(1)	0(1)
C25	18(1)	28(2)	17(1)	8(1)	10(1)	4(1)
C27	18(1)	29(2)	21(2)	-11(1)	11(1)	-6(1)
C29	31(2)	20(2)	32(2)	-3(1)	15(1)	-4(1)
C28	29(2)	24(2)	37(2)	-10(1)	18(1)	-5(1)
01W	22(1)	19(1)	18(1)	-1(1)	11(1)	1(1)
02W	20(1)	36(1)	38(1)	-15(1)	12(1)	-5(1)
03W	21(1)	27(1)	35(1)	11(1)	6(1)	0(1)

Tabla A1.1.60- Enlaces de hidrógeno (Å, °) de H₂NAFSC·3/2H₂O.

_

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
012-H1A…N13	0.98(4)	1.73(4)	2.586(3)	143(3)
O22-H2A…N23	0.88(3)	1.83(3)	2.616(3)	148(3)
N11-H11A…O12 ⁱ	0.86	2.07	2.929(3)	178.2
N11-H11B…N13	0.86	2.38	2.712(3)	103.3
N11-H11B…O1W ⁱⁱ	0.86	2.29	2.976(3)	137.4
01W-H11W…011	1.04(5)	1.79(5)	2.819(2)	171(4)
N12-H12…O2W ⁱⁱⁱ	0.86	2.05	2.885(3)	163.4
01W-H12W…O21 ^{iv}	0.88(4)	1.99(4)	2.845(3)	166(3)
N21-H21A…O22 ⁱⁱ	0.86	2.16	3.020(3)	175.7
N21-H21B…N23	0.86	2.40	2.730(3)	103.3
N21-H21B…O1W ⁱⁱ	0.86	2.22	2.928(3)	140.2
N22-H22…O3W ^v	0.86	2.07	2.907(3)	165.5
02W-H21W…011	0.890(18)	1.834(18)	2.722(3)	175(3)
O3W-H31W…O21	0.873(18)	1.880(18)	2.752(3)	176(3)

A1.1.11- Estructura cristalina de la tiosemicarbazona del salicilaldehído (H₂STSC).

Figura A1.11- Unidad asimétrica de la estructura cristalina del ligando H₂STSC.

Fórmula	$C_8 H_9 N_3 O S$	α (°)	90.000	Intervalo θ (°)	2.10 a 25.35
Masa Molecular	195.25	β (°)	93.752(5)	Intervalos en <i>h, k, l</i>	-33,33; 0,8; 0,23
т (к)	100.0(1)	γ (°)	90.000	No. reflex. medidas	25437
λ (Å)	0.71069	V (Å ³)	3657(3)	No. reflex. únicas	3331
Sistema Cristalino	Monoclínico	Z D VI	16	R _{int}	0.0688
Grupo Espacial	C 2/c	D _{calc} . (mg/m ³)	1.331	R	0.0546
a (Å)	28.162(5)	μ(mm ⁻¹)	0.257	R _w	0.1407
b (Å)	6.706(5)	F(000)	1560	G.O.F.	1.108
c (Å)	19.405(5)	Dimensiones (mm)	0.45 x 0.10 x 0.07		

Tabla A1.1.61- Datos cristalográficos y de refinado del ligando H₂STSC.

Tabla A1.1.62- Distancias interatómicas (Å) de H₂STSC.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-N11	1.331(5)	C15-H15	0.97(4)	C22-H22C	0.95(4)	C28-H28	0.92(4)
C11-N12	1.344(5)	C16-C17	1.394(5)	C23-C28	1.395(5)	N11-H11B	0.87(4)
C11-S1	1.692(4)	C16-H16	1.00(4)	C23-C24	1.406(5)	N11-H11A	0.92(6)
C12-N13	1.286(5)	C17-C18	1.368(5)	C24-O2	1.366(4)	N12-N13	1.374(4)
C12-C13	1.444(5)	C17-H17	0.94(4)	C24-C25	1.382(5)	N12-H12A	0.95(5)
C12-H12C	1.05(4)	C18-H18	1.05(4)	C25-C26	1.381(5)	N21-H21A	0.80(4)
C13-C18	1.412(5)	C21-N21	1.323(5)	C25-H25	0.96(5)	N21-H21B	0.90(5)
C13-C14	1.412(5)	C21-N22	1.352(5)	C26-C27	1.386(6)	N22-N23	1.373(4)
C14-O1	1.367(4)	C21-S2	1.687(4)	C26-H26	0.99(4)	N22-H22A	0.83(4)
C14-C15	1.384(5)	C22-N23	1.292(5)	C27-C28	1.372(5)	O1-H12B	0.91(5)
C15-C16	1.395(5)	C22-C23	1.447(5)	C27-H27	0.92(4)	O2-H22B	0.90(4)
---------	----------	---------	--------------	---------	---------	---------	---------
	(-)		x = 7	-	()	-	()

Tabla A1.1.63- Ángulos de enlace (°) H₂STSC.

	Ángulo		Ángulo		Ángulo
N11-C11-N12	118.7(3)	C17-C18-H18	121(2)	C28-C27-H27	119(3)
N11-C11-S1	122.0(3)	C13-C18-H18	118(2)	C26-C27-H27	121(3)
N12-C11-S1	119.3(3)	N21-C21-N22	117.8(3)	C27-C28-C23	121.3(4)
N13-C12-C13	122.6(3)	N21-C21-S2	122.5(3)	C27-C28-H28	124(2)
N13-C12-H12C	119(2)	N22-C21-S2	119.7(3)	C23-C28-H28	114(2)
C13-C12-H12C	118(2)	N23-C22-C23	121.6(3)	C11-N11-H11B	122(3)
C18-C13-C14	117.8(3)	N23-C22-H22C	121(2)	C11-N11-H11A	121(3)
C18-C13-C12	119.1(3)	С23-С22-Н22С	118(2)	H11B-N11-H11A	116(4)
C14-C13-C12	123.1(3)	C28-C23-C24	117.9(3)	C11-N12-N13	121.6(3)
O1-C14-C15	118.1(3)	C28-C23-C22	119.5(3)	C11-N12-H12A	118(3)
O1-C14-C13	120.8(3)	C24-C23-C22	122.5(3)	N13-N12-H12A	119(3)
C15-C14-C13	121.0(3)	02-C24-C25	117.8(3)	C12-N13-N12	115.8(3)
C14-C15-C16	119.7(4)	O2-C24-C23	121.5(3)	C21-N21-H21A	123(3)
C14-C15-H15	120(2)	C25-C24-C23	120.7(3)	C21-N21-H21B	119(3)
C16-C15-H15	120(2)	C26-C25-C24	119.9(4)	H21A-N21-H21B	118(4)
C17-C16-C15	119.9(4)	C26-C25-H25	121(3)	C21-N22-N23	120.3(3)
C17-C16-H16	121(2)	C24-C25-H25	119(3)	C21-N22-H22A	118(3)
С15-С16-Н16	119(2)	C25-C26-C27	120.2(4)	N23-N22-H22A	121(3)
C18-C17-C16	120.6(4)	C25-C26-H26	123(2)	C22-N23-N22	116.7(3)
C18-C17-H17	118(2)	С27-С26-Н26	117(2)	С14-О1-Н12В	106(3)
C16-C17-H17	121(2)	C28-C27-C26	120.0(4)	C24-O2-H22B	111(3)
C17-C18-C13	121.0(4)				

Tabla A1.1.64- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de H₂STSC.

	x	У	Z	U(eq)
C11	4313(1)	3713(5)	3145(2)	15(1)
C12	5209(1)	2339(5)	4389(2)	14(1)
C13	5334(1)	2072(5)	5117(2)	14(1)
C14	5009(1)	2384(5)	5631(2)	14(1)
C15	5144(1)	2097(6)	6323(2)	19(1)
C16	5606(1)	1480(6)	6518(2)	20(1)
C17	5929(1)	1150(6)	6016(2)	19(1)

C18	5797(1)	1421(6)	5331(2)	18(1)
C21	1747(1)	1852(6)	4340(2)	15(1)
C22	2603(1)	1545(6)	3107(2)	13(1)
C23	2663(1)	1544(5)	2372(2)	14(1)
C24	2276(1)	1579(5)	1876(2)	14(1)
C25	2349(1)	1645(6)	1179(2)	19(1)
C26	2807(1)	1633(6)	964(2)	21(1)
C27	3193(1)	1577(6)	1444(2)	21(1)
C28	3121(1)	1533(6)	2136(2)	18(1)
N11	3940(1)	3904(5)	3527(2)	16(1)
N12	4729(1)	3097(5)	3451(2)	14(1)
N13	4792(1)	2885(4)	4156(1)	12(1)
N21	1356(1)	1538(6)	3939(2)	22(1)
N22	2170(1)	1711(5)	4051(2)	15(1)
N23	2186(1)	1579(5)	3347(1)	14(1)
01	4552(1)	2972(4)	5459(1)	19(1)
02	1817(1)	1570(4)	2065(1)	20(1)
S1	4274(1)	4165(2)	2285(1)	18(1)
S2	1734(1)	2422(2)	5186(1)	17(1)

Tabla A1.1.65- Factores anisotrópicos de temperatura ($Å^2$) de H₂STSC.

_

	U11	U22	U33	U23	U13	U12
C11	15(2)	13(2)	17(2)	-3(2)	1(2)	2(2)
C12	10(2)	12(2)	19(2)	-1(2)	3(1)	0(2)
C13	14(2)	11(2)	19(2)	-1(2)	2(1)	0(1)
C14	17(2)	11(2)	15(2)	0(2)	0(1)	-3(2)
C15	20(2)	18(2)	19(2)	-5(2)	2(2)	2(2)
C16	29(2)	12(2)	17(2)	-2(2)	-3(2)	-1(2)
C17	14(2)	14(2)	28(2)	1(2)	-3(2)	3(2)
C18	16(2)	14(2)	25(2)	-4(2)	1(2)	1(2)
C21	18(2)	14(2)	14(2)	2(2)	2(2)	-1(2)
C22	12(2)	14(2)	15(2)	-1(2)	0(2)	-1(2)
C23	15(2)	10(2)	19(2)	1(2)	2(1)	-1(2)
C24	14(2)	9(2)	20(2)	-4(2)	-1(1)	-2(2)
C25	20(2)	21(2)	16(2)	-4(2)	-1(2)	-6(2)
C26	30(2)	18(2)	16(2)	-3(2)	7(2)	-2(2)

C27	22(2)	19(2)	22(2)	-5(2)	11(2)	-4(2)
C28	16(2)	15(2)	21(2)	-4(2)	1(2)	-2(2)
N11	12(2)	24(2)	14(2)	7(1)	5(1)	2(1)
N12	12(2)	20(2)	10(2)	2(1)	2(1)	-1(1)
N13	16(2)	11(2)	10(1)	2(1)	4(1)	-2(1)
N21	14(2)	38(2)	13(2)	-7(2)	4(1)	-5(2)
N22	15(2)	17(2)	12(2)	-3(1)	0(1)	-1(1)
N23	17(2)	15(2)	11(2)	-2(1)	3(1)	0(1)
01	12(1)	28(2)	17(1)	-1(1)	3(1)	5(1)
02	14(1)	31(2)	17(2)	1(1)	3(1)	-3(1)
S1	15(1)	26(1)	13(1)	2(1)	3(1)	3(1)
S2	15(1)	27(1)	11(1)	-1(1)	3(1)	-1(1)

Tabla A1.1.66- Enlaces de hidrógeno (Å, °) de H_2STSC .

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O2 ⁱ	0.92(6)	2.06(6)	2.957(4)	166(5)
N11-H11B…N13	0.87(4)	2.40(4)	2.706(4)	101(3)
N11-H11B…S2 [#]	0.87(4)	2.73(4)	3.355(3)	131(3)
N12-H12A…S1 ^{III}	0.95(5)	2.39(5)	3.310(3)	161(4)
O1-H12B…N13	0.91(5)	1.83(5)	2.660(4)	151(4)
N21-H21A…N23	0.80(4)	2.40(4)	2.670(5)	101(3)
N21-H21A…S1 ^{iv}	0.80(4)	2.70(4)	3.282(4)	132(4)
N21-H21B…O1 ⁱⁱ	0.90(5)	2.00(5)	2.900(4)	176(4)
N22-H22A…S2 ⁱⁱ	0.83(4)	2.57(4)	3.385(3)	165(4)
O2-H22B…N23	0.90(4)	1.85(4)	2.633(4)	143(4)

A1.1.12- Estructura cristalina de la tiosemicarbazona del 2,4-dihidroxibenzaldehído (H₃XSTSC).

Figura A1.12- Unidad asimétrica de la estructura cristalina del ligando H₃XSTSC.

Fórmula	$C_8 H_9 N_3 O_2 S$	α (°)	90.000	Intervalo θ (°)	1.94 a 28.48
Masa Molecular	211.25	β (°)	110.552(5)	Intervalos en h, k, l	-28,26; 0,5; 0,29
т (к)	100.0(1)	γ (°)	90.000	No. reflex. medidas	10837
λ (Å)	0.71069	V (ų)	1808(2)	No. reflex. únicas	2264
Sistema Cristalino	Monoclínico	z	8	R _{int}	0.0801
Grupo Espacial	C 2/c	D _{calc} . (mg/m ³)	1.552	R	0.0538
a (Å)	21.598(5)	μ(mm ⁻¹)	0.333	R _w	0.1377
b (Å)	3.984(5)	F(000)	880	G.O.F.	1.002
c (Å)	22.443(5)	Dimensiones (mm)	0.32 x 0.06 x 0.03		

Tabla A1.1.67- Datos cristalográficos y de refinado del ligando H₃XSTSC.

Tabla A1.1.68- Distancias interatómicas (Å) de H₃XSTSC.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-N1	1.335(3)	C3-C8	1.400(4)	C6-O2	1.359(3)	N2-H2	0.8600
C1-N2	1.328(3)	C4-C3	1.413(3)	C7-C8	1.378(4)	N2-N3	1.394(3)
C1-S	1.699(3)	C4-C5	1.387(3)	С7-Н7	0.9300	O1-C4	1.361(3)
C2-C3	1.438(3)	С5-Н5	0.9300	С8-Н8	0.9300	01-H1	0.90(4)
C2-H3	0.9300	C6-C5	1.386(4)	N1-H1A	0.8600	O2-H2A	0.93(4)
C2-N3	1.284(3)	C6-C7	1.401(3)	N1-H1B	0.8600		

Tabla A1.1.69- Ángulos de enlace (°) de H₃XSTSC.

	Ángulo	<u> </u>	Ángulo		Ángulo
C1-N2-N3	121.9(2)	C5-C6-C7	120.4(2)	H1A-N1-H1B	120.0
C1-N1-H1A	120.0	C6-C5-C4	120.1(2)	N1-C1-S	122.1(2)
C1-N1-H1B	120.0	С6-С5-Н5	120.0	N2-C1-N1	118.2(2)
C1-N2-H2	119.0	С6-С7-Н7	120.4	N2-C1-S	119.73(19)
C2-N3-N2	114.2(2)	C6-O2-H2A	107(2)	N3-C2-C3	123.4(2)
С3-С2-Н3	118.3	C7-C8-C3	122.0(2)	N3-C2-H3	118.3
СЗ-С8-Н8	119.0	С7-С8-Н8	119.0	N3-N2-H2	119.0
C4-C3-C2	123.2(2)	C8-C3-C2	118.8(2)	O1-C4-C3	121.0(2)
C4-C5-H5	120.0	C8-C3-C4	117.8(2)	01-C4-C5	118.4(2)
C4-O1-H1	111(2)	C8-C7-C6	119.1(2)	O2-C6-C5	117.7(2)
C5-C4-C3	120.6(2)	С8-С7-Н7	120.4	02-C6-C7	121.9(2)

Tabla A1.1.70- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de H₃XSTSC.

	x	У	Z	U(eq)
C1	5655(1)	8611(7)	6096(1)	18(1)

S	6044(1)	10520(2)	5648(1)	20(1)
02	2210(1)	-247(5)	6721(1)	23(1)
01	4247(1)	5282(5)	7145(1)	24(1)
N3	4689(1)	6058(6)	6174(1)	19(1)
N2	5037(1)	7542(6)	5824(1)	19(1)
N1	5952(1)	8124(6)	6721(1)	23(1)
C8	3154(1)	1309(7)	5681(1)	19(1)
С7	2657(1)	141(7)	5878(1)	19(1)
C6	2689(1)	797(7)	6502(1)	19(1)
C5	3219(1)	2554(7)	6917(1)	19(1)
C4	3727(1)	3631(7)	6720(1)	17(1)
С3	3698(1)	3080(7)	6088(1)	17(1)
C2	4169(1)	4461(7)	5835(1)	18(1)

Tabla A1.1.71- Factores anisotrópicos	s de temperatura	a (Ų) de H₃XSTSC

	U11	U22	U33	U23	U13	U12	
C1	23(1)	24(1)	11(1)	-1(1)	10(1)	1(1)	
C2	20(1)	26(1)	9(1)	0(1)	8(1)	1(1)	
С3	18(1)	25(1)	10(1)	1(1)	8(1)	2(1)	
C4	19(1)	26(1)	8(1)	1(1)	6(1)	1(1)	
C5	20(1)	31(2)	7(1)	0(1)	7(1)	0(1)	
C6	20(1)	27(1)	12(1)	4(1)	11(1)	1(1)	
C7	19(1)	29(2)	10(1)	-1(1)	6(1)	0(1)	
C8	23(1)	29(1)	8(1)	-1(1)	9(1)	0(1)	
N1	21(1)	41(1)	8(1)	1(1)	7(1)	-6(1)	
N2	23(1)	31(1)	7(1)	3(1)	10(1)	-3(1)	
N3	21(1)	28(1)	12(1)	2(1)	12(1)	0(1)	
01	21(1)	44(1)	10(1)	-6(1)	8(1)	-8(1)	
02	20(1)	39(1)	11(1)	-1(1)	9(1)	-5(1)	
S	23(1)	30(1)	10(1)	2(1)	9(1)	-3(1)	

Tabla A1.1.72- Enlaces de hidrógeno (Å,	°) de H ₃ XSTSC.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
01-H1…N3	0.90(4)	1.91(4)	2.688(3)	144(3)
N1-H1A…N3	0.86	2.36	2.697(3)	103.9
N1-H1A…O1 ⁱ	0.86	2.19	2.951(3)	148.1

	N1-H1B…O2 ⁱⁱ	0.86	2.60	3.030(3)	112.3
	N2-H2…S ⁱⁱⁱ	0.86	2.58	3.397(2)	159.0
	O2-H2A…S ^{iv}	0.93(4)	2.35(4)	3.275(2)	171(3)
ⁱ -x+1	L, y, -z+3/2; ["] x+1	/2, y+1/2,	z; ^{III} -x+1, -	·y+2, -z+1; ^{iv}	x-1/2, y-3/2, z.

A1.1.13- Estructura cristalina de la semicarbazona de la di-2-piridilcetona (HBIPSC).

Figura A1.13- Unidad asimétrica de la estructura cristalina del ligando HBIPSC.

Fórmula	$C_{12} \ H_{11} \ N_5 \ O$	α(°)	90.000	Intervalo θ (°)	1.80 a 26.02
Masa Molecular	241.26	β(°)	92.077(5)	Intervalos en h, k, l	-27,27; 0,11; 0,28
т (к)	100.0(1)	γ(°)	90.000	No. reflex. medidas	38190
λ (Å)	0.71069	V (Å ³)	4696(3)	No. reflex. únicas	4927
Sistema Cristalino	Monoclínico	ZCA	16	R _{int}	0.1382
Grupo Espacial	C2/c	D _{calc} . (mg/m ³)	1.365	R	0.1139
a (Å)	22.637(5)	μ(mm ⁻¹)	0.094	R _w	0.2908
b (Å)	9.146(5)	F(000)	2016	G.O.F.	1.070
c (Å)	22.697(5)	Dimensiones (mm)	0.27 x 0.16 x 0.14		

Tabla A1.1.73- Datos cristalográficos y de refinado del ligando HBIPSC.

Tabla A1.1.74- Distancias interatómicas (Å) de HBIPSC.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-O1	1.226(6)	C17-H17	0.9300	C25-C26	1.380(7)	C112-H112	0.9300
C11-N11	1.342(6)	C18-N15	1.324(6)	C25-H25	0.9300	C210-C211	1.370(7)
C11-N12	1.381(6)	C18-C19	1.353(7)	C26-C27	1.361(7)	С210-Н210	0.9300
C12-N13	1.277(6)	C19-C110	1.367(7)	C26-H26	0.9300	C211-C212	1.385(7)
C12-C18	1.492(7)	С19-Н19	0.9300	C27-N24	1.330(6)	C211-H211	0.9300
C12-C13	1.504(7)	C21-O2	1.220(5)	C27-H27	0.9300	C212-N25	1.391(7)
C13-N14	1.345(6)	C21-N21	1.319(6)	C28-N25	1.333(6)	C212-H212	0.9300
C13-C14	1.393(7)	C21-N22	1.378(6)	C28-C29	1.376(7)	N11-H11A	0.8600

C14-C15	1.370(7)	C22-N23	1.288(6)	C29-C210	1.376(7)	N11-H11B	0.8600
C14-H14	0.9300	C22-C23	1.498(7)	С29-Н29	0.9300	N12-N13	1.382(5)
C15-C16	1.389(8)	C22-C28	1.501(7)	C110-C111	1.362(7)	N12-H12	0.8600
C15-H15	0.9300	C23-N24	1.332(6)	С110-Н110	0.9300	N21-H21A	0.8600
C16-C17	1.359(7)	C23-C24	1.409(7)	C111-C112	1.405(7)	N21-H21B	0.8600
C16-H16	0.9300	C24-C25	1.370(7)	С111-Н111	0.9300	N22-N23	1.375(5)
C17-N14	1.341(6)	C24-H24	0.9300	C112-N15	1.345(7)	N22-H22	0.8600

Tabla A1.1.75- Ángulos de enlace (°) de HBIPSC.

	Ángulo		Ángulo		Ángulo
01-C11-N11	124.1(4)	N23-C22-C23	112.9(4)	N15-C112-C111	122.4(5)
01-C11-N12	119.7(5)	N23-C22-C28	127.7(4)	N15-C112-H112	118.8
N11-C11-N12	116.1(4)	C23-C22-C28	119.4(4)	C111-C112-H112	118.8
N13-C12-C18	127.2(5)	N24-C23-C24	121.5(5)	C211-C210-C29	121.5(5)
N13-C12-C13	113.0(4)	N24-C23-C22	116.6(4)	C211-C210-H210	119.3
C18-C12-C13	119.9(4)	C24-C23-C22	121.9(4)	C29-C210-H210	119.3
N14-C13-C14	122.5(5)	C25-C24-C23	119.1(5)	C210-C211-C212	117.7(5)
N14-C13-C12	115.6(4)	С25-С24-Н24	120.5	С210-С211-Н211	121.2
C14-C13-C12	121.9(4)	С23-С24-Н24	120.5	С212-С211-Н211	121.2
C15-C14-C13	118.8(5)	C24-C25-C26	118.7(5)	C211-C212-N25	122.0(5)
С15-С14-Н14	120.6	С24-С25-Н25	120.7	С211-С212-Н212	119.0
С13-С14-Н14	120.6	С26-С25-Н25	120.7	N25-C212-H212	119.0
C14-C15-C16	118.8(5)	C27-C26-C25	118.6(5)	C11-N11-H11A	120.0
C14-C15-H15	120.6	С27-С26-Н26	120.7	C11-N11-H11B	120.0
C16-C15-H15	120.6	С25-С26-Н26	120.7	H11A-N11-H11B	120.0
C17-C16-C15	118.8(5)	N24-C27-C26	124.2(5)	C11-N12-N13	119.4(4)
С17-С16-Н16	120.6	N24-C27-H27	117.9	C11-N12-H12	120.3
С15-С16-Н16	120.6	C26-C27-H27	117.9	N13-N12-H12	120.3
N14-C17-C16	123.9(5)	N25-C28-C29	123.6(5)	C12-N13-N12	119.0(4)
N14-C17-H17	118.1	N25-C28-C22	115.2(4)	C17-N14-C13	117.1(4)
С16-С17-Н17	118.1	C29-C28-C22	121.2(5)	C18-N15-C112	118.8(4)
N15-C18-C19	121.5(5)	C210-C29-C28	117.9(5)	C21-N21-H21A	120.0
N15-C18-C12	117.1(4)	С210-С29-Н29	121.0	C21-N21-H21B	120.0
C19-C18-C12	121.3(5)	C28-C29-H29	121.0	H21A-N21-H21B	120.0
C18-C19-C110	120.4(5)	C111-C110-C19	120.1(5)	N23-N22-C21	119.5(4)
С18-С19-Н19	119.8	С111-С110-Н110	120.0	N23-N22-H22	120.2

C110-C19-H19	119.8	С19-С110-Н110	120.0	C21-N22-H22	120.2
02-C21-N21	124.1(4)	C110-C111-C112	116.7(5)	C22-N23-N22	119.5(4)
O2-C21-N22	119.1(4)	С110-С111-Н111	121.6	C27-N24-C23	117.9(4)
N21-C21-N22	116.7(4)	С112-С111-Н111	121.6	C28-N25-C212	117.3(4)

Tabla A1.1.76- Coordenadas atómicas (x 10⁴) y factores isotrópicos de temperatura (Å² x 10³) de HBIPSC.

	x	У	z	U(eq)
C11	2771(2)	-7266(6)	5877(2)	21(1)
C12	3337(2)	-5362(5)	7134(2)	22(1)
C13	3616(2)	-3881(5)	7218(2)	23(1)
C14	3425(2)	-2670(5)	6891(2)	25(1)
C15	3697(3)	-1351(6)	6993(3)	34(1)
C16	4140(2)	-1259(6)	7431(2)	31(1)
C17	4300(2)	-2489(5)	7732(2)	19(1)
C18	3256(2)	-6330(6)	7654(2)	25(1)
C19	3199(2)	-5770(6)	8201(2)	30(1)
C21	3387(2)	-2247(5)	5258(2)	19(1)
C22	4661(2)	-377(5)	5823(2)	22(1)
C23	4747(2)	1101(5)	6097(2)	23(1)
C24	4414(2)	2324(5)	5906(2)	24(1)
C25	4521(2)	3652(5)	6169(2)	29(1)
C26	4942(2)	3736(5)	6622(2)	30(1)
C27	5235(2)	2496(5)	6791(2)	20(1)
C28	5186(2)	-1360(5)	5756(2)	23(1)
C29	5749(2)	-801(6)	5736(2)	28(1)
C110	3136(2)	-6678(6)	8673(2)	26(1)
C111	3119(2)	-8154(6)	8594(2)	27(1)
C112	3148(2)	-8661(6)	8011(2)	30(1)
C210	6207(2)	-1769(6)	5668(2)	31(1)
C211	6111(2)	-3245(6)	5628(2)	21(1)
C212	5533(2)	-3735(6)	5647(2)	30(1)
N11	2847(2)	-6179(4)	5489(2)	27(1)
N12	2930(2)	-6962(4)	6457(2)	25(1)
N13	3187(2)	-5630(4)	6597(2)	23(1)
N14	4050(2)	-3801(4)	7637(2)	26(1)
N15	3219(2)	-7753(5)	7553(2)	25(1)

02	3252(1)	-3462(4)	5078(1)	24(1)
01	2578(1)	-8479(4)	5743(2)	24(1)
N25	5061(2)	-2780(5)	5709(2)	24(1)
N24	5149(2)	1196(5)	6539(2)	29(1)
N23	4119(2)	-631(4)	5662(2)	23(1)
N22	3969(2)	-1965(4)	5420(2)	25(1)
N21	3015(2)	-1140(5)	5284(2)	35(1)

Tabla A1.1.77- Factores anisotrópicos de temperatura (Å ²) de HBIPSC.	

				-		
	U11	U22	U33	U23	U13	U12
C11	13(2)	37(3)	13(2)	-7(2)	2(2)	-2(2)
C12	23(3)	24(3)	20(3)	1(2)	7(2)	2(2)
C13	20(3)	21(3)	30(3)	-6(2)	5(2)	2(2)
C14	23(3)	30(3)	23(3)	1(2)	-1(2)	-7(2)
C15	39(3)	16(3)	47(3)	3(2)	6(3)	-2(2)
C16	29(3)	16(3)	46(3)	-6(2)	0(3)	-7(2)
C17	15(2)	22(3)	21(3)	-4(2)	4(2)	-2(2)
C18	18(3)	35(3)	20(3)	2(2)	5(2)	7(2)
C19	27(3)	34(3)	29(3)	5(2)	9(2)	2(2)
C21	13(2)	29(3)	16(2)	-13(2)	7(2)	-2(2)
C22	23(3)	21(3)	23(3)	3(2)	1(2)	-1(2)
C23	26(3)	16(3)	26(3)	4(2)	-4(2)	-7(2)
C24	17(3)	27(3)	28(3)	7(2)	0(2)	-5(2)
C25	40(3)	17(3)	30(3)	1(2)	4(2)	6(2)
C26	42(3)	18(3)	29(3)	-6(2)	3(2)	-8(2)
C27	19(3)	22(3)	19(2)	-7(2)	1(2)	-4(2)
C28	30(3)	23(3)	15(2)	4(2)	-1(2)	3(2)
C29	29(3)	28(3)	26(3)	3(2)	8(2)	1(2)
C110	30(3)	29(3)	20(3)	-4(2)	9(2)	-5(2)
C111	22(3)	25(3)	33(3)	3(2)	12(2)	-5(2)
C112	26(3)	20(3)	44(3)	-3(2)	-1(2)	1(2)
C210	26(3)	38(3)	30(3)	4(2)	11(2)	4(3)
C211	14(2)	26(3)	22(2)	6(2)	7(2)	1(2)
C212	34(3)	30(3)	27(3)	4(2)	5(2)	-4(3)
N11	46(3)	15(2)	21(2)	-1(2)	-4(2)	-3(2)
N12	33(3)	19(2)	25(2)	-3(2)	5(2)	-4(2)

N13	24(2)	20(2)	25(2)	1(2)	6(2)	-2(2)
N14	22(2)	24(2)	30(2)	-7(2)	-3(2)	1(2)
N15	16(2)	41(3)	18(2)	2(2)	7(2)	0(2)
N21	28(3)	22(2)	53(3)	-6(2)	-10(2)	-6(2)
N22	25(2)	15(2)	37(3)	-4(2)	1(2)	1(2)
N23	25(2)	17(2)	28(2)	0(2)	0(2)	-2(2)
N24	32(3)	27(2)	28(2)	-2(2)	-2(2)	-4(2)
N25	13(2)	36(3)	22(2)	6(2)	7(2)	-4(2)
01	23(2)	18(2)	30(2)	5(2)	-3(2)	-5(2)
02	24(2)	20(2)	27(2)	2(2)	2(2)	-2(2)

Tabla A1.1.78- Enlaces de hidrógeno (Å, °) de HBIPSC.

	D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)				
	N11-H11A…O1 ⁱ	0.86	2.09	2.941(5)	171.7				
	N11-H11B…O2	0.86	2.20	2.820(5)	128.5				
	N11-H11B…N13	0.86	2.29	2.651(6)	105.5				
	N12-H12…N15	0.86	2.01	2.650(6)	130.4				
	N21-H21A…O2 ^{II}	0.86	2.12	2.977(6)	177.7				
	N21-H21B…O1 ^{III}	0.86	2.24	2.840(6)	127.0				
	N21-H21B…N23	0.86	2.29	2.654(6)	105.3				
	N22-H22…N25	0.86	2.00	2.642(6)	130.7				
	C10 U10 N14	0.02		2.062(6)	100				
	C19-H19N14	0.93	2.57	2.962(6)	100				
	C29-H29…N24	0.93	2.53	2.947(7)	108				
	C110-H110…O2 ^{iv}	0.93	2.36	3.192(6)	149				
ⁱ -x	ⁱ -x+1/2, -y-3/2, -z+1; ⁱⁱ -x+1/2, -y-1/2, -z+1; ⁱⁱⁱ x, y+1, z; ^{iv} x, -y, 1/2+y								

A1.1.14- Estructura cristalina del nitrato de la semicarbazona protonada de la di-2-piridilcetona (H₂BIPSC)NO₃.

Figura A1.14- Unidad asimétrica de la estructura cristalina del ligando (H₂BIPSC)NO₃.

Fórmula	$C_{12} \ H_{12} \ N_6 \ O_4$	α (°)	90.000	Intervalo θ (°)	2.24 a 26.37
Masa Molecular	304.28	β (°)	98.831(5)	Intervalos en h, k, l	-9,9; 0,19; 0,14
т (к)	293(2)	γ (°)	90.000	No. reflex. medidas	11241
λ (Å)	0.71069	V (ų)	1324.7(11)	No. reflex. únicas	2821
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.0257
Grupo Espacial	P21/c	D _{calc} . (mg/m ³)	1.526	R	0.0318
a (Å)	7.614(5)	μ(mm ⁻¹)	0.119	R _w	0.0881
b (Å)	15.587(5)	F(000)	632	G.O.F.	1.090
c (Å)	11.296(5)	Dimensiones (mm)	0.51 x 0.38 x 0.22		

Tabla A1.1.79- Datos cristalográficos y de refinado del ligando (H₂BIPSC)NO₃.

Tabla A1.1.80- Distancias interatómicas (Å) de (H₂BIPSC)NO₃.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-O1	1.2305(15)	С9-Н9	0.9300	C4-C5	1.3888(17)	N1-H1A	0.888(18)
C1-N1	1.3359(16)	C10-C11	1.3854(18)	С4-Н4	0.9300	N1-H1B	0.888(17)
C1-N2	1.3919(15)	С10-Н10	0.9300	C5-C6	1.3829(17)	N2-N3	1.3446(14)
C2-N3	1.2976(15)	C11-C12	1.3871(18)	С5-Н5	0.9300	N2-H2	0.8600
C2-C3	1.4817(16)	C11-H11	0.9300	C6-C7	1.3800(17)	N4-H4A	0.8600
C2-C8	1.4932(16)	C12-N5	1.3393(16)	С6-Н6	0.9300	N6-O3	1.2286(14)
C8-N5	1.3502(15)	С12-Н12	0.9300	C7-N4	1.3369(15)	N6-04	1.2526(14)
C8-C9	1.3940(16)	C3-N4 🗸	1.3585(15)	С7-Н7	0.9300	N6-02	1.2717(13)
C9-C10	1.3867(17)	C3-C4	1.3859(16)				

Tabla A1.1.81- Ángulos de enlace (°) de (H₂BIPSC)NO₃.

	Ángulo		Ángulo		Ángulo
C1-N1-H1A	115.5(10)	C4-C3-C2	125.42(11)	N3-C2-C8	126.33(10)
C1-N1-H1B	122.1(11)	C4-C5-H5	119.8	N3-N2-C1	121.87(10)
C1-N2-H2	119.1	С5-С4-Н4	120.0	N3-N2-H2	119.1
C10-C11-C12	118.07(11)	С5-С6-Н6	120.9	N4-C3-C2	117.17(10)
С10-С11-Н11	121.0	C6-C5-C4	120.44(11)	N4-C3-C4	117.37(10)
C10-C9-C8	118.85(11)	C6-C5-H5	119.8	N4-C7-C6	120.07(11)
С10-С9-Н9	120.6	C6-C7-H7	120.0	N4-C7-H7	120.0
C11-C10-C9	119.35(11)	C7-C6-C5	118.30(11)	N5-C12-C11	123.60(11)
С11-С10-Н10	120.3	С7-С6-Н6	120.9	N5-C12-H12	118.2
С11-С12-Н12	118.2	C7-N4-C3	123.74(10)	N5-C8-C2	115.78(10)
С12-С11-Н11	121.0	C7-N4-H4A	118.1	N5-C8-C9	122.12(10)
C12-N5-C8	117.87(10)	С8-С9-Н9	120.6	01-C1-N1	125.42(11)

C2-N3-N2	119.56(10)	C9-C10-H10	120.3	01-C1-N2	117.63(11)
C3-C2-C8	119.87(9)	C9-C8-C2	122.06(10)	O3-N6-O2	119.74(10)
C3-C4-C5	120.06(11)	H1A-N1-H1B	121.4(15)	O3-N6-O4	121.39(10)
C3-C4-H4	120.0	N1-C1-N2	116.95(10)	O4-N6-O2	118.87(9)
C3-N4-H4A	118.1	N3-C2-C3	113.81(10)		

Tabla A1.1.82- Coordenadas atómicas (x 10⁴) y factores isotrópicos de temperatura (Å² x 10³) de (H₂BIPSC)NO₃.

	x	У	z	U(eq)
C1	7592(2)	4651(1)	2630(1)	17(1)
C2	7023(1)	5564(1)	5444(1)	16(1)
С3	7412(1)	5263(1)	6701(1)	16(1)
C4	6736(2)	5618(1)	7661(1)	19(1)
C5	7175(2)	5268(1)	8799(1)	21(1)
C6	8285(2)	4562(1)	8982(1)	20(1)
C7	8916(2)	4212(1)	8007(1)	18(1)
C8	6206(2)	6426(1)	5172(1)	16(1)
С9	6645(2)	7131(1)	5920(1)	19(1)
C10	5806(2)	7908(1)	5622(1)	22(1)
C11	4574(2)	7968(1)	4587(1)	22(1)
C12	4282(2)	7247(1)	3862(1)	21(1)
N1	8386(1)	3918(1)	3019(1)	21(1)
N2	7131(1)	5208(1)	3496(1)	18(1)
N3	7451(1)	5017(1)	4670(1)	16(1)
N4	8475(1)	4563(1)	6922(1)	16(1)
N5	5065(1)	6488(1)	4135(1)	19(1)
N6	10018(1)	7345(1)	4251(1)	18(1)
01	7226(1)	4870(1)	1574(1)	21(1)
02	10111(1)	6561(1)	4563(1)	22(1)
03	10054(2)	7907(1)	5017(1)	35(1)
04	9893(1)	7527(1)	3161(1)	26(1)

Tabla A1.1.83- Factores anisotrópicos de temperatura ($Å^2$) de (H₂BIPSC)NO₃.

	•			•		·
	U11	U22	U33	U23	U13	U12
C1	18(1)	18(1)	15(1)	-2(1)	2(1)	-4(1)
C2	16(1)	16(1)	14(1)	0(1)	2(1)	-2(1)
C8	17(1)	16(1)	16(1)	1(1)	4(1)	-1(1)

С9	23(1)	18(1)	16(1)	0(1)	2(1)	-1(1)
C10	29(1)	16(1)	22(1)	-2(1)	6(1)	-2(1)
C11	23(1)	16(1)	26(1)	4(1)	7(1)	3(1)
C12	19(1)	22(1)	21(1)	3(1)	0(1)	1(1)
С3	16(1)	14(1)	16(1)	1(1)	1(1)	-2(1)
C4	21(1)	17(1)	17(1)	1(1)	4(1)	2(1)
C5	26(1)	21(1)	16(1)	-2(1)	6(1)	0(1)
C6	25(1)	19(1)	14(1)	2(1)	2(1)	-1(1)
C7	20(1)	16(1)	17(1)	1(1)	0(1)	0(1)
N1	30(1)	20(1)	14(1)	-2(1)	4(1)	3(1)
N2	24(1)	16(1)	12(1)	1(1)	2(1)	2(1)
N3	19(1)	17(1)	13(1)	0(1)	2(1)	-2(1)
N5	19(1)	18(1)	18(1)	0(1)	1(1)	0(1)
N4	19(1)	15(1)	13(1)	-2(1)	3(1)	-1(1)
N6	18(1)	16(1)	20(1)	-1(1)	4(1)	-1(1)
01	27(1)	23(1)	13(1)	0(1)	2(1)	-1(1)
02	30(1)	16(1)	20(1)	3(1)	7(1)	3(1)
03	53(1)	22(1)	31(1)	-12(1)	14(1)	-9(1)
04	32(1)	25(1)	19(1)	7(1)	3(1)	1(1)

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O4 ⁱ	0.888(18)	2.129(18)	2.9544(16)	154.4(14)
N1-H1B…N3	0.888(17)	2.394(16)	2.7076(16)	101.0(12)
N1-H1B…O2 ⁱⁱ	0.888(17)	2.023(17)	2.8927(17)	166.1(15)
N2-H2…N5	0.86	2.07	2.7070(16)	130.5
N4-H4A…N3	0.86	2.29	2.6408(17)	104.8
N4-H4A…O2 ⁱⁱ	0.86	1.94	2.7554(14)	157.4
C5-H5…O1 ⁱⁱⁱ	0.93	2.58	3.191(3)	124
C6-H6 ··O1 ⁱⁱⁱ	0.93	2.60	3.190(3)	122
C6-H6 ··O3 ^{iv}	0.93	2.44	3.016(3)	120
С7-Н7 · О3 ^{іv}	0.93	2.46	3.033(2)	120
C7-H7 · O4 ⁱⁱ	0.93	2.48	3.207(3)	135
C9-H9 · O4 ^v	0.93	2.41	3.300(3)	159
$C11-H11 \cdot O1^{vi}$	0.93	2.53	3.442(3)	166

ⁱ -x+2, y-1/2, -z+1/2; ⁱⁱ -x+2, -y+1, -z+1; ⁱⁱⁱ x, y, 1+z; ^{iv} 2-x, -1/2+y, 3/2-z; ^v x, 3/2-y, 1/2+z; ^{vi} 1-x, 1/2+y, 1/2-z.

A1.1.15- Estructura cristalina de la 2,6-diacetilpiridina bis-semicarbazona (H₂DAPSC·MeOH).

Figura A1.15- Unidad asimétrica de la estructura cristalina del ligando H₂DAPSC·MeOH.

Tabla A1.1.85- Datos cristalográficos y de refinado del ligando H₂DAPSC·MeOH.

Fórmula	$C_{12}H_{19}N_7O_3$	α (°)	90.000	Intervalo θ (°)	2.06 a 26.37
Masa Molecular	309.34	β (°)	90.665(5)	Intervalos en h, k, l	-15,15; 0,20; 0,9
т (К)	110(2)	γ (°)	90.000	No. reflex. medidas	24323
λ (Å)	0.71069	V (Å ³)	1504.2(13)	No. reflex. únicas	3078
Sistema Cristalino	Monoclinic	z	4	R _{int}	0.1148
Grupo Espacial	P21/c	D _{calc} . (mg/m ³)	1.366	R	0.0515
a (Å)	12.497(5)	μ(mm ⁻¹)	0.102	Rw	0.1134
b (Å)	16.069(5)	F(000)	656	G.O.F.	1.010
c (Å)	7.491(5)	Dimensiones (mm)	0.40 x 0.07 x 0.05		

Tabla A1.1.86- Distancias interatómicas (Å) de H₂DAPSC·MeOH.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-01	1.248(3)	C3-N4	1.350(4)	C8-N5	1.282(4)	C11-H11C	0.9800
C1-N1	1.329(4)	C3-C4	1.391(4)	C8-C11	1.501(4)	N1-H1A	0.8800
C1-N2	1.360(4)	C4-C5	1.379(4)	C9-O2	1.250(3)	N1-H1B	0.8800
C2-N3	1.292(4)	C4-H4	0.9500	C9-N7	1.324(4)	N2-N3	1.366(3)
C2-C3	1.493(4)	C5-C6	1.379(4)	C9-N6	1.371(4)	N2-H2	0.8800
C2-C10	1.497(4)	C5-H5	0.9500	C10-H10A	0.9800	N5-N6	1.372(3)
C1S-O1S	1.403(4)	C6-C7	1.384(4)	C10-H10B	0.9800	N6-H6A	0.8800
C1S-H1S	0.9800	C6-H6	0.9500	C10-H10C	0.9800	N7-H7A	0.8800
C1S-H2S	0.9800	C7-N4	1.347(4)	C11-H11A	0.9800	N7-H7B	0.8800
C1S-H3S	0.9800	C7-C8	1.483(4)	C11-H11B	0.9800	O1S-H4S	0.97(4)

Tabla A1.1.87- Ángulos de enlace (°) de H₂DAPSC·MeOH.

	Ángulo		Ángulo		Ángulo
C1-N1-H1A	120.0	C7-C8-C11	119.7(3)	H7A-N7-H7B	120.0
C1-N1-H1B	120.0	C7-N4-C3	119.4(2)	N1-C1-N2	118.5(3)
C1-N2-H2	119.9	C8-C11-H11A	109.5	N3-C2-C10	114.4(3)
C1-N2-N3	120.3(2)	C8-C11-H11B	109.5	N3-C2-C3	127.4(3)
C1S-O1S-H4S	114(3)	C8-C11-H11C	109.5	N3-N2-H2	119.9
C2-C10-H10A	109.5	C8-N5-N6	117.6(2)	N4-C3-C2	117.8(3)
C2-C10-H10B	109.5	C9-N6-H6A	120.2	N4-C3-C4	121.1(3)
C2-C10-H10C	109.5	C9-N6-N5	119.6(2)	N4-C7-C6	122.1(3)
C2-N3-N2	119.4(2)	C9-N7-H7A	120.0	N4-C7-C8	115.3(2)
C3-C2-C10	118.2(2)	С9-N7-Н7В	120.0	N5-C8-C11	124.5(3)
C3-C4-H4	120.6	H10A-C10-H10B	109.5	N5-C8-C7	115.8(3)
C4-C3-C2	121.1(3)	H10A-C10-H10C	109.5	N5-N6-H6A	120.2
C4-C5-C6	120.2(3)	Н10В-С10-Н10С	109.5	N7-C9-N6	118.2(3)
C4-C5-H5	119.9	H11A-C11-H11B	109.5	01-C1-N1	123.4(3)
C5-C4-C3	118.9(3)	H11A-C11-H11C	109.5	01-C1-N2	118.1(3)
C5-C4-H4	120.6	H11B-C11-H11C	109.5	O1S-C1S-H1S	109.5
C5-C6-C7	118.3(3)	H1A-N1-H1B	120.0	01S-C1S-H2S	109.5
С5-С6-Н6	120.9	H1S-C1S-H2S	109.5	015-С15-Н35	109.5
С6-С5-Н5	119.9	Н15-С15-Н35	109.5	O2-C9-N6	118.0(2)
C6-C7-C8	122.6(3)	H2S-C1S-H3S	109.5	02-C9-N7	123.8(3)
С7-С6-Н6	120.8				

Tabla A1.1.88- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura ($\mathring{A}^2 \times 10^3$) de H₂DAPSC·MeOH.

	x	У	Z	U(eq)
C1	2132(2)	5520(2)	8947(4)	16(1)
C2	2109(2)	6532(2)	4755(4)	16(1)
C1S	8350(4)	6987(3)	45(6)	66(2)
С3	3229(2)	6529(2)	4084(4)	17(1)
C4	3472(2)	6852(2)	2414(4)	22(1)
C5	4523(2)	6855(2)	1876(4)	25(1)
C6	5318(2)	6552(2)	2991(4)	22(1)
C7	5029(2)	6241(2)	4639(4)	18(1)
C8	5822(2)	5917(2)	5955(4)	19(1)

C9	8575(2)	5444(2)	6015(4)	16(1)
C10	1261(2)	6936(2)	3625(4)	20(1)
C11	5477(3)	5718(3)	7819(4)	36(1)
N1	1104(2)	5595(2)	9351(3)	21(1)
N2	2480(2)	5865(2)	7400(3)	18(1)
N3	1771(2)	6238(2)	6251(3)	16(1)
N4	4003(2)	6223(2)	5173(3)	15(1)
N5	6780(2)	5835(2)	5385(3)	18(1)
N6	7535(2)	5525(2)	6552(3)	19(1)
N7	8833(2)	5730(2)	4418(3)	19(1)
01	2802(2)	5162(1)	9928(3)	23(1)
015	7742(2)	6484(2)	1181(3)	34(1)
02	9227(1)	5107(1)	7066(2)	18(1)

Tabla A1.1.89- Factores anisotrópicos de temperatura ($Å^2$) de H₂DAPSC·MeOH.

	U11	U22	U33	U23	U13	U12
C1	16(2)	18(2)	15(1)	-2(1)	-1(1)	-1(1)
C2	17(2)	14(2)	16(2)	-2(1)	-2(1)	0(1)
C1S	100(4)	52(3)	48(3)	-3(2)	32(3)	-29(3)
С3	18(2)	16(2)	16(2)	0(1)	-1(1)	0(1)
C4	22(2)	27(2)	18(2)	5(1)	-1(1)	7(1)
C5	30(2)	28(2)	18(2)	9(1)	9(1)	7(2)
C6	20(2)	26(2)	18(2)	3(1)	8(1)	5(1)
C7	17(2)	22(2)	16(2)	0(1)	2(1)	1(1)
C8	15(2)	29(2)	14(2)	0(1)	4(1)	2(1)
С9	15(2)	17(2)	14(1)	-3(1)	3(1)	0(1)
C10	17(2)	21(2)	22(2)	7(1)	0(1)	0(1)
C11	21(2)	72(3)	16(2)	12(2)	4(1)	12(2)
N1	15(1)	32(2)	16(1)	6(1)	3(1)	1(1)
N2	11(1)	28(2)	14(1)	5(1)	1(1)	2(1)
N3	17(1)	17(1)	15(1)	0(1)	-2(1)	0(1)
N4	15(1)	16(1)	14(1)	-2(1)	1(1)	2(1)
N5	17(1)	20(1)	16(1)	-1(1)	0(1)	2(1)
N6	12(1)	32(2)	13(1)	5(1)	2(1)	4(1)
N7	13(1)	28(2)	14(1)	5(1)	3(1)	2(1)
01	15(1)	38(1)	17(1)	8(1)	-1(1)	2(1)

015	39(2)	35(2)	28(1)	6(1)	6(1)	-1(1)
02	12(1)	29(1)	14(1)	3(1)	0(1)	3(1)

Tabla A1.1.90- Enlaces de hidrógeno (Å, '	°) de H₂DAPSC·MeOH.
---	---------------------

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O2 ⁱ	0.88	2.09	2.945(3)	163.1
N1-H1B…O2 ⁱⁱ	0.88	2.44	2.993(3)	121.2
N1-H1B…N3	0.88	2.34	2.684(4)	103.1
01S-H4S…O1 ⁱⁱⁱ	0.97(4)	1.94(4)	2.852(4)	156(5)
N2-H2…N4	0.88	1.92	2.610(3)	134.7
N6-H6A…O1 ⁱ	0.88	2.03	2.894(3)	166.7
N7-H7A…O2 ^{iv}	0.88	2.21	2.998(3)	148.1
N7-H7B…O1S	0.88	2.21	3.021(4)	153.4
N7-H7B…N5	0.88	2.33	2.679(3)	103.6
'-x+1,-y+1,-z+2;'	x-1,y,z; "	-x+1,-y+1,-:	z+1; [₩] -x+2,-	y+1,-z+1

A1.1.16- Estructura cristalina de la tiosemicarbazona de la 2-acetil-piridina (HAPTSC·1/2H₂O).

Figura A1.16- Unidad asimétrica de la estructura cristalina del ligando HAPTSC·1/2H₂O.

Tabla A1.1.91- Datos cristalográficos	y de refinado del ligando HAP ⁻	$\Gamma SC \cdot 1/2H_2O$.
---------------------------------------	--	-----------------------------

Fórmula	$C_{16} \; H_{22} \; N_8 \; O \; S_2$	α (°)	90.000	Intervalo θ (°)	2.46 a 27.58
Masa Molecular	406.54	β (°)	97.656(5)	Intervalos en h, k, l	-21,21; 0,12; 0,16
т (к)	110 К	γ (°)	90.000	No. reflex. medidas	33333
λ (Å)	0.71069 A	V (Å ³)	1918.7(14)	No. reflex. únicas	4432
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.0370
Grupo Espacial	P21/c	D _{calc} . (mg/m ³)	1.407	R	0.0320
a (Å)	16.700(5)	μ (mm⁻¹)	0.302	R _w	0.0826
b (Å)	9.331(5)	F(000)	856	G.O.F.	1.062
c (Å)	12.424(5)	Dimensiones (mm)	0.62 x 0.59 x 0.10		

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-N11	1.3218(18)	C14-H15	0.9300	C28-H23B	0.9600	C27-H28	0.9300
C11-N12	1.3539(18)	C15-C16	1.390(2)	C28-H23C	0.9600	C22-N23	1.2846(18)
C11-S1	1.7005(15)	C15-H16	0.9300	C23-N24	1.3410(18)	N11-H11A	0.8600
C12-N13	1.2831(19)	C16-C17	1.378(2)	C23-C24	1.396(2)	N11-H11B	0.8600
C12-C13	1.4868(19)	C16-H17	0.9300	C23-C22	1.4868(19)	N12-N13	1.3765(16)
C12-C18	1.497(2)	C17-N14	1.3399(18)	C24-C25	1.384(2)	N12-H12	0.8600
C18-H13A	0.9600	C17-H18	0.9300	C24-H25	0.9300	N21-H21A	0.8600
C18-H13B	0.9600	C21-N21	1.3212(19)	C25-C26	1.383(2)	N21-H21B	0.8600
C18-H13C	0.9600	C21-N22	1.3593(18)	C25-H26	0.9300	N22-N23	1.3700(16)
C13-N14	1.3435(18)	C21-S2	1.6917(15)	C26-C27	1.379(2)	N22-H22	0.8600
C13-C14	1.389(2)	C28-C22	1.496(2)	C26-H27	0.9300	O1W-H2W	0.83(3)
C14-C15	1.380(2)	C28-H23A	0.9600	C27-N24	1.3453(19)	O1W-H1W	0.82(2)

Tabla A1.1.92- Distancias interatómicas (Å) de HAPTSC·1/2H₂O.

Tabla A1.1.93- Ángulos de enlace (°) de HAPTSC·1/2H₂O.

	Ángulo		Ángulo	•	Ángulo
C11-N11-H11A	120.0	C21-N22-N23	117.60(12)	H23A-C28-H23C	109.5
C11-N11-H11B	120.0	C22-C28-H23A	109.5	H23B-C28-H23C	109.5
C11-N12-H12	121.0	С22-С28-Н23В	109.5	H2W-01W-H1W	102(2)
C11-N12-N13	118.01(11)	С22-С28-Н23С	109.5	N11-C11-N12	118.28(12)
C12-C18-H13A	109.5	C22-N23-N22	119.13(12)	N11-C11-S1	121.76(11)
C12-C18-H13B	109.5	C23-C22-C28	120.82(12)	N12-C11-S1	119.96(11)
C12-C18-H13C	109.5	C23-C24-H25	120.5	N13-C12-C13	115.35(12)
C12-N13-N12	119.50(12)	C23-N24-C27	117.37(13)	N13-C12-C18	126.87(13)
C13-C12-C18	117.77(12)	C24-C23-C22	120.68(13)	N13-N12-H12	121.0
C13-C14-H15	120.4	C24-C25-H26	120.6	N14-C13-C12	115.90(12)
C14-C13-C12	121.90(12)	C25-C24-C23	118.99(14)	N14-C13-C14	122.20(13)
C14-C15-C16	119.04(14)	C25-C24-H25	120.5	N14-C17-C16	124.24(13)
C14-C15-H16	120.5	C25-C26-H27	120.8	N14-C17-H18	117.9
C15-C14-C13	119.29(13)	C26-C25-C24	118.89(15)	N21-C21-N22	117.44(12)
C15-C14-H15	120.4	C26-C25-H26	120.6	N21-C21-S2	122.51(11)
С15-С16-Н17	121.1	C26-C27-H28	118.1	N22-C21-S2	120.04(11)
C16-C15-H16	120.5	C27-C26-C25	118.44(14)	N23-C22-C23	114.01(12)
C16-C17-H18	117.9	C27-C26-H27	120.8	N23-C22-C28	125.04(13)
C17-C16-C15	117.76(14)	H11A-N11-H11B	120.0	N23-N22-H22	121.2

C17-C16-H17	121.1	H13A-C18-H13B	109.5	N24-C23-C22	116.83(12)
C17-N14-C13	117.44(12)	H13A-C18-H13C	109.5	N24-C23-C24	122.42(13)
C21-N21-H21A	120.0	H13B-C18-H13C	109.5	N24-C27-C26	123.79(14)
C21-N21-H21B	120.0	H21A-N21-H21B	120.0	N24-C27-H28	118.1
C21-N22-H22	121.2	H23A-C28-H23B	109.5		

Tabla A1.1.94- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura ($Å^2$ x 10^3) de HAPTSC·1/2H₂O.

	x	У	Z	U(eq)
C11	7082(1)	3242(2)	6254(1)	15(1)
C12	5090(1)	2406(2)	5149(1)	19(1)
C18	4882(1)	3311(2)	4156(2)	43(1)
C13	4461(1)	1413(2)	5453(1)	15(1)
C14	4596(1)	542(2)	6366(1)	19(1)
C15	3980(1)	-324(2)	6627(1)	23(1)
C16	3242(1)	-313(2)	5961(1)	23(1)
C17	3167(1)	560(2)	5059(1)	20(1)
C21	2868(1)	3388(1)	6862(1)	16(1)
C28	767(1)	3295(2)	4652(1)	23(1)
C23	302(1)	1438(2)	5993(1)	16(1)
C24	498(1)	391(2)	6787(1)	22(1)
C25	-119(1)	-365(2)	7171(1)	27(1)
C26	-910(1)	-65(2)	6748(1)	26(1)
C27	-1050(1)	949(2)	5938(1)	23(1)
C22	938(1)	2379(2)	5643(1)	16(1)
N11	7168(1)	2241(1)	7013(1)	18(1)
N12	6373(1)	3307(1)	5584(1)	17(1)
N13	5760(1)	2401(1)	5788(1)	16(1)
N14	3755(1)	1415(1)	4793(1)	17(1)
N21	2873(1)	2606(1)	7749(1)	19(1)
N22	2221(1)	3255(1)	6081(1)	16(1)
N23	1603(1)	2380(1)	6296(1)	16(1)
N24	-461(1)	1695(1)	5550(1)	19(1)
01W	1593(1)	6904(1)	6152(1)	28(1)
S1	7829(1)	4434(1)	6108(1)	17(1)
S2	3628(1)	4525(1)	6679(1)	18(1)

	U11	U22	U33	U23	U13	U12
C11	13(1)	17(1)	14(1)	-3(1)	1(1)	0(1)
C12	16(1)	20(1)	19(1)	2(1)	-1(1)	-2(1)
C18	28(1)	52(1)	42(1)	29(1)	-16(1)	-22(1)
C13	14(1)	16(1)	16(1)	-2(1)	1(1)	0(1)
C14	14(1)	25(1)	16(1)	0(1)	0(1)	-1(1)
C15	21(1)	29(1)	18(1)	4(1)	2(1)	-3(1)
C16	17(1)	27(1)	24(1)	0(1)	6(1)	-5(1)
C17	13(1)	23(1)	22(1)	-3(1)	-1(1)	-2(1)
C21	13(1)	16(1)	18(1)	-3(1)	1(1)	2(1)
C28	17(1)	27(1)	24(1)	8(1)	-4(1)	-7(1)
C23	15(1)	16(1)	16(1)	-2(1)	1(1)	-2(1)
C24	20(1)	23(1)	23(1)	2(1)	-3(1)	-3(1)
C25	31(1)	27(1)	23(1)	6(1)	-1(1)	-7(1)
C26	25(1)	27(1)	28(1)	0(1)	8(1)	-8(1)
C27	15(1)	24(1)	30(1)	-1(1)	2(1)	-2(1)
C22	14(1)	15(1)	17(1)	-1(1)	0(1)	-1(1)
N11	13(1)	20(1)	20(1)	3(1)	-1(1)	-2(1)
N12	14(1)	18(1)	17(1)	4(1)	-2(1)	-4(1)
N13	12(1)	16(1)	19(1)	-1(1)	2(1)	-2(1)
N14	14(1)	17(1)	19(1)	-2(1)	-1(1)	-1(1)
N21	15(1)	23(1)	19(1)	2(1)	-3(1)	-5(1)
N22	13(1)	18(1)	16(1)	2(1)	-1(1)	-3(1)
N23	13(1)	16(1)	18(1)	-1(1)	0(1)	-2(1)
N24	15(1)	19(1)	22(1)	0(1)	0(1)	-2(1)
01W	21(1)	39(1)	21(1)	-3(1)	-3(1)	7(1)
S1	14(1)	19(1)	18(1)	0(1)	-1(1)	-4(1)
S2	13(1)	20(1)	18(1)	-1(1)	0(1)	-4(1)

Tabla A1.1.95- Factores anisotrópicos de temperatura ($Å^2$) de HAPTSC·1/2H₂O.

Tabla A1.1.96-	Enlaces de l	hidrógeno (Å.	°) de	HAPTSC-1	/2H₂O.
1 UDIU A1.1.50-	Linaces de	mulogeno (A,	Jue		/21120.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
O1W-H1W…S1 ⁱ	0.82(2)	2.53(2)	3.3299(16)	165(2)
O1W-H2W…N24 ⁱⁱ	0.83(3)	2.17(3)	2.9472(19)	158(2)
N11-H11A…N13	0.86	2.28	2.6293(18)	104.2
N11-H11A…S2 ⁱⁱⁱ	0.86	2.66	3.3775(17)	141.2

N11-H11B…O1W ⁱⁱⁱ	0.86	2.06	2.8847(18)	160.9
N12-H12…S2 ⁱ	0.86	2.62	3.4632(17)	168.8
N21-H21A…N23	0.86	2.25	2.6040(18)	104.8
N21-H21A…S1 ⁱⁱⁱ	0.86	2.85	3.5492(19)	139.1
N21-H21B…N14 ^{iv}	0.86	2.15	2.9077(19)	147.4
N22-H22…S1 ⁱ	0.86	2.62	3.4620(17)	167.6
ⁱ -x+1, -y+1, -z+1; ⁱⁱ -x, -y-	+1, -z+1; ""	-x+1, y-1/2	, -z+3/2; ^{iv} x, - [,]	y+1/2, z+1/2.

A1.1.17- Estructura cristalina de la tiosemicarbazona de la 2,6-diacetil piridina (H₂DAPTSC).

Figura A1.17- Unidad asimétrica de la estructura cristalina del ligando H₂DAPTSC.

Tabla A1.1.97- Datos cristalográficos y	de refinado	del ligando	H₂DAPTSC.

c	$C_{11}H_{15}N_7S_2$	α(°)	88.534(5)	Intervalo θ (°)	2.3026 a 26.0345
Masa Molecular	309.42	β(°)	74.693(5)	Intervalos en h, k, l	-7,8; -10,11; 0,13
т (к)	300(2)	γ (°)	71.389(5)	No. reflex. medidas	11297
λ (Å)	0.71069	V (ų)	695.3(7)	No. reflex. únicas	2652
Sistema Cristalino	Triclinic	z	2	R _{int}	0.0354
Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.478	R	0.0590
a (Å)	7.180(5)	μ(mm ⁻¹)	0.385	R _w	0.1554
b (Å)	9.352(5)	F(000)	324	G.O.F.	1.056
c (Å)	11.352(5)	Dimensiones (mm)	0.44 x 0.20 x 0.12		

Tabla A1.1.98- Distancias interatómicas	(Å) de H ₂ DAPTSC.
--	----	-----------------------------

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-N1	1.320(5)	C4-H4	0.9300	C9-N6	1.357(5)	N1-H1A	0.8600
C1-N2	1.343(5)	C5-C6	1.369(6)	C9-N7	1.324(5)	N1-H1B	0.8600
C1-S1	1.676(4)	C5-H5	0.9300	C9-S2	1.595(4)	N2-H2	0.8600
C2-C10	1.502(5)	C6-C7	1.388(5)	C10-H10A	0.9600	N2-N3	1.361(4)

C2-C3	1.480(5)	С6-Н6	0.9300	C10-H10B	0.9600	N5-N6	1.374(4)
C2-N3	1.276(5)	C7-C8	1.483(5)	C10-H10C	0.9600	N6-H6A	0.8600
C3-C4	1.387(5)	C7-N4	1.330(4)	C11-H11A	0.9600	N7-H7A	0.8600
C3-N4	1.354(4)	C8-C11	1.491(5)	C11-H11B	0.9600	N7-H7B	0.8600
C4-C5	1.361(6)	C8-N5	1.280(4)	C11-H11C	0.9600		

Tabla A1.1.99- Ángulos de enlace (°) de H₂DAPTSC.

	Ángulo		Ángulo		Ángulo
C1-N1-H1A	120.0	C6-C7-C8	121.8(3)	H1A-N1-H1B	120.0
C1-N1-H1B	120.0	С7-С6-Н6	120.6	H7A-N7-H7B	120.0
C1-N2-H2	120.1	C7-C8-C11	118.8(3)	N1-C1-N2	117.0(3)
C1-N2-N3	119.7(3)	C7-N4-C3	119.4(3)	N1-C1-S1	124.4(3)
C2-C10-H10A	109.5	С8-С11-Н11А	109.5	N2-C1-S1	118.6(3)
C2-C10-H10B	109.5	С8-С11-Н11В	109.5	N3-C2-C10	114.1(3)
C2-C10-H10C	109.5	С8-С11-Н11С	109.5	N3-C2-C3	128.1(3)
C2-N3-N2	120.0(3)	C8-N5-N6	117.8(3)	N3-N2-H2	120.1
C3-C2-C10	117.9(3)	С9-N6-Н6А	121.0	N4-C3-C2	118.4(3)
C3-C4-H4	120.2	C9-N6-N5	117.9(3)	N4-C3-C4	120.6(3)
C4-C3-C2	121.0(3)	С9-N7-Н7А	120.0	N4-C7-C6	121.8(3)
C4-C5-C6	119.9(4)	С9-N7-Н7В	120.0	N4-C7-C8	116.4(3)
C4-C5-H5	120.1	H10A-C10-H10B	109.5	N5-C8-C11	126.7(3)
C5-C4-C3	119.5(4)	H10A-C10-H10C	109.5	N5-C8-C7	114.6(3)
C5-C4-H4	120.2	H10B-C10-H10C	109.5	N5-N6-H6A	121.0
C5-C6-C7	118.7(4)	H11A-C11-H11B	109.5	N6-C9-S2	121.2(3)
С5-С6-Н6	120.6	H11A-C11-H11C	109.5	N7-C9-N6	116.4(4)
C6-C5-H5	120.1	H11B-C11-H11C	109.5	N7-C9-S2	122.4(3)

Tabla A1.1.100- Coordenadas atómicas (x 10⁴) y factores isotrópicos de temperatura (Å² x 10³) de H₂DAPTSC.

	x	у	Z	U(eq)
C1	6306(5)	3477(4)	11821(3)	38(1)
C2	7305(5)	6411(4)	10066(3)	38(1)
С3	8334(5)	5797(4)	8787(3)	35(1)
C4	8994(6)	6699(4)	7893(4)	46(1)
C5	10022(6)	6082(5)	6738(4)	51(1)
C6	10389(6)	4583(4)	6467(4)	45(1)
C7	9657(5)	3730(4)	7382(3)	34(1)

C8	9962(5)	2107(4)	7151(3)	34(1)
С9	13036(6)	-657(5)	4812(3)	45(1)
C10	7025(7)	8034(4)	10368(4)	57(1)
C11	8736(6)	1357(4)	8067(3)	41(1)
N1	5441(5)	4266(4)	12885(3)	49(1)
N2	6816(5)	4239(3)	10836(3)	39(1)
N3	6625(5)	5724(3)	10981(3)	40(1)
N4	8644(4)	4324(3)	8511(3)	32(1)
N5	11267(4)	1501(3)	6143(3)	37(1)
N6	11712(5)	-21(3)	5900(3)	40(1)
N7	13490(5)	289(5)	3982(3)	57(1)
S1	6805(2)	1608(1)	11631(1)	49(1)
S2	13918(2)	-2446(1)	4542(1)	66(1)

Tabla A1.1.101- Factores anisotrópicos de temperatura (Å²) de H₂DAPTSC.

	U11	U22	U33	U23	U13	U12
C1	35(2)	41(2)	38(2)	0(2)	-13(2)	-9(2)
C2	38(2)	29(2)	49(2)	-2(2)	-18(2)	-9(2)
С3	30(2)	26(2)	51(2)	4(2)	-17(2)	-7(1)
C4	47(2)	33(2)	64(3)	10(2)	-20(2)	-16(2)
C5	53(2)	44(2)	61(3)	23(2)	-14(2)	-23(2)
C6	44(2)	48(2)	40(2)	9(2)	-7(2)	-16(2)
C7	32(2)	33(2)	39(2)	7(2)	-12(2)	-11(2)
C8	31(2)	38(2)	31(2)	2(1)	-8(1)	-10(2)
C9	35(2)	63(3)	33(2)	-12(2)	-8(2)	-13(2)
C10	70(3)	30(2)	71(3)	-7(2)	-21(2)	-15(2)
C11	45(2)	36(2)	37(2)	-5(2)	1(2)	-15(2)
N1	61(2)	43(2)	39(2)	-2(1)	-10(2)	-12(2)
N2	48(2)	30(2)	37(2)	0(1)	-11(1)	-11(1)
N3	42(2)	31(2)	46(2)	-5(1)	-16(1)	-7(1)
N4	31(1)	29(1)	37(2)	4(1)	-10(1)	-10(1)
N5	38(2)	38(2)	33(2)	1(1)	-7(1)	-12(1)
N6	42(2)	44(2)	29(2)	-4(1)	0(1)	-14(1)
N7	55(2)	80(3)	29(2)	0(2)	-1(2)	-22(2)
S1	65(1)	38(1)	43(1)	7(1)	-12(1)	-17(1)
S2	80(1)	52(1)	57(1)	-10(1)	-8(1)	-17(1)

Tabla A1.1.102- Enlaces de hidrógeno (Å, °) de H₂DAPTSC.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…S2 ⁱ	0.86	2.64	3.354(4)	140.7
N1-H1A…N3	0.86	2.27	2.621(5)	104.3
N1-H1B…S2 ⁱⁱ	0.86	2.65	3.406(4)	148.0
N2-H2…N4	0.86	1.97	2.631(4)	133.1
N7-H7A…N5	0.86	2.25	2.602(4)	104.8
N6-H6A…S1 ⁱⁱ	0.86	2.94	3.398(3)	115.3
N7-H7B…S1 ⁱⁱⁱ	0.86	2.99	3.558(4)	125.1
'x-1, y+1	L, z+1; " -x	+2, -y, -z+2	; ^{III} x+1, y, z·	-1.

A1.1.18- Estructura cristalina de la tiosemicarbazona de la 2,6-diacetil piridina (H₂DAPTSC·MeOH).

Figura A1.18- Unidad asimétrica de la estructura cristalina del ligando H₂DAPTSC·MeOH.

Fórmula	$C_{12} H_{19} N_7 O S_2$	α (°)	90.000	Intervalo θ (°)	1.96 a 24.71
Masa Molecular	341.46	β (°)	98.420(5)	Intervalos en h, k, l	-12,12; 0,12; 017
т (К)	120.0(1)	γ (°)	90.000	No. reflex. medidas	10955
λ (Å)	1.5418	V (Å ³)	1620.8(12)	No. reflex. únicas	2901
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.0636
Grupo Espacial	P21/c	D _{calc} . (mg/m ³)	1.399	R	0.0758
a (Å)	10.493(5)	μ(mm⁻¹)	0.341	R _w	0.1948
b (Å)	10.590(5)	F(000)	720	G.O.F.	1.082
c (Å)	14.745(5)	Dimensiones (mm)	0.11 x 0.08 x 0.05		

Tabla A1.1.103- Datos cristalográficos y de refinado del ligando H₂DAPTSC·MeOH.

Tabla A1.1.104- Distancias interatómicas (Å) de H₂DAPTSC·MeOH.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-N1	1.335(5)	C5-C6	1.382(5)	C9-S2	1.694(4)	C1S-H1S	0.9800

C1-N2	1.369(5)	C5-H5	0.9500	C10-H10A	0.9800	N1-H1A	0.8800
C1-S1	1.673(4)	C6-C7	1.394(5)	C10-H10B	0.9800	N1-H1B	0.8800
C2-N3	1.296(5)	C6-H6	0.9500	C10-H10C	0.9800	N2-N3	1.366(5)
C2-C3	1.493(5)	C7-N4	1.339(5)	C11-H11A	0.9800	N2-H2	0.8800
C2-C10	1.503(5)	C7-C8	1.493(5)	C11-H11B	0.9800	N5-N6	1.385(4)
C3-N4	1.355(5)	C8-N5	1.288(5)	C11-H11C	0.9800	N6-H6A	0.8800
C3-C4	1.388(5)	C8-C11	1.494(5)	C1S-O1S	1.413(5)	N7-H7A	0.8800
C4-C5	1.387(5)	C9-N7	1.321(5)	C1S-H2S	0.9800	N7-H7B	0.8800
С4-Н4	0.9500	C9-N6	1.360(4)	C1S-H3S	0.9800	O1S-H4S	0.73(5)

Tabla A1.1.105- Ángulos de enlace (°) de H₂DAPTSC·MeOH.

	Ángulo		Ángulo		Ángulo
C1-N1-H1A	120.0	C7-N4-C3	118.8(3)	N1-C1-N2	115.6(4)
C1-N1-H1B	120.0	C8-C11-H11A	109.5	N1-C1-S1	124.1(3)
C1-N2-H2	120.1	С8-С11-Н11В	109.5	N2-C1-S1	120.3(3)
C1S-O1S-H4S	106(4)	С8-С11-Н11С	109.5	N3-C2-C10	114.4(3)
C2-C10-H10A	109.5	C8-N5-N6	118.0(3)	N3-C2-C3	127.4(3)
C2-C10-H10B	109.5	С9-N6-Н6А	120.8	N3-N2-C1	119.7(3)
C2-C10-H10C	109.5	C9-N6-N5	118.4(3)	N3-N2-H2	120.1
C2-N3-N2	119.5(3)	C9-N7-H7A	120.0	N4-C3-C2	118.6(3)
C3-C2-C10	118.1(3)	С9-N7-Н7В	120.0	N4-C3-C4	121.5(3)
C3-C4-H4	120.5	H10A-C10-H10B	109.5	N4-C7-C6	122.8(3)
C4-C3-C2	119.9(3)	H10A-C10-H10C	109.5	N4-C7-C8	116.3(3)
C4-C5-H5	120.2	Н10В-С10-Н10С	109.5	N5-C8-C11	126.0(3)
C5-C4-C3	119.1(3)	H11A-C11-H11B	109.5	N5-C8-C7	114.7(3)
C5-C4-H4	120.5	H11A-C11-H11C	109.5	N5-N6-H6A	120.8
C5-C6-C7	118.1(3)	H11B-C11-H11C	109.5	N6-C9-S2	118.6(3)
С5-С6-Н6	120.9	H1A-N1-H1B	120.0	N7-C9-N6	118.4(3)
C6-C5-C4	119.7(3)	H2S-C1S-H1S	109.5	N7-C9-S2	123.0(3)
C6-C5-H5	120.2	H2S-C1S-H3S	109.5	O1S-C1S-H1S	109.5
C6-C7-C8	121.0(3)	H3S-C1S-H1S	109.5	O1S-C1S-H2S	109.5
С7-С6-Н6	120.9	H7A-N7-H7B	120.0	O1S-C1S-H3S	109.5
C7-C8-C11	119.3(3)				

	x	у	Z	U(eq)
C1	-414(4)	4937(4)	3134(3)	29(1)
C2	742(3)	2857(3)	4951(2)	23(1)
C3	1989(3)	3374(3)	5422(2)	22(1)
C4	2737(4)	2666(4)	6093(3)	27(1)
C5	3906(4)	3151(4)	6509(3)	29(1)
C6	4286(3)	4341(4)	6272(2)	25(1)
C7	3476(3)	5008(3)	5605(2)	23(1)
C8	3823(3)	6300(3)	5319(2)	22(1)
C9	6378(3)	8409(3)	5987(2)	22(1)
C10	304(4)	1597(4)	5258(3)	31(1)
C11	3000(4)	6929(4)	4535(3)	35(1)
C1S	3224(4)	5647(4)	1839(3)	40(1)
N1	-1452(3)	4257(3)	2810(2)	32(1)
N2	317(3)	4471(3)	3907(2)	27(1)
N3	-14(3)	3351(3)	4270(2)	26(1)
N4	2358(3)	4539(3)	5185(2)	20(1)
N5	4853(3)	6760(3)	5783(2)	22(1)
N6	5223(3)	7967(3)	5570(2)	23(1)
N7	7129(3)	7639(3)	6533(2)	24(1)
015	2721(3)	4885(3)	2489(2)	32(1)
S1	17(1)	6271(1)	2652(1)	31(1)
S2	6789(1)	9919(1)	5787(1)	28(1)

Tabla A1.1.106-	Coordenadas	atómicas	(x	10 ⁴)	У	factores	isotrópicos	de	temperatura	(Ų	х	10 ³)	de
H₂DAPTSC∙MeOH.													

Tabla A1.1.107- Factores anisotrópicos de temperatura (Å²) de H₂DAPTSC·MeOH.

	U11	U22	U33	U23	U13	U12
C1	22(2)	37(2)	26(2)	-8(2)	-3(2)	8(2)
C2	24(2)	15(2)	30(2)	-1(1)	5(2)	1(1)
С3	22(2)	18(2)	25(2)	1(1)	3(1)	-2(1)
C4	31(2)	22(2)	29(2)	7(2)	2(2)	0(2)
C5	30(2)	26(2)	28(2)	8(2)	0(2)	1(2)
C6	23(2)	26(2)	26(2)	2(2)	0(1)	-2(2)
C7	20(2)	23(2)	24(2)	-1(1)	3(1)	-2(1)
C8	19(2)	16(2)	29(2)	0(1)	1(1)	-1(1)

С9	18(2)	20(2)	25(2)	-4(1)	0(1)	-3(1)
C10	28(2)	20(2)	44(2)	3(2)	-2(2)	-6(2)
C11	31(2)	22(2)	45(2)	7(2)	-12(2)	-7(2)
C1S	44(2)	41(3)	34(2)	7(2)	0(2)	-9(2)
N1	31(2)	31(2)	31(2)	4(1)	-3(1)	-4(1)
N2	27(2)	22(2)	30(2)	4(1)	-5(1)	-5(1)
N3	27(2)	22(2)	29(2)	2(1)	1(1)	2(1)
N4	20(2)	16(2)	23(1)	-1(1)	2(1)	0(1)
N5	23(2)	16(2)	27(2)	1(1)	4(1)	-3(1)
N6	22(2)	19(2)	27(2)	3(1)	-2(1)	-4(1)
N7	22(2)	18(2)	29(2)	-2(1)	-4(1)	-2(1)
015	30(2)	30(2)	38(2)	4(1)	6(1)	3(1)
S1	25(1)	29(1)	36(1)	6(1)	-3(1)	1(1)
S2	26(1)	21(1)	34(1)	6(1)	-9(1)	-7(1)

Tabla A1.1.108- Enlaces de hidrógeno (Å, °) de H₂DAPTSC·MeOH.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…N3	0.86	2.26	2.622(4)	105.6
N1-H1B…S2 ⁱ	0.86	2.53	3.384(3)	172.6
N2-H2…N4	0.86	1.96	2.640(4)	134.6
N6-H6A…S2 ^{II}	0.86	2.65	3.498(3)	171.0
N7-H7A…N5	0.86	2.30	2.649(4)	104.4
N7-H7A…O1S ⁱⁱⁱ	0.86	2.29	3.031(4)	144.4
N7-H7B…S1 ^{iv}	0.86	2.57	3.431(3)	177.8
01S-H11…S1	0.74(5)	2.51(5)	3.235(4)	170(5)

A1.1.19- Estructura cristalina de la 2-metil-1-carboxamida-5-pirazolona (HMASC_{cic}).

Fórmula	$C_5H_7N_3O_2$	α (°)	90.069(5)	Intervalo θ (°)	2.74 a 25.67
Masa Molecular	141.14	β (°)	100.805(5)	Intervalos en h, k, l	-7,6; -8,8; 0,9
т (к)	293(2)	γ (°)	107.234(5)	No. reflex. medidas	2685
λ (Å)	0.71069	V (Å ³)	312.0(4)	No. reflex. únicas	1181
Sistema Cristalino	Triclínico	z	2	R _{int}	0.0201
Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.502	R	0.0397
a (Å)	6.002(5)	μ(mm ⁻¹)	0.119	R _w	0.1162
b (Å)	7.314(5)	F(000)	148	G.O.F.	1.108
c (Å)	7.590(5)	Dimensiones (mm)	0.47 x 0.18 x 0.16		

Tabla A1.1.109- Datos cristalográficos y de refinado del ligando HMASC_{cic}.

Tabla A1.1.110- Distancias interatómicas (Å) de HMASC_{cic}.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-O1	1.220(2)	C2-C5	1.484(2)	C4-N2	1.398(2)	N1-H1A	0.8600
C1-N1	1.319(2)	C3-C4	1.407(2)	С5-Н5А	0.9600	N1-H1B	0.8600
C1-N2	1.403(2)	СЗ-НЗ	0.9300	С5-Н5В	0.9600	N2-N3	1.3689(19)
C2-N3	1.334(2)	C4-O2	1.248(2)	С5-Н5С	0.9600	N3-H3A	0.8600
C2-C3	1.365(3)						

Tabla A1.1.111- Ángulos de enlace (°) de HMASC_{cic}.

	Ángulo		Ángulo		Ángulo
C1-N1-H1A	120.0	C3-C2-C5	130.39(16)	N2-N3-H3A	125.8
C1-N1-H1B	120.0	С4-С3-Н3	125.8	N3-C2-C3	109.48(15)
C2-C3-C4	108.38(14)	C4-N2-C1	130.84(13)	N3-C2-C5	120.13(15)
С2-С3-Н3	125.8	H1A-N1-H1B	120.0	N3-N2-C1	119.84(13)
C2-C5-H5A	109.5	H5A-C5-H5B	109.5	N3-N2-C4	109.16(13)
C2-C5-H5B	109.5	H5A-C5-H5C	109.5	01-C1-N1	126.77(15)
C2-C5-H5C	109.5	H5B-C5-H5C	109.5	01-C1-N2	118.80(13)
C2-N3-H3A	125.8	N1-C1-N2	114.43(13)	02-C4-C3	133.59(15)
C2-N3-N2	108.33(13)	N2-C4-C3	104.61(14)	02-C4-N2	121.79(15)

Tabla A1.1.112- Coordenadas atómicas (x 10⁴) y factores isotrópicos de temperatura (Å² x 10³) de HMASC_{cic}.

	x	у	Z	U(eq)
C1	8437(3)	3717(2)	7528(2)	36(1)
C2	7360(3)	1588(2)	3176(2)	36(1)
С3	5120(3)	1692(2)	3142(2)	42(1)
C4	5089(3)	2546(2)	4795(2)	37(1)

C5	8345(3)	809(3)	1795(2)	50(1)
N1	6975(3)	4234(2)	8381(2)	49(1)
N2	7418(2)	2946(2)	5766(2)	35(1)
N3	8744(2)	2317(2)	4759(2)	37(1)
01	10514(2)	3840(2)	8119(2)	50(1)
02	3501(2)	2925(2)	5443(2)	51(1)

Tabla A1.1.113- Factores anisotrópicos de temperatura (Å²) de HMASC_{cic}.

	U11	U22	U33	U23	U13	U12
C1	32(1)	44(1)	32(1)	-4(1)	2(1)	13(1)
C2	31(1)	44(1)	33(1)	-4(1)	2(1)	11(1)
С3	30(1)	55(1)	36(1)	-10(1)	-4(1)	12(1)
C4	24(1)	47(1)	40(1)	-4(1)	1(1)	11(1)
C5	44(1)	68(1)	39(1)	-11(1)	5(1)	20(1)
N1	38(1)	75(1)	35(1)	-14(1)	0(1)	25(1)
N2	25(1)	47(1)	33(1)	-7(1)	3(1)	13(1)
N3	24(1)	53(1)	35(1)	-9(1)	2(1)	14(1)
01	35(1)	78(1)	39(1)	-17(1)	-3(1)	24(1)
02	28(1)	77(1)	51(1)	-16(1)	4(1)	20(1)

Tabla A1.1.114- Enlaces de hidrógen	o (/	Ă, °)	de HMASC _{cic} .
-------------------------------------	------	-------	---------------------------

D-H···A	d(D-H)	d(H····A)	d(D…A)	<(DHA)				
N1-H1A…O1 ⁱ	0.86	2.08	2.923(2)	165.1				
N1-H1B…O2	0.86	2.02	2.703(2)	135.3				
N3-H3A…O2 ⁱⁱ	0.86	1.86	2.704(3)	167.5				
-x+2, -y+1, -z+2; ⁱⁱ x+1, y, z.								

A1.1.20- Estructura cristalina de la 2,3-dimetil-1-carboxamida-5-pirazolona (HMMASC_{cic}).

Fórmula	$C_6H_9N_3O_2$	α (°)	90	Intervalo θ (°)	2.72 a 26.36
Masa Molecular	155.16	β (°)	99.99(3)	Intervalos en h, k, l	-9,9; 0,9; 0,15
т (к)	293(2)	γ (°)	90	No. reflex. medidas	6935
λ (Å)	0.71073	V (ų)	715.5(2)	No. reflex. únicas	1826
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.0980
Grupo Espacial	P21/c	D _{calc} . (mg/m ³)	1.440	R	0.0451
a (Å)	7.6080(15)	μ(mm⁻¹)	0.111	R _w	0.1121
b (Å)	7.8773(16)	F(000)	328	G.O.F.	1.056
c (Å)	12.123(2)	Dimensiones (mm)	0.50 x 010 x 0.07		

Tabla A1.1.115- Datos cristalográficos y de refinado del ligando HMMASC_{cic}.

Tabla A1.1.116- Distancias interatómicas (Å) de HMMASC_{cic}.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-N1	1.322(3)	C2-C3	1.370(3)	C3-C6	1.492(3)	N3-C2	1.343(3)
C1-N2	1.407(3)	C2-C5	1.489(3)	N2-C4	1.410(2)	02-C4	1.256(2)
C1-O1	1.222(2)	C3-C4	1.408(3)	N2-N3	1.376(2)		

Tabla A1.1.117- Ángulos de enlace (°) de HMMASC_{cic}.

	Ángulo		Ángulo		Ángulo
C1-N2-C4	131.00(16)	C4-C3-C6	124.90(18)	N3-N2-C4	108.78(15)
C2-C3-C4	107.37(17)	N1-C1-N2	114.06(17)	01-C1-N1	127.01(19)
C2-C3-C6	127.7(2)	N3-C2-C3	110.58(18)	01-C1-N2	118.91(18)
C2-N3-N2	107.72(16)	N3-C2-C5	120.33(18)	02-C4-C3	132.79(18)
C3-C2-C5	129.08(19)	N3-N2-C1	120.14(15)	02-C4-N2	121.68(17)
C3-C4-N2	105.53(16)				

Tabla A1.1.118- Coordenadas atómicas (x 10⁴) y factores isotrópicos de temperatura (Å² x 10³) de HMMASC_{cic}.

	x	У	Z	U(eq)
C1	2366(3)	1188(3)	5018(2)	34(1)
C2	6474(2)	3334(2)	5724(2)	32(1)
С3	6469(3)	3246(2)	4595(2)	33(1)
C4	4910(3)	2373(2)	4109(2)	33(1)
C5	7826(3)	4107(3)	6619(2)	46(1)
C6	7818(3)	3956(4)	3962(2)	46(1)
N1	1540(3)	681(2)	4023(2)	42(1)
N2	4026(2)	1969(2)	5005(1)	34(1)
N3	5028(2)	2559(2)	5985(1)	36(1)

01	1822(2)	1075(2)	5906(1)	49(1)
02	4286(2)	1953(2)	3119(1)	45(1)

	U11	U22	U33	U23	U13	U12
C1	33(1)	39(1)	30(1)	3(1)	8(1)	1(1)
C2	30(1)	36(1)	31(1)	0(1)	7(1)	3(1)
C3	31(1)	38(1)	31(1)	2(1)	11(1)	3(1)
C4	33(1)	42(1)	25(1)	2(1)	10(1)	3(1)
C5	42(1)	59(2)	36(1)	-4(1)	5(1)	-8(1)
C6	40(1)	57(2)	46(1)	1(1)	21(1)	-6(1)
N1	37(1)	61(1)	30(1)	-3(1)	8(1)	-11(1)
N2	31(1)	48(1)	23(1)	0(1)	7(1)	-3(1)
N3	35(1)	50(1)	23(1)	-2(1)	8(1)	-5(1)
01	44(1)	74(1)	31(1)	-1(1)	14(1)	-19(1)
02	45(1)	70(1)	23(1)	-3(1)	10(1)	-8(1)

Tabla A1.1.119- Factores anisotrópicos de temperatura (Å²) de HMMASC_{cic}.

Tabla A1.1.120- Enlaces de hidrógeno (Å, °) de HMMASC_{cic}.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O1 ⁱ	0.89(3)	2.04(3)	2.922(2)	172(2)
N1-H1B…O2	0.90(2)	1.97(2)	2.713(2)	137.9(19)
N3-H3…O2 ⁱⁱ	0.93(3)	1.87(3)	2.769(2)	162(2)
	-x, -y, -z+1	l; ["] x, -y+1/	2, z+1/2.	

A1.1.21- Estructura cristalina de la 3-etil-2-metil-1-carboxamida-5-pirazolona (HEMASC_{cic}).

Figura A1.21- Unidad asimétrica de la estructura cristalina del ligando HEMASC_{cic}.

Tabla A1.1.121- Datos cristalográficos y de refinado del ligando HEMASC_{cic}.

Fórmula	$C_7 H_{11} N_3 O_2$	α (°)	90.000	Intervalo θ (°)	2.16 a 26.37
Masa Molecular	169.19	β (°)	97.511(5)	Intervalos en h, k, l	-23,23; 0,8; 0,14

т (К)	120.0(1)	γ (°)	90.000	No. reflex. medidas	6876
λ (Å)	0.71069	V (ų)	1611.7(14)	No. reflex. únicas	1776
Sistema Cristalino	Monoclínico	z	8	R _{int}	0.0211
Grupo Espacial	C2/c	D _{calc} . (mg/m ³)	1.395	R	0.0328
a (Å)	19.036(5)	μ(mm ⁻¹)	0.105	R _w	0.0891
b (Å)	7.120(5)	F(000)	720	G.O.F.	1.060
c (Å)	11.994(5)	Dimensiones (mm)	0.73 x 0.33 x 0.23		

Tabla A1.1.122- Distancias interatómicas (Å) de HEMASCcic.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-N1	1.3299(15)	C2-C3	1.3776(16)	C3-C6	1.4990(16)	N2-N3	1.3758(13)
C1-N2	1.4096(16)	C2-C5	1.4909(17)	C6-C7	1.5279(17)	N3-C2	1.3443(16)
C1-O1	1.2271(14)	C3-C4	1.4190(18)	N2-C4	1.4021(14)	O2-C4	1.2556(14)

Tabla A1.1.123- Ángulos de enlace (°) de HEMASC_{cic}.

gulos de enlace (°) de HEMASC _{cic} .								
	Ángulo		Ángulo		Ángulo			
C1-N2- C4	131.11(9)	C3-C6-C7	113.43(10)	N3-N2-C4	109.09(10)			
C1-N2- N3	119.79(9)	C4-C3-C6	123.83(10)	01-C1-N1	127.03(11)			
C2-C3-C4	107.04(10)	N1-C1-N2	113.85(10)	01-C1-N2	119.11(10)			
C2-C3-C6	129.12(11)	N2-C4-C3	105.59(9)	02-C4-C3	132.18(10)			
C2-N3-N2	107.93(10)	N3-C2-C3	110.35(10)	02-C4-N2	122.22(11)			
C3-C2-C5	129.99(11)	N3-C2-C5	119.66(10)					

Tabla A1.1.124- Coordenadas atómicas (x 10⁴) y factores isotrópicos de temperatura (Å² x 10³) de HEMASC_{cic}.

	x	У	Z	U(eq)
C1	5499(1)	-2533(2)	438(1)	17(1)
C2	6331(1)	1903(2)	505(1)	17(1)
C3	6341(1)	1720(2)	1651(1)	17(1)
C4	6021(1)	-31(2)	1840(1)	17(1)
C5	6588(1)	3469(2)	-161(1)	22(1)
C6	6614(1)	3061(2)	2570(1)	19(1)
C7	7323(1)	2466(2)	3220(1)	29(1)
N1	5377(1)	-3623(2)	1293(1)	21(1)
N2	5828(1)	-812(1)	771(1)	18(1)
N3	6027(1)	391(1)	-28(1)	19(1)
01	5365(1)	-2891(1)	-568(1)	20(1)
02	5913(1)	-864(1)	2725(1)	22(1)

	U11	U22	U33	U23	U13	U12
C1	16(1)	16(1)	18(1)	-2(1)	2(1)	1(1)
C2	18(1)	16(1)	17(1)	0(1)	2(1)	1(1)
С3	18(1)	17(1)	16(1)	0(1)	2(1)	1(1)
C4	19(1)	19(1)	13(1)	-1(1)	1(1)	1(1)
C5	28(1)	19(1)	18(1)	2(1)	4(1)	-3(1)
C6	23(1)	17(1)	17(1)	-3(1)	2(1)	-1(1)
С7	28(1)	30(1)	26(1)	-6(1)	-5(1)	1(1)
N1	27(1)	18(1)	16(1)	-1(1)	3(1)	-5(1)
N2	24(1)	17(1)	13(1)	1(1)	2(1)	-3(1)
N3	27(1)	18(1)	12(1)	1(1)	2(1)	-4(1)
01	26(1)	20(1)	16(1)	-2(1)	2(1)	-3(1)
02	32(1)	21(1)	14(1)	1(1)	3(1)	-4(1)

Tabla A1.1.125- Factores anisotrópicos de temperatura (Å²) de HEMASC_{cic}.

Tabla A1.1.126- Enlaces de hidrógeno (Å, °) de HEMASC_{cic}.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)		
N1-H1A…O2	0.872(18)	2.011(18)	2.7183(17)	137.4(15)		
N1-H1B…O1 ⁱ	0.872(19)	2.064(19)	2.931(2)	172.5(15)		
N3-H3…O2 ⁱⁱ	0.894(17)	1.862(17)	2.6963(17)	154.3(15)		
'-x+1, -y, 1-z; " x, 1-y, z-1/2.						

A1.1.22- Estructura cristalina de la 2-etil-1-carboxamida-5-pirazolona (HPMASC_{cic}).

Figura A1.22- Unidad asimétrica de la estructura cristalina del ligando HPMASC_{cic}.

Tabla A1.1.127- Datos cristalográficos y de refinado del ligando HPMASC_{cic}.

Fórmula C ₆ H ₉ N	α (°)	82.760(4)	Intervalo θ (°)	2.35 a 26.37
---	--------------	-----------	------------------------	--------------

Masa Molecular	155.16	β (°)	77.596(4)	Intervalos en h, k, l	-7,7; -9,9; 0,11
т (К)	293(2)	γ (°)	70.324(4)	No. reflex. medidas	4257
λ (Å)	0.71073	V (Å ³)	374.18(15)	No. reflex. únicas	1514
Sistema Cristalino	Triclínico	z	2	R _{int}	0.0253
Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.377	R	0.0366
a (Å)	5.9647(14)	μ(mm ⁻¹)	0.106	R _w	0.0935
b (Å)	7.6922(18)	F(000)	164	G.O.F.	1.033
c (Å)	8.883(2)	Dimensiones (mm)	0.31 x 0.22 x 0.13		

Tabla A1.1.128- Distancias interatómicas (Å) de HPMASC_{cic}.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-N1	1.3189(19)	C2-C3	1.365(2)	C5-C6	1.515(2)	N3-C2	1.3334(19)
C1-N2	1.4071(19)	C2-C5	1.490(2)	N2-C4	1.3991(18)	O2-C4	1.2479(18)
C1-O1	1.2222(17)	C3-C4	1.408(2)	N2-N3	1.3726(17)		

Tabla A1.1.129- Ángulos de enlace (°) de HPMASC_{cic}.

	Ángulo		Ángulo		Ángulo
C1-N2-C4	130.57(12)	C3-C2-C5	130.83(14)	N3-N2-C4	109.04(12)
C1-N2-N3	120.11(11)	N1-C1-N2	114.19(13)	01-C1-N1	126.94(14)
C2-C3-C4	108.78(13)	N2-C4-C3	104.42(12)	01-C1-N2	118.87(13)
C2-C5-C6	113.96(14)	N3-C2-C3	109.14(13)	O2-C4-C3	134.24(14)
C2-N3-N2	108.56(11)	N3-C2-C5	120.03(12)	02-C4-N2	121.34(14)

Tabla A1.1.130- Coordenadas atómicas (x 10⁴) y factores isotrópicos de temperatura (Å² x 10³) de HPMASC_{cic}.

	x	У	z	U(eq)
C1	799(3)	8815(2)	2968(2)	41(1)
C2	3378(3)	7288(2)	-783(2)	39(1)
С3	1150(3)	7119(2)	-709(2)	47(1)
C4	-264(3)	7622(2)	753(2)	43(1)
C5	5560(3)	6885(2)	-2034(2)	48(1)
C6	5267(4)	6085(3)	-3426(2)	61(1)
N1	-1359(2)	8920(2)	3794(2)	54(1)
N2	1259(2)	8089(2)	1515(1)	40(1)
N3	3436(2)	7911(2)	538(1)	43(1)
01	2375(2)	9261(2)	3345(1)	54(1)
02	-2366(2)	7691(2)	1398(1)	62(1)

	U11	U22	U33	U23	U13	U12
01	45(1)	81(1)	48(1)	-25(1)	-3(1)	-30(1)
02	35(1)	101(1)	62(1)	-25(1)	-4(1)	-32(1)
N1	43(1)	79(1)	47(1)	-23(1)	3(1)	-29(1)
N2	30(1)	55(1)	41(1)	-14(1)	-4(1)	-17(1)
N3	30(1)	63(1)	42(1)	-16(1)	-3(1)	-22(1)
C1	38(1)	48(1)	40(1)	-11(1)	-5(1)	-15(1)
C2	38(1)	44(1)	38(1)	-6(1)	-10(1)	-15(1)
С3	40(1)	64(1)	44(1)	-13(1)	-12(1)	-21(1)
C4	33(1)	54(1)	49(1)	-11(1)	-12(1)	-18(1)
C5	43(1)	59(1)	43(1)	-8(1)	-2(1)	-21(1)
C6	68(1)	71(1)	43(1)	-15(1)	-4(1)	-21(1)

Tabla A1.1.131- Factores anisotrópicos de temperatura (Å²) de HPMASC_{cic}.

Tabla A1.1.132- Enlaces de hidrógeno (Å, °) de HPMASC_{cic}.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)		
N1-H1A…O1 ⁱ	0.86	2.06	2.9070(18)	167.4		
N1-H1B…O2	0.86	2.01	2.6878(18)	135.6		
N3-H3N…O2 ⁱⁱ	0.86	1.90	2.7175(17)	157.3		
-x, -y+2, -z+2; " x+1, y, z						

A1.1.23- Estructura cristalina de la 3-(bencil)-2-metil-1-carboxamida-5-pirazolona (HBMASC_{cic}).

Figura A1.23- Unidad asimétrica de la estructura cristalina del ligando HBMASC_{cic}.

Fórmula	$C_{12}H_{13}N_3O_2$	α (°)	86.401(5)	Intervalo θ (°)	1.45 a 26.37
Masa Molecular	231.25	β (°)	89.313(5)	Intervalos en h, k, l	-6,6; -17,17; -16,17
т (к)	100.0(1)	γ (°)	84.076(5)	No. reflex. medidas	15433
λ (Å)	0.71069	V (ų)	1117.7(11)	No. reflex. únicas	4523
Sistema Cristalino	Triclínico	z	4	R _{int}	0.0378
Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.374	R	0.0452
a (Å)	5.551(5)	μ(mm ⁻¹)	0.097	R _w	0.1043
b (Å)	14.143(5)	F(000)	488	G.O.F.	1.023
c (Å)	14.342(5)	Dimensiones (mm)	0.42 x 0.16 x 0.02		

Tabla A1.1.133- Datos cristalográficos y de refinado del ligando HBMASC_{cic}.

Tabla A1.1.134- Distancias interatómicas (Å) de HBMASC_{cic}.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-N11	1.330(3)	С15-Н15В	0.9600	C211-C212	1.385(3)	C26-H26B	1.01(2)
C11-N12	1.404(2)	С15-Н15С	0.9600	С211-Н211	0.99(2)	C27-C212	1.392(3)
C11-O11	1.228(2)	C16-C17	1.518(3)	С212-Н212	1.01(2)	C27-C28	1.389(3)
C110-C111	1.377(3)	С16-Н16А	0.99(2)	C22-C23	1.379(3)	C28-C29	1.383(3)
С110-Н110	0.97(2)	C16-H16B	0.98(2)	C22-C25	1.492(3)	C28-H28	0.96(2)
C111-C112	1.396(3)	C17-C112	1.386(3)	C22-N23	1.354(3)	C29-C210	1.381(3)
С111-Н111	0.97(2)	C17-C18	1.393(3)	C23-C24	1.417(3)	С29-Н29	1.01(3)
С112-Н112	0.97(2)	C18-C19	1.383(3)	C23-C26	1.499(3)	N11-H11A	0.91(3)
C12-C13	1.370(3)	С18-Н18	0.97(2)	C24-N22	1.400(2)	N11-H11B	0.91(2)
C12-C15	1.488(3)	C19-C110	1.390(3)	C24-O22	1.254(2)	N12-N13	1.391(2)
C12-N13	1.364(2)	С19-Н19	0.95(2)	С25-Н25А	0.9600	N13-H13	0.90(2)
C13-C14	1.433(3)	C21-N21	1.318(3)	С25-Н25В	0.9600	N21-H21A	0.91(3)
C13-C16	1.499(3)	C21-N22	1.410(3)	С25-Н25С	0.9600	N21-H21B	0.94(2)
C14-N12	1.399(2)	C21-O21	1.233(2)	C26-C27	1.523(3)	N22-N23	1.382(2)
C14-O12	1.249(2)	C210-C211	1.383(3)	C26-H26A	1.02(2)	N23-H23	0.94(3)
C15-H15A	0.9600	C210-H210	0.98(2)				

Tabla A1.1.135- Ángulos de enlace (°) de HBMASC _{cic}
--

	Ángulo		Ángulo		Ángulo
C11-N11-H11A	115.4(15)	C19-C18-H18	119.8(11)	C29-C28-C27	121.3(2)
C11-N11-H11B	120.1(15)	C21-N21-H21A	120.0(17)	C29-C28-H28	119.9(13)
C110-C111-C112	120.1(2)	C21-N21-H21B	119.3(14)	H11B-N11-H11A	124(2)
С110-С111-Н111	122.0(12)	C210-C211-C212	120.6(2)	H15A-C15-H15B	109.5
С110-С19-Н19	121.6(14)	C210-C211-H211	119.5(14)	H15A-C15-H15C	109.5
C111-C110-C19	119.66(19)	C210-C29-C28	120.1(2)	H15B-C15-H15C	109.5
----------------	------------	----------------	------------	---------------	------------
С111-С110-Н110	119.8(12)	С210-С29-Н29	121.3(13)	H16A-C16-H16B	106.3(17)
C111-C112-H112	119.4(12)	C211-C210-H210	123.2(13)	H21B-N21-H21A	121(2)
С112-С111-Н111	117.9(12)	C211-C212-C27	120.6(2)	H25A-C25-H25B	109.5
C112-C17-C16	122.76(17)	C211-C212-H212	121.1(12)	H25A-C25-H25C	109.5
C112-C17-C18	118.83(18)	C212-C211-H211	119.9(14)	H25B-C25-H25C	109.5
C12-C13-C14	107.22(16)	C212-C27-C26	120.72(19)	H26B-C26-H26A	104.3(18)
C12-C13-C16	129.49(18)	C22-C23-C24	107.33(17)	N11-C11-N12	113.22(17)
C12-C15-H15A	109.5	C22-C23-C26	129.63(19)	N12-C14-C13	105.27(16)
C12-C15-H15B	109.5	C22-C25-H25A	109.5	N12-N13-H13	118.1(15)
C12-C15-H15C	109.5	С22-С25-Н25В	109.5	N13-C12-C13	110.85(17)
C12-N13-H13	118.9(15)	С22-С25-Н25С	109.5	N13-C12-C15	118.14(17)
C12-N13-N12	106.52(15)	C22-N23-H23	128.5(16)	N13-N12-C11	119.75(15)
C13-C12-C15	131.01(17)	C22-N23-N22	107.84(15)	N13-N12-C14	109.87(15)
C13-C16-C17	116.36(17)	C23-C22-C25	131.03(19)	N21-C21-N22	114.80(17)
C13-C16-H16A	107.7(11)	C23-C26-C27	113.59(18)	N22-C24-C23	105.88(16)
С13-С16-Н16В	107.0(12)	С23-С26-Н26А	109.8(13)	N22-N23-H23	116.7(17)
C14-C13-C16	123.23(17)	С23-С26-Н26В	108.7(13)	N23-C22-C23	109.80(17)
C14-N12-C11	130.28(16)	C24-C23-C26	123.04(18)	N23-C22-C25	119.17(17)
C17-C112-C111	120.56(18)	C24-N22-C21	131.21(16)	N23-N22-C21	119.86(15)
С17-С112-Н112	120.0(12)	С27-С212-Н212	118.2(12)	N23-N22-C24	108.83(15)
C17-C16-H16A	110.7(12)	С27-С26-Н26А	108.1(12)	011-C11-N11	126.78(18)
C17-C16-H16B	108.2(11)	С27-С26-Н26В	112.0(12)	O11-C11-N12	119.99(17)
С17-С18-Н18	119.5(11)	С27-С28-Н28	118.7(13)	O12-C14-C13	131.08(17)
C18-C17-C16	118.37(18)	C28-C27-C212	118.07(18)	O12-C14-N12	123.64(17)
C18-C19-C110	120.18(19)	C28-C27-C26	121.20(18)	O21-C21-N21	126.46(19)
С18-С19-Н19	118.2(14)	С28-С29-Н29	118.6(13)	O21-C21-N22	118.74(17)
С19-С110-Н110	120.5(12)	C29-C210-C211	119.3(2)	O22-C24-C23	131.56(18)
C19-C18-C17	120.7(2)	C29-C210-H210	117.5(13)	O22-C24-N22	122.56(17)

Tabla A1.1.136- Coordenadas atómicas (x 10⁴) y factores isotrópicos de temperatura (Å² x 10³) de HBMASC_{cic}.

	x	У	Z	U(eq)
C11	-7089(3)	10205(1)	-833(1)	16(1)
C110	-2772(4)	14468(2)	-4055(2)	26(1)
C111	-4131(4)	13705(2)	-3999(1)	22(1)
C112	-3422(4)	12907(1)	-3405(1)	20(1)

C12	-2190(3)	10393(1)	-2406(1)	16(1)
C13	-2167(3)	11270(1)	-2055(1)	16(1)
C14	-4123(3)	11376(1)	-1395(1)	15(1)
C15	-530(4)	9885(1)	-3075(1)	22(1)
C16	-434(4)	12005(1)	-2247(1)	17(1)
C17	-1349(3)	12872(1)	-2870(1)	16(1)
C18	7(4)	13649(1)	-2931(2)	22(1)
C19	-688(4)	14438(2)	-3521(2)	27(1)
C21	139(4)	6639(1)	-200(1)	18(1)
C210	-1912(4)	8172(2)	-5179(2)	28(1)
C211	-4123(4)	8662(2)	-4976(2)	28(1)
C212	-5450(4)	8383(2)	-4201(1)	24(1)
C22	-4511(4)	5904(1)	-1572(1)	20(1)
C23	-4527(3)	6813(1)	-1982(1)	18(1)
C24	-2757(3)	7267(1)	-1524(1)	17(1)
C25	-5917(4)	5102(2)	-1788(2)	27(1)
C26	-6052(4)	7293(2)	-2765(2)	24(1)
C27	-4586(4)	7605(1)	-3614(1)	19(1)
C28	-2369(4)	7117(2)	-3831(1)	22(1)
C29	-1044(4)	7395(2)	-4604(2)	26(1)
N11	-7831(3)	10794(1)	-177(1)	19(1)
N12	-5229(3)	10532(1)	-1400(1)	16(1)
N13	-4109(3)	9950(1)	-2059(1)	17(1)
N21	1308(3)	7403(1)	-312(1)	20(1)
N22	-1715(3)	6590(1)	-854(1)	19(1)
N23	-2914(3)	5782(1)	-858(1)	21(1)
011	-7838(2)	9437(1)	-964(1)	19(1)
012	-4842(2)	12050(1)	-905(1)	19(1)
021	530(3)	5982(1)	403(1)	26(1)
022	-2116(2)	8091(1)	-1635(1)	21(1)

Tabla A1.1.137- Factores anisotrópicos de temperatura (Å²) de HBMASC_{cic}.

	U11	U22	U33	U23	U13	U12
C11	13(1)	15(1)	19(1)	4(1)	-3(1)	1(1)
C110	28(1)	16(1)	31(1)	9(1)	-2(1)	2(1)
C111	20(1)	22(1)	25(1)	4(1)	-3(1)	1(1)

C112	20(1)	16(1)	24(1)	1(1)	-2(1)	-5(1)
C12	16(1)	14(1)	18(1)	5(1)	-2(1)	1(1)
C13	16(1)	12(1)	18(1)	3(1)	-3(1)	1(1)
C14	16(1)	12(1)	18(1)	3(1)	-5(1)	0(1)
C15	23(1)	18(1)	24(1)	0(1)	4(1)	-1(1)
C16	15(1)	14(1)	20(1)	4(1)	-1(1)	-1(1)
C17	17(1)	12(1)	18(1)	0(1)	3(1)	0(1)
C18	19(1)	17(1)	29(1)	1(1)	-3(1)	-3(1)
C19	26(1)	14(1)	40(1)	4(1)	-3(1)	-5(1)
C21	23(1)	12(1)	20(1)	-3(1)	0(1)	2(1)
C210	36(1)	25(1)	23(1)	-3(1)	5(1)	-8(1)
C211	42(1)	17(1)	23(1)	2(1)	-2(1)	-1(1)
C212	27(1)	19(1)	24(1)	-1(1)	-2(1)	3(1)
C22	20(1)	20(1)	20(1)	-2(1)	3(1)	-3(1)
C23	17(1)	17(1)	20(1)	1(1)	2(1)	1(1)
C24	19(1)	12(1)	19(1)	2(1)	3(1)	2(1)
C25	31(1)	25(1)	26(1)	1(1)	-3(1)	-11(1)
C26	19(1)	26(1)	25(1)	4(1)	-2(1)	1(1)
C27	20(1)	18(1)	18(1)	-1(1)	-4(1)	-4(1)
C28	22(1)	19(1)	24(1)	1(1)	-4(1)	0(1)
C29	22(1)	29(1)	27(1)	-3(1)	1(1)	-1(1)
N11	19(1)	17(1)	22(1)	-1(1)	4(1)	-3(1)
N12	16(1)	10(1)	20(1)	-1(1)	1(1)	0(1)
N13	20(1)	10(1)	20(1)	0(1)	3(1)	0(1)
N21	22(1)	15(1)	23(1)	0(1)	-4(1)	-2(1)
N22	24(1)	10(1)	22(1)	2(1)	-5(1)	-4(1)
N23	27(1)	12(1)	24(1)	1(1)	-6(1)	-4(1)
011	20(1)	13(1)	25(1)	1(1)	2(1)	-4(1)
012	20(1)	14(1)	24(1)	-2(1)	-1(1)	1(1)
021	36(1)	14(1)	26(1)	3(1)	-10(1)	-2(1)
022	25(1)	9(1)	27(1)	2(1)	-2(1)	0(1)

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O12	0.91(3)	1.94(2)	2.708(2)	142(2)
N11-H11B…O11 ⁱ	0.91(2)	2.02(2)	2.926(3)	173(2)

N13-H13…O22	0.90(2)	1.93(3)	2.778(2)	156(2)			
N21-H21A…O11 ⁱⁱ	0.91(3)	2.42(3)	3.050(2)	126(2)			
N21-H21A…O22	0.91(3)	2.07(3)	2.763(3)	132(2)			
N21-H21B…O12 ⁱⁱⁱ	0.94(2)	1.91(3)	2.838(3)	168(2)			
N23-H23…O21 ^{iv}	0.94(3)	1.82(3)	2.745(2)	166(2)			

A1 1 24- Estructura cristalina de la 3-(2-hidroxi-etil)-1-carboxamida-5-	nirazolona (H.ABISC.)
A1.1.24 = LSC decid a cristanna de la $3-(2-matoxi-eti)-1-earboxannaa-3-$	

Figura A1.24- Unidad asimétrica de la estructura cristalina del ligando H_2ABLSC_{cic} .

Fórmula	$C_7H_{11}N_3O_3$	α(°)	60.450(4)	Intervalo θ (°)	2.83 a 26.37
Masa Molecular	185.19	β(°)	71.248(5)	Intervalos en h, k, l	-8,9; -8,10; 0,10
т (К)	293(2)	γ (°)	83.213(5)	No. reflex. medidas	4888
λ (Å)	0.71073	V (ų)	426.9(2)	No. reflex. únicas	1749
Sistema Cristalino	Triclínico	z	2	R _{int}	0.0201
Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.441	R	0.0407
a (Å)	7.542(2)	μ(mm ⁻¹)	0.114	R _w	0.112
b (Å)	8.285(2)	F(000)	196	G.O.F.	1.069
c (Å)	8.303(2)	Dimensiones (mm)	0.32 x 0.31 x 0.18		

Tabla A1.1.139- Datos cristalográficos y de refinado del ligando H₂ABLSC_{cic}.

Tabla A1.1.140- Distancias interatómicas (Å) de H₂ABLSC_{cic}.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-N1	1.319(2)	C2-C5	1.485(3)	C6-C7	1.509(2)	N3-C2	1.346(2)
C1-N2	1.407(2)	C3-C4	1.418(2)	N2-C4	1.400(2)	O2-C4	1.253(2)
C1-01	1.221(2)	C3-C6	1.495(2)	N2-N3	1.375(2)	03-C7	1.430(2)

C2-C3 1.371(2)

Tabla A1.1.141- Ángulos de enlace (°) de H₂ABLSC_{cic}.

	Ángulo		Ángulo		Ángulo
C1-N2- C4	131.53(15)	C3-C6-C7	113.22(14)	N3-N2-C4	109.05(13)
C1-N2- N3	119.39(13)	C4-C3-C6	124.18(15)	01-C1-N1	127.02(16)
C2-C3-C4	107.35(14)	N1-C1-N2	114.52(15)	01-C1-N2	118.46(16)
C2-C3-C6	128.46(16)	N2-C4-C3	105.42(14)	O2-C4-C3	131.77(15)
C2-N3-N2	107.91(13)	N3-C2-C3	110.16(15)	02-C4-N2	122.80(15)
C3-C2-C5	130.29(16)	N3-C2-C5	119.55(15)	O3-C7-C6	111.65(14)

Tabla A1.1.142- Coordenadas atómicas (x 10⁴) y factores isotrópicos de temperatura (Å² x 10³) de H₂ABLSC_{cic}.

	x	У	Z	U(eq)
C1	3837(2)	2433(2)	-356(2)	34(1)
C2	1702(2)	6019(2)	597(2)	35(1)
С3	2672(2)	7140(2)	-1317(2)	33(1)
C4	3644(2)	5970(2)	-2073(2)	33(1)
C5	486(3)	6504(3)	2086(3)	50(1)
C6	2756(3)	9214(2)	-2467(2)	38(1)
C7	1700(3)	9935(2)	-3940(3)	40(1)
N1	4969(2)	2520(2)	-1985(2)	44(1)
N2	3205(2)	4158(2)	-518(2)	34(1)
N3	1967(2)	4222(2)	1076(2)	38(1)
01	3309(2)	1041(2)	1226(2)	47(1)
02	4688(2)	6321(2)	-3737(2)	45(1)
03	1878(2)	11917(2)	-5068(2)	44(1)

Tabla A1.1.143 - Factores anisotrópicos de temperatura (Å ²)	de I	H ₂ ABLSC _{cic}
---	------	-------------------------------------

	U11	U22	U33	U23	U13	U12
C1	41(1)	25(1)	36(1)	-13(1)	-13(1)	3(1)
C2	42(1)	29(1)	31(1)	-12(1)	-14(1)	8(1)
C3	42(1)	26(1)	29(1)	-10(1)	-14(1)	4(1)
C4	42(1)	26(1)	29(1)	-10(1)	-12(1)	1(1)
C5	58(1)	47(1)	39(1)	-22(1)	-9(1)	14(1)
C6	53(1)	24(1)	34(1)	-11(1)	-17(1)	4(1)
C7	50(1)	26(1)	35(1)	-6(1)	-16(1)	2(1)
N1	61(1)	29(1)	36(1)	-15(1)	-9(1)	6(1)
N2	44(1)	24(1)	27(1)	-9(1)	-8(1)	4(1)

N3	47(1)	27(1)	26(1)	-7(1)	-7(1)	6(1)
01	60(1)	26(1)	37(1)	-8(1)	-6(1)	6(1)
02	62(1)	32(1)	28(1)	-12(1)	-3(1)	-1(1)
03	55(1)	27(1)	33(1)	-4(1)	-12(1)	7(1)

Tabla A1.1.144- Enlaces de hidrógeno (Å, °) de H₂ABLSC_{cic}.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)			
N3-H3…O3 ⁱ	0.85(2)	1.95(2)	2.786(2)	166(2)			
N1-H1A…O1 ⁱⁱ	0.89(3)	2.06(3)	2.928(2)	166(2)			
N1-H1B…O2	0.88(2)	2.10(2)	2.757(2)	131.1(18)			
N1-H1B…O2 ⁱⁱⁱ	0.88(2)	2.57(2)	3.116(2)	121.0(17)			
03-H3…O2 ^{iv}	0.82	2.02	2.763(2)	151.0			
¹ x, y-1, z+1; ¹¹ -x+1, -y, -z+1; ¹¹¹ -x+1, -y+1, -z; ¹¹ -x+1,-y+2,-z.							

A1.1.25- Estructura cristalina de la semicarabazona del 2-cetobutirato de metilo (HCBSC- $Me \cdot 1/4H_2O$).

Figura A1.25- Unidad asimétrica de la estructura cristalina del ligando HCBSC-Me·1/4H₂O.

	Tabla A1.1.145- Dato	s cristalográficos	v de refinado del	ligando HCBSC-Me·1	/4H ₂ O.
--	----------------------	--------------------	-------------------	--------------------	---------------------

Fórmula	$C_{24} \ H_{46} \ N_{12} \ O_{13}$	α (°)	82.226(4)	Intervalo θ (°)	2.10 a 26.49
Masa Molecular	710.73	β (°)	75.444(4)	Intervalos en h, k, l	-9,10; -17,17; 0,19
т (К)	100.0(1)	γ (°)	76.277(4)	No. reflex. medidas	27360
λ (Å)	0.71073	V (ų)	1690.6(7)	No. reflex. únicas	6966
Sistema Cristalino	Triclínico	z	2	R _{int}	0.0332

Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.396	R	0.0523
a (Å)	8.255(2)	μ(mm ⁻¹)	0.114	R _w	0.1501
b (Å)	14.142(3)	F(000)	756	G.O.F.	1.116
c (Å)	15.451(4)	Dimensiones (mm)	0.61 x 0.51 x 0.12		

Tabla A1.1.146- Distancias interatómicas (Å) de HCBSC-Me·1/4H₂O.

Enlaces	Distancia	Enlaces	Distancia	Enlaces	Distancia	Enlaces	Distancia
C11-O11	1.237(2)	C22-C24	1.500(2)	C34-H34B	0.9700	C45-H45B	0.9600
C11-N11	1.334(2)	C23-O23	1.216(2)	С35-Н35А	0.9600	C45-H45C	0.9600
C11-N12	1.375(2)	C23-O22	1.322(2)	С35-Н35В	0.9600	C46-O42	1.440(2)
C12-N13	1.287(2)	C24-C25	1.525(3)	C35-H35C	0.9600	C46-H46A	0.9600
C12-C13	1.492(3)	C24-H24A	0.9700	C36-O32	1.437(2)	C46-H46B	0.9600
C12-C14	1.501(3)	C24-H24B	0.9700	C36-H36A	0.9600	N11-H11B	0.8600
C13-O13	1.212(2)	C25-H25A	0.9600	С36-Н36В	0.9600	N12-N13	1.360(2)
C13-O12	1.329(2)	С25-Н25В	0.9600	С36-Н36С	0.9600	N12-H12	0.8600
C14-C15	1.529(3)	С25-Н25С	0.9600	C41-O41	1.241(2)	N21-H21A	0.8600
C14-H14A	0.9700	C26-O22	1.448(2)	C41-N41	1.323(2)	N21-H21B	0.8600
C14-H14B	0.9700	C26-H26A	0.9600	C41-N42	1.382(2)	N22-N23	1.358(2)
C15-H15A	0.9600	С26-Н26В	0.9600	C42-N43	1.287(2)	N22-H22	0.8600
C15-H15B	0.9600	С26-Н26С	0.9600	C42-C43	1.494(3)	N31-H31A	0.8600
C15-H15C	0.9600	C31-O31	1.237(2)	C42-C44	1.501(2)	N31-H31B	0.8600
C16-O12	1.452(2)	C31-N31	1.334(2)	C43-O43	1.210(2)	N32-N33	1.363(2)
C16-H16A	0.9600	C31-N32	1.372(2)	C43-O42	1.329(2)	N32-H32	0.8600
C16-H16B	0.9600	C32-N33	1.283(2)	C44-C45	1.528(3)	N41-H41A	0.8600
C16-H16C	0.9600	C32-C34	1.499(3)	C44-H44A	0.9700	N41-H41B	0.8600
C21-O21	1.246(2)	C32-C33	1.505(3)	С44-Н44В	0.9700	N42-N43	1.355(2)
C21-N21	1.323(2)	C33-O33	1.211(2)	C45-H45A	0.9600	N42-H42	0.8600
C21-N22	1.382(2)	C33-O32	1.327(2)	C46-H46C	0.9600	O1W-H2W	1.03(5)
C22-N23	1.284(2)	C34-C35	1.531(3)	N11-H11A	0.8600	O1W-H1W	0.90(4)
C22-C23	1.490(2)	C34-H34A	0.9700				

Tabla A1.1.147- Ángulos de enlace (°) de HCBSC-Me·1/4H₂O.

	Ángulo		Ángulo		Ángulo
C11-N11-H11A	120.0	C42-C44-H44B	109.3	N21-C21-N22	117.08(16)
C11-N11-H11B	120.0	C42-N43-N42	118.68(16)	N23-C22-C23	116.12(16)
C11-N12-H12	120.5	C43-C42-C44	120.76(16)	N23-C22-C24	126.98(17)

C12-C14-C15	112.33(15)	C43-O42-C46	116.26(15)	N23-N22-C21	118.14(15)
C12-C14-H14A	109.1	C44-C45-H45A	109.5	N23-N22-H22	120.9
C12-C14-H14B	109.1	C44-C45-H45B	109.5	N31-C31-N32	117.51(16)
C12-N13-N12	118.75(16)	C44-C45-H45C	109.5	N33-C32-C33	112.91(16)
C13-C12-C14	117.27(16)	C45-C44-H44A	109.3	N33-C32-C34	127.53(17)
C13-O12-C16	116.03(15)	C45-C44-H44B	109.3	N33-N32-C31	119.22(15)
C14-C15-H15A	109.5	H11A-N11-H11B	120.0	N33-N32-H32	120.4
C14-C15-H15B	109.5	H14A-C14-H14B	107.9	N41-C41-N42	117.94(16)
C14-C15-H15C	109.5	H15A-C15-H15B	109.5	N43-C42-C43	112.69(16)
C15-C14-H14A	109.1	H15A-C15-H15C	109.5	N43-C42-C44	126.53(17)
C15-C14-H14B	109.1	H15B-C15-H15C	109.5	N43-N42-C41	119.08(15)
C21-N21-H21A	120.0	H16A-C16-H16B	109.5	N43-N42-H42	120.5
C21-N21-H21B	120.0	H16A-C16-H16C	109.5	O11-C11-N11	123.70(17)
C21-N22-H22	120.9	H16B-C16-H16C	109.5	O11-C11-N12	118.64(17)
C22-C24-C25	111.55(16)	H21A-N21-H21B	120.0	O12-C13-C12	114.25(16)
C22-C24-H24A	109.3	H24A-C24-H24B	108.0	O12-C16-H16A	109.5
C22-C24-H24B	109.3	H25A-C25-H25B	109.5	O12-C16-H16B	109.5
C22-N23-N22	118.39(15)	H25A-C25-H25C	109.5	O12-C16-H16C	109.5
C23-C22-C24	116.82(15)	H25B-C25-H25C	109.5	O13-C13-C12	121.75(18)
C23-O22-C26	115.05(14)	H26A-C26-H26B	109.5	013-C13-O12	124.00(18)
C24-C25-H25A	109.5	H26A-C26-H26C	109.5	O21-C21-N21	124.49(16)
C24-C25-H25B	109.5	H26B-C26-H26C	109.5	O21-C21-N22	118.44(16)
C24-C25-H25C	109.5	H2W-01W-H1W	111(3)	022-C23-C22	114.72(15)
C25-C24-H24A	109.3	H31A-N31-H31B	120.0	O22-C26-H26A	109.5
C25-C24-H24B	109.3	H34A-C34-H34B	107.8	O22-C26-H26B	109.5
C31-N31-H31A	120.0	H35A-C35-H35B	109.5	O22-C26-H26C	109.5
C31-N31-H31B	120.0	H35A-C35-H35C	109.5	O23-C23-C22	121.51(17)
C31-N32-H32	120.4	H35B-C35-H35C	109.5	O23-C23-O22	123.77(17)
C32-C34-C35	112.94(16)	H36A-C36-H36B	109.5	O31-C31-N31	123.90(17)
C32-C34-H34A	109.0	H36A-C36-H36C	109.5	O31-C31-N32	118.59(16)
C32-C34-H34B	109.0	H36B-C36-H36C	109.5	O32-C33-C32	109.92(16)
C32-N33-N32	118.41(16)	H41A-N41-H41B	120.0	O32-C36-H36A	109.5
C33-O32-C36	117.35(17)	H44A-C44-H44B	108.0	O32-C36-H36B	109.5
C34-C32-C33	119.56(15)	H45A-C45-H45B	109.5	O32-C36-H36C	109.5
С34-С35-Н35А	109.5	H45A-C45-H45C	109.5	O33-C33-C32	124.87(17)
C34-C35-H35B	109.5	H45B-C45-H45C	109.5	O33-C33-O32	125.21(17)

C34-C35-H35C	109.5	H46A-C46-H46B	109.5	O41-C41-N41	124.39(16)
С35-С34-Н34А	109.0	H46A-C46-H46C	109.5	O41-C41-N42	117.67(17)
С35-С34-Н34В	109.0	H46B-C46-H46C	109.5	O42-C43-C42	111.51(16)
C41-N41-H41A	120.0	N11-C11-N12	117.66(17)	O42-C46-H46A	109.5
C41-N41-H41B	120.0	N13-C12-C13	115.58(17)	O42-C46-H46B	109.5
C41-N42-H42	120.5	N13-C12-C14	127.09(17)	O42-C46-H46C	109.5
C42-C44-C45	111.51(15)	N13-N12-C11	118.99(15)	O43-C43-C42	125.06(17)
C42-C44-H44A	109.3	N13-N12-H12	120.5	O43-C43-O42	123.43(17)

Tabla A1.1.148- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de HCBSC-Me \cdot 1/4H₂O.

	x	у	Z	U(eq)
C11	7772(2)	8478(1)	3282(1)	16(1)
C12	7000(2)	9820(1)	5161(1)	15(1)
C13	6833(2)	9576(1)	6146(1)	17(1)
C14	6874(2)	10876(1)	4823(1)	16(1)
C15	8623(2)	11154(2)	4539(2)	24(1)
C16	6745(3)	8364(2)	7358(1)	28(1)
C21	-1238(2)	11089(1)	12002(1)	13(1)
C22	1566(2)	9467(1)	10476(1)	13(1)
C23	3093(2)	9514(1)	9726(1)	14(1)
C24	1039(2)	8502(1)	10705(1)	16(1)
C25	1860(3)	7891(2)	11437(2)	27(1)
C26	4812(3)	10460(2)	8714(1)	24(1)
C31	6463(2)	3757(1)	3062(1)	13(1)
C32	3573(2)	5526(1)	4415(1)	14(1)
C33	1941(2)	5505(1)	5116(1)	15(1)
C34	4253(2)	6444(1)	4203(1)	16(1)
C35	3643(3)	7095(2)	3422(1)	24(1)
C36	-520(3)	6526(2)	5919(2)	32(1)
C41	7751(2)	6266(1)	11781(1)	15(1)
C42	8017(2)	4967(1)	9937(1)	14(1)
C43	8045(2)	5279(1)	8971(1)	15(1)
C44	8108(2)	3916(1)	10284(1)	15(1)
C45	6324(2)	3698(2)	10649(1)	22(1)
C46	8071(3)	4756(2)	7585(2)	33(1)

N11	7865(2)	7590(1)	3711(1)	23(1)
N12	7518(2)	9254(1)	3785(1)	16(1)
N13	7308(2)	9087(1)	4690(1)	14(1)
N21	-543(2)	11856(1)	11695(1)	16(1)
N22	-489(2)	10238(1)	11581(1)	14(1)
N23	889(2)	10249(1)	10883(1)	13(1)
N31	5672(2)	3016(1)	3359(1)	18(1)
N32	5720(2)	4633(1)	3427(1)	15(1)
N33	4228(2)	4708(1)	4066(1)	13(1)
N41	7705(2)	7148(1)	11359(1)	18(1)
N42	7827(2)	5505(1)	11287(1)	16(1)
N43	7872(2)	5687(1)	10399(1)	14(1)
011	7908(2)	8639(1)	2462(1)	19(1)
012	6822(2)	8643(1)	6410(1)	19(1)
013	6737(2)	10187(1)	6646(1)	27(1)
01W	2586(2)	2224(1)	478(1)	22(1)
021	-2505(2)	11085(1)	12642(1)	17(1)
022	3379(2)	10402(1)	9471(1)	18(1)
023	3986(2)	8783(1)	9387(1)	21(1)
031	7814(2)	3699(1)	2481(1)	18(1)
032	1070(2)	6410(1)	5256(1)	28(1)
033	1496(2)	4771(1)	5495(1)	21(1)
041	7738(2)	6075(1)	12590(1)	19(1)
042	8017(2)	4542(1)	8529(1)	23(1)
043	8067(2)	6098(1)	8626(1)	20(1)

	U11	U22	U33	U23	U13	U12	
C11	17(1)	18(1)	16(1)	-5(1)	-1(1)	-8(1)	
C12	9(1)	18(1)	16(1)	-5(1)	-1(1)	-2(1)	
C13	12(1)	19(1)	18(1)	-4(1)	0(1)	-1(1)	
C14	14(1)	16(1)	17(1)	-5(1)	-3(1)	-2(1)	
C15	19(1)	19(1)	36(1)	-2(1)	-8(1)	-7(1)	
C16	33(1)	30(1)	20(1)	-3(1)	-5(1)	-3(1)	
C21	14(1)	11(1)	12(1)	-2(1)	-4(1)	0(1)	
C22	14(1)	11(1)	15(1)	-2(1)	-5(1)	0(1)	

C23	16(1)	13(1)	13(1)	-3(1)	-5(1)	-1(1)
C24	20(1)	10(1)	18(1)	-4(1)	-2(1)	-3(1)
C25	36(1)	14(1)	31(1)	4(1)	-13(1)	-4(1)
C26	21(1)	25(1)	24(1)	-3(1)	1(1)	-5(1)
C31	16(1)	12(1)	12(1)	-2(1)	-5(1)	-1(1)
C32	15(1)	14(1)	13(1)	-3(1)	-6(1)	1(1)
C33	16(1)	14(1)	15(1)	-4(1)	-6(1)	-1(1)
C34	18(1)	14(1)	17(1)	-5(1)	-4(1)	-1(1)
C35	32(1)	17(1)	24(1)	3(1)	-10(1)	-5(1)
C36	24(1)	31(1)	34(1)	-12(1)	4(1)	-1(1)
C41	15(1)	15(1)	15(1)	-6(1)	-1(1)	-4(1)
C42	11(1)	11(1)	19(1)	-4(1)	-3(1)	-1(1)
C43	13(1)	14(1)	17(1)	-4(1)	-3(1)	-1(1)
C44	17(1)	12(1)	17(1)	-4(1)	-5(1)	-2(1)
C45	21(1)	17(1)	27(1)	-3(1)	-3(1)	-5(1)
C46	55(2)	26(1)	23(1)	-5(1)	-19(1)	-6(1)
N11	40(1)	17(1)	13(1)	-3(1)	-3(1)	-12(1)
N12	22(1)	14(1)	13(1)	-2(1)	-2(1)	-6(1)
N13	13(1)	16(1)	13(1)	-2(1)	-2(1)	-4(1)
N21	17(1)	11(1)	17(1)	-5(1)	3(1)	-1(1)
N22	16(1)	11(1)	15(1)	-2(1)	2(1)	-4(1)
N23	12(1)	12(1)	13(1)	-3(1)	-2(1)	1(1)
N31	18(1)	12(1)	21(1)	-5(1)	3(1)	-2(1)
N32	16(1)	12(1)	15(1)	-2(1)	0(1)	-3(1)
N33	12(1)	15(1)	12(1)	-1(1)	-3(1)	0(1)
N41	30(1)	11(1)	15(1)	-4(1)	-4(1)	-7(1)
N42	23(1)	10(1)	14(1)	-1(1)	-2(1)	-5(1)
N43	13(1)	14(1)	14(1)	-3(1)	-3(1)	-2(1)
01W	26(1)	15(1)	24(1)	-2(1)	-2(1)	-3(1)
011	28(1)	19(1)	13(1)	-4(1)	-1(1)	-10(1)
013	41(1)	26(1)	16(1)	-9(1)	-2(1)	-11(1)
012	26(1)	18(1)	13(1)	-2(1)	-4(1)	-1(1)
021	17(1)	15(1)	15(1)	-3(1)	2(1)	-3(1)
023	19(1)	19(1)	23(1)	-9(1)	0(1)	2(1)
022	18(1)	16(1)	17(1)	-2(1)	3(1)	-2(1)
031	20(1)	14(1)	18(1)	-4(1)	2(1)	-3(1)

032	18(1)	20(1)	40(1)	-15(1)	6(1)	0(1)
033	19(1)	21(1)	22(1)	0(1)	-4(1)	-4(1)
041	28(1)	16(1)	14(1)	-2(1)	-4(1)	-8(1)
043	28(1)	15(1)	16(1)	0(1)	-6(1)	-4(1)
042	39(1)	17(1)	19(1)	-4(1)	-14(1)	-3(1)

Tabla A1.1.150	- Enlaces	de hidróg	geno (Å, '	°) de H	ICBSC-Me-1	/4H ₂ (0.
----------------	-----------	-----------	------------	---------	------------	--------------------	----

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)	D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
01W-H1W…043 ⁱ	0.90(4)	1.90(4)	2.784(2)	168(3)	N22-H22…O11 ^{vi}	0.86	2.06	2.899(2)	165.8
O1W-H1W…N43 ⁱ	0.90(4)	2.54(3)	3.058(2)	118(3)	N31-H31A…O21 ^{vii}	0.86	2.14	2.997(2)	172.1
01W-H2W…023 ⁱ	1.03(5)	1.88(5)	2.896(2)	167(4)	N31-H31B…N33	0.86	2.31	2.653(2)	104.3
N11-H11A…O41 ⁱⁱ	0.86	2.13	2.967(2)	163.1	N32-H32…O41 ⁱⁱ	0.86	2.06	2.902(2)	164.8
N11-H11B…N13	0.86	2.31	2.653(2)	104.2	N41-H41A…O11 ^{viii}	0.86	2.09	2.944(2)	169.2
N12-H12…O21 ⁱⁱⁱ	0.86	2.09	2.929(2)	166.4	N41-H41B…N43	0.86	2.32	2.661(2)	104.1
N21-H21A…O31 ⁱ ∕	0.86	2.05	2.908(2)	174.5	N41-H41B…O1W ⁱ	0.86	2.07	2.909(2)	166.0
N21-H21B…O1W ^v	0.86	2.11	2.900(2)	153.5	N42-H42…O31 ^{viii}	0.86	2.10	2.941(2)	164.1
N21-H21B…N23	0.86	2.27	2.625(2)	104.9					

¹-x+1, -y+1, -z+1; ¹¹x, y, z-1; ¹¹x+1, y, z-1; ^{1v}x-1, y+1, z+1; ^vx, y+1, z+1; ^{vi}x-1, y, z+1; ^{vii}x+1, y-1, z-1; ^{viii}x, y, z+1.

A1.1.26- Estructura cristalina de	la semicarbazona del	benzoilformiato de m	netilo (HBFSC-Me).
-----------------------------------	----------------------	----------------------	--------------------

Figura A1.26- Unidad asimétrica de la estructura cristalina del ligando HBFSC-Me.

Fórmula	$C_{10} \; H_{11} \; N_3 \; O_3$	α (°)	90	Intervalo θ (°)	2.03 a 26.44
Masa Molecular	221.22	β (°)	108.79(3)	Intervalos en h, k, l	-13,12; 0,11; 0,14
т (к)	293(2)	γ (°)	90	No. reflex. medidas	9052
λ (Å)	0.71073	V (ų)	1053.6(4)	No. reflex. únicas	2166
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.0348
Grupo Espacial	P21/c	D _{calc} . (mg/m ³)	1.395	R	0.0406

a (Å)	10.612(2)	μ (mm ⁻¹)	0.106	R _w	0.0932
b (Å)	8.9030(18)	F(000)	464	G.O.F.	1.020
c (Å)	11.780(2)	Dimensiones (mm)	0.38 x 0.27 x 0.12		

Tabla A1.1.152- Distancias interatómicas (Å) de HBFSC-Me.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-N1	1.325(2)	C4-H4B	0.93(3)	С7-Н7	0.94(2)	N2-H2	0.86(2)
C1-N2	1.379(2)	C4-H4C	0.98(3)	C8-C9	1.369(3)	N2-N3	1.346(2)
C1-01	1.217(2)	C5-C10	1.377(3)	C8-H8	0.93(3)	N3-C2	1.286(2)
С10-Н10	0.97(2)	C5-C6	1.383(3)	C9-C10	1.371(3)	O2-C3	1.325(2)
C2-C3	1.491(3)	C6-C7	1.374(3)	С9-Н9	0.93(2)	02-C4	1.443(3)
C2-C5	1.483(3)	C6-H6	0.93(2)	N1-H1A	0.85(2)	O3-C3	1.184(2)
C4-H4A	0.98(3)	C7-C8	1.366(3)	N1-H1B	0.90(3)		

Tabla A1.1.153- Ángulos de enlace (°) de HBFSC-Me.

	Ángulo		Ángulo	•	Ángulo
C1-N1-H1A	117.4(16)	С7-С8-Н8	120.6(16)	Н4А-С4-Н4С	103(3)
C1-N1-H1B	120.9(16)	C8-C7-C6	120.1(2)	Н4В-С4-Н4С	111(3)
C1-N2-H2	118.6(14)	C8-C9-C10	120.4(2)	N3-C2-C5	125.12(17)
C2-N3-N2	117.95(16)	С8-С9-Н9	118.2(13)	N3-N2-C1	117.82(16)
C3-O2-C4	115.85(18)	C9-C10-C5	120.3(2)	N3-N2-H2	123.2(14)
С5-С10-Н10	120.3(13)	С9-С10-Н10	119.3(13)	01-C1-N1	124.96(18)
C5-C2-C3	121.58(16)	С9-С8-Н8	119.4(16)	01-C1-N2	121.42(17)
С5-С6-Н6	118.5(13)	C10-C5-C2	121.93(18)	O2-C3-C2	111.23(16)
C6-C5-C2	119.15(18)	C10-C5-C6	118.91(19)	02-C3-O3	123.24(19)
С6-С7-Н7	117.9(15)	С10-С9-Н9	121.3(13)	02-C4-H4A	110.4(18)
C7-C6-C5	120.4(2)	H1A-N1-H1B	122(2)	O2-C4-H4B	107(2)
С7-С6-Н6	121.1(13)	H4A-C4-H4B	113(3)	O2-C4-H4C	112.2(19)
C7-C8-C9	119.9(2)	N1-C1-N2	113.62(17)	O3-C3-C2	125.51(18)
С8-С7-Н7	122.0(15)	N3-C2-C3	113.23(17)		

Tabla A1.1.154- Coordenadas atómicas (x 10⁴) y factores isotrópicos de temperatura (Å² x 10³) de HBFSC-Me.

	x	У	Z	U(eq)
C1	5189(2)	5303(2)	2312(2)	39(1)
C2	2982(2)	5275(2)	3971(2)	39(1)
С3	2528(2)	6457(2)	4647(2)	44(1)

C4	1222(4)	6942(3)	5878(3)	68(1)
C5	2416(2)	3736(2)	3828(2)	36(1)
C6	1613(2)	3271(2)	2708(2)	47(1)
C7	1099(2)	1841(3)	2544(2)	55(1)
C8	1391(2)	862(3)	3487(2)	54(1)
C9	2194(2)	1309(2)	4596(2)	52(1)
C10	2694(2)	2742(2)	4772(2)	46(1)
N1	5659(2)	4245(2)	1766(2)	53(1)
N2	4341(2)	4765(2)	2891(2)	45(1)
N3	3844(2)	5753(2)	3500(2)	42(1)
01	5451(1)	6634(2)	2315(1)	52(1)
02	1710(2)	5895(2)	5184(1)	54(1)
03	2827(2)	7743(2)	4697(2)	80(1)

Tabla A1.1.155- Factores anisotrópicos de temperatura ($Å^2$) de HBFSC-Me.

	U11	U22	U33	U23	U13	U12
C1	40(1)	31(1)	54(1)	-2(1)	24(1)	-2(1)
C2	43(1)	31(1)	47(1)	2(1)	22(1)	2(1)
С3	53(1)	34(1)	56(1)	4(1)	30(1)	4(1)
C4	90(2)	55(2)	82(2)	-7(2)	61(2)	10(2)
C5	36(1)	33(1)	47(1)	-1(1)	22(1)	2(1)
C6	47(1)	46(1)	49(1)	2(1)	17(1)	4(1)
C7	46(1)	57(1)	59(2)	-14(1)	11(1)	-6(1)
C8	51(1)	39(1)	80(2)	-11(1)	33(1)	-9(1)
С9	67(2)	35(1)	60(2)	5(1)	30(1)	-1(1)
C10	55(1)	37(1)	47(1)	0(1)	17(1)	-2(1)
N1	61(1)	35(1)	82(1)	-8(1)	49(1)	-5(1)
N2	56(1)	24(1)	70(1)	-5(1)	40(1)	-2(1)
N3	49(1)	29(1)	57(1)	-1(1)	29(1)	2(1)
01	66(1)	28(1)	75(1)	-2(1)	42(1)	-6(1)
02	72(1)	39(1)	70(1)	-3(1)	49(1)	1(1)
03	120(2)	33(1)	125(2)	-11(1)	92(1)	-8(1)

Tabla A1.1.156- Enlaces de hidrógeno (Å, °) de HBFSC-Me.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O3 ⁱ	0.85(2)	2.47(2)	3.020(2)	122.9(19)

N1-H1B…O1 ⁱ	0.90(3)	2.17(3)	2.964(3)	146(2)
N1-H1B…N3 ⁱ	0.90(3)	2.43(3)	3.185(2)	142(2)
N2-H2…O1 ⁱ	0.86(2)	2.00(2)	2.812(2)	157(2)
	'-x+1,	y-1/2, -z+	1/2.	

A1.2- Estructura cristalina de los complejos descritos en esta memoria.

A1.2.1- Estructura cristalina del complejo [Ga(HCBSC)(CBSC)].

Figura A1.27- Unidad asimétrica de la estructura cristalina del complejo [Ga(HCBSC)(CBSC)].

Fórmula	C ₁₀ H ₁₅ GaN ₆ O ₆	α(°)	90.000	Intervalo θ (°)	2.19 a 24.66
Masa Molecular	385.00	β(°)	95.744(2)	Intervalos en h, k, l	-10,10; 0,20; 0,10
т (к)	100.0(1)	γ(°)	90.000	No. reflex. medidas	35910
λ (Å)	0.71073	V (Å ³)	1462.12(9)	No. reflex. únicas	2477
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.0471
Grupo Espacial	P21/C	D _{calc} . (mg/m ³)	1.749	R	0.0297
a (Å)	9.3508(4)	μ(mm ⁻¹)	1.925	R _w	0.0764
b (Å)	17.1444(6)	F(000)	784	G.O.F.	1.085
c (Å)	9.1664(3)	Dimensiones (mm)	0.27x0.08x0.03		

Tabla A1.2.1- Datos cristalográficos y de refinado del complejo [Ga(HCBSC)(CBSC)].

Tabla A1.2.2- Distancias interatómicas (Å) de [Ga(HCBSC)(CBSC)].

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-O11	1.294(3)	C15-H15A	0.9600	C23-O22	1.298(3)	N22-H22	0.86(4)
C11-N11	1.316(4)	C15-H15B	0.9600	C24-C25	1.527(4)	N23-Ga1	2.044(2)
C11-N12	1.369(3)	C15-H15C	0.9600	C24-H24A	0.9700	N11-H11B	0.90(3)
C12-N13	1.289(3)	C21-O21	1.270(3)	C24-H24B	0.9700	N11-H11A	0.77(4)
C12-C14	1.488(4)	C21-N21	1.317(4)	C25-H25A	0.9600	N12-N13	1.353(3)

C12-C13	1.503(4)	C21-N22	1.368(3)	C25-H25B	0.9600	N13-Ga1	2.002(2)
C13-O13	1.243(3)	C22-N23	1.277(3)	C25-H25C	0.9600	O11-Ga1	1.9531(18)
C13-O12	1.284(3)	C22-C24	1.491(4)	N21-H21B	0.84(3)	O12-Ga1	1.9951(18)
C14-C15	1.508(4)	C22-C23	1.521(4)	N21-H21A	0.77(4)	O21-Ga1	2.0299(18)
C14-H14A	0.9700	C23-O23	1.217(3)	N22-N23	1.357(3)	O22-Ga1	1.9671(17)
C14-H14B	0.9700						

Tabla A1.2.3- Ángulos de enlace (°) de [Ga(HCBSC)(CBSC)].

	Ángulo		Ángulo		Ángulo
C11-N11-H11A	118(2)	C24-C25-H25A	109.5	N23-N22-C21	113.0(2)
C11-N11-H11B	121.9(19)	C24-C25-H25B	109.5	N23-N22-H22	122(2)
C11-O11-Ga1	112.08(16)	C24-C25-H25C	109.5	011-C11-N11	118.6(2)
C12-C14-C15	111.5(2)	C25-C24-H24A	109.4	O11-C11-N12	124.0(2)
C12-C14-H14A	109.3	С25-С24-Н24В	109.4	O11-Ga1-N13	78.27(8)
C12-C14-H14B	109.3	H11B-N11-H11A	118(3)	O11-Ga1-N23	114.96(8)
C12-N13-Ga1	117.47(17)	H14A-C14-H14B	108.0	O11-Ga1-O12	157.45(7)
C12-N13-N12	124.9(2)	H15A-C15-H15B	109.5	O11-Ga1-O21	91.81(7)
C13-O12-Ga1	114.50(16)	H15A-C15-H15C	109.5	O11-Ga1-O22	90.58(8)
C14-C12-C13	122.3(2)	H15B-C15-H15C	109.5	012-C13-C12	117.1(2)
C14-C15-H15A	109.5	H21B-N21-H21A	119(3)	O12-Ga1-N13	79.51(8)
С14-С15-Н15В	109.5	H24A-C24-H24B	108.0	O12-Ga1-N23	87.42(8)
С14-С15-Н15С	109.5	H25A-C25-H25B	109.5	012-Ga1-O21	90.67(7)
С15-С14-Н14А	109.3	H25A-C25-H25C	109.5	013-C13-C12	119.1(2)
C15-C14-H14B	109.3	H25B-C25-H25C	109.5	013-C13-O12	123.7(2)
C21-N21-H21A	121(2)	N11-C11-N12	117.4(2)	O21-C21-N21	123.3(2)
C21-N21-H21B	120(2)	N12-N13-Ga1	117.62(16)	O21-C21-N22	119.9(2)
C21-N22-H22	121(2)	N13-C12-C13	111.2(2)	O21-Ga1-N23	77.00(8)
C21-O21-Ga1	114.62(16)	N13-C12-C14	126.4(2)	022-C23-C22	114.9(2)
C22-C24-C25	111.0(2)	N13-Ga1-N23	166.55(8)	O22-Ga1-N13	100.54(8)
C22-C24-H24A	109.4	N13-Ga1-O21	106.08(8)	O22-Ga1-N23	77.81(8)
C22-C24-H24B	109.4	N13-N12-C11	106.8(2)	O22-Ga1-O12	97.21(7)
C22-N23-Ga1	117.64(18)	N21-C21-N22	116.7(2)	O22-Ga1-O21	153.20(7)
C22-N23-N22	126.7(2)	N22-N23-Ga1	114.25(16)	023-C23-C22	120.0(2)
C23-O22-Ga1	117.33(16)	N23-C22-C23	110.7(2)	023-C23-O22	125.1(2)
C24-C22-C23	119.8(2)	N23-C22-C24	129.3(2)		

	x	у	Z	U(eq)
C11	4000(3)	840(1)	538(3)	13(1)
C12	4222(3)	851(1)	4299(3)	12(1)
C13	3104(3)	482(1)	5147(3)	12(1)
C14	5464(3)	1293(2)	5028(3)	15(1)
C15	5154(4)	2155(2)	5063(5)	49(1)
C21	-748(3)	872(2)	2238(3)	12(1)
C22	210(3)	-1097(2)	2074(3)	13(1)
C23	1734(3)	-1371(2)	1918(3)	15(1)
C24	-925(3)	-1677(2)	2331(3)	15(1)
C25	-763(3)	-1959(2)	3920(3)	21(1)
N21	-1848(3)	1344(2)	2322(3)	16(1)
N22	-1037(2)	90(1)	2202(2)	13(1)
N23	140(2)	-353(1)	2045(2)	11(1)
N11	4658(3)	969(1)	-643(3)	15(1)
N12	4748(2)	995(1)	1868(2)	13(1)
N13	3909(2)	763(1)	2907(2)	12(1)
011	2686(2)	594(1)	379(2)	14(1)
012	2017(2)	168(1)	4403(2)	14(1)
013	3287(2)	483(1)	6509(2)	14(1)
021	529(2)	1111(1)	2161(2)	15(1)
022	2677(2)	-817(1)	1888(2)	14(1)
023	1990(2)	-2064(1)	1829(2)	21(1)
Ga1	2032(1)	253(1)	2234(1)	11(1)

Tabla A1.2.4- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de [Ga(HCBSC)(CBSC)].

Tabla A1.2.5- Factores anisotrópicos de temperatura (Å²) de [Ga(HCBSC)(CBSC)].

	U11	U22	U33	U23	U13	U12
C11	10(1)	10(1)	18(1)	1(1)	1(1)	2(1)
C12	8(1)	13(1)	16(1)	0(1)	0(1)	2(1)
C13	8(1)	11(1)	18(2)	-1(1)	1(1)	4(1)
C14	10(1)	22(1)	14(1)	-1(1)	0(1)	-4(1)
C15	33(2)	23(2)	87(3)	-11(2)	-24(2)	-5(2)
C21	9(1)	17(1)	11(1)	0(1)	-1(1)	-2(1)
C22	8(1)	18(2)	12(1)	-1(1)	0(1)	0(1)

C23	10(1)	19(2)	15(1)	0(1)	0(1)	0(1)
C24	9(1)	14(1)	23(1)	-2(1)	0(1)	-1(1)
C25	17(2)	22(2)	27(2)	5(1)	7(1)	2(1)
N21	7(1)	13(1)	29(1)	-1(1)	2(1)	0(1)
N22	5(1)	15(1)	18(1)	1(1)	1(1)	1(1)
N23	7(1)	13(1)	13(1)	-1(1)	-2(1)	0(1)
N11	7(1)	23(1)	15(1)	-1(1)	1(1)	-4(1)
N12	8(1)	16(1)	14(1)	-1(1)	2(1)	-2(1)
N13	8(1)	14(1)	14(1)	-1(1)	3(1)	1(1)
011	7(1)	20(1)	16(1)	1(1)	-1(1)	-3(1)
012	7(1)	18(1)	15(1)	-1(1)	1(1)	-3(1)
013	8(1)	19(1)	14(1)	-1(1)	1(1)	-1(1)
021	7(1)	15(1)	22(1)	1(1)	0(1)	-2(1)
022	7(1)	15(1)	19(1)	-1(1)	1(1)	0(1)
023	14(1)	15(1)	36(1)	0(1)	5(1)	2(1)
Ga1	5(1)	14(1)	14(1)	0(1)	-1(1)	-1(1)

Tabla A1.2.6- Enlaces de hidrógeno (Å, °) de [Ga(HCBSC)(CBSC)].

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O22 ⁱ	0.77(4)	2.27(3)	2.855(3)	133(3)
N11-H11B…O13 ⁱⁱ	0.90(3)	2.01(3)	2.913(3)	176(3)
N21-H21A…N12 ⁱⁱⁱ	0.77(4)	2.47(4)	3.224(3)	165(3)
N21-H21B…O23 ^{iv}	0.84(3)	2.05(3)	2.844(3)	158(3)
N22-H22…O13 ^v	0.86(4)	1.83(4)	2.698(3)	176(3)
·-x+1, -y, -z; "x, y, z-1	; ^{III} x-1, y, z	; ^{iv} -x, y+1/	2, -z+1/2; ^v	-x, -y, -z+1.

A1.2.2- Estructura cristalina del complejo [Ga(H₂INSC)₂]NO₃·2EtOH·0.38H₂O.

Figura A1.28- Unidad asimétrica de la estructura cristalina del complejo [Ga(H₂INSC)₂]NO₃·2EtOH·0.38H₂O.

Fórmula	$C_{26}H_{25}GaN_9O_{11.38}$	α (°)	89.091(5)	Intervalo θ (°)	1.66 a 26.38
Masa Molecular	715.35	β (°)	73.000(5)	Intervalos en h, k, l	-10,11; -15,15; 0,18
т (к)	100.0(2)	γ (°)	84.328(5)	No. reflex. medidas	28703
λ (Å)	0.71069	V (ų)	1522.7(12)	No. reflex. únicas	6199
Sistema Cristalino	Triclínico	z	2	R _{int}	0.0534
Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.564	R	0.0422
a (Å)	8.998(5)	μ(mm ⁻¹)	0.997	R _w	0.0941
b (Å)	12.302(5)	F(000)	732	G.O.F.	1.045
c (Å)	14.457(5)	Dimensiones (mm)	0.14 x 0.07 x 0.07		

Tabla A1.2.7- Datos cristalográficos y de refinado del complejo [Ga(H₂INSC)₂]NO₃·2EtOH·0.38H₂O.

Tabla A1.2.8- Distancias interatómicas (Å) de [Ga(H₂INSC)₂]NO₃·2EtOH·0.38H₂O.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1A-C1B	0.939(9)	C16-C17	1.370(4)	C23-O22	1.300(3)	N1-01A	1.270(3)
C1A-C12S	1.381(10)	С16-Н17	0.9300	C24-C25	1.386(4)	N11-H11A	0.8600
C1A-01S	1.540(9)	C17-C18	1.409(4)	C24-C211	1.461(4)	N11-H11B	0.8600
C1B-O1S	1.364(6)	С17-Н18	0.9300	C25-N24	1.346(4)	N12-N13	1.369(3)
C1B-C12S	1.555(7)	C18-C19	1.372(4)	C25-H25	0.9300	N12-H12	0.8600
C11-O11	1.262(3)	C18-H19	0.9300	C210-N24	1.376(4)	N13-Ga1	2.007(2)
C11-N11	1.316(3)	C21-O21	1.262(3)	C210-C26	1.392(4)	N14-H14	0.8600
C11-N12	1.379(3)	C21-N21	1.305(4)	C210-C211	1.413(4)	N21-H21C	0.8600
C12-N13	1.293(3)	C21-N22	1.383(4)	C26-C27	1.367(5)	N21-H21D	0.8600
C12-C14	1.440(4)	C21S-O2S	1.435(4)	C26-H27	0.9300	N22-N23	1.370(3)
C12-C13	1.538(4)	C21S-C22S	1.505(5)	C27-C28	1.401(5)	N22-H22	0.8600
C13-O13	1.224(3)	C21S-H21A	0.9700	С27-Н28	0.9300	N23-Ga1	2.007(2)
C13-O12	1.290(3)	C21S-H21B	0.9700	C28-C29	1.375(4)	N24-H24	0.8600
C14-C15	1.381(4)	C22-N23	1.295(4)	С28-Н29	0.9300	Ga1-O22	1.945(2)
C14-C111	1.456(4)	C22-C24	1.428(4)	C19-C111	1.398(4)	Ga1-012	1.957(2)
C15-N14	1.345(4)	C22-C23	1.539(4)	C19-H110	0.9300	Ga1-O21	1.988(2)
C15-H15	0.9300	C22S-H22A	0.9600	C29-C211	1.403(4)	Ga1-011	1.993(2)
C110-N14	1.380(4)	C22S-H22B	0.9600	C29-H210	0.9300	01S-H1S	0.71(4)
C110-C16	1.394(4)	C22S-H22C	0.9600	N1-01B	1.249(3)	O2S-H2S	0.78(4)
C110-C111	1.411(4)	C23-O23	1.224(4)	N1-01C	1.259(3)		

Tabla A1.2.9- Ángulos de enlace (°) de [Ga(H₂INSC)₂]NO₃·2EtOH·0.38H₂O.

	Ángulo		Ángulo		Ángulo
C11-N11-H11A	120.0	C210-C26-H27	121.5	N14-C110-C111	107.8(2)

C11-N11-H11B	120.0	C210-N24-H24	125.1	N14-C110-C16	129.7(3)
C11-N12-H12	124.3	C211-C29-H210	120.6	N14-C15-C14	110.2(3)
C11-O11-Ga1	115.31(17)	C21S-C22S-H22A	109.5	N14-C15-H15	124.9
C110-C111-C14	106.0(2)	C21S-C22S-H22B	109.5	N21-C21-N22	118.0(2)
С110-С16-Н17	121.4	C21S-C22S-H22C	109.5	N22-N23-Ga1	114.50(17)
C110-N14-H14	125.1	C21S-O2S-H2S	110(3)	N23-C22-C23	109.3(2)
С111-С19-Н110	120.5	C22-C24-C211	130.0(3)	N23-C22-C24	129.4(3)
C12-C14-C111	129.1(2)	C22-N23-Ga1	118.6(2)	N23-N22-C21	112.2(2)
C12-N13-Ga1	118.45(18)	C22-N23-N22	126.6(2)	N23-N22-H22	123.9
C12-N13-N12	125.9(2)	C22S-C21S-H21A	109.3	N24-C210-C211	108.3(3)
C12S-C1A-O1S	111.0(6)	C22S-C21S-H21B	109.3	N24-C210-C26	128.9(3)
C13-O12-Ga1	116.62(17)	C23-O22-Ga1	116.81(18)	N24-C25-C24	110.2(3)
C14-C12-C13	121.7(2)	C24-C22-C23	121.3(3)	N24-C25-H25	124.9
C14-C15-H15	124.9	С24-С25-Н25	124.9	O11-C11-N11	122.2(2)
C15-C14-C111	106.1(2)	C25-C24-C211	106.1(2)	O11-C11-N12	120.1(2)
C15-C14-C12	124.7(3)	C25-C24-C22	123.8(3)	O11-Ga1-N13	78.00(8)
C15-N14-C110	109.8(2)	C25-N24-C210	109.8(2)	O11-Ga1-N23	98.10(9)
C15-N14-H14	125.1	C25-N24-H24	125.1	012-C13-C12	115.6(2)
C16-C110-C111	122.5(3)	C26-C210-C211	122.8(3)	O12-Ga1-N13	79.41(8)
C16-C17-C18	121.5(3)	C26-C27-C28	121.6(3)	O12-Ga1-N23	104.29(8)
С16-С17-Н18	119.3	С26-С27-Н28	119.2	012-Ga1-011	157.14(8)
C17-C16-C110	117.2(3)	C27-C26-C210	117.1(3)	012-Ga1-O21	90.60(8)
C17-C16-H17	121.4	С27-С26-Н27	121.5	O13-C13-C12	119.9(2)
C17-C18-H19	119.5	С27-С28-Н29	119.3	013-C13-O12	124.5(3)
C18-C17-H18	119.3	С28-С27-Н28	119.2	01B-N1-01A	120.2(2)
C18-C19-C111	119.0(3)	C28-C29-C211	118.8(3)	01B-N1-01C	121.0(2)
C18-C19-H110	120.5	C28-C29-H210	120.6	01C-N1-01A	118.8(2)
C19-C111-C110	118.7(3)	C29-C211-C210	118.2(3)	O1S-C1B-C12S	111.0(4)
C19-C111-C14	135.1(2)	C29-C211-C24	136.1(3)	O21-C21-N21	122.9(3)
C19-C18-C17	121.1(3)	C29-C28-C27	121.3(3)	O21-C21-N22	119.1(3)
С19-С18-Н19	119.5	C29-C28-H29	119.3	O21-Ga1-N13	98.97(9)
C1A-C12S-C1B	36.7(4)	H11A-N11-H11B	120.0	O21-Ga1-N23	78.26(9)
C1A-C1B-C12S	61.5(7)	H21A-C21S-H21B	108.0	O21-Ga1-O11	89.45(8)
C1A-C1B-O1S	81.7(7)	H21C-N21-H21D	120.0	O22-C23-C22	115.5(2)
C1A-O1S-H1S	104(4)	H22A-C22S-H22B	109.5	O22-Ga1-N13	103.26(9)
C1B-C1A-C12S	81.8(8)	H22A-C22S-H22C	109.5	O22-Ga1-N23	79.46(9)

C1B-C1A-O1S	61.2(6)	H22B-C22S-H22C	109.5	O22-Ga1-O11	93.73(8)
C1B-O1S-C1A	37.1(4)	N11-C11-N12	117.7(2)	O22-Ga1-O12	94.83(8)
C1B-O1S-H1S	101(4)	N12-N13-Ga1	115.18(16)	O22-Ga1-O21	157.72(8)
C21-N21-H21C	120.0	N13-C12-C13	109.7(2)	023-C23-C22	120.6(3)
C21-N21-H21D	120.0	N13-C12-C14	128.6(2)	023-C23-O22	123.9(3)
C21-N22-H22	123.9	N13-Ga1-N23	175.31(9)	025-C215-C225	111.7(3)
C21-O21-Ga1	115.76(18)	N13-N12-C11	111.4(2)	O2S-C21S-H21A	109.3
C210-C211-C24	105.6(3)	N13-N12-H12	124.3	O2S-C21S-H21B	109.3

Tabla A1.2.10- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de [Ga(H₂INSC)₂]NO₃·2EtOH·0.38H₂O.

	x	у	Z	U(eq)
C1A	185(10)	4909(8)	3601(7)	32(2)
С1В	138(6)	4590(5)	3027(5)	32(1)
C11	4827(3)	1284(2)	5476(2)	14(1)
C12	824(3)	1370(2)	5706(2)	14(1)
C12S	-146(4)	5855(3)	3142(3)	42(1)
C13	88(3)	2014(2)	5002(2)	18(1)
C14	-112(3)	842(2)	6539(2)	15(1)
C15	-1600(3)	1237(3)	7077(2)	20(1)
C110	-1062(3)	-320(2)	7778(2)	17(1)
C16	-1139(3)	-1222(3)	8380(2)	22(1)
C17	124(3)	-1993(3)	8165(2)	24(1)
C18	1445(3)	-1880(3)	7369(2)	23(1)
C21	3548(3)	4475(2)	4277(2)	16(1)
C21S	1797(4)	698(3)	8730(2)	31(1)
C22	4801(3)	2688(2)	2251(2)	18(1)
C22S	367(4)	1484(3)	9136(2)	37(1)
C23	4506(3)	1474(2)	2337(2)	19(1)
C24	5506(3)	3155(2)	1337(2)	20(1)
C25	5303(3)	2825(3)	473(2)	25(1)
C210	6722(3)	4240(3)	100(2)	24(1)
C26	7576(4)	5063(3)	-395(2)	31(1)
C27	8206(4)	5705(3)	125(2)	36(1)
C28	8028(4)	5532(3)	1110(2)	29(1)
C19	1518(3)	-988(2)	6782(2)	18(1)

C111	261(3)	-175(2)	6989(2)	15(1)
C29	7194(3)	4714(3)	1598(2)	21(1)
C211	6465(3)	4070(2)	1102(2)	19(1)
N1	5150(3)	3118(2)	7620(2)	18(1)
N11	5927(3)	948(2)	5876(2)	17(1)
N12	3342(2)	999(2)	5914(2)	14(1)
N13	2322(3)	1396(2)	5420(2)	14(1)
N14	-2152(3)	562(2)	7812(2)	22(1)
N21	3421(3)	5490(2)	4562(2)	22(1)
N22	4316(3)	4224(2)	3316(2)	18(1)
N23	4313(3)	3144(2)	3102(2)	17(1)
N24	6011(3)	3469(2)	-251(2)	27(1)
Ga1	3259(1)	2249(1)	4233(1)	16(1)
01A	6045(2)	3814(2)	7722(1)	21(1)
01B	4582(2)	3184(2)	6927(1)	24(1)
01C	4857(2)	2364(2)	8226(1)	23(1)
015	-1039(3)	4100(2)	3658(2)	33(1)
01W	4647(9)	-468(6)	360(5)	58(2)
025	2763(3)	1065(2)	7827(2)	38(1)
011	5103(2)	1825(2)	4706(1)	17(1)
012	1057(2)	2422(2)	4269(1)	20(1)
013	-1332(2)	2113(2)	5160(1)	21(1)
021	3037(2)	3716(2)	4843(1)	19(1)
022	3871(2)	1143(2)	3208(1)	20(1)
023	4865(2)	884(2)	1616(2)	28(1)

Tabla A1.2.11- Factores anisotrópicos de temperatura (Å ²) de	$[Ga(H_2INSC)_2]NO_3 \cdot 2EtOH \cdot 0.38H_2O.$

	U11	U22	U33	U23	U13	U12
C1A	23(4)	43(6)	32(5)	-4(5)	-8(4)	-13(4)
C1B	24(3)	24(3)	42(4)	6(3)	1(3)	-7(2)
C11	16(1)	9(1)	17(1)	-3(1)	-4(1)	-2(1)
C12	14(1)	14(2)	16(1)	1(1)	-5(1)	-4(1)
C12S	43(2)	31(2)	46(2)	-5(2)	2(2)	-11(2)
C13	17(2)	19(2)	18(2)	5(1)	-6(1)	-6(1)
C14	14(1)	16(2)	15(1)	3(1)	-5(1)	-4(1)
C15	17(1)	23(2)	20(2)	6(1)	-5(1)	-4(1)

C110	14(1)	23(2)	16(1)	2(1)	-5(1)	-5(1)
C16	19(2)	30(2)	16(2)	9(1)	-2(1)	-11(1)
C17	27(2)	21(2)	28(2)	13(1)	-10(1)	-11(1)
C18	23(2)	19(2)	29(2)	3(1)	-8(1)	-3(1)
C21	15(1)	19(2)	17(1)	7(1)	-7(1)	-4(1)
C21S	36(2)	41(2)	19(2)	8(1)	-9(1)	-22(2)
C22	14(1)	23(2)	19(2)	4(1)	-7(1)	-3(1)
C22S	50(2)	35(2)	28(2)	-1(2)	-12(2)	-15(2)
C23	15(1)	23(2)	19(2)	3(1)	-3(1)	-3(1)
C24	17(1)	24(2)	17(2)	5(1)	-4(1)	-4(1)
C25	24(2)	32(2)	20(2)	5(1)	-6(1)	-5(1)
C210	18(2)	32(2)	18(2)	7(1)	-1(1)	2(1)
C26	32(2)	32(2)	20(2)	10(1)	4(1)	3(2)
C27	31(2)	29(2)	36(2)	11(2)	10(2)	-8(2)
C28	24(2)	26(2)	32(2)	5(1)	1(1)	-7(1)
C19	18(1)	17(2)	18(2)	-1(1)	-3(1)	-8(1)
C111	18(1)	17(2)	13(1)	1(1)	-5(1)	-9(1)
C29	16(1)	26(2)	19(2)	5(1)	-1(1)	-2(1)
C211	15(1)	21(2)	17(1)	7(1)	0(1)	1(1)
N1	17(1)	17(1)	18(1)	2(1)	0(1)	-2(1)
N11	13(1)	17(1)	19(1)	5(1)	-2(1)	-3(1)
N12	12(1)	15(1)	16(1)	8(1)	-4(1)	-5(1)
N13	16(1)	12(1)	17(1)	3(1)	-6(1)	-3(1)
N14	13(1)	29(2)	20(1)	6(1)	0(1)	-3(1)
N21	30(1)	19(2)	16(1)	6(1)	-4(1)	-7(1)
N22	19(1)	18(1)	16(1)	7(1)	-2(1)	-6(1)
N23	16(1)	18(1)	18(1)	5(1)	-6(1)	-4(1)
N24	25(1)	42(2)	13(1)	6(1)	-6(1)	0(1)
Ga1	14(1)	17(1)	16(1)	6(1)	-3(1)	-5(1)
01A	22(1)	20(1)	23(1)	3(1)	-6(1)	-9(1)
O1B	29(1)	27(1)	18(1)	2(1)	-11(1)	-7(1)
01C	26(1)	22(1)	22(1)	9(1)	-6(1)	-9(1)
015	37(1)	25(2)	32(1)	2(1)	-8(1)	5(1)
01W	67(5)	63(5)	37(4)	-13(4)	3(4)	-29(4)
025	44(2)	58(2)	18(1)	7(1)	-7(1)	-38(1)
011	14(1)	20(1)	16(1)	6(1)	-2(1)	-5(1)

012	16(1)	24(1)	20(1)	12(1)	-7(1)	-7(1)
013	16(1)	26(1)	24(1)	9(1)	-9(1)	-7(1)
021	18(1)	20(1)	17(1)	5(1)	-2(1)	-5(1)
022	22(1)	19(1)	19(1)	5(1)	-4(1)	-5(1)
023	31(1)	27(1)	22(1)	-2(1)	-2(1)	-3(1)

Tabla A1.2.12- Enlaces de hidrógeno (Å, °) de [Ga(H₂INSC)₂]NO₃·2EtOH·0.38H₂O.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
01S-H1S…012	0.71(4)	2.30(4)	2.958(3)	154(5)
O2S-H2S…O1C	0.78(4)	2.00(4)	2.774(3)	177(4)
N11-H11A…O13 ⁱ	0.86	2.09	2.892(3)	155.3
N11-H11B…O22 ⁱⁱ	0.86	2.21	2.889(3)	135.5
N12-H12…O2S	0.86	2.03	2.661(3)	129.7
N14-H14…O23 ⁱⁱⁱ	0.86	2.60	3.072(3)	115.9
N21-H21C…O1S ^{iv}	0.86	2.05	2.841(4)	152.1
N21-H21D…O1B ^v	0.86	2.13	2.955(3)	159.6
N22-H22…O1A ^v	0.86	2.18	2.863(3)	136.1
N24-H24…O1A ^{vi}	0.86	2.12	2.947(3)	161.3
N24-H24…O1C ^{vi}	0.86	2.39	3.080(3)	138.2

ⁱ x+1, y, z; ⁱⁱ -x+1, -y, -z+1; ⁱⁱⁱ -x, -y, -z+1; ^{iv} -x, -y+1, -z+1; ^v -x+1, -y+1, -z+1; ^{vi} x, y, z-1.

A1.2.3- Estructura cristalina del complejo [Ga(HαOFSC)(αOFSC)].

Figura A1.29- Unidad asimétrica de la estructura cristalina del complejo [Ga(HaOFSC)(aOFSC)].

Tabla A1 2 13- Da	tos cristalográficos v	de refinado del (compleio [Ga(H	
1 UDIU A1.2.13- Da	103 013108108101005 V	ue rennauo uerv		1401 3011401 3011

Fórmula	$C_{14}H_{11}GaN_6O_8$	α (°)	90.042(5)	Intervalo θ (°)	2.68 a 27.10
Masa Molecular	461.01	β (°)	92.126(5)	Intervalos en h, k, l	-10,10; -10,10; 0,16
т (к)	100.0(1)	γ (°)	116.062(5)	No. reflex. medidas	4031
λ (Å)	0.71069	V (ų)	815.5(8)	No. reflex. únicas	1199

Sistema Cristalino	Triclínico	z	2	R _{int}	0.0570
Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.877	R	0.0392
a (Å)	8.367(5)	μ(mm ⁻¹)	1.752	R _w	0.0843
b (Å)	8.465(5)	F(000)	464	G.O.F.	1.028
c (Å)	12.828(5)	Dimensiones (mm)	0.112 x 0.104 x 0.085		

Tabla A1.2.14- Distancias interatómicas (Å) de [Ga(HαOFSC)(αOFSC)].

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C12-C13	1.521(4)	C26-C27	1.334(5)	N12-N13	1.363(3)	O13-C13	1.228(3)
C12-C14	1.441(4)	Ga1-N13	2.001(3)	N13-C12	1.299(4)	O14-C14	1.371(4)
C14-C15	1.359(4)	Ga1-N23	2.010(3)	N21-C21	1.315(4)	O14-C17	1.365(4)
C15-C16	1.402(5)	Ga1-O11	1.947(2)	N22-C21	1.371(4)	O21-C21	1.260(4)
C16-C17	1.330(5)	Ga1-O12	1.954(2)	N22-N23	1.361(3)	O22-C23	1.287(4)
C22-C23	1.546(4)	Ga1-021	2.049(2)	N23-C22	1.283(4)	O23-C23	1.216(4)
C22-C24	1.420(4)	Ga1-O22	1.934(2)	011-C11	1.280(4)	O24-C24	1.376(4)
C24-C25	1.362(4)	N11-C11	1.325(4)	O12-C13	1.278(4)	O24-C27	1.368(4)
C25-C26	1.409(5)	N12-C11	1.371(4)				

Tabla A1.2.15- Ángulos de enlace (°) de [Ga(HαOFSC)(αOFSC)].

	Ángulo		Ángulo		Ángulo
C11-O11-Ga1	113.06(18)	C27-C26-C25	107.1(3)	011-Ga1-021	91.17(9)
C12-N13-Ga1	115.6(2)	C27-O24-C24	106.0(3)	012-C13-C12	115.7(3)
C12-N13-N12	127.2(3)	N11-C11-N12	116.8(3)	O12-Ga1-N13	80.64(10)
C13-O12-Ga1	115.89(19)	N12-N13-Ga1	117.03(18)	O12-Ga1-N23	94.04(10)
C14-C12-C13	119.7(3)	N13-C12-C13	111.8(3)	012-Ga1-021	89.19(9)
C14-C15-C16	107.5(3)	N13-C12-C14	128.5(3)	013-C13-C12	120.5(3)
C15-C14-C12	134.5(3)	N13-Ga1-N23	174.67(10)	013-C13-O12	123.8(3)
C15-C14-O14	108.6(3)	N13-Ga1-O21	102.68(9)	O14-C14-C12	116.8(3)
C16-C17-O14	110.8(3)	N13-N12-C11	107.1(2)	O21-C21-N21	124.3(3)
C17-C16-C15	106.6(3)	N21-C21-N22	116.4(3)	O21-C21-N22	119.3(3)
C17-O14-C14	106.4(2)	N22-N23-Ga1	115.44(19)	022-C23-C22	114.0(3)
C21-O21-Ga1	114.18(19)	N23-C22-C23	110.6(3)	O22-Ga1-N13	101.11(9)
C22-N23-Ga1	117.7(2)	N23-C22-C24	128.0(3)	O22-Ga1-N23	79.51(10)
C22-N23-N22	126.8(3)	N23-Ga1-O21	76.95(10)	O22-Ga1-O11	91.91(9)
C23-O22-Ga1	118.10(19)	N23-N22-C21	112.8(2)	O22-Ga1-O12	96.27(9)
C24-C22-C23	121.3(3)	011-C11-N11	119.1(3)	O22-Ga1-O21	156.15(9)

C24-C25-C26	106.6(3)	011-C11-N12	124.1(3)	023-C23-C22	120.1(3)
C25-C24-C22	133.2(3)	O11-Ga1-N13	78.64(10)	023-C23-O22	125.8(3)
C25-C24-O24	109.5(3)	O11-Ga1-N23	106.65(10)	O24-C24-C22	117.3(3)
C26-C27-O24	110.8(3)	011-Ga1-012	158.84(9)		

Tabla A1.2.16- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de [Ga(H α OFSC)(α OFSC)].

	x	У	Z	U(eq)
C11	546(4)	-978(4)	7600(2)	12(1)
C12	5021(4)	1231(4)	8348(2)	12(1)
C13	6065(4)	3213(4)	8250(2)	13(1)
C14	5903(4)	220(4)	8756(2)	13(1)
C15	7559(4)	627(4)	9169(3)	16(1)
C16	7607(4)	-955(4)	9445(3)	19(1)
C17	6006(5)	-2237(5)	9190(3)	26(1)
C21	1809(4)	4833(4)	8469(2)	12(1)
C22	2559(4)	4762(4)	5798(2)	13(1)
C23	3073(4)	3401(4)	5291(2)	14(1)
C24	2371(4)	6085(4)	5199(2)	16(1)
C25	2383(4)	6393(4)	4157(3)	18(1)
C26	2076(5)	7893(4)	4037(3)	22(1)
C27	1921(6)	8428(5)	4990(3)	30(1)
Ga1	2739(1)	2493(1)	7383(1)	13(1)
N11	-901(4)	-2500(4)	7533(2)	16(1)
N12	2060(3)	-1004(3)	8031(2)	12(1)
N13	3369(3)	678(3)	8026(2)	11(1)
N21	1575(3)	5790(4)	9201(2)	15(1)
N22	1903(3)	5436(3)	7471(2)	14(1)
N23	2335(3)	4483(3)	6777(2)	13(1)
011	466(3)	405(3)	7255(2)	17(1)
012	5204(3)	3998(3)	7840(2)	16(1)
013	7633(3)	3966(3)	8557(2)	16(1)
014	4920(3)	-1571(3)	8759(2)	25(1)
021	1900(3)	3406(3)	8628(2)	15(1)
022	3216(3)	2303(3)	5936(2)	16(1)
023	3304(3)	3435(3)	4359(2)	19(1)

024	2079/4)	7220/2)	E721(2)	27(1)
024	2078(4)	/339(3)	5751(2)	27(1)

	U11	U22	U33	U23	U13	U12
C11	14(1)	11(1)	11(2)	-1(1)	0(1)	5(1)
C12	14(1)	11(1)	10(1)	1(1)	0(1)	5(1)
C13	15(2)	13(2)	9(1)	2(1)	1(1)	4(1)
C14	14(1)	12(1)	11(2)	1(1)	1(1)	4(1)
C15	12(1)	17(2)	19(2)	-1(1)	-1(1)	5(1)
C16	19(2)	23(2)	22(2)	2(1)	-1(1)	14(1)
C17	23(2)	18(2)	40(2)	5(2)	-5(2)	13(2)
C21	10(1)	13(2)	14(2)	1(1)	0(1)	5(1)
C22	12(1)	13(2)	12(2)	1(1)	-2(1)	4(1)
C23	14(1)	13(2)	15(2)	-3(1)	-4(1)	5(1)
C24	20(2)	16(2)	15(2)	-1(1)	1(1)	9(1)
C25	23(2)	20(2)	13(2)	-1(1)	-2(1)	12(1)
C26	32(2)	22(2)	17(2)	6(1)	-2(2)	16(2)
C27	58(3)	23(2)	20(2)	6(2)	0(2)	27(2)
Ga1	14(1)	10(1)	16(1)	2(1)	-1(1)	5(1)
N11	13(1)	11(1)	23(2)	1(1)	-4(1)	4(1)
N12	10(1)	10(1)	14(1)	1(1)	-2(1)	3(1)
N13	13(1)	7(1)	10(1)	-1(1)	-1(1)	3(1)
N21	18(1)	16(1)	10(1)	2(1)	0(1)	7(1)
N22	20(1)	11(1)	12(1)	2(1)	0(1)	9(1)
N23	15(1)	10(1)	13(1)	-1(1)	-2(1)	6(1)
011	13(1)	10(1)	25(1)	3(1)	-6(1)	3(1)
012	16(1)	10(1)	19(1)	1(1)	-4(1)	3(1)
013	14(1)	13(1)	16(1)	3(1)	-4(1)	1(1)
014	18(1)	10(1)	47(2)	4(1)	-10(1)	6(1)
021	18(1)	14(1)	13(1)	3(1)	1(1)	9(1)
022	22(1)	13(1)	16(1)	0(1)	-2(1)	10(1)
023	26(1)	21(1)	14(1)	-2(1)	-1(1)	14(1)
024	58(2)	22(1)	13(1)	1(1)	0(1)	27(1)

Tabla A1.2.17- Factores anisotrópicos de temperatura (Å²) de [Ga(H α OFSC)(α OFSC)].

Tabla A1.2.18- Enlaces de hidrógeno (Å, °) de [Ga(H α OFSC)(α OFSC)].

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
---------	--------	--------	--------	--------

N11-H11A…O13 ⁱ	0.78(4)	2.29(4)	3.013(4)	154(4)	
N11-H11B…O23 ⁱⁱ	0.79(5)	2.28(5)	2.965(4)	145(4)	
N21-H21A…O13 ⁱⁱⁱ	0.80(4)	2.15(4)	2.914(4)	160(3)	
N21-H21B…O14 ^{iv}	0.92(5)	2.42(4)	2.788(4)	104(3)	
N21-H21B…N12 ^{iv}	0.92(5)	2.13(5)	2.978(4)	152(4)	
N22-H22…O24	0.799(18)	2.22(3)	2.724(3)	121(3)	
N22-H22…N12 ^{iv}	0.799(18)	2.34(3)	3.043(4)	147(3)	
'x-1, y-1, z; "->	к, -y, -z+1; ^Ш -	x+1, -y+1,	-z+2; ^{iv} x, y+	1, z.	

A1.2.4- Estructura cristalina del complejo [Ga(H α OFSC)(bipy)H₂O](NO₃)₂·1.6H₂O.

Figura A1.30- Unidad asimétrica de la estructura cristalina del complejo [Ga(HαOFSC)(bipy)H₂O](NO₃)₂·1.6H₂O.

Fórmula	$C_{17}H_{16}GaN_7O_{12.60}$	α (°)	90.000	Intervalo θ (°)	1.69 a 25.35
Masa Molecular	589.69	β (°)	98.525(5)	Intervalos en h, k, l	-10,10; 0,13; 0,29
т (к)	100.0(2)	γ (°)	90.000	No. reflex. medidas	17313
λ (Å)	0.71069	V (Å ³)	2272.5(17)	No. reflex. únicas	4158
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.0604
Grupo Espacial	P21/c	D _{calc} . (mg/m ³)	1.731	R	0.0479
a (Å)	8.584(5)	μ(mm⁻¹)	1.295	R _w	0.1105
b (Å)	10.983(5)	F(000)	1200	G.O.F.	1.076
c (Å)	24.374(5)	Dimensiones (mm)	0.22 x 0.15 x 0.06		

Tabla A1.2.19- Datos cristalográficos y de refinado del complejo [Ga(HαOFSC)(bipy)H₂O](NO₃)₂·1.6H₂O.

Tabla A1.2.20- Distancias interatómicas (Å) de $[Ga(H\alpha OFSC)(bipy)H_2O](NO_3)_2 \cdot 1.6H_2O$.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-01	1.274(4)	С7-Н7	0.9300	C14-C15	1.379(6)	N2-H2	0.8600

C1-N1	1.302(5)	C8-N4	1.337(5)	C14-H14	0.9300	N2A-02A	1.249(5)
C1-N2	1.373(5)	C8-C9	1.362(6)	C15-C16	1.374(6)	N2A-02C	1.255(5)
C2-N3	1.288(5)	C8-H8	0.9300	C15-H15	0.9300	N2A-O2B	1.257(5)
C2-C4	1.430(6)	C9-C10	1.378(6)	C16-C17	1.374(6)	N3-Ga	2.033(3)
C2-C3	1.525(5)	С9-Н9	0.9300	C16-H16	0.9300	N4-Ga	2.056(3)
C3-O3	1.224(5)	C10-C11	1.382(6)	C17-N5	1.346(5)	N5-Ga	2.032(3)
C3-O2	1.295(5)	C10-H10	0.9300	C17-H17	0.9300	O1-Ga	1.990(3)
C4-C5	1.352(6)	C11-C12	1.374(5)	N1-H1A	0.8600	O2-Ga	1.931(3)
C4-O4	1.381(5)	C11-H11	0.9300	N1-H1B	0.8600	02W-03W	0.90(2)
C5-C6	1.395(6)	C12-N4	1.347(5)	N1A-01C	1.240(4)	O3W-O4W	1.40(4)
C5-H5	0.9300	C12-C13	1.474(6)	N1A-01A	1.247(4)	O5-Ga	1.949(3)
C6-C7	1.328(6)	C13-N5	1.357(5)	N1A-O1B	1.262(4)	O5-H5B	0.72(5)
С6-Н6	0.9300	C13-C14	1.379(5)	N2-N3	1.350(4)	O5-H5A	0.81(6)
C7-O4	1.377(5)						

Tabla A1.2.21- Ángulos de enlace (°) de $[Ga(H\alpha OFSC)(bipy)H_2O](NO_3)_2 \cdot 1.6H_2O.$

	Ángulo		Ángulo		Ángulo
C1-N1-H1A	120.0	C5-C4-O4	109.5(4)	N5-C13-C14	121.1(4)
C1-N1-H1B	120.0	С5-С6-Н6	126.3	N5-C17-C16	121.9(4)
C1-N2-H2	123.5	С6-С5-Н5	126.4	N5-C17-H17	119.0
C1-O1-Ga	115.7(2)	С6-С7-Н7	124.7	N5-Ga-N3	176.11(13)
С10-С11-Н11	120.4	C6-C7-O4	110.7(4)	N5-Ga-N4	78.85(13)
С10-С9-Н9	120.5	C7-C6-C5	107.4(4)	01-C1-N1	123.0(4)
С11-С10-Н10	120.5	С7-С6-Н6	126.3	01-C1-N2	119.2(3)
C11-C12-C13	124.1(4)	C7-O4-C4	105.2(3)	O1-Ga-N3	77.71(12)
C12-C11-C10	119.2(4)	C8-C9-C10	119.0(4)	O1-Ga-N4	91.60(12)
С12-С11-Н11	120.4	С8-С9-Н9	120.5	O1-Ga-N5	100.81(12)
C12-N4-Ga	115.6(3)	C8-N4-C12	119.1(3)	01A-N1A-01B	119.4(3)
C13-C14-C15	119.8(4)	C8-N4-Ga	124.9(3)	01C-N1A-01A	121.4(3)
С13-С14-Н14	120.1	C9-C10-C11	119.1(4)	01C-N1A-01B	119.2(3)
C13-N5-Ga	116.3(3)	С9-С10-Н10	120.5	02-C3-C2	114.9(4)
C14-C13-C12	124.6(4)	С9-С8-Н8	118.8	O2-Ga-N3	79.05(12)
С14-С15-Н15	120.6	Ga-O5-H5A	122(4)	O2-Ga-N4	88.89(12)
С15-С14-Н14	120.1	Ga-O5-H5B	110(4)	O2-Ga-N5	102.21(13)
С15-С16-Н16	120.2	H1A-N1-H1B	120.0	02-Ga-01	156.62(11)
C16-C15-C14	118.8(4)	H5B-O5-H5A	115(6)	02-Ga-05	91.14(16)

C16-C15-H15	120.6	N1-C1-N2	117.8(3)	O2A-N2A-O2B	119.6(4)
С16-С17-Н17	119.0	N2-N3-Ga	114.4(2)	O2A-N2A-O2C	119.7(5)
C17-C16-C15	119.6(4)	N3-C2-C3	110.4(4)	O2C-N2A-O2B	120.8(5)
С17-С16-Н16	120.2	N3-C2-C4	129.2(4)	02W-03W-04W	144(3)
C17-N5-C13	118.8(4)	N3-Ga-N4	97.55(12)	O3-C3-C2	120.7(4)
C17-N5-Ga	124.9(3)	N3-N2-C1	112.9(3)	O3-C3-O2	124.4(4)
C2-N3-Ga	117.2(3)	N3-N2-H2	123.5	O4-C4-C2	115.7(3)
C2-N3-N2	128.1(3)	N4-C12-C11	121.2(4)	O4-C7-H7	124.7
C3-O2-Ga	117.9(2)	N4-C12-C13	114.7(3)	O5-Ga-N3	93.29(13)
C4-C2-C3	120.3(4)	N4-C8-C9	122.4(4)	O5-Ga-N4	168.97(13)
C4-C5-C6	107.2(4)	N4-C8-H8	118.8	O5-Ga-N5	90.37(14)
C4-C5-H5	126.4	N5-C13-C12	114.3(3)	05-Ga-01	92.74(16)
C5-C4-C2	134.8(4)				
. 2.22- Coorde	enadas atómica	$(x \ 10^4) \ v$	factores isotró	picos de temper	atura ($Å^2 \times 10^3$)

Tabla A1.2.22-	Coordenadas	atómica	as (x	10 ⁴)	y fact	ores	isotrópicos	de	temperatura	(Ų	х	10³)	de
[Ga(HαOFSC)(bip	y)H ₂ O](NO ₃) ₂ ·1	6H₂O.											

	x	У	Z	U(eq)
C1	7724(4)	175(3)	2878(2)	20(1)
C2	3914(5)	1288(3)	2941(2)	21(1)
С3	3385(5)	1655(4)	3488(2)	28(1)
C4	2849(5)	1375(3)	2432(2)	24(1)
C5	1319(5)	1695(4)	2295(2)	34(1)
C6	933(5)	1546(4)	1723(2)	38(1)
С7	2214(5)	1150(4)	1534(2)	39(1)
C8	5083(5)	-1425(4)	3817(2)	27(1)
С9	4637(5)	-2466(4)	4054(2)	31(1)
C10	5224(5)	-2703(4)	4601(2)	34(1)
C11	6241(5)	-1874(4)	4893(2)	30(1)
C12	6612(5)	-824(3)	4634(2)	22(1)
C13	7607(5)	156(4)	4912(2)	23(1)
C14	8340(5)	116(4)	5454(2)	30(1)
C15	9244(5)	1087(4)	5673(2)	36(1)
C16	9416(6)	2069(4)	5338(2)	42(1)
C17	8664(6)	2074(4)	4799(2)	38(1)
Ga	6549(1)	1080(1)	3804(1)	22(1)
N1	8638(4)	-303(3)	2554(1)	26(1)

N1A	2283(4)	8471(3)	2569(1)	21(1)
N2	6217(3)	477(3)	2648(1)	18(1)
N2A	6186(6)	-454(4)	1222(2)	49(1)
N3	5344(4)	895(3)	3025(1)	19(1)
N4	6042(4)	-607(3)	4098(1)	21(1)
N5	7758(4)	1138(3)	4586(1)	27(1)
01	8171(3)	378(2)	3392(1)	22(1)
01A	1793(3)	8807(2)	3002(1)	28(1)
O1B	1305(3)	8239(3)	2143(1)	32(1)
01C	3710(3)	8366(3)	2548(1)	30(1)
01W	758(11)	3731(12)	4265(4)	122(5)
02	4477(3)	1619(3)	3915(1)	30(1)
02A	7521(5)	9(3)	1347(1)	56(1)
O2B	5448(4)	-814(3)	1601(1)	43(1)
02C	5600(6)	-559(4)	721(1)	73(1)
02W	1380(30)	4646(17)	4889(10)	162(10)
03	2015(4)	1940(3)	3506(1)	40(1)
03W	1905(19)	4799(13)	5230(5)	84(4)
04	3448(3)	1027(3)	1961(1)	34(1)
04W	2950(40)	5600(30)	5539(11)	79(11)
05	7183(5)	2746(3)	3674(1)	32(1)

Tabla A1.2.23- Factores anisotrópicos de temperatura (Å²) de [Ga(H α OFSC)(bipy)H₂O](NO₃)₂·1.6H₂O.

_

	U11	U22	U33	U23	U13	U12
C1	23(2)	13(2)	24(2)	2(2)	4(2)	-5(2)
C2	24(2)	14(2)	26(2)	7(2)	5(2)	5(2)
С3	37(3)	19(2)	33(3)	9(2)	19(2)	9(2)
C4	23(2)	20(2)	32(2)	9(2)	9(2)	3(2)
C5	27(2)	25(2)	49(3)	12(2)	6(2)	3(2)
C6	22(2)	41(3)	46(3)	25(2)	-12(2)	-5(2)
C7	27(3)	54(3)	31(3)	16(2)	-10(2)	-1(2)
C8	34(3)	22(2)	24(2)	6(2)	0(2)	4(2)
С9	30(2)	24(2)	40(3)	1(2)	4(2)	-1(2)
C10	39(3)	32(3)	34(3)	13(2)	16(2)	5(2)
C11	42(3)	31(3)	18(2)	5(2)	8(2)	8(2)
C12	25(2)	24(2)	21(2)	-1(2)	12(2)	8(2)

C13	28(2)	25(2)	17(2)	-2(2)	6(2)	9(2)
C14	39(3)	34(3)	18(2)	-1(2)	5(2)	15(2)
C15	42(3)	43(3)	22(2)	-6(2)	-3(2)	15(2)
C16	56(3)	39(3)	27(3)	-12(2)	-9(2)	-1(2)
C17	64(3)	23(2)	24(2)	-6(2)	-6(2)	-3(2)
Ga	34(1)	18(1)	14(1)	1(1)	1(1)	5(1)
N1	21(2)	31(2)	27(2)	-7(2)	4(2)	8(2)
N1A	17(2)	19(2)	26(2)	3(2)	1(2)	0(1)
N2	18(2)	24(2)	13(2)	0(1)	1(1)	5(1)
N2A	76(3)	20(2)	49(3)	-3(2)	0(3)	-11(2)
N3	24(2)	17(2)	17(2)	1(1)	6(1)	3(1)
N4	26(2)	20(2)	18(2)	2(1)	2(2)	4(2)
N5	41(2)	22(2)	17(2)	-3(2)	0(2)	4(2)
01	21(2)	23(2)	20(2)	1(1)	-4(1)	3(1)
01A	28(2)	32(2)	27(2)	-3(1)	11(1)	5(1)
01B	23(2)	38(2)	35(2)	-9(1)	-1(1)	-3(1)
01C	17(2)	44(2)	28(2)	-5(1)	4(1)	2(1)
01W	63(6)	204(13)	96(8)	68(8)	1(6)	-40(7)
02	45(2)	27(2)	20(2)	4(1)	14(1)	11(1)
02A	74(3)	44(2)	50(2)	2(2)	9(2)	-22(2)
02В	55(2)	40(2)	33(2)	-9(2)	9(2)	-5(2)
02C	135(4)	51(2)	28(2)	-4(2)	-8(2)	-25(3)
02W	160(20)	57(8)	300(30)	-31(17)	150(20)	-28(10)
03	40(2)	35(2)	50(2)	9(2)	24(2)	17(2)
03W	109(10)	51(7)	100(8)	0(6)	42(7)	27(7)
04	24(2)	52(2)	26(2)	10(2)	4(1)	5(2)
04W	100(20)	110(30)	41(16)	59(17)	47(16)	70(20)
05	50(2)	23(2)	22(2)	-1(1)	3(2)	3(2)

Tabla A1.2.24- Enlaces de hidrógeno (Å, °) de [Ga(H α OFSC)(bipy)H₂O](NO₃)₂·1.6H₂O.

D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O1A ⁱ	0.86	2.08	2.933(4)	172.8
N1-H1A…O1B ⁱ	0.86	2.53	3.081(4)	122.4
N1-H1A…N1A ⁱ	0.86	2.63	3.401(5)	150.5
N1-H1B…O2A	0.86	2.16	2.977(5)	158.2
N2-H2…O2B	0.86	2.16	2.909(4)	145.8

N2-H2…O4	0.86	2.22	2.764(4)	120.7				
05-H5A…01B ⁱⁱ	0.81(6)	1.80(6)	2.589(5)	166(6)				
05-H5B…O2B ⁱⁱⁱ	0.72(5)	2.06(5)	2.758(5)	163(6)				
O5-H5A…N1A ⁱⁱ	0.81(6)	2.58(6)	3.231(5)	140(5)				
05-H5A…O1C ⁱⁱ	0.81(6)	2.64(6)	3.041(4)	112(5)				
¹ x+1, y-1, z; ⁱⁱ -x+1, y-1/2, -z+1/2; ⁱⁱⁱ -x+1, y+1/2, -z+1/2.								

A1.2.5- Estructura cristalina del complejo [Ga(H α OFSC)(H $_2$ O) $_2$ Cl]Cl.

Figura A1.31- Unidad asimétrica de la estructura cristalina del complejo [Ga(HαOFSC)(H₂O)₂Cl]Cl.

Tabla A1.2.25-	Datos cristalogr	áficos v de ref	finado del o	compleio (Ga	(HaOFSC)(H	,O),CI]CI.
						20120.10.1

Fórmula	$C_{14}H_{20}CI_4GA1N_6O_{12}$	α(°)	90.000	Intervalo θ (°)	1.53 a 26.46
Masa Molecular	745.60	β(°)	95.969(5)	Intervalos en <i>h, k, l</i>	-9,9; 0,26; 0,21
т (К)	100.0(1)	γ(°)	90.000	No. reflex. medidas	12486
λ (Å)	0.71069	V (Å ³)	2633(2)	No. reflex. únicas	8552
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.086
Grupo Espacial	P21/c	D _{calc} . (mg/m ³)	1.881	R	0.0531
a (Å)	7.281(5)	μ(mm⁻¹)	2.521	R _w	0.1132
b (Å)	21.188(5)	F(000)	1488	G.O.F.	0.915
c (Å)	17.162(5)	Dimensiones (mm)	0.18 x 0.09 x 0.04		

Tabla A1.2.26- Distancias interatómicas (Å) de $[Ga(H\alpha OFSC)(H_2O)_2CI]CI$.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-N11	1.301(7)	C21-N22	1.390(7)	N11-H24A	0.8600	015-H15A	0.82(2)
C11-N12	1.381(7)	C21-O21	1.274(6)	N11-H24B	0.8600	O15-H15B	0.75(7)
C11-O11	1.280(7)	C22-C23	1.528(8)	N12-H27	0.8600	016-Ga1	2.007(5)
C12-N13	1.282(7)	C22-C24	1.421(8)	N13-Ga1	2.067(5)	016-H16A	0.91(6)
C13-C12	1.532(8)	C22-N23	1.290(7)	N13-N12	1.346(6)	O16-H16B	0.75(6)
C13-O12	1.296(7)	C23-O22	1.314(7)	N21-H29A	0.8600	021-GA1	1.978(4)

C13-O13	1.225(7)	C23-O23	1.225(7)	N21-H29B	0.8600	022-GA1	1.959(4)
C14-C12	1.429(8)	C24-C25	1.380(8)	N22-H25	0.8600	O24-C24	1.378(7)
C15-C14	1.375(8)	C25-H49	0.9300	N23-GA1	2.048(5)	O24-C27	1.374(7)
C15-C16	1.407(8)	C26-C25	1.408(8)	N23-N22	1.337(6)	025-GA1	1.999(4)
C15-H12	0.9300	C26-C27	1.325(9)	011-Ga1	1.996(4)	O25-H17A	0.83(2)
C16-C17	1.357(8)	C26-H33	0.9300	012-Ga1	1.998(4)	O25-H17B	0.98(6)
С16-Н36	0.9300	C27-H44	0.9300	O14-C14	1.390(7)	026-GA1	2.035(5)
C17-H40	0.9300	Cl1-Ga1	2.1890(17)	O14-C17	1.357(7)	O26-H13A	0.829(19)
C21-N21	1.302(7)	Cl2-GA1	2.2089(17)	015-Ga1	1.999(5)	O26-H13B	0.78(6)

Tabla A1.2.27- Án	gulos de enlace	(°) de [Ga(H	$+\alpha OFSC)(H_2O)_2CI]CI.$

	Ángulo		Ángulo		Ángula
	Aliguio		Aliguio		Angulo
C11-N11-H24A	120.0	Ga1-O15-H15A	104(6)	O12-Ga1-Cl1	99.40(12)
C11-N11-H24B	120.0	Ga1-O15-H15B	113(6)	O12-Ga1-N13	76.92(17)
C11-N12-H27	122.7	Ga1-O16-H16A	120(4)	O12-Ga1-O16	89.11(18)
C11-O11-Ga1	116.9(4)	Ga1-O16-H16B	104(5)	013-C13-C12	119.5(6)
C12-N13-Ga1	118.8(4)	GA1-025-H17A	137(4)	013-C13-O12	126.1(5)
C12-N13-N12	127.7(5)	GA1-O25-H17B	120(4)	014-C14-C12	115.6(5)
C13-O12-Ga1	118.7(4)	GA1-026-H13A	110(4)	O14-C17-C16	112.4(6)
C14-C12-C13	120.8(5)	GA1-O26-H13B	107(5)	014-С17-Н40	123.8
C14-C15-C16	108.1(6)	H13A-O26-H13B	127(6)	O15-Ga1-Cl1	92.58(16)
C14-C15-H12	125.9	H15B-015-H15A	120(8)	O15-Ga1-N13	91.8(2)
C15-C14-C12	135.8(6)	H16B-O16-H16A	116(7)	015-Ga1-012	90.67(18)
C15-C14-O14	108.6(5)	H17A-O25-H17B	94(5)	O15-Ga1-O16	175.0(2)
С15-С16-Н36	127.4	H24A-N11-H24B	120.0	O16-Ga1-Cl1	92.43(14)
C16-C15-H12	125.9	H29A-N21-H29B	120.0	O16-Ga1-N13	83.24(18)
С16-С17-Н40	123.8	N11-C11-N12	118.5(5)	O21-C21-N21	123.0(6)
C17-C16-C15	105.1(6)	N12-N13-Ga1	113.5(4)	O21-C21-N22	119.1(5)
С17-С16-Н36	127.4	N13-C12-C13	111.1(5)	021-GA1-Cl2	103.02(13)
C17-O14-C14	105.7(5)	N13-C12-C14	128.1(6)	O21-GA1-N23	78.28(19)
C21-N21-H29A	120.0	N13-Ga1-Cl1	174.32(15)	021-GA1-025	87.91(18)
C21-N21-H29B	120.0	N13-N12-C11	114.5(5)	021-GA1-026	87.13(18)
C21-N22-H25	123.4	N13-N12-H27	122.7	O22-C23-C22	114.4(5)
C21-O21-GA1	115.5(4)	N21-C21-N22	117.9(5)	022-GA1-Cl2	100.62(12)
C22-N23-GA1	118.5(4)	N22-N23-GA1	113.6(4)	022-GA1-N23	78.07(19)
C22-N23-N22	127.8(5)	N23-C22-C23	110.6(5)	022-GA1-021	156.33(16)

C23-O22-GA1	118.3(4)	N23-C22-C24	128.5(5)	022-GA1-025	91.71(18)
C24-C22-C23	121.0(6)	N23-GA1-Cl2	178.46(16)	022-GA1-026	91.41(18)
C24-C25-C26	106.1(6)	N23-N22-C21	113.3(5)	023-C23-C22	121.1(6)
C24-C25-H49	126.9	N23-N22-H25	123.4	023-C23-O22	124.5(5)
C25-C24-C22	135.9(6)	011-C11-N11	123.7(6)	O24-C24-C22	114.6(6)
С25-С26-Н33	126.3	011-C11-N12	117.7(5)	O24-C24-C25	109.5(5)
C26-C25-H49	126.9	O11-Ga1-Cl1	106.46(13)	О24-С27-Н44	124.3
C26-C27-H44	124.3	O11-Ga1-N13	77.25(18)	025-GA1-Cl2	94.32(13)
C26-C27-O24	111.5(6)	011-Ga1-012	154.13(16)	O25-GA1-N23	86.54(19)
C27-C26-C25	107.5(6)	011-Ga1-015	88.70(19)	025-GA1-026	173.91(18)
С27-С26-Н33	126.3	O11-Ga1-O16	89.30(18)	026-GA1-Cl2	90.25(14)
C27-O24-C24	105.5(5)	012-C13-C12	114.3(5)	O26-GA1-N23	88.99(19)

Tabla A1.2.28- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de

 $[Ga(H\alpha OFSC)(H_2O)_2CI]CI.$

	x	У	Z	U(eq)
C11	9547(9)	2949(3)	9336(4)	14(2)
C12	10782(8)	2567(3)	7458(4)	12(1)
C13	10988(8)	1888(3)	7171(4)	12(1)
C14	11111(9)	3091(3)	6967(4)	16(2)
C15	11682(9)	3168(3)	6234(4)	17(2)
C16	11682(9)	3818(3)	6065(4)	19(2)
C17	11098(8)	4102(3)	6703(4)	20(2)
C21	5925(8)	-496(3)	5957(4)	12(2)
C22	4562(8)	-199(3)	7835(4)	11(1)
C23	4501(8)	468(3)	8171(4)	16(2)
C24	4035(8)	-729(3)	8266(4)	14(2)
C25	3447(9)	-828(3)	8995(4)	18(2)
C26	3219(9)	-1485(3)	9066(4)	23(2)
C27	3648(9)	-1746(3)	8407(4)	24(2)
Cl1	9260(2)	808(1)	9189(1)	19(1)
Cl2	6378(2)	1603(1)	6205(1)	18(1)
CI3	10747(2)	-409(1)	6361(1)	19(1)
Cl4	4781(2)	2827(1)	8691(1)	25(1)
Ga1	9897(1)	1731(1)	8711(1)	13(1)
GA1	5761(1)	669(1)	6686(1)	13(1)

N11	9246(7)	3414(2)	9800(3)	18(1)
N12	10018(7)	3086(2)	8596(3)	16(1)
N13	10331(7)	2577(2)	8160(3)	9(1)
N21	6159(7)	-939(2)	5450(3)	14(1)
N22	5403(7)	-675(2)	6681(3)	15(1)
N23	5136(7)	-186(2)	7149(3)	13(1)
011	9452(6)	2367(2)	9528(2)	14(1)
012	10595(5)	1459(2)	7666(2)	11(1)
013	11492(6)	1794(2)	6522(2)	15(1)
014	10752(6)	3682(2)	7267(2)	15(1)
015	12536(6)	1687(2)	9164(3)	16(1)
016	7290(6)	1853(2)	8228(3)	17(1)
021	6177(6)	87(2)	5821(2)	14(1)
022	5057(5)	912(2)	7716(2)	13(1)
023	3968(6)	562(2)	8815(2)	17(1)
024	4195(6)	-1301(2)	7897(2)	17(1)
025	8367(6)	505(2)	7129(3)	17(1)
026	3099(6)	738(2)	6199(3)	15(1)

		1.					
Tabla A1.2.29- Factores anisotrópicos de	tempe	ratura	(Ų) de	[Ga(Ho	xOFSC)(H	I ₂ O) ₂ Cl]Cl	

			\circ			
	U11	U22	U33	U23	U13	U12
C11	12(4)	17(4)	11(4)	6(3)	1(3)	2(3)
C12	8(3)	14(3)	14(4)	-1(3)	3(3)	0(3)
C13	8(4)	19(3)	8(4)	-4(3)	-1(3)	1(3)
C14	19(4)	12(3)	18(4)	-4(3)	2(3)	0(3)
C15	15(4)	24(4)	12(4)	-3(3)	-1(3)	-1(3)
C16	24(4)	18(4)	17(4)	-3(3)	9(3)	-4(3)
C17	19(4)	12(3)	30(5)	6(3)	3(4)	-1(3)
C21	11(4)	9(3)	17(4)	-5(3)	3(3)	-1(3)
C22	7(3)	11(3)	14(4)	-5(3)	5(3)	-1(3)
C23	13(4)	12(3)	21(4)	-4(3)	3(3)	1(3)
C24	16(4)	2(3)	25(4)	1(3)	0(3)	0(3)
C25	20(4)	17(4)	18(4)	3(3)	11(3)	0(3)
C26	25(4)	16(4)	32(5)	4(3)	25(4)	0(3)
C27	14(4)	12(3)	47(5)	14(4)	4(4)	-3(3)
Cl1	27(1)	14(1)	18(1)	1(1)	6(1)	-5(1)
Cl2	21(1)	10(1)	22(1)	-1(1)	8(1)	-3(1)
-----	-------	-------	-------	-------	-------	-------
CI3	16(1)	12(1)	29(1)	-3(1)	6(1)	-1(1)
Cl4	21(1)	10(1)	45(1)	-4(1)	4(1)	1(1)
Ga1	16(1)	9(1)	15(1)	0(1)	4(1)	0(1)
GA1	14(1)	9(1)	15(1)	-1(1)	4(1)	-1(1)
N11	35(4)	9(3)	11(3)	0(2)	13(3)	-1(2)
N12	24(3)	2(2)	20(3)	0(2)	0(3)	-2(2)
N13	10(3)	7(3)	12(3)	2(2)	4(2)	2(2)
N21	30(3)	7(3)	6(3)	1(2)	7(3)	-1(2)
N22	24(3)	5(2)	17(3)	7(2)	8(3)	-1(2)
N23	9(3)	10(3)	21(3)	-4(2)	1(3)	0(2)
011	19(3)	14(2)	9(2)	-2(2)	4(2)	2(2)
012	13(2)	9(2)	11(2)	-2(2)	2(2)	-2(2)
013	22(3)	10(2)	13(3)	-3(2)	6(2)	3(2)
014	27(3)	8(2)	10(2)	2(2)	7(2)	1(2)
015	15(3)	11(3)	22(3)	3(2)	6(2)	4(2)
016	16(3)	8(2)	25(3)	-2(2)	1(2)	-3(2)
021	17(3)	6(2)	17(3)	-3(2)	1(2)	0(2)
022	12(2)	11(2)	17(3)	2(2)	3(2)	0(2)
023	26(3)	11(2)	16(3)	2(2)	13(2)	5(2)
024	24(3)	17(2)	10(3)	-1(2)	9(2)	0(2)
025	11(3)	12(3)	28(3)	-3(2)	2(2)	1(2)
026	17(3)	7(3)	21(3)	0(2)	4(2)	-1(2)

Tabla A1.2.30- Enlaces de hidrógeno (Å, °) de [Ga(H α OFSC)(H₂O)₂Cl]Cl.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
O26-H13A…Cl3 ⁱ	0.829(19)	2.19(2)	3.002(5)	167(6)
026-H13B…O13 ⁱ	0.78(6)	1.85(6)	2.612(6)	170(7)
015-H15A…Cl4 ⁱⁱ	0.82(2)	2.26(3)	3.072(5)	169(8)
015-H15B…023 ⁱⁱ	0.75(7)	1.95(7)	2.693(6)	173(8)
016-H16A…Cl4	0.91(6)	2.03(6)	2.921(5)	169(5)
O16-H16B…O22	0.75(6)	2.02(7)	2.663(6)	144(7)
025-H17A…012	0.83(2)	1.91(3)	2.694(6)	156(6)
O25-H17B…Cl3	0.98(6)	2.02(6)	2.995(5)	173(5)
N11-H24A…Cl2 ⁱⁱⁱ	0.86	2.61	3.350(5)	145.4
N11-H24B…Cl3 ^{iv}	0.86	2.40	3.192(5)	152.9

	N11-H24A…O13 ⁱⁱⁱ	0.86	2.70	3.255(7)	123.6
	N22-H25…O24	0.86	2.15	2.696(6)	121.3
	N22-H25…Cl4 ^v	0.86	2.51	3.238(5)	143.1
	N12-H27…O14	0.86	2.14	2.708(6)	122.9
	N12-H27…Cl3 ^{iv}	0.86	2.50	3.239(5)	144.7
	N21-H29A…O26 ^{vi}	0.86	2.12	2.967(7)	168.1
	N21-H29B…Cl4 ^v	0.86	2.30	3.113(5)	157.8
ⁱ x-1, y, z; ⁱⁱ x+1,	, y, z; ^{III} x, -y+1/2, z+1,	/2; ^{iv} -x+2, y+	1/2, -z+3/2	2; ^v -x+1, y-1	/2, -z+3/2;

A1.2.6- Estructura cristalina del complejo [Ga(H α OFTSC)(α OFTSC)]·H₂O.

Figura A1.32- Unidad asimétrica de la estructura cristalina del complejo [Ga(H α OFTSC)(α OFTSC)]·H₂O.

Fórmula	$C_{14}H_{11}GaN_6O_7S_2$	α(°)	90.000	Intervalo θ (°)	2.14 a 27.10
Masa Molecular	509.13	β(°)	105.039(5)	Intervalos en h, k, l	-12,12; 0,16; 018
т (к)	100(2)	γ (°)	90.000	No. reflex. Medidas	33541
λ (Å)	0.71069	V (Å ³)	1812.3(13)	No. reflex. Únicas	3987
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.0389
Grupo Espacial	P2(1)/n	D _{calc} . (mg/m ³)	1.866	R	0.0281
a (Å)	9.961(5)	μ (mm ⁻¹)	1.805	R _w	0.0802
b (Å)	12.992(5)	F(000)	1024	G.O.F.	1.134
c (Å)	14.501(5)	Dimensiones (mm)	0.28 x 0.25 x 0.20		

Tabla A1.2.32- Distancias interatómicas (Å) de [Ga(H α OFTSC)(α OFTSC)]·H₂O.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-N11	1.304(3)	C16-C17	1.340(4)	C24-C25	1.364(3)	N13-Ga	2.098(2)
C11-N12	1.357(3)	C16-H16	0.9300	C24-O23	1.369(3)	N21-H21A	0.8600
C11-S1	1.695(2)	C17-O13	1.353(3)	O23-C27	1.371(3)	N21-H21B	0.8600

C12-N13	1.294(3)	С17-Н17	0.9300	C27-C26	1.330(4)	N22-N23	1.357(2)	
C12-C14	1.428(3)	C21-N22	1.323(3)	С27-Н27	0.9300	N23-Ga	2.0352(19)	
C12-C13	1.527(3)	C21-N21	1.338(3)	C26-C25	1.415(3)	011-Ga	1.9778(17)	
C13-O12	1.218(3)	C21-S2	1.738(2)	C26-H26	0.9300	O21-Ga	1.9695(17)	
C13-O11	1.281(3)	C22-N23	1.299(3)	N11-H11A	0.8600	C25-H25	0.9300	
C14-C15	1.363(3)	C22-C24	1.440(3)	N11-H11B	0.8600	S1-Ga	2.4129(10)	
C14-O13	1.377(3)	C22-C23	1.518(3)	N12-N13	1.357(3)	S2-Ga	2.3526(9)	
C15-C16	1.405(4)	C23-O22	1.213(3)	N12-H12	0.71(3)	02W-01W ⁱ	0.500(5)	
C15-H15	0.9300	C23-O21	1.290(3)					

'x-1/2,-y+1/2,z-1/2

Tabla A1.2.33- Ángulos de enlace (°) de [Ga(H α OFTSC)(α OFTSC)]·H₂O.

	Ángulo		Ángulo		Ángulo
C11-N11-H11A	120.0	C24-C22-C23	122.8(2)	N22-N23-Ga	122.53(14)
C11-N11-H11B	120.0	C24-C25-C26	106.4(2)	N23-C22-C23	112.42(19)
C11-N12-H12	124(3)	С24-С25-Н25	126.8	N23-C22-C24	124.7(2)
C11-N12-N13	119.08(19)	C24-O23-C27	106.43(18)	N23-Ga-N13	164.99(7)
C11-S1-Ga	97.13(8)	C25-C24-C22	131.5(2)	N23-Ga-S1	105.59(6)
C12-N13-Ga	116.35(15)	C25-C24-O23	109.4(2)	N23-Ga-S2	83.20(6)
C12-N13-N12	123.84(19)	C25-C26-H26	126.4	011-C13-C12	114.45(19)
C13-O11-Ga	119.67(14)	C26-C25-H25	126.8	O11-Ga-N13	77.22(7)
C14-C12-C13	119.6(2)	С26-С27-Н27	124.7	O11-Ga-N23	96.29(7)
C14-C15-C16	106.5(2)	C26-C27-O23	110.6(2)	011-Ga-S1	158.03(5)
С14-С15-Н15	126.8	C27-C26-C25	107.2(2)	011-Ga-S2	91.10(6)
C15-C14-C12	133.8(2)	С27-С26-Н26	126.4	012-C13-C12	120.5(2)
C15-C14-O13	109.2(2)	H11A-N11-H11B	120.0	012-C13-O11	125.0(2)
С15-С16-Н16	126.4	H21A-N21-H21B	120.0	013-C14-C12	117.1(2)
C16-C15-H15	126.8	N11-C11-N12	116.0(2)	013-С17-Н17	124.7
С16-С17-Н17	124.7	N11-C11-S1	121.39(18)	O21-C23-C22	114.34(19)
C16-C17-O13	110.6(2)	N12-C11-S1	122.60(17)	O21-Ga-N13	87.42(7)
C17-C16-C15	107.2(2)	N12-N13-Ga	119.44(14)	O21-Ga-N23	79.03(7)
C17-C16-H16	126.4	N13-C12-C13	111.92(19)	021-Ga-011	90.44(8)
C17-O13-C14	106.59(19)	N13-C12-C14	128.5(2)	O21-Ga-S1	91.75(6)
C21-N21-H21A	120.0	N13-Ga-S1	81.05(5)	O21-Ga-S2	162.23(5)
C21-N21-H21B	120.0	N13-Ga-S2	110.18(5)	022-C23-C22	121.7(2)
C21-N22-N23	112.87(18)	N13-N12-H12	117(3)	022-C23-O21	124.0(2)

C21-S2-Ga	93.40(8)	N21-C21-S2	116.92(18)	O23-C24-C22	118.82(19)
C22-N23-Ga	116.16(14)	N22-C21-N21	115.1(2)	O23-C27-H27	124.7
C22-N23-N22	121.22(19)	N22-C21-S2	127.99(17)	S2-Ga-S1	93.41(4)
C23-O21-Ga	117.71(14)				

<i>Tabla A1.2.34-</i> Coordenadas atómicas (x 10 ⁴)	y factores isotrópicos de temperatura (Å ² x 10 ³) d
[Ga(HαOFTSC)(αOFTSC)]·H ₂ O.	

	x	у	2	U(eq)
C11	4403(2)	660(2)	7695(2)	19(1)
C12	6848(2)	2545(2)	7417(2)	16(1)
C13	7808(2)	3205(2)	8184(2)	19(1)
C14	6848(2)	2677(2)	6440(2)	19(1)
C15	7541(3)	3318(2)	5978(2)	25(1)
C16	7099(3)	3063(2)	5004(2)	30(1)
C17	6179(2)	2294(2)	4920(2)	28(1)
C21	7951(2)	1524(2)	11220(2)	19(1)
C22	5261(2)	3270(2)	10571(2)	18(1)
C23	4460(2)	3602(2)	9577(2)	21(1)
C24	4932(2)	3635(2)	11425(2)	20(1)
C25	5485(2)	3402(2)	12364(2)	19(1)
C26	4645(3)	3904(2)	12877(2)	24(1)
C27	3656(3)	4405(2)	12244(2)	25(1)
Ga	6275(1)	2073(1)	9242(1)	16(1)
N11	3472(2)	71(2)	7143(2)	25(1)
N12	5168(2)	1252(2)	7251(1)	17(1)
N13	6115(2)	1915(1)	7777(1)	15(1)
N21	8800(2)	1125(2)	12009(1)	23(1)
N22	7077(2)	2232(2)	11374(1)	18(1)
N23	6219(2)	2597(1)	10554(1)	16(1)
011	7619(2)	3104(1)	9020(1)	21(1)
012	8659(2)	3774(1)	7980(1)	25(1)
013	5994(2)	2040(1)	5783(1)	22(1)
01W	9063(5)	4565(5)	10370(4)	20(1)
021	4764(2)	3093(1)	8895(1)	22(1)
022	3607(2)	4289(2)	9454(1)	34(1)
023	3799(2)	4259(1)	11338(1)	26(1)

02W	3588(5)	336(6)	5178(5)	20(1)
S1	4647(1)	662(1)	8896(1)	21(1)
S2	8091(1)	1039(1)	10132(1)	21(1)

Tabla A1.2.35- Factores anisotrópicos de temperatura (Å²) de [Ga(H α OFTSC)(α OFTSC)]·H₂O.

			•			-
	U11	U22	U33	U23	U13	U12
C11	16(1)	23(1)	16(1)	0(1)	2(1)	0(1)
C12	15(1)	19(1)	16(1)	1(1)	4(1)	2(1)
C13	16(1)	19(1)	20(1)	0(1)	2(1)	2(1)
C14	15(1)	25(1)	16(1)	3(1)	3(1)	3(1)
C15	21(1)	33(1)	24(1)	9(1)	9(1)	2(1)
C16	22(1)	50(2)	20(1)	13(1)	8(1)	4(1)
C17	21(1)	52(2)	12(1)	7(1)	5(1)	5(1)
C21	18(1)	21(1)	16(1)	0(1)	2(1)	-4(1)
C22	18(1)	20(1)	14(1)	1(1)	2(1)	-1(1)
C23	20(1)	27(1)	14(1)	2(1)	2(1)	3(1)
C24	17(1)	23(1)	19(1)	-1(1)	4(1)	-2(1)
023	23(1)	31(1)	23(1)	2(1)	5(1)	3(1)
C27	26(1)	23(1)	31(1)	-2(1)	15(1)	1(1)
C26	27(1)	30(1)	16(1)	-2(1)	7(1)	-6(1)
N11	22(1)	32(1)	20(1)	-4(1)	3(1)	-11(1)
N12	16(1)	25(1)	10(1)	-2(1)	2(1)	-4(1)
N13	13(1)	19(1)	13(1)	-2(1)	2(1)	-2(1)
N21	23(1)	24(1)	16(1)	-1(1)	-1(1)	4(1)
N22	17(1)	24(1)	12(1)	1(1)	1(1)	2(1)
N23	16(1)	20(1)	12(1)	1(1)	0(1)	-1(1)
011	22(1)	24(1)	16(1)	-2(1)	3(1)	-7(1)
012	23(1)	25(1)	28(1)	0(1)	8(1)	-6(1)
013	19(1)	36(1)	12(1)	2(1)	4(1)	0(1)
021	23(1)	28(1)	13(1)	1(1)	2(1)	6(1)
022	37(1)	43(1)	19(1)	5(1)	2(1)	21(1)
C25	19(1)	23(1)	15(1)	2(1)	3(1)	1(1)
S1	21(1)	28(1)	14(1)	-1(1)	5(1)	-7(1)
S2	21(1)	25(1)	16(1)	-1(1)	3(1)	4(1)
Ga	16(1)	21(1)	10(1)	-1(1)	2(1)	-1(1)
01W	27(3)	23(2)	6(2)	-4(2)	-3(2)	-4(2)

02W	12(3)	33(3)	9(3)	-3(2)	-5(2)	2(3)

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11B…N21 ⁱⁱ	0.86	2.39	3.240(3)	168.4
N11-H11A…O22 ⁱⁱⁱ	0.86	2.35	2.862(3)	118.6
N11-H11A…O1W ⁱ	0.86	2.04	2.822(7)	151.2
N12-H12-013	0.71(3)	2.12(3)	2.677(3)	136(3)
N12-H12…O1W ⁱ	0.71(3)	2.26(3)	2.866(6)	145(3)
N12-H12-O2W	0.71(3)	2.66(3)	3.235(6)	140(3)
N21-H21A…O21 ^{iv}	0.86	2.07	2.842(3)	148.4
x-1/2, -y+1/2, z-1/2; ["] -x+1, -y	, -z+2; ^{III} -x	+1/2, y-1/2	2, -z+3/2; ^{iv} :	x+1/2, -y+:

Tabla A1.2.36- Enlaces de hidrógeno (Å, °) de [Ga(H α OFTSC)(α OFTSC)]·H₂O.

A1.2.7- Estructura cristalina del complejo [Ga(HSSC)₂]NO₃·MeOH.

Figura A1.33- Unidad asimétrica de la estructura cristalina del complejo [Ga(HSSC)₂]NO₃·MeOH.

Tabla A1.2.37- Datos cristalográficos y de refinado del complejo [Ga(HSSC)₂]NO₃·MeOH.

Fórmula	Cut Hao Ga Na Oo	a (°)	90.000	Intervalo A (°)	3 03 a 25 12
Torridia		ω()	50.000		5.05 0 25.12
Masa Molecular	520.12	β (°)	96.411(6)	Intervalos en h, k, l	-20,20; -15,15; -11,11
т (к)	293(2)	γ (°)	90.000	No. reflex. medidas	12656
λ (Å)	0.71073	V (Å ³)	2100.9(4)	No. reflex. únicas	3733
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.1139
Grupo Espacial	P21/c	D _{calc} . (mg/m ³)	1.644	R	0.0586
a (Å)	17.157(2)	μ(mm⁻¹)	1.372	R _w	0.1336
b (Å)	13.1360(10)	F(000)	1064	G.O.F.	1.013
c (Å)	9.3807(9)	Dimensiones (mm)	0.10 x 0.06 x 0.02		

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-N11	1.311(8)	C1S-O41S	1.275(13)	Ga-N23	2.021(5)	N1-O3	1.181(8)
C11-N12	1.359(7)	C1S-O42S	1.242(18)	Ga-011	2.079(4)	N21-C21	1.329(7)
C11-O11	1.251(7)	C22-C23	1.431(9)	Ga-O12	1.883(4)	N22-C21	1.347(8)
C12-C13	1.428(8)	C23-C24	1.415(9)	Ga-O21	2.022(4)	N22-N23	1.378(6)
C13-C14	1.425(8)	C23-C28	1.408(9)	Ga-O22	1.878(4)	N23-C22	1.279(7)
C13-C18	1.407(8)	C24-C25	1.390(9)	N12-N13	1.371(6)	O12-C14	1.323(7)
C14-C15	1.380(8)	C25-C26	1.344(10)	N13-C12	1.301(7)	O21-C21	1.263(7)
C15-C16	1.385(9)	C26-C27	1.379(10)	N1-01	1.228(7)	O22-C24	1.319(7)
C16-C17	1.398(10)	C27-C28	1.355(9)	N1-02	1.219(8)	0415-0425	0.924(19)
C17-C18	1.343(9)	Ga-N13	1.998(5)				

Tabla A1.2.38- Distancias interatómicas (Å) de [Ga(HSSC)₂]NO₃·MeOH.

Tabla A1.2.39- Ángulos de enlace (°) de [Ga(HSSC)₂]NO₃·MeOH.

	Ángulo		Ángulo		Ángulo
C11-N12-N13	115.3(5)	C28-C27-C26	118.6(7)	022-Ga-011	91.13(19)
C12-N13-Ga	126.3(4)	N11-C11-N12	117.1(6)	012-C14-C13	124.0(6)
C12-N13-N12	119.5(5)	N12-N13-Ga	114.1(4)	012-C14-C15	118.9(6)
C14-C13-C12	123.4(5)	N13-C12-C13	124.2(5)	O12-Ga-N13	91.47(18)
C14-C15-C16	122.4(7)	N13-Ga-N23	166.9(2)	012-Ga-N23	99.16(17)
C15-C14-C13	117.0(6)	N21-C21-N22	119.0(6)	O22-Ga-O12	97.3(2)
C15-C16-C17	119.9(7)	N22-N23-Ga	112.5(4)	N13-Ga-O21	94.10(18)
C17-C18-C13	122.1(7)	N23-C22-C23	124.6(6)	N23-Ga-O21	78.48(18)
C18-C13-C12	117.2(6)	O42S-C1S-O41S	43.1(9)	012-Ga-O21	89.00(19)
C18-C13-C14	119.4(6)	02-N1-01	118.9(8)	O21-C21-N21	121.2(6)
C18-C17-C16	119.1(6)	03-N1-01	118.5(8)	O21-C21-N22	119.8(6)
C21-N22-N23	114.8(5)	03-N1-O2	122.4(9)	O22-Ga-O21	167.67(17)
C22-N23-Ga	127.2(4)	O41S-O42S-C1S	70.4(16)	022-C24-C23	123.2(6)
C22-N23-N22	120.3(5)	O42S-O41S-C1S	66.6(15)	O22-C24-C25	119.5(6)
C24-C23-C22	123.2(6)	N13-Ga-O11	77.59(17)	O22-Ga-N13	96.3(2)
C25-C24-C23	117.3(6)	N23-Ga-O11	90.82(17)	O22-Ga-N23	90.0(2)
C25-C26-C27	121.8(7)	O11-C11-N11	123.9(6)	C11-O11-Ga	114.0(4)
C26-C25-C24	121.8(7)	O11-C11-N12	119.0(5)	C14-O12-Ga	128.4(4)
C27-C28-C23	121.4(7)	012-Ga-011	166.92(17)	C21-O21-Ga	114.4(4)
C28-C23-C22	117.8(6)	O21-Ga-O11	84.71(16)	C24-O22-Ga	130.6(4)
C28-C23-C24	119.0(6)				

	x	у	Z	U(eq)
C11	984(4)	-391(5)	-5639(6)	56(2)
C12	2163(4)	-1708(4)	-2955(7)	56(2)
C13	2819(4)	-1584(4)	-1890(6)	53(2)
C14	3202(4)	-634(5)	-1584(6)	54(2)
C15	3812(4)	-622(5)	-492(7)	64(2)
C16	4055(4)	-1487(6)	277(7)	72(2)
C17	3685(5)	-2418(5)	-60(8)	72(2)
C18	3088(4)	-2455(5)	-1113(7)	65(2)
C1S	1943(6)	5395(6)	-3946(11)	111(3)
C21	1527(4)	2010(5)	-2672(6)	54(2)
C22	2953(4)	2336(5)	-4996(7)	58(2)
C23	3476(4)	1782(5)	-5794(7)	55(2)
C24	3509(4)	706(5)	-5822(6)	59(2)
C25	4090(4)	264(6)	-6540(8)	73(2)
C26	4578(4)	828(7)	-7242(8)	78(2)
C27	4531(4)	1876(6)	-7284(8)	74(2)
C28	3991(4)	2343(5)	-6559(7)	66(2)
Ga	2295(1)	425(1)	-3919(1)	51(1)
N1	221(5)	8402(5)	-843(7)	79(2)
N11	355(3)	-537(4)	-6545(6)	81(2)
N12	1223(3)	-1177(4)	-4754(6)	63(1)
N13	1868(3)	-983(3)	-3794(5)	51(1)
N21	1083(3)	2525(4)	-1847(5)	62(1)
N22	2010(3)	2528(4)	-3447(5)	56(1)
N23	2471(3)	1928(4)	-4219(5)	51(1)
01	190(3)	7804(4)	155(6)	100(2)
011	1367(2)	421(3)	-5547(4)	55(1)
012	2986(3)	231(3)	-2235(5)	64(1)
02	-254(5)	9095(5)	-996(7)	139(3)
021	1512(2)	1049(3)	-2719(4)	56(1)
022	3010(3)	118(3)	-5235(5)	70(1)
03	677(5)	8245(8)	-1671(8)	159(3)
O41S	1952(10)	4495(9)	-4451(10)	130(6)

Tabla A1.2.40- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de [Ga(HSSC)₂]NO₃·MeOH.

O42S	2188(11)	4547(14)	-3520(20)	123(7)	

	U11	U22	U33	U23	U13	U12
C11	61(4)	58(4)	49(3)	-1(3)	3(3)	-1(4)
C12	65(4)	38(3)	66(4)	-6(3)	17(3)	-9(3)
C13	63(4)	46(4)	51(4)	-1(3)	12(3)	3(3)
C14	63(4)	50(4)	51(4)	0(3)	10(3)	4(3)
C15	66(4)	63(4)	62(4)	-2(3)	4(3)	2(3)
C16	76(5)	79(5)	59(4)	10(4)	-2(4)	22(4)
C17	86(5)	55(4)	75(5)	14(4)	10(4)	14(4)
C18	79(5)	48(4)	66(4)	5(3)	10(4)	6(4)
C1S	147(8)	62(6)	134(8)	23(6)	59(6)	16(6)
C21	60(4)	55(4)	42(3)	-8(3)	-9(3)	9(3)
C22	58(4)	51(4)	63(4)	9(3)	3(3)	-16(3)
C23	58(4)	49(4)	58(4)	0(3)	6(3)	-7(3)
C24	59(4)	68(4)	49(4)	-8(3)	6(3)	-11(3)
C25	69(5)	65(5)	88(5)	-8(4)	28(4)	-6(4)
C26	69(5)	94(6)	73(5)	-23(4)	18(4)	-9(4)
C27	75(5)	81(6)	69(5)	-11(4)	17(4)	-25(4)
C28	69(5)	62(4)	66(4)	1(4)	7(4)	-14(4)
Ga	62(1)	38(1)	55(1)	1(1)	9(1)	-3(1)
N1	98(5)	71(4)	66(4)	3(4)	1(4)	-3(4)
N11	85(4)	69(4)	84(4)	11(3)	-16(4)	-23(3)
N12	70(4)	45(3)	71(4)	10(3)	1(3)	-15(3)
N13	65(3)	42(3)	45(3)	0(2)	0(2)	-10(3)
N21	77(4)	53(3)	57(3)	-11(3)	10(3)	1(3)
N22	66(3)	40(3)	64(3)	-4(3)	11(3)	-2(3)
N23	56(3)	48(3)	49(3)	-8(2)	1(2)	1(3)
01	116(5)	99(4)	90(4)	33(4)	38(3)	39(4)
011	71(3)	43(2)	50(2)	3(2)	1(2)	-12(2)
012	81(3)	38(2)	68(3)	5(2)	-7(2)	-6(2)
02	204(7)	69(4)	130(6)	-4(4)	-47(5)	44(5)
021	73(3)	38(2)	61(3)	-3(2)	18(2)	-5(2)
022	79(3)	49(3)	86(3)	-9(2)	33(3)	-6(2)
03	122(6)	250(10)	115(6)	41(6)	54(5)	2(6)

Tabla A1.2.41- Factores anisotrópicos de temperatura ($Å^2$) de [Ga(HSSC)₂]NO₃·MeOH.

O41S	277(18)	44(6)	58(6)	12(5)	-27(8)	-3(8)
O42S	133(14)	60(10)	167(19)	26(14)	-18(15)	7(10)

Tabla A1.2.42- Enlaces de hidrógeno (Å, °) de [Ga(HSSC)₂]NO₃·MeOH.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O2 ⁱ	0.86	2.19	2.975(9)	152.4
N12-H12A…O1 ⁱⁱ	0.86	1.94	2.772(7)	163.2
N21-H21A…O1 ⁱⁱⁱ	0.86	2.10	2.873(8)	149.9
N21-H21B…O11 ^{iv}	0.86	2.22	2.978(6)	147.7
N22-H22A…O41S	0.86	1.96	2.749(13)	152.4
O41S-H41S…N22	0.82	2.17	2.749(13)	127.5
041S-H41S…O2 ^v	0.82	2.51	3.034(19)	122.7

A1.2.8- Estructura cristalina del complejo [Ga(HSSC)₂]Cl·H₂O.

Figura A1.34- Unidad asimétrica de la estructura cristalina del complejo [Ga(HSSC)₂]Cl·H₂O.

Tabla A1.2.43- Datos cristalográficos y de refinado del complejo [Ga(HSSC)₂]Cl·H₂O.

Fórmula	$C_{16}H_{18}CIGaN_6O_5$	α (°)	90.000	Intervalo θ (°)	2.38 a 26.37
Masa Molecular	479.53	β (°)	90.000	Intervalos en h, k, l	0,11; 0,14; 0,42
т (К)	100(2)	γ (°)	90.000	No. reflex. medidas	65450
λ (Å)	0.71073	V (Å ³)	3619.9(19)	No. reflex. únicas	3702
Sistema Cristalino	Ortorrómbico	z	8	R _{int}	0.0578
Grupo Espacial	Pbca	D _{calc} . (mg/m ³)	1.760	R	0.0279
a (Å)	8.883(3)	μ(mm⁻¹)	1.713	R _w	0.0592
b (Å)	11.903(4)	F(000)	1952	G.O.F.	1.104
c (Å)	34.236(10)	Dimensiones (mm)	0.23 x 0.19 x 0.10		

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-N11	1.309(3)	C16-H16	0.9300	C24-O22	1.325(3)	N13-Ga1	2.026(2)
C11-N12	1.366(3)	C17-C18	1.377(4)	C25-C26	1.377(4)	N21-H21A	0.8600
C11-O11	1.272(3)	С17-Н17	0.9300	С25-Н25	0.9300	N21-H21B	0.8600
C12-C13	1.445(3)	C18-H18	0.9300	C26-C27	1.392(4)	N22-H22A	0.8600
C12-H12	0.9300	C21-N21	1.319(3)	C26-H26	0.9300	N22-N23	1.381(3)
C12-N13	1.289(3)	C21-N22	1.363(3)	C27-C28	1.373(4)	N23-Ga1	2.013(2)
C13-C14	1.415(3)	C21-O21	1.260(3)	С27-Н27	0.9300	011-Ga1	2.0074(16)
C13-C18	1.404(3)	C22-C23	1.439(3)	C28-H28	0.9300	012-Ga1	1.9270(17)
C14-C15	1.400(3)	C22-H22	0.9300	N11-H11A	0.8600	O1W-H1A	0.95(5)
C14-O12	1.333(3)	C22-N23	1.290(3)	N11-H11B	0.8600	O1W-H1B	0.90(4)
C15-C16	1.382(3)	C23-C24	1.414(3)	N12-H12A	0.8600	O21-Ga1	2.0243(17)
C15-H15	0.9300	C23-C28	1.408(3)	N12-N13	1.378(3)	O22-Ga1	1.8878(17)
C16-C17	1.391(4)	C24-C25	1.403(3)				

Tabla A1.2.44- Distancias interatómicas (Å) de [Ga(HSSC)₂]Cl·H₂O.

Tabla A1.2.45-	Ángulos de enla	ce (°) de	[Ga(HSSC)	₂]Cl·H ₂ O
----------------	-----------------	-----------	-----------	-----------------------------------

	Ángulo		Ángulo		Ángulo
C11-N11-H11A	120.0	C21-O21-Ga1	114.77(15)	N21-C21-N22	117.6(2)
C11-N11-H11B	120.0	C22-N23-Ga1	127.63(17)	N22-N23-Ga1	112.87(14)
C11-N12-H12A	122.7	C22-N23-N22	119.5(2)	N23-C22-C23	123.2(2)
C11-N12-N13	114.70(19)	С23-С22-Н22	118.4	N23-C22-H22	118.4
C11-O11-Ga1	115.65(15)	C23-C28-H28	119.2	N23-Ga1-N13	169.64(8)
C12-N13-Ga1	127.73(17)	C24-C23-C22	124.2(2)	N23-Ga1-O21	78.53(7)
C12-N13-N12	119.5(2)	C24-C25-H25	119.2	N23-N22-H22A	122.8
С13-С12-Н12	118.4	C24-O22-Ga1	129.36(15)	O11-C11-N11	122.2(2)
С13-С18-Н18	119.0	C25-C24-C23	117.6(2)	O11-C11-N12	118.4(2)
C14-C13-C12	124.2(2)	C25-C26-C27	120.9(2)	O11-Ga1-N13	78.39(7)
С14-С15-Н15	119.2	C25-C26-H26	119.5	O11-Ga1-N23	93.25(7)
C14-O12-Ga1	127.53(15)	C26-C25-C24	121.6(2)	O11-Ga1-O21	87.25(7)
C15-C14-C13	117.6(2)	C26-C25-H25	119.2	012-C14-C13	123.7(2)
C15-C16-C17	121.0(2)	C26-C27-H27	120.7	012-C14-C15	118.7(2)
С15-С16-Н16	119.5	C27-C26-H26	119.5	O12-Ga1-N13	89.94(7)
C16-C15-C14	121.6(2)	C27-C28-C23	121.7(2)	O12-Ga1-N23	97.70(8)
C16-C15-H15	119.2	C27-C28-H28	119.2	012-Ga1-011	167.04(7)
C16-C17-H17	120.8	C28-C23-C22	116.3(2)	012-Ga1-O21	88.14(7)

С17-С16-Н16	119.5	C28-C23-C24	119.6(2)	O21-C21-N21	123.2(2)
C17-C18-C13	122.0(2)	C28-C27-C26	118.7(2)	O21-C21-N22	119.2(2)
С17-С18-Н18	119.0	C28-C27-H27	120.7	O21-Ga1-N13	94.81(7)
C18-C13-C12	116.3(2)	H11A-N11-H11B	120.0	O22-C24-C23	124.1(2)
C18-C13-C14	119.5(2)	H1A-O1W-H1B	106(3)	O22-C24-C25	118.3(2)
C18-C17-C16	118.4(2)	H21A-N21-H21B	120.0	O22-Ga1-N13	95.23(8)
С18-С17-Н17	120.8	N11-C11-N12	119.4(2)	O22-Ga1-N23	91.01(8)
C21-N21-H21A	120.0	N12-N13-Ga1	112.70(14)	022-Ga1-011	91.17(7)
C21-N21-H21B	120.0	N13-C12-C13	123.2(2)	022-Ga1-012	95.54(8)
C21-N22-H22A	122.8	N13-C12-H12	118.4	O22-Ga1-O21	169.30(7)
C21-N22-N23	114.38(19)	N13-N12-H12A	122.7		

Tabla A1.2.46-Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å2 x 10^3) de[Ga(HSSC)_2]Cl·H₂O.

	x	У	z	U(eq)
C11	4998(3)	1157(2)	3410(1)	11(1)
C12	7541(3)	1257(2)	4189(1)	11(1)
C13	8458(3)	2041(2)	4407(1)	12(1)
C14	8762(3)	3154(2)	4286(1)	11(1)
C15	9679(3)	3813(2)	4527(1)	14(1)
C16	10262(3)	3401(2)	4872(1)	16(1)
C17	9975(3)	2304(2)	4991(1)	17(1)
C18	9092(3)	1638(2)	4755(1)	14(1)
C21	8174(3)	3488(2)	2946(1)	12(1)
C22	5564(3)	5327(2)	3365(1)	13(1)
C23	4608(3)	5442(2)	3702(1)	12(1)
C24	4388(3)	4590(2)	3984(1)	12(1)
C25	3367(3)	4809(2)	4288(1)	16(1)
C26	2643(3)	5827(2)	4319(1)	17(1)
C27	2878(3)	6673(2)	4045(1)	18(1)
C28	3852(3)	6475(2)	3742(1)	17(1)
Cl	-1523(1)	6267(1)	2402(1)	16(1)
Ga1	6597(1)	3078(1)	3638(1)	9(1)
N11	4099(2)	475(2)	3222(1)	15(1)
N12	5874(2)	748(2)	3705(1)	12(1)
N13	6760(2)	1539(2)	3888(1)	10(1)

N21	9126(2)	3434(2)	2651(1)	16(1)
N22	7253(2)	4402(2)	2966(1)	14(1)
N23	6382(2)	4452(2)	3300(1)	12(1)
011	5082(2)	2198(1)	3329(1)	12(1)
012	8258(2)	3595(1)	3952(1)	12(1)
01W	2619(2)	8430(2)	3144(1)	22(1)
021	8090(2)	2745(1)	3207(1)	13(1)
022	5080(2)	3604(1)	3978(1)	14(1)

Tabla A1.2.47- Factores anisotrópicos de temperatura ($Å^2$) de [Ga(HSSC)₂]Cl·H₂O.

	U11	U22	U33	U23	U13	U12
C11	11(1)	12(1)	11(1)	-1(1)	3(1)	1(1)
C12	11(1)	10(1)	13(1)	2(1)	4(1)	2(1)
C13	10(1)	14(1)	11(1)	-1(1)	1(1)	1(1)
C14	11(1)	13(1)	10(1)	-1(1)	1(1)	1(1)
C15	13(1)	13(1)	16(1)	-2(1)	-1(1)	1(1)
C16	13(1)	19(1)	15(1)	-6(1)	-2(1)	-1(1)
C17	16(1)	24(1)	10(1)	1(1)	-2(1)	3(1)
C18	13(1)	14(1)	16(1)	3(1)	2(1)	1(1)
C21	11(1)	12(1)	13(1)	0(1)	-2(1)	-2(1)
C22	11(1)	12(1)	15(1)	1(1)	-4(1)	-3(1)
C23	11(1)	11(1)	15(1)	-2(1)	-3(1)	-1(1)
C24	10(1)	12(1)	14(1)	-2(1)	-2(1)	0(1)
C25	14(1)	17(1)	18(1)	0(1)	2(1)	-2(1)
C26	11(1)	20(1)	21(1)	-9(1)	1(1)	0(1)
C27	15(1)	15(1)	26(1)	-7(1)	-5(1)	5(1)
C28	14(1)	14(1)	21(1)	-1(1)	-6(1)	1(1)
CI	18(1)	16(1)	14(1)	2(1)	1(1)	-2(1)
Ga1	10(1)	8(1)	10(1)	1(1)	0(1)	0(1)
N11	16(1)	12(1)	16(1)	-1(1)	-4(1)	-2(1)
N12	12(1)	8(1)	16(1)	1(1)	-2(1)	-2(1)
N13	11(1)	9(1)	10(1)	1(1)	1(1)	0(1)
N21	17(1)	16(1)	15(1)	3(1)	4(1)	2(1)
N22	14(1)	16(1)	11(1)	5(1)	3(1)	1(1)
N23	11(1)	12(1)	12(1)	1(1)	1(1)	0(1)
011	13(1)	8(1)	14(1)	0(1)	-2(1)	-1(1)

012	14(1)	10(1)	13(1)	2(1)	-3(1)	-2(1)
01W	22(1)	18(1)	28(1)	-2(1)	3(1)	-5(1)
021	15(1)	12(1)	12(1)	1(1)	1(1)	2(1)
022	16(1)	11(1)	16(1)	2(1)	5(1)	2(1)

Tabla A1.2.48- Enlaces de hidrógeno (Å, °) de [Ga(HSSC)₂]Cl·H₂O.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
O1W-H1A…Cl ⁱ	0.95(5)	2.35(5)	3.271(2)	164(4)
01W-H1B…011 ⁱⁱ	0.90(4)	2.01(4)	2.882(3)	162(3)
N11-H11A…CI ^{III}	0.86	2.42	3.267(2)	167.6
N11-H11B…O1W ^{iv}	0.86	2.11	2.779(3)	134.5
N12-H12A…O12 ^v	0.86	2.00	2.807(3)	156.8
N21-H21A…CI ^{vi}	0.86	2.49	3.350(2)	177.5
N21-H21B…CI ^{vii}	0.86	2.82	3.526(2)	140.4
N22-H22A…Cl ^{vii}	0.86	2.37	3.138(2)	149.1
C(22)-H(22)…Cl ⁱ	0.93	2.78	3.402(3)	125
C(22)-H(22)…O(21) ^{viii}	0.93	2.48	3.164(3)	131
C(28)-H(28)…O(1W)	0.93	2.51	3.286(3)	141

ⁱ x+1/2, y, -z+1/2; ⁱⁱ -x+1/2, y+1/2, z; ⁱⁱⁱ -x, y-1/2, -z+1/2; ^{iv} x, y-1, z; ^v -x+3/2, y-1/2, z; ^{vi} -x+1, y-1/2, -z+1/2; ^{vii} x+1, y, z; ^{viii} 3/2-x,1/2+y,z

A1.2.9- Estructura cristalina del complejo [Ga(H₂XSSC)₂]NO₃·EtOH.

Figura A1.35- Unidad asimétrica de la estructura cristalina del complejo [Ga(H₂XSSC)₂]NO₃·EtOH.

Fórmula	$C_{18}H_{22}GaN_7O_{10}$	α (°)	66.899(5)	Intervalo θ (°)	1.83 a 28.47
Masa Molecular	566.15	β (°)	80.970(5)	Intervalos en h, k, l	-13,13; -13,15; 0,16
т (к)	100.0(1)	γ (°)	66.305(5)	No. reflex. medidas	12161
λ (Å)	0.71069	V (ų)	1146.0(9)	No. reflex. únicas	6421
Sistema Cristalino	Triclínico	z	2	R _{int}	0.0433
Grupo Espacial	P -1	D _{calc} . (mg/m ³)	1.507	R	0.0587
a (Å)	10.055(5)	μ(mm ⁻¹)	1.261	R _w	0.1654
b (Å)	11.197(5)	F(000)	528	G.O.F.	1.013
c (Å)	12.085(5)	Dimensiones (mm)	0.13 x 0.10 x 0.02		

Tabla A1.2.49- Datos cristalográficos y de refinado del complejo [Ga(H₂XSSC)₂]NO₃·EtOH.

Tabla A1.2.50- Distancias interatómicas (Å) de [Ga(H₂XSSC)₂]NO₃·EtOH.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-N11	1.314(6)	С15-Н152	0.9600	C28-H28	0.9300	N21-H21B	0.8600
C11-N12	1.341(6)	С15-Н153	0.9600	C2S-H2S1	0.9700	N22-H22A	0.8600
C11-O11	1.270(6)	C21-N21	1.329(6)	C2S-H2S2	0.9700	N22-N23	1.371(6)
C12-C13	1.433(7)	C21-N22	1.349(6)	C2S-01S	1.410(7)	N23-Ga	2.015(4)
C12-H12	0.9300	C21-O21	1.266(6)	N1-01A	1.277(13)	011-Ga	2.036(4)
C12-N13	1.287(6)	C22-C23	1.427(7)	N1-O1A ⁱ	1.482(12)	012-Ga	1.876(3)
C13-C14	1.423(7)	С22-Н22	0.9300	N1-01B	1.268(14)	013-H13A	0.83(2)
C13-C18	1.420(7)	C22-N23	1.298(6)	N1-01C	1.298(12)	O1A-N1 ⁱ	1.482(12)
C14-C15	1.419(7)	C23-C24	1.414(7)	N11-H11A	0.8600	01A-01B ⁱ	0.885(11)
C14-O12	1.322(6)	C23-C28	1.419(7)	N11-H11B	0.8600	01B-01A ⁱ	0.885(11)
C15-C16	1.380(7)	C24-C25	1.387(7)	N12-H12A	0.8600	O1S-H1S	0.83(9)
C15-H15	0.9300	C24-O22	1.343(6)	N12-N13	1.389(5)	021-Ga	2.067(4)
C16-C17	1.405(7)	C25-C26	1.388(7)	N13-Ga	2.009(4)	O22-Ga	1.896(4)
C16-O13	1.370(6)	C25-H25	0.9300	N2-02A	1.405(11)	O23-H23	0.79(7)
C17-C18	1.379(7)	C26-C27	1.410(7)	N2-O2B	1.289(11)	O2B-N2 ⁱⁱ	1.224(11)
C17-H17	0.9300	C26-O23	1.348(6)	N2-O2B#2	1.224(11)	02B-02B [#]	1.578(14)
C18-H18	0.9300	C27-C28	1.365(7)	N2-02C	1.234(12)	02B-02C [#]	0.872(9)
C1S-C2S	1.499(8)	C27-H27	0.9300	N21-H21A	0.8600	02C-02B [#]	0.872(9)
C1S-H1S1	0.9600						
		i	-x+2 -v+2 -z	"-x+1 -y+2 -7	+2		

-x+2,-y+2,-z -x+1,-y+2,-z+2

Tabla A1.2.51- Ángulos de enlace (°) de [Ga(H₂XSSC)₂]NO₃·EtOH.

	Ángulo	Ángulo		Ángulo	
C11-N11-H11A	120.0	C25-C26-C27	120.2(5)	O12-C14-C13	124.7(5)

C11-N11-H11B	120.0	C26-C25-H25	119.2	O12-C14-C15	117.8(4)
C11-N12-H12A	122.5	С26-С27-Н27	120.8	O12-Ga-N13	91.95(16)
C11-N12-N13	115.0(4)	C26-O23-H23	116(5)	O12-Ga-N23	97.68(16)
C11-O11-Ga	114.7(3)	C27-C28-C23	122.6(5)	012-Ga-011	169.78(14)
C12-N13-Ga	126.6(3)	C27-C28-H28	118.7	012-Ga-021	93.13(15)
C12-N13-N12	119.9(4)	C28-C23-C22	117.0(4)	012-Ga-022	97.23(16)
С13-С12-Н12	117.9	C28-C27-C26	118.4(5)	O13-C16-C15	116.6(4)
C13-C18-H18	118.9	C28-C27-H27	120.8	O13-C16-C17	121.5(5)
C14-C13-C12	123.5(5)	C2S-C1S-H1S1	109.5	01A ⁱ -01B-N1	85.0(11)
C14-C15-H15	119.5	C2S-C1S-H1S2	109.5	01A-N1-01A ⁱ	82.7(8)
C14-O12-Ga	128.5(3)	C2S-C1S-H1S3	109.5	01A-N1-01C	120.9(10)
C15-C14-C13	117.5(5)	С25-015-Н15	123(7)	01B ⁱ -01A-N1	147.5(12)
C15-C16-C17	122.0(5)	H11A-N11-H11B	120.0	01B ⁱ -01A-N1 ⁱ	58.5(9)
C16-C15-C14	121.1(5)	H1S1-C1S-H1S2	109.5	01B-N1-01A	116.1(11)
С16-С15-Н15	119.5	Н151-С15-Н153	109.5	01B-N1-01A ⁱ	36.5(6)
C16-C17-H17	121.2	H1S2-C1S-H1S3	109.5	01B-N1-01C	122.4(11)
C16-O13-H13A	110(4)	H21A-N21-H21B	120.0	01C-N1-01A ⁱ	155.7(10)
C17-C18-C13	122.3(4)	H2S1-C2S-H2S2	107.8	01S-C2S-C1S	112.5(5)
С17-С18-Н18	118.9	N1-01A-N1 ⁱ	97.3(8)	O1S-C2S-H2S1	109.1
C18-C13-C12	117.1(4)	N11-C11-N12	119.3(5)	O1S-C2S-H2S2	109.1
C18-C13-C14	119.4(5)	N12-N13-Ga	113.0(3)	O21-C21-N21	121.7(5)
C18-C17-C16	117.7(5)	N13-C12-C13	124.1(5)	O21-C21-N22	119.6(5)
C18-C17-H17	121.2	N13-C12-H12	117.9	022-C24-C23	122.3(4)
C1S-C2S-H2S1	100.1				
C1S-C2S-H2S2	109.1	N13-Ga-N23	163.54(16)	022-C24-C25	118.6(4)
	109.1	N13-Ga-N23 N13-Ga-O11	163.54(16) 78.13(16)	O22-C24-C25 O22-Ga-N13	118.6(4) 101.98(16)
C21-N21-H21A	109.1 109.1 120.0	N13-Ga-N23 N13-Ga-O11 N13-Ga-O21	163.54(16) 78.13(16) 88.27(15)	O22-C24-C25 O22-Ga-N13 O22-Ga-N23	118.6(4) 101.98(16) 90.07(16)
C21-N21-H21A C21-N21-H21B	109.1 109.1 120.0 120.0	N13-Ga-N23 N13-Ga-O11 N13-Ga-O21 N13-N12-H12A	163.54(16) 78.13(16) 88.27(15) 122.5	O22-C24-C25 O22-Ga-N13 O22-Ga-N23 O22-Ga-O11	118.6(4) 101.98(16) 90.07(16) 87.32(15)
C21-N21-H21A C21-N21-H21B C21-N22-H22A	109.1 109.1 120.0 120.0 122.3	N13-Ga-N23 N13-Ga-O11 N13-Ga-O21 N13-N12-H12A N2 ⁱⁱ -O2B-N2	163.54(16) 78.13(16) 88.27(15) 122.5 102.3(8)	022-C24-C25 022-Ga-N13 022-Ga-N23 022-Ga-O11 022-Ga-O21	118.6(4) 101.98(16) 90.07(16) 87.32(15) 165.11(14)
C21-N21-H21A C21-N21-H21B C21-N22-H22A C21-N22-N23	109.1 109.1 120.0 120.0 122.3 115.4(4)	N13-Ga-N23 N13-Ga-O11 N13-Ga-O21 N13-N12-H12A N2 ⁱⁱ -O2B-N2 N2 ⁱⁱ -O2B-O2B ⁱⁱ	163.54(16) 78.13(16) 88.27(15) 122.5 102.3(8) 53.0(6)	022-C24-C25 022-Ga-N13 022-Ga-N23 022-Ga-O11 022-Ga-O21 023-C26-C25	118.6(4) 101.98(16) 90.07(16) 87.32(15) 165.11(14) 123.3(5)
C21-N21-H21A C21-N21-H21B C21-N22-H22A C21-N22-N23 C21-O21-Ga	109.1 109.1 120.0 120.0 122.3 115.4(4) 113.4(3)	N13-Ga-N23 N13-Ga-O11 N13-Ga-O21 N13-N12-H12A N2 ⁱⁱ -O2B-N2 N2 ⁱⁱ -O2B-O2B ⁱⁱ N2-O2B-O2B ⁱⁱ	163.54(16) 78.13(16) 88.27(15) 122.5 102.3(8) 53.0(6) 49.3(6)	022-C24-C25 022-Ga-N13 022-Ga-N23 022-Ga-O11 022-Ga-O21 023-C26-C25 023-C26-C27	118.6(4) 101.98(16) 90.07(16) 87.32(15) 165.11(14) 123.3(5) 116.4(5)
C21-N21-H21A C21-N21-H21B C21-N22-H22A C21-N22-N23 C21-O21-Ga	109.1 109.1 120.0 120.0 122.3 115.4(4) 113.4(3) 126.8(4)	N13-Ga-N23 N13-Ga-O11 N13-Ga-O21 N13-N12-H12A N2 ⁱⁱ -O2B-N2 N2 ⁱⁱ -O2B-O2B ⁱⁱ N2-O2B-O2B ⁱⁱ N21-C21-N22	163.54(16) 78.13(16) 88.27(15) 122.5 102.3(8) 53.0(6) 49.3(6) 118.7(5)	O22-C24-C25 O22-Ga-N13 O22-Ga-N23 O22-Ga-O11 O22-Ga-O21 O23-C26-C25 O23-C26-C27 O2B ⁱⁱ -N2-O2A	118.6(4) 101.98(16) 90.07(16) 87.32(15) 165.11(14) 123.3(5) 116.4(5) 154.9(9)
C21-N21-H21A C21-N21-H21B C21-N22-H22A C21-N22-N23 C21-O21-Ga C22-N23-Ga	109.1 109.1 120.0 120.0 122.3 115.4(4) 113.4(3) 126.8(4) 119.7(4)	N13-Ga-N23 N13-Ga-O11 N13-Ga-O21 N13-N12-H12A N2 ⁱⁱ -O2B-N2 N2 ⁱⁱ -O2B-O2B ⁱⁱ N2-O2B-O2B ⁱⁱ N21-C21-N22 N22-N23-Ga	163.54(16) 78.13(16) 88.27(15) 122.5 102.3(8) 53.0(6) 49.3(6) 118.7(5) 113.4(3)	O22-C24-C25 O22-Ga-N13 O22-Ga-N23 O22-Ga-O11 O22-Ga-O21 O23-C26-C25 O23-C26-C27 O2B ⁱⁱ -N2-O2A O2B ⁱⁱ -N2-O2B	118.6(4) 101.98(16) 90.07(16) 87.32(15) 165.11(14) 123.3(5) 116.4(5) 154.9(9) 77.7(8)
C21-N21-H21A C21-N21-H21B C21-N22-H22A C21-O21-Ga C22-N23-Ga C22-N23-N22 C23-C22-H22	109.1 109.1 120.0 120.0 122.3 115.4(4) 113.4(3) 126.8(4) 119.7(4) 118.3	N13-Ga-N23 N13-Ga-O11 N13-Ga-O21 N13-N12-H12A N2 ⁱⁱ -O2B-N2 N2 ⁱⁱ -O2B-O2B ⁱⁱ N2-O2B-O2B ⁱⁱ N21-C21-N22 N22-N23-Ga N23-C22-C23	163.54(16) 78.13(16) 88.27(15) 122.5 102.3(8) 53.0(6) 49.3(6) 118.7(5) 113.4(3) 123.5(5)	O22-C24-C25 O22-Ga-N13 O22-Ga-N23 O22-Ga-O11 O22-Ga-O21 O23-C26-C25 O23-C26-C27 O2B ⁱⁱ -N2-O2A O2B ⁱⁱ -N2-O2B	118.6(4) 101.98(16) 90.07(16) 87.32(15) 165.11(14) 123.3(5) 116.4(5) 154.9(9) 77.7(8) 41.6(5)
C21-N21-H21A C21-N21-H21B C21-N22-H22A C21-O21-G3 C21-O21-G3 C22-N23-G3 C22-N23-N22 C23-C22-H22 C23-C28-H28	109.1 109.1 120.0 120.0 122.3 115.4(4) 113.4(3) 126.8(4) 119.7(4) 118.3 118.7	N13-Ga-N23 N13-Ga-O11 N13-Ga-O21 N13-N12-H12A N2 ⁱⁱ -O2B-N2 N2 ⁱⁱ -O2B-O2B ⁱⁱ N2-O2B-O2B ⁱⁱ N21-C21-N22 N22-N23-Ga N23-C22-C23 N23-C22-H22	163.54(16) 78.13(16) 88.27(15) 122.5 102.3(8) 53.0(6) 49.3(6) 118.7(5) 113.4(3) 123.5(5) 118.3	O22-C24-C25 O22-Ga-N13 O22-Ga-N23 O22-Ga-O11 O22-Ga-O21 O23-C26-C25 O23-C26-C27 O2B ⁱⁱ -N2-O2A O2B ⁱⁱ -N2-O2B O2B ⁱⁱ -N2-O2C O2B ⁱⁱ -N2-O2C	118.6(4) 101.98(16) 90.07(16) 87.32(15) 165.11(14) 123.3(5) 116.4(5) 154.9(9) 77.7(8) 41.6(5) 68.6(8)
C21-N21-H21A C21-N22-H22A C21-N22-N23 C21-O21-Ga (C22-N23-Ga C22-N23-Ga C23-C22-H22 C23-C28-H28 C24-C23-C22	109.1 109.1 120.0 120.0 122.3 115.4(4) 113.4(3) 126.8(4) 119.7(4) 118.3 118.7 124.9(5)	N13-Ga-N23 N13-Ga-O11 N13-Ga-O21 N13-N12-H12A N2 ⁱⁱ -O2B-N2 N2 ⁱⁱ -O2B-O2B ⁱⁱ N2-O2B-O2B ⁱⁱ N21-C21-N22 N22-N23-Ga N23-C22-C23 N23-C22-H22 N23-Ga-O11	163.54(16) 78.13(16) 88.27(15) 122.5 102.3(8) 53.0(6) 49.3(6) 118.7(5) 113.4(3) 123.5(5) 118.3 91.43(15)	O22-C24-C25 O22-Ga-N13 O22-Ga-N23 O22-Ga-O11 O22-Ga-O21 O23-C26-C25 O23-C26-C27 O2B ⁱⁱ -N2-O2A O2B ⁱⁱ -N2-O2C O2B ⁱⁱ -N2-O2C O2B ⁱⁱ -O2C-N2 O2B-N2-O2A	118.6(4) 101.98(16) 90.07(16) 87.32(15) 165.11(14) 123.3(5) 116.4(5) 154.9(9) 77.7(8) 41.6(5) 68.6(8) 123.6(8)

C24-C25-C26	121.5(5)	N23-N22-H22A	122.3	02C ⁱⁱ -02B-N2 ⁱⁱ	69.8(9)
C24-C25-H25	119.2	011-C11-N11	121.6(5)	02C ⁱⁱ -02B-02B ⁱⁱ	121.5(11)
C24-O22-Ga	128.4(3)	O11-C11-N12	119.0(4)	02C-N2-02A	118.0(9)
C25-C24-C23	119.1(4)	011-Ga-021	84.23(15)	O2C-N2-O2B	118.2(9)
		-x+2,-y+2,-z	"-х+1,-у+2,-z+2		

Tabla A1.2.52- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de [Ga(H₂XSSC)₂]NO₃·EtOH.

	x	У	z	U(eq)
C11	6093(5)	9765(5)	6448(5)	14(1)
C12	8891(5)	7669(5)	8556(4)	14(1)
C13	10226(5)	6472(5)	8794(4)	14(1)
C14	10733(5)	5602(5)	8098(4)	15(1)
C15	12091(5)	4468(5)	8419(5)	16(1)
C16	12893(5)	4228(5)	9365(5)	16(1)
C17	12400(5)	5072(5)	10066(5)	16(1)
C18	11072(6)	6165(5)	9778(5)	16(1)
C1S	3176(6)	7738(6)	6840(6)	29(1)
C21	9737(5)	8619(5)	4350(5)	14(1)
C22	8338(5)	6142(5)	4552(5)	13(1)
C23	7563(5)	5314(5)	5348(4)	13(1)
C24	7005(5)	5375(5)	6482(5)	14(1)
C25	6315(5)	4476(5)	7188(5)	15(1)
C26	6127(5)	3547(5)	6791(5)	15(1)
C27	6646(6)	3493(6)	5651(5)	19(1)
C28	7344(5)	4362(5)	4962(5)	15(1)
C2S	3394(6)	8161(6)	7812(6)	27(1)
Ga	8361(1)	7285(1)	6397(1)	12(1)
N1	9802(12)	9259(11)	780(10)	33(3)
N11	4915(5)	10911(5)	6178(4)	22(1)
N12	6829(4)	9342(4)	7454(4)	16(1)
N13	8037(4)	8102(4)	7674(4)	14(1)
N2	5785(10)	9641(9)	10570(9)	21(2)
N21	10351(5)	9471(5)	3569(4)	20(1)
N22	9354(5)	7816(4)	3972(4)	16(1)
N23	8656(4)	7020(4)	4808(4)	13(1)

011	6581(4)	9072(4)	5758(3)	16(1)
012	10032(4)	5781(4)	7172(3)	14(1)
013	14204(4)	3125(4)	9586(3)	20(1)
01A	9501(7)	9696(7)	-332(7)	14(1)
O1B	10209(11)	10019(11)	1088(10)	45(2)
01C	9514(7)	8203(7)	1561(6)	14(1)
015	4804(5)	7404(5)	8305(4)	38(1)
021	9504(4)	8546(4)	5430(3)	16(1)
022	7086(4)	6300(4)	6891(3)	16(1)
023	5479(4)	2644(4)	7455(4)	22(1)
02A	6567(7)	8883(7)	11656(6)	14(1)
02В	4398(8)	10028(7)	10504(6)	14(1)
02C	6477(9)	9874(8)	9624(7)	25(2)

Tabla A1.2.53- Factores anisotrópicos de temperatura (Å²) de [Ga(H₂XSSC)₂]NO₃·EtOH.

	U11	U22	U33	U23	U13	U12
C11	18(3)	14(2)	14(3)	-6(2)	1(2)	-9(2)
C12	18(2)	15(2)	11(2)	-6(2)	5(2)	-11(2)
C13	16(2)	15(2)	11(2)	-5(2)	3(2)	-8(2)
C14	15(2)	20(3)	9(2)	-5(2)	6(2)	-10(2)
C15	15(2)	16(3)	17(3)	-9(2)	1(2)	-3(2)
C16	11(2)	15(2)	16(3)	-5(2)	3(2)	-3(2)
C17	16(2)	18(3)	14(3)	-3(2)	-3(2)	-8(2)
C18	20(3)	18(3)	16(3)	-11(2)	4(2)	-9(2)
C1S	26(3)	28(3)	31(3)	-10(3)	-9(3)	-5(3)
C21	11(2)	13(2)	17(3)	-4(2)	-2(2)	-3(2)
C22	12(2)	13(2)	13(2)	-5(2)	-3(2)	-2(2)
C23	13(2)	17(2)	11(2)	-7(2)	1(2)	-6(2)
C24	12(2)	14(2)	17(3)	-8(2)	-2(2)	-4(2)
C25	17(2)	17(2)	13(2)	-8(2)	3(2)	-6(2)
C26	17(3)	19(3)	12(2)	-7(2)	5(2)	-12(2)
C27	22(3)	22(3)	18(3)	-9(2)	2(2)	-11(2)
C28	15(2)	16(2)	17(3)	-10(2)	1(2)	-5(2)
C2S	14(3)	31(3)	38(4)	-18(3)	-2(2)	-4(2)
Ga	13(1)	13(1)	12(1)	-7(1)	0(1)	-5(1)
N11	23(2)	22(2)	17(2)	-12(2)	-3(2)	0(2)

N12	17(2)	16(2)	17(2)	-11(2)	1(2)	-4(2)
N13	14(2)	13(2)	18(2)	-9(2)	4(2)	-6(2)
N21	26(2)	20(2)	21(2)	-11(2)	9(2)	-15(2)
N22	19(2)	19(2)	11(2)	-5(2)	2(2)	-10(2)
N23	11(2)	14(2)	15(2)	-5(2)	1(2)	-6(2)
011	17(2)	15(2)	17(2)	-10(2)	-2(2)	-3(2)
012	14(2)	16(2)	13(2)	-7(2)	-2(1)	-3(1)
013	16(2)	23(2)	15(2)	-8(2)	-5(2)	1(2)
015	22(2)	59(3)	29(2)	-24(2)	-8(2)	-2(2)
021	17(2)	17(2)	17(2)	-10(2)	2(2)	-7(2)
022	18(2)	18(2)	19(2)	-13(2)	4(2)	-9(2)
023	28(2)	25(2)	21(2)	-13(2)	10(2)	-17(2)

Tabla A1.2.54- Enlaces de hidrógeno (Å, °) de [Ga(H₂XSSC)₂]NO₃·EtOH.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O11 ⁱⁱⁱ	0.86	2.17	2.964(6)	152.8
N11-H11B…O2A ⁱⁱ	0.86	2.16	2.845(8)	136.1
N11-H11B…O23 ⁱ ∕	0.86	2.47	3.158(6)	137.2
N12-H12A…O2B [#]	0.86	2.03	2.797(8)	147.4
N12-H12A…O2C	0.86	2.07	2.849(9)	150.7
N21-H21A…O21 ^v	0.86	2.15	2.972(5)	160.9
N21-H21B…O1B	0.86	2.00	2.830(12)	162.1
N22-H22A…O1C	0.86	1.92	2.761(8)	165.6
O1S-H1SO22	0.85(2)	2.06(2)	2.805(6)	146(6)
013-H13A…01S ^{vi}	0.83(2)	1.81(2)	2.641(6)	179(6)
023-H23…013 ^{vii}	0.79(7)	2.09(7)	2.840(6)	158(7)

A1.2.10- Estructura cristalina del complejo [Ga(HNAFSC)₂]Cl·2.25H₂O.

Figura A1.36- Unidad asimétrica de la estructura cristalina del complejo [Ga(HNAFSC)₂]Cl·2.25H₂O.

Fórmula	$C_{24} H_{22} CI Ga N_6 O_{6.25}$	α (°)	90.000	Intervalo θ (°)	2.15 a 26.46
Masa Molecular	595.65	β (°)	98.540(5)	Intervalos en h, k, l	-44,44; 0,20; 0,11
т (К)	100(2)	γ (°)	90.000	No. reflex. medidas	36707
λ (Å)	0.71069	V (ų)	5114(3)	No. reflex. únicas	5231
Sistema Cristalino	Monoclínico	z	8	R _{int}	0.0385
Grupo Espacial	C2/c	D _{calc} . (mg/m ³)	1.547	R	0.0390
a (Å)	35.651(5)	μ(mm ⁻¹)	1.233	R _w	0.1080
b (Å)	15.957(5)	F(000)	2432	G.O.F.	1.116
c (Å)	9.091(5)	Dimensiones (mm)	0.50 x 0.23 x 0.22		

Tabla A1.2.55- Datos cristalográficos y de refinado del complejo [Ga(HNAFSC)₂]Cl·2.25H₂O.

Tabla A1.2.56- Distancias interatómicas (Å) de [Ga(HNAFSC)₂]Cl·2.25H₂O.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-N11	1.319(4)	C17-C111	1.408(5)	C23-C24	1.404(4)	N12-H12N	0.879(19)
C11-N12	1.354(4)	C17-C18	1.368(5)	C24-C25	1.423(4)	N12-N13	1.390(4)
C11-O11	1.267(4)	С17-Н17	0.9300	C24-O22	1.324(4)	N13-Ga1	2.019(3)
C110-C112	1.424(5)	C18-C19	1.396(5)	C25-C26	1.361(5)	N21-H21A	0.82(4)
С110-Н110	0.9300	C18-H18	0.9300	С25-Н25	0.9300	N21-H21B	0.84(6)
C111-C112	1.417(5)	C19-C110	1.367(5)	C26-C211	1.425(5)	N22-H22N	0.81(4)
C12-C13	1.427(4)	С19-Н19	0.9300	С26-Н26	0.9300	N22-N23	1.374(4)
C12-H12C	0.9300	C21-N21	1.314(4)	C27-C211	1.411(4)	N23-Ga1	2.019(3)
C12-N13	1.286(4)	C21-N22	1.352(4)	C27-C28	1.363(5)	011-Ga1	2.021(2)
C13-C112	1.447(4)	C21-O21	1.270(4)	С27-Н27	0.9300	012-Ga1	1.894(2)
C13-C14	1.405(4)	C210-C212	1.422(5)	C28-C29	1.406(5)	01W-H11W	0.838(19)
C14-C15	1.428(5)	C210-H210	0.9300	С28-Н28	0.9300	01W-H12W	0.85(2)
C14-O12	1.313(4)	C211-C212	1.410(5)	C29-C210	1.375(5)	O21-Ga1	2.043(2)
C15-C16	1.358(5)	C22-C23	1.435(4)	С29-Н29	0.9300	O22-Ga1	1.915(2)
C15-H15	0.9300	C22-H22C	0.9300	Cl2-Cl2 ⁱⁱ	1.801(3)	O2W-Cl2	1.956(2)
C16-C111	1.421(5)	C22-N23	1.293(4)	N11-H11A	0.88(4)	O2W-Cl2 ⁱ	1.956(2)
C16-H16	0.9300	C23-C212	1.452(4)	N11-H11B	0.78(4)	O3W-Cl2	2.078(6)
			'-x+1,y,-z+3/2	"-x+1,-y+2,-:	z+1		

Tabla A1.2.57- Ángulos de enlace (°) de [Ga(HNAFSC)₂]Cl·2.25H₂O.

	Ángulo		Ángulo		Ángulo
C11-N11-H11A	117(2)	C21-N21-H21B	125(4)	Cl2 ⁱⁱ -Cl2-O3W	105.7(2)
C11-N11-H11B	118(3)	C21-N22-H22N	124(3)	H11A-N11-H11B	124(4)

C11-N12-H12N	122(3)	C21-N22-N23	115.2(3)	H11W-01W-H12W	112(7)
C11-N12-N13	114.0(2)	C21-O21-Ga1	114.61(19)	H21A-N21-H21B	111(5)
C11-O11-Ga1	114.6(2)	C210-C212-C23	123.3(3)	N11-C11-N12	118.2(3)
C110-C112-C13	123.5(3)	C210-C29-C28	120.9(3)	N12-N13-Ga1	112.66(19)
C110-C19-C18	121.3(3)	С210-С29-Н29	119.6	N13-C12-C13	124.5(3)
С110-С19-Н19	119.3	C211-C212-C210	117.2(3)	N13-C12-H12C	117.7
C111-C112-C110	117.0(3)	C211-C212-C23	119.5(3)	N13-Ga1-N23	169.35(10)
C111-C112-C13	119.5(3)	C211-C26-H26	119.4	N13-Ga1-O11	78.50(10)
C111-C16-H16	119.1	С211-С27-Н27	119.5	N13-Ga1-O21	91.72(9)
С111-С17-Н17	119.3	С212-С210-Н210	119.5	N13-N12-H12N	120(3)
С112-С110-Н110	119.4	C212-C211-C26	119.1(3)	N21-C21-N22	118.1(3)
C112-C111-C16	118.5(3)	C212-C211-C27	120.6(3)	N22-N23-Ga1	113.22(19)
C12-C13-C112	118.5(3)	C22-C23-C212	118.6(3)	N23-C22-C23	123.7(3)
C12-N13-Ga1	129.3(2)	C22-N23-Ga1	128.5(2)	N23-C22-H22C	118.1
C12-N13-N12	118.1(3)	C22-N23-N22	118.1(3)	N23-Ga1-O11	98.00(10)
C13-C12-H12C	117.7	С23-С22-Н22С	118.1	N23-Ga1-O21	77.98(9)
C13-C14-C15	118.6(3)	C23-C24-C25	119.3(3)	N23-N22-H22N	121(3)
C14-C13-C112	120.2(3)	C24-C23-C212	119.6(3)	011-C11-N11	122.0(3)
C14-C13-C12	121.2(3)	C24-C23-C22	121.9(3)	011-C11-N12	119.8(3)
С14-С15-Н15	119.3	С24-С25-Н25	119.3	011-Ga1-O21	86.77(10)
C14-O12-Ga1	131.9(2)	C24-O22-Ga1	128.2(2)	O12-C14-C13	125.1(3)
C15-C16-C111	121.9(3)	C25-C26-C211	121.1(3)	012-C14-C15	116.3(3)
С15-С16-Н16	119.1	С25-С26-Н26	119.4	012-Ga1-N13	87.79(10)
C16-C15-C14	121.3(3)	C26-C25-C24	121.4(3)	012-Ga1-N23	95.50(10)
С16-С15-Н15	119.3	C26-C25-H25	119.3	012-Ga1-011	166.30(9)
C17-C111-C112	120.0(3)	C27-C211-C26	120.2(3)	012-Ga1-O21	93.79(10)
C17-C111-C16	121.5(3)	C27-C28-C29	119.3(3)	012-Ga1-O22	97.38(11)
C17-C18-C19	118.9(3)	C27-C28-H28	120.4	O21-C21-N21	123.0(3)
С17-С18-Н18	120.5	C28-C27-C211	120.9(3)	O21-C21-N22	118.9(3)
C18-C17-C111	121.5(3)	C28-C27-H27	119.5	O22-C24-C23	124.4(3)
С18-С17-Н17	119.3	C28-C29-H29	119.6	O22-C24-C25	116.2(3)
С18-С19-Н19	119.3	C29-C210-C212	121.1(3)	O22-Ga1-N13	102.18(10)
C19-C110-C112	121.3(3)	C29-C210-H210	119.5	O22-Ga1-N23	87.47(10)
C19-C110-H110	119.4	C29-C28-H28	120.4	O22-Ga1-O11	85.57(10)
С19-С18-Н18	120.5	Cl2 ⁱ -O2W-Cl2	177.5(4)	O22-Ga1-O21	162.44(10)
C21-N21-H21A	122(3)	Cl2 ⁱⁱ -Cl2-O2W	111.9(2)	02W-Cl2-O3W	133.9(2)

ⁱ -x+1,y,-z+3/2 ⁱⁱ -x+1,-y+2,-z+1

	x	У	Z	U(eq)
C11	4330(1)	5442(2)	9054(3)	17(1)
C12	3599(1)	5256(2)	6077(3)	18(1)
C13	3360(1)	5721(2)	4970(3)	18(1)
C14	3365(1)	6601(2)	4958(4)	20(1)
C15	3094(1)	7032(2)	3911(4)	24(1)
C16	2840(1)	6607(2)	2920(4)	26(1)
C17	2576(1)	5283(2)	1809(4)	26(1)
C18	2571(1)	4426(2)	1749(4)	26(1)
C19	2830(1)	3977(2)	2754(4)	24(1)
C110	3082(1)	4376(2)	3801(4)	22(1)
C111	2834(1)	5718(2)	2862(4)	21(1)
C112	3095(1)	5267(2)	3898(3)	19(1)
C21	4583(1)	7394(2)	5951(3)	18(1)
C22	4109(1)	8607(2)	8274(4)	20(1)
C23	3804(1)	8589(2)	9139(3)	17(1)
C24	3629(1)	7835(2)	9460(3)	19(1)
C25	3333(1)	7855(2)	10348(4)	23(1)
C26	3211(1)	8590(2)	10873(4)	23(1)
C27	3238(1)	10126(2)	11072(4)	26(1)
C28	3385(1)	10879(2)	10733(4)	27(1)
C29	3684(1)	10897(2)	9885(4)	26(1)
C210	3826(1)	10168(2)	9380(4)	25(1)
C211	3374(1)	9370(2)	10540(3)	20(1)
C212	3673(1)	9375(2)	9688(3)	18(1)
Cl1	5000	6194(1)	12500	22(1)
Cl2	4997(1)	9472(1)	5347(2)	33(1)
Ga1	3992(1)	6800(1)	7421(1)	17(1)
N11	4540(1)	4985(2)	10067(3)	18(1)
N12	4053(1)	5053(2)	8115(3)	18(1)
N13	3850(1)	5583(2)	7073(3)	16(1)
N21	4857(1)	7455(2)	5141(4)	27(1)

Tabla A1.2.58- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de [Ga(HNAFSC)₂]Cl·2.25H₂O.

N22	4508(1)	8067(2)	6763(3)	20(1)
N23	4220(1)	7961(2)	7595(3)	17(1)
011	4374(1)	6227(1)	8960(2)	20(1)
012	3595(1)	7072(1)	5873(3)	23(1)
01W	4098(1)	3431(2)	7032(3)	31(1)
021	4391(1)	6728(1)	6029(2)	19(1)
022	3734(1)	7084(1)	9055(3)	25(1)
02W	5000	9446(4)	7500	40(2)
O3W	5251(2)	8741(3)	3879(7)	42(1)
04W	4176(2)	1733(4)	7711(7)	41(2)

Tabla A1.2.59- Factores anisotrópicos de temperatura	(\AA^2) de [Ga(HNAFSC) ₂]Cl·2.25H ₂ O.

	U11	U22	U33	U23	U13	U12
C11	21(2)	14(1)	19(2)	-4(1)	10(1)	-2(1)
C12	21(2)	12(1)	21(2)	1(1)	7(1)	1(1)
C13	17(2)	18(2)	19(2)	1(1)	7(1)	2(1)
C14	20(2)	16(2)	24(2)	0(1)	7(1)	1(1)
C15	23(2)	20(2)	31(2)	6(1)	6(1)	4(1)
C16	25(2)	26(2)	27(2)	8(1)	4(1)	5(1)
C17	20(2)	35(2)	23(2)	5(2)	5(1)	2(1)
C18	22(2)	36(2)	22(2)	-5(1)	5(1)	-5(1)
C19	22(2)	24(2)	27(2)	-3(1)	8(1)	-4(1)
C110	25(2)	20(2)	21(2)	-1(1)	6(1)	2(1)
C111	19(2)	26(2)	20(2)	2(1)	7(1)	2(1)
C112	18(2)	19(2)	20(2)	0(1)	7(1)	0(1)
C21	19(2)	16(2)	17(1)	1(1)	3(1)	1(1)
C22	21(2)	12(1)	26(2)	-2(1)	2(1)	-1(1)
C23	21(2)	13(1)	18(2)	-2(1)	4(1)	0(1)
C24	23(2)	15(2)	20(2)	-1(1)	5(1)	1(1)
C25	25(2)	19(2)	26(2)	4(1)	10(1)	-1(1)
C26	25(2)	24(2)	22(2)	2(1)	9(1)	5(1)
C27	34(2)	24(2)	21(2)	-2(1)	4(2)	10(1)
C28	34(2)	22(2)	25(2)	-7(1)	0(2)	9(1)
C29	29(2)	16(2)	33(2)	-7(1)	-1(2)	0(1)
C210	23(2)	16(2)	35(2)	-6(1)	3(1)	0(1)
C211	26(2)	16(2)	16(2)	-2(1)	-1(1)	5(1)

C212	19(2)	17(2)	18(2)	-2(1)	-4(1)	4(1)	
Cl1	24(1)	25(1)	15(1)	0	1(1)	0	
CI2	40(1)	21(1)	40(1)	3(1)	12(1)	-3(1)	
Ga1	22(1)	9(1)	20(1)	0(1)	6(1)	0(1)	
N11	24(2)	11(1)	20(1)	0(1)	3(1)	-3(1)	
N12	24(1)	10(1)	20(1)	2(1)	1(1)	1(1)	
N13	20(1)	11(1)	19(1)	1(1)	4(1)	2(1)	
N21	32(2)	22(2)	30(2)	-8(1)	16(1)	-7(1)	
N22	25(1)	12(1)	27(2)	0(1)	11(1)	-3(1)	
N23	19(1)	14(1)	20(1)	1(1)	7(1)	0(1)	
011	29(1)	11(1)	20(1)	0(1)	2(1)	-2(1)	
012	26(1)	12(1)	29(1)	1(1)	1(1)	1(1)	
01W	46(2)	19(1)	26(1)	-3(1)	0(1)	-4(1)	
021	24(1)	12(1)	22(1)	-1(1)	7(1)	0(1)	
022	35(1)	13(1)	30(1)	-2(1)	17(1)	-1(1)	
02W	39(4)	30(3)	49(4)	0	3(3)	0	
03W	42(3)	21(3)	63(4)	7(3)	14(3)	-4(2)	
04W	54(4)	36(4)	33(3)	2(3)	5(3)	-9(3)	
Tabla A1.2.60- Enlaces de hidrógeno (Å, °) de [Ga(HNAFSC) ₂]Cl·2.25H ₂ O.							
		D-H···A	d(D-H) d(H…A)	d(D…A) <([OHA)		

Tabla A1.2.60- Enlaces de hidrógeno (Å,	°) de [Ga	(HNAFSC)2]CI	2.25H₂O.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…Cl1	0.88(4)	2.33(4)	3.198(3)	166(3)
N11-H11B…O21 ⁱ	0.78(4)	2.19(4)	2.942(4)	163(4)
01W-H11W…O22 ⁱⁱ	0.838(19)	2.11(2)	2.939(4)	168(5)
N12-H12N…O1W	0.879(19)	1.92(2)	2.783(4)	166(5)
O1W-H12W…Cl1 ⁱⁱⁱ	0.85(2)	2.42(4)	3.237(3)	160(9)
N21-H21A…Cl1 ^{iv}	0.82(4)	2.42(4)	3.230(3)	171(4)
N21-H21B…Cl2	0.84(6)	2.53(6)	3.259(4)	145(5)
N21-H21B…O3W	0.84(6)	2.02(6)	2.824(6)	159(6)
N22-H22N…Cl2	0.81(4)	2.52(4)	3.223(3)	147(3)
N22-H22N…O2W	0.81(4)	2.07(4)	2.831(6)	158(4)
['] x, -y+1, z+1/2; ^{''} x	z, -y+1, z-1/2;	[₩] -x+1, -y+	·1, -z+2; ^{iv} x,	y, z-1.

A1.2.11- Estructura cristalina del complejo [Ga(H₂DBZBSC)(HDBZBSC)]·H₂O.

Figura A1.37- Unidad asimétrica de la estructura cristalina del complejo [Ga(H₂DBZBSC)(HDBZBSC)]·H₂O.

Fórmula	$C_{28} H_{15} Ga N_{12} O_7$	α (°)	115.929(5)	Intervalo θ (°)	1.61 a 23.29
Masa Molecular	702.04	β (°)	90.135(5)	Intervalos en h, k, l	-14,14; -14,13; 0,16
т (к)	100(2)	γ (°)	118.032(5)	No. reflex. medidas	49387
λ (Å)	0.71069	V (Å ³)	1947.6(12)	No. reflex. únicas	5495
Sistema Cristalino	Triclínico	z	2	R _{int}	0.0582
Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.196	R	0.1332
a (Å)	12.980(5)	μ(mm ⁻¹)	0.759	R _w	0.4081
b (Å)	13.444(5)	F(000)	708	G.O.F.	1.853
c (Å)	14.568(5)	Dimensiones (mm)	0.18 x 0.11 x 0.07		

Tabla A1.2.61- Datos cristalográficos y de refinado del complejo [Ga(H₂DBZBSC)(HDBZBSC)]·H₂O.

Tabla A1.2.62- Distancias interatómicas (Å) de [Ga(H₂DBZBSC)(HDBZBSC)]·H₂O.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C10A-N15A	1.34717	C17-C111	1.58617	C26-C27	1.40215	N14A-N15A	1.342
C10A-N16A	1.33517	C17-C16	1.39216	C26-H26	0.9300	N21-H21A	0.8600
C10A-O13A	1.21617	C18-C17	1.35016	C27-C211	1.52416	N21-H21B	0.8600
C11-N11	1.32015	C18-H18	0.9300	C28-C27	1.39416	N22-C21	1.32115
C110-N15	1.37416	C19-N14	1.27117	C28-H28	0.9300	N22-H22	0.8600
C110-N16	1.28016	C19-N14A	1.302	C29-H29	0.9300	N23-C22	1.29115
C110-O13	1.21315	C21-N21	1.34115	Ga1-N13	2.0179	N23-N22	1.39012
C111-C112	1.52815	C210-N26	1.31316	Ga1-N23	2.0159	N24-C29	1.28613
C111-C113	1.542	C211-C212	1.47317	Ga1-011	2.0248	N24-N25	1.35212
C111-C114	1.502	C211-C213	1.52816	Ga1-012	1.9088	N25-C210	1.33315

C12-H12A	0.9300	C211-C214	1.56719	Ga1-O21	2.0127	N25-H25	0.8600
C13-C12	1.43515	C22-H22A	0.9300	Ga1-O22	1.8737	N26-H26A	0.8600
C13-C14	1.39814	C23-C22	1.46515	N11-H11A	0.8600	N26-H26B	0.8600
C13-C18	1.42815	C23-C28	1.35117	N11-H11B	0.8600	011-C11	1.29415
C14-C15	1.42315	C24-C23	1.41015	N12-C11	1.32315	O12-C14	1.31912
C15-C16	1.40115	C25-C24	1.41414	N13-C12	1.30214	O21-C21	1.26814
C15-C19	1.47014	C25-C26	1.36915	N13-N12	1.38212	O22-C24	1.33313
C16-H16	0.9300	C25-C29	1.46814	N14-N15	1.362	O23-C210	1.26513

Tabla A1.2.63-	Ángulos de enlace	(°) de [[Ga(H ₂ DB	ZBSC)(HD	BZBSC)]	$ \cdot H_2O $

	Ángulo		Ángulo		Ángulo
C10A-N15A-N14A	118.019	C210-N26-H26A	120.0	N14A-C19-C15	122.412
C11-N11-H11A	120.0	C210-N26-H26B	120.0	N16-C110-N15	115.816
C11-N11-H11B	120.0	C212-C211-C213	111.618	N16A-C10A-N15A	117.617
C11-N12-N13	116.09	C212-C211-C214	1122	N22-C21-N21	117.911
C11-O11-Ga1	113.58	C212-C211-C27	110.915	N22-N23-Ga1	111.57
C110-N15-N14	120.215	C213-C211-C214	102.918	N23-C22-C23	123.210
C112-C111-C113	105.713	C22-N23-Ga1	127.77	N23-C22-H22A	118.4
C112-C111-C17	110.511	C22-N23-N22	119.59	N23-Ga1-N13	179.13
C113-C111-C17	109.911	C23-C22-H22A	118.4	N23-Ga1-O11	101.44
C114-C111-C112	107.813	C23-C24-C25	116.410	N23-N22-H22	122.4
C114-C111-C113	113.414	C23-C28-C27	122.510	N24-C29-C25	119.810
C114-C111-C17	109.511	С23-С28-Н28	118.7	N24-C29-H29	120.1
C12-N13-Ga1	128.57	C24-C23-C22	121.210	N24-N25-H25	119.9
C12-N13-N12	118.68	C24-C25-C29	117.510	N26-C210-N25	119.010
C13-C12-H12A	118.8	C24-O22-Ga1	129.56	011-C11-N11	120.312
C13-C14-C15	117.110	C25-C26-C27	123.510	O11-C11-N12	119.410
C13-C18-H18	118.8	C25-C26-H26	118.3	O12-C14-C13	123.610
C14-C13-C12	123.710	C25-C29-H29	120.1	O12-C14-C15	119.29
C14-C13-C18	119.910	C26-C25-C24	120.010	O12-Ga1-N13	87.73
C14-C15-C19	119.410	C26-C25-C29	122.49	O12-Ga1-N23	91.94
C14-O12-Ga1	130.27	C26-C27-C211	119.810	012-Ga1-011	163.53
С15-С16-Н16	119.4	C27-C211-C213	112.713	012-Ga1-O21	89.43
C16-C15-C14	120.89	C27-C211-C214	106.715	O13-C110-N15	118.015
C16-C15-C19	119.89	C27-C26-H26	118.3	O13-C110-N16	126.116
C16-C17-C111	117.011	C27-C28-H28	118.7	013A-C10A-N15A	119.119

C17-C16-C15	121.210	C28-C23-C22	116.610	013A-C10A-N16A	123.119
С17-С16-Н16	119.4	C28-C23-C24	122.110	O21-C21-N21	121.711
C17-C18-C13	122.49	C28-C27-C211	124.710	O21-C21-N22	120.09
С17-С18-Н18	118.8	C28-C27-C26	115.510	O21-Ga1-N13	100.43
C18-C13-C12	116.49	C29-N24-N25	116.99	O21-Ga1-N23	78.83
C18-C17-C111	124.610	H11A-N11-H11B	120.0	O21-Ga1-O11	83.73
C18-C17-C16	118.410	H21A-N21-H21B	120.0	022-C24-C23	125.99
C19-N14-N15	116.213	H26A-N26-H26B	120.0	O22-C24-C25	117.69
C19-N14A-N15A	118.918	N12-C11-N11	120.212	O22-Ga1-N13	91.13
C21-N21-H21A	120.0	N12-N13-Ga1	112.17	O22-Ga1-N23	89.83
C21-N21-H21B	120.0	N13-C12-C13	122.49	022-Ga1-011	90.53
C21-N22-H22	122.4	N13-C12-H12A	118.8	O22-Ga1-O12	99.43
C21-N22-N23	115.39	N13-Ga1-O11	78.93	O22-Ga1-O21	165.93
C21-O21-Ga1	113.87	N14-C19-C15	123.611	O23-C210-N25	118.113
C210-N25-H25	119.9	N14-C19-N14A	113.913	O23-C210-N26	122.911
C210-N25-N24	120.210				

Tabla A1.2.64- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de [Ga(H₂DBZBSC)(HDBZBSC)]·H₂O.

	x	У	Z	Ueq
C10A	124019	150319	743115	536
C11	679611	743511	721110	493
C110	-204114	-47816	538715	335
C111	-6912	357013	301911	674
C112	-116313	357817	339912	774
C113	54018	471018	279916	1097
C114	-52014	227214	205511	754
C12	407610	581610	53588	373
C13	281910	484810	50818	383
C14	234311	409210	55668	403
C15	10929	31139	51578	393
C16	36311	298110	43519	463
C17	84312	378111	39098	503
C18	204010	467510	42598	393
C19	56510	222410	55829	403
C21	491914	367213	72389	604

C210	379015	1147212	89129	725
C211	213918	779218	1151013	1027
C212	110030	790040	1127030	35040
C213	181040	684040	1192030	29030
C214	319030	910040	1244818	58080
C22	373114	525212	904610	634
C23	345313	627312	93529	533
C24	377010	703110	88548	403
C25	348210	800810	92298	362
C26	295211	819811	100519	443
C27	266313	746312	105619	533
C28	293714	649012	1016610	644
C29	383110	883410	87438	393
Ga1	45831	55651	72351	381
N11	79359	838711	751310	623
N12	60618	70529	63398	422
N13	48708	61068	61247	372
N14	-54013	132013	526210	223
N14A	120718	227317	630516	485
N15	-87313	54914	570913	384
N15A	72617	129020	650914	575
N16	-277919	-59020	470817	727
N16A	213119	270917	811918	737
N21	520014	276213	69939	895
N22	454311	402810	81028	653
N23	42949	49989	83297	442
N24	36257	97647	90816	322
N25	393311	1046310	85788	593
N26	331310	117529	97138	543
011	63817	68918	77807	502
012	29987	42057	63396	412
013	-227312	-120713	573612	464
013A	83416	61717	762020	12912
01W	973030	942030	1048020	327
021	51218	42787	67306	492
022	42567	68657	80346	392

023	415418	1214314	845611	1568
02W	256020	1369030	1047020	587
03W	393030	957030	625030	708
04W	562030	166040	496030	469

Tabla A1.2.65- Factores anisotrópicos de temperatura ($Å^2$) de [Ga(H₂DBZBSC)(HDBZBSC)]·H₂O.

	U11	U22	U33	U23	U13	U12
C11	588	377	618	226	287	336
C111	799	639	568	357	-77	317
C112	759	11513	7110	469	238	7010
C113	12815	9713	12516	8813	113	4712
C114	8410	7310	458	97	-57	438
C12	587	456	366	335	325	366
C13	627	346	386	265	325	325
C14	768	467	285	265	316	466
C15	456	255	396	205	145	95
C16	587	316	406	175	66	185
C17	869	386	286	185	106	317
C18	597	376	255	195	175	256
C19	527	406	386	265	165	266
C21	12812	729	447	417	478	869
C210	15915	578	397	317	259	7810
C211	22020	14515	9612	9912	13214	16316
C212	53070	780100	48070	58080	48060	61080
C213	64080	47060	29040	35050	39050	52060
C214	50090	1300200	4315	15050	11030	710130
C22	14212	648	578	517	669	859
C23	10410	578	436	346	367	668
C24	637	366	416	245	236	356
C25	576	346	325	185	155	325
C26	717	467	416	235	286	476
C27	10610	598	457	386	507	668
C28	12512	628	709	557	619	739
C29	687	346	325	235	205	326
Ga1	651	421	381	301	291	411
N11	466	687	928	567	226	316

N12	465	496	556	365	235	335
N13	525	315	455	274	285	274
N14	379	178	117	106	126	107
N14A	6812	4511	6713	4211	5411	4010
N15	5511	339	3910	298	288	229
N15A	6112	6814	6013	4412	2911	3411
N16	10919	5914	7215	4412	3614	5014
N16A	7414	4813	8817	3812	-1913	2111
N21	19515	11910	718	708	839	14211
N22	14411	737	536	496	587	938
N23	877	496	355	284	305	566
N24	485	284	335	204	154	244
N25	1159	627	446	355	436	707
N26	998	526	516	345	416	596
011	595	535	585	374	164	354
012	544	444	474	374	244	294
013A	4211	4011	28040	6617	1815	149
021	836	555	515	394	374	555
022	635	414	424	304	334	394
023	38020	17613	13210	13911	19214	24016

Tabla A1.2.66- Enlaces de hidrógeno (Å, °) de [Ga(H₂DBZBSC)(HDBZBSC)]·H₂O.

_

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N(11)-H(11B)O(13) ⁱ	0.86	2.16	2.905(18)	144.5
N(11)-H(11A)O(1W) ⁱⁱ	0.86	2.51	3.23(3)	142.5
N(21)-H(21B)O(23) ⁱⁱⁱ	0.86	2.04	2.754(15)	140.0
N(21)-H(21A)O(4W)	0.86	2.05	2.87(4)	158.2
N(22)-H(22)O(23) ⁱⁱⁱ	0.86	1.89	2.624(13)	142.1
N(25)-H(25)O(3W)	0.86	2.32	3.06(3)	145.3
N(26)-H(26B)N(24)	0.86	2.32	2.649(12)	102.9
N(26)-H(26A)O(2W)	0.86	2.14	2.98(3)	164.6

¹x+1,y+1,z; ["]-x+2,-y+2,-z+2; ^{""}x,y-1,z

A1.2.12- Estructura cristalina del complejo [Ga(H₂DBZBSC)₂]Cl·1/2H₂O.

Figura A1.38- Unidad asimétrica de la estructura cristalina del complejo [Ga(H₂DBZBSC)₂]Cl·1/2H₂O.

Tabla A1.2.67- Datos cristalográficos y de refinado del complejo [Ga(H₂DBZBSC)₂]Cl·1/2H₂O.

Fórmula	C ₂₈ H ₃₈ Cl Ga N ₁₂ O ₇	α (°)	90.000	Intervalo θ (°)	1.70 a 26.37
Masa Molecular	759.87	β(°)	90.000	Intervalos en h, k, l	0,27; 0,16; 0,17
т (К)	100.0(1)	γ (°)	90.000	No. reflex. medidas	22493
λ (Å)	0.71069	V (Å ³)	4075(2)	No. reflex. únicas	4106
Sistema Cristalino	Ortorrómbico	z	4	R _{int}	0.0904
Grupo Espacial	Pnna	D _{calc} . (mg/m ³)	1.439	R	0.0900
a (Å)	21.951(5)	μ(mm ⁻¹)	1.511	R _w	0.2697
b (Å)	13.007(5)	F(000)	1808	G.O.F.	1.052
c (Å)	14.273(5)	Dimensiones (mm)	0.15 x 0.11 x 0.06		

Tabla A1.2.68- Distancias interatómicas (Å) de [Ga(H₂DBZBSC)₂]Cl·1/2H₂O.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-N1	1.318(9)	C2-N3	1.290(8)	C7-C11	1.537(9)	N2-H2A	0.8600
C1-N2	1.369(8)	C3-C2	1.434(10)	C8-C7	1.414(10)	N2-N3	1.394(7)
C1-O1	1.265(7)	C3-C4	1.418(9)	C8-H8	0.9300	N3-Ga	2.022(5)
C10-N5	1.364(9)	C3-C8	1.411(9)	С9-Н9	0.9300	N5-H5	0.8600
C10-N6	1.317(10)	C4-O2	1.339(7)	C9-N4	1.275(8)	N5-N4	1.380(7)
C10-O3	1.223(8)	C5-C4	1.400(9)	Ga-N3#1	2.022(5)	N6-H6A	0.8600
C11-C12	1.470(11)	C5-C6	1.416(9)	Ga-O1#1	2.017(5)	N6-H6B	0.8600
C11-C13	1.588(12)	C5-C9	1.454(8)	Ga-O2#1	1.915(4)	O1-Ga	2.017(5)
C11-C14	1.511(12)	C6-C7	1.373(9)	N1-H1A	0.8600	O2-Ga	1.915(4)
C2-H2	0.9300	C6-H6	0.9300	N1-H1B	0.8600		

Tabla A1.2.69-	Ángulos de e	nlace (°) de	[Ga(H ₂ DBZBSC)	₂]Cl·1/2H ₂ O.

	Ángulo		Ángulo	·	Ángulo
C1-N1-H1A	120.0	C5-C4-C3	119.3(6)	N4-C9-H9	119.4
C1-N1-H1B	120.0	С5-С6-Н6	118.3	N4-N5-H5	120.2
C1-N2-H2A	123.8	С5-С9-Н9	119.4	N6-C10-N5	115.4(6)
C1-N2-N3	112.5(5)	C6-C5-C9	122.2(6)	O1 ⁱ -Ga-N3	96.18(19)
C1-O1-Ga	114.9(4)	C6-C7-C11	123.5(7)	O1 ⁱ -Ga-N3 ⁱ	78.2(2)
C10-N5-H5	120.2	C6-C7-C8	115.8(6)	01 ⁱ -Ga-O1	88.7(3)
C10-N5-N4	119.6(6)	C7-C11-C13	109.0(7)	01-C1-N1	122.4(6)
C10-N6-H6A	120.0	C7-C6-C5	123.4(7)	01-C1-N2	119.7(6)
C10-N6-H6B	120.0	С7-С6-Н6	118.3	O1-Ga-N3	78.2(2)
C12-C11-C13	103.8(8)	С7-С8-Н8	118.2	O1-Ga-N3 ⁱ	96.18(19)
C12-C11-C14	116.7(8)	C8-C3-C2	116.6(6)	O2 ⁱ -Ga-N3	96.18(19)
C12-C11-C7	112.1(6)	C8-C3-C4	118.1(6)	O2 ⁱ -Ga-N3 ⁱ	89.1(2)
C14-C11-C13	102.5(7)	C8-C7-C11	120.7(6)	02 ⁱ -Ga-O1	90.42(19)
C14-C11-C7	111.7(6)	C9-N4-N5	114.6(6)	02 ⁱ -Ga-01 ⁱ	167.15(17)
C2-N3-Ga	126.7(4)	H1A-N1-H1B	120.0	O2-C4-C3	121.6(6)
C2-N3-N2	119.5(5)	H6A-N6-H6B	120.0	02-C4-C5	119.0(5)
C3-C2-H2	119.3	N1-C1-N2	117.9(6)	O2-Ga-N3	89.1(2)
C3-C8-C7	123.5(6)	N2-N3-Ga	112.9(4)	O2-Ga-N3 ⁱ	96.18(19)
C3-C8-H8	118.2	N3#1-Ga-N3	172.3(3)	02-Ga-01	167.15(17)
C4-C3-C2	125.0(6)	N3-C2-C3	121.3(5)	02-Ga-01 ⁱ	90.42(19)
C4-C5-C6	119.4(6)	N3-C2-H2	119.3	O2-Ga-O2 ⁱ	93.2(3)
C4-C5-C9	118.4(5)	N3-N2-H2A	123.8	O3-C10-N5	120.4(7)
C4-O2-Ga	120.7(4)	N4-C9-C5	121.3(6)	O3-C10-N6	124.2(7)
		х,-у+	1/2		

Tabla A1.2.70- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de $[Ga(H_2DBZBSC)_2]Cl \cdot 1/2H_2O$.

	x	У	Z	U(eq)
C1	7064(3)	1117(5)	1669(4)	31(2)
C2	8224(3)	2361(5)	486(4)	29(2)
C3	8779(3)	2885(5)	711(4)	28(2)
C4	8911(3)	3348(4)	1587(4)	27(1)
C5	9511(3)	3642(4)	1789(4)	23(1)
C6	9962(3)	3559(5)	1084(5)	32(2)
С7	9844(3)	3210(5)	194(4)	32(2)

C8	9248(3)	2839(5)	37(5)	35(2)
C9	9654(3)	3978(4)	2735(4)	25(1)
C10	10770(3)	5089(5)	4153(5)	36(2)
C11	10325(4)	3175(6)	-588(5)	42(2)
C12	10502(6)	2117(7)	-826(9)	93(5)
C13	10031(6)	3602(8)	-1528(6)	76(3)
C14	10836(5)	3928(8)	-411(7)	72(3)
Cl	7500	0	9309(2)	54(1)
Ga	7876(1)	2500	2500	26(1)
N1	6674(3)	361(4)	1536(4)	32(1)
N2	7314(3)	1574(4)	895(4)	32(1)
N3	7814(3)	2187(4)	1115(4)	27(1)
N4	10170(3)	4372(4)	2935(4)	30(1)
N5	10243(3)	4629(4)	3866(4)	33(1)
N6	11164(3)	5297(7)	3483(5)	72(2)
01	7219(2)	1416(4)	2478(3)	32(1)
01W	7500	0	4410(20)	53(9)
02	8475(2)	3526(3)	2223(3)	26(1)
03	10851(2)	5288(3)	4981(3)	37(1)

Tabla A1.2.71-Factores anisotrópicos de temperatura ($Å^2$) de [Ga(H2DBZBSC)2]Cl·	l/2H₂O.

	U11	U22	U33	U23	U13	U12
C1	21(4)	39(4)	33(3)	-2(3)	-4(3)	5(3)
C2	31(4)	36(4)	19(3)	-2(2)	-3(3)	7(3)
С3	38(4)	25(3)	22(3)	5(2)	1(3)	1(3)
C4	33(4)	23(3)	26(3)	6(2)	2(3)	7(3)
C5	24(4)	18(3)	28(3)	1(2)	3(3)	2(2)
C6	31(4)	22(3)	44(4)	4(3)	5(3)	0(3)
C7	38(4)	27(3)	32(3)	-4(3)	8(3)	-3(3)
C8	50(5)	25(3)	29(3)	-3(3)	7(3)	-1(3)
С9	31(4)	20(3)	25(3)	4(2)	2(3)	0(3)
C10	36(5)	36(4)	35(4)	6(3)	-11(3)	-3(3)
C11	41(5)	37(4)	49(4)	-12(3)	21(4)	-6(3)
C12	119(10)	36(4)	125(9)	11(5)	91(8)	18(5)
C13	109(9)	75(6)	45(5)	14(5)	15(5)	9(6)
C14	84(8)	62(6)	71(6)	-8(5)	37(6)	-27(5)

СІ	66(2)	59(2)	36(1)	0	0	-7(2)
Ga	26(1)	28(1)	24(1)	-1(1)	0	0
N1	32(4)	34(3)	30(3)	2(2)	-1(2)	-7(3)
N2	32(4)	35(3)	29(3)	2(2)	-8(2)	-4(2)
N3	24(3)	28(3)	28(3)	1(2)	-6(2)	-2(2)
N4	27(4)	32(3)	31(3)	4(2)	-5(2)	2(2)
N5	37(4)	33(3)	28(3)	3(2)	-2(2)	-2(3)
N6	44(5)	125(7)	47(4)	5(4)	-12(3)	-38(5)
01	31(3)	35(2)	31(2)	-2(2)	-1(2)	-4(2)
01W	80(30)	22(14)	60(19)	0	0	-4(15)
02	23(3)	29(2)	24(2)	-1(2)	4(2)	-1(2)
03	35(3)	38(3)	38(2)	-4(2)	-11(2)	-3(2)

Tabla A1.2.72- Enlaces de hidrógeno ((Å, °) (de [Ga(H₂l	DBZBSC) ₂]Cl·1/2H ₂ O
---------------------------------------	----------	------------	--

D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O2 ⁱⁱ	0.86	2.27	2.990(7)	141.6
N1-H1B…O3 ⁱⁱⁱ	0.86	2.22	2.984(7)	147.7
N2-H2A…Cl ^{iv}	0.86	2.53	3.080(6)	122.3
N5-H5…O3 ^v	0.86	2.10	2.914(8)	158.3
N6-H6A…Cl ^{vi}	0.86	2.52	3.185(8)	134.7
N6-H6B…N4	0.86	2.24	2.612(9)	106.4

ⁱⁱ -x+3/2, y-1/2, -z+1/2; ⁱⁱⁱ x-1/2, -y+1/2, z-1/2; ^{iv} x, y, z-1; ^v -x+2, -y+1, -z+1; ^{vi} -x+2, y+1/2, z-1/2.

A1.2.13- Estructura cristalina del complejo (H₂BIPSC)₂[GaCl₄]Cl.

Figura A1.39- Unidad asimétrica de la estructura cristalina del complejo (H₂BIPSC)₂[GaCl₄]Cl.

Fórmula	$C_{24}H_{24}C_{15}GaN_{10}O_2$	α (°)	80.875(4)	Intervalo θ (°)	2.13 a 27.19
Masa Molecular	731.50	β (°)	84.221(3)	Intervalos en h, k, l	-12,13;-13,13;0,19
т (К)	100.0(1)	γ (°)	63.157(3)	No. reflex. medidas	24943
λ (Å)	0.71073	V (ų)	1465.4(6)	No. reflex. únicas	6451
Sistema Cristalino	Triclínico	z	2	R _{int}	0.0278
Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.658	R	0.0235
a (Å)	10.164(2)	μ(mm ⁻¹)	1.439	R _w	0.0604
b (Å)	10.827(2)	F(000)	740	G.O.F.	1.095
c (Å)	15.123(3)	Dimensiones (mm)	0.48 x 0.47 x 0.24		

Tabla A1.2.73- Datos cristalográficos y de refinado del complejo (H₂BIPSC)₂[GaCl₄]Cl.

Tabla A1.2.74- Distancias interatómicas (Å) de (H₂BIPSC)₂[GaCl₄]Cl.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-N11	1.322(2)	C18-N15	1.353(2)	C24-C25	1.384(2)	C212-H212	0.9300
C11-N12	1.387(2)	C19-C110	1.386(2)	C24-H24B	0.9300	C212-N25	1.342(2)
C11-O1	1.2349(19)	С19-Н19	0.9300	C25-C26	1.387(2)	Cl1-Ga	2.1636(5)
C12-C13	1.471(2)	C110-C111	1.380(2)	C25-H25	0.9300	Cl2-Ga	2.1873(6)
C12-C18	1.489(2)	С110-Н110	0.9300	C26-C27	1.375(2)	Cl3-Ga	2.1644(5)
C12-N13	1.294(2)	C111-C112	1.384(2)	C26-H26	0.9300	Cl4-Ga	2.1778(5)
C13-C14	1.388(2)	C111-H111	0.9300	С27-Н27	0.9300	N11-H11A	0.8600
C13-N14	1.354(2)	С112-Н112	0.9300	C27-N24	1.3439(19)	N11-H11B	0.8600
C14-C15	1.390(2)	C112-N15	1.337(2)	C28-C29	1.396(2)	N12-H12	0.78(2)
C14-H14B	0.9300	C21-N21	1.332(2)	C28-N25	1.3521(19)	N12-N13	1.3390(18)
C15-C16	1.382(2)	C21-N22	1.393(2)	C29-C210	1.383(2)	N14-H14	0.86(2)
C15-H15	0.9300	C21-O2	1.2310(19)	С29-Н29	0.9300	N21-H21A	0.8600
C16-C17	1.379(2)	C22-C23	1.483(2)	C210-C211	1.384(2)	N21-H21B	0.8600
C16-H16	0.9300	C22-C28	1.483(2)	С210-Н210	0.9300	N22-H22	0.83(2)
C17-H17	0.9300	C22-N23	1.302(2)	C211-C212	1.380(2)	N22-N23	1.3418(18)
C17-N14	1.336(2)	C23-C24	1.383(2)	C211-H211	0.9300	N24-H24	0.915(18)
C18-C19	1.385(2)	C23-N24	1.3537(19)				

Tabla A1.2.75- Ángulos de enlace (°) de (H₂BIPSC)₂[GaCl₄]Cl.

	Ángulo		Ángulo		Ángulo
C11-N11-H11A	120.0	C210-C211-H211	120.8	Cl4-Ga-Cl2	108.84(2)
C11-N11-H11B	120.0	C210-C29-C28	118.86(14)	H11A-N11-H11B	120.0
C11-N12-H12	115.2(15)	С210-С29-Н29	120.6	H21A-N21-H21B	120.0
C110-C111-C112	118.65(15)	С211-С210-Н210	120.3	N11-C11-N12	116.98(14)
С110-С111-Н111	120.7	C211-C212-H212	118.4	N13-C12-C13	114.75(13)

С110-С19-Н19	120.4	C212-C211-C210	118.48(15)	N13-C12-C18	125.53(13)
C111-C110-C19	118.58(15)	C212-C211-H211	120.8	N13-N12-C11	121.91(13)
С111-С110-Н110	120.7	C212-N25-C28	118.07(14)	N13-N12-H12	121.8(15)
C111-C112-H112	118.1	C22-N23-N22	119.96(13)	N14-C13-C12	117.57(13)
C112-C111-H111	120.7	C23-C24-C25	120.03(14)	N14-C13-C14	118.09(13)
C112-N15-C18	117.04(14)	C23-C24-H24B	120.0	N14-C17-C16	119.80(15)
C12-N13-N12	118.94(13)	C23-N24-H24	122.9(11)	N14-C17-H17	120.1
C13-C12-C18	119.69(13)	C24-C23-C22	124.48(14)	N15-C112-C111	123.83(15)
C13-C14-C15	119.72(14)	C24-C25-C26	120.23(15)	N15-C112-H112	118.1
C13-C14-H14B	120.1	C24-C25-H25	119.9	N15-C18-C12	115.65(14)
C13-N14-H14	120.5(14)	C25-C24-H24B	120.0	N15-C18-C19	122.58(14)
C14-C13-C12	124.33(14)	С25-С26-Н26	120.8	N21-C21-N22	117.19(13)
C14-C15-H15	120.0	C26-C25-H25	119.9	N23-C22-C23	113.13(13)
C15-C14-H14B	120.1	С26-С27-Н27	119.9	N23-C22-C28	127.42(13)
С15-С16-Н16	120.5	C27-C26-C25	118.43(14)	N23-N22-C21	121.26(13)
C16-C15-C14	119.97(15)	С27-С26-Н26	120.8	N23-N22-H22	120.2(13)
C16-C15-H15	120.0	C27-N24-C23	123.19(14)	N24-C23-C22	117.63(13)
С16-С17-Н17	120.1	C27-N24-H24	113.9(11)	N24-C23-C24	117.88(13)
C17-C16-C15	119.01(14)	C28-C22-C23	119.39(13)	N24-C27-C26	120.12(15)
С17-С16-Н16	120.5	С28-С29-Н29	120.6	N24-C27-H27	119.9
C17-N14-C13	123.41(14)	C29-C210-C211	119.39(15)	N25-C212-C211	123.28(15)
C17-N14-H14	116.0(14)	С29-С210-Н210	120.3	N25-C212-H212	118.4
C18-C19-C110	119.27(14)	C29-C28-C22	121.77(13)	N25-C28-C22	116.18(13)
С18-С19-Н19	120.4	Cl1-Ga-Cl2	107.84(2)	N25-C28-C29	121.89(14)
С19-С110-Н110	120.7	Cl1-Ga-Cl3	110.20(2)	01-C11-N11	125.86(15)
C19-C18-C12	121.68(14)	Cl1-Ga-Cl4	109.35(2)	O1-C11-N12	117.16(14)
C21-N21-H21A	120.0	Cl3-Ga-Cl2	109.76(2)	O2-C21-N21	125.45(14)
C21-N21-H21B	120.0	Cl3-Ga-Cl4	110.79(2)	O2-C21-N22	117.36(14)
C21-N22-H22	118.2(13)				

Tabla A1.2.76- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de (H₂BIPSC)₂[GaCl₄]Cl.

	х	У	Z	U(eq)
C11	-4227(2)	7999(2)	10205(1)	16(1)
C12	-768(2)	6362(2)	9061(1)	13(1)
C13	699(2)	6303(2)	9104(1)	13(1)
C14	1982(2)	5341(2)	8724(1)	16(1)
------	----------	---------	----------	---------
C15	3316(2)	5368(2)	8811(1)	18(1)
C16	3361(2)	6352(2)	9272(1)	18(1)
C17	2071(2)	7285(2)	9650(1)	16(1)
C18	-1031(2)	5642(2)	8385(1)	14(1)
C19	-511(2)	5723(2)	7506(1)	16(1)
C110	-848(2)	5089(2)	6895(1)	18(1)
C111	-1673(2)	4373(2)	7190(1)	19(1)
C112	-2153(2)	4340(2)	8079(1)	19(1)
C21	2513(2)	200(2)	1916(1)	16(1)
C22	-819(2)	1479(2)	3252(1)	13(1)
C23	-2352(2)	1762(2)	3095(1)	13(1)
C24	-3598(2)	2747(2)	3483(1)	16(1)
C25	-4979(2)	2889(2)	3324(1)	19(1)
C26	-5126(2)	2076(2)	2754(1)	19(1)
C27	-3874(2)	1152(2)	2345(1)	17(1)
C28	-458(2)	1672(2)	4131(1)	13(1)
C29	-1305(2)	1609(2)	4907(1)	15(1)
C210	-867(2)	1729(2)	5713(1)	17(1)
C211	404(2)	1891(2)	5732(1)	19(1)
C212	1203(2)	1914(2)	4941(1)	19(1)
Cl1	7423(1)	7517(1)	2747(1)	20(1)
CI2	7156(1)	5348(1)	4679(1)	30(1)
CI3	4590(1)	8944(1)	4389(1)	23(1)
Cl4	4459(1)	6601(1)	3019(1)	25(1)
CI5	9179(1)	9143(1)	1067(1)	18(1)
Ga	5882(1)	7129(1)	3708(1)	15(1)
N11	-3892(1)	8687(2)	10722(1)	19(1)
N12	-3119(1)	7214(2)	9629(1)	16(1)
N13	-1748(1)	7093(1)	9624(1)	14(1)
N14	803(1)	7235(1)	9558(1)	14(1)
N15	-1869(1)	4970(1)	8676(1)	17(1)
N21	2068(1)	-237(2)	1281(1)	18(1)
N22	1507(1)	745(1)	2613(1)	16(1)
N23	87(1)	1018(1)	2577(1)	14(1)
		101(1)	2524/4)	1 1 (1)

N25	794(1)	1815(1)	4149(1)	16(1)
01	-5437(1)	7994(1)	10190(1)	22(1)
02	3734(1)	173(1)	1933(1)	19(1)

Tabla A1.2.77- Factores anisotrópicos de temperatura (Å²) de (H₂BIPSC)₂[GaCl₄]Cl.

	U11	U22	U33	U23	U13	U12
C11	14(1)	18(1)	17(1)	-4(1)	-1(1)	-7(1)
C12	14(1)	13(1)	14(1)	-2(1)	-1(1)	-7(1)
C13	15(1)	14(1)	12(1)	-1(1)	-1(1)	-8(1)
C14	16(1)	16(1)	17(1)	-5(1)	0(1)	-8(1)
C15	14(1)	21(1)	18(1)	-5(1)	2(1)	-7(1)
C16	14(1)	23(1)	21(1)	-2(1)	-1(1)	-11(1)
C17	19(1)	18(1)	17(1)	-3(1)	-1(1)	-12(1)
C18	10(1)	13(1)	18(1)	-4(1)	-2(1)	-4(1)
C19	15(1)	15(1)	19(1)	-4(1)	-1(1)	-7(1)
C110	16(1)	19(1)	16(1)	-6(1)	-1(1)	-4(1)
C111	14(1)	17(1)	25(1)	-10(1)	-5(1)	-3(1)
C112	17(1)	18(1)	28(1)	-8(1)	-2(1)	-10(1)
C21	15(1)	16(1)	16(1)	-4(1)	2(1)	-7(1)
C22	11(1)	12(1)	15(1)	-2(1)	-1(1)	-5(1)
C23	14(1)	12(1)	14(1)	0(1)	-2(1)	-6(1)
C24	16(1)	14(1)	16(1)	-4(1)	-2(1)	-5(1)
C25	14(1)	20(1)	19(1)	-3(1)	0(1)	-4(1)
C26	13(1)	21(1)	24(1)	-2(1)	-4(1)	-8(1)
C27	17(1)	19(1)	19(1)	-4(1)	-2(1)	-10(1)
C28	13(1)	10(1)	16(1)	-3(1)	-1(1)	-4(1)
C29	13(1)	12(1)	17(1)	-3(1)	0(1)	-4(1)
C210	17(1)	13(1)	15(1)	-4(1)	1(1)	-2(1)
C211	21(1)	17(1)	18(1)	-7(1)	-5(1)	-5(1)
C212	16(1)	20(1)	23(1)	-8(1)	-3(1)	-8(1)
N11	12(1)	28(1)	22(1)	-13(1)	3(1)	-10(1)
N12	13(1)	21(1)	19(1)	-9(1)	1(1)	-10(1)
N13	13(1)	16(1)	15(1)	-2(1)	-1(1)	-8(1)
N14	12(1)	14(1)	14(1)	-4(1)	1(1)	-6(1)
N15	16(1)	16(1)	21(1)	-4(1)	-1(1)	-8(1)
N21	13(1)	27(1)	19(1)	-11(1)	4(1)	-11(1)

N22	11(1)	22(1)	16(1)	-8(1)	2(1)	-8(1)
N23	13(1)	12(1)	16(1)	-2(1)	-1(1)	-6(1)
N24	12(1)	14(1)	17(1)	-5(1)	1(1)	-5(1)
N25	15(1)	18(1)	19(1)	-5(1)	-1(1)	-8(1)
01	13(1)	29(1)	28(1)	-15(1)	3(1)	-11(1)
02	14(1)	27(1)	22(1)	-10(1)	3(1)	-12(1)
Cl1	15(1)	24(1)	21(1)	-3(1)	1(1)	-9(1)
CI2	40(1)	20(1)	24(1)	1(1)	-6(1)	-9(1)
Cl3	24(1)	21(1)	27(1)	-12(1)	6(1)	-10(1)
Cl4	21(1)	31(1)	32(1)	-15(1)	2(1)	-16(1)
CI5	16(1)	21(1)	20(1)	-10(1)	4(1)	-10(1)
Ga	16(1)	15(1)	17(1)	-5(1)	0(1)	-8(1)

			•	
Tabla A1.2.78- Enlaces	s de hidrógeno (Å	Å, °) de (H ₂	BIPSC)2[Ga	Cl₄]Cl.
1				

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N24-H24…Cl5 ⁱ	0.915(18)	2.231(19)	3.0771(15)	153.6(15)
N11-H11A…O2 ⁱⁱ	0.86	2.03	2.8819(18)	170.5
N11-H11B…Cl5 ⁱⁱⁱ	0.86	2.66	3.4730(15)	157.8
N11-H11B…N13	0.86	2.35	2.6959(19)	104.1
N12-H12…N15	0.78(2)	2.18(2)	2.747(2)	130.5(19)
N14-H14…Cl5 ⁱⁱⁱ	0.86(2)	2.39(2)	3.1402(15)	145.8(18)
N14-H14…N13	0.86(2)	2.34(2)	2.6567(18)	102.3(15)
N21-H21A…O1 ^{iv}	0.86	2.12	2.9321(18)	156.3
N21-H21B…Cl5 ⁱ	0.86	2.54	3.3496(15)	156.8
N21-H21B…N23	0.86	2.37	2.7059(19)	103.5
N22-H22…N25	0.83(2)	2.01(2)	2.649(2)	133.8(18)
C29-H29…Cl3 ^v	0.93	2.81	3.678(2)	155
C211-H211…Cl1 ^v	0.93	2.80	3.653(2)	152
' x-1, y-1, z; " x-2	1, y+1, z+1; "	x-1, y, z+1; ^h	′ x+1, y-1, z-1;	[∨] -x,1-y,1-z.

Figura A1.40- Unidad asimétrica de la estructura cristalina del complejo [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O.

Fórmula	$C_{11} H_{14} Ga N_9 O_{11}$	α (°)	109.293(5)	Intervalo θ (°)	1.93 a 23.27
Masa Molecular	518.03	β (°)	103.809(5)	Intervalos en <i>h, k, l</i>	-8,8; -12,12; 0,13
т (к)	120.0(1)	γ (°)	99.462(5)	No. reflex. medidas	17488
λ (Å)	0.71069	V (Å ³)	955.6(8)	No. reflex. únicas	2722
Sistema Cristalino	Triclínico	z	2	R _{int}	0.0819
Grupo Espacial	P-1	D _{calc} . (mg/m ³)	1.800	R	0.0694
a (Å)	7.934(5)	μ(mm ⁻¹)	1.521	R _w	0.1889
b (Å)	11.589(5)	F(000)	524	G.O.F.	1.104
c (Å)	11.761(5)	Dimensiones (mm)	0.10 x 0.08 x 0.06		

Tabla A1.2.79- Datos cristalográficos y de refinado del complejo [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O.

Tabla A1.2.80- Distancias interatómicas (Å) de [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-O1	1.263(6)	C7-N4	1.335(7)	N2-H2	0.8800	O2-C9	1.263(6)
C1-N1	1.321(7)	C7-C8	1.480(8)	N3-Ga1	2.212(4)	O2-Ga1	2.157(4)
C1-N2	1.362(7)	C8-N5	1.279(7)	N4-Ga1	2.199(4)	O3-Ga1	1.890(4)
C2-N3	1.273(7)	C8-C11	1.485(8)	N5-N6	1.388(6)	O3-H3A	0.84(2)
C2-C3	1.473(7)	C10-H10A	0.9800	N5-Ga1	2.186(4)	O3-H3B	0.86(2)
C2-C10	1.483(8)	C10-H10B	0.9800	N6-C9	1.358(7)	O4-Ga1	1.938(4)
C3-N4	1.349(7)	C10-H10C	0.9800	N8-08C	1.249(6)	O4-H4A	0.84(2)
C3-C4	1.392(7)	C11-H11A	0.9800	N8-08A	1.250(6)	O4-H4B	0.84(2)
C4-C5	1.385(8)	C11-H11B	0.9800	N8-08B	1.253(6)	N7-C9	1.336(7)
C4-H4	0.9500	C11-H11C	0.9800	N9-09C	1.212(6)	N7-H7A	0.8800

C5-C6	1.384(8)	N1-H1A	0.8800	N9-09A	1.266(6)	N7-H7B	0.8800
С5-Н5	0.9500	N1-H1B	0.8800	N9-O9B	1.282(6)	O1W-H1W	0.86(2)
C6-C7	1.387(7)	N2-N3	1.367(6)	01-Ga1	2.092(4)	O1W-H2W	0.85(2)
C6-H6	0.9500						

Tabla A1.2.81-Ángulos de enlace (°) de $[Ga(HDAPSC)(H_2O)_2](NO_3)_2 \cdot H_2O.$

	Ángulo		Ángulo		Ángulo
01-C1-N1	122.7(5)	H11A-C11-H11B	109.5	Ga1-O4-H4A	121(4)
01-C1-N2	119.6(5)	C8-C11-H11C	109.5	Ga1-O4-H4B	117(4)
N1-C1-N2	117.6(5)	H11A-C11-H11C	109.5	H4A-O4-H4B	115(6)
N3-C2-C3	112.6(5)	H11B-C11-H11C	109.5	O3-Ga1-O4	178.45(14)
N3-C2-C10	125.7(5)	C1-N1-H1A	120.0	O3-Ga1-O1	91.51(15)
C3-C2-C10	121.7(5)	C1-N1-H1B	120.0	04-Ga1-O1	86.98(15)
N4-C3-C4	120.0(5)	H1A-N1-H1B	120.0	O3-Ga1-O2	93.66(15)
N4-C3-C2	114.6(4)	C1-N2-N3	114.5(4)	04-Ga1-O2	86.29(15)
C4-C3-C2	125.4(5)	C1-N2-H2	122.8	01-Ga1-O2	74.46(13)
C5-C4-C3	118.7(5)	N3-N2-H2	122.8	O3-Ga1-N5	92.59(16)
C5-C4-H4	120.6	C2-N3-N2	123.1(4)	O4-Ga1-N5	88.87(16)
C3-C4-H4	120.6	C2-N3-Ga1	123.2(4)	O1-Ga1-N5	146.68(16)
C6-C5-C4	120.7(5)	N2-N3-Ga1	113.6(3)	O2-Ga1-N5	72.28(14)
C6-C5-H5	119.6	C7-N4-C3	121.1(4)	O3-Ga1-N4	91.79(16)
C4-C5-H5	119.6	C7-N4-Ga1	119.4(3)	O4-Ga1-N4	89.19(15)
C5-C6-C7	117.6(5)	C3-N4-Ga1	119.4(3)	01-Ga1-N4	142.73(15)
С5-С6-Н6	121.2	C8-N5-N6	120.1(4)	O2-Ga1-N4	142.23(15)
С7-С6-Н6	121.2	C8-N5-Ga1	123.3(4)	N5-Ga1-N4	70.15(16)
N4-C7-C6	121.7(5)	N6-N5-Ga1	116.4(3)	O3-Ga1-N3	92.44(16)
N4-C7-C8	114.1(4)	C9-N6-N5	111.9(4)	O4-Ga1-N3	86.77(16)
C6-C7-C8	124.1(5)	08C-N8-08A	120.9(5)	01-Ga1-N3	72.84(14)
N5-C8-C7	112.5(5)	O8C-N8-O8B	119.1(5)	O2-Ga1-N3	146.86(15)
N5-C8-C11	125.8(5)	08A-N8-08B	120.1(5)	N5-Ga1-N3	139.89(16)
C7-C8-C11	121.7(4)	09C-N9-09A	122.5(5)	N4-Ga1-N3	69.93(16)
C2-C10-H10A	109.5	O9C-N9-O9B	121.7(5)	C9-N7-H7A	120.0
C2-C10-H10B	109.5	O9A-N9-O9B	115.8(5)	C9-N7-H7B	120.0
H10A-C10-H10B	109.5	C1-O1-Ga1	119.4(3)	H7A-N7-H7B	120.0
C2-C10-H10C	109.5	C9-O2-Ga1	117.0(3)	O2-C9-N7	122.5(5)
H10A-C10-H10C	109.5	Ga1-O3-H3A	122(4)	O2-C9-N6	122.4(5)

H10B-C10-H10C	109.5	Ga1-O3-H3B	113(9)	N7-C9-N6	115.2(5)
C8-C11-H11A	109.5	H3A-O3-H3B	117(9)	H1W-O1W-H2W	101(8)
C8-C11-H11B	109.5				

Tabla A1.2.82- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O.

	x	у	Z	U(eq)
C1	6670(7)	305(5)	8911(5)	24(1)
C2	8479(7)	1753(5)	7132(5)	24(1)
С3	8163(7)	2888(5)	6905(5)	23(1)
C4	9040(7)	3481(5)	6273(5)	26(1)
C5	8596(7)	4544(5)	6133(5)	29(1)
C6	7252(7)	4978(5)	6565(5)	26(1)
С7	6429(7)	4344(5)	7186(5)	24(1)
C8	4947(7)	4674(5)	7678(5)	23(1)
С9	2801(7)	3390(5)	9401(5)	22(1)
C10	9696(8)	1056(5)	6591(6)	31(1)
C11	4095(8)	5654(5)	7431(5)	29(1)
Ga1	5725(1)	2513(1)	8520(1)	28(1)
N1	6760(6)	-616(4)	9330(4)	26(1)
N2	7724(6)	471(4)	8188(4)	22(1)
N3	7619(5)	1474(4)	7832(4)	21(1)
N4	6899(6)	3346(4)	7362(4)	22(1)
N5	4506(6)	4018(4)	8300(4)	22(1)
N6	3116(6)	4192(4)	8811(4)	24(1)
N7	1513(6)	3528(4)	9948(4)	25(1)
N8	9615(6)	1813(4)	1817(4)	29(1)
N9	3532(6)	2290(4)	4540(4)	30(1)
01	5677(5)	1037(3)	9171(3)	25(1)
01W	3106(6)	8896(4)	6451(4)	37(1)
02	3646(5)	2559(3)	9414(3)	22(1)
03	7548(5)	3645(3)	10027(3)	22(1)
O4	3867(5)	1314(3)	6986(4)	24(1)
08A	9806(6)	1076(4)	2383(4)	36(1)
O8B	10457(6)	1853(4)	1050(4)	39(1)
08C	8583(6)	2511(4)	2001(4)	38(1)

09A	4110(6)	2517(4)	3700(4)	42(1)
09В	3953(6)	1368(4)	4808(4)	36(1)
O9C	2665(6)	2916(4)	5078(4)	38(1)

Tabla A1.2.83- Factores anisotrópicos de temperatura ($Å^2$) de [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O.

	U11	U22	U33	U23	U13	U12
C1	27(3)	25(3)	21(3)	6(2)	8(2)	9(2)
C2	18(3)	22(3)	28(3)	8(2)	4(2)	3(2)
C3	23(3)	29(3)	19(3)	10(2)	8(2)	6(2)
C4	26(3)	30(3)	28(3)	15(2)	15(2)	10(2)
C5	34(3)	29(3)	30(3)	16(3)	14(3)	5(2)
C6	28(3)	26(3)	27(3)	12(2)	12(2)	7(2)
C7	30(3)	22(3)	21(3)	10(2)	9(2)	7(2)
C8	23(3)	21(3)	22(3)	6(2)	7(2)	4(2)
C10	30(3)	32(3)	43(3)	20(3)	21(3)	16(2)
C11	37(3)	31(3)	29(3)	19(3)	16(3)	15(2)
N1	35(3)	26(2)	28(3)	17(2)	17(2)	17(2)
N2	26(2)	22(2)	28(2)	14(2)	15(2)	12(2)
N3	22(2)	23(2)	20(2)	11(2)	7(2)	5(2)
N4	25(2)	23(2)	19(2)	11(2)	8(2)	8(2)
N5	20(2)	25(2)	19(2)	6(2)	7(2)	6(2)
N6	25(2)	28(2)	26(2)	13(2)	14(2)	12(2)
N8	28(3)	30(3)	35(3)	14(2)	14(2)	15(2)
N9	36(3)	30(3)	20(2)	9(2)	5(2)	0(2)
01	27(2)	26(2)	28(2)	13(2)	15(2)	11(2)
02	27(2)	20(2)	28(2)	14(2)	14(2)	10(2)
03	29(2)	19(2)	23(2)	11(2)	13(2)	12(2)
04	26(2)	26(2)	27(2)	15(2)	14(2)	9(2)
08A	42(2)	39(2)	43(2)	26(2)	21(2)	20(2)
O8B	45(2)	49(3)	46(3)	32(2)	29(2)	23(2)
080	40(2)	41(2)	43(3)	16(2)	19(2)	25(2)
09A	60(3)	35(2)	42(2)	21(2)	25(2)	15(2)
09В	51(3)	33(2)	29(2)	16(2)	15(2)	11(2)
09C	40(2)	41(2)	32(2)	10(2)	14(2)	15(2)
Ga1	31(1)	29(1)	30(1)	13(1)	12(1)	11(1)
N7	25(2)	28(2)	32(3)	16(2)	14(2)	12(2)

С9	22(3)	20(3)	15(3)	1(2)	2(2)	1(2)
01W	46(3)	26(2)	43(3)	11(2)	24(2)	7(2)

Tabla A1.2.84- Enlaces de hidrógeno (Å, °) de [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)	D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O1 ⁱ	0.86	2.14	2.996(6)	174.2	03-H3A…08C ^{iv}	0.84(2)	2.24(3)	3.041(6)	161(5)
N1-H1A…O2 ⁱ	0.86	2.58	3.089(5)	118.6	O3-H3B…N6 ^v	0.86(2)	1.80(4)	2.635(5)	165(12)
N1-H1B…O8B ⁱⁱ	0.86	2.02	2.866(6)	166.6	O3-H3B…N7 [♥]	0.86(2)	2.57(9)	3.226(6)	134(10)
01W-H1W…08A ⁱⁱⁱ	0.86(2)	2.32(6)	2.954(6)	130(7)	O4-H4A…O9B	0.84(2)	1.77(2)	2.599(5)	166(6)
01W-H1W…08C ⁱⁱⁱ	0.86(2)	2.34(2)	3.190(6)	174(7)	04-H4B…O1W ^{vi}	0.84(2)	1.78(3)	2.591(5)	163(6)
N2-H2…O8A ⁱⁱ	0.86	2.06	2.915(6)	174.7	N7-H7A…O8B ^{vii}	0.86	1.93	2.792(6)	175.4
01W-H2W…09A ⁱⁱⁱ	0.85(2)	2.12(2)	2.963(6)	175(9)	N7-H7B…O3 ^v	0.86	2.65	3.226(6)	125.1
01W-H2W…09B ⁱⁱⁱ	0.85(2)	2.45(7)	3.053(6)	128(7)	N7-H7BO3 ^{viii}	0.86	2.72	3.193(6)	116.4
'-x+1, -γ, -z+2;	"-x+2, -y,	-z+1; " -x+	+1,-y+1,-z+	1; ^{iv} x, y, z+1	; ^v -x+1, -y+1, -z+2	2; ^{νi} x, γ-1,	z; ^{vii} x-1, y	r, z+1; ^{viii} x-	1, y, z.

A1.2.15- Estructura cristalina del complejo [Ga(APTSC)Cl₂].

Figura A1.41- Unidad asimétrica de la estructura cristalina del complejo [Ga(APTSC)Cl₂].

Tabla A1.2.85- Datos cristalográficos y de refinado del complejo [Ga(APTSC)Cl₂].

Fórmula	$C_8 \ H_9 \ C_{l2} \ Ga \ N_4 \ S$	α (°)	90.000	Intervalo θ (°)	2.44 a 28.00
Masa Molecular	333.88	β (°)	118.854(5)	Intervalos en h, k, l	-21,11; -13,13; -20,21
т (к)	293(2)	γ (°)	90.000	No. reflex. medidas	7313
λ (Å)	0.71069	V (ų)	2399.6(16)	No. reflex. únicas	2799
Sistema Cristalino	Monoclínico	z	8	R _{int}	0.0281
Grupo Espacial	C2/c	D _{calc} . (mg/m ³)	1.848	R	0.0256
a (Å)	16.274(5)	μ(mm ⁻¹)	2.888	R _w	0.0637
b (Å)	10.300(5)	F(000)	1328	G.O.F.	0.954
c (Å)	16.345(5)	Dimensiones (mm)	0.58 x 0.46 x 0.17		

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-N1	1.342(3)	C3-N4	1.344(3)	C7-H7	0.9300	N1-H1A	0.8600
C1-N2	1.321(3)	C4-C5	1.389(3)	C7-N4	1.333(3)	N1-H1B	0.8600
C1-S	1.729(2)	C4-H4	0.9300	C8-H8A	0.9600	N2-N3	1.373(2)
C2-C3	1.474(3)	C5-C6	1.370(3)	C8-H8B	0.9600	N3-Ga	2.0448(17)
C2-C8	1.491(3)	C5-H5	0.9300	C8-H8C	0.9600	N4-Ga	2.0999(17)
C2-N3	1.298(2)	C6-C7	1.378(3)	Cl1-Ga	2.2035(10)	S-Ga	2.3457(8)
C3-C4	1.380(3)	C6-H6	0.9300	Cl2-Ga	2.2115(9)		

Tabla A1.2.86- Distancias interatómicas (Å) de [Ga(APTSC)Cl₂].

Tabla A1.2.87- Ángulos de enlace (°) de [Ga(APTSC)Cl₂].

	Ángulo		Ángulo		Ángulo
C1-N1-H1A	120.0	C5-C6-C7	118.6(2)	N2-C1-N1	116.53(19)
C1-N1-H1B	120.0	С5-С6-Н6	120.7	N2-C1-S	126.54(16)
C1-N2-N3	112.81(17)	C6-C5-C4	119.5(2)	N2-N3-Ga	122.81(12)
C1-S-Ga	95.12(8)	С6-С5-Н5	120.2	N3-C2-C3	114.75(18)
C2-C8-H8A	109.5	С6-С7-Н7	118.8	N3-C2-C8	122.10(19)
C2-C8-H8B	109.5	С7-С6-Н6	120.7	N3-Ga-Cl1	123.12(5)
C2-C8-H8C	109.5	C7-N4-C3	119.38(18)	N3-Ga-Cl2	124.25(5)
C2-N3-Ga	118.59(14)	C7-N4-Ga	125.44(14)	N3-Ga-N4	76.70(7)
C2-N3-N2	118.57(17)	Cl1-Ga-Cl2	111.80(4)	N3-Ga-S	81.94(5)
C3-C2-C8	123.15(17)	Cl1-Ga-S	99.95(3)	N4-C3-C2	114.36(17)
C3-C4-C5	118.8(2)	Cl2-Ga-S	98.29(3)	N4-C3-C4	121.30(19)
C3-C4-H4	120.6	H1A-N1-H1B	120.0	N4-C7-C6	122.4(2)
C3-N4-Ga	115.11(13)	H8A-C8-H8B	109.5	N4-C7-H7	118.8
C4-C3-C2	124.33(19)	H8A-C8-H8C	109.5	N4-Ga-Cl1	93.65(6)
C4-C5-H5	120.2	H8B-C8-H8C	109.5	N4-Ga-Cl2	91.90(6)
С5-С4-Н4	120.6	N1-C1-S	116.92(16)	N4-Ga-S	158.53(5)

Tabla A1.2.88- Coordenadas atómicas (x10⁴) y factores isotrópicos de temperatura (Å² x10³) de [Ga(APTSC)Cl₂].

	x	у	Z	U(eq)
C1	856(2)	99(2)	6781(1)	35(1)
C2	2722(1)	871(2)	8920(1)	32(1)
C8	2327(2)	775(2)	9573(2)	50(1)
С3	3709(1)	1203(2)	9227(1)	32(1)
C4	4359(2)	1515(2)	10133(1)	39(1)

C5	5262(2)	1850(2)	10329(2)	43(1)				
C6	5489(2)	1857(2)	9623(2)	48(1)				
С7	4810(2)	1516(2)	8737(2)	47(1)				
N1	-78(1)	-68(2)	6365(1)	51(1)				
N2	1276(1)	418(2)	7675(1)	34(1)				
N3	2218(1)	648(2)	8031(1)	31(1)				
N4	3939(1)	1201(2)	8540(1)	36(1)				
S	1390(1)	-148(1)	6101(1)	46(1)				
Cl1	3007(1)	2318(1)	6501(1)	55(1)				
CI2	3719(1)	-1047(1)	7189(1)	53(1)				
Ga	2868(1)	601(1)	7229(1)	32(1)				

Tabla A1.2.89- Factores anisot	rópicos de	temperatura ((Ų) de	[Ga(APTSC)Cl ₂]
--------------------------------	------------	---------------	--------	-----------------------------

-

	U11	U22	U33	U23	U13	U12
C1	31(1)	44(1)	29(1)	-3(1)	14(1)	0(1)
C2	34(1)	40(1)	23(1)	-2(1)	14(1)	-2(1)
C8	43(1)	82(2)	28(1)	-12(1)	19(1)	-13(1)
С3	33(1)	36(1)	24(1)	1(1)	11(1)	0(1)
C4	39(1)	47(1)	25(1)	-1(1)	12(1)	-3(1)
C5	38(1)	49(1)	28(1)	0(1)	5(1)	-6(1)
C6	33(1)	63(2)	38(1)	2(1)	9(1)	-7(1)
C7	38(1)	70(2)	34(1)	0(1)	17(1)	-6(1)
N1	29(1)	93(2)	29(1)	-16(1)	12(1)	-7(1)
N2	28(1)	48(1)	25(1)	-3(1)	12(1)	0(1)
N3	28(1)	38(1)	23(1)	-1(1)	10(1)	0(1)
N4	31(1)	49(1)	24(1)	-2(1)	11(1)	-2(1)
S	34(1)	79(1)	26(1)	-13(1)	14(1)	-5(1)
Cl1	60(1)	59(1)	41(1)	13(1)	20(1)	-5(1)
Cl2	48(1)	69(1)	36(1)	-3(1)	15(1)	20(1)
Ga	30(1)	46(1)	21(1)	1(1)	12(1)	1(1)

Tabla A1.2.90- Enlaces de hidrógeno (Å, °) de [Ga(APTSC)(Cl ₂]

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…N2 ⁱ	0.86	2.22	3.076(3)	172.4
N1-H1B…S ⁱⁱ	0.86	2.74	3.542(2)	156.4
C5 ^{vii} -H5 ^{vii} …Cl2	0.93	2.938	3.661	135.7

C6 ^{ix} -H6 ^{ix} …Cl1	0.93	3.037	3.733	132.9
'-x, γ, -z+3/2; '	'-х, -у, -:	z+1, ^{vii} 1-x, -y	y, 2-z ; ^{ix} 1-x	, γ, 3/2-z.

A1.2.16- Estructura cristalina del complejo [Ga(APTSC)]₂NO₃.

Figura A1.42- Unidad asimétrica de la estructura cristalina del complejo [Ga(APTSC)]₂NO₃.

Fórmula	$C_{16}H_{18}GaN_9O_3S_2$	α(°)	90.000	Intervalo θ (°)	2.44 a 28.00
Masa Molecular	518.23	β(°)	95.903(5)	Intervalos en h, k, l	-21,11; -13,13; -20,21
т (к)	100.0(1)	γ (°)	90.000	No. reflex. medidas	7313
λ (Å)	0.71069	V (ų)	2022.9(15)	No. reflex. únicas	2799
Sistema Cristalino	Monoclínico	Z ~ ~ ~ ~ ~ ~	8	R _{int}	0.0281
Grupo Espacial	P21/c	D _{calc} . (mg/m ³)	1.848	R	0.0256
a (Å)	11.710(5)	μ(mm ⁻¹)	2.888	R _w	0.0637
b (Å)	9.697(5)	F(000)	1328	G.O.F.	0.954
c (Å)	17.910(5)	Dimensiones (mm)	0.58 x 0.46 x 0.17		

Tabla A1.2.91- Datos cristalográficos y de refinado del complejo [Ga(APTSC)]₂NO₃.

Tabla A1.2.92- Distancias interatómicas (Å) de [Ga(APTSC)]₂NO₃.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-N11	1.340(2)	C17-H18	0.9300	C24-C25	1.378(3)	N1-01C	1.242(2)
C11-N12	1.330(2)	C17-N14	1.336(2)	C24-H25	0.9300	N11-H11A	0.8600
C11-S1	1.742(2)	C18-H13A	0.9600	C25-C26	1.388(3)	N11-H11B	0.8600
C12-C13	1.475(2)	C18-H13B	0.9600	C25-H26	0.9300	N12-N13	1.367(2)
C12-C18	1.489(3)	C18-H13C	0.9600	C26-C27	1.386(3)	N13-Ga	2.0546(17)
C12-N13	1.296(2)	C21-N21	1.339(2)	C26-H27	0.9300	N14-Ga	2.1169(18)
C13-C14	1.391(3)	C21-N22	1.338(2)	C27-H28	0.9300	N21-H21A	0.8600
C13-N14	1.354(2)	C21-S2	1.741(2)	C27-N24	1.334(2)	N21-H21B	0.8600
C14-C15	1.391(3)	C22-C23	1.473(2)	C28-H23A	0.9600	N22-N23	1.369(2)

C14-H15	0.9300	C22-C28	1.488(3)	C28-H23B	0.9600	N23-Ga	2.0525(17)
C15-C16	1.383(3)	C22-N23	1.297(2)	C28-H23C	0.9600	N24-Ga	2.1048(16)
C15-H16	0.9300	C23-C24	1.390(2)	N1-01A	1.266(2)	S1-Ga	2.3713(12)
C16-C17	1.383(3)	C23-N24	1.354(2)	N1-01B	1.246(2)	S2-Ga	2.3550(8)
C16-H17	0.9300						

Tabla A1.2.93- Ángulos de enlace (°) de $[Ga(APTSC)]_2NO_3$.

	Ángulo		Ángulo		Ángulo
C11-N11-H11A	120.0	C22-N23-N22	118.44(15)	N13-Ga-N24	101.46(6)
C11-N11-H11B	120.0	C23-C22-C28	122.65(16)	N13-Ga-S1	82.29(4)
C11-N12-N13	113.48(15)	C23-C24-H25	120.4	N13-Ga-S2	98.25(4)
C11-S1-Ga	94.48(6)	C23-N24-Ga	114.51(12)	N14-C13-C12	115.47(16)
С12-С18-Н1ЗА	109.5	C24-C23-C22	124.19(17)	N14-C13-C14	121.64(17)
С12-С18-Н13В	109.5	C24-C25-C26	119.55(18)	N14-C17-C16	122.55(18)
С12-С18-Н13С	109.5	C24-C25-H26	120.2	N14-C17-H18	118.7
C12-N13-Ga	118.07(12)	C25-C24-C23	119.26(18)	N14-Ga-S1	158.46(4)
C12-N13-N12	119.00(15)	C25-C24-H25	120.4	N14-Ga-S2	90.87(4)
C13-C12-C18	121.70(16)	C25-C26-H27	120.8	N21-C21-S2	116.64(14)
C13-C14-C15	118.32(18)	C26-C25-H26	120.2	N22-C21-N21	116.43(17)
С13-С14-Н15	120.8	C26-C27-H28	118.9	N22-C21-S2	126.92(14)
C13-N14-Ga	113.56(12)	C27-C26-C25	118.39(18)	N22-N23-Ga	122.91(12)
C14-C13-C12	122.89(17)	C27-C26-H27	120.8	N23-C22-C23	114.85(16)
С14-С15-Н16	120.0	C27-N24-C23	119.58(16)	N23-C22-C28	122.49(17)
С15-С14-Н15	120.8	C27-N24-Ga	125.87(13)	N23-Ga-N13	173.37(6)
C15-C16-C17	118.40(18)	H11A-N11-H11B	120.0	N23-Ga-N14	96.11(6)
С15-С16-Н17	120.8	H13A-C18-H13B	109.5	N23-Ga-N24	77.03(6)
C16-C15-C14	119.91(18)	H13A-C18-H13C	109.5	N23-Ga-S1	104.14(4)
С16-С15-Н16	120.0	H13B-C18-H13C	109.5	N23-Ga-S2	82.53(5)
С16-С17-Н18	118.7	H21A-N21-H21B	120.0	N24-C23-C22	114.89(15)
С17-С16-Н17	120.8	H23A-C28-H23B	109.5	N24-C23-C24	120.92(17)
C17-N14-C13	119.18(16)	H23A-C28-H23C	109.5	N24-C27-C26	122.26(19)
C17-N14-Ga	127.26(13)	H23B-C28-H23C	109.5	N24-C27-H28	118.9
C21-N21-H21A	120.0	N11-C11-S1	117.15(14)	N24-Ga-N14	86.24(6)
C21-N21-H21B	120.0	N12-C11-N11	116.07(17)	N24-Ga-S1	91.15(5)
C21-N22-N23	112.75(15)	N12-C11-S1	126.77(14)	N24-Ga-S2	158.91(4)
C21-S2-Ga	94.75(6)	N12-N13-Ga	122.49(11)	01B-N1-01A	119.40(16)

C22-C28-H23A	109.5	N13-C12-C13	114.94(16)	01C-N1-01A	119.99(17)
C22-C28-H23B	109.5	N13-C12-C18	123.35(16)	01C-N1-01B	120.60(17)
C22-C28-H23C	109.5	N13-Ga-N14	77.31(6)	S2-Ga-S1	98.88(3)
C22-N23-Ga	118.65(12)				

Tabla A1.2.94- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de $[Ga(APTSC)]_2NO_3$.

	x	у	Z	U(eq)
C11	5937(2)	-1856(2)	5766(1)	14(1)
C12	5189(2)	1417(2)	6297(1)	12(1)
C13	5868(2)	2641(2)	6553(1)	13(1)
C14	5372(2)	3913(2)	6676(1)	16(1)
C15	6092(2)	5008(2)	6906(1)	18(1)
C16	7268(2)	4814(2)	7003(1)	18(1)
C17	7696(2)	3516(2)	6873(1)	15(1)
C18	3911(2)	1429(2)	6225(1)	17(1)
C21	9016(2)	47(2)	7924(1)	13(1)
C22	9881(2)	1180(2)	6245(1)	12(1)
C23	9259(2)	1442(2)	5501(1)	12(1)
C24	9777(2)	1892(2)	4880(1)	16(1)
C25	9111(2)	2097(2)	4209(1)	19(1)
C26	7934(2)	1882(2)	4169(1)	19(1)
C27	7473(2)	1414(2)	4805(1)	16(1)
C28	11134(2)	1433(2)	6413(1)	17(1)
Ga	7532(1)	408(1)	6441(1)	11(1)
N1	7596(1)	4972(2)	5006(1)	15(1)
N11	5440(1)	-3010(2)	5478(1)	17(1)
N12	5232(1)	-827(2)	5894(1)	14(1)
N13	5789(1)	345(2)	6151(1)	12(1)
N14	7019(1)	2451(2)	6654(1)	13(1)
N21	9452(1)	-240(2)	8627(1)	17(1)
N22	9765(1)	450(2)	7451(1)	14(1)
N23	9252(1)	713(2)	6744(1)	12(1)
N24	8116(1)	1197(2)	5453(1)	13(1)
01A	6664(1)	4471(1)	5186(1)	20(1)
O1B	7567(1)	5866(2)	4504(1)	26(1)

01C	8527(1)	4563(2)	5323(1)	24(1)
S1	7429(1)	-1851(1)	5931(1)	16(1)
S2	7541(1)	-158(1)	7720(1)	17(1)

Tabla A1.2.95- Factores anisotrópicos de temperatura (Å²) de [Ga(APTSC)]₂NO₃.

	U11	U22	U33	U23	U13	U12
C11	11(1)	15(1)	15(1)	2(1)	1(1)	-1(1)
C12	9(1)	14(1)	13(1)	1(1)	1(1)	0(1)
C13	10(1)	14(1)	14(1)	2(1)	2(1)	0(1)
C14	13(1)	18(1)	18(1)	-1(1)	5(1)	2(1)
C15	22(1)	16(1)	18(1)	-2(1)	4(1)	4(1)
C16	20(1)	16(1)	17(1)	-2(1)	0(1)	-3(1)
C17	11(1)	19(1)	15(1)	-1(1)	1(1)	-4(1)
C18	9(1)	21(1)	20(1)	0(1)	1(1)	1(1)
C21	12(1)	11(1)	16(1)	-1(1)	0(1)	2(1)
C22	8(1)	11(1)	18(1)	-2(1)	0(1)	1(1)
C23	9(1)	11(1)	17(1)	0(1)	2(1)	1(1)
C24	13(1)	15(1)	22(1)	0(1)	6(1)	0(1)
C25	25(1)	14(1)	18(1)	1(1)	7(1)	-1(1)
C26	22(1)	18(1)	16(1)	-1(1)	-1(1)	2(1)
C27	15(1)	16(1)	18(1)	-1(1)	-2(1)	2(1)
C28	6(1)	21(1)	24(1)	3(1)	0(1)	-1(1)
Ga	5(1)	13(1)	15(1)	1(1)	0(1)	0(1)
N1	13(1)	15(1)	16(1)	-5(1)	2(1)	2(1)
N11	10(1)	16(1)	27(1)	-4(1)	1(1)	-1(1)
N12	9(1)	13(1)	19(1)	-1(1)	0(1)	-2(1)
N13	9(1)	14(1)	14(1)	0(1)	0(1)	-2(1)
N14	8(1)	15(1)	15(1)	0(1)	2(1)	-1(1)
N21	13(1)	21(1)	15(1)	3(1)	-1(1)	1(1)
N22	10(1)	16(1)	15(1)	2(1)	-1(1)	1(1)
N23	8(1)	13(1)	15(1)	0(1)	-1(1)	1(1)
N24	9(1)	13(1)	16(1)	-1(1)	0(1)	0(1)
01A	14(1)	20(1)	27(1)	-4(1)	6(1)	-3(1)
O1B	30(1)	25(1)	23(1)	7(1)	10(1)	7(1)
01C	15(1)	33(1)	24(1)	-5(1)	-5(1)	6(1)
S1	8(1)	14(1)	25(1)	-2(1)	1(1)	1(1)

S2	9(1)	24(1)	17(1)	5(1)	1(1)	-1(1)
	()	()	()	()	()	()

Tabla A1.2.96- Enlaces de hidrógeno (Å, °) de [Ga(APTSC)]₂NO₃.

	D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
	N11-H11A…O1A ⁱ	0.86	2.28	2.981(2)	139.4
	N11-H11B…O1A ⁱⁱ	0.86	2.05	2.907(2)	172.5
	N21-H21A…O1C ⁱⁱⁱ	0.86	2.14	2.872(2)	142.5
	N21-H21B…O1B ^{iv}	0.86	2.07	2.902(2)	162.6
i	-x+1, -y, -z+1; " x, y-1	., z; ^{III} -x+2	, y-1/2, -z+	3/2; ^{iv} x, -y+	·1/2, z+1/2

A1.2.17- Estructura cristalina del complejo [Ga(fen)₂Cl₂]Cl·3H₂O.

Figura A1.43- Unidad asimétrica de la estructura cristalina del complejo [Ga(fen)₂Cl₂]Cl·3H₂O.

Fórmula	$C_{24} H_{16} C_{l3} Ga N_4 O_3$	α(°)	90.000	Intervalo θ (°)	2.01 a 32.03	
Masa Molecular	584.48	β(°)	100.322(5)	Intervalos en h, k, l	-23,22; 0,20; 0,18	
т (к)	100.0(1)	γ (°)	90.000	No. reflex. medidas	39106	
λ (Å)	0.71069	V (Å ³)	2562.6(16)	No. reflex. Únicas	4468	
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.0334	
Grupo Espacial	C2/c	D _{calc} . (mg/m ³)	1.515	R	0.0422	
a (Å)	15.671(5)	μ(mm ⁻¹)	1.420	R _w	0.1344	
b (Å)	13.449(5)	F(000)	1176	G.O.F.	1.077	
c (Å)	12.359(5)	Dimensiones (mm)	0.27 x 0.12 x 0.10			

Tabla A1.2.97- Datos cristalográficos y de	refinado del complejo [Ga(fen) ₂ 0	Cl ₂]Cl·3H ₂ O

Tabla A1.2.98- Distancias interatómicas	(Å) de	[Gal	fen	$)_2 Cl_2$]Cl·3	H_2C).
---	----	------	------	-----	------------	-------	--------	----

Enlace	Distancia	Enlace	Distancia	Enlace Distancia		Enlace	Distancia
C1-C2	1.403(3)	C5-H5	0.9300	С10-Н10	0.9300	Ga1-N1 ⁱ	2.0675(19)
C1-H1	0.9300	C6-C7	1.434(3)	C10-N2	1.328(3)	Ga1-N2 ⁱ	2.1052(18)
C1-N1	1.336(3)	С6-Н6	0.9300	C11-C12	1.435(3)	N1-Ga1	2.0675(19)

C2-C3	1.369(4)	C7-C11	1.399(3)	C11-N2	1.352(3)	N2-Ga1	2.1052(18)
C2-H2	0.9300	C7-C8	1.411(3)	C12-N1	1.353(3)	01W-01W ⁱⁱ	0.627(14)
C3-C4	1.419(3)	C8-C9	1.372(3)	Cl1-Ga1	2.2884(8)	02W-05W	0.83(2)
C3-H3	0.9300	C8-H8	0.9300	Cl2-03W	1.578(12)	02W-05W ⁱⁱⁱ	0.83(2)
C4-C12	1.404(3)	C9-C10	1.403(3)	Cl2-04W	1.37(2)	04W-05W	1.45(3)
C4-C5	1.426(3)	С9-Н9	0.9300	Ga1-Cl1 ⁱ	2.2884(8)	05W-05W ⁱⁱⁱ	1.65(5)
C5-C6	1.355(4)						
	¹ -x+1,y,-z+1/2 ¹¹ -x+1,-y,-z+1		^{III} -x+1,y,-z+3/2				

Tabla A1.2.99- Ángulos de enlace	(°) de	[Ga(fen]	$_2Cl_2$]Cl·3H ₂ O.

	Ángulo		Ángulo		Ángulo
C1-C2-H2	120.1	С8-С9-Н9	120.3	N1-C12-C11	117.00(17)
C1-N1-C12	118.91(19)	С9-С10-Н10	119.0	N1-C12-C4	123.24(19)
C1-N1-Ga1	127.16(16)	C9-C8-C7	119.6(2)	N1-Ga1-Cl1	95.84(5)
C2-C1-H1	119.2	С9-С8-Н8	120.2	N1-Ga1-Cl1 ⁱ	92.71(5)
C2-C3-C4	119.6(2)	С10-С9-Н9	120.3	N1-Ga1-N1 ⁱ	167.37(9)
С2-С3-Н3	120.2	C10-N2-C11	118.79(18)	N1-Ga1-N2	79.40(7)
C3-C2-C1	119.9(2)	C10-N2-Ga1	128.44(15)	N1-Ga1-N2 ⁱ	91.42(7)
С3-С2-Н2	120.1	C11-C7-C6	119.2(2)	N2 ⁱ -Ga1-Cl1	89.16(6)
C3-C4-C5	123.9(2)	C11-C7-C8	117.03(19)	N2 ⁱ -Ga1-Cl1 ⁱ	174.00(5)
C4-C12-C11	119.74(19)	C11-N2-Ga1	112.57(13)	N2 ⁱ -Ga1-N2	87.33(10)
С4-С3-Н3	120.2	C12-C4-C3	116.7(2)	N2-C10-C9	122.1(2)
С4-С5-Н5	119.5	C12-C4-C5	119.4(2)	N2-C10-H10	119.0
C5-C6-C7	121.0(2)	C12-N1-Ga1	113.81(13)	N2-C11-C12	117.12(17)
С5-С6-Н6	119.5	Cl1-Ga1-Cl1 ⁱ	94.74(4)	N2-C11-C7	123.13(18)
C6-C5-C4	120.9(2)	Cl2-O4W-O5W	158.5(13)	N2-Ga1-Cl1	174.00(5)
С6-С5-Н5	119.5	N1 ⁱ -Ga1-Cl1	92.71(5)	N2-Ga1-Cl1 ⁱ	89.16(6)
C7-C11-C12	119.73(18)	N1 ⁱ -Ga1-Cl1 ⁱ	95.84(5)	02W-05W-04W	135(3)
С7-С6-Н6	119.5	N1 ⁱ -Ga1-N2	91.42(7)	02W-05W-05W ⁱⁱⁱ	2(2)
С7-С8-Н8	120.2	N1 ⁱ -Ga1-N2 ⁱ	79.40(7)	04W-Cl2-O3W	144.3(6)
C8-C7-C6	123.7(2)	N1-C1-C2	121.7(2)	04W-05W-05W ⁱⁱⁱ	133.9(18)
C8-C9-C10	119.4(2)	N1-C1-H1	119.2	05W-02W-05W ⁱⁱⁱ	177(4)

	x	у	Z	U(eq)
C1	5155(2)	3663(2)	91(2)	29(1)
C2	4907(2)	3528(2)	-1048(2)	35(1)
C3	4270(2)	2858(2)	-1444(2)	34(1)
C4	3872(2)	2297(2)	-698(2)	26(1)
C5	3196(2)	1592(2)	-1028(2)	31(1)
C6	2829(1)	1100(2)	-272(2)	29(1)
C7	3109(1)	1272(2)	882(2)	24(1)
C8	2736(2)	805(2)	1708(2)	32(1)
С9	3016(2)	1055(2)	2789(2)	36(1)
C10	3687(2)	1751(2)	3058(2)	32(1)
C11	3771(1)	1960(1)	1228(2)	20(1)
C12	4161(1)	2480(1)	427(2)	21(1)
N1	4785(1)	3151(1)	810(1)	22(1)
N2	4057(1)	2188(1)	2296(1)	23(1)
Cl1	6084(1)	4473(1)	2577(1)	30(1)
Ga1	5000	3321(1)	2500	19(1)
CI2	3322(2)	1630(1)	5829(1)	83(1)
03W	2321(7)	1416(6)	5469(9)	61(3)
04W	4116(9)	1200(15)	6190(13)	211(9)
01W	5064(8)	12(11)	4774(8)	71(3)
02W	5000	559(10)	7500	77(4)
05W	4764(14)	576(17)	6845(19)	123(8)

Tabla	A1.2.100-	Coordenadas	atómicas	(x	10 ⁴)	у	factores	isotrópicos	de	temperatura	(Ų	х	10 ³)	de
[Ga(fei	n) ₂ Cl ₂]Cl·3H	₂ 0.												

Tabla A1.2.101- Factores anisotrópicos de temperatura ($Å^2$) de [Ga(fen)₂Cl₂]Cl·3H₂O.

	U11	U22	U33	U23	U13	U12
C1	43(1)	22(1)	25(1)	6(1)	13(1)	0(1)
C2	54(2)	30(1)	23(1)	11(1)	15(1)	5(1)
С3	46(1)	37(1)	18(1)	7(1)	6(1)	10(1)
C4	32(1)	28(1)	18(1)	2(1)	3(1)	8(1)
C5	32(1)	36(1)	22(1)	-4(1)	-2(1)	6(1)
C6	27(1)	31(1)	28(1)	-8(1)	0(1)	3(1)
C7	26(1)	22(1)	23(1)	-5(1)	5(1)	2(1)
C8	34(1)	29(1)	35(1)	-6(1)	11(1)	-9(1)

С9	46(1)	35(1)	29(1)	-2(1)	14(1)	-18(1)
C10	45(1)	31(1)	22(1)	-4(1)	13(1)	-14(1)
C11	25(1)	17(1)	19(1)	-1(1)	6(1)	3(1)
C12	26(1)	19(1)	18(1)	2(1)	5(1)	5(1)
N1	30(1)	18(1)	19(1)	3(1)	8(1)	2(1)
N2	34(1)	19(1)	18(1)	-3(1)	10(1)	-5(1)
Cl1	24(1)	28(1)	35(1)	12(1)	-2(1)	-6(1)
Ga1	25(1)	16(1)	18(1)	0	7(1)	0
Cl2	172(3)	52(1)	27(1)	0(1)	24(1)	-37(1)
03W	82(6)	26(3)	95(7)	38(4)	70(6)	27(4)
04W	143(9)	330(20)	186(13)	-157(13)	99(9)	-191(13)
01W	62(5)	99(6)	63(7)	-46(7)	42(5)	-62(5)
02W	125(13)	62(6)	42(5)	0	10(7)	0
05W	93(13)	142(17)	138(18)	-2(14)	29(14)	-79(12)

A1.2.18- Estructura cristalina del complejo [TIMe2(H2O)(MASCcic)]·H2O.

Figura A1.44- Unidad asimétrica de la estructura cristalina del complejo [TIMe₂(H₂O)(MASC_{cic})]·H₂O.

Tabla A1.2.102- Datos cristalográficos y de refinado del complejo [TIMe₂(H₂O)(MASC_{cic})]·H₂O.

Fórmula	${\sf C}_7 \: {\sf H}_{16} \: {\sf N}_3 \: {\sf O}_4 \: {\sf TI}$	α (°)	90.000	Intervalo θ (°)	2.23 a 28.28	
Masa Molecular	410.60	β (°)	115.347(5)	Intervalos en <i>h, k, l</i>	-25,23; 0,14; 0,17	
т (к)	120(2)	γ (°)	90.000	No. reflex. medidas	44628	
λ (Å)	0.71069	V (Å ³)	2442.6(16)	No. reflex. únicas	3030	
Sistema Cristalino	Monoclínico	z	8	R _{int}	0.0593	
Grupo Espacial	C2/c	D _{calc} . (mg/m ³)	2.233	R	0.0284	
a (Å)	19.371(5)	μ(mm ⁻¹)	13.225	R _w	0.0528	
b (Å)	10.672(5)	F(000)	1536	G.O.F.	1.169	
c (Å)	13.074(5)	Dimensiones (mm)	0.16 x 0.09 x 0.08			

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-01	1.226(6)	C4-02	1.290(7)	C6-H6C	0.9600	N3-Tl1	2.512(4)
C1-N1	1.327(7)	C4-N2	1.403(6)	C7-Tl1	2.126(6)	01-Tl1	2.588(4)
C1-N2	1.399(7)	C5-H5A	0.9600	С7-Н7А	0.9600	01W-H11W	0.85(2)
C2-N3	1.333(7)	C5-H5B	0.9600	С7-Н7В	0.9600	01W-H12W	0.85(2)
C2-C3	1.400(8)	C5-H5C	0.9600	С7-Н7С	0.9600	O2W-TI1	2.719(4)
C2-C5	1.484(8)	C6-Tl1	2.111(6)	N1-H1A	0.8600	O2W-H21W	0.86(2)
C3-C4	1.381(8)	C6-H6A	0.9600	N1-H1B	0.8600	O2W-H22W	0.848(19)
С3-Н3	0.9300	С6-Н6В	0.9600	N2-N3	1.392(6)		

Tabla A1.2.103- Distancias interatómicas (Å) de [TIMe₂(H₂O)(MASC_{cic})]·H₂O.

Tabla A1.2.104- Ángulos de enlace (°) de $[TIMe_2(H_2O)(MASC_{cic})] \cdot H_2O$.

	Ángulo		Ángulo	<u>,</u>	Ángulo
C1-N1-H1A	120.0	C7-Tl1-N3	90.9(2)	N3-C2-C5	120.9(5)
C1-N1-H1B	120.0	C7-Tl1-O1	92.8(2)	N3-N2-C1	118.5(4)
C1-N2-C4	129.9(5)	C7-TI1-O2W	89.3(2)	N3-N2-C4	111.6(4)
C1-01-Tl1	116.9(3)	H11W-01W-H12W	111(8)	N3-Tl1-O1	63.61(13)
С2-С3-Н3	126.4	H1A-N1-H1B	120.0	N3-TI1-O2W	94.93(14)
C2-C5-H5A	109.5	H21W-O2W-H22W	102(7)	01-C1-N1	124.9(5)
C2-C5-H5B	109.5	Н5А-С5-Н5В	109.5	01-C1-N2	120.3(5)
C2-C5-H5C	109.5	Н5А-С5-Н5С	109.5	01-Tl1-02W	158.45(12)
C2-N3-N2	104.4(4)	Н5В-С5-Н5С	109.5	02-C4-C3	132.7(5)
C2-N3-Tl1	135.9(4)	Н6А-С6-Н6В	109.5	O2-C4-N2	122.5(5)
C3-C2-C5	127.0(5)	Н6А-С6-Н6С	109.5	TI1-C6-H6A	109.5
C3-C4-N2	104.8(5)	Н6В-С6-Н6С	109.5	Tl1-C6-H6B	109.5
C4-C3-C2	107.2(5)	Н7А-С7-Н7В	109.5	Tl1-C6-H6C	109.5
С4-С3-Н3	126.4	H7A-C7-H7C	109.5	Tl1-C7-H7A	109.5
C6-Tl1-C7	172.6(2)	H7B-C7-H7C	109.5	Tl1-C7-H7B	109.5
C6-Tl1-N3	96.3(2)	N1-C1-N2	114.7(5)	TI1-C7-H7C	109.5
C6-Tl1-O1	92.0(2)	N2-N3-TI1	114.0(3)	Tl1-02W-H21W	125(6)
C6-Tl1-O2W	88.4(2)	N3-C2-C3	112.1(5)	Tl1-02W-H22W	105(4)

Tabla A1.2.105- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de [TIMe₂(H₂O)(MASC_{cic})]·H₂O.

	x	У	Z	U(eq)
C1	6555(3)	4361(5)	5461(4)	16(1)

C2	7506(3)	7206(5)	6271(4)	16(1)
С3	8156(3)	6444(5)	6621(5)	18(1)
C4	7905(3)	5222(6)	6370(4)	17(1)
C5	7486(3)	8591(5)	6355(5)	21(1)
C6	5032(4)	7384(6)	3935(5)	28(1)
C7	5889(4)	6246(7)	7356(5)	28(1)
N1	6835(2)	3213(5)	5529(4)	21(1)
N2	7106(2)	5306(4)	5885(4)	15(1)
N3	6862(2)	6543(4)	5811(4)	17(1)
01	5874(2)	4618(4)	5086(3)	19(1)
02	8260(2)	4168(4)	6507(3)	20(1)
01W	9118(2)	4105(4)	5296(4)	22(1)
02W	5693(2)	9224(4)	6280(4)	23(1)
Tl1	5525(1)	6778(1)	5636(1)	15(1)

Tabla A1.2.106-Factores anisotrópicos de temperatura (Ų) de $[TIMe_2(H_2O)(MASC_{cic})] \cdot H_2O.$

	U11	U22	U33	U23	U13	U12
C1	20(3)	15(3)	14(3)	-1(2)	9(2)	-3(2)
C2	20(3)	17(3)	11(2)	1(2)	7(2)	-1(2)
С3	13(2)	26(3)	15(3)	-1(2)	5(2)	-5(2)
C4	11(2)	25(3)	12(3)	1(2)	2(2)	3(2)
C5	23(3)	21(3)	21(3)	-2(2)	13(2)	-5(2)
C6	27(3)	30(4)	24(3)	3(3)	8(3)	-2(3)
C7	27(3)	38(4)	18(3)	4(3)	10(3)	0(3)
N1	14(2)	16(2)	30(3)	-3(2)	8(2)	-4(2)
N2	13(2)	14(2)	18(2)	0(2)	7(2)	-1(2)
N3	15(2)	15(3)	20(2)	1(2)	7(2)	-1(2)
01	14(2)	14(2)	30(2)	-2(2)	9(2)	-1(2)
02	15(2)	21(2)	22(2)	2(2)	6(2)	5(2)
01W	18(2)	25(2)	24(2)	-4(2)	9(2)	0(2)
02W	20(2)	22(2)	21(2)	0(2)	3(2)	0(2)
TI1	13(1)	16(1)	16(1)	-1(1)	5(1)	0(1)

Tabla A1.2.107- Enlaces de hidrógeno (Å, °) de [TIMe ₂ (H ₂ O)(MASC _{cic})]·H ₂ O
--

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O1W ⁱ	0.86	2.14	2.997(7)	173.1

N1-H1B…O2	0.86	2.01	2.696(6)	136.6			
01W-H11W…02	0.85(2)	1.90(3)	2.744(6)	168(8)			
01W-H12W…O2W ⁱⁱ	0.85(2)	1.92(3)	2.760(6)	169(8)			
02W-H21W…01W ⁱⁱⁱ	0.86(2)	2.07(5)	2.865(6)	153(9)			
O2W-H22W…O2 ^{iv}	0.848(19)	1.88(2)	2.732(6)	178(6)			
ⁱ -x+3/2, -y+1/2, -z+1; ⁱⁱ x+1/2, y-1/2, z; ⁱⁱⁱ -x+3/2, -y+3/2, -z+1; ^{iv} -x+3/2, y+1/2, -z+3/2.							

A1.2.19- Estructura cristalina del complejo [TIMe₂(HABLSC_{cic})]·H₂O.

Figura A1.45- Unidad asimétrica de la estructura cristalina del complejo [TIMe2(HABLSCcic)]·H2O.

Tabla A1.2.108- Datos cristalográficos y de refinado del complejo [TIMe₂(HABLSC_{cic})]·H₂O.

Fórmula	$C_9 H_{18} N_3 O_4 TI$	α(°)	90.000	Intervalo θ (°)	1.92 a 27.48
Masa Molecular	436.63	β(°)	103.017(5)	Intervalos en h, k, l	-15,15; 0,9; 0,20
т (к)	120.0(1)	γ (°)	90.000	No. reflex. medidas	18599
λ (Å)	0.71069	V (ų)	1381.5(12)	No. reflex. únicas	3141
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.0406
Grupo Espacial	P2(1)/n	D _{calc} . (mg/m ³)	2.099	R	0.0224
a (Å)	12.015(5)	μ(mm ⁻¹)	11.698	R _w	0.0616
b (Å)	7.354(5)	F(000)	824	G.O.F.	1.107
c (Å)	16.048(5)	Dimensiones (mm)	0.39 x 0.23 x 0.21		

Tabla A1.2.109- Distancias interatómicas	(Å)) de	[TIMe ₂ (HABLSC _{cic})]	-H ₂ Ο.
--	-----	------	--	--------------------

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-01	1.238(6)	C5-H5A	0.9600	C8-Tl1	2.125(5)	N1-H1A	0.92(5)
C1-N1	1.318(7)	C5-H5B	0.9600	C8-H8A	0.9600	N2-N3	1.390(5)
C1-N2	1.395(6)	C5-H5C	0.9600	C8-H8B	0.9600	N3-TI1	2.570(4)
C2-N3	1.336(6)	C6-C7	1.525(7)	C8-H8C	0.9600	01-Tl1	2.556(4)
C2-C3	1.406(7)	C6-H6A	0.9700	C9-Tl1	2.116(6)	01-Tl1#1	2.748(4)

C2-C5	1.496(7)	С6-Н6В	0.9700	C9-H9A	0.9600	O1W-H2W	0.80(6)
C3-C4	1.381(7)	C7-O3	1.413(6)	С9-Н9В	0.9600	O1W-H1W	0.77(8)
C3-C6	1.498(7)	C7-H7A	0.9700	С9-Н9С	0.9600	O3-H3	0.85(11)
C4-O2	1.295(6)	С7-Н7В	0.9700	N1-H1B	0.77(7)	Tl1-01#1	2.748(4)
C4-N2	1.411(6)						

Tabla A1.2.110- Ángulos de enlace (°) de [TIMe₂(HABLSC_{cic})]·H₂O.

	Ángulo		Ángulo		Ángulo
C1-N1-H1A	118(3)	С7-О3-Н3	112(7)	N2-N3-TI1	115.2(3)
C1-N1-H1B	121(5)	C8-Tl1-N3	92.60(19)	N3-C2-C3	112.6(4)
C1-N2-C4	128.8(4)	C8-Tl1-O1	88.84(18)	N3-C2-C5	119.7(4)
C1-01-Tl1	120.9(3)	C8-Tl1-O1#1	84.72(18)	N3-N2-C1	119.7(4)
C1-O1-Tl1#1	127.9(3)	C9-Tl1-C8	168.5(2)	N3-N2-C4	111.5(4)
C2-C3-C6	129.9(5)	C9-Tl1-N3	98.90(19)	N3-Tl1-O1#1	132.99(12)
C2-C5-H5A	109.5	C9-Tl1-O1	96.87(18)	01-C1-N1	124.9(5)
C2-C5-H5B	109.5	C9-Tl1-O1#1	87.95(19)	01-C1-N2	120.1(4)
C2-C5-H5C	109.5	H1B-N1-H1A	121(6)	01-Tl1-N3	63.81(12)
C2-N3-N2	104.2(4)	H2W-01W-H1W	119(7)	01-Tl1-01#1	69.21(13)
C2-N3-Tl1	140.6(3)	H5A-C5-H5B	109.5	O2-C4-C3	132.1(4)
C3-C2-C5	127.6(4)	Н5А-С5-Н5С	109.5	02-C4-N2	122.7(4)
C3-C4-N2	105.2(4)	Н5В-С5-Н5С	109.5	O3-C7-C6	108.3(4)
C3-C6-C7	113.1(4)	Н6А-С6-Н6В	107.8	03-С7-Н7А	110.0
C3-C6-H6A	109.0	Н7А-С7-Н7В	108.4	ОЗ-С7-Н7В	110.0
C3-C6-H6B	109.0	Н8А-С8-Н8В	109.5	TI1-C8-H8A	109.5
C4-C3-C2	106.5(4)	H8A-C8-H8C	109.5	TI1-C8-H8B	109.5
C4-C3-C6	123.6(4)	H8B-C8-H8C	109.5	TI1-C8-H8C	109.5
С6-С7-Н7А	110.0	Н9А-С9-Н9В	109.5	TI1-C9-H9A	109.5
С6-С7-Н7В	110.0	Н9А-С9-Н9С	109.5	TI1-C9-H9B	109.5
C7-C6-H6A	109.0	Н9В-С9-Н9С	109.5	TI1-C9-H9C	109.5
С7-С6-Н6В	109.0	N1-C1-N2	115.0(4)	Tl1-01-Tl1#1	110.79(13)

Tabla A1.2.111- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de [TIMe₂(HABLSC_{cic})]·H₂O.

	x	У	Z	U(eq)
C1	4103(4)	8530(7)	3421(3)	18(1)
C2	6193(4)	5632(7)	2995(3)	18(1)
С3	5390(4)	5366(7)	2220(3)	19(1)

C4	4451(4)	6414(7)	2262(3)	16(1)
C5	7375(4)	4870(8)	3250(3)	24(1)
C6	5461(4)	4210(8)	1465(3)	20(1)
С7	4638(5)	2603(8)	1340(3)	24(1)
C8	7101(5)	10687(8)	4403(4)	26(1)
С9	6061(5)	6338(8)	5766(4)	28(1)
N1	3124(4)	9013(7)	2917(3)	23(1)
N2	4737(3)	7277(6)	3067(2)	16(1)
N3	5824(3)	6788(6)	3517(3)	18(1)
01	4480(3)	9124(6)	4152(2)	24(1)
02	3486(3)	6678(5)	1724(2)	19(1)
01W	3629(3)	8436(5)	275(2)	20(1)
03	4616(4)	1821(6)	532(2)	28(1)
Tl1	6510(1)	8373(1)	4969(1)	17(1)

Tabla A1.2.112-Factores anisotrópicos de temperatura (Ų) de [TIMe2(HABLSCcic)]·H2O.

_

	U11	U22	U33	U23	U13	U12	
C1	17(2)	18(3)	18(2)	1(2)	5(2)	1(2)	
C2	19(2)	17(3)	21(2)	-1(2)	9(2)	-1(2)	
C3	18(2)	23(3)	17(2)	-2(2)	6(2)	-3(2)	
C4	16(2)	20(3)	14(2)	-1(2)	3(2)	-3(2)	
C5	20(2)	30(3)	23(2)	-4(2)	5(2)	4(2)	
C6	16(2)	29(3)	17(2)	-6(2)	5(2)	-1(2)	
C7	26(3)	27(3)	23(3)	-7(2)	11(2)	-5(2)	
C8	28(3)	23(3)	30(3)	2(2)	13(2)	-2(2)	
C9	23(3)	37(4)	24(3)	2(2)	5(2)	-3(2)	
N1	18(2)	30(3)	20(2)	-8(2)	2(2)	6(2)	
N2	15(2)	19(2)	13(2)	-2(2)	1(2)	0(2)	
N3	11(2)	25(2)	15(2)	-2(2)	-1(2)	2(2)	
01	21(2)	32(2)	19(2)	-6(2)	5(2)	2(2)	
02	15(2)	28(2)	14(2)	-2(2)	1(1)	-2(2)	
01W	24(2)	17(2)	18(2)	1(2)	5(2)	-3(2)	
03	31(2)	31(2)	26(2)	-11(2)	12(2)	-7(2)	
TI1	14(1)	22(1)	15(1)	-1(1)	2(1)	1(1)	

Tabla A1.2.113- Enlaces de hidrógeno (Å, °) de $[TIMe_2(HABLSC_{cic})] \cdot H_2O$.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N1-H1A…O2	0.92(5)	1.92(5)	2.679(6)	138(4)
N1-H1B…O2 ⁱⁱ	0.77(7)	2.14(7)	2.901(6)	171(6)
01W-H1W…03 ⁱⁱⁱ	0.77(8)	1.95(8)	2.718(5)	172(7)

01W-H2W02	0.80(6)	1.90(7)	2.700(5)	1/1(6)
03-H3···01W ^{··}	0.85(11)	1.91(11)	2.748(6)	166(10)
-x+1, -y+2, -z+1; -x	+1/2, y+1/2	,-z+1/2; -	x+1, -y+1, -:	z; x,y-1,z

A1.2.20- Estructura cristalina del complejo [TIMe₂(BMASC_{cic})].

Figura A1.46- Unidad asimétrica de la estructura cristalina del complejo [TIMe2(BMASCcic)].

Fórmula	$C_{28} \: H_{36} \: N_6 \: O_4 \: TI_2$	α (°)	90.000	Intervalo θ (°)	1.90 a 28.30
Masa Molecular	929.39	β(°)	90.000	Intervalos en h, k, l	0,11; 0,21; 0,28
т (к)	110(2)	γ(°)	90.000	No. reflex. medidas	56616
λ (Å)	0.71069	V (Å ³)	3089(2)	No. reflex. únicas	3836
Sistema Cristalino	Ortorrómbico	z C	4	R _{int}	0.0518
Grupo Espacial	Pbca	D _{calc} . (mg/m ³)	1.998	R	0.0193
a (Å)	8.884(5)	μ(mm ⁻¹)	10.461	Rw	0.0391
b (Å)	16.204(5)	F(000)	1760	G.O.F.	1.241
c (Å)	21.459(5)	Dimensiones (mm)	0.48 x 0.26 x 0.17		

Tabla A1.2.114- Datos cristalográficos y de refinado del complejo [TIMe2(BMASCcic)].

Tabla A1.2.115- Distancias interatómicas (Å) de [TIMe₂(BMASC_{cic})].

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-01	1.245(4)	C5-H5B	0.9600	C10-C11	1.377(5)	C14-H14A	0.9600
C1-N1	1.325(5)	C5-H5C	0.9600	C10-H10	0.9300	C14-H14B	0.9600
C1-N2	1.384(5)	C6-C7	1.513(5)	C11-C12	1.385(5)	C14-H14C	0.9600
C2-N3	1.330(4)	C6-H6A	0.9700	C11-H11	0.9300	N1-H1A	0.86(4)
C2-C3	1.402(5)	C6-H6B	0.9700	C12-H12	0.9300	N1-H1B	0.82(5)
C2-C5	1.497(5)	C7-C8	1.382(5)	C13-Tl1	2.111(4)	N2-N3	1.393(4)
C3-C4	1.390(5)	C7-C12	1.383(5)	C13-H13A	0.9600	N3-TI1	2.565(3)
C3-C6	1.491(5)	C8-C9	1.388(6)	C13-H13B	0.9600	01-Tl1	2.552(2)

C4-O2	1.281(4)	С8-Н8	0.9300	С13-Н13С	0.9600	01-Tl1 ⁱ	2.665(3)
C4-N2	1.414(4)	C9-C10	1.376(6)	C14-Tl1	2.123(4)	Tl1-O1 ⁱ	2.665(3)
С5-Н5А	0.9600	С9-Н9	0.9300				

ⁱ-x,-y,-z+1

Tabla A1.2.116- Ángulos de enlace (°) de [TIMe₂(BMASC_{cic})].

	Ángulo		Ángulo		Ángulo
01-C1-N1	124.4(3)	C12-C7-C6	119.7(3)	TI1-C14-H14C	109.5
01-C1-N2	120.1(3)	C7-C8-C9	121.4(4)	H14A-C14-H14C	109.5
N1-C1-N2	115.4(3)	С7-С8-Н8	119.3	H14B-C14-H14C	109.5
N3-C2-C3	113.4(3)	С9-С8-Н8	119.3	C1-N1-H1A	119(3)
N3-C2-C5	119.6(3)	C10-C9-C8	119.9(4)	C1-N1-H1B	118(3)
C3-C2-C5	126.9(3)	С10-С9-Н9	120.1	H1A-N1-H1B	120(4)
C4-C3-C2	106.2(3)	С8-С9-Н9	120.1	C1-N2-N3	118.3(3)
C4-C3-C6	126.6(3)	С11-С10-С9	119.4(4)	C1-N2-C4	129.4(3)
C2-C3-C6	127.2(3)	С11-С10-Н10	120.3	N3-N2-C4	111.6(3)
O2-C4-C3	132.8(3)	С9-С10-Н10	120.3	C2-N3-N2	103.9(3)
02-C4-N2	122.3(3)	C10-C11-C12	120.3(4)	C2-N3-Tl1	140.5(2)
C3-C4-N2	104.9(3)	С10-С11-Н11	119.8	N2-N3-TI1	113.8(2)
C2-C5-H5A	109.5	С12-С11-Н11	119.8	C1-01-Tl1	118.9(2)
C2-C5-H5B	109.5	C11-C12-C7	121.1(4)	C1-O1-Tl1 ⁱ	130.1(2)
H5A-C5-H5B	109.5	С11-С12-Н12	119.5	TI1-01-TI1 ⁱ	108.95(9)
C2-C5-H5C	109.5	С7-С12-Н12	119.5	C13-Tl1-C14	174.99(16)
H5A-C5-H5C	109.5	TI1-C13-H13A	109.5	C13-Tl1-O1	93.17(13)
H5B-C5-H5C	109.5	TI1-C13-H13B	109.5	C14-Tl1-O1	91.44(13)
C3-C6-C7	114.7(3)	H13A-C13-H13B	109.5	C13-Tl1-N3	91.99(13)
C3-C6-H6A	108.6	TI1-C13-H13C	109.5	C14-Tl1-N3	91.84(14)
С7-С6-Н6А	108.6	H13A-C13-H13C	109.5	01-Tl1-N3	63.02(9)
СЗ-С6-Н6В	108.6	H13B-C13-H13C	109.5	C13-Tl1-O1 ⁱ	85.62(13)
С7-С6-Н6В	108.6	TI1-C14-H14A	109.5	C14-Tl1-O1 ⁱ	94.05(14)
H6A-C6-H6B	107.6	TI1-C14-H14B	109.5	01-Tl1-01 ⁱ	71.05(9)
C8-C7-C12	117.9(4)	H14A-C14-H14B	109.5	N3-Tl1-O1 ⁱ	133.80(8)
C8-C7-C6	122.4(4)				

'-x,-y,-z+1

	x	у	Z	U(eq)
C1	1781(4)	-1340(2)	5258(2)	18(1)
C2	3865(4)	-747(2)	6536(2)	20(1)
С3	4551(4)	-1520(2)	6461(2)	19(1)
C4	3904(4)	-1870(2)	5934(2)	18(1)
C5	4129(5)	-143(2)	7053(2)	30(1)
C6	5712(4)	-1902(2)	6871(2)	23(1)
C7	5095(4)	-2334(2)	7442(2)	21(1)
C8	5595(5)	-2157(3)	8037(2)	31(1)
С9	5069(5)	-2590(3)	8551(2)	34(1)
C10	4024(5)	-3209(3)	8472(2)	29(1)
C11	3488(5)	-3379(2)	7884(2)	25(1)
C12	4014(4)	-2941(2)	7374(2)	22(1)
C13	-319(4)	540(3)	6317(2)	26(1)
C14	3100(5)	865(3)	4967(2)	29(1)
N1	1841(4)	-2022(2)	4918(2)	19(1)
N2	2868(3)	-1273(2)	5717(1)	18(1)
N3	2847(4)	-579(2)	6100(1)	20(1)
01	846(3)	-777(2)	5181(1)	20(1)
02	4091(3)	-2564(2)	5659(1)	21(1)
TI1	1393(1)	645(1)	5639(1)	17(1)

Tabla A1.2.117- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de [TIMe₂(BMASC_{cic})].

Tabla A1.2.118- Factores anisotrópicos de temperatura (Å²) de [TIMe₂(BMASC_{cic})].

	U11	U22	U33	U23	U13	U12
C1	21(2)	18(2)	14(2)	1(1)	1(1)	-3(1)
C2	21(2)	21(2)	17(2)	0(1)	-2(1)	-5(2)
C3	17(2)	23(2)	17(2)	2(1)	-1(1)	-1(2)
C4	17(2)	19(2)	17(2)	3(1)	3(1)	-2(1)
C5	41(2)	24(2)	24(2)	-6(2)	-10(2)	-1(2)
C6	17(2)	29(2)	22(2)	1(2)	-3(2)	2(2)
C7	17(2)	26(2)	20(2)	2(2)	-1(2)	4(2)
C8	26(2)	38(2)	28(2)	0(2)	-7(2)	-7(2)
С9	35(2)	49(3)	19(2)	0(2)	-7(2)	-3(2)
C10	29(2)	37(2)	19(2)	4(2)	4(2)	5(2)

C11	25(2)	23(2)	27(2)	-1(2)	1(2)	3(2)
C12	25(2)	23(2)	16(2)	-3(1)	-2(2)	4(2)
C13	28(2)	28(2)	20(2)	0(2)	6(2)	2(2)
C14	31(2)	25(2)	31(2)	2(2)	10(2)	-1(2)
N1	22(2)	19(2)	17(2)	-3(1)	-4(1)	1(1)
N2	20(2)	14(1)	18(2)	-2(1)	-2(1)	2(1)
N3	28(2)	12(1)	19(2)	-3(1)	-6(1)	2(1)
01	24(1)	17(1)	20(1)	-2(1)	-6(1)	2(1)
02	23(1)	18(1)	22(1)	-2(1)	0(1)	3(1)
Tl1	21(1)	15(1)	16(1)	-1(1)	0(1)	1(1)

Tabla A1.2.119- Enlaces de hidrógeno	(Å,	°) c	le	[TIMe2(BMASCc	_{ic})].
--------------------------------------	-----	------	----	---------------	-------------------

D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)			
N1-H1A…O2 ⁱⁱ	0.86(4)	1.97(4)	2.820(4)	170(4)			
N1-H1B…O2	0.82(5)	2.02(5)	2.701(4)	139(4)			
ⁱⁱ x-1/2, -γ-1/2, -z+1.							

A1.2.21- Estructura cristalina del complejo [TIMe2(HCBSC)]·2H2O.

Figura A1.47- Unidad asimétrica de la estructura cristalina del complejo [TIMe₂(HCBSC)]·2H₂O.

Fórmula	$C_7 \; H_{14} \; N_3 \; O_5 \; Tl$	α (°)	93.307(4)	Intervalo θ (°)	2.11 a 27.88
Masa Molecular	424.58	β (°)	97.980(4)	Intervalos en h, k, l	-11,10; -13,13; 0,21
т (к)	120(2)	γ (°)	107.142(4)	No. reflex. medidas	23013
λ (Å)	0.71073	V (ų)	1346.5(6)	No. reflex. Únicas	6334
Sistema Cristalino	Triclínico	Z	4	R _{int}	0.0526

Tabla A1.2.120- Datos cristalográficos y de refinado del complejo [TIMe₂(HCBSC)]·2H₂O.

Grupo Espacial	P-1	D _{calc} . (mg/m ³)	2.094	R	0.0323
a (Å)	8.474(2)	μ(mm ⁻¹)	12.005	R _w	0.0784
b (Å)	10.146(3)	F(000)	792	G.O.F.	1.019
c (Å)	16.640(4)	Dimensiones (mm)	0.15 x 0.12 x 0.08		

Tabla A1.2.121- Distancias interatómicas (Å) de [TIMe₂(HCBSC)]·2H₂O.

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-N11	1.335(9)	C16-H16C	0.9600	C24-H24B	0.9700	N13-Tl1	2.648(6)
C11-N12	1.371(9)	C16-Tl1	2.107(9)	C25-H25A	0.9600	N21-H21A	0.8600
C11-O11	1.252(9)	C17-H17A	0.9600	C25-H25B	0.9600	N21-H21B	0.8600
C12-C13	1.500(10)	C17-H17B	0.9600	C25-H25C	0.9600	N22-H22	0.8600
C12-C14	1.506(10)	C17-H17C	0.9600	C26-H26A	0.9600	N22-N23	1.380(8)
C12-N13	1.286(9)	C17-Tl1	2.104(8)	C26-H26B	0.9600	N23-Tl2	2.608(6)
C13-O12	1.262(9)	C21-N21	1.324(9)	C26-H26C	0.9600	011-Tl1	2.716(5)
C13-O13	1.256(9)	C21-N22	1.398(9)	C26-TI2	2.110(8)	012-Tl1	2.540(5)
C14-C15	1.520(14)	C21-O21	1.235(8)	С27-Н27А	0.9600	021-Tl1	2.753(5)
C14-H14A	0.9700	C22-C23	1.515(9)	С27-Н27В	0.9600	O21-Tl2	2.631(5)
C14-H14B	0.9700	C22-C24	1.492(10)	С27-Н27С	0.9600	O22-TI2	2.638(5)
C15-H15A	0.9600	C22-N23	1.281(9)	C27-TI2	2.116(8)	O3W-TI2	2.830(z6)
C15-H15B	0.9600	C23-O22	1.262(8)	N11-H11A	0.8600	04W-05W	0.987(15)
C15-H15C	0.9600	C23-O23	1.247(8)	N11-H11B	0.8600	O5W-TI1	2.971(11)
C16-H16A	0.9600	C24-C25	1.521(12)	N12-H12	0.8600	05W-TI2	2.986(11)
C16-H16B	0.9600	C24-H24A	0.9700	N12-N13	1.361(8)		

Tabla A1.2.122- Ángulos de enlace (°) de [TIMe₂(HCBSC)]·2H₂O.

	Ángulo		Ángulo		Ángulo
C11-N11-H11A	120.0	C26-Tl2-N23	96.9(3)	N23-N22-C21	117.1(6)
C11-N11-H11B	120.0	C26-Tl2-O21	90.3(3)	N23-N22-H22	121.5
C11-N12-H12	121.1	C26-TI2-O22	91.3(3)	N23-Tl2-O21	61.63(16)
C11-O11-Tl1	119.9(4)	C26-TI2-O3W	86.7(3)	N23-Tl2-O22	60.80(16)
C12-C14-C15	110.0(8)	C26-Tl2-O5W	83.5(3)	N23-Tl2-O3W	145.82(18)
C12-C14-H14A	109.7	C27-Tl2-N23	90.6(3)	N23-Tl2-O5W	140.7(2)
C12-C14-H14B	109.7	C27-Tl2-O21	92.6(3)	O11-C11-N11	124.1(6)
C12-N13-N12	119.8(6)	C27-Tl2-O22	93.0(3)	O11-C11-N12	121.6(6)
C12-N13-Tl1	119.7(5)	C27-Tl2-O3W	87.5(3)	011-Tl1-021	158.33(15)
C13-C12-C14	117.4(6)	C27-Tl2-O5W	90.2(3)	011-Tl1-05W	81.0(2)

C13-O12-Tl1	123.4(5)	H11A-N11-H11B	120.0	O12-C13-C12	118.4(7)
C14-C15-H15A	109.5	H14A-C14-H14B	108.2	O12-Tl1-N13	61.88(17)
C14-C15-H15B	109.5	H15A-C15-H15B	109.5	012-Tl1-011	121.40(16)
C14-C15-H15C	109.5	H15A-C15-H15C	109.5	012-Tl1-021	80.20(16)
C15-C14-H14A	109.7	H15B-C15-H15C	109.5	012-Tl1-05W	157.5(2)
C15-C14-H14B	109.7	H16A-C16-H16B	109.5	O13-C13-C12	117.4(7)
C16-Tl1-N13	96.4(3)	H16A-C16-H16C	109.5	013-C13-O12	124.2(7)
C16-Tl1-O11	91.1(3)	H16B-C16-H16C	109.5	O21-C21-N21	125.1(7)
C16-Tl1-O12	90.9(3)	H17A-C17-H17B	109.5	O21-C21-N22	121.7(6)
C16-Tl1-O21	90.0(3)	H17A-C17-H17C	109.5	021-Tl1-05W	77.5(2)
C16-Tl1-O5W	86.6(3)	H17B-C17-H17C	109.5	021-Tl2-022	122.17(15)
C17-Tl1-C16	172.2(3)	H21A-N21-H21B	120.0	021-Tl2-03W	152.55(17)
C17-Tl1-N13	91.2(3)	H24A-C24-H24B	107.9	021-Tl2-05W	79.1(2)
C17-Tl1-O11	91.1(3)	H25A-C25-H25B	109.5	O22-C23-C22	118.7(6)
C17-Tl1-O12	94.3(3)	H25A-C25-H25C	109.5	022-Tl2-03W	85.20(17)
C17-Tl1-O21	85.2(3)	H25B-C25-H25C	109.5	022-Tl2-05W	158.3(2)
C17-Tl1-O5W	86.4(3)	H26A-C26-H26B	109.5	O23-C23-C22	116.8(6)
C21-N21-H21A	120.0	H26A-C26-H26C	109.5	023-C23-O22	124.5(6)
C21-N21-H21B	120.0	H26B-C26-H26C	109.5	O3W-TI2-O5W	73.5(2)
C21-N22-H22	121.5	H27A-C27-H27B	109.5	04W-05W-TI1	85.3(10)
C21-O21-Tl1	130.4(4)	H27A-C27-H27C	109.5	O4W-O5W-TI2	175.5(13)
C21-O21-Tl2	120.8(4)	H27B-C27-H27C	109.5	Tl1-C16-H16A	109.5
C22-C24-C25	111.7(7)	N11-C11-N12	114.4(7)	Tl1-C16-H16B	109.5
C22-C24-H24A	109.3	N12-N13-Tl1	120.0(4)	TI1-C16-H16C	109.5
C22-C24-H24B	109.3	N13-C12-C13	116.0(7)	Tl1-C17-H17A	109.5
C22-N23-N22	117.3(6)	N13-C12-C14	126.5(7)	Tl1-C17-H17B	109.5
C22-N23-TI2	124.0(5)	N13-N12-C11	117.7(6)	Tl1-C17-H17C	109.5
C23-O22-Tl2	120.9(4)	N13-N12-H12	121.1	TI1-05W-TI2	94.6(3)
C24-C22-C23	120.0(6)	N13-Tl1-011	59.70(16)	TI2-C26-H26A	109.5
C24-C25-H25A	109.5	N13-Tl1-O21	141.55(16)	Tl2-C26-H26B	109.5
С24-С25-Н25В	109.5	N13-Tl1-05W	140.6(2)	TI2-C26-H26C	109.5
C24-C25-H25C	109.5	N21-C21-N22	113.2(6)	TI2-C27-H27A	109.5
C25-C24-H24A	109.3	N22-N23-Tl2	118.5(4)	TI2-C27-H27B	109.5
C25-C24-H24B	109.3	N23-C22-C23	114.5(6)	Tl2-C27-H27C	109.5
C26-Tl2-C27	172.4(3)	N23-C22-C24	125.5(6)	TI2-021-TI1	108.82(17)

	x	У	Z	U(eq)
C11	903(9)	7251(7)	3369(4)	16(2)
C12	1656(10)	7245(8)	1343(4)	18(2)
C13	2799(10)	6731(8)	884(5)	20(2)
C14	508(11)	7921(9)	874(5)	29(2)
C15	-916(14)	6828(14)	325(7)	63(4)
C16	5671(11)	6945(9)	3117(5)	32(2)
C17	1296(11)	3609(9)	2335(6)	32(2)
C21	5584(9)	3447(8)	1525(4)	17(2)
C22	7773(9)	1031(7)	1945(4)	14(2)
C23	8296(9)	405(8)	2703(4)	16(2)
C24	8187(12)	611(8)	1145(5)	28(2)
C25	6799(13)	-619(10)	679(5)	40(2)
C26	8089(10)	4155(9)	3890(5)	30(2)
C27	3816(10)	688(9)	3133(5)	30(2)
N11	94(8)	7897(6)	3809(4)	18(1)
N12	725(8)	7449(6)	2558(4)	18(1)
N13	1713(8)	7009(6)	2096(4)	15(1)
N21	5242(9)	4051(7)	866(4)	28(2)
N22	6430(8)	2483(7)	1391(4)	20(1)
N23	6954(7)	1884(6)	2060(3)	14(1)
01W	7245(7)	9560(6)	4751(3)	22(1)
02W	998(7)	2108(6)	4551(3)	24(1)
03W	6037(7)	1792(7)	5084(3)	34(2)
04W	3379(17)	4532(14)	4411(8)	20(3)
05W	4095(14)	4047(11)	4182(7)	39(3)
011	1752(6)	6514(5)	3656(3)	16(1)
012	3578(7)	5976(6)	1227(3)	25(1)
013	2912(8)	7081(6)	177(3)	31(2)
021	5189(7)	3668(6)	2195(3)	24(1)
022	7992(6)	820(5)	3378(3)	20(1)
023	9024(7)	-483(6)	2613(3)	24(1)
Tl1	3412(1)	5364(1)	2678(1)	16(1)
TI2	6021(1)	2395(1)	3444(1)	16(1)

Tabla A1.2.123- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de [TIMe₂(HCBSC)]·2H₂O.

	U11	U22	U33	U23	U13	U12
C11	20(4)	14(4)	10(3)	-1(3)	2(3)	1(3)
C12	25(4)	21(4)	13(4)	5(3)	-(3) 6(3)	12(4)
C13	25(4)	18(4)	22(4)	2(3)	7(3)	11(4)
C14	49(6)	45(6)	13(4)	12(4)	10(4)	41(5)
C15	51(7)	96(10)	49(7)	10(7)	-15(6)	41(7)
C16	29(5)	35(5)	32(5)	5(4)	6(4)	10(4)
C17	31(5)	27(5)	37(5)	-5(4)	0(4)	9(4)
C21	22(4)	17(4)	17(4)	8(3)	5(3)	11(3)
C22	14(3)	15(4)	14(4)	3(3)	5(3)	2(3)
C23	15(4)	20(4)	16(4)	7(3)	0(3)	9(3)
C24	48(6)	24(5)	25(4)	12(4)	16(4)	25(4)
C25	59(7)	35(6)	30(5)	-1(4)	1(5)	21(5)
C26	28(5)	28(5)	35(5)	6(4)	6(4)	7(4)
C27	21(4)	31(5)	31(5)	-4(4)	7(4)	-5(4)
N11	24(3)	19(3)	16(3)	1(3)	3(3)	16(3)
N12	20(3)	22(3)	18(3)	3(3)	7(3)	13(3)
N13	21(3)	14(3)	16(3)	2(2)	7(3)	10(3)
N21	45(5)	39(4)	20(4)	11(3)	16(3)	36(4)
N22	33(4)	29(4)	10(3)	9(3)	10(3)	26(3)
N23	19(3)	13(3)	16(3)	5(2)	5(2)	12(3)
01W	25(3)	24(3)	22(3)	2(2)	4(2)	13(3)
02W	29(3)	29(3)	16(3)	7(2)	3(2)	10(3)
03W	30(3)	47(4)	20(3)	4(3)	2(3)	7(3)
04W	20(7)	16(7)	22(7)	9(6)	2(6)	1(6)
05W	41(7)	36(7)	57(8)	17(6)	19(6)	31(6)
011	15(3)	19(3)	18(3)	4(2)	2(2)	9(2)
012	37(3)	34(3)	14(3)	7(2)	8(2)	25(3)
013	46(4)	41(4)	21(3)	12(3)	13(3)	29(3)
021	37(3)	29(3)	19(3)	8(2)	12(3)	26(3)
022	22(3)	23(3)	15(3)	5(2)	5(2)	6(2)
023	35(3)	25(3)	23(3)	11(2)	9(3)	24(3)
TI1	16(1)	15(1)	18(1)	2(1)	3(1)	8(1)
TI2	18(1)	16(1)	16(1)	4(1)	4(1)	7(1)

Tabla A1.2.124- Factores anisotrópicos de temperatura ($Å^2$) de [TIMe₂(HCBSC)]·2H₂O.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)			
N11-H11A…O2W ⁱ	0.86	2.23	3.001(8)	149.2			
N11-H11B…O23 ⁱⁱ	0.86	2.09	2.870(8)	150.1			
N12-H12…O23 ⁱⁱ	0.86	2.16	2.878(8)	141.1			
N21-H21A…O12	0.86	1.97	2.808(8)	165.6			
N21-H21B…O13 ⁱⁱⁱ	0.86	2.13	2.891(8)	148.1			
N22-H22…O13 ⁱⁱⁱ	0.86	2.02	2.776(8)	146.9			
'-x, -y+1, -z+1; "x-1, y+1, z; "-x+1, -y+1, -z.							

Tabla A1.2.125- Enlaces de hidrógeno (Å, °) de [TIMe₂(HCBSC)]·2H₂O.

A1.2.22- Estructura cristalina del complejo [TIMe₂(HPSC)].

Figura A1.48- Unidad asimétrica de la estructura cristalina del complejo [TIMe2(HPSC)].

Tabla A1.2.126- Datos cristalográficos y de refinado del complejo [TIMe2(HPSC)].

Fórmula	$C_{24} \; H_{48} \; N_{12} \; O_{12} \; TI_4$	α (°)	90.000	Intervalo θ (°)	1.99 a 26.37
Masa Molecular	1514.22	β (°)	105.518(5)	Intervalos en h, k, l	-11,11; 0,16; 0,21
т (К)	100(2)	γ (°)	90.000	No. reflex. medidas	32103
λ (Å)	0.71069	V (Å ³)	2065.0(15)	No. reflex. únicas	4204
Sistema Cristalino	Monoclínico	z	2	R _{int}	0.0591
Grupo Espacial	P2(1)/n	D _{calc} . (mg/m ³)	2.435	R	0.0227
a (Å)	9.581(5)	μ(mm⁻¹)	15.625	R _w	0.0499
b (Å)	12.944(5)	F(000)	1392	G.O.F.	1.080
c (Å)	17.281(5)	Dimensiones (mm)	0.73 x 0.37 x 0.21		

Enlace	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C11-N11	1.338(7)	C15-Tl1	2.121(6)	C24-H24A	0.9600	N12-H12	0.8600
C11-N12	1.387(7)	C16-H16A	0.9600	C24-H24B	0.9600	N12-N13	1.361(6)

C11-O11	1.211(7)	C16-H16B	0.9600	C24-H24C	0.9600	N13-TI1	2.552(5)
C12-C13	1.519(7)	C16-H16C	0.9600	C25-H25A	0.9600	N21-H21A	0.8600
C12-C14	1.505(8)	C16-Tl1	2.104(6)	С25-Н25В	0.9600	N21-H21B	0.8600
C12-N13	1.281(7)	C21-N21	1.332(7)	C25-H25C	0.9600	N22-H22	0.8600
C13-O12	1.259(6)	C21-N22	1.388(7)	C25-TI2	2.100(6)	N22-N23	1.352(6)
C13-O13	1.252(6)	C21-O21	1.237(6)	C26-H26A	0.9600	N23-Tl2	2.654(4)
C14-H14A	0.9600	C22-C23	1.520(7)	C26-H26B	0.9600	011-Tl1	2.715(4)
C14-H14B	0.9600	C22-C24	1.494(7)	C26-H26C	0.9600	012-Tl1	2.480(4)
C14-H14C	0.9600	C22-N23	1.280(6)	C26-TI2	2.113(6)	O22-TI2	2.455(4)
C15-H15A	0.9600	C23-O22	1.258(6)	N11-H11A	0.8600	022-TI2 ⁱ	2.619(4)
C15-H15B	0.9600	C23-O23	1.226(6)	N11-H11B	0.8600	TI2-022 ⁱ	2.619(4)
C15-H15C	0.9600						

-x+1,-y+1,-z+1

Tabla A1.2.128- Ángulos de enlace (°) de [TIMe2(HPSC)].

	Ángulo	·	Ángulo		Ángulo
C11-N11-H11A	120.0	C26-Tl2-N23	93.4(2)	N23-C22-C23	115.4(4)
C11-N11-H11B	120.0	C26-Tl2-O22	96.3(2)	N23-C22-C24	124.4(5)
C11-N12-H12	121.0	C26-Tl2-O22 ⁱ	93.4(2)	N23-N22-C21	117.5(4)
C11-O11-Tl1	117.3(4)	H11A-N11-H11B	120.0	N23-N22-H22	121.3
C12-C14-H14A	109.5	H14A-C14-H14B	109.5	011-C11-N11	125.5(5)
С12-С14-Н14В	109.5	H14A-C14-H14C	109.5	011-C11-N12	123.0(5)
С12-С14-Н14С	109.5	H14B-C14-H14C	109.5	012-C13-C12	117.7(5)
C12-N13-N12	118.6(5)	H15A-C15-H15B	109.5	012-Tl1-N13	63.41(12)
C12-N13-Tl1	120.9(3)	H15A-C15-H15C	109.5	012-Tl1-011	124.78(12)
C13-O12-Tl1	122.9(3)	H15B-C15-H15C	109.5	013-C13-C12	116.3(5)
C14-C12-C13	120.2(5)	H16A-C16-H16B	109.5	013-C13-O12	126.0(5)
C15-Tl1-N13	95.3(2)	H16A-C16-H16C	109.5	O21-C21-N21	124.5(5)
C15-Tl1-O11	88.5(2)	H16B-C16-H16C	109.5	O21-C21-N22	121.5(5)
C15-Tl1-O12	97.3(2)	H21A-N21-H21B	120.0	022 ⁱ -Tl2-N23	126.07(12)
C16-Tl1-C15	167.4(3)	H24A-C24-H24B	109.5	022-C23-C22	117.0(5)
C16-Tl1-N13	96.1(2)	H24A-C24-H24C	109.5	O22-TI2-N23	62.25(12)
C16-Tl1-O11	92.19(19)	H24B-C24-H24C	109.5	022-Tl2-022 ⁱ	63.83(14)
C16-Tl1-O12	92.7(2)	H25A-C25-H25B	109.5	023-C23-C22	118.4(5)
C21-N21-H21A	120.0	H25A-C25-H25C	109.5	023-C23-O22	124.6(5)
C21-N21-H21B	120.0	H25B-C25-H25C	109.5	Tl1-C15-H15A	109.5

C21-N22-H22	121.3	H26A-C26-H26B	109.5	Tl1-C15-H15B	109.5
C22-C24-H24A	109.5	H26A-C26-H26C	109.5	Tl1-C15-H15C	109.5
C22-C24-H24B	109.5	H26B-C26-H26C	109.5	Tl1-C16-H16A	109.5
C22-C24-H24C	109.5	N11-C11-N12	111.4(5)	Tl1-C16-H16B	109.5
C22-N23-N22	117.9(4)	N12-N13-Tl1	120.4(3)	Tl1-C16-H16C	109.5
C22-N23-Tl2	118.8(3)	N13-C12-C13	115.0(5)	TI2-C25-H25A	109.5
C23-O22-Tl2	126.0(3)	N13-C12-C14	124.8(5)	TI2-C25-H25B	109.5
C23-O22-TI2ⁱ	117.8(3)	N13-N12-C11	118.0(5)	TI2-C25-H25C	109.5
C24-C22-C23	120.2(4)	N13-N12-H12	121.0	Tl2-C26-H26A	109.5
C25-Tl2-C26	166.1(3)	N13-Tl1-O11	61.38(13)	Tl2-C26-H26B	109.5
C25-Tl2-N23	96.0(2)	N21-C21-N22	114.0(5)	Tl2-C26-H26C	109.5
C25-Tl2-O22	97.2(2)	N22-N23-Tl2	123.1(3)	Tl2-O22-Tl2 ⁱ	116.17(14)
C25-Tl2-O22ⁱ	89.4(2)				

ⁱ-x+1,-y+1,-z+1

Tabla A1.2.129- Coordenadas atómicas (x 10^4) y factores isotrópicos de temperatura (Å² x 10^3) de [TIMe₂(HPSC)].

	x	У	Z	U(eq)
C11	4171(7)	7323(4)	8713(3)	26(1)
C12	4086(6)	8638(4)	6916(3)	20(1)
C13	2904(6)	8902(4)	6162(3)	20(1)
C14	5620(6)	8984(4)	7004(3)	25(1)
C15	1374(8)	6068(5)	6746(4)	40(2)
C16	305(7)	8857(5)	7689(4)	32(1)
C21	7993(6)	8529(4)	5552(3)	21(1)
C22	4589(6)	7688(4)	4411(3)	19(1)
C23	3774(6)	6668(4)	4302(3)	21(1)
C24	3969(6)	8599(4)	3905(3)	26(1)
C25	8056(7)	5537(5)	4821(4)	37(2)
C26	6083(8)	6189(5)	6651(4)	43(2)
N12	4646(5)	7882(4)	8148(3)	25(1)
N13	3657(5)	8136(3)	7449(2)	19(1)
N11	5253(5)	7133(4)	9368(3)	33(1)
N21	8745(5)	9396(3)	5562(3)	23(1)
N22	6587(5)	8573(3)	5062(3)	19(1)
N23	5815(5)	7685(3)	4939(3)	18(1)

011	2929(4)	7039(3)	8605(2)	31(1)
012	1644(4)	8578(3)	6112(2)	22(1)
013	3284(4)	9424(3)	5643(2)	26(1)
021	8467(4)	7746(3)	5946(2)	24(1)
022	4445(4)	5892(3)	4654(2)	28(1)
023	2521(4)	6654(3)	3881(2)	29(1)
TI1	1030(1)	7549(1)	7186(1)	21(1)
TI2	6839(1)	5908(1)	5628(1)	21(1)

Tabla A1.2.130- Factores anisotrópicos de temperatura (Å²) de [TIMe₂(HPSC)].

_

	U11	U22	U33	U23	U13	U12
C11	30(3)	29(3)	21(3)	5(2)	10(2)	1(2)
C12	23(3)	20(3)	19(3)	0(2)	9(2)	2(2)
C13	26(3)	20(3)	15(3)	-3(2)	8(2)	4(2)
C14	23(3)	27(3)	22(3)	7(2)	3(2)	1(2)
C15	43(4)	29(3)	49(4)	0(3)	11(3)	6(3)
C16	33(3)	38(4)	29(3)	-6(3)	14(3)	6(3)
C21	21(3)	23(3)	20(3)	-3(2)	6(2)	0(2)
C22	20(3)	23(3)	15(3)	1(2)	7(2)	0(2)
C23	21(3)	21(3)	21(3)	-2(2)	7(2)	0(2)
C24	21(3)	29(3)	26(3)	2(2)	3(2)	-2(2)
C25	39(4)	42(4)	35(4)	-6(3)	16(3)	8(3)
C26	64(5)	36(4)	34(4)	-2(3)	23(3)	-5(3)
N12	18(2)	36(3)	20(2)	8(2)	2(2)	-2(2)
N13	20(2)	25(2)	11(2)	2(2)	3(2)	0(2)
N11	24(3)	53(3)	24(3)	15(2)	10(2)	4(2)
N21	21(2)	26(2)	20(2)	2(2)	2(2)	-2(2)
N22	21(2)	16(2)	20(2)	6(2)	5(2)	-1(2)
N23	21(2)	18(2)	17(2)	-2(2)	7(2)	-2(2)
011	26(2)	49(3)	20(2)	12(2)	8(2)	-1(2)
012	18(2)	35(2)	15(2)	2(2)	5(2)	1(2)
013	26(2)	30(2)	22(2)	8(2)	8(2)	1(2)
021	24(2)	21(2)	25(2)	4(2)	2(2)	0(2)
022	25(2)	19(2)	37(2)	0(2)	1(2)	-1(2)
023	23(2)	28(2)	32(2)	2(2)	-1(2)	0(2)
TI1	21(1)	26(1)	20(1)	2(1)	8(1)	-1(1)

TI2 20(1) 22(1) 21(1) 0(1) 4(1) 0(1)	TI2	20(1)	22(1)	21(1)	0(1)	4(1)	0(1)	
---	-----	-------	-------	-------	------	------	------	--

Tabla A1.2.131- Enlaces de hidrógeno (Å, °) de	[TIMe ₂ ([HPSC]]
--	------	------	----------------------	--------	---

D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
N11-H11A…O12 ⁱⁱ	0.86	2.46	3.092(6)	131.1
N11-H11A…N21 ⁱⁱⁱ	0.86	2.62	3.443(7)	159.8
N11-H11B…O23 ⁱⁱ	0.86	2.21	2.979(7)	148.0
N12-H12…O23 ⁱⁱ	0.86	1.96	2.772(6)	156.5
N21-H21A…O12 ^{iv}	0.86	2.17	2.886(6)	139.9
N21-H21B…O13 ^v	0.86	2.09	2.878(6)	151.8
N22-H22…O13 ^v	0.86	2.14	2.882(6)	143.9

A1.2.23- Estructura cristalina del complejo [TIMe₂(H₂INSC)]·2MeOH.

Figura A1.49- Unidad asimétrica de la estructura cristalina del complejo [TIMe₂(H₂INSC)]·2MeOH.

Fórmula	$C_{15}H_{23}N_4O_5TI$	α (°)	90.000	Intervalo θ (°)	1.88 a 27.88
Masa Molecular	543.74	β (°)	100.423(5)	Intervalos en h, k, l	-16,16; 0,11; 0,21
т (к)	120(2)	γ (°)	90.000	No. reflex. medidas	33785
λ (Å)	0.71069	V (Å ³)	1862.6(14)	No. reflex. únicas	4437
Sistema Cristalino	Monoclínico	z	4	R _{int}	0.0627
Grupo Espacial	P2(1)/n	D _{calc} . (mg/m ³)	1.939	R	0.0267
a (Å)	12.648(5)	µ (mm⁻¹)	8.703	R _w	0.0520
b (Å)	9.098(5)	F(000)	1048	G.O.F.	1.086
c (Å)	16.458(5)	Dimensiones (mm)	0.11 x 0.10 x 0.10		

Tabla A1.2.132- Datos cristalográficos y de refinado del complejo [TIMe₂(H₂INSC)]·2MeOH.

Tabla A1.2.133- Distancias interatómicas (Å) de [TIMe₂(H₂INSC)]·2MeOH.

Enla	ce	Distancia	Enlace	Distancia	Enlace	Distancia	Enlace	Distancia
C1-N1	1.348(5)	C6-C7	1.379(6)	C12-Tl1	2.109(4)	N1-H1A	0.8600	
---	----------	----------	----------	----------	----------	----------------------	----------	
C1-N2	1.370(5)	C6-H6	0.9300	C13-H13A	0.9600	N1-H1B	0.8600	
C1-O1	1.229(5)	C7-C8	1.393(6)	C13-H13B	0.9600	N2-H2	0.8600	
C2-C3	1.508(5)	C7-H7	0.9300	C13-H13C	0.9600	N2-N3	1.359(4)	
C2-C4	1.473(5)	C8-C9	1.380(6)	C13-Tl1	2.107(4)	N3-TI1	2.677(3)	
C2-N3	1.292(5)	C8-H8	0.9300	C1S-H1S1	0.9600	N4-H4	0.8600	
C3-O2	1.248(5)	C9-C11	1.392(6)	C1S-H1S2	0.9600	01-Tl1	2.729(3)	
C3-O3	1.261(5)	С9-Н9	0.9300	C1S-H1S3	0.9600	O1S-H1S	0.92(5)	
C4-C11	1.439(5)	C10-C11	1.404(5)	C1S-O1S	1.434(5)	02-Tl1	2.678(3)	
C4-C5	1.362(5)	C10-N4	1.381(5)	C2S-H2S1	0.9600	O2-Tl1 ⁱ	2.723(3)	
C5-H5	0.9300	C12-H12A	0.9600	C2S-H2S2	0.9600	O2S-H2S	0.97(5)	
C5-N4	1.364(6)	C12-H12B	0.9600	C2S-H2S3	0.9600	TI1-02 ⁱⁱ	2.723(3)	
C6-C10	1.405(6)	С12-Н12С	0.9600	C2S-O2S	1.358(6)			
-x+3/2,y-1/2,-z+3/2 -x+3/2,y+1/2,-z+3/2								

Tabla A1.2.134- Ángulos de enlace (°) de [TIMe₂(H₂INSC)]·2MeOH.

	Ángulo		Ángulo		Ángulo
C1-N1-H1A	120.0	C5-N4-H4	125.8	N3-C2-C4	123.8(4)
C1-N1-H1B	120.0	C6-C10-C11	123.1(4)	N3-N2-C1	119.0(3)
C1-N2-H2	120.5	C6-C7-C8	121.9(4)	N3-N2-H2	120.5
C1-O1-Tl1	118.9(3)	С6-С7-Н7	119.1	N3-Tl1-O1	59.81(9)
C10-C11-C4	106.1(4)	C7-C6-C10	116.1(4)	N3-Tl1-O2 ⁱⁱ	127.49(9)
С10-С6-Н6	121.9	С7-С6-Н6	121.9	N4-C10-C11	108.2(4)
C10-N4-H4	125.8	С7-С8-Н8	119.4	N4-C10-C6	128.7(4)
C11-C4-C2	129.4(4)	С8-С7-Н7	119.1	N4-C5-H5	124.9
С11-С9-Н9	120.4	C8-C9-C11	119.1(4)	01-C1-N1	123.9(4)
C12-Tl1-N3	95.61(14)	С8-С9-Н9	120.4	01-C1-N2	122.5(4)
C12-Tl1-O1	93.92(14)	C9-C11-C10	118.6(4)	O1S-C1S-H1S1	109.5
C12-Tl1-O2	92.52(14)	C9-C11-C4	135.3(4)	O1S-C1S-H1S2	109.5
C12-Tl1-O2 ⁱⁱ	93.15(14)	C9-C8-C7	121.2(4)	O1S-C1S-H1S3	109.5
C13-Tl1-C12	174.10(16)	С9-С8-Н8	119.4	02 ⁱⁱ -Tl1-O1	67.99(9)
C13-Tl1-N3	90.25(14)	H12A-C12-H12B	109.5	02-C3-C2	118.3(4)
C13-Tl1-O1	89.56(15)	H12A-C12-H12C	109.5	02-C3-O3	125.1(4)
C13-Tl1-O2	89.98(14)	H12B-C12-H12C	109.5	02-Tl1-N3	58.89(9)
C13-Tl1-O2 ⁱⁱ	83.73(14)	H13A-C13-H13B	109.5	02-Tl1-01	118.70(9)
C1S-O1S-H1S	104(3)	H13A-C13-H13C	109.5	02-Tl1-02 ⁱⁱ	170.88(5)

C2-N3-N2	118.3(3)	H13B-C13-H13C	109.5	O2S-C2S-H2S1	109.5
C2-N3-Tl1	122.6(3)	H1A-N1-H1B	120.0	O2S-C2S-H2S2	109.5
C2S-O2S-H2S	108(3)	H1S1-C1S-H1S2	109.5	O2S-C2S-H2S3	109.5
C3-O2-Tl1	121.6(3)	H1S1-C1S-H1S3	109.5	O3-C3-C2	116.6(4)
C3-O2-Tl1 ⁱ	120.2(3)	H1S2-C1S-H1S3	109.5	Tl1-C12-H12A	109.5
C4-C2-C3	121.8(4)	H2S1-C2S-H2S2	109.5	Tl1-C12-H12B	109.5
C4-C5-H5	124.9	H2S1-C2S-H2S3	109.5	Tl1-C12-H12C	109.5
C4-C5-N4	110.2(4)	H2S2-C2S-H2S3	109.5	Tl1-C13-H13A	109.5
C5-C4-C11	107.0(4)	N1-C1-N2	113.6(4)	Tl1-C13-H13B	109.5
C5-C4-C2	123.6(4)	N2-N3-Tl1	118.3(2)	Tl1-C13-H13C	109.5
C5-N4-C10	108.4(3)	N3-C2-C3	114.3(4)	Tl1-O2-Tl1 ⁱ	115.48(11)
	́-х+3/2,у	-1/2,-z+3/2	"-x+3/2,y+1/2,-z	+3/2	

Tabla A1.2.135- Coordenadas	atómicas	(x 10 ⁴)	y factores	s isotrópicos	de temperatura	а (Ų х	10 ³)	de
[TIMe ₂ (H ₂ INSC)]·2MeOH.								

	x	У	z	U(eq)
C1	5655(3)	7698(4)	8263(2)	15(1)
C2	4927(3)	3986(4)	7974(2)	14(1)
C3	5488(4)	2607(4)	7771(2)	14(1)
C4	3772(3)	4002(4)	8011(2)	15(1)
C5	3049(3)	4909(4)	7544(3)	18(1)
C6	1300(4)	3070(5)	8715(3)	23(1)
C7	1607(4)	2018(5)	9314(3)	26(1)
C8	2666(4)	1527(5)	9518(3)	25(1)
C9	3457(4)	2079(5)	9126(3)	20(1)
C10	2116(3)	3616(5)	8321(2)	18(1)
C11	3189(3)	3145(4)	8517(2)	13(1)
C12	8365(4)	5091(5)	8820(3)	26(1)
C13	6698(4)	5377(5)	6367(3)	27(1)
C1S	3710(4)	6475(6)	9971(3)	35(1)
C2S	727(5)	7937(7)	9300(3)	52(2)
N1	5230(3)	8854(4)	8603(2)	20(1)
N2	5115(3)	6407(4)	8318(2)	15(1)
N3	5535(3)	5137(4)	8079(2)	14(1)
N4	2047(3)	4682(4)	7716(2)	20(1)
01	6450(2)	7776(3)	7933(2)	21(1)

015	3487(3)	7263(4)	9204(2)	29(1)
02	6470(2)	2674(3)	7757(2)	21(1)
025	1336(3)	7028(5)	8920(2)	49(1)
03	4914(2)	1473(3)	7617(2)	17(1)
Tl1	7455(1)	5242(1)	7615(1)	15(1)

Tabla A1.2.136- Factores anisotrópicos de temperatura (Å²) de [TIMe₂(H₂INSC)]·2MeOH.

-

	U11	U22	U33	U23	U13	U12
C1	15(2)	15(2)	16(2)	0(2)	3(2)	4(2)
C2	15(2)	14(2)	14(2)	-1(2)	3(2)	-1(2)
С3	16(2)	10(2)	15(2)	1(2)	3(2)	3(2)
C4	13(2)	14(2)	19(2)	-1(2)	3(2)	1(2)
C5	15(2)	14(3)	25(2)	3(2)	5(2)	2(2)
C6	11(2)	25(3)	33(3)	-7(2)	7(2)	1(2)
C7	30(3)	28(3)	25(3)	-4(2)	17(2)	-6(2)
C8	27(3)	25(3)	25(2)	5(2)	8(2)	-7(2)
C9	17(3)	20(3)	22(2)	-2(2)	3(2)	-1(2)
C10	16(2)	15(2)	23(2)	-2(2)	4(2)	2(2)
C11	9(2)	11(2)	19(2)	-4(2)	4(2)	-2(2)
C12	20(2)	32(3)	28(2)	3(2)	6(2)	-5(2)
C13	28(3)	28(3)	24(2)	0(2)	6(2)	-6(2)
C1S	29(3)	50(4)	27(3)	2(2)	6(2)	2(3)
C2S	40(4)	68(5)	45(4)	-30(3)	2(3)	9(3)
N1	21(2)	11(2)	29(2)	-4(2)	9(2)	-2(2)
N2	14(2)	7(2)	26(2)	-3(1)	11(2)	1(1)
N3	17(2)	9(2)	18(2)	1(1)	4(1)	5(1)
N4	11(2)	20(2)	28(2)	0(2)	1(1)	5(2)
01	18(2)	13(2)	34(2)	-2(1)	10(1)	1(1)
015	20(2)	40(2)	30(2)	4(2)	11(2)	2(2)
02	12(2)	14(2)	40(2)	-2(1)	11(1)	0(1)
O2S	29(2)	83(3)	32(2)	-14(2)	0(2)	18(2)
03	17(2)	10(2)	24(2)	-1(1)	6(1)	-1(1)
Tl1	13(1)	12(1)	21(1)	0(1)	6(1)	0(1)

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)			
N4-H4…O3 ⁱⁱⁱ	0.86	2.12	2.934(4)	158.7			
N2-H2…O1S	0.86	2.05	2.839(5)	151.9			
N1-H1A…O3 ^{iv}	0.86	2.30	2.870(4)	123.5			
N1-H1B…O1S	0.86	2.18	2.953(5)	149.1			
02S-H2S…O3 ⁱⁱⁱ	0.97(5)	1.81(6)	2.776(5)	174(5)			
O2S-H2SN4	0.97(5)	2.74(5)	3.151(5)	106(4)			
01S-H1S…02S	0.92(5)	1.77(5)	2.684(5)	169(4)			
ⁱⁱⁱ -x+1/2, γ+1/2, -z+3/2; ^{iv} x, γ+1, z.							

Tabla A1.2.137- Enlaces de hidrógeno (Å, °) de [TIMe₂(H₂INSC)]·2MeOH.

APÉNDICE 2 – ESPECTROS IR

Figura A2.1- Espectro de infrarrojo del ligando H₂CBSC.

Figura A2.3- Espectro de infrarrojo del ligando H₂PSC.

Figura A2.4- Espectro de infrarrojo lejano del ligando H₂PSC.

Figura A2.6- Espectro de infrarrojo lejano del ligando $H_2\alpha OFSC$.

Figura A2.7- Espectro de infrarrojo del ligando H₃INSC.

Figura A2.9- Espectro de infrarrojo del ligando $H_2\alpha OFTSC$.

Figura A2.10- Espectro de infrarrojo lejano del ligando $H_2\alpha OFTSC$.

Figura A2.12- Espectro de infrarrojo lejano del ligando H₃INTSC.

Figura A2.13- Espectro de infrarrojo del complejo [Ga(HCBSC)(CBSC)].

Figura A2.14- Espectro de infrarrojo lejano del complejo [Ga(HCBSC)(CBSC)].

Figura A2.15- Espectro de infrarrojo del complejo [Ga(HPSC)(PSC)].

Figura A2.16- Espectro de infrarrojo lejano del complejo [Ga(HPSC)(PSC)].

Figura A2.17- Espectro de infrarrojo del complejo [Ga(HaOFSC)(aOFSC)].

Figura A2.18- Espectro de infrarrojo lejano del complejo [Ga(HαOFSC)(αOFSC)].

Figura A2.19- Espectro de infrarrojo del complejo [Ga(H α OFSC)(bipy)(H₂O)](NO₃)₂·H₂O.

Figura A2.20- Espectro de infrarrojo lejano del complejo [Ga(H α OFSC)(bipy)(H₂O)](NO₃)₂·H₂O.

Figura A2.21- Espectro de infrarrojo del complejo $Ga((H\alpha OFSC)_2NO_3 \cdot 3H_2O)$.

Figura A2.22- Espectro de infrarrojo lejano del complejo $Ga((H\alpha OFSC)_2 NO_3 \cdot 3H_2 O.$

Figura A2.23- Espectro de infrarrojo del complejo Ga((HaOFSC)₂Cl.

Figura A2.24- Espectro de infrarrojo lejano del complejo Ga((HαOFSC)₂Cl.

Figura A2.25- Espectro de infrarrojo del complejo Ga(HαOFSC)₂AcO.

Figura A2.26- Espectro de infrarrojo lejano del complejo Ga(HαOFSC)₂AcO.

Figura A2.27- Espectro de infrarrojo del complejo [Ga(H₂INSC)₂]NO₃·EtOH.

Figura A2.28- Espectro de infrarrojo lejano del complejo [Ga(H₂INSC)₂]NO₃·EtOH.

Figura A2.29- Espectro de infrarrojo del complejo [Ga(H α OTFSC)(α OTFSC)]·2H₂O.

Figura A2.30- Espectro de infrarrojo lejano del complejo [Ga(HαOTFSC)(αOTFSC)]·2H₂O.

Figura A2.31- Espectro de infrarrojo del complejo Ga(HαOTFSC)₂(NO₃)·3H₂O.

Figura A2.33- Espectro de infrarrojo del complejo Ga(H₂INTSC)₂Cl.

Figura A2.34- Espectro de infrarrojo lejano del complejo Ga(H₂INTSC)₂Cl.

Figura A2.36- Espectro de infrarrojo lejano del ligando H₂SSC.

Figura A2.37- Espectro de infrarrojo del ligando H₃XSSC.

Figura A2.39- Espectro de infrarrojo del ligando H₂NAFSC.

Figura A2.40- Espectro de infrarrojo lejano del ligando H₂NAFSC.

Figura A2.41- Espectro de infrarrojo del ligando H₃DBZSC.

Figura A2.43- Espectro de infrarrojo del ligando H₂STSC.

Figura A2.45- Espectro de infrarrojo del ligando H₃XSTSC.

Figura A2.46- Espectro de infrarrojo lejano del ligando H₃XSTSC.

Figura A2.47- Espectro de infrarrojo del ligando H₂NAFTSC.

Figura A2.48- Espectro de infrarrojo lejano del ligando H₂NAFTSC.

Figura A2.49- Espectro de infrarrojo del ligando H₃DBZTSC.

Figura A2.51- Espectro de infrarrojo del complejo [Ga(HSSC)₂]NO₃·MeOH.

Figura A2.52- Espectro de infrarrojo lejano del complejo [Ga(HSSC)₂]NO₃·MeOH.

Figura A2.53- Espectro de infrarrojo del complejo [Ga(HSSC)₂]Cl·H₂O.

Figura A2.54- Espectro de infrarrojo lejano del complejo [Ga(HSSC)₂]Cl·H₂O.

Figura A2.55- Espectro de infrarrojo del complejo [Ga(H₂XSSC)₂]NO₃·EtOH.

Figura A2.56- Espectro de infrarrojo lejano del complejo [Ga(H₂XSSC)₂]NO₃·EtOH.

Figura A2.57- Espectro de infrarrojo del complejo [Ga(H₂XSSC)₂]Cl·4H₂O.

Figura A2.58- Espectro de infrarrojo lejano del complejo [Ga(H₂XSSC)₂]Cl·4H₂O.

Figura A2.59- Espectro de infrarrojo del complejo Ga(H₂XSSC)(HXSSC).

Figura A2.60- Espectro de infrarrojo lejano del complejo Ga(H₂XSSC)(HXSSC).

Figura A2.61- Espectro de infrarrojo del complejo [Ga(HNAFSC)₂]Cl·2H₂O.

Figura A2.62- Espectro de infrarrojo lejano del complejo [Ga(HNAFSC)₂]Cl·2H₂O.

Figura A2.63- Espectro de infrarrojo del ligando HAPTSC.

Figura A2.64- Espectro de infrarrojo lejano del ligando HAPTSC.

Figura A2.66- Espectro de infrarrojo lejano del ligando H₂DAPTSC.

Figura A2.67- Espectro de infrarrojo del ligando H₂BIPSC.

Figura A2.68- Espectro de infrarrojo lejano del ligando H₂BIPSC.

Figura A2.69- Espectro de infrarrojo del ligando H_2DAPSC .

Figura A2.70- Espectro de infrarrojo lejano del ligando H₂DAPSC.

Figura A2.71- Espectro de infrarrojo del complejo [Ga(APTSC)₂]NO₃.

Figura A2.72- Espectro de infrarrojo lejano del complejo [Ga(APTSC)₂]NO₃.

Figura A2.73- Espectro de infrarrojo del complejo [Ga(APTSC)Cl₂].

Figura A2.75- Espectro de infrarrojo del compuesto (H₂BIPSC)[GaCl₄]Cl.

Figura A2.76- Espectro de infrarrojo lejano del compuesto (H₂BIPSC)[GaCl₄]Cl.

Figura A2.77- Espectro de infrarrojo del complejo [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O.

Figura A2.78- Espectro de infrarrojo lejano del complejo [Ga(HDAPSC)(H₂O)₂](NO₃)₂·H₂O.

APÉNDICE 3 – ESPECTROS DE RMN DE ¹H Y ¹³C

A3.1 – Espectros de RMN de ¹H de los ligandos y complejos recogidos en está memoria.

Figura A3.1.2- Espectro de RMN de ¹H del ligando H₂CBSC.

Figura A3.1.10- Espectro de RMN de ¹H del ligando H₂DAPSC.

Figura A3.1.14- Espectro de RMN de ¹H del complejo [Ga(HCBSC)(CBSC)].

Figura A3.1.16- Espectro de RMN de ¹H del complejo [Ga(HSSC)₂]Cl·H₂O.

Figura A3.1.20- Espectro de RMN de ¹H del complejo [Ga(HNAFSC)₂]Cl·2H₂O.

Figura A3.1.22- Espectro de RMN de ¹H del complejo [Ga(APTSC)Cl₂].

Figura A3.1.23- Espectro de RMN de ¹H del compuesto (H₂BIPSC)[GaCl₄]Cl.

A3.2 – Espectros de RMN de ¹³C de los ligandos y complejos recogidos en está memoria.

Figura A3.2.1- Espectro de RMN de ¹³C del ligando H₂PSC.

Figura A3.2.23- Espectro de RMN de 13 C del compuesto (H₂BIPSC)[GaCl₄]Cl (H₂L⁺).

APÉNDICE 4 – REFERENCIAS BIBILIOGRÁFICAS DE LAS ESTRUCTURAS RECOGIDAS EN LA REVISIÓN ESTRUCTURAL DE Ga(III)

Se recogen en este apéndice las citas bibliográficas correspondientes a las estructuras recogidas en la revisión estructural de Ga(III) que se discute en el Capítulo I. Se agrupan dichas citas según el I.C. del metal presente en la estructura, y se incluyen su código CSD y tipo de kernel correspondiente.

CSD	Kernel	Nombre	Referencia
DOYLOS	GaAs ₃	tris(Dimesitylarsino)-gallium	C.G.Pitt, K.T.Higa, A.T.McPhail, R.L.Wells (1986)
			Inorg.Chem., 25, 2483
RABRUD	GaAs ₃	tris(bis(Trimethylsilyl)arsino)-gallium	R.L.Wells, M.F.Self, R.A.Baldwin, P.S.White (1994)
			J.Coord.Chem., 33, 279
YOBFOM	GaB ₂ Cl	bis(1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-1,3,2-diazaborol-2-	A.V.Protchenko, Deepak Dange, J.R.Harmer, Christina
		yl)-chloro-gallium	Y.Tang, A.D.Schwarz, M.J.Kelly, N.Phillips, R.Tirfoin,
			K.H.Birjkumar, C.Jones, N.Kaltsoyannis, P.Mountford,
			S.Aldridge, Nature Chemistry (2014), 6, 315
VOGQOX	GaBN ₂	((N,N'-bis(2,6-Diisopropylphenyl)-pent-2-en-2-amino-4-imino-N,N')-	N.J.Hardman, P.P.Power, J.D.Gorden, C.L.B.Macdonald,
		gallium)-tris(perfluorophenyl)borane	A.H.Cowley (2001) Chem.Commun., 1866
RUPJOB	GaBrC ₂	Bromo-bis(2,6-dimesitylphenyl)-gallium	R.C.Crittendon, Xiao-Wang Li, Jianrui Su, G.H.Robinson
			(1997) Organometallics ,16,2443
HOPVAJ	GaC ₂ I	Iodo-bis(2,6-diphenylphenyl)-gallium	R.C.Crittendon, B.C.Beck, Jianrui Su, Xiao-Wang Li,
			G.H.Robinson (1999) Organometallics ,18,156
LIBRIX	GaC_2N	Anilido-bis(2,4,6-tri-t-butylphenyl)-gallium	P.J.Brothers, R.J.Wehmschulte, M.M.Olmstead, K.Ruhlandt-
			Senge, S.R.Parkin, P.P.Power (1994) Organometallics ,13,
			2792
PERLAZ	GaC_2N	2,6-Di-isopropylphenylamino-bis(2,4,6-tri-isopropylphenyl)-gallium	K.M.Waggoner, K.Ruhlandt-Senge, R.J.Wehmschulte, X.He,
			M.M.Olmstead, P.P.Power (1993) Inorg.Chem. ,32,2557
PERLED	GaC_2N	Diphenylamino-bis(2,4,6-tri-isopropylphenyl)-gallium	K.M.Waggoner, K.Ruhlandt-Senge, R.J.Wehmschulte, X.He,
			M.M.Olmstead, P.P.Power (1993) Inorg.Chem. ,32,2557
GOXYIB	GaC ₂ O	(µ2-Oxo)-bis(bis(trimethylsilylmethyl))-gallium)	W.Uhl, R.Graupner, I.Hahn, W.Saak, Z.Anorg.Allg.Chem.
			(1999), 625, 1113
HOJPEB	GaC ₂ O	Pentafluorophenolato-bis(bis(trimethylsilyl)methyl)-gallium	W.Uhl, T.Spies, R.Koch (1999) J.Chem.Soc.,Dalton Trans.
			,2385
ROCZAK	GaC_2P	Dimesityl-di-t-butylphosphanyl-gallium	G.Linti, R.Frey, W.Kostler, H.Schwenk (1997)
			Chem.Ber.,130,663
TONVUN	GaC_2S	bis(bis(Trimethylsilyl)methyl)gallium)sulfide	W.Uhl, R.Gerding, I.Hahn, S.Pohl, W.Saak, H.Reuter,
			Polyhedron (1996), 15, 3987
TONWAU	GaC₂Se	bis(bis(Trimethylsilyl)methyl)gallium)selenide	W.Uhl, R.Gerding, I.Hahn, S.Pohl, W.Saak, H.Reuter,
			Polyhedron (1996), 15, 3987
KUGKAY	GaC ₂ Te	bis(bis(Trimethylsilyl)methyl)-(tris(trimethylsilyl)silyl-tellurium)-	W.Uhl, M.Layh, G.Becker, K.W.Klinkhammer, T.Hildenbrand
		gallium	(1992) Chem.Ber. ,125,1547
YOKCAC	GaC₂Te	(µ2-Tellurido)-bis(bis(trimethylsilyl)methyl-gallium)	W.Uhl, U.Schutz, W.Hiller, M.Heckel, Organometallics
			(1995), 14, 1073
HEFGEF	GaC₃	tris(1,3-bis(Trimethylsilyl)allyl)-gallium	C.K.Gren, T.P.Hanusa, W.W.Brennessel (2006) Polyhedron
			,25,286
HEWDIX	GaC₃	tris(Trimethylsilylmethyl)gallane	M.U.Kramer, D.Robert, Y.Nakajima, U.Englert, T.P.Spaniol,
			J.Okuda (2007) Eur.J.Inorg.Chem. ,665
HIFJIQ	GaC_3	tris(2,6-bis(4-t-butylphenyl)phenyl)-gallium(iii)	J.D.Young, M.A.Khan, D.R.Powell, R.J.Wehmschulte (2007)
			Eur.J.Inorg.Chem. ,1671
LENZOT	GaC₃	$tris(\sigma^1\operatorname{-Pentamethyl-cyclopentadienyl})\operatorname{-gallium}(iii)$	H.Schumann, S.Nickel, R.Weimann (1994)
			J.Organomet.Chem. ,468,43

Tabla A4.1- Compuestos de Ga(III) con I.C. 3.

LEWYIV	GaC₃	1-(2,4,6-Tri-t-butylphenyl)-2,3,4,5-tetramethyl-1-	A.H.Cowley, F.P.Gabbai, A.Decken (1994)
		gallacyclopentadiene	Angew.Chem.,Int.Ed. ,33,1370
MIJMOH	GaC₃	$bis(\mu_2\text{-}Ferrocene-1,1'-diyl)\text{-}bis(bis(trimethylsilyl)methyl)\text{-}di\text{-}gallium$	W.Uhl, I.Hahn, A.Jantschak, T.Spies (2001)
			J.Organomet.Chem. ,637,300
POMVES	GaC₃	tris(2,4,6-Trifluoromethylbenzene)-gallium	R.D.Schluter, H.S.Isom, A.H.Cowley, D.A.Atwood, R.A.Jones,
			F.Olbrich, S.Corbelin, R.J.Lagow (1994) Organometallics, 13,
			4058
QASGUN	GaC₃	tris(2,6-bis(Ethylthiomethyl)phenyl)-galliu	C.Pulham, I.Maley, S.Parsons, D.Messenger (2005) Private
			Communication ,
RUPJUH	GaC ₃	Dimesityl-(2,6-dimesitylphenyl)-gallium	R.C.Crittendon, Xiao-Wang Li, Jianrui Su, G.H.Robinson
			(1997) Organometallics ,16,2443
SUHCEF	GaC ₃	(2,2-(Ethene-1,2-diyl)diphenyl)-(2,4,6-tri-t-butylphenyl)-gallium	T.Matsumoto, H.Takamine, K.Tanaka, Yoshiki Chujo,
			Org.Lett. (2015), 17, 1593
TODXUF	GaC ₃	(µ ₂ -1,2-bis(Phenylimino)ethane-1,2-diyl)-	W.Uhl, I.Hahn, U.Schutz, S.Pohl, W.Saak, J.Martens,
		tetrakis(bis(trimethylsilyl)methyl)-di-gallium	J.Manikowski (1996) Chem.Ber. ,129,897
TODYAM	GaC₃	$(\mu_2-1,2-bis(o-Methoxyphenylimino)ethane-1,2-diyl)-$	W.Uhl, I.Hahn, U.Schutz, S.Pohl, W.Saak, J.Martens,
		tetrakis(bis(trimethylsilyl)methyl)-di-gallium	J.Manikowski (1996) Chem.Ber. ,129,897
TODYEQ	GaC₃	$(\mu_2$ -1,2-bis(t-Butylimino)ethane-1,2-diyl)-	W.Uhl, I.Hahn, U.Schutz, S.Pohl, W.Saak, J.Martens,
		tetrakis(bis(trimethylsilyl)methyl)-di-gallium	J.Manikowski (1996) Chem.Ber. ,129,897
XODLUX	GaC₃	tris(Pentamethylphenyl)-gallium	J.K.Vohs, L.E.Downs, M.E.Barfield, S.D.Goodwin,
			G.H.Robinson (2002) Polyhedron ,21,531
LIBRET	GaCCIN	Anilido-chloro-(2,4,6-tri-t-butylphenyl)-gallium hexane solvate	P.J.Brothers, R.J.Wehmschulte, M.M.Olmstead, K.Ruhlandt-
		solvate	Senge, S.R.Parkin, P.P.Power (1994) Organometallics ,13,
			2792
RAWNEI	GaCCIN	Chloro-(bis(trimethylsilyl)amido)-(2,4,6-tri-t-butylphenyl)-gallium	Wing-Por Leung, C.M.Y.Chan, Bo-Mu Wu, T.C.W.Mak (1996)
			Organometallics ,15,5179
LEXBOF	GaCH₂	2,4,6-Tri-t-butylphenyl-dihydro-gallium	A.H.Cowley, F.P.Gabbai, H.S.Isom, C.J.Carrano, M.R.Bond
			(1994) Angew.Chem.,Int.Ed. ,33,1253
LIBSEU	GaCIN	Chloro-bis(bis(trimethylsilyl)amido)-gallium	P.J.Brothers, R.J.Wehmschulte, M.M.Olmstead, K.Ruhlandt-
	-		Senge, S.R.Parkin, P.P.Power (1994) Organometallics, 13,
		C ANTON	2792
TULGAI	GaClN ₂	2-Chloro-1,3,5-tris(2,6-di-isopropylphenyl)-4,4-dimethyl-1,5-	G.Linti, R.Frey (1997) Z.Anorg.Allg.Chem., 623, 531
		bis(trimethylsilyl)-1,3,5-triaza-4-sila-2-gallapentane	
GIXKAZ	GaClSi ₂	Chloro-bis(tris(trimethylsilyl)silyl)-gallium	G.Linti, W.Kostler, A.Rodig (1998) Eur.J.Inorg.Chem., 745
SIPJEG	GaClSi ₂	Chloro-bis(tri-t-butylsilyl)-gallium	N.Wiberg, K.Amelunxen, HW.Lerner, H.Noth, J.Knizek,
			I.Krossing (1998) Z.Naturforsch., B:Chem.Sci., 53, 333
JASDOX	GaCN ₂	(N,N'-Diisopropylethene-1,2-diamino)-(tris(trimethylsilyl)methyl)-	W.Uhl, S.Melle, M.Prott (2005) Z.Anorg.Allg.Chem. ,631,
		gallium	1377
LIBRUJ	GaCN ₂	Dianilido-(2,4,6-tri-t-butylphenyl)-gallium	P.J.Brothers, R.J.Wehmschulte, M.M.Olmstead, K.Ruhlandt-
			Senge, S.R.Parkin, P.P.Power (1994) Organometallics ,13,
			2792
MIKPOL	GaCN ₂	(1,4-bis(2,6-diisopropylphenyl)-1,4-diazabuta-1,3-diene)-	T.Pott, P.Jutzi, B.Neumann, Hans-Georg Stammler (2001)
		(pentamethylcyclopenta-2,4-dienyl)-gallium	Organometallics ,20,1965
BIGNEK	GaCP ₂	(μ3-Triphosphido)-(m3-phosphido)-tris(tris(trimethylsilyl)methyl)-	W.Uhl, M.Benter, Chem.Commun. (1999), 771
		tetra-gallium(i) cyclopentane solvate	
LOPQOW	GaCP ₂	(1,2,3-Tri-t-butyltriphosphane-1,3-diyl)-(tris(trimethylsilyl)methyl)-	W.Uhl, M.Benter (2000) J.Chem.Soc., Dalton Trans., 3133
-	-	gallium	
ROCZEO	GaCP ₂	- Mesityl-bis(di-tert-butylphosphanyl)-gallium	G.Linti, R.Frey, W.Kostler, H.Schwenk (1997)
	-	· · · · · · · ·	Chem.Ber.,130,663
WIGSOU	GaN₂O	Phenoxy-bis(2,2,6,6-tetramethylpiperidino)-gallium	G.Linti, R.Frey, K.Polborn (1994) Chem.Ber., 127, 1387
ROCZIS	GaN ₂ P	$(\mu_2$ -Di-t-butyldiphosphane)-bis(bis(2,2,6,6-tetramethylpiperidino))-	G.Linti, R.Frey, W.Kostler, H.Schwenk (1997) Chem.Ber.,
	-	digallium	130, 663
ROCZOY	GaN ₂ P	(Di-t-butylphosphanyl)-bis(2,2,6,6-tetramethyl-piperidino)-gallium	G.Linti, R.Frey, W.Kostler, H.Schwenk (1997) Chem.Ber.,

			130, 663
PIJXIP	GaN ₂ Si	bis(2,2,6,6-Tetramethylpiperidino)-(tris(trimethylsilyl)silyl)-gallium	R.Frey, G.Linti, K.Polborn (1994) Chem.Ber., 127, 101
EBUDEK	GaN ₃	(2-(N-2,6-Di-isopropylphenylamino)-4-(N-2,6-di-	N.J.Hardman, Chunming Cui, H.W.Roesky, W.H.Fink,
		isopropylphenylimino)-2-pentene)-(2,6-bis(2,4,6-tri-	P.P.Power (2001) Angew.Chem.,Int.Ed., 40, 2172
		isopropylphenyl)phenylimino-N)-gallium toluene solvate	
LIBSOE	GaN₃	tris(bis(Trimethylsilyl)amido)-gallium(iii)	P.J.Brothers, R.J.Wehmschulte, M.M.Olmstead, K.Ruhlandt-
			Senge, S.R.Parkin, P.P.Power (1994) Organometallics, 13,
			2792
QOPRAO	GaN ₃	tris(Dicyclohexylamido)-gallium	J.Pauls, B.Neumuller (2001) Z.Anorg.Allg.Chem., 627, 583
TUHQOC	GaN₃	(Hydrogen tris(3,5-di-t-butylpyrazolyl)borato)-gallium benzene	M.C.Kuchta, J.B.Bonanno, G.Parkin (1996) J.Am.Chem.Soc.,
		solvate	118, 0914
WILDOK	GaN₃	tris(bis(Trimethylsilyl)amido)-gallium(iii) tetrahydrofuran solvate	D.A.Atwood, V.O.Atwood, A.H.Cowley, R.A.Jones,
			J.L.Atwood, S.G.Bott (1994) Inorg.Chem., 33, 3251
WOKLIT	GaN ₃	tetrakis(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-olato)-	M.R.Lichtenthaler, F.Stahl, D.Kratzert, B.Benkmil,
		aluminium tris(pyrazine)-gallium	H.A.Wegner, Ingo Krossing, Eur.J.Inorg.Chem. (2014)
WOKLOZ	GaN ₃	catena-[tetrakis(µ-pyrazine)-tetrakis(pyrazine)-tetra-gallium	M.R.Lichtenthaler, F.Stahl, D.Kratzert, B.Benkmil,
		tetrakis(tetrakis(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-	H.A.Wegner, Ingo Krossing, Eur.J.Inorg.Chem. (2014)
		olato)-aluminum)]	
AZITUY	GaP ₃	bis(µ2-(Tri-t-butylsilyl)phosphanediyl)-bis((tri-t-	S.Weinrich, H.Piotrowski, M.Vogt, A.Schulz,
		butylsilyl)phosphanyl)-digallane	M.Westerhausen (2004) Inorg.Chem., 43, 3756
UZINIB	GaP ₃	tris(Di-t-butylphosphanido)-gallium(iii)	HW.Lerner, I.Sanger, F.Schodel, M.Bolte, M.Wagner,
			Z.Naturforsch.,B:Chem.Sci. (2011), 66, 695
VUWRIP	GaP ₃	tris(Triphenylphosphine)-gallium tetrakis(perfluoro-t-butoxy)-	J.M.Slattery, A.Higelin, T.Bayer, I.Krossing (2010) Angew.
		aluminium 1,2-difluorobenzene solvate	Chem., Int. Ed., 49, 3228
SODJEA	GaS₃	tris(2,4,6-Tri-t-butylphenylthiolato)-gallium	K.Ruhlandt-Senge, P.P.Power (1991) Inorg.Chem., 30, 2633
SONRES	GaSe₃	tris(2,4,6-Tri-t-butylphenylselenido)-gallium toluene solvate	K.Ruhlandt-Senge, P.P.Power (1991) Inorg.Chem., 30, 3683
GIXKIH	GaSi₃	1,1,3,3-tetrakis(Trimethylsilyl)-2,4-bis(tris(trimethylsilyl)silyl)-1,3,2,4-	G.Linti, W.Kostler, A.Rodig (1998) Eur.J.Inorg.Chem., 745
		disiladigalletane	
JANYAZ	GaSi₃	tris(Di-t-butyl(methyl)silyl)-gallium	M.Nakamoto, T.Yamasaki, A.Sekiguchi (2005)
			J.Am.Chem.Soc., 127, 6954
JANYIH	GaSi₃	(4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo(8.8.8)hexacosane)-	M.Nakamoto, T.Yamasaki, A.Sekiguchi (2005)
		potassium tris(di-t-butyl(methyl)silyl)-gallium benzene solvate	J.Am.Chem.Soc., 127, 6954
MEDKEL	GaSi₃	Trihypersilylgallium	R.Wochele, W.Schwarz, K.W.Klinkhammer, J.Weidlein
			(2000) Z.Anorg.Allg.Chem., 626, 833
UDUCOL	GaSi₃	tris(Di-t-butylphenylsilyl)-gallium	N.Wiberg, T.Blank, HW.Lerner, H.Noth, T.Habereder,
			D.Fenske (2001) Z.Naturforsch.,B:Chem.Sci., 56, 652
ZEQPEQ	GaTe₃	tris((tris(Trimethylsilyl)silyl)tellurido)-gallium	S.P.Wuller, A.L.Seligson, G.P.Mitchell, J.Arnold (1995)
			Inorg.Chem., 34, 4854
MALCEJ	GaAsCP	(µ3-arsenido)-(µ3-cyclotriphosphido)-tris(tris(trimethylsilyl)methyl)-	B.M. Cossairt, C.C. Cummins, Chem Eur. J., 16, 2010, 12603
		trigallium pentane solvate	

Tabla A4.2- Compuestos de Ga(III) con I.C. 4.

CSD	Kernel	Nombre	Referencia
ABISOT	$GaCl_2N_2$	Dichloro-((2-(t-butylamino)ethyl)(t-butyl)amide-N,N')-gallium(iii)	E.S.Schmidt, A.Schier, N.W.Mitzel,
			H.Schmidbaur (2001)
			Z.Naturforsch., B: Chem. Sci. , 56, 458
ACOBEZ01	$GaCl_2N_2$	Dichloro-(N,N'-bis(2,6-diisopropylphenyl)-2,4-pentanediiminato)-gallium	M.Stender, B.E.Eichler, N.J.Hardman,
			P.P.Power, J.Prust, M.Noltemeyer,
			H.W.Roesky (2001) Inorg.Chem. ,40,2794
ACOBID	$GaClN_2O$	Chloro-(trimethylsiloxy)-(N,N'-bis(2,6-di-isopropylphenyl)pentane-2,4-diiminato-	M.H.Chisholm, D.Navarro-Llobet, J.Gallucci
		N,N')-gallium(iii)	(2001) Inorg. Chem., 40, 6506

ADIPEI	GaBr₂OSi	Dibromo-(tri-t-butylsilyl)-tetrahydrofuran-gallium(iii)	N.Wiberg, T.Blank, M.Westerhausen, S. Schneiderbauer, H.Schnockel, I.Krossing, A.Schnepf (2002) Eur.J.Inorg.Chem. ,351
AGOHOT	GaCl₃O	Trichloro-(tetrahydrofuran-O)-gallium(iii)	S.Scholz, HW.Lerner, M.Bolte (2002) Acta Crystallogr., Sect.E: Struct. Rep. Online ,58,m586
ARESAR	GaCl₃N	((2,4,4-trichloro-6-phenyl-1,3,5,2l5,4l5-triazadiphosphinin-2-yl)phosphorimidic trichloride)-trichloro-gallium	E.Rivard, A.J.Lough, T.Chivers, I.Manners (2004) Inorg. Chem., 43, 802.
AVEKES	GaCCl₃	bis(μ2-chloro)-dichloro-bis(1-(triphenylsilyl)-2-phenylvinyl)-di-gallium	W.Uhl, M.Claesener, D.Kovert, A.Hepp, E U.Wurthwein, N.Ghavtadze (2011) <i>Organometallics ,</i> 30, 3075
AZGALT	GaH_2N_2	Aziridinylgallane trimer	W.Harrison, A.Storr, J.Trotter (1972)J.Chem.Soc.,Dalton Trans. ,1554
AZIVAG	GaCl ₂ P ₂	$bis(\mu 2-(Tri-t-butylsilyl)phosphanediyl)-tetrachloro-di-gallane toluene solvate$	S.Weinrich, H.Piotrowski, M.Vogt, A.Schulz, M.Westerhausen (2004) Inorg. Chem. , 43, 3756.
BAZTAZ	GalS₃	(Hydridotris(3-(adamantan-1-yl)-2-sulfidoimidazol-1-yl)borate)-iodogallium iodide dichloromethane solvate	K.Yurkerwich, M.Yurkerwich, G.Parkin (2011) <i>Inorg.Chem.</i> , 50, 12284
BAZTON	$GaBS_3$	(Hydridotris(3-(adamantan-1-yl)-2-sulfidoimidazol-1-yl)borate)-	K.Yurkerwich, M.Yurkerwich, G.Parkin
BEYHIX	Gal₃P	(2,4,6-Tri-t-butyl-1,3,5-triphosphacyclohexa-1,4-diene-P)-tri-iodogallium	C.Jones, M.Waugh (2004) Dalton Trans.
BINPOF	GaCCl₃	trichloro-(bis(triphenylphosphonio)methylidene)-gallium	A.El-Hellani, J.Monot, Shun Tang, R.Guillot, C.Bour, V.Gandon (2013) <i>Inorg.Chem.,</i> 52, 11493
BINPUL	GaCCl₃	trichloro-(1,1,3-tris(dimethylamino)-3-(dimethyliminio)prop-1-en-2-yl)-gallium	A.El-Hellani, J.Monot, Shun Tang, R.Guillot, C.Bour, V.Gandon (2013) <i>Inorg.Chem.,</i> 52, 11493
BINQAS	GaCCl₃	(1-(2,6-di-isopropylphenyl)-2,2,4,4-tetramethylpyrrolidinylidene)-trichlorogallium	A.El-Hellani, J.Monot, Shun Tang, R.Guillot, C.Bour, V.Gandon (2013) <i>Inorg.Chem.,</i> 52, 11493
BINQEW	GaCCl₃	(1,1,3,3-tetraphenyl-1,4,5,6-tetrahydro-1,3-diphosphinin-1-ium)-trichlorogallium dichloromethane solvate	A.El-Hellani, J.Monot, Shun Tang, R.Guillot, C.Bour, V.Gandon (2013) <i>Inorg.Chem.,</i> 52 ,11493
BINQIA	GaCCl₃	(2-(2,6-di-isopropylphenyl)-3,3-dimethyl-2-azaspiro[4.5]dec-1-ylidene)-trichloro- gallium	A.El-Hellani, J.Monot, Shun Tang, R.Guillot, C.Bour, V.Gandon (2013) <i>Inorg.Chem.,</i> 52, 11493
BINQOG	GaCCl ₃	(2-(2,6-diisopropylphenyl)-6-isopropyl-3,3,9-trimethyl-2-azaspiro[4.5]dec-1- ylidene)-trichloro-gallium	A.El-Hellani, J.Monot, Shun Tang, R.Guillot, C.Bour, V.Gandon (2013) <i>Inorg.Chem.,</i> 52, 11493
BOHKUE01	$GaCl_2N_2$	cis-bis((µ2-2,2,7,7-Tetramethyl-3,6-diazaoct-4-en-3,3,6-triyl)-chlorogallium)	E.S.Schmidt, A.Jockisch, H.Schmidbaur (2000) J. Chem. Soc., Dalton Trans., 1039.
BOHKUE01	GaN ₄	cis-bis((µ2-2,2,7,7-Tetramethyl-3,6-diazaoct-4-en-3,3,6-triyl)-chlorogallium)	E.S.Schmidt, A.Jockisch, H.Schmidbaur (2000) J. Chem. Soc., Dalton Trans., 1039.
BUNZAM	GaCl₃N	(2,6-bis(2,4,6-triisopropylphenyl)pyridine)-trichloro-gallium toluene solvate	T.Pell, D.P.Mills, A.J.Blake, W.Lewis, S.T.Liddle (2010) Polyhedron, 29, 120
BUPTIQ	Gal₃Se	Triiodo((methylselanyl)methane)gallium	S. Mishra, E. Jeanneau, S. Daniele (2010) Polyhedron, 29, 500
CANPOX	GaH_2N_2	2,6,10-tris(bis(Dimethylamino)methylene)-4,8,12-trimethyl-2,4,6,8,10,12,13- hepta-aza-1,3,5,7,9,11,14-heptagallapentacyclo (7.3.1.14,8.05,13.012,14) tetradecane	A.R.Cowley, A.J.Downs, HJ.Himmel, S.Marchant,S.Parsons, J.A.Yeoman (2005) Dalton Trans. ,1591
CANPOX	GaHN₃	2,6,10-tris(bis(Dimethylamino)methylene)-4,8,12-trimethyl-2,4,6,8,10,12,13- hepta-aza-1,3,5,7,9,11,14-	A.R.Cowley, A.J.Downs, HJ.Himmel, S.Marchant,S.Parsons, J.A.Yeoman (2005)

		heptagallapentacyclo(7.3.1.14,8.05,13.012,14)tetradecane	Dalton Trans. ,1591
CATCAD01	GaH_2N_2	(2,3,5,6,7,8-Hexahydroimidazo[1,2-a]pyrimidine)-dihydrido-(2,3,6,7-	D.Rudolf, G.Storch, E.Kaifer, HJ.Himmel
		tetrahydroimidazo[1,2-a]pyrimidin-1(5H)-yl)-gallium	(2012) Eur.J.Inorg.Chem. ,2368
CATCIL	GaH_2N_2	bis(µ2-3,4,7,8-tetrahydro-2H-pyrimido[1,2-a]pyrimidin-1(6H)-yl)-tetrahydrido-di-	D.Rudolf, G.Storch, E.Kaifer, HJ.Himmel
		gallium	(2012) Eur.J.Inorg.Chem. ,2368
CATCOR	GaH₃N	(1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine)-trihydrido-gallium	D.Rudolf, G.Storch, E.Kaifer, HJ.Himmel
			(2012) Eur.J.Inorg.Chem. ,2368
CATDUX	GaN ₄	bis(bis(t-Butylamido)phenylborane-N,N')-gallium	T.Chivers, D.J.Eisler, C.Fedorchuk,
			G.Schatte, H.M.Tuononen, R.T.Boere (2005)
			Chem.Commun. ,3930
CAXKUJ	GaCl₃S	(µ2-1,2-bis((Ethylsulfanyl)methyl)benzene)-hexachloro-di-gallium(iii)	K.George, M.Jura, W.Levason, M.E.Light,
			L.P.Ollivere, G.Reid (2012) Inorg.Chem. ,
			51, 2231
CEJWIZ	GaO ₄	bis(µ2-3,6-di-t-butylbenzene-1,2-diolato)-(3,6-di-t-butylbenzene-1,2-diolato)-	A.V.Piskunov, A.V.Maleeva,
	·	bis(diethyl ether)-di-gallium	I.N.Mescheryakova, G.K.Fukin (2012)
			Eur.J.Inorg.Chem. ,4318
CEJWOF	GaN ₂ O ₂	bis(u2-2.4-Di-t-butyl-6-((2.6-diisopropylphenyl)amido)phenolato)-diiododi-gallium	A.V.Piskunov. A.V.Maleeva.
			I.N.Mescheryakova, G.K.Fukin (2012)
			Eur.J.Inora.Chem4318
CEJWOF	Gal ₂ O ₂	bis(u2-2.4-Di-t-butyl-6-((2.6-diisopropylphenyl)amido)phenolato)-diiododi-gallium	A.V.Piskunov, A.V.Maleeva.
			I.N.Meschervakova, G.K.Fukin (2012)
			<i>Eur.J.Inorg.Chem.</i> .4318
CETDOU	GaCl ₂ N	2-Chloro-1-(trichloro-gallium)-1 3-dimethyl-1 3 2-diazaborolidine	K Anton C Euringer H Noth (1984)
021000	6461311		Chem.Ber. 117.1222
CEVSUS	GaClaP	1 2 3 4 5 6 7 10 11 12-Decamethyl-9-(trichlorogallyl)-8 9-	
021000	646131	diphosphanentacyclo(6400210037069)dodeca- 411 -diene	M Murray CA Russell M Scheer II
			Vogel (2006) Chem Commun 4542
CEXDOA	GaCaN	(Binhenyl-2 2'-diyl)-(2 4-di-t-butyl-6-((dimethylamino)methyl)nhenyl)-gallium	T Matsumoto K Tanaka Yoshiki Chujo
CENDON	Guesn		(2013) / Am Chem Soc 135 , 4211
CEZRUU	GaCl _a N	Trichloro-hexamethylborazine-gallium	K Anton H Noth (1982) Chem Ber
			.115.2668
CIDYAO	GaAsaCla	(u2-(2-(Dimethylarsenyl)methyl)-2-methylpropane-1 3-diyl)-bis(dimethylarsane)-	Fei Cheng A L Hector W Levason G Beid
		pentachloro-di-gallium tetrachlorogallate(iii)	M.Webster.Wenijan Zhang (2007) Dalton
			Trans2207
CIDYAO	GaAsCla	(u2-(2-(Dimethylarsenyl)methyl)-2-methylpropage-1 3-diyl)-bis(dimethylarsage)-	Fei Cheng A L Hector W Levason G Beid
0.0	earbeis	pentachloro-di-gallium tetrachlorogallate(iii)	M Webster Wenijan Zhang (2007) Dalton
			Trans 2207
CIDYFU	GaAsla	1.1.1-tris(Dimethylarsinomethyl)ethane-nonaiodo-tri-gallium/iii)dichloromethane	Fei Cheng, A.L.Hector, W Levason, G Reid
0.0120		solvate	M.Webster.Wenijan Zhang (2007) Dalton
		Solvate	Trans 2207
	GaAsaCla	Dichloro-(1.1.1.tris/dimethylarsinomethyl)ethane)-	Fei Chang A L Hertor W Levason G Reid
CIDIII	GaA32CI2	allium(iii)tetrachlorogallate(iii)	M Webster Wenijan Zhang (2007) Dalton
		gandrifiniterraemoroganace(m)	Trans 2207
CIEMOT	Gals	1257 Tatraindo 2468 tatramathul 2468010 bayathia 1257 tatragallato	
	Gaiba	1, 3, 3, 7 - retrained $2, 4, 0, 0$ - retrained ry $2, 4, 0, 0, 3, 10$ - restating $1, 3, 3, 7$ - retragalato-	A. Boardinari, S.L.Jerrs, K.W.H.Shiali,
	GaCLN	(1-Methylimidazole-N3)-trichloro-gallium	K Anton A Reauchamp (1094) Acta
CIWIIOF	Gacigin	(* meanyinningeore ho) chemoro-gamani	Cristallogr Sect A: Found Cristallogr 40
			C301
	GaCLN	2 (1) 2) Dimothyl (1) 2) 2) disysborolidin 2) 4) 4.2 dimothyl 2 (tricklass - 1)()	COUL
COLVAA	GdCl3IN	2- بابعان الاستان عنهم منه بالمعالية عنه منه بالمعالية من منه بالمعالية من	Chom Por 117 2405
COCTUR	Cacle		
COSTIP	GaCl ₂ N ₂	שואניע-ב,א-וע-נ-טעניויסענעוויין שואניעריאניטעריע-מ-אָגעעייין שואניערייטיניע שואנערייין שואנערייין שואנערייין שו	Jing Su, wenjun Zneng, Ying Yang (2015) J.
			Luuranomat Loam (XII 1

			Organomet. Chem., 780, 1
COTBUJ	GaCl₃P	Trichloro-(tri-n-propylphosphine)-gallium(iii)	Fei Cheng, A.L.Hector, W.Levason,
			M.Webster (2009) Private Communication
CUVPAK	GaCl ₂ N ₂	trans-bis((µ2-Trimethylsilyl-amino)-dichloro-gallium)	W.R.Nutt, J.A.Anderson, J.D.Odom,
			M.M.Williamson, B.H.Rubin (1985)
			Inorg.Chem24.159
CLIVPEO	GaClaNa	trans-his(/u2-Trimethylsilyl-methylamino)-dichloro-gallium)	W R Nutt LA Anderson LD Odom
COVILO	Gueizitz		M M Williamson P H Pubin (1085)
			Inorg Cham 24 150
D 410/5D			
DAKVER	GaCl ₃ P	Trichloro-(1-mesityi-2,2-diphenyi-1-phosphaethene)-gallium	Chi-Wing Isang, C.A.Ronrick, I.S.Saini,
			B.O.Patrick, D.P.Gates (2004)
			Organometallics ,23,5913
DAPWUO	GaCl ₂ N ₂	Dichloro-(2-mesityl-6-(N-(2,6-di-isopropylphenyl)-1-aminoethyl)pyridine	T.W.Myers, L.A.Berben (2012) Inorg.Chem.
		radical-N,N')-gallium n-hexane solvate	, 51, 1480
DECQUX	$GaCl_2N_2$	Dichloro-(2-(t-butylamino)-4-(t-butylimino)pent-2-ene-N,N')-gallium	N.Kuhn, J.Fahl, S.Fuchs, M.Steimann,
			G.Henkel, A.H.Maulitz (1999)
			Z.Anorg.Allg.Chem. ,625,2108
DECWEN	$GaCl_2N_2$	Dichloro-(2-(methylamino)-4-(methylimino)pent-2-ene-N,N')-gallium	N.Kuhn, J.Fahl, S.Fuchs, M.Steimann,
			G.Henkel, A.H.Maulitz (1999)
			Z.Anorg.Allg.Chem. ,625,2108.
DEKPAL	GaO ₄	catena-(tetrakis(µ6-Ethane-1,2-diphosphonato)-bis(µ2-fluoro)-dipyridylhexa-	Zhanhui Yuan, W. Clegg, M.P. Attfield
	·	gallium)	(2006) J. Solid State Chem., 179, 1739.
DIGZAU	GalaSa	bis(u2-Isopropylthio-S S)-tetraiodo-di-gallium	G G Hoffmann, C Burschka (1985) Angew
5102.10	00.202	softz rock ob the of a conserve a fantan	Chem Int Ed 24 970
		Dihydrida (quipyclidina) /2.2.6.6 tatramathylpiparidinyl 1 oxida) galliym	C longs R R Rose (2007) New L Chem 21
DIKIVIEQ	Gan ₂ ON	Dinyanao-(quinaciaine)-(2,2,6,6-tetrametriyipipenainyi-1-0xide)-gainam	C.Jones, R.P.Rose (2007) New J. Chem. , 31,
	0.011		
DIQCEL	GaCIN ₃	(1,3-Di-t-butyl-2,4-bis(t-butylamido)-2,4-cyclodiphosphazane)-chlorogallium(iii)	I.Schranz, D.F.Moser, L.Stahl, R.J.Staples
			(1999) Inorg.Chem. ,38, 5814.
DIQCIP	GaN ₄	(1,3-Di-t-butyl-2,4-bis(t-butylamido)-2,4-cyclodiphosphazane)-(1,3-di-tbutyl-1,3-	I.Schranz, D.F.Moser, L.Stahl, R.J.Staples
		diaza-2l2-phospha-allyl)-gallium(iii)	(1999) Inorg.Chem. ,38,5814
DIVXAJ	$GaCl_2N_2$	Dichloro-(N-((5-((dimethylamino)methyl)-1H-pyrrol-2-yl)methyl)-2-methylpropan-	Yu-Tang Wang, Yi-Chien Lin, Shu-Ya Hsu,
		2-aminato)-gallium	Ren-Yung Chen, Pei-Hsin Liu, A.Datta, Chia-
			Her Lin, Jui-Hsien Huang (2013)
			J.Organomet.Chem. , 745, 12
DIVXIR	GaN_2O_2	bis(4-methylphenolato)-(N,N'-((1H-pyrrole-2,5-diyl)bis(methylene))bis(2-	Yu-Tang Wang, Yi-Chien Lin, Shu-Ya Hsu,
		methylpropan-2-aminato))-gallium	Ren-Yung Chen, Pei-Hsin Liu, A.Datta, Chia-
			Her Lin, Jui-Hsien Huang(2013)
			J.Organomet.Chem. , 745, 12
DIVXUD	GaCl ₂ N ₂	Dichloro-(N,N'-((1H-pyrrole-2,5-diyl)bis(methylene))bis(2-methylpropan-2-	Yu-Tang Wang, Yi-Chien Lin, Shu-Ya Hsu,
		aminato))-gallium	Ren-Yung Chen. Pei-Hsin Liu. A.Datta. Chia-
			Her Lin, Jui-Hsien Huang(2013)
			I Organomet Chem 745 12
DOMTOO	6.25	Tetra-n-nrony/ammonium tetrakis/athy/thiolato)_gallium/iii)	LE Maelia S.A. Koch (1996) Inorg Chom
50101100	ud34	יכנים ה-אוסאומוווווסווומווו נכנומגוז(כנוואונוווסומנס)-צמווומנוו(ווו)	
DON 171111	0.0	Television and the second s	
DOWLOO	GaS ₄	i etraetnyiammonium tetrakis(phenyithiolato)-gallium(iii)	L.E.IVIAEIIA, S.A.Koch (1986) Inorg.Chem.
			,25,1896
DOMVAC	GaS_4	bis (Tetraethylammonium) bis (μ 2-sulfido)-tetrakis (phenylthiolato)-digallium (iii)	L.E.Maelia, S.A.Koch (1986) Inorg.Chem.
			,25,1896
DOQNUS	GaH_2N_2	bis(trans-(µ2-2,2-Dimethylhydrazino)-dihydrido-gallium)	Bing Luo, W.L.Gladfelter (2000) Chem.
			Commun. , 825
DOQPAA	GaN ₄	$bis (\mu 2\text{-}2, 2\text{-}Dimethyl hydrazono) - tetrakis ((\mu 2\text{-}2, 2\text{-}dimethyl hydrazino) - (2, 2\text{-}2) - (2, 2-$	Bing Luo, W.L.Gladfelter (2000)
		dimethylhydrazino)-gallium)	Chem.Commun. ,825
ECUNIB	GaCl₃N	Trichloro-(pyridine)-gallium	A.Y.Timoshkin, M.Bodensteiner,

			T.N.Sevastianova, A.S.Lisovenko,
			E.I.Davydova, M.Scheer, C.Grassl,
			A.V.Butlak (2012) Inorg.Chem. ,51,11602
ECUNOH	GaBr₂N	Tribromo-(pyridine)-gallium	A.Y.Timoshkin. M.Bodensteiner.
			T N Sevastianova, A S Lisovenko
			EL Dawdova, M Scheer, C Grass
			A V Butlak (2012) Inorg Cham 51 11602
			A.v.Buttak (2012) morg.chem. ,51,11602
ECUNUN01	Gal ₃ N	Trilodo-(pyridine)-gallium	A.Y. Hmoshkin, M.Bodensteiner,
			T.N.Sevastianova, A.S.Lisovenko,
			E.I.Davydova, M.Scheer, C.Grassl,
			A.V.Butlak (2012) Inorg.Chem. ,51,11602
ECUPEZ	GaCl₃N	Trichloro-(piperidine)-gallium	A.Y.Timoshkin, M.Bodensteiner,
			T.N.Sevastianova, A.S.Lisovenko,
			E.I.Davydova, M.Scheer, C.Grassl,
			A.V.Butlak (2012) Inorg.Chem. ,51,11602
EDIBOK	GaN ₄	bis(2,6-diisopropyl-N-((pyridin-2-yl)methylene)aniline)-gallium tetrakis(3,5-di-	C.D.Cates, T.W.Myers, L.A.Berben (2012)
		trifluoromethylphenyl)borate toluene solvate	Inorg.Chem., 51, 11891
EGEDUQ	GaCl₃P	(μ ₂ -Chloro)-(μ ₂ -4-chloro-N-(2-chloro-1,1,1,3,3,3-hexamethyl-2-trisilanyl)-N,1,4-	A.Villinger, A.Westenkirchner, R.Wustrack,
	-	tris(trimethylsilyl)-1,2,3,4-azadiphosphasiletidin-3-aminato-P2,P3)-(tetrachloro)-	A.Schulz (2008) Inorg.Chem. ,47,9140
		di-gallium dichloromethane solvate	
FKFEOP	Gal _a O	trijodo-(3.5.7.8-tetra-t-butyl-1.2.4/5.6-tetraphosphatetracyclo(4.1.1.02.5.07.8)	R I Baker H Bettentrun C Jones (2003)
EREPOR	Guigo	octan 4 onol-gallium	Acta Crystallogr Sect. C: Cryst Struct
		octan-4-one)-gainum	
			commun., 59, m339
EKIROF	GaCl ₂ O ₂	Dichloro-(2,4-pentanedionato)-gallium(iii)	O.T.Beachley Junior, J.R.Gardinier,
			M.R.Churchill (2003) Organometallics
			,22,1145
EKISAS	$GaCl_2O_2$	Dichloro-(2,2,6,6-tetramethylheptan-3,5-dionato)-gallium(iii)	O.T. Beachley Junior, J.R.Gardinier, M.R.
			Churchill (2003) Organometallics, 22, 1145
EKOWUX	$GaCl_2S_2$	Tetraethylammonium dichloro-(ethane-1,2-dithiolato)-gallium	Yan-Gong Han, Chao Xu, Taike Duan, Qian-
			Feng Zhang (2011) Inorg. Chim. Acta , 365,
			414
EKOWUX	GaCl ₂ S ₂	Tetraethylammonium dichloro-(ethane-1,2-dithiolato)-gallium	Yan-Gong Han, Chao Xu, Taike Duan, Qian-
			Feng Zhang (2011) Inorg.Chim.Acta, 365,
			414
FKOXAF	GaS₄	Tetraethylammonium bis(ethane-1 2-dithiolato)-gallium	Yan-Gong Han, Chao Xu, Taike Duan, Oian-
LING/UNE	0004		Eeng Zhang (2011) Inorg Chim Acta 365
			414
FKOVAE	<u> </u>		
EKUXAE	GaS ₄	retraetnylammonium bis(etnane-1,2-ditniolato)-gallium	Yan-Gong Han, Chao Xu, Taike Duan, Qian-
			Feng Zhang (2011) Inorg.Chim.Acta , 365,
			414
EKOYUY	GaH₃P	(t-Butyl-bis(t-butylamino)phosphane)-trihydrido-gallium	T.Bauer, S.Schulz, M.Nieger, U.Kessler
			(2003)Organometallics, 22, 3134
ENATUJ	GaO_4	catena-[tris(Dimethylammonium) tetrakis(μ 3-benzene-1,3,5-tricarboxylato-	D.Banerjee, Sun Jin Kim, Haohan Wu,
		O,O',O'')-tri-gallium(ii) dimethylformamide solvate tridecahydrate]	Wenqian Xu, L.A.Borkowski, Jing Li,
			J.B.Praise (2011) Inorg.Chem. , 50, 208
ESAPEU	GaN ₂ Cl ₂	Dichloro-(N,N'-bis(2,6-di-isopropylphenyl)but-2-ene-2,3-diaminato)-gallium	Yanyan Liu, Shaoguang Li, Xiao-Juan Yang,
			Qian-Shu Li, Yaoming Xie, H.F.Schaefer,
			Biao Wu (2011) J.Organomet.Chem., 696.
			1450
FSADELL	GaCL-N	Dichloro-(N N'-his/2 6-di-isopronvlohenvl\hut-2-one-2 2-diaminato\-rallium	Yanyan Liu, Shaoguang Li, Yiao-Juan Yang
	Gacizing	- sources (representation as a sepreption of point a cherzys-manimato)-gaindin	
			ыао Wu (2011) J.Organomet.Chem. ,696,
			1450

ETULUA	$GaCl_2N_2$	(1,2-bis(2,6-Di-isopropylphenylimino)acenaphthene-N,N')-dichlorogallium	H.A. Jenkins, C.L. Dumaresque, D. Vidovic,
		tetrachlorogallate dichloromethane solvate	J.A.C. Clyburne (2002) Can. J. Chem., 80,
			1398.
FAPCUW	GaBr₃C	Tribromo-(1,3-dimesityl-2,3-dihydro-1H-imidazol-2-ylidene)-gallium	G.E.Ball, M.L.Cole, A.I.McKay (2012) Dalton
544050			
FAXDEO	GaCl ₂ S ₂	Dichloro-(S,S'-tetraphenyldithioimidodiphosphinato)-gallium(III)	MA.Munoz-Hernandez, V.Montiel-
			Palma, E. Huitron-Rattinger, S. Cortes-
			Llamas, N.Tiempos-Flores, J
			M.Grevy,C.Silvestru, P.Power (2005) Dalton
			Trans. ,193
FAXDIS	GaCl ₂ OS	Dichloro-(S,O'-diphenyldiethoxythioimidodiphosphinato)-gallium(iii)	MA.Munoz-Hernandez, V.Montiel-
			Palma, E. Huitron-Rattinger, S. Cortes-
			Llamas, N.Tiempos-Flores, J
			M.Grevy,C.Silvestru, P.Power (2005) Dalton
			Trans. ,193
FAXDOY	GaCl ₂ S ₂	Dichloro-(S,S'-dimethyldiphenyldithioimidodiphosphinato)-gallium(iii)	MA.Munoz-Hernandez, V.Montiel-
			Palma, E. Huitron-Rattinger, S. Cortes-
			Llamas, N.Tiempos-Flores, J
			M.Grevy,C.Silvestru, P.Power (2005) Dalton
			Trans. ,193
FAXFAM	GaSe₄	bis(Se.Se'-Tetraphenyldiselenoimidodiphosphinato)-gallium(iii) tetrachlorogallate	MA. Munoz-Hernandez, V. Montiel-
	4		Palma, E. Huitron-Rattinger, S. Cortes-
			Lamas N Tiempos-Flores L-M Grewy C
			Silvestru P. Power (2005) Dalton Trans
			102
FEODAE	CaN	tris//2.6. Di isantanı dahanı damida) muidul gallium/iii)	195.
FEQBAE	GaN ₄	tris((2,6-Di-isopropyipnenyi)amido)-pyridyi-gailium(iii)	J.S.Silverman, C.J.Carmait, A.H.Cowley,
			R.D.Culp, R.A.Jones, B.G.McBurnett (1999)
			Inorg.Chem. ,38,296
FEQMAP	GaO₃Si	tetrakis((µ3-Oxo)-tri-t-butylsilyl-gallium) benzene solvate	N.Wiberg, K.Amelunxen, HW.Lerner,
			H.Noth,W.Ponikwar, H.Schwenk (1999)
			J.Organomet.Chem. ,574,246
FEQMET	GaO₃Si	tetrakis((µ3-Oxo)-tri-t-butylsilyl-gallium) bis(tetrakis(tri-t-butylsilyl-gallium))	N.Wiberg, K.Amelunxen, HW.Lerner,
		toluene solvate	H.Noth,W.Ponikwar, H.Schwenk (1999)
			J.Organomet.Chem. ,574,246
FEQMOD	GaO₃Si	tetrakis((µ2-Hydroxo)-hydroxy-tri-t-butylsilyl-gallium) monohydrate	N.Wiberg, K.Amelunxen, HW.Lerner,
			H.Noth,W.Ponikwar, H.Schwenk (1999)
		Y	J.Organomet.Chem. ,574,246
FOCTEW	GaCl₃N	Benzotriazole-trichloro-gallium(iii)	S.Zanias, C.P.Raptopoulou, A.Terzis,
			T.F.Zafiropoulos (1999) Inorg. Chem.
			Commun.,2, 48
FOVZIB	GaCl ₂ N ₂	Dichloro-(N,N,N',N''-tetraisopropylguanidinato)-gallium	R.L.Melen, H.R.Simmonds, H.Wadepohl,
			P.T.Wood, L.H.Gade, D.S. Wright (2014)
			Aust. J. Chem., 67, 1030
FOXCAW	GaAs₂Br	bis((u2-bis((Trimethylsilyl)methyl)arsino)-bis((trimethylsilyl)methyl)arsinobromo-	A.P.Purdy, R.L.Wells, A.T.McPhail, C.G.Pitt
		gallium)	(1987)Organometallics 6. 2099
GARPA A01	GaN	tris(Azido)-(triethylamino)-gallium	A Devi H Sussek H Pritzkow M Winter
GUDI AAUI	Guiv4		R & Fischer (1999) Fur L Inorg Chem
			2127
CARCOS	625	Triathylammanium tatrakie/thiabaasaata () aallium maashudaata	TC Doiversi Missilis Kies Bissish
GABSUS	Gd34	metryianinonium tetrakis(unobenzoato-S)-gailium mononyurate	
			ivi.readon, J.J.Vittai (2003) J. Mater. Chem.,
			13, 1149
GAJKAF	$GaCl_2S_2$	Dichloro-(dihydrogen bis(3-t-butyl-2-mercaptoimidazolyl)borato)-gallium	K. Yurkerwich, F. Coleman, G. Parkin (2010)
			Dalton Trans.,39, 6939

GAJKEJ	Gal_2S_2	Diiodo-(dihydrogen bis(3-t-butyl-2-mercaptoimidazolyl)borato)-gallium	K. Yurkerwich, F. Coleman, G. Parkin (2010) Dalton Trans., 39, 6939
GAJKUZ	$GaBr_2S_2$	Dibromo-(dihydrogen bis(3-t-butyl-2-mercaptoimidazolyl)borato)-gallium	K.Yurkerwich, F.Coleman, G.Parkin (2010) Dalton Trans., 39, 6939
GAJLIO	Gal_2S_2	Diiodo-(dihydrogen bis(3-methyl-2-mercaptoimidazolyl)borato)-gallium	K. Yurkerwich, F. Coleman, G. Parkin (2010) Dalton Trans., 39, 6939
GAPVID	GaCl₃O	(p-Fluorobenzoyl chloride)-trichloro-gallium	M.G.Davlieva, S.V.Lindeman, I.S.Neretin, J.K. Kochi (2005) J. Org. Chem. ,70,4013
GAVLOG	GaCH₃	bis(μ2-1-[t-butyl(dimethyl)silyl]-2-phenylethylidene)-tetrakis(μ2-hydrido)-hydrido- tri-t-butyl-tetra-gallium	W.Uhl, D.Kovert, S.Zemke, A.Hepp (2011) Organometallics, 30, 4736
GEGQAM	GaC₃N	(N,N-Dimethyl-1-phenylmethanamine)-(diferrocenyldimethylsilyl)-gallium	B.Bagh, N.C.Breit, J.B.Gilroy, G.Schatte, J.Muller (2012) Chem.Commun., 48, 7823
GEGQEQ	GaC₃N	(N,N-Dimethyl-1-(4-trimethylsilylphenyl)methanamine)-(diferrocenyldimethylsilyl) -gallium	B.Bagh, N.C.Breit, J.B.Gilroy, G.Schatte, J.Muller (2012) Chem.Commun., 48, 7823
GEQMUK	GaN₃S	(Hydrogen tris(3,5-di-t-butylpyrazolyl)borato)-sulfido-gallium	M.C.Kuchta, G.Parkin (1998) J.Chem.Soc.,Dalton Trans., 2279
GEVJUM	GaP ₄	tetrakis(Diphenylphosphido)-gallium tetrakis (tetrahydrofuran)-lithium	C.J.Carrano, A.H.Cowley, D.M.Giolando, R.A.Jones, C.M.Nunn (1988) Inorg. Chem., 27, 2709.
GEVKEX	GaAs ₄	tetrakis(Diphenylarsenido)-gallium tetrakis(tetrahydrofuran)- lithiumtetrahydrofuran solvate	C.J.Carrano, A.H.Cowley, D.M.Giolando, R.A.Jones, C.M.Nunn (1988) Inorg. Chem., 27, 2709.
GIMYAD	GaCl₃N	(Acetonitrile-N)-trichlorido-gallium(iii)	M.Schaffrath, A.Schulz, A.Villinger (2007)Acta Crystallogr., Sect. Ε: Struct. Rep. Online , 63, μ2764
GIVVUC	Ga Asl ₂ P	2,2,4,4-Tetraiodo-1,1,3,3-tetrakis(trimethylsilyl)-1,3,2,4-phospharsadigalletane	R.L.Wells, S.R.Aubuchon, M.S.Lube, P.S.White (1995) Main Group Chem. ,1,81
GIVWAJ	Gal_2P_2	2,2,4,4-Tetra-iodo-1,1,3,3-tetrakis(trimethylsilyl)-1,3,2,4-diphosphadigalletane toluene solvate	R.L.Wells, S.R.Aubuchon, M.S.Lube, P.S.White (1995) Main Group Chem., 1, 81.
GOFKES	Gal₃P	(μ2-1,4-bis(2,4,6-Tri-t-butylphenyl)-1,4-diphosphabuta-1,3-diene-P,P')- hexakis(iodo)-di-gallium(iii) toluene solvate	T.Gans-Eichler, C.Jones, S.Aldridge, A.Stasch (2008), Anal.Sci.:X-Ray Struct.Anal.Online ,24,x109
GOSCOI	GaN₃O	(m-5,10-dihydrophenazinato)-bis(N,N'-bis(2,6-diisopropylphenyl)but-2-ene-2,3- diaminato)-bis(tetrahydrofuran)-di-gallium tetrahydrofuran solvate	Yanxia Zhao, Yanyan Liu, Zeyi Wang, Wenhua Xu, Bin Liu, Ji-Hu Su, Biao Wu, Xiao-Juan Yang (2015) Chem.Commun., 51, 1237
GOSDAV	GaN ₄	(N-(3-((2,6-diisopropylphenyl)imino)but-1-en-2-yl)-2,6-diisopropylanilido)- bis(phenazine) -gallium toluene solvate	Yanxia Zhao, Yanyan Liu, Zeyi Wang, Wenhua Xu, Bin Liu, Ji-Hu Su, Biao Wu, Xiao-Juan Yang (2015) Chem.Commun., 51, 1237
GOSKIK	GaC ₂ N ₂	$bis(\mu 2\text{-}amido)\text{-}tetrakis(pentamethylcyclopentadienyl)\text{-}di-gallium$	Yanxia Zhao, Yanyan Liu, Zeyi Wang, Wenhua Xu, Bin Liu, Ji-Hu Su, Biao Wu, Xiao-Juan Yang (2015) Chem.Commun., 51, 1237
GOSKUW	GaCCIN₂	tris(μ2-amido)-tris(2,3,4,5-tetratamethylcyclopentadienyl)-trichloro-trigallium	Yanxia Zhao, Yanyan Liu, Zeyi Wang, Wenhua Xu, Bin Liu, Ji-Hu Su, Biao Wu, Xiao-Juan Yang (2015) Chem.Commun., 51, 1237
GOSLAD	GaC_2N_2	$bis(\mu 2-ethylamino)-tetrakis(2,3,4,5-tetratamethylcyclopentadienyl)-digallium$	P.Perrotin, B.S.Kennon, B.Twamley, J.S.Miller, P.J.Shapiro (2014) Polyhedron, 84, 216
GOSQOK	GaC_2N_2	$bis (\mu 2 \text{-} amido) \text{-} tetrakis (2,3,4,5 \text{-} tetratamethylcyclopentadienyl) \text{-} digallium$	Yanxia Zhao, Yanyan Liu, Zeyi Wang, Wenhua Xu, Bin Liu, Ji-Hu Su, Biao Wu,

			Xiao-Juan Yang (2015) Chem.Commun., 51,
			1237
GOXHEG	GaNS ₃	tris(t-Butanethiolato)-(dimethylamine)-gallium	S.Suh, J.H.Hardesty, T.A.Albright,
			D.M.Hoffman (1999) Inorg. Chem. ,38,
			1627.
GOXHIK	GaS ₄	Di-isopropylammonium tetrakis(isopropanethiolato)-gallium	S.Suh, J.H.Hardesty, T.A.Albright,
			D.M.Hoffman (1999) Inorg. Chem. ,38,
			1627.
GOXHOK	GaS ₄	bis((µ2-Isopropanethiolato)-bis(isopropanethiolato)-gallium)	S.Suh, J.H.Hardesty, T.A.Albright,
			D.M.Hoffman (1999) Inorg. Chem. ,38,
			1627.
GOXHUW	GaS ₄	bis((µ2-t-Butanethiolato)-bis(t-butanethiolato-gallium))	S.Suh, J.H.Hardesty, T.A.Albright,
			D.M.Hoffman (1999) Inorg. Chem. ,38,
			1627.
GUFVOS	GaN ₄	tris(Azido)-(trimethylamino)-gallium	A.Devi, H.Sussek, H.Pritzkow, M.Winter,
			R.A.Fischer (1999) Eur.J.Inorg.Chem. ,2127
GUJHAW	GaCl₃O	trichloro-(2,4,6-tri-t-butylphenylphosphine oxide)-gallium	J.Bresien, K.Faust, Axel Schulz, A.Villinger
			(2015) Angew.Chem.,Int.Ed.,
HAXQEC	GaCl₂HN	Dichloro-quinuclidine-hydrido-gallium	Bing Luo, V.G.Young Junior, W.L.Gladfelter
	-		(1999)Chem.Commun123
HAYCIT	GaN ₂ Te ₂	Tetraphenylphosphonium bis(ethylenediamine-N)-ditellurido-gallium	C.J.Warren. D.M.Ho. R.C.Haushalter.
	2 -2		A.B.Bocarsly (1994) Chem. Commun., 361
HERVOP	GaNO ₂	tris(u2-1.1.1.5.5.5-Hexafluoropentane-2.4-dionato)-bis(trimethylamino)-di-gallium	J.L.Atwood, Fu Chin Lee, C.L.Baston,
			K.D.Robinson (1994) J.Chem.SocDalton
			Trans2019.
	GalaN	Trijodo-nyrazine-gallium	T N Sevastianova M Bodensteiner
1111201	Gaigiv		A S Licovenko, E L Davidova, M Scheer
			T V Susliakova I S Kraspova Alevev
			V Timoshkin (2012) Dalton Trans
			42 11580
	620 010	(2.2. diabanylbuta 1.2. diana 1.4. div)bic(t. butyl(dimathylkilana)	M Saita T Akiba M Kanaka T Kawamura
HIKFUL		(z,s-upneny)buta-1,s-uene-1,4-uy)bis(t-buty(unnethy)shane)-	M Abo M Hada M Minoura (2012) Chom
		(tetranydroruran) -chloro-gallium	M.Abe, M.Hada, M.Minoura (2013) Chem
			Eur.J. ,19,16946
HIYNEK	GaC ₂ NO	$(\mu 2 - 2, 2 - (((R,R) - 1, 2 - Dipnenyletnane - 1, 2 - diyl)bis((nitrilo)metnylylidene)) bis(6-$	N.Maudoux, I.Roisnel, V.Dorcet, J
		metnyiphenolato))-texxtrakis((trimetnyisiiyi)metnyi)-di-gailium benzene solvate	F.Carpentier, Y.Sarazin (2014) ChemEur.J.,
HIZFOL	GaBr₃N	Tribromo-1-(trimethylsilyl)azido-gallium	J.McMurran, D.Dai, K.Balasubramanian,
			C.Steffek, J.Kouvetakis, J.L.Hubbard (1998)
			Inorg. Chem.,37, 6638.
HIZLAD	$GaCIN_2P$	anti-Chloro-(2,2,6,6,8,8,12,12-octamethyl-4,10-diphenyl-2,6,8,12-tetrasila-	M.D.Fryzuk, G.R.Giesbrecht, S.J.Rettig
		1,7,4,10-diazadiphosphacyclododecane-N,N',P)-gallium	(1998) Inorg. Chem., 37, 6928.
HOJHUJ	Gal_2N_2	bis(µ2-Triethylphosphoraneiminato)-tetraiodo-di-gallium(i)	S.Anfang, J.Grebe, M.Mohlen, B.
			Neumuller, N.Faza, W.Massa, J.Magull,
			K.Dehnicke (1999) Z. Anorg. Allg. Chem.,
			625, 1395.
HOJJAR	Gal_2N_2	$bis(\mu 2\text{-}Triphenyl phosphorane iminato)\text{-}tetraiodo\text{-}di\text{-}gallium(i) tetrahydrofuran$	S.Anfang, J.Grebe, M.Mohlen,
		solvate	B.Neumuller, N.Faza, W.Massa, J.Magull,
			K.Dehnicke (1999) Z. Anorg. Allg. Chem. ,
			625, 1395.
НОЈКОН	GaCl₃P	trans-(µ2-Tetraphenyldiphosphane-P,P')-hexachloro-di-gallium	J.J.Weigand, N.Burford, A.Decken (2008)
			Eur.J.Inorg.Chem., 4343
HUFMIE	GaHN₃	cis-bis((µ2-Ethene-1,2-di(t-butylamido))-hydrido-gallium)	E.S.Schmidt, A.Jockisch, H.Schmidbaur,
			J.Chem.Soc.,Dalton Trans. (2000), 1039
HUFMUQ	GaClN ₃	cis-bis((µ2-Ethene-1,2-di(cyclohexylamido))-chloro-gallium)	E.S.Schmidt, A.Jockisch, H.Schmidbaur

			(2000) J. Chem. Soc., Dalton Trans., 1039.
HUYTUQ	GaCl₃O	Trichloro-(9-fluorenone-O)-gallium	C.S.Branch, S.G.Bott, A.R.Barron (2003) J.
			Organomet. Chem. , 666, 23.
HUYVAY	GaBr₃O	Tribromo-(9-fluorenone-O)-gallium toluene solvate	C.S.Branch, S.G.Bott, A.R.Barron (2003) J.
			Organomet. Chem. , 666, 23.
IBEDAU ⁺	$GaCl_2O_2$	$bis (\mu 3\text{-}1,1,3,3\text{-}Tetramethyldisiloxane\text{-}1,3\text{-}diolato\text{-}0,0,0',0')\text{-}pentachlorotri-bis (\mu 3\text{-}1,1,3,3\text{-}Tetramethyldisiloxane\text{-}1,3\text{-}diolato\text{-}0,0,0',0')\text{-}pentachlorotri-bis (\mu 3\text{-}1,1,3,3\text{-}Tetramethyldisiloxane\text{-}1,3\text{-}diolato\text{-}0,0,0',0')\text{-}pentachlorotri-bis (\mu 3\text{-}1,1,3,3\text{-}Tetramethyldisiloxane\text{-}1,3\text{-}diolato\text{-}0,0,0',0')\text{-}pentachlorotri-bis (\mu 3\text{-}1,1,3,3\text{-}Tetramethyldisiloxane\text{-}1,3\text{-}diolato\text{-}0,0,0',0')\text{-}pentachlorotri-bis (\mu 3\text{-}1,1,3,3\text{-}Tetramethyldisiloxane\text{-}1,3\text{-}diolato\text{-}0,0,0',0')\text{-}pentachlorotri-bis (\mu 3\text{-}1,1,3,3)\text{-}pentachlorotri-bis (\mu 3\text{-}1,1,3,3)\text{-}pentach$	C.N.McMahon, S.J.Obrey, A.Keys, S.G.Bott,
		gallium	A.R.Barron (2000) J. Chem. Soc., Dalton
			Trans., 2151.
IBOBIK	GaS_4	$({\tt Di-iso-butyl-dithiophosphinato-S,S')-bis} (di-iso-butyl-dithiophosphinato-S)-$	JH.Park, P.O'Brien, A.J.P.White,
		gallium(iii)	D.J.Williams (2001) Inorg.Chem. ,40,3629
IBOKUH	$GaBrC_2N$	Bromo-bis(4-methoxy-3,3-dimethyl-4-oxo-2-phenylbut-1-en-1-yl)-pyridinegallium	Y.Nishimoto, H.Ueda, M.Yasuda, A.Baba
			(2011) ChemEur.J. ,17,11135
ICOHAJ	$GaCl_2N_2$	bis(trans-(µ2-Dimethylphenylsilylamido)-dichloro-gallium)	C.J. Carmalt, J.D. Mileham, A.J.P. White,
			D.J. Williams, J.W. Steed (2001) Inorg.
			Chem., 40, 6035.
IDELUA	GaCl₃N	(μ2-pyrazine)-hexachloro-di-gallium	T.N.Sevastianova, M.Bodensteiner,
			A.S.Lisovenko, E.I.Davydova, M.Scheer,
			T.V.Susliakova, I.S.Krasnova, Alexey
			Y.Timoshkin (2013) Dalton Trans., 42,
			11589
IKOFUJ	$GaCl_2HN$	Dichloro-pyridine-gallane	S.Nogai, A.Schriewer, H.Schmidbaur
			(2003)Dalton Trans., 3165
IKOGAQ	GaCl ₂ HN	Dichloro-(4-(dimethylamino)pyridine)-gallane	S.Nogai, A.Schriewer, H.Schmidbaur
			(2003)Dalton Trans., 3165
IKOGEU	$GaCl_2HN$	Dichloro-(4-cyanopyridine)-gallane	S.Nogai, A.Schriewer, H.Schmidbaur
			(2003)Dalton Trans., 3165
IKOGIY	$GaCl_2HN$	Dichloro-(3,5-dimethylpyridine)-gallane	S.Nogai, A.Schriewer, H.Schmidbaur
			(2003)Dalton Trans., 3165
IKOGOE	GaH₃N	(3,5-Dimethylpyridine)-gallane	S.Nogai, A.Schriewer, H.Schmidbaur
			(2003)Dalton Trans., 3165
IKOGUK	GaCl₃N	(3,5-Dimethylpyridine)-trichloro-gallane	S.Nogai, A.Schriewer, H.Schmidbaur (2003)
			Dalton Trans., 3165.
ISILAX	Gal_2N_2	Diiodo-(1,2-bis(2,6-diisopropylphenylimino)acenaphthene)-gallium(iii) hexane	R.J.Baker, C.Jones, M.Kloth, D.P.Mills
		solvate	(2004) New J. Chem. (Nouv. J. Chim.), 28,
			207.
ISILUR	Gal_2N_2	(µ2-1,2-bis(2,6-Diisopropylphenylamido)-1,2-bis(2-pyridyl)ethane)-tetraiodo-di-	R.J.Baker, C.Jones, M.Kloth, D.P.Mills
		gallium(iii)	(2004) New J. Chem. (Nouv. J. Chim.), 28,
			207.
ISIMAY	Gal_2N_2	(μ2-1,2-bis(t-Butylamido)-1,2-bis(2-pyridyl)ethane)-tetraiodo-digallium(iii)	R.J.Baker, C.Jones, M.Kloth, D.P.Mills
			(2004) New J. Chem. (Nouv. J. Chim.), 28,
			207.
ISOBUN	GaCl ₂ N ₂	Dichloro-(bis(N-(mesityl)diphenylphosphinimino)methanide)-gallium	M.S.Hill, P.B.Hitchcock, S.M.A.Karagouni
			(2004) J. Organomet. Chem., 689, 722.
ISOXAP	GaHN ₃	bis(µ2-Dimethylamido)-bis(dimethylamino)-dihydrido-di-gallium	Bing Luo, W.L.Gladfelter (2004) J.
			Organomet. Chem., 689, 666
IYEHIE	GaCl₃P	Trichloro(N'-(chloro(dimethyl)silyl)-P-methyl-P-phenyl-N,N'-	A.Westenkirchner, A.Villinger,
		bis(trimethylsilyl)phosphinous hydrazide)gallium	K.Karaghiosoff, R.Wustrack, D.Michalik,
			A.Schulz (2011) Inorg. Chem., 50, 2691
IYEHUQ	GaCl₃P	Irichloro(P-methyl-N,N',N'-tris(trimethylsilyl)phosphonohydrazidouschloride)	A.Westenkirchner, A.Villinger,
		gallium	K.Karaghiosott, R.Wustrack, D.Michalik,
			A.Schulz (2011) Inorg. Chem., 50, 2691
IYEJAY	GaCl₃P	Irichloro(P-methyl-P-phenyl-N,N',N'-tris(trimethylsilyl)phosphinoushydrazide)	A.Westenkirchner, A.Villinger,
		gailium	к.каraghiosoff, R.Wustrack, D.Michalik,

			A.Schulz (2011) Inorg. Chem., 50, 2691
JADGEB	GaNSe₃	$catena-(tris(1,2-Diaminoethane)-gallium(iii) (\mu 2-diselenido)-tetrakis(\mu 2-selenido)-$	A.Fehlker, R.Blachnik, H.Reuter (1999) Z.
		(1,2-diaminoethane)-selenoxo-tri-gallium(iii) monohydrate)	Anorg. Allg. Chem., 625, 1225.
JAMCEG	GaNS₃	hexakis(µ2-Sulfido)-tetrakis((4-dimethylaminopyridine)-	H.Schmidbaur, S.D.Nogai (2004) Z. Anorg.
		gallium(iii))dichloromethane solvate	Allg. Chem., 630, 2218.
IAMCIK	GaCl ₂ N	Trichloro-(4-dimethylaminopyridine)-gallium(iii)	H Schmidbaur, S D Nogai (2004) 7 Anorg
J. WICH	Gueigit		Allg Chem 630 2218
	CaCLUD	Dishlara hudvida tviahanulahaanhina galliym/iii)	Li Schmidhaur, C.D. Nagai (2004) 7. Anarg
JAIVICOQUI	Gaci2HP	Dichiolo-nyunuo-ulphenyiphosphine-ganium(iii)	
			Alig. Chem., 630, 2218
JAMDAD	GaCl₂HP	(µ2-1,2-bis(Diphenylphosphino)ethane)-bis(dichloro-hydrido-gallium(iii))diethyl	H.Schmidbaur, S.D.Nogai (2004) Z. Anorg.
		ether solvate	Allg. Chem., 630, 2218
JAMDEH	$GaCl_2HP$	$(\mu^2-1, 2-bis$ (Diphenylphosphino) ethane) - bis (dichloro-hydrido-gallium (iii)) benzene	H.Schmidbaur, S.D.Nogai (2004) Z. Anorg.
		solvate	Allg. Chem., 630, 2218
JAMDIL	$GaCl_2HP$	Dichloro-hydrido-tricyclohexylphosphine-gallium(iii)	H.Schmidbaur, S.D.Nogai (2004) Z. Anorg.
			Allg. Chem., 630, 2218
JARYAC	GaNS₃	tris(2-Mercaptobenzyl)amino-gallium(iii) dimethylformamide solvate	R.J.Motekaitis, A.E.Martell, S.A.Koch,
			JungWon Hwang, D.A.Quarless Junior,
			M.J.Welch (1998) Inorg. Chem., 37, 5902.
JEJLEP	GaCl ₂ O	Trichloro-(triphenylphosphine oxide-O)-gallium	N.Burford, B.W.Royan. R.E.v.H.Spence
==-		· · · · · · · · · · · · · · · · · · ·	T.S.Cameron, A Linden, R.D. Rogers (1990)
			I Chem Soc Dalton Trans 1521
IFOFAN	C-CN		Versiere Charge D.L. Devide D.D. Hitcherede
JEQFAN	GaCl ₂ N ₂	Dichloro-(N,N -bis(2,6-dilsopropyi)-2-phenyi-2-propanedilminato)-galilum	Yanxiang Cheng, D.J. Doyle, P.B. Hitchcock,
			M.F. Lappert(2006) Dalton Trans., 4449.
JOCFOX	GaCl₃O	bis(µ3-(Pyridinium-2-yl)phosphonato-O,O',O'')-tetrakis(µ3-2-pyridylphosphonato-	C.R.Samanamu, M.M.Olmstead,
		N,O,O',O'')-bis(tetrahydrofuran)-tetra-aqua-dodecachloro-octa-gallium(iii)	J.L.Montchamp, A.F.Richards, Inorg.Chem.
		dinitrate tetrahydrofuran solvate	(2008), 47, 3879
JODBIN	GaH₃N	Quinuclidene-trihydrido-gallium	J.L.Atwood, S.G.Bott, F.M.Elms, C.Jones,
			C.L.Raston (1991) Inorg.Chem., 30, 3792
JODFEN01	GaH₃N	(N,N,N',N'-Tetramethylethylenediamine)-bis(trihydrido-gallium)	J.L.Atwood, S.G.Bott, F.M.Elms, C.Jones,
			C.L.Raston (1991) Inorg.Chem., 30, 3792
JODFIR	GaH₃P	1,2-bis(Dimethylphosphino)ethane-bis(trihydrido-gallium)	D.O'Hare, J.S.Foord, T.C.M.Page,
			T.J.Whitaker (1991) Chem.Commun., 1445
JODSAY	GaCl ₃ N	(u2-2.4-dichloro-1.3-bis(trimethylsilyl)-1.3.2.4-diazadiphosphetidin-2-amine)-(u2-	Christian Hering, M.Hertrich, Axel Schulz,
		chloro)-tetrachloro-di-gallium	A.Villinger (2014) Inorg. Chem., 53, 3880
	GaCl-P	trichloro-(tricyclohexylphosphine)-gallium	Christian Hering, M. Hertrich, Avel Schulz
100510	Gaeigi		A Villinger (2014) Inerg. Chem. 52, 2890
1011540	CaCIN C		
JOHFAO	GaCIN ₂ SI	i richioro-((2,4-bis(2,6-di-isopropyipnenylimidinato)pentane-N,N')-chioro-gallyl)-	A.Kempter, C.Gemel, R.Fischer,
		silicon	Inorg.Chem. (2008), 47, 7279
JOHNOL	GaC_2O_2	(1,3-bis(2-(oxy)benzyl)-5,5-dimethyl-3,4,5,6-tetrahydropyrimidin-1-iumato)-	N.Maudoux, Jian Fang, T.Roisnel, V.Dorcet,
		bis((trimethylsilyl)methyl)-gallium unknown solvate	L.Maron, JF.Carpentier, Y.Sarazin (2014)
			ChemEur.J. , 20, 7706
JOHPAZ	GaC_2NO	(2-{[3-(2-hydroxy-3-methylbenzyl)-5,5-dimethyltetrahydropyrimidin-1(2H)-	N.Maudoux, Jian Fang, T.Roisnel, V.Dorcet,
		yl]methyl}-6-methylphenolato)-bis((trimethylsilyl)methyl)-gallium	L.Maron, JF.Carpentier, Y.Sarazin (2014)
			ChemEur.J. , 20, 7706
JOYPOC	GaCl₃N	(3-t-Butyl-4-(t-butylimino)-2,2,4-trimethyl-cycloselenasilazaphosphetidine-N)-	N.Burford, S.Mason, R.E.v.H.Spence,
		trichloro-gallium	J.M.Whalen, J.F.Richardson, R.D.Rogers
		-	(1992) Organometallics, 11, 2241.
IOYRELL	GaClas	(1 3-his(Trimethylsilyl)-2 2-dimethyl-4-thiodiazasilanhosphetidine-S\-trichloro-	N Burford S Mason R F v H Spance
JUINEU	535135	allium	I M Whalen E Dichardson P D Pagers
		Sauran	(1002) Organometalliss 11, 2211
			(1992) Organometanics, 11, 2241.
KAJWOJ	GaBN₃	(hydrogen tris(3,5-dimethylpyrazol-1-yl)borate)-(tris(pentafluorophenyl)borane)-	K.Yurkerwich, G.Parkin (2010) J. Cluster
		gallium benzene solvate	Sci., 21, 225
KAWDOC	GaH₃N	(Methylamine)-trihydrido-gallium	S.Marchant, C.Y.Tang, A.J.Downs,

			T.M.Greene,HJ.Himmel, S.Parsons (2005)
			Dalton Trans. ,3281
KAWDUI	GaH₃N	(t-Butylamine)-trihydrido-gallium	S.Marchant, C.Y.Tang, A.J.Downs,
			T.M.Greene,HJ.Himmel, S.Parsons (2005)
			Dalton Trans. ,3281
KAWSEH	GaPTe ₃	bis((u2-Tellurido)-(1-telluro-1.1.3.3-tetraisopropyl-3I5-diphosphazene))-di-gallium	M.C.Copsey, T.Chivers (2005) Chem.
		tetrahvdrofuran solvate	Commun., 4938
KAWSOR	GaTe	tris((u2-Tallurida)-(13-bis/tallura)-1133-tatraisanranyl-315-dinbashazana))-tri-	M C Consey, T Chivers (2005) Chem
KAWSON	Garca	allium tetrahydrofuran solvate	Commun 4928
			S Marchant C X Tang A L Downs
KAZFUN	Ganzinz	tis((wethyanildo)-ganalle)	
			1.M.Greene, HJ.Himmel, S.Parsons (2005)
			Dalton Trans. ,3281
KAZGAU	GaH_2N_2	bis((t-Butylamido)-gallane)	S.Marchant, C.Y.Tang, A.J.Downs,
			T.M.Greene,HJ.Himmel, S.Parsons (2005)
			Dalton Trans. ,3281
KAZKOM	GaN ₄	$bis(\mu 2 \text{-} Trimethylsilylamido) \text{-} bis(N,N'\text{-} bis(2,6\text{-} di\text{-} isopropylphenyl)ethane-1,2\text{-} di\text{-}$	R.J.Baker, C.Jones, D.P.Mills,
		imine radical-N,N')-di-gallium	D.M.Murphy, E.Hey-Hawkins, R.Wolf (2006)
			Dalton Trans., 64.
KAZKUS	GaIN ₂ P	(N,N'-bis(2,6-Di-isopropylphenyl)ethane-1,2-di-imine radical-N,N')-iodo-(2,4,6-tri-	R.J.Baker, C.Jones, D.P.Mills,
		t-butylphenylphosphido)-gallium bis(µ2-iodo)-(diethyl ether)-	D.M.Murphy, E.Hey-Hawkins, R.Wolf (2006)
		tris(tetrahydrofuran)-di-lithium	Dalton Trans., 64.
KAZLAZ	GaN₃P	(N,N'-bis(2,6-Di-isopropylphenyl)ethene-1,2-diamine-N,N')-(1,8-	R.J.Baker, C.Jones, D.P.Mills,
		diazabicyclo(5.4.0)undecan-8-yl)-(2,4,6-tri-t-butylphenylphosphido)-gallium	D.M.Murphy, E.Hey-Hawkins, R.Wolf (2006)
			Dalton Trans., 64.
KISXAM	GaCl₃N	(1-(2,4,6-Tri-t-butylphenyl)tetraza-arsol-3-yl)-trichloro-gallium	(1-(2,4,6-Tri-t-butylphenyl)tetraza-arsol-3-
	3		vl)-trichloro-gallium
KISXEO	GaCl ₂ N	(u2-1 3 6 8-Tetra-t-butyl-5H 10H-5 10-diaza-4b 9b-diarsaindeno(2 1-a)indene-	A Schulz A Villinger Angew Chem Int Ed
NIJALQ	Gueigit	N N')-hexachloro-di-gallium	(2008) 47 603
VIZVAC	GaCLN	(N' N' his/Trimethylsikul) N 1.2 triphonyl 2 methylpronon 1.2 diletimine N)	H W Booslay P Mollor Pobboin
KIZAA3	GaCi3iN	trichlane gellium	M Neltemener (1001) 7. Neturfersch. Bi
		trichioro-gainum	Cham Sci. 46 1952
			Chem. Sci., 46, 1053.
KOLFAS	GaCl₃N	(2,3,3,4-Tetramethyl-2,4-diaza-3-silapentyl)-4-trichloro-gallium	W.R.Nutt, J.S.Blanton, A.M.Boccanfuso,
			L.A.Silks III, A.R.Garber, J.D.Odom (1991)
			Inorg. Chem., 30, 4136.
KOLFEW	$GaCl_2N_2$	Dichloro-(bis(diethylamino)dimethylsilane-N,N')-gallium (µ2-diethylamido)-	W.R.Nutt, J.S.Blanton, A.M.Boccanfuso,
		bis(trichloro-gallium)	L.A.Silks III, A.R.Garber, J.D.Odom (1991)
			Inorg. Chem., 30, 4136.
KOMQEI	$GaCl_2NO$	Dichloro-(tetrahydrofuran-O)-((trimethylsilyl)amido-N)-gallium(iii)	N.L.Pickett, O.Just, D.G.VanDerveer,
		*	W.S.Rees Junior (2000) Acta Crystallogr.,
			Sect. C: Cryst. Struct. Commun., 56, 560.
KOSXAR	GaHN₃	bis((µ2-N,N'-bis(Isopropylamino)ethane)-hydrido-gallium)	J.L.Atwood, S.G.Bott, C.Jones, C.L.Raston
			(1991)Inorg. Chem., 30, 4868
KOSXEV	GaH_2N_2	bis(μ3-1,2-bis(Methylamino)ethane)-pentahydrido-tri-gallium	J.L.Atwood, S.G.Bott, C.Jones, C.L.Raston
			(1991) Inorg. Chem., 30, 4868.
KOVFUY	GaCH ₃	(1,3-bis[2,6-diisopropylphenyl]-1,3-diazepan-2-ylidene)-trihydridogallium	A.R. Leverett, A.I. McKay, M.L. Cole (2015)
	2		Dalton Trans., 44, 498
KUKKAC	GaH ₂ P	Tricyclohexylphosphine-trihydrido-gallium	J.L. Atwood, K.D. Robinson, F.R. Bennett
		······································	E M Elms G A Koutsantonis C L Raston
			D Young (1992) loorg Chem 21 2672
KINA/EAI	GACINE	tric/(u2-Sulfido)-chloro-puridul gallium)	L Obchita A Schier U Schmidhaur (1002)
NUWFAJ	Gacino2	แรง((หระวงแทน)-แทบเจ-หมานหารูลแนก)	Cham Son Daltas Trans. 2501
			Chem. Soc., Daiton Trans., 3561.
LAFMOU	GaH_2N_2	bis((µ2-Diethylamido)-dihydro-gallium)	J. Lorberth, R. Dorn, W. Massa, S. Wocadlo
			(1993) Z. Naturforsch., B: Chem. Sci., 48,

			224
LAJJUB	GaH₃P	Tri-t-butylphosphine-gallium	F.M. Elms, M.G. Gardiner, G.A. Koutsantonis, C.L. Raston, J.L. Atwood, K.D. Robinson (1993) J. Organomet. Chem., 449, 45
LAQLEV	GaH₃N	(μ2-bis(2-(Dimethylamino)ethyl)amido-N,N,N',N'')-di-gallane	Bing Luo, B.E. Kucera, W.L. Gladfelter (2005)Chem. Commun., 3463
LAQWEF	GaClN₃	(N-Methyl-N',N''-bis(trimethylsilyl)diethylenetriamine)-chloro-gallium	JL.Faure, H.Gornitzka, R.Reau, D.Stalke, G.Bertrand (1999) Eur. J. Inorg. Chem., 2295.
LAVHOG	GaS ₂ Se ₂	bis(N-(Di-isopropylselenophosphinoyl)-N-(di-isopropylthiophosphinoyl)amide)- gallium(iii) tetrachloro-gallium	M. Moya-Cabrera, R. Cea-Olivares, J. Alcantara-Garcia,RA. Toscano, V. Jancik, V. Garcia-Montalvo, S. Hernandez- Ortega(2005) J. Organomet. Chem., 690, 3054.
LEJZUX	GaCCl ₃	Trichloro-(1,3-bis(2,6-di-isopropylphenyl)imidazolidin-2-ylidene)-gallium(iii) chloroform solvate	S.Tang, J.Monot, A.El-Hellani, B.Michelet, R.Guillot, C.Bour, V.Gandon (2012) Chem. – EurJ., 18, 10239
LEKBAG	GaCCl₃	(1,3-bis(2,6-Di-isopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene)-tris(iodo)- gallium(iii) chloroform solvate	S.Tang, J.Monot, A.El-Hellani, B.Michelet, R.Guillot, C.Bour, V.Gandon (2012) Chem. – EurJ., 18, 10239
LEKBEK	GaCCl₃	Trichloro-(1,3-dimesitylimidazolidin-2-ylidene)-gallium(iii)	S.Tang, J.Monot, A.El-Hellani, B.Michelet, R.Guillot, C.Bour, V.Gandon (2012) Chem. – Eur. J., 18, 10239
LEKBIO	GaCCl ₂ N	Dichloro-(1,3-bis(2,6-di-isopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene)- (2,4,6-trimethoxybenzonitrile)-gallium(iii) hexafluoroantimonate	S.Tang, J.Monot, A.El-Hellani, B.Michelet, R.Guillot, C.Bour, V.Gandon (2012) Chem. – Eur. J., 18, 10239
LEKBOU	GaCCl₂N	Dichloro-(2,4,6-trifluorobenzonitrile)-(1,3-bis(2,6-di-isopropylphenyl)-1,3-dihydro- 2H-imidazol-2-ylidene)-gallium(iii) hexafluoroantimonate dichloromethane solvate	S.Tang, J.Monot, A.El-Hellani, B.Michelet, R.Guillot, C.Bour, V.Gandon (2012) Chem. – Eur. J., 18, 10239
LEMXAD	GaH_2N_2	bis(µ2-1H-Pyrrol-1-aminato)-tetrahydrido-di-gallium	W. Uhl, A. Vogelpohl, J. Kosters (2006) Z. Naturforsch., B: Chem. Sci., 61, 854
LEMXEH	GaH_2N_2	bis(µ2-Piperidin-1-aminato)-tetrahydrido-di-gallium	W. Uhl, A. Vogelpohl, J. Kosters (2006) Z. Naturforsch., B: Chem. Sci., 61, 854
LIGRAV	GaCl₃N	(4-(2,4,6-Tri-t-butylphenyl)-1,2,4,3,5-triazadiphosphol-1-yl)-trichlorogallium	P. Mayer, A. Schulz, A. Villinger (2007)J. Organomet. Chem., 692, 2839
LILBAL	GaAsC₃	(arsanyl(N,N-dimethylmethanamine)dihydridoboron)-tris(pentafluorophenyl)- gallium	C.Marquardt, A.Adolf, A.Stauber, M.Bodensteiner, A.V.Virovets, A.Y.Timoshkin, M.Scheer (2013) Chem Eur.J. ,19,11887
LOHCEQ	GaNTe₃	Trimethylamido-tris(phenyltellurolato)-gallium	W.J. Grigsby, C.L. Raston, VA. Tolhurst, B.W. Skelton, A.H. White (1998) J. Chem. Soc., Dalton Trans., 2547
LOHCIU	GaPTe₃	Tricyclohexylphosphine-tris(phenyltellurolato)-gallium	W.J. Grigsby, C.L. Raston, VA. Tolhurst, B.W. Skelton, A.H. White (1998) J. Chem. Soc., Dalton Trans., 2547
LOHDER	GaCIPSe ₂	bis((µ2-Selenido)-chloro-(tricyclohexylphosphine)-gallium)	W.J. Grigsby, C.L. Raston, VA. Tolhurst, B.W. Skelton, A.H. White (1998) J. Chem. Soc., Dalton Trans., 2547
LOKPIM	GaCCl₂O	(μ2-(anthracene-1,8-diyldiethene-2,1-diyl)bis(trimethylsilane))-bis(diethyl ether)- tetrachloro-di-gallium	JH.Lamm, J.Horstmann, J.H.Nissen, Jan- Henrik Weddeling, B.Neumann, H G.Stammler, N.W.Mitzel (2014) <i>Eur.J.Inorg.Chem.</i> ,

LOPKUX	$GaCl_2NP$	(N-(t-Butylamido(dimethyl)silyl)-N,N-bis(2-(di-isopropylphosphino)ethyl)amine- N P)-dichloro-gallium	S.G.Minasian, J.Arnold, Dalton Trans.
		Trichland (tricthulahaanhina) gallium/iii)	()
LUFKAT	GaCl ₃ P	menioro-(meniyipnospinne)-ganium(in)	.Chem., 41, 4770.
LUHWOA	Gal_2N_2	(N,N'-Di-t-butyldiazabutadiene)-diiodo-gallium(iii)	R.J.Baker, R.D.Farley, C.Jones, M.Kloth,
			D.M.Murphy (2002) J. Chem. Soc., Dalton
			Trans., 3844.
MASDIT	GaHN₃	Hydrido-bis(bis(trimethylsilyl)amido)guinuclidinyl-gallium	Bing Luo, V.G. Young Junior, W.L.
	J		Gladfelter (2000) Inorg. Chem., 39, 1705
MASDOZ	GaH_2N_2	Dihydrido-(bis(trimethylsilyl)amido)quinuclidinyl-gallium	Bing Luo, V.G. Young Junior, W.L.
			Gladfelter (2000) Inorg. Chem., 39, 1705
MASDUF	GaHN₃	Hydrido-bis((2,6-di-isopropylphenyl)amido)quinuclidinyl-gallium	Bing Luo, V.G. Young Junior, W.L.
			Gladfelter (2000) Inorg. Chem., 39, 1705
MASFAN	GaH_2N_2	Azido-dihydrido-quinuclidinyl-gallium	Bing Luo, V.G. Young Junior, W.L.
			Gladfelter (2000) Inorg. Chem., 39, 1705
MECHOR	GaCl ₂ N	(closo-1-((Dimethylamino)methyl)-1 2-dicarbadodecaborane(11))-trichloro-	long-Dae Lee, Cheol-Ki Baek, Jaejung Ko
	6461311		Kwonil Park Sungil Cho, Suk-Ki Min, Sang
		gamaritiny	
			Ook Kang (1999) Organometanics, 18,
			2189.
MECMUD	GaN ₄	bis(Dimethylamido)-(N,N''-diisopropyl-N',N'-dimethylguanidinato)-gallium	A.P.Kenney, G.P.A.Yap, D.S.Richeson,
			S.T.Barry (2005) Inorg. Chem., 44, 2926.
MIFFOY	GaCCl₃	Trichloro-(1-methyl-1H-indol-3-yl)-gallium	V.Bagutski, A.Del Grosso, J.A.Carrillo,
			I.A.Cade, M.D.Helm, J.R.Lawson,
			P.J.Singleton, S.A.Solomon, T.Marcelli,
			a.J.Ingleson (2013) J.Am.Chem.Soc.
			,135,474
MIHQAV	GaHO ₃	bis(µ2-t-Butoxo)-(µ2-1,1,3,3-tetraphenyl-1,3-disiloxane-1,3-diolato-O,O')-	M. Veith, H. Vogelgesang, V. Huch (2002)
		dihydrido-di-gallium	Organometallics, 21, 380
MIHOF7	GaHOa	his(u2-113355-Hexaphenyl-135-trisiloxane-15-diolato-000')-dihydrido-di-	M Veith H Vogelgesang V Huch (2002)
WIITIQEZ	Garios		Organometallics 21, 280
	6-0	biol/22 + Dutous) (4.4.2.2.5.5. househousi (4.2.5. tribilisenses 4.5. dialate) and invest	
MIHQID	GaO ₄	Dis((µ2-t-Butoxo)-(1,1,3,3,5,5-nexapnenyi-1,3,5-trisiloxane-1,5-diolato)-gailium)	M. Veith, H. Vogelgesang, V. Huch (2002)
		toluene solvate	Organometallics, 21, 380
MIHQOJ	GaHNO ₂	(1,1,3,3,5,5-Hexaphenyl-1,3,5-trisiloxane-1,5-diolato)-triethylaminohydrido-	M. Veith, H. Vogelgesang, V. Huch (2002)
		gallium	Organometallics, 21, 380
MIHQUP	GaO ₄	Triethylammonium hydrogenbis(1,1,3,3,5,5-hexaphenyl-1,3,5-trisiloxane-1,5-	M.Veith, H.Vogelgesang, V.Huch (2002)
		diolato)-gallium tetrahydrofuran solvate	Organometallics, 21, 380.
MIMYOX01	GaCl₃N	(N,N'-bis(2,6-diisopropylphenyl)ethane-1,2-diimine)-trichloro-gallium	A.M.Felix, D.A.Dickie, I.S.Horne, Giang
			Page, R.A.Kemp (2012) Inorg.Chem.
			, 51, 4650
MIXNEO	GaCl₃Te	(μ-1,3-bis(t-butyltellanyl)propane)-hexachloro-di-gallium(iii)	K.George, C.H.de Groot, C.Gurnani,
			A.L.Hector, Ruomeng Huang, M.Jura,
			W.Levason, Gillian Reid (2013)
			Chem Mater 25 1829
	Calls	(Diphonyl(2 thiophonyl)phocobing D C) bic(2 diphonylphocobing)bonzonethialata	A M Valean & Comez Ruiz D Lonnocko
	Gar 33		
		SJ-gallium	i.siiagni-Dumitrescu, L.Siiaghi-Dumitrescu,
			E.Hey-Hawkins, Inorg.Chem. (2008), 47,
			11284
MOWTUP	$GaCl_2N_2$	dichloro-(N,N'-dimesitylbut-2-ene-2,3-diamido)-gallium	P.A.Petrov, S.N.Konchenko, V.A.Nadolinny
			(2014) Koord. Knim. (Russ.) (Coord. Chem.),
			(2014) Koord. Knim. (Russ.) (Coord. Chem.), 40, 717
MOWVAX	GaCl ₂ N ₂	(N,N'-bis(2,6-diisopropylphenyl)acenaphthylene-1,2-diimine)-dichlorogallium	40, 717 P.A.Petrov, S.N.Konchenko, V.A.Nadolinny
MOWVAX	GaCl ₂ N ₂	(N,N'-bis(2,6-diisopropylphenyl)acenaphthylene-1,2-diimine)-dichlorogallium diethyl ether solvate	(2014) Koord. Knim. (Russ.) (Coord. Chem.), 40, 717 P.A.Petrov, S.N.Konchenko, V.A.Nadolinny (2014) Koord. Khim. (Russ.) (Coord. Chem.),

MOZWIJ	GaCCl ₂ P	dichloro-(6-(diphenylphosphanyl)-1,2-dihydroacenaphthylen-5-yl)-gallium	Emanuel Hupf, Enno Lork, S.Mebs, Lilianna Checinska, J.Beckmann (2014) Organometallics 33, 7247
MURPIZ	GaCl₃O	Trichloro-(2-((4-methoxyphenyl)iminiomethyl)phenolato)-gallium	Shuang yue, Jun Li, Shu-Liang Zang, Xue- Jun Gu, Ying-Jie Yu, Hao Jin (2010) Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 26, 763
MURPOF	GaCl₃O	Trichloro-(2-((phenyl)iminiomethyl)phenolato)-gallium	Shuang yue, Jun Li, Shu-Liang Zang, Xue- Jun Gu, Ying-Jie Yu, Hao Jin (2010) Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 26, 763
MURPUL	GaCl₃O	Trichloro-(2-((2-chlorophenyl)iminiomethyl)phenolato)-gallium	Shuang yue, Jun Li, Shu-Liang Zang, Xue- Jun Gu, Ying-Jie Yu, Hao Jin (2010) Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 26, 763
MUWNOI	GaBS₃	(tris(2-Mercapto-1-t-butylimidazolyl)hydroborato-S,S',S'')-(tris(pentafluorophenyl) boranyl)-gallium acetonitrile solvate	K. Yurkerwich, D. Buccella, J. G. Melnick, G. Parkin (2010) Chemical Science, 1, 210
MUWQAX	GalS₃	lodo-(tris(2-mercapto-1-t-butylimidazolyl)hydroborato-S,S',S'')-gallium iodide benzene solvate	K. Yurkerwich, D. Buccella, J. G. Melnick, G. Parkin (2010) Chemical Science, 1, 210
NALTUQ	GaCl ₂ N ₂	Dichloro-pyridine-(bis(trimethylsilyl)amino)-gallium	Won Seok Seo, Jae E.Park, Kwangyeol Lee, Zel-Ho Choi, Joon T.Park (2005) Private Communication.
NANZIL	GaClN₃	1,5-Dichloro-3,3,7,7-tetramethyl-2,4,6,8-tetra-t-butyl-1,5-digalla-2,4,6,8-tetra-aza- 3,7-disilatricyclo(4.2.0.02,5)octane	M.Veith, K.C.K.Swamy, V.Huch (1995) Phosphorus, Sulfur, Silicon, Relat. Elem., 103, 25.
NANZOR	GaClN₃	2,4,6,7-Tetra-t-butyl-1,3,5-trimethyl-2,4,6-triaza-7-chloro-1,5-disila-3l4- gallatricyclo(3.1.1.03,7)heptane	M.Veith, K.C.K.Swamy, V.Huch (1995) Phosphorus, Sulfur, Silicon, Relat. Elem., 103, 25.
NASZIR	GaClH ₂ P	Chloro-dihydrido-(trimethylphosphine)-gallium	T.Downs, C.Tang, B.Coxall, S.Parsons, D.Messenger (2005) Private Communication
NAYWER	GaN ₄	hexakis(Tetrahydrofuran)-sodium bis(2-(2,6-diisopropylphenyl iminomethyl) pyridyl)-gallium tetrahydrofuran solvate	K.Kowolik, M.Shanmugam, T.W.Myers, C.D.Cates,L.A.Berben (2012) Dalton Trans., 41, 7969
NEHQEW	GaCl₃N	Trichloro-(di-isopropylamino)-gallium	J.Pauls, S.Chitsaz, B.Neumuller (2001) Z. Anorg. Allg. Chem., 627, 1723.
NELBUC	GaSe ₄	(Diisopropyldiselenophosphinato-Se,Se')-bis(diisopropyldiselenophosphinato-Se)- gallium(iii)	Chinh G. Nguyen, A. Adeogun, M. Afzaal, M.A. Malik, P. O'Brien (2006) Chem. Commun., 2182.
NEMJOE	GaOS₃	Aqua-tris(tri-t-butoxysilylthiolato)-gallium(iii)	J.Chojnacki, A.Schnepf, W.Wojnowski (2001) Z. Kristallogr New Cryst. Struct., 216, 198.
NEPFOD	$GaHNS_2$	bis(t-Butylthio)-hydrido-(trimethylamine)-gallium	L.A. Miinea, D.M. Hoffman (2001) Polyhedron, 20, 2425
NEPFUJ	GaH₂NS	(t-Butylthio)-dihydrido-(quinuclidine-N)-gallium	L.A. Miinea, D.M. Hoffman (2001) Polyhedron, 20, 2425
NEZJIL01	Gal₃P	Tri-iodo-triphenylphosphine-gallium	LJ.Baker, L.A.Kloo, C.E.F.Rickard, M.J.Taylor (1997) J. Organomet. Chem., 545, 249.
NEZJOR	Gal₃P	(μ2-1,2-bis(Diphenylphosphino)ethane)-bis(tri-iodo-gallium(iii))	M.A.Brown, J.A.Castro, D.G.Tuck (1997) Can. J. Chem., 75, 333.
NIFNEW	GaBrN₃	tetrakis(Tetrahdyrofuran)-lithium bromo-bis(2,6-di-isopropylanilino)- (trimethylsilyl(2,6-di-isopropylphenyl)amido)-gallium	J.Hartig, J.Steiner, A.Stosser, H.Schnockel (2007) ChemEur. J., 13, 4475

NIGGUF	GaH₃N	(Benzyl(dimethyl)amine)-trihydrido-gallium	P.C. Andrews, M.G. Gardiner, C.L. Raston, VA. Tolhurst (1997) Inorg. Chim. Acta, 259, 249
NILQEE	GaNS ₃	$tetrakis (\mu 3-Sulfido)-tetrakis (2,2,6,6-tetramethylpiperidino-gallium)$	G.Linti, M.Buhler, H.Urban (1998) Z. Anorg. Allg. Chem., 624, 517.
NIPSEM	GaCCl₃	(Trimethylsilylisonitrile)-trichloro-gallium	Christian Hering, Axel Schulz, A.Villinger (2013) Inorg. Chem., 52, 5214
NITFIH	GaCCl₂F	Dichloro-(tetrafluoroborate-F)-(N,N'-bis(2,6-di-isopropylphenyl)imidazol-2- ylidene)-gallium dichloromethane solvate	C.Bour, J.Monot, Shun Tang, R.Guillot, J.Farjon, V.Gandon (2014) <i>Organometallics</i> , 33 ,594
NITFUT	GaCF₃	Trifluoro-(1,3-bis(2,6-di-isopropylphenyl)imidazol-2-ylidene)-gallium	C.Bour, J.Monot, Shun Tang, R.Guillot, J.Farjon, V.Gandon (2014) <i>Organometallics</i> , 33, 594
NITKEG	GaClO₃	1-Dimethylammino-8-dimethylaminonaphthalene chloroheptakis(cyclohexyl)- dodecaoxo-heptasilicon-gallium toluene solvate	F.J.Feher, T.A.Budzichowski, J.W.Ziller (1997) Inorg. Chem., 36, 4082.
NITKIK	GaO ₄	heptakis(Cyclohexyl)-dodecaoxo-triphenylphosphineoxide-heptasilicongallium	F.J.Feher, T.A.Budzichowski, J.W.Ziller (1997) Inorg. Chem., 36, 4082.
NOGJUP	GaCl₃N	(1-(2,6-bis(2,4,6-trimethylphenyl)phenyl)tetraazaphosphole)-trichloro-gallium(iii) dichloromethane solvate	D.Michalik, A.Schulz, A.Villinger, N.Weding, Angew.Chem.,Int.Ed. (2008), 47, 6465
NOQCON	GaS ₄	$bis (\mu - dimethylars in odithio ato) - (\mu - sulfido) - bis (dimethylars in odithio ato) - di-gallium hydrate$	C.Papatriantafyllopoulou, V.Nastopoulos, P.V.Ioannou (2014) <i>Z.Anorg.Allg.Chem.,</i> 640, 1654
NORTUJ	GaCl₃P	Trichloro-chloro-di-isopropylphosphine-gallium	N.Burford, T.S.Cameron, D.J.LeBlanc, P.Losier, S.Sereda, Gang Wu (1997) Organometallics, 16, 4712.
NOWJAM	GaCl₃N	Trichloro-(1-phenyl-2-(trimethylsilyl)diazene)-gallium dichloromethane solvate	Fabian Rei, Axel Schulz, A.Villinger (2014) ChemEur.J., 20, 11800
NOWJIU	GaCl₃N	Trichloro-(diphenyldiazene)-gallium	Fabian Rei, Axel Schulz, A.Villinger (2014) ChemEur.J., 20, 11800
NUFTIT	$GaCl_2N_2$	Dichloro-(N-mesityl-N'-((mesitylamino)(diphenyl)phosphoranylidene)- P,Pdiphenylphosphinimidic amidato)-gallium	K.Jaiswal, B.Prashanth, D.Bawari, Sanjay Singh (2015) Eur .J .I norg.Chem. ,
OBONIC	GaN ₄	(N,N'-bis(2,6-Di-isopropylphenyl)pentane-2,4-di-iminato-N,N')-(1,4- bis(trimethylsilyl)-2-tetrazene-1,4-diyl-N,N')-gallium(iii)	N.J.Hardman, P.P.Power (2001) Chem. Commun., 1184.
OBONOI	GaN ₄	Azido-(N,N'-bis(2,6-di-isopropylphenyl)pentane-2,4-di-iminato-N,N')- (bis(trimethylsilyl)amido-N)-gallium(i)	N.J.Hardman, P.P.Power (2001) Chem. Commun., 1184.
OGAGIM	Gal_2N_2	Diiodo-(N,N'-bis(2,6-diisopropylphenyl)-2,4-pentanediiminato)-gallium	M.Stender, B.E.Eichler, N.J.Hardman, P.P.Power, J.Prust, M.Noltemeyer, H.W.Roesky (2001) Inorg. Chem., 40, 2794.
OGAXID	$GaCl_2N_2$	Dichloro-(bis(trimethylsilyl)amido)-quinuclidine-gallium	Bing Luo, V.G.Young Junior, W.L.Gladfelter (2002) J. Organomet. Chem., 649, 268.
OHOJIE	GaN ₄	tetrakis(Dimethoxyethane)-potassium bis(N,N'-bis(2,6-diisopropylphenyl)-1,2- diiminoethene)-gallium dimethoxyethane solvate	R.J.Baker, C.Jones, M.Kloth, J.A.Platts (2003) Angew. Chem., Int. Ed., 42, 2660.
OWOQEX	GaCCl₃	bis(μ2-2,2'-{1,3-phenylene}-1,1'-bis(trimethylsilyl)-bis(vinyl))-tetrakis(μ2-chloro)- tetrachloro-tetra-gallium	W.Uhl, M.Claesener, D.Kovert, A.Hepp, E U.Wurthwein, N.Ghavtadze (2011) Organometallics, 30, 3075
РАСКАН	GaCl ₂ N ₂	(N-t-Butyl-N-(2-(t-butylimino)ethyl)-N',N''-bis(2,6-diisopropylphenyl)-1- fluorosilanetriaminato)-dichloro-gallium	A. Fischer, D. Stern, A. Thorn, S. Abraham, D. Stalke, U. Klingebiel (2010) Z. Anorg. Allg. Chem., 636, 1527
PACKEL	GaCl₃N	tetrakis(tetrahydrofuran)-lithium trichloro-(1,3-di-t-butyl-N-(2,6- diisopropylphenyl)-2-fluoro-2,3-dihydro-1H-1,3,2-diazasilol-2-aminato)-gallium	A.Fischer, D.Stern, A.Thorn, S.Abraham, D.Stalke, U.Klingebiel (2010) Z. Anorg. Allg. Chem., 636, 1527
PATGEX	GaCl₃O	Trichloro-(2-(diphenylphosphonio)phenoxy)-gallium(iii) dichloromethane solvate	K.Saatchi, B.O.Patrick, C.Orvig (2005) Dalton Trans., 2268.

ΡΑΤΤΕΚ	GaCl₃N	(2,2,4,4,6,6-Hexachlorocyclotriphosphazen-1-yl)-trichloro-gallium	A.J.Heston, M.J.Panzner, W.J.Youngs, C.A.Tessier (2005) Inorg. Chem., 44, 6518.
PEGBEJ	GaBr ₂ N ₂	di-bromo (N,N'-bis(2,6-diisopropyl)-2-amino-4-iminopent-2-ene-N,N')-gallium	S.Singh, HJ.Ahn, A.Stasch, V.Jancik, H.W.Roesky, A.Pal, M.Biadene, R.Herbst- Irmer, M.Noltemeyer, HG.Schmidt (2006) Inorg. Chem., 45, 1853.
PEGBUZ	GaF_2N_2	difluoro-(N,N'-bis(2,6-diisopropyl)-2-amino-4-iminopent-2-ene-N,N')-gallium	S. Singh, HJ. Ahn, A. Stasch, V. Jancik, H.W. Roesky, A. Pal, M. Biadene, R. Herbst- Irmer, M. Noltemeyer, HG. Schmidt (2006) Inorg. Chem., 45, 1853
PEZMAK	$GaCF_3$	tris(lodo)-(3,3,7,7-tetramethyl-2,3,7,8-tetrahydro[1,3]oxazolo[3',2':3,4]imidazo [5,1-b][1,3]oxazol-5-ylidene)-gallium	A.El-Hellani, J.Monot, R.Guillot, C.Bour, V.Gandon (2013) Inorg.Chem. ,52,506
PEZMEO	GaBr₃C	tris(Bromo)-(3,3,7,7-tetramethyl-2,3,7,8-tetrahydro[1,3]	A.El-Hellani, J.Monot, R.Guillot, C.Bour,
		oxazolo[3' 2'·3 4]imidazo[5 1-b][1 3]oxazol-5-ylidene)-gallium	V Gandon (2013) Inorg Chem 52 506
	GaCCI	Trichloro (1.2. dimethylimidatol 2. vlideno) gallium	A El Helloni I Monot P Guillot C Pour
PEZIVIOE	Gaccia	nunoro-(1,5-unnethymmuazor-z-ynuene)-gamum	V.Gandon (2013) Inorg. Chem., 52, 506
PIHGIW01	GaAsl₃	Tri-iodo-triphenylarsine-gallium	LJ. Baker, L.A. Kloo, C.E.F. Rickard, M.J. Taylor (1997) J. Organomet. Chem., 545, 249
PIHRED	GaCl₃N	(2,2,6,6-Tetramethylpiperidin-1-yl)-trichloro-gallium	D.A.Atwood, V.O.Atwood, D.F.Carriker, A.H.Cowley, F.P.Gabbai, R.A.Jones, M.R.Bond, C.J.Carrano (1993) J. Organomet. Chem., 463, 29.
POBZIR	GaN ₂ O ₂	(N,N'-bis(2,6-Di-isopropylphenyl)acenaphthylene-1,2-diiminato radical anion)- (3,6-di-t-butylbenzene-1,2-diolato)-gallium toluene solvate	I.L.Fedushkin, A.A.Skatova, V.A.Dodonov, V.A.Chudakova, N.L.Bazyakina, A.V.Piskunov, S.V.Demeshko, G.K.Fukin (2014) Inorg. Chem., 53, 5159
POBZOX	GalN₃	(N,N'-bis(2,6-Di-isopropylphenyl)acenaphthylene-1,2-diamino)-iodopyridine- gallium toluene solvate	I.L.Fedushkin, A.A.Skatova, V.A.Dodonov, V.A.Chudakova, N.L.Bazyakina, A.V.Piskunov, S.V.Demeshko, G.K.Fukin (2014) Inorg. Chem., 53, 5159
POGQEH	GaH_2P_2	tris((µ2-bis(TrimethylsilyI)phosphino)-dihydrido-gallium)	J.F. Janik, R.L. Wells, V.G. Young Junior, A.L. Rheingold, I.A. Guzei (1998) J. Am. Chem. Soc., 120, 532
POGQIL	GaAs ₂ H ₂	tris((µ2-bis(TrimethylsilyI)arsino)-dihydrido-gallium)	J.F. Janik, R.L. Wells, V.G. Young Junior, A.L. Rheingold, I.A. Guzei (1998) J. Am. Chem. Soc., 120, 532
PUXCIV	GaCl₃P	(t-Butyl(2,2-dimethylpropylidene)phosphine)-(trichloro)-gallium	J. I. Bates, B. O. Patrick, D. P. Gates (2010) New J. Chem., 34, 1660
PUXCOB	GaCl₃P	(Adamantan-1-yl(2,2-dimethylpropylidene)phosphine)-(trichloro)-gallium	J. I. Bates, B. O. Patrick, D. P. Gates (2010) New J. Chem., 34, 1660
PYZGAD10	GaD ₂ N ₂	bis(Dideutero-(pyrazol-1-yl)gallane)	D.F.Rendle, A.Storr, J.Trotter.
-			J.Chem.Soc.,Dalton Trans. (1973). 2252
OAGNES	GaHeNe	his(u2-Dinaridina)-tetrahydrida-di-gallium	C V Tang A L Downs T M Groope S
Q IONES	GG112112		Parsons (2003) Dalton Trans., 540
QAVWIT	$GaCl_2N_2$	Dichloro-(N,N'-dicyclohexylpivalamidinato-N,N')-gallium	S.Dagorne, R.F.Jordan, V.G.Young Junior (1999) Organometallics, 18, 4619.
QAVWOZ	GaCl ₂ N ₂	Dichloro-(N,N'-di-t-butylpivalamidinato-N,N')-gallium	S.Dagorne, R.F.Jordan, V.G.Young Junior (1999) Organometallics, 18, 4619.
QAYKIK	GaH_2N_2	$bis((\mu 2-2,2-Dimethyl-3-dimethylaminopropylamido-N,N)-dihydridogallium)$	Bing Luo, M. Pink, W.L. Gladfelter (2001) Inorg. Chem., 40, 307
QAYKOQ	GaClN ₃	bis((m2-2,2-Dimethyl-3-dimethylaminopropylamido-N,N,N')-chlorohydrido- gallium)	Bing Luo, M.Pink, W.L.Gladfelter (2001) Inorg.Chem. ,40, 307
QAYKUW	GaHN₃	bis((µ2-2,2-Dimethyl-3-dimethylaminopropylamido-N,N)-	Bing Luo, M. Pink, W.L. Gladfelter (2001)
------------	----------------------------------	--	---
		(bis(trimethylsilyl)amido)-hydrido-gallium)	Inorg. Chem., 40, 307
QEJDAK	GaCl ₂ N ₂	Dichloro-(1,2-bis(a-iminobenzyl)cyclopentadienyl-N,N')-gallium benzene solvate	C.M.Ong, D.W.Stephan (1999) Inorg.
			Chem., 38, 5189.
QEWCEB	Gal ₂ O ₂	bis(µ3-1,2-diphenylethene-1,2-diolato)-pentaiodo-tri-gallium(iii)	S.P. Green, C. Jones, A. Stasch, R.P. Rose
			(2007) New J. Chem. (Nouv. J. Chim.), 31,
			127.
QEWCIF	Gal ₃ O	tri-iodo-bis(ethyl 3-phenylacrylate-O)-gallium	S.P. Green, C. Jones, A. Stasch, R.P. Rose
			(2007) New J. Chem. (Nouv. J. Chim.), 31,
			127.
QEYYAV	GaClH ₂ N	bis((µ2-1,3,4,6,7,8-Hexahydro-2H-pyrimido(1,2-a)pyrimidato)-chlorohydrido)-di-	G. Robinson, C.Y. Tang, R. Koppe, A.R.
		gallium	Cowley,HJ. Himmel (2007) Chem Eur. J.,
			13, 2648
OIHSUX	Gal ₂ O ₂	(1.1'-boranedivlbis(3-methyl-1.3-dihydro-2H-benzimidazol-2-one))-bis(iodo)-	A.Al-Harbi, Yi Rong, G.Parkin (2013)
		gallium	Inora.Chem 52. 10226
QIVXOK	GaCl₂N	(u2-2.2.3.7.7.8-hexakis(Trimethylsilyl)-2.7.8.10-tetrahydro-3H.5H-	Axel Schulz, A.Villinger, A.Westenkirchner
-		[1 3 4 2]diazanhosphasilolo[4' 5'·4 5][1 4]dinhosphinino[1 2-d][1 3 4	(2014) Inorg Chem 53 3183
		2)diazaphosphasilole)-hexachloro-di-gallium dichloromethane solvate	()
ΟΙνγαχ	GaCl _a N	trichloro(4-chloro-5-methyl-2.2.3-tris(trimethylsilyl)-3.4-dihydro-2H-1.3.4.2-	Axel Schulz, A. Villinger, A. Westenkirchner
S	Cacigit	diazanhoshasilole)-gallium dichloromethane solvate	(2014 Inorg Chem 53 3183
OOPRIW/	GaN.	tetrakic(Tetrahydrofuran)-lithium tetrakic(dihenzylamido)-gallium	L Pauls B Neumuller (2001) 7 Aporg Allg
QOTINIW	Garva		Chem 627 583
	GaNaOa	hic(u2-Qyo)-hic(N N'-hic(2 6-di-iconronyInhanyI)-2 4-pentanedi-iminato-N N')-di-	N L Hardman, P.P. Power (2001) Inorg
QOINID	0011202		Chem 40 2474
OORWOL	GaNaSa	bis(u2-Sulfido)-bis(N N'-bis(2 6-di-isopropylphenyl)-2 4-pentapediiminato-N N')-	N L Hardman P.P. Power (2001) Inorg
QUINUS	6411252	di-gallium/iii)	Chem 40 2474
OUMMUU	620.	heyakis(u2-Isopropoyo)-heyakis(isopropoyy)-tetra-gallium	M Valet D M Hoffman (2001) Chem
QUIVIIVIIU	0004		Mater 13 2135
	620.	hic(u2-t-Pentovo)-tetrakis(t-pentovy)-di-gallium	M Valet D M Hoffman (2001) Chem
QUINNOA	0004		Mater 13 2135
OUMMUG	GaNO.	Dimethylamine_tric/t_butovyl_gallium	M Valet D M Hoffman (2001) Chem
QUIVINIOU	Gano3	Diffectivianine-chs(t-butoxy)-gandin	Mater 12 2125
OLINEIO	GaBrNSo	tric(/u2 Selenida), bromo pyridina gallium(iii))	S.D. Nogai A. Schier, H. Schmidbaur (2001)
QUINFIO	Gabinse ₂	ths((µz-selenido)-bionio-pyndine-gailidn(m))	7 Naturforsch B: Cham Sci E6 711
OUNFOU	CaCINEa	tris////2 Colonido) oblaza puzidina gallium/iii)	2. Naturioistii, B. Chem. Sci., 50, 711.
QUNFOU	Gacinse	trs((µz-selenido)-chloro-pyndine-galilum(in))	3. D. Nogal, A. Schler, H. Schlindbaur (2001)
OUNEUA	Callinki		2. Naturiorsch., B. Chem. Sci., 50, 711.
QUNFUA	Gabrins ₂	ths((µz-sundo)-bromo-pyndme-gandm(m))	3. D. Nogal, A. Schler, H. Schlindbaur (2001)
01101/011	CaNO	(2.2) 211 (12.4.6 teimethulkannen 4.2.5 teidikeiden ihr 2000 1000 1000 1000 1000 1000 1000 100	2. Naturiorscii., B. Chem. Sci., Sb, /11.
QUPVUN	GanO ₃	(3,3,3) -((2,4,6-trimetnyibenzene-1,3,5-triyi)tris(metnyiene))tripnenolato)-pyrioyi-	
		gailium 3,3,3 -((2,4,6-trimetnyibenzene-1,3,5-triyi)tris(metnyiene))triphenoi	(2010) Chem. Commun., 46, 4794
DALLOD	CalCi	pyriaine solvate	Clinti A Dadia W Kastlar (2001) 7 Apara
KAJLOD	Gal2l3	tetrakis(Tetranydrofuran)-iitnium iodo-tris(tripnenyisiiyi)-gailium	G.Linti, A.Rodig, W.Rostier (2001) Z. Anorg.
DAMAYOD	C-CLP		Alig. Chem., 627, 1465
RAWYOD	GaCl3P	(ths(minethyishy)phosphine)-trichloro-gaillum chlorobenzene solvate	J.F. Jank, K.A. Baldwin, K.L. Weils, W.T.
			Pennington, G.L. Schimek, A.L. Kheingold,
			L.W. LIADIE-Sands (1996) Organometallics,
DAMAG	Caller	(his/Trimethylaihylyboanhing) toiling a set of the	
KAWYUJ	Ganu ³ h	(tris(Trimethylsilyl)phosphine)-tribromo-gallium toluene solvate	J.F. Janik, K.A. Baldwin, R.L. Wells, W.F.
			Pennington, G.L. Schimek, A.L. Rheingold,
			L.IVI. Liable-Sands (1996) Organometallics,
			15, 5385.
RAWZAQ	Gal₃P	(tris(Trimethylsilyl)phosphine)-tri-iodo-gallium	J.F. Janik, R.A. Baldwin, R.L. Wells, W.T.
			Pennington, G.L. Schimek, A.L. Rheingold,

			L.M. Liable-Sands (1996) Organometallics,
			15, 5385.
REKSIL	GaCCl₂N	([dimethyl(pyridin-2-yl)silyl]methyl)-dichloro-gallium	B.Bagh, N.C.Breit, K.Harms, G.Schatte,
			I.J.Burgess, H.Braunschweig, J.Muller
			(2012) Inorg. Chem.,5 1, 11155
REKTIM	GaC3N	bis(µ2-ferrocen-1,1'-diyl)-bis(2-[(dimethylamino)methyl]-5-(trimethylsilyl)phenyl)-	B.Bagh, N.C.Breit, K.Harms, G.Schatte,
		di-gallium tetrahydrofuran solvate	I.J.Burgess, H.Braunschweig, J.Muller
			(2012) Inorg., Chem., 51, 11155
RITRUI	GaH ₂ N ₂	bis(Methylamine)-dihydrido-gallium chloride	C.Y.Tang, A.R.Cowley, A.J.Downs,
			S.Marchant, S.Parsons, Eur.J.Inorg.Chem.
			(2008), 737
RITSAP	GaH ₂ N ₂	bis(Isopropylamine)-dihydrido-gallium chloride	C.Y.Tang, A.R.Cowley, A.J.Downs,
			S.Marchant, S.Parsons, Eur.J.Inorg.Chem.
			(2008), 737
RITSET	GaH ₂ N ₂	bis(u2-Isopropylamido)-bis(isopropylamine)-hexahydrido-tri-gallium chloride	C.Y.Tang, A.R.Cowley, A.J.Downs.
			S.Marchant, S.Parsons, Eur.J.Inorg.Chem.
			(2008), 737
RIXWUS	GaCl₂P	(biphenyl-2-yl/di-t-butyl)phosphine)-trichloro-gallium	G.Regis (2014) Private Communication
RIZHUF	GaH ₂ N ₂	his/(sopronylamine)-dihydrido-gallium chloride	C Y Tang A B Cowley A L Downs
	64.12.12		S Marchant S Parsons Fur Linorg Chem
			(2008) 737
ROCPII	GaClaN	(u2-Azido)-trimethyl-trichloro-gallium-silicon	L Kouvetakis McMurran P Matsunaga
Noern	Gueigit	(pr read) anneath anno ganan ancon	M O'Keefe Hubbard (1997) Inorg
			Chem 36 1792
POKMEL	GaCLN	(N_/t_butul) N' (2.6. diicantanul)phanul P.P. (dinbanul)iminanhachanamida)-	P Prashanth, Sanjay Singh (2014) Dalton
NORMEL	UdCl ₂ N ₂	dichloro-gallium	Trans
PLISCEP	GaN So	(Hydrogen tris/2 5-di t hutylovrazabyl)borato) selenido gallium	M.C. Kuchta, G. Parkin (1997) Inorg. Chem
ROSOLIN	Gangoe		36 2492
PLISCIN	CaN To	(Hudrogon tric/2 E di t hutulavrazalul)harata) tallurida gallium	M C Kuchta C Darkin (1007) Inorg Chom
RUSUIV	Gangre	(Tydrogen trists, s-ar-t-bacypyrazory)borato/-tendrao-gainan	26 2402
	GaCLN	totrakis/Totrahydrofuran) lithium (u2 bis(t hutylamida) phonylhorano N N N')	T Chivers C Federsbuk & Schatte
KOTBIW	UdCl ₂ N ₂	nentachloro-di-gallium	M Parvez Inorg Chem (2003) 42 2084
	GaCLN	totrakis/Totrahydrofuran) lithium (u2 bis(t hutylamida), phonylhorano N N N')	T Chivers C Eedorsbuk & Schatte
KOTBIW	Gacian	pontachloro-di-gallium	M Parvez Inorg Chem (2002) 42, 2084
PLIVCIV	GaCLN	(u2 bic/t-Rutylamida) phenylborane N N N') (u2 t butylamida N N) trichloro di	T Chivers C Eedorsbuk & Schatte
NOTCIX	Gacizinz		M Parvez Inorg Chem (2003) 42 2084
BUVCIX	GaCINa	(u2-bic/t-Rutylamido)-phenylhorane-N N N')-(u2-t-butylamido-N N)-trichloro-di-	T Chivers C Fedorchuk G Schatte
NOTCIX	Gacing		M Parvez Inorg Chem (2003) 42 2084
RUYCUI01	GaClaNa	bis(t-Butylamido)-tetrachloro-di-gallium	C Carmalt D Mileham A P White
	646.2.12		D.J.Williams, Dalton Trans. (2003), 4255
RUYDAO	GaClaNa	tris(Tetrahydrofuran)-(diethyl ether)-lithium (u2-his(t-hutylamido)-nhenylhorane-	T Chivers C Fedorchuk G Schatte
		N.N.N')-pentachloro-di-gallium	M.Parvez. Inorg.Chem. (2003), 42, 2084
RUYDAO	GaCl₂N	tris(Tetrahydrofuran)-(diethyl ether)-lithium (u2-bis(t-butylamido)-phenylhorane-	T Chivers C Fedorchuk G Schatte
norbrid	0001311	N.N.N')-pentachloro-di-gallium	M.Parvez, Inorg.Chem. (2003), 42, 2084
RUYSIO	GaCl ₂ O	(4-(/2 6-diisopropylphenyl)amino)-3-methylpent-3-en-2-one)-trichlorogallium	A E Lugo A E Richards (2010) Fur L Inorg
		C. C. S. Encellish Strends and Strendsheets of the one's composed and the	Chem., 2025
SAHVUU	GaCCl ₂	trichloro-(1,3-dimesitylhexahydropyrimidin-2-vlidene)-gallium	H.B.Mansaray, A.D.L.Rowe. N.Phillips.
			J.Niemeyer, M.Kelly. D.A.Addy. J.I.Bates
			S.Aldridge (2011) Chem. Commun. 47
			12295
SAHWFF	GaCl ₂ N	Trichloro-(2.6-dimesitylpyridine)-gallium	H.B. Mansaray, A.D.L. Rowe N Phillins
J			Niemever M Kelly D & Addy 11 Bates
			S Aldridge (2011) Chem Commun 47
			5

			12295
SAKCUD	GaH_2N_2	dihydrido-(3,5-dimethylpyridine)-(3,5-dimethyl-4-hydropyridyl)-gallium	S.D. Nogai, H. Schmidbaur (2004)
			Organometallics, 23, 5877
SAPXIR	GaN ₄	(1,4-bis(2,6-Di-isopropylphenyl)-1,4-diaza-1,3-butadiene)-(1,4-bis(2,6-	R.J. Baker, R.D. Farley, C. Jones, D.P. Mills,
		diisopropylphenyl)-1,4-diazabut-2-ene)-gallium	M.Kloth, D.M. Murphy (2005) Chem Eur
			.J., 11, 2972.
SATZAP	GaH_2N_2	bis(t-Butylamine)-dihydrido-gallium chloride	C.Y. Tang, A.J. Downs, T.M. Greene, S.
			Marchant, S. Parsons (2005) Inorg. Chem.,
			44, 7143
SATZET	GaH_2N_2	bis(sec-Butylamine)-dihydrido-gallium chloride	C.Y. Tang, A.J. Downs, T.M. Greene, S.
			Marchant, S. Parsons (2005) Inorg. Chem.,
			44, 7143
SAVWOB	GaBr ₂ N ₂	trans-bis((µ2-Trimethylsilylamido-N,N)-dibromo-gallium)	W.R. Nutt, J.S. Blanton, F.O. Kroh, J.D.
			Odom (1989) Inorg. Chem., 28, 2224.
SEBWUT	GaCl₃P	(t-Butylphosphonous dichloride)-trichloro-gallium	M.H.Holthausen, KO.Feldmann, S.Schulz,
			A.Hepp, J.J.Weigand (2012) Inorg.Chem.
			,51,3374
SEKROR	GaN₃O	Dimethylamide-(2,2'-oxybis(N-cyclopentylanilinato))-gallium	F.Hild, S.Dagorne (2012) Organometallics,
			31, 1189
SEKRUX	GaN ₄	bis(µ2-Anilido)-bis(2,2'-oxybis(N-cyclopentylanilinato))-di-gallium	F.Hild, S.Dagorne (2012) Organometallics,
		dichloromethane solvate	31, 1189
SICJET	GaH ₂ N ₂	(μ2-1,4-Di-t-butyl-1,4-diazabutadiene-N,N,N',N')-bis(dihydrido-gallium)	M.J. Henderson, C.H.L. Kennard, C.L.
			Raston, G. Smith (1990) Chem. Commun.,
			1203
SIPJAC	GaCl₃Si	bis(µ2-Chloro)-dichloro-bis(tri-t-butylsilyl)-di-gallium	N.Wiberg, K.Amelunxen, HW.Lerner,
			H.Noth, J.Knizek, I.Krossing,
			Z.Naturforsch.,B:Chem.Sci. (1998), 53, 333
SIXPUL	Gal ₂ N ₂	(N,N'-bis(2,6-Di-isopropylphenyl)-2,3-dimethyl-1,4-diazabuta-1,3-dienide-N,N')-di-	R.J.Baker, C.Jones, D.P.Mills, G.A.Pierce,
		iodo-gallium(iii)	M.Waugh, Inorg.Chim.Acta (2008), 361,
			427
SIXQAS	Gal_2N_2	(N,N'-bis(2,6-bis(4-t-Butylphenyl)phenyl)-2,3-dimethyl-1,4-diazabuta-1,3-dienide-	R.J.Baker, C.Jones, D.P.Mills, G.A.Pierce,
		N,N')-di-iodo-gallium(iii) diethyl ether solvate	M.Waugh, Inorg.Chim.Acta (2008), 361,
		Mp A NO.	427
SODGUO	GaCl₃N	(μ2-1,1,3,3-Tetraphenyldiphosphazene-N,N')-bis(trichloro-gallium)	C.Hubrich, D.Michalik, A.Schulz, A.Villinger,
		dichloromethane solvate	Z.Anorg.Allg.Chem. (2008), 634, 1403
SOMCOO	GaNSe₃	catena-[nonakis(µ2-selenido)-tetrakis(cyclohexane-1,2-diamine)-hexagallium	S.J. Ewing, P. Vaqueiro (2014) Inorg. Chem.,
		monohydrate]	53, 8845
SOMCOO	GaN ₂ Se ₂	catena-[nonakis(µ2-selenido)-tetrakis(cyclohexane-1,2-diamine)-hexagallium	S.J. Ewing, P. Vaqueiro (2014) Inorg. Chem.,
		monohydrate]	53, 8845
SOMCUU	GaN_2S_2	catena-[hexakis(µ2-selenido)-bis(cyclohexane-1,2-diamine)-tetra-gallium	S.J. Ewing, P. Vaqueiro (2014) Inorg. Chem.,
		cyclohexane-1,2-diamine]	53, 8845
SONDAC	GaCH₃	trihydrido-(1,3-dimesitylhexahydropyrimidin-2-ylidene)-gallium	J.A.B.Abdalla, I.M.Riddlestone, J.Turner,
			P.A.Kaufman, R.Tirfoin, N.Phillips,
			S.Aldridge (2015) ChemEur.J.,
SONDEG	GaCH ₃	trihydrido-(1,3-bis(2,6-diisopropylphenyl)hexahydropyrimidin-2-ylidene)-gallium	J.A.B.Abdalla, I.M.Riddlestone, J.Turner,
		toluene solvate	P.A.Kaufman, R.Tirfoin, N.Phillips,
			S.Aldridge (2015) ChemEur.J.,
SOVGUH	GaC₃N	(2,4-Di-t-butyl-6-((dimethylamino)methyl)phenyl)-bis(3,5-dimethylphenyl)-gallium	T.Matsumoto, Y.Onishi, K.Tanaka, H.Fueno,
			K.Tanaka, Yoshiki Chujo (2014)
			Chem.Commun., 50, 15740
SOXHUK	GaN ₄	tris(µ3-N-Phenylbenzamidinato-N,N,N')-(µ2-N-phenylbenzamidinato-	K.Maheswari, A.Ramakrishna Rao,
		N,N')pentamethyl-tetra-gallium toluene solvate	N.Dastagiri Reddy (2015) Inorg. Chem., 54,
			2000

SOXJAS	GaN ₄	$tris (\mu 3-N-Phenylaceta midinato-N,N,N')- (\mu 2-N-phenylaceta midinato-N,N')-$	K.Maheswari, A.Ramakrishna Rao,
		pentamethyl-tetra-gallium toluene solvate	N.Dastagiri Reddy (2015) Inorg. Chem., 54,
			2000
SUCCOK	GaC ₂ O ₂	bis(m-2-(oxo)-1,2-dihydroquinoline-4-carboxylato)-	W. Uhl, C. Stefaniak, M. Vo, M. Layh, F.
		tetrakis(bis(trimethylsilyl)methyl)-di-gallium tetrahydrofuran solvate	Rogel, J. Kosters (2015) Z. Anorg. Allg.
			Chem., 641, 253
SUFTES	GaAsl ₃	tris(Trimethylsilyl)-arsenic-tri-iodo-gallium	J.D. Johansen, A.T. McPhail, R.L. Wells
			(1992)Adv. Mat. Optics Elect., 1, 29
SUFTIW	GaAsala	bis((u2-bis(Trimethylsilyl)-arsenic)-di-iodo-gallium)	J.D. Johansen, A.T. McPhail, R.L. Wells
			(1992)Adv. Mat. Optics Elect., 1, 29
SUHBUILI	GaCaN	(1-(3 5-Di-t-hutyInhenyI)-N N-dimethyImethanamine)-(2 2-(ethene-1 2-	T Matsumoto H Takamine K Tanaka
5011200	Guesit	divl/dinhenvl)-gallium	Yoshiki Chujo (2015) Org. Lett. 17, 1593
SUHCAR	GaC-N	(2.2.(Ethono.1.2.div)/dinhonv/l).(2.6.his/dimethy/amino)nhonv/.C)-gallium/2.2.	T Matumoto H Takamine K Tanaka
JUNCAD	Gacan	(2,2-(ethene-1,2-div))diphenyi)-(2,0-bis(dimetriyianino)phenyi-C)-galium(2,2-	Veshiki Chuis (2015) Ora Lett. 17, 1502
		(ethene-1,2-div)dipheny)-(2,6-bis(dimethylamino)phenyi-C,N)- gailidin	To shiki chujo (2015) Org. Lett., 17, 1593
SULQUL	GaBr₃P	(µ2-E-1,2-bis(Diphenyiphosphino)ethene)-bis(tribromo-gailium)	M. Sigi, A. Schier, H. Schmidbaur (1998) 2.
			Naturforsch., B: Chem. Sci., 53, 1301.
SUNFIQ	Gal ₂ P ₂	(bis((2-Diphenylphosphanyl)phenyl)phenylphosphane)-di-iodo-gallium(iii)	M. Sigl, A. Schier, H. Schmidbaur (1998)
		tetraiodo-gallium(iii)	Eur. J. Inorg. Chem., 203.
SUNNAQ	Gal_2P_2	(1,2-bis(Diphenylphosphanyl)benzene)-di-iodo-gallium(iii) tetraiodogallium(iii)	M. Sigl, A. Schier, H. Schmidbaur (1998)
			Eur. J. Inorg. Chem., 203.
TAGVAZ	$GaBrNS_2$	tris((µ2-Thio)-bromo-(3,5-dimethylpyridyl)-gallium) acetonitrile solvate	S.D.Nogai, H.Schmidbaur, Dalton Trans.
			(2003), 2488
TAGVED	$GaBrNS_2$	tris((µ2-Thio)-bromo-(4-t-butylpyridyl)-gallium)	S.D.Nogai, H.Schmidbaur, Dalton Trans.
			(2003), 2488
TAGVIH	GaN_2S_2	pentakis(µ2-Thio)-hexakis(4-dimethylaminopyridyl)-tetra-gallium dibromide	S.D.Nogai, H.Schmidbaur, Dalton Trans.
		acetonitrile solvate	(2003), 2488
TAGVIH	GaNS₃	pentakis(µ2-Thio)-hexakis(4-dimethylaminopyridyl)-tetra-gallium dibromide	S.D.Nogai, H.Schmidbaur, Dalton Trans.
		acetonitrile solvate	(2003), 2488
TAGVON	GaBrNSe ₂	tris((µ2-Seleno)-bromo-(3,5-dimethylpyridyl)-gallium) tetrahydrofuran solvate	S.D.Nogai, H.Schmidbaur, Dalton Trans.
			(2003), 2488
TAGVUT	GaBrNSe ₂	tris((µ2-Seleno)-bromo-(3,5-dimethylpyridyl)-gallium) acetonitrile solvate	S.D.Nogai, H.Schmidbaur, Dalton Trans.
	_		(2003), 2488
TAGWAA	GaCINS ₂	tris((u2-Thio)-chloro-(3.5-dimethylpyridyl)-gallium)	S.D.Nogai, H.Schmidbaur, Dalton Trans.
			(2003) 2488
TAGWEE	GaCINS	tris/(u2-Thio)-chloro-(3.5-dimethylnyridyl)-gallium) tetrahydrofuran solvate	S D Nogai H Schmidhaur, Dalton Trans
	646.162		(2003) 2488
TADUE	GallO	hic(/u2.t.Rutovo)-(t.hutovu)-hydrido-gallium)	M Voith S Eaber, H Wolfanger, V Huch
	GanO3	ool(hs r parovo)-(r.parovo)-ukanao-Ramani)	м. venu, з. адет, п. vvolidiger, v. пucli,
TADIOI	Call O	his(/u2 + Dutava) dihudrida gallium)	M Voith C Cabor II Wolfanger V Hugh
TANJUL	Gan ₂ O ₂	ຫວູ((µ2-ເ-ອີດເບັນບ)-ຕາກິງຕາເບັບ-ຮູ້ສາແຕກ)	Cham Bar (1996) 120 201
			Chem.Ber. (1996), 129, 381
TARLON	GaO₃Si	2,2,6,6-ietramethylpiperidiniumtriphenoxy(tris(trimethylsilyl)silyl) gallate phenol	G. LINTI, R. Frey, W. Kostler, H. Urban
		toluene solvate	(1996) Chem. Ber., 129, 561
TARMAA	GaCl ₂ OSi	Dichloro-(tetrahydrofuran-O)-(tris(trimethylsilyl)silyl)-gallium	G. Linti, R. Frey, W. Kostler, H. Urban
			(1996) Chem. Ber., 129, 561
TARMEE	GaO₃Si	bis((µ2-Ethoxo)-ethoxy-(tris(trimethylsilyl)silyl)-gallium)	G. Linti, R. Frey, W. Kostler, H. Urban
			(1996) Chem. Ber., 129, 561
TAZYID	GaCl₃N	trichloro-(4-(bis(trimethylsilyl)amino)-1,2,4,3,5-triazadiphosphole-N)-gallium	S. Herler, P. Mayer, J.S. auf der Gunne, A.
			Schulz, A. Villinger, J.J. Weigand (2005)
			Angew. Chem., Int. Ed., 44, 7790.
TAZYOJ	GaCl₃N	$hexachloro-(\mu 2-4-(bis(trimethylsilyl)amino)-1,2,4,3,5-triazadiphosphole-N,N')-di-1,2,5,5-triazadiphosphole-N,N')-di-1,2,5,5-triazadiphosphole-N,N'$	S.Herler, P.Mayer, J.S.auf der Gunne,
		gallium	A.Schulz, A.Villinger, J.J.Weigand,
			Angew.Chem.,Int.Ed. (2005), 44, 7790
TEBWAA	GaN ₄	tris(diethyl ether)-lithium bis(1,1-dimethyl-N,N'-diphenylsilanediaminato)-gallium	A.Mane, C.Wagner, K.Merzweiler (2012) Z.

		toluene solvate	Anorg. Allg. Chem., 638, 136
TEWKAJ	GaSe ₄	bis(Di-isopropyldiselenophosphato-Se)-(di-isopropyldiseleno phosphato-Se,Se')-	V.A.Kuimov, Ping-Kuei Liao, Ling-Song
		gallium	Chiou, Hong-Chih You, Ching-Shiang Fang,
			Chen-Wei Liu (2013) Eur.J.Inorg.Chem.
			,2083
TIJVAL	GaCl₃N	cis-bis(µ2-bis[methyl(phenyl)phosphanyl]amido)-hexachloro-gallium	M.Bendle, R.Kuzora, I.Manners, P.Rupar,
			Axel Schulz, A.Villinger (2014)
			Eur.J.Inorg.Chem. , 2014, 1735
TIJVEP	GaCl₃N	bis(µ2-bis[(2,6-dimethylphenyl)(methyl)phosphanyl]amido)-hexachlorogallium	M.Bendle, R.Kuzora, I.Manners, P.Rupar,
		dichloromethane solvate	Axel Schulz, A.Villinger (2014)
			Eur.J.Inorg.Chem. , 2014, 1735
TIJVIT	GaCl₂N	bis(u2-bis[(2-methylphenyl)(phenyl)phosphanyl]amido)-hexachloro-digallium	M.Bendle, R.Kuzora, I.Manners, P.Rupar,
		dichloromethane solvate	Axel Schulz, A.Villinger (2014)
			Eur.J.Inora.Chem 2014 .1735
TUVOZ	GaClaP	trichloro-(di-t-hutylnhosphinous chloride)-gallium	M Bendle B Kuzora I Manners P Runar
113702	000131		Avel Schulz A Villinger (2014)
			Eur Linorg Chem 2014 1725
	GaCL N	(2.2. diphonyl, N. (trimothylsilyl)thiszszcieldin 1 imida) tricklara gallium	M Randla, R Kuzora, I Manners, D Dunar
TIJVUF	Gacian	(5,5-diphenyi-w-(trimethyisiiyi)tinazarsindin-1-imido)-trichioro-gailium	Avel Schulz, A. Villinger (2014)
			Axel Schulz, A.Villinger (2014)
TUNALANA		Anna histo 2 history the data with the sectory district a base of large with the	
IIJWAM	GaCl₃N	trans-bis(µ2-bis[metnyi(phenyi)phosphanyiJamido)-nexachioro-gallium	M.Bendle, R.Kuzora, I.Manners, P.Kupar,
			Axel Schulz, A.Villinger (2014)
			Eur.J.Inorg.Cnem. , 2014, 1735
TMEGAL02	GaH₃N	Trihydrido-trimethylamino-gallium	P.T. Brain, H.E. Brown, A.J. Downs, T.M.
			Greene, E. Johnsen, S. Parsons, D.W.H.
			Rankin, B.A. Smart, C.Y. Tang (1998) J.
			Chem. Soc., Dalton Trans., 3685
TMPGAC01	. GaCl₃P	Trimethylphosphine-trichlorogallium	J.C. Carter, G. Jugie, R. Enjalbert, J. Galy
			(1978) Inorg. Chem., 17, 1248.
TOGGIF	GaAsl₃	tris (p-Methoxyphenyl)-tri-iodo-arsenic-gallium (iii)	B. Beagley, S.M. Godfrey, K.J. Kelly, S.
			Kungwankunakorn, C.A. McAuliffe, R.G.
			Pritchard (1996) Chem. Commun., 2179
TUNZIL	$GaCl_2N_2$	Dichloro-(1,4-di-t-butyl-1,4-diazabutadiene)-gallium tetrachlorogallium(iii)	J.A.C. Clyburne, R.D. Culp, S. Kamepalli,
			A.H. Cowley, A. Decken (1996) Inorg.
			Chem., 35, 6651.
TUYRUA	GaO ₄	Triethylammonium bis(heptakis(cyclopentyl)-	G. Gerritsen, R. Duchateau, R.A. Van
		methyl(diphenyl)siloxyheptasilsesquioxane)-gallium hexane solvate	Santen, G.P.A. Yap (2003) Organometallics,
			22, 100.
TUYSAH	GaO ₄	$bis (\mu 2-heptakis (Cyclopentyl)-methyl (diphenyl) siloxy-heptasils esquioxane)-$	G.Gerritsen, R.Duchateau, R.A.Van Santen,
		dimethyl-di-gallium	G.P.A.Yap, Organometallics (2003), 22, 100
UCEBUB	GaC ₂ NO	$(\mu 2\text{-N'-}(Amino(hydroxy)methylene) carbamohydrazonato)-tetrakis(bis(trimethylene)) carbamohydrazonato) carbamohydrazonato)$	W. Uhl, M. Voss, A. Hepp (2011) Z. Anorg.
		silyl)methyl)-di-gallium 1,2-dimethoxyethane solvate	Allg. Chem., 637, 1845
UCIWOT	GaCl₃N	(1-(2,4,6-Tri-t-butylphenyl)tetra-azaphosphole-N)-trichloro-gallium	A. Villinger, P. Mayer, A. Schulz (2006)
			Chem. Commun., 1236.
UGIJID	Gal_2N_2	(N,N'-bis(2,6-Dimethylphenyl)-1,4-diazabuta-1,3-dienide-N,N')-di-iodogallium(iii)	T. Pott, P. Jutzi, W. Kaim, W.W. Schoeller,
			B. Neumann, A. Stammler, HG. Stammler,
			M. Wanner (2002) Organometallics, 21,
			3169.
UGIJOJ	Gal ₂ N ₂	(N,N'-Dimesityl-1,4-diazabuta-1,3-dienide-N,N')-di-iodo-gallium(iii)	T. Pott, P. Jutzi, W. Kaim, W.W. Schoeller,
			B. Neumann, A. Stammler, HG. Stammler,
			M. Wanner (2002) Organometallics, 21,
			3169.
UGIJUP	Gal ₂ N ₂	(N,N'-bis(2,6-Diisopropylphenyl)-1,4-diazabuta-1,3-dienide-N,N')-di-	T. Pott, P. Jutzi, W. Kaim, W.W. Schoeller,

		iodogallium(iii)	B. Neumann, A. Stammler, HG. Stammler, M. Wanner (2002) Organometallics, 21,
			3169.
UGIKAW	GaN ₄	(N,N'-bis(2,6-Dimethylphenyl)-1,4-diazabuta-1,3-dienide-N,N')-(N,N'-bis(2,6-	T. Pott, P. Jutzi, W. Kaim, W.W. Schoeller,
		dimethylphenyl)-1,4-diazabut-2-ene-1,4-diide-N,N')-gallium	B. Neumann, A. Stammler, HG. Stammler,
			M. Wanner (2002) Organometallics, 21,
			3169.
UHUPIY	GaCCl₃	(m-2,2'-(1,3-phenylene)-1,1'-bis(methyl(diphenyl)silyl)-divinyl)-bis(m-chloro)-	W. Uhl, A. Hentschel, D. Kovert, J. Kosters,
		dichloro-di-gallium 1.2-difluorobenzene solvate	M. Lavh (2015) Eur. J. Inorg. Chem
	GaCIN	(u2 N N N' N'-tetramethylethane 1 2-diamine)-dichloro-bis/N N'-bis/2 6-	Clopes D.P.Mills P.P.Pose A Starch
010301	Gacin ₃		
		alisopropylphenyljethene-1,2-diaminatoj-al-gallium	w.D.woodul (2010) J. Organomet. Chem.,
			695, 2410
UJOTET	GaN_2O_2	$(\mu 2\text{-}oxo)\text{-}dihydroxy\text{-}bis(N,N'\text{-}bis(2,6\text{-}diisopropylphenyl)ethene-1,2\text{-}diaminato)\text{-}di-$	C.Jones, D.P.Mills, R.P.Rose, A.Stasch,
		gallium 1,2-bis(2,6-diisopropylphenylimino)ethane	W.D.Woodul (2010) J.Organomet.Chem.,
			695, 2410
ULEYIT	GaH₃P	Trimethylphosphinegallane	C.Y. Tang, R.A. Coxall, A.J. Downs, T.M.
			Greene, L. Kettle, S. Parsons, D.W.H.
			Rankin H.F. Robertson A.R. Turner (2003)
			Dalton Trans 2526
UMIYAQ	GaCl ₃ N	Trichloro-(bis(trimethylsilyl)amine)-gallium	C.J. Carmalt, J.D. Mileham, A.J.P. White,
			D.J. Williams (2003) Dalton Trans., 4255.
UTINIV	Gal_2N_2	(N,N'-Dicyclohexylneopentylamidinato-N,N')-bis(iodo)-gallium(iii)	G.Linti, T.Zessin (2011) Dalton Trans., 40,
			5591.
VAGXUW	GaO₃Si	tris((µ2-Hydroxo)-(µ2-oxo))-tetrakis(tris(trimethylsilyl)silyl-gallium)	G. Linti, W. Kostler (1998) ChemEur. J., 4,
		bis(tris(trimethylsilyl)silyl)-trideca-carbonyl-tri-gallium-tetra-iron	942
VASHEC	GaN₄	bis(1.4-Di-t-butyl-1.4-diazabuta-1.3-diene-N.N')-gallium	F.G.N. Cloke, G.R. Hanson, M.J. Henderson,
			P.B. Hitchcock C.L. Baston (1989) Chem
			Commun 1002
	<u> </u>		
VAZWEZ	GaH ₂ N ₂	dihydrido-(N,N'-bis(2,6-diisopropyl)-2-amino-4-iminopent-2-ene-N,N')-gallium	S. Singh, HJ. Ahn, A. Stasch, V. Jancik,
			H.W. Roesky, A. Pal, M. Biadene, R. Herbst-
			Irmer, M. Noltemeyer, HG. Schmidt
			(2006)Inorg. Chem., 45, 1853
VEGTEH	GaCl₃N	(N,N'-bis(2,6-Di-isopropylphenyl)imidoformamide)-trichloro-gallium(ii)	C. Jones, P.C. Junk, M. Kloth, K.M. Proctor,
			A. Stasch (2006) Polyhedron, 25, 1592.
VIHRUZ	GaN₄	bis((u2-Dimethylamino)-bis(dimethylamino)-gallium)	K.M. Waggoner, M.M. Olmstead, P.P.
			Power (1990) Polyhedron 9, 257
	CoCL P	his/(u2 his/Trimethylaily)phosphide D.D. dishlara gallium)	
WAAHUT	GaCi2P2	bis((µ2-bis(Triffeetryisiiyi)phospinuo-P,P)-uichioio-ganium)	K.L. Weils, IVI.F. Sell, A.I. Wichhall, S.K.
			Aubuchon, R.C. Woudenberg, J.P. Jasinski
			(1993) Organometallics, 12, 2832.
WEHKUP	$GaBr_2P_2$	bis((µ2-bis(Trimethylsilyl)phosphido-P,P)-dibromo-gallium)	S.R. Aubuchon, A.T. McPhail, R.L. Wells,
			J.A. Giambra, J.R. Bowser (1994) Chem.
			Mater., 6, 82.
WEKFOJ	GaCl₃N	Chloro-(bis(trimethylsilyl)imido)-antimony (µ2-bis(trimethylsilyl)imido)-	C.Hering, M.Lehmann, A.Schulz, A.Villinger
		hexachloro -di-gallium dichloromethane solvate	(2012) Inorg. Chem., 51, 8212
WIFHAU	GaCIN	bis((u2-Dimethylamido)-dimethylamino-chloro-gallium)	D A Atwood A H Cowley R A Jones M A
	cucing		Mardanas II. Atward S.C. Batt (1002) I
			Mardones, J.L. Atwood, S.G. Bott (1992) J.
			coora. cnem., 26, 285.
WIFHEY	GaCINO ₂	bis((µ2-Ethoxo)-(tetramethylpiperidine)-chloro-gallium)	D.A. Atwood, A.H. Cowley, R.A. Jones, M.A.
			Mardones, J.L. Atwood, S.G. Bott (1992) J.
			Coord. Chem., 26, 285.
WIJBEY	GaCl₃S	Trichloro-(dicyclohexylphosphinothioic chloride)-gallium	M.H.Holthausen, A.Hepp, J.J.Weigand
			(2013) ChemEur. J., 19, 9895
WIKRUF	GaN ₂ O ₂	bis(di-t-butyl hydrogen orthosilicate)-(2.4-bis((2.6-di-isopropylphenyl)imino)	R.Huerta-Lavorie. D.Solis-Ibarra. D.V.Baez-
		· · · · · · · · · · · · · · · · · · ·	

		pentan-3-yl)-gallium	Rodriguez, M.Reyes-Lezama, M.de las Nieves Zavala-Segovia, V.Jancik (2013) Inorg.Chem. , 52, 6934
WILDIE	GaN₄	bis((µ2-t-Butylamido-N,N)-bis(t-butylamido)-gallium(iii))	D.A. Atwood, V.O. Atwood, A.H. Cowley, R.A. Jones, J.L. Atwood, S.G. Bott (1994) Inorg. Chem., 33, 3251.
WILFOO	GaN_2O_2	(μ 2-Oxo)-dihydroxy-bis(N,N'-dimesitylpentane-2,4-di-iminato)-digallium	E.Bernabe-Pablo, V.Jancik, M.Moya- Cabrera (2013) <i>Inorg.Chem.</i> , 52, 6944
WILFUU	GaCIN ₂ O2	(μ 2-Oxo)-dichloro-bis(N,N'-dimesitylpentane-2,4-di-iminato)-di-gallium	E.Bernabe-Pablo, V.Jancik, M.Moya- Cabrera (2013) <i>Inorg.Chem.</i> , 52 ,6944
WOSCIQ	GaCIP ₃	bis((µ2-Trimethylsilylphosphido)-chloro-(di-t-butylmethylphosphino)-gallium) benzene solvate	C. von Hanisch (2001) Z. Anorg. Allg. Chem., 627, 68.
WOSCOW	GaAs ₂ CIP	$bis((\mu 2 \text{-} Trimethylsilylarsenido) \text{-} chloro \text{-} (di \text{-} t \text{-} butylmethylphosphino) \text{-} gallium)$	C. von Hanisch (2001) Z. Anorg. Allg.
		benzene solvate	Chem., 627, 68
WUYDOJ	GaNSe₃	catena-(bis(Ethylenediammonium)heptakis(µ2-selenido)-bis(ethylenediamine-N)- tetra-gallium)	Yajie Dong, Qing Peng, Ruji Wang, Yadong Li (2003) Inorg.Chem., 42, 1794
XALQEH	GalN ₃	(N,N'-Di-t-butylethane-1,2-di-imine-N,N')-iodo-(bis(trimethylsilyl)amido)-gallium	K.L. Antcliff, R.J. Baker, C. Jones, D.M. Murphy, R.P. Rose(2005) Inorg. Chem., 44, 2098.
XALQIL	GaAsIN ₂	(N,N'-Di-t-butylethane-1,2-di-imine-N,N')-iodo-(bis(trimethylsilyl)arsenido)- gallium	K.L. Antcliff, R.J. Baker, C. Jones, D.M. Murphy, R.P. Rose(2005) Inorg. Chem., 44, 2098.
XALQOR	GalN ₂ P	(N,N'-Di-t-butylethane-1,2-di-imine-N,N')-iodo-(bis(trimethylsilyl)phosphido)- gallium	K.L.Antcliff, R.J.Baker, C.Jones, D.M.Murphy, R.P.Rose (2005) Inorg. Chem. , 44, 2098.
XALQUX	GaN_2P_2	(N,N'-Di-t-butylethane-1,2-di-imine-N,N')-bis((bis(trimethylsilyl)phosphido))- gallium	K.L. Antcliff, R.J. Baker, C. Jones, D.M. Murphy, R.P. Rose (2005) Inorg. Chem., 44, 2098.
XALRAE	$GaAs_2N_2$	(N,N'-Di-t-butylethane-1,2-di-imine-N,N')-bis((bis(trimethylsilyl)arsenido))-gallium	K.L. Antcliff, R.J. Baker, C. Jones, D.M. Murphy, R.P. Rose (2005) Inorg. Chem., 44, 2098.
XARBAT	GaNO ₃	(4-Dimethylaminopyridine)-tris(1,1,1,3,3,3-hexafluoro-2-propoxy)-gallium	L. Miinea, S. Suh, S.G. Bott, Jia-Rui Liu, Wei- Kan Chu, D.M. Hoffman (1999) J. Mater. Chem., 9, 929.
XARBEX	GaNO ₃	(4-Dimethylaminopyridine)-tris(2-trifluoromethyl-2-propoxy)-gallium	L. Miinea, S. Suh, S.G. Bott, Jia-Rui Liu, Wei- Kan Chu, D.M. Hoffman (1999) J. Mater. Chem., 9, 929.
XARYOF	GaH_2N_2	(N,N'-bis(2,6-di-isopropylphenyl)formamidinato)-dihydrido-(quinuclidine)-gallium	M.L. Cole, C. Jones, P.C. Junk, M. Kloth, A. Stasch (2005)ChemEur. J., 11, 4482
XAZGAL	GaHON₂	11H,22H-10,10,21,21-Tetramethyl-3,5,14,16-tetra(N,N-dimethyl-2-aminoethyl)- 1,12-dioxonia-3,5,7,10,14,16,18,21-octa-azonia-2,4,6,11,13,15,17,22- octagallanata-nonacyclo (13.7.0.02,7.03, 22.04,12.07,11.011,14.013,18.018,22) docosane	S.J. Rettig, A. Storr, J. Trotter (1975) Can. J. Chem., 53, 753
XAZGAL	GaH ₂ N ₂	11H,22H-10,10,21,21-Tetramethyl-3,5,14,16-tetra(N,N-dimethyl-2-aminoethyl)- 1,12-dioxonia-3,5,7,10,14,16,18,21-octa-azonia-2,4,6,11,13,15,17,22- octagallanata-nonacyclo (13.7.0.02,7.03, 22.04,12.07,11.011,14.013,18.018,22) docosane	S.J. Rettig, A. Storr, J. Trotter (1975) Can. J. Chem., 53, 753
XECPUQ	$GaCl_2N_2$	Dichloro-(bis(trimethylsilylimino(diphenyl)phosphorano)methanide)-gallium	C.M. Ong, P. McKarns, D.W. Stephan (1999) Organometallics, 18, 4197.
XEHHUP	GaClN ₂ O	Chloro-(N,N'-bis(2,6-di-isopropylphenyl)pent-2-en-2-amido-4-imido)-(di-tbutyl hydrogen orthosilicato)-gallium	D.Solis-Ibarra, M.de J.Velasquez- Hernandez, R.Huerta-Lavorie, V.Jancik (2011) Inorg.Chem. ,50,8907
XEHJAX	GaN₃O	(Ethylamino)-(N,N'-bis(2,6-di-isopropylphenyl)pent-2-en-2-amido-4-imido) -(di-t-	D.Solis-Ibarra, M.de J.Velasquez-

		butyl hydrogen orthosilicato)-gallium	Hernandez, R.Huerta-Lavorie, V.Jancik
			(2011) Inorg.Chem. ,50,8907
XEHJEB	GaN_2O_2	Hydroxy-(N,N'-bis(2,6-di-isopropylphenyl)pent-2-en-2-amido-4-imido)-(dit-butyl	D.Solis-Ibarra, M.de J.Velasquez-
		hydrogen orthosilicato)-gallium tetrahydrofuran solvate	Hernandez, R.Huerta-Lavorie, V.Jancik
			(2011) Inorg.Chem. ,50,8907
XICKID01	GaH₃N	Dimethylamine-trihydrido-gallium	C.Y. Tang, R.A. Coxall, A.J. Downs, T.M.
			Greene. S. Parsons (2001) J. Chem. Soc
			Dalton Trans 2141
VICKOL		tric/u2 Dimothylamida) tric/dihydrida gallium)	
AICKUJ	Gan ₂ N ₂	ths(µz-binethylanido)-ths(dinydhdo-gaildin)	Creans C. Davana (2001) L. Cham. Ca
			Greene, S. Parsons (2001) J. Chem. Soc.,
			Dalton Trans., 2141
XIJYEV	GaN ₄	bis(N,N'-bis(2,6-Diisopropylphenyl)imidazol-2-ylidene)-gold(i) bis(1,4-bis(2,6-	S.P.Green, C.Jones, D.P.Mills, A.Stasch
		diisopropylphenyl)-1,4-diazabut-2-ene-1,4-diyl)-gallium(ii)	(2007)Organometallics ,26,3424
XODREN	$GaCl_2N_2$	$bis(\mu_2$ -diethylamido)-t-butyl-trichloro-di-gallium	L. Grocholl, S.A. Cullison, J. Wang, D.C.
			Swenson, E.G. Gillan (2002) Inorg. Chem.,
			41, 2920.
XODVES	Gal ₂ N ₂	bis(Iodo)-bis(N,N'-bis(2,6-di-isopropylphenyl)-N'',N''-bis(cyclohexyl)guanidinato-	Guoxia Jin, C.Jones, P.C.Junk, A.Stasch,
		N.N')-gallium(iii)	W.D.Woodul. New J.Chem. (2008). 32. 835
YOKNER	Gal-S	(u2 5-dithiaheyane)-his(trijodo-gallium(iii))	C Gurnani W Levason B Batnani G Beid
XORNER	00135		M.Webster, Delten Trans (2008) (274
			Wi.Webster, Daiton Trans. (2008), 6274
XOKNIV	GaCl₃S	(µ ₂ -1,2-bis(phenylthio)ethane-S,S')-bis(trichloro-gallium(iii)) dichloromethane	C.Gurnani, W.Levason, R.Ratnani, G.Reid,
		solvate	M.Webster, Dalton Trans. (2008), 6274
XOKNOB	GaCl₃S	$(\mu_2$ -1,2-bis(methylthiomethyl)benzene-S,S')-bis(trichloro-gallium(iii))	C.Gurnani, W.Levason, R.Ratnani, G.Reid,
			M.Webster, Dalton Trans. (2008), 6274
XOKNUH	GaCl₃Se	Trichloro-(dimethylselenide)-gallium(iii)	C.Gurnani, W.Levason, R.Ratnani, G.Reid,
			M.Webster, Dalton Trans. (2008), 6274
ХОКРАР	GaCl₃Se	(µ2-5,8-diselenadodecane-Se,Se')-bis(trichloro-gallium(iii))	C.Gurnani, W.Levason, R.Ratnani, G.Reid,
			M.Webster, Dalton Trans. (2008), 6274
XOTWIM	GaClaN	Trichloro-(3 5-diphenyloyrazol-2-yl)-gallium	Zhengkun Yu, A V Koroley, M I Heeg
	60.013.1		C H Winter (2002) Polyhedron 21, 1117
VUCNAAL	CaCINO	Chlore (N.N. his/trimethylaihyl) mide) (2.4 nontransionate) gallium/iii)	O T. Boochley Junior, J.D. Cordinior, M.D.
XUCIVIAJ	GacinO ₂	Chioro-(N,N-bis(trimethyisiiyi)amido)-(2,4-pentanedionato)-ganum(iii)	O.T. Beachey Junior, J.R. Gardinier, M.R.
			Churchill, D.G. Churchill, K.M. Kell (2002)
			Organometallics, 21, 946.
YABJUH	GaCl₃N	Trichloro-((2,2,6,6-tetramethylpiperidinylidene)-t-butyliminoborane-N)-gallium	B. Bock, U. Braun, T. Habereder, P. Mayer,
			H. Noth (2004) Z. Naturforsch., B: Chem.
			Sci., 59, 681.
YAQSIT	GaN ₄	(N,N'-bis(2,6-Diisopropylphenyl)pentane-2,4-di-iminato)-diaminegallium	V. Jancik, L.W. Pineda, A.C. Stuckl, H.W.
			Roesky, R. Herbst-Irmer (2005)
			Organometallics, 24, 1511.
YAQSOZ	GaN ₂ O ₂	(N,N'-bis(2,6-Diisopropylphenyl)pentane-2,4-di-iminato)-dihydroxygallium toluene	V. Jancik, L.W. Pineda, A.C. Stuckl, H.W.
		solvate	Roesky R Herbst-Irmer (2005)
			Organometallics 24, 1511
VAVDAT	6-0	antona [tris/Tatra a propular manium] tatrahis/u2 hanzana 1.2 E trisarhau (ata)	
TATKAT	GaO ₄		
		tri-gallium(iii)]	(2012) J. Solid State Chem., 194, 369
YEHTEK01	GaCl₃P	1-(Trichlorogallio)-2-chloro-1,1,2,2-tetramethyl-1-phosphino-2-phosphonium	N. Burford, T.S. Cameron, D.J. LeBlanc, P.
		tetrachloro-gallium	Losier, S. Sereda, Gang Wu (1997)
			Organometallics, 16, 4712.
YENBUP	GaHON ₂	$(\mu 2-hydroxo)-bis(N,N'-bis(2,6-diisopropylphenyl)ethene-1,2-diamine)-dihydrido-diamine(0,0)-bis(N,N'-bis(2,6-diisopropylphenyl))ethene-1,2-diamine(0,0)-bis(N,N'-bis(2,6-diisopropylphenyl))ethene-1,2-diamine(0,0)-bis(N,N'-bis(2,6-diisopropylphenyl))ethene-1,2-diamine(0,0)-bis(N,N'-bis(2,6-diisopropylphenyl))ethene-1,2-diamine(0,0)-bis(N,N'-bis(2,6-diisopropylphenyl))ethene-1,2-diamine(0,0)-bis(N,N'-bis(2,6-diisopropylphenyl))ethene-1,2-diamine(0,0)-bis(N,N'-bis(0,0)-bis(0,0))ethene-1,2-diamine(0,0)-bis(0,0)-bi$	C. Jones, D.P. Mills, R.P. Rose (2006) J.
		di-gallium N,N'-dimesitylimidazole N,N'-dimesitylimidazolyl hexane solvate	Organomet. Chem. ,691, 3060
YERWOH	GaCl₃N	((bis(Trimethylsilyl)amino)(trimethylsilyl)iminophosphine)-trichlorogallium	R. Oberdorfer, M. Nieger, E. Niecke (1994)
			Chem. Ber., 127, 2397.
YERWUN	GaClaP	(2,4,4,-Trimethyl-1,3-bis(trimethylsilyl)-1.3-diaza-2-phospha-4-silacyclobutape-P)-	R. Oberdorfer, M. Nieger, E. Niecke (1994)
	2*	trichloro-gallium	Chem. Ber., 127, 2397

YEXJIW	GaC ₄	potassium tetrakis((trimethylsilyl)methyl)-gallium benzene solvate	D.R.Armstrong, E.Brammer, T.Cadenbach, Eva Hevia, A.R.Kennedy (2013) Organometallics, 32, 480
YEXYEF	GaN ₄	tetrakis(µ3-Pentafluoroimino)-trimesityl-(pentafluorophenylamino)-tetragallium- n-pentane solvate	T. Belgardt, S.D. Waezsada, H.W. Roesky, H. Gornitzka, L. Haming, D. Stalke (1994) Inorg. Chem., 33, 6247.
YIDRAF	GaCl₃P	(μ2-1,2-bis(Diphenylphosphino)ethane-P,P')-hexachloro-di-gallium(iii)	Fei Cheng, A.L. Hector, W. Levason, G. Reid, M. Webster, Wenjian Zhang (2007) Acta Crystallogr., Sect. E: Struct. Rep. Online, 63,m1761
YIWFEQ	GaN_2O_2	bis(2,2,6,6-Tetramethylpiperidino)-(2,2,6,6-tetramethylpiperidine-1- carboxylato)gallane	O.Feier-Iova, G.Linti, Z.Anorg.Allg.Chem. (2008), 634, 559
YIWLAR	GaN ₂ OP	(2-((2,6-Di-isopropylphenyl)amido)-4-((2,6-di-isopropylphenyl)imido)pent-2-ene)- (diphenylphosphido)-(trifluoromethanesulfonato)-gallium	N. Burford, P.J. Ragogna, K.N. Robertson, T.S. Cameron, N.J. Hardman, P.P. Power (2002) J. Am. Chem. Soc., 124, 382.
YODGAZ	GaCl ₂ N ₂	bis((μ2-Triphenylphosphoranyliminato-N,N)-dichloro-gallium)	F. Heshmatpour, D. Nusshar, R. Garbe, S. Wocadlo, W. Massa, K. Dehnicke, H. Goesmann, D. Fenske (1995) Z. Anorg. Allg. Chem., 621, 443.
YOLTEZ	$GaCl_2N_2$	bis(μ2-azido-(N,N',N'-(tris(trimethylsilyl))hydrazino)-chloro-phosphanimino)- tetrachloro-di-gallium dichloromethane solvate	A.Schulz, A.Villinger, Eur.J.Inorg.Chem. (2008), 4199
YOSKUO	GaBr₂NO	(2,4-di-t-butyl-6-((2,6-diisopropylphenyl)amino)phenolato)-dibromogallium	A.V.Piskunov, I.V.Ershova, G.K.Fukin (2014) Izv.Akad.Nauk SSSR, Ser. Khim. (Russ.) (Russ. Chem. Bull.), 916
YOSSEG	GaN_2Te_2	bis(µ2-Tellurido)-bis(N,N'-bis(2,6-di-isopropylphenyl)penta-2,4-diiminato)-di- gallium	C. Ganesamoorthy, G. Bendt, D. Blaser, C. Wolper, S. Schulz (2015) Dalton Trans., 44, 5153
YOSSIK	GaN_2Te_2	bis(Benzenetellurolato)-(N,N'-bis(2,6-di-isopropylphenyl)penta-2,4-diiminato)- gallium	C. Ganesamoorthy, G. Bendt, D. Blaser, C. Wolper, S. Schulz (2015) Dalton Trans., 44, 5153
YOSSOQ	GaN ₂ Te ₂	bis(μ2-Tellurido)-bis(N,N'-bis(2,6-di-isopropylphenyl)penta-2,4-diiminato)-di- gallium toluene unknown solvate	C. Ganesamoorthy, G. Bendt, D. Blaser, C. Wolper, S. Schulz (2015) Dalton Trans., 44, 5153
YOYNAB	GaP ₄	(Hydridomesitylphosphino)-tetrakis(μ 3-mesitylphosphido)-trimesityl-tetragallium dimethyl ether solvate	K. Niediek, B. Neumuller (1995) Z. Anorg. Allg. Chem., 621, 889.
YOYNEF	GaP ₄	$(Hydridomesityl phosphino)-tetrakis (\mu 3-mesityl phosphido)-trimesityl-tetragallium toluene solvate$	K. Niediek, B. Neumuller (1995) Z. Anorg. Allg. Chem., 621, 889.
YUBMOY	GaCl₃N	$({\sf Trichlorogallano}(trimethylsilyl)imino)(t-butyl(trimethylsilyl)amino)borane$	H.Ott, C.Matthes, A.Ringe, J.Magull, D.Stalke, U.Klingebiel, ChemEur.J. (2009), 15, 4602
YUSQAF	GaO ₄	catena-(tetrakis(μ 6-Propane-1,3-diphosphonato)-bis(μ 2-hydroxo)-hexagallium)	M. P. Attfield, Zhanhui Yuan, H. G. Harvey, W. Clegg (2010) Inorg. Chem., 49, 2656
YUSQEJ	GaO ₄	catena-(tris(μ6-Pentane-1,5-diphosphonato)-bis(pyridine-N)-tetra-gallium)	M. P. Attfield, Zhanhui Yuan, H. G. Harvey, W. Clegg (2010) Inorg. Chem., 49, 2656
YUSQIN	GaO ₄	catena-(bis(μ5-Hydrogen decane-1,10-diphosphonato)-di-gallium)	M. P. Attfield, Zhanhui Yuan, H. G. Harvey, W. Clegg (2010) Inorg. Chem., 49, 2656
YUVHUS	$GaCl_2N_2$	(1,4-Di-t-butyl-1,4-diazabuten-1,4-diyl)-dichloro-gallium	D.S. Brown, A. Decken, A.H. Cowley (1995) J. Am. Chem. Soc., 117, 5421.
IILVUY	GaN ₄	bis((1,2-bis(t-Butylamino)ethene-N,N')-di-gallium) bis((1,4-di-t-butyl-1,4- diazabutadiene)-gallium)	D.S. Brown, A. Decken, A.H. Cowley (1995) J. Am. Chem. Soc., 117, 5421.
YUVPOU	GaN ₄	bis((μ2-Dimethylamido)-dimethylamido-azido-gallium)	D.A. Neumayer, A.H. Cowley, A. Decken, R.A. Jones, V. Lakhotia, J.G. Ekerdt (1995) J. Am. Chem. Soc., 117, 5893.

ZAKFEW	$GaBr_2N_2$	2,2-Dibromo-5,5-dimethyl-1,3-bis(trimethylsilyl)-1-aza-3-azonia-2-	G. Linti, H. Noth, K. Polborn, C. Robl, M.
		gallatacyclohexane	Schmidt (1995) Chem. Ber., 128, 487.
ZAKFIA	GaClN₃	syn-2,8-Dichloro-5,5,11,11-tetramethyl-1,3,7,9-tetrakis(trimethylsilyl)-3,9-diaza-	G. Linti, H. Noth, K. Polborn, C. Robl, M.
		1,7-diazonia-2,8-digallatatricyclo(6.4.0.02,7)dodecane	Schmidt (1995) Chem. Ber., 128, 487.
ZAPMAE	$GaClH_2P$	Chloro-tricyclohexylphosphine-dihydrido-gallium	F.M. Elms, G.A. Koutsantonis, C.L. Raston
			(1995) Chem. Commun., 1669
ZAPMEI	GaH_2P_2	tris(µ2-Tricyclohexylphosphine)-tris(dihydrido-gallium)	F.M. Elms, G.A. Koutsantonis, C.L. Raston
			(1995) Chem. Commun., 1669
ZEPHAD	GaCINO ₂	Chloro-bis(2,4,6,-trimethylphenoxy)-t-butylamido-gallium	K.C.K. Swamy, M. Veith, V. Huch (1995)
			Bull. Soc. Chim. Fr., 132, 540.
ZEPHEH	$GaCl_2O_2$	(2,6-Di-t-butyl-4-methylphenoxy)-dichloro-(diethyl ether)-gallium	K.C.K. Swamy, M. Veith, V. Huch (1995)
			Bull. Soc. Chim. Fr., 132, 540.
ZEPHIL	GaCl₃O	t-Butylammonium (µ2-2,4,6-trimethylphenoxy)-hexachloro-di-gallium	K.C.K. Swamy, M. Veith, V. Huch (1995)
			Bull. Soc. Chim. Fr., 132, 540.
ZEYQUR	Gal₃P	tris(Iodo)-(tris(4-methoxyphenyl)phosphine)-gallium	Fu Chen, Guibin Ma, G.M.Bernard,
			R.E.Wasylishen, R.G. Cavell, R. McDonald,
			M.J. Ferguson (2013) ChemEur. J., 19,
			2826
ZEYRAY	GaBr₃P	Tribromo-(tris(4-methoxyphenyl)phosphine)-gallium	Fu Chen, Guibin Ma, G.M.Bernard,
			R.E.Wasylishen, R.G. Cavell, R. McDonald,
			M.J. Ferguson (2013) ChemEur. J., 19,
			2826
ZIKRIW	GaC₃N	(2,2'-diisopropylferrocenyl)-(2-(dimethylaminomethyl)phenyl)-gallium	S.Sadeh, G.Schatte, J.Muller (2013) Chem
			Eur. J., 19, 13408
ZIQZEG	$GaCl_2N_2$	$(\mu 2\text{-}2,2^{\prime},2^{\prime\prime},2^{\prime\prime\prime}\text{-}naphthalene-1,4,5,8-tetrayltetrakis(1,1,3,3-tetramethylguanidine))-$	H.Herrmann, A.Ziesak, Ute Wild, Simone
		tetrachloro-di-gallium 2,2'-cyclohexa-2,5-diene-1,4-diylidenedimalononitrile	Leingang, D.Schrempp, N.Wagner, J.Beck,
			E.Kaifer, H.Wadepohl, HJ.Himmel (2014)
			ChemPhysChem, 15, 351
ZIQZUW	GaCl ₂ N ₂	(μ2-2,2',2'',2'''-Naphthalene-1,4,5,8-tetrayltetrakis(1,1,3,3-	H.Herrmann, A.Ziesak, Ute Wild, Simone
		tetramethylguanidine))-tetrachloro-di-gallium pentaiodide di-iodine	Leingang, D.Schrempp, N.Wagner, J.Beck,
			E.Kaifer, H.Wadepohl, HJ.Himmel (2014)
			ChemPhysChem , 15, 351
ZOJRAT	GaCl₃N	(1,3-bis(2,6-Di-isopropylphenyl)-1H-imidazol-3-ium-5-yl)-trichloro-gallium	Mingwei Chen, Yuzhong Wang, R.J.Gilliard,
		tetrahydrofuran solvate	Jr., Pingrong Wei, N.A.Schwartz,
			G.H.Robinson (2014) Dalton Trans. ,43,
			14211
ZOJWEC	GaCCl₃	(µ2-1,3-bis(2,6-Di-isopropylphenyl)imidazol-4-yl-2-ylidene)-trichlorodiethyl-boron-	Mingwei Chen, Yuzhong Wang, R.J.Gilliard,
		gallium toluene solvate	Jr., Pingrong Wei, N.A.Schwartz,
			G.H.Robinson (2014) Dalton Trans. ,43,
			14211
ZZZTIC	GaO ₄	Tetramethylstibonium tetrakis(trimethylsiloxy)gallate	Wheatley (1963) J. Chem. Soc. , 3200.

Tabla A4.3- Compuestos de Ga(III) con I.C. 5.

CSD	Kernel	Nombre	Referencia
BAWHIR	GaN₅	(3-Carboxylato-5,10,15-tris(pentafluorophenyl)corrolato)- pyridylgallium(iii) benzene pyridine solvate	I. Saltsman, I. Goldberg, Z. Gross (2003) Tetrahedron Lett., 44, 5669
BIMNIV	$GaCIN_2O_2$	Chloro-(N,N'-bis(3,5-di-t-butylsalicylidene)cyclohexyl-1,2-di-iminato)- gallium(iii) dichloromethane solvate	D.J. Darensbourg, D.R. Billodeaux (2004) C.R. Chim., 7, 755
BIMNOB	GaCIN ₂ O ₂	Chloro-(N,N'-bis(3,5-di-t-butylsalicylidene)ethylene-1,2-di-iminato)- gallium(iii)	D.J. Darensbourg, D.R. Billodeaux (2004) C.R. Chim., 7, 755
BIMNUH	GaN ₃ O ₂	Azido-(N,N'-bis(3,5-di-t-butylsalicylidene)cyclohexyl-1,2-di-iminato)-	D.J. Darensbourg, D.R. Billodeaux (2004) C.R. Chim.,

		gallium(iii)	7, 755
BIMPAP	GaN_3O_2	Azido-(N,N'-bis(3,5-di-t-butylsalicylidene)ethylene-1,2-di-iminato)-	D.J. Darensbourg, D.R. Billodeaux (2004) C.R. Chim.,
		gallium(iii)	7, 755
CAJXUI	$GaCl_2NO_2$	$bis(\mu 2-2-(dimethylamino)ethanolato)-tetrachloro-di-gallium$	C.E.Knapp, D.Pugh, P.F.McMillan, I.P.Parkin,
			C.J.Carmalt (2011) Inorg.Chem., 50, 9491
CAXJIW	$GaCl_3S_2$	catena-[(µ2-1,4,8,11-Tetrathiacyclotetradecane)-trichloro-gallium(iii)]	K.George, M.Jura, W.Levason, M.E.Light, L.P.Ollivere,
			G.Reid (2012) Inorg.Chem. , 51, 2231
CESGEN	GaO₅	dodecakis(μ3-Propane-1,3-diolato-Ο,Ο,Ο',Ο')-dodecakis (μ2-	P. King, T.C. Stamatatos, K.A. Abboud, G. Christou
		hydrogenpropane-1,3-diolato-0,0,0')-hexakis(µ2-acetato-0,0')-	(2006) Angew. Chem., Int. Ed., 45, 7379.
		hexakis(nitrato-O)-octadeca-gallium(iii) hexanitrate acetonitrile solvate	
COHPEU01	$GaCl_3O_2$	catena-((µ2-1,4-Dioxane-O,O')-trichloro-gallium)	M.Bolte, M.Wagner, HW.Lerner (2000)Private
			Communication
CUWNUD01	GaCIN ₄	Chloro-phthalocyaninato-gallium	K.Yamasaki, O.Okada, K.Inami, K.Oka, M.Kotani,
			H.Yamada (1997) J.Phys.Chem.B ,101,13
DAXVOO	GaCIN ₄	Chloro-(tetrakis(1,2,5-thiadiazole)porphyrazinato)-gallium(iii)	M.P. Donzello, R. Agostinetto, S.S. Ivanova, M.
			Fujimori, Y. Suzuki, H. Yoshikawa, Jing Shen, K.
			Awaga, C. Ercolani, K.M. Kadish, P.A. Stuzhin (2005)
			Inorg. Chem., 44, 8539
DEKPAL	GaFO ₄	catena-(tetrakis(µ6-Ethane-1,2-diphosphonato)-bis(µ2-fluoro)-	Zhanhui Yuan, W. Clegg, M.P. Attfield (2006) J. Solid
		dipyridylhexa-gallium)	State Chem., 179, 1739.
DEKPEP	GaFO ₄	catena-(bis(Pyridinium) bis(µ6-ethane-1,2-diphosphonato)-(µ4-	Zhanhui Yuan, W. Clegg, M.P. Attfield (2006) J. Solid
		ethane-1,2-diphosphonato)-bis(μ3-fluoro)-tetra-gallium)	State Chem., 179, 1739.
DIFQIS	GaNO ₄	catena-(Dihydroxo-(4-(4-pyridinium)pyridyl-N)-oxalato-	Ching-Yeh Chen, P.P.Chu, Kwang-Hwa Lii (1999)
		tetraphosphatopenta-gallium dihydrate)	Chem. Commun., 1473
DIVXEN	GaN ₃ O ₂	bis(2,6-dimethylphenolato)-(N,N'-((1H-pyrrole-2,5-	Yu-Tang Wang, Yi-Chien Lin, Shu-Ya Hsu, Ren-Yung
		diyl)bis(methylene))bis(2-methylpropan-2-aminato))-gallium	Chen, Pei-Hsin Liu, A.Datta, Chia-Her Lin, Jui-Hsien
			Huang(2013) J.Organomet.Chem. ,745,12
DOSGIC	GaFO ₄	1-Ethyl-3-methylimidazoium bis(µ3-t-butylphosphonato-O,O',O'')-	P.J.Byrne, D.S.Wragg, J.E.Warren, R.E.Morris, Dalton
		bis(µ3-fluoro)-tetrakis(µ2-hydrogen t-butylphosphonato-O,O')-(t-	Trans. (2009), 795
		butylphosphonato-O)-(hydrogen t-butylphosphonato-O)-tetra-gallium	
DUSTAM	GaN₅	Azido-(octaethyl-porphyrinato-N,N,N,N)-gallium(iii)	A. Coutsolelos, R. Guilard, A. Boukhris, C. Lecomte
			(1986) J. Chem. Soc., Dalton Trans., 1779.
EDIBIE	GaN ₄ O	Aqua-bis(2,6-diisopropyl-N-((pyridin-2-yl)methylene)aniline)-gallium	C.D.Cates, T.W.Myers, L.A.Berben (2012)
			Inorg.Chem., 51, 11891
EDIBUQ	GaN ₄ O	bis(2,6-diisopropyl-N-((pyridin-2-yl)methylene)aniline)-(2,2,6,6-	C.D.Cates, T.W.Myers, L.A.Berben (2012)
		tetramethyl piperidine-N-oxide)-gallium	Inorg.Chem., 51, 11891
EREHIS	GaClN ₂ O ₂	Chloro-bis(3-dimethylamino-1,1,1-trifluoro-2-trifluoromethylpropan-2-	Yun Chi, Tsung-Yi Chou, Yi-Jen Wang, Shu-Fen Huang,
		olato)-gallium	A.J.Carty, L.Scole.s, K.A.Udachin, Shie-Ming Peng,
			Gene-Hsiang Lee (2004) Organometallics ,23,95
EREHOY	GaClN ₂ O ₂	Chloro-bis(1,1,1-trifluoro-4-methylimino-2-(trifluoromethyl)pentan-2-	Yun Chi, Tsung-Yi Chou, Yi-Jen Wang, Shu-Fen Huang,
		olato)-gallium	A.J.Carty, L.Scoles, K.A.Udachin, Shie-Ming Peng,
			Gene-Hsiang Lee (2004) Organometallics ,23,95
FEGBOI	GaN₄O	(Methylsulfonato-O)-(2,3,7,8,12,13,17,18-octaethylporphyrinato)-	A.Boukhris, C.Lecomte, A.Coutsolelos, R.Guilard
		gallium(iii)	(1986) J. Organomet. Chem. ,303,151
FILNUK	GaO ₅	catena-[(µ4-Phosphato)-glycine-gallium]	M.A.Hasnaoui, A.Simon-Masseron, V.Gramlich,
	2		J.Patarin, A.Bengueddach (2005) Eur.J.Inorg.Chem.
			,536
FOCVIC	GaCl ₃ N ₂	bis(Benzotriazole)-trichloro-gallium(iii)	S.Zanias, C.P.Raptopoulou, A.Terzis, T.F.Zafiropoulos
			(1999) Inorg. Chem. Commun. ,2, 48
FOVZOH	GaClN₄	Chloro-bis(N,N,N',N"-tetraisopropylguanidinato)-gallium	R.L.Melen, H.R.Simmonds, H.Wadepohl. P.T.Wood.
-	-		L.H.Gade, D.S. Wright (2014) Aust. J. Chem., 67, 1030

FUMPOT	Gal_2N_3	Diiodo-(N,N'-((pyridine-2,6-diyl)bis(phenylmethylylidene))bis(2,6-	T. Jurca, K. Dawson, I. Mallov, T. Burchell, G. P. A.Yap,
		diisopropyl aniline)-gallium radical	D. S. Richeson (2010) Dalton Trans. ,39,1266
GEDVUI	$GaCIN_2O_2$	$bis(\mu 2-1-[t-butyl(dimethyl)silyl]-2-phenylethylidene)-tetrakis(\mu 2-$	D.Pugh, P.Marchand, I.P.Parkin, C.J.Carmalt (2012)
		hydrido)-hydrido-tri-t-butyl-tetra-gallium	Inorg.Chem., 51, 6385
GEPKOB	GaCIN ₄	Chloro-(5,10,15,20-tetraphenylporphyrinato)-gallium(iii)	A.Coutsolelos, R.Guilard, D.Bayeul, C.Lecomte (1986)
			Polyhedron, 5, 1157.
GIHJAJ	$GaCl_2N_2S$	(2-Acetylpyridine N,N-dimethylthiosemicarbazonato-N,N',S)-dichloro-	C.R.Kowol, R.Berger, R.Eichinger, A.Roller,
		gallium(iii)	M.A.Jakupec, P.P.Schmidt, V.B.Arion, B.K.Keppler,
			J.Med.Chem. (2007), 50, 1254
HAXQIG	GaClH ₂ N ₂	Chloro-bis(quinuclidine)-dihydrido-gallium	Bing Luo, V.G.Young Junior, W.L.Gladfelter (1999)
			Chem. Commun.,123.
HAXQOM	$GaCl_2HN_2$	Dichloro-bis(quinuclidine)-hydrido-gallium	Bing Luo, V.G.Young Junior, W.L.Gladfelter (1999)
			Chem. Commun.,123.
HIZLIL	GaCIN ₂ P ₂	syn-Chloro-(2.2.6.6.8.8.12.12-octamethyl-4.10-diphenyl-2.6.8.12-	M.D.Fryzuk, G.R.Giesbrecht, S.J.Rettig (1998) Inorg.
		tetrasila-1,7,4,10-diazadiphosphacyclododecane-N,N',P,P')-gallium	Chem., 37, 6928.
IBEDALL	GaCIO	his/u3-1 1 3 3-Tetramethyldisiloxane-1 3-diolato-0 0 0' 0')-	C N McMahon S I Obrey A Keys S G Bott
IDED/10	666104	pentachlorotri-gallium	A.B.Barron (2000) J. Chem. Soc., Dalton Trans., 2151.
INOLIAD		Dichloro bic/2 E dimethylauridina) gallana	S Nogai A Schriewer H Schmidbaur (2002) Dalton
IKUHAK		Dichloro-bis(3,5-dimetriyipyhdine)-ganane	S.Nogal, A.Schnewer, H.Schmiddaur (2003) Daton
			IIdiis., 3105.
ISILOL	Gal ₂ N ₃	Diiodo-(4'-phenyl-2,2':6',2''-terpyridine)-gallium(iii) iodide acetonitrile	R.J.Baker, C.Jones, M.Kloth, D.P.Mills (2004) New J.
		solvate	Chem. (Nouv. J. Chim.), 28, 207.
ISIMIG	Gal_2N_3	(2,6-bis(1-(2,6-di-isopropylphenylimino)ethyl)pyridine)-diiodo-	R.J.Baker, C.Jones, M.Kloth, D.P.Mills (2004) New J.
		gallium(iii) tetraiodo-gallium	Chem. (Nouv. J. Chim.), 28, 207.
ITEHUL	$GaCIN_2S_2$	(N',N'''-Butane-2,3-diylidenebis(N-methylcarbamohydrazonothioato))-	R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A.
		chloro-gallium	Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L.
			Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S.
			I. Pascu (2011) Dalton Trans., 40, 6238
ITEJAT	GaClN ₂ S ₂	chloro-(N-methyl-N'-(2-	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A.
ITEJAT	GaCIN ₂ S ₂	chloro-(N-methyl-N'-(2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)-	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L.
ITEJAT	GaClN ₂ S ₂	chloro-(N-methyl-N'-(2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S.
ITEJAT	GaClN ₂ S ₂	chloro-(N-methyl-N'-(2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238
ITEJAT	GaCIN ₂ S ₂ GaCIN ₂ S ₂	chloro-(N-methyl-N'-(2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-(2-	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A.
ITEJAT	GaCIN ₂ S ₂ GaCIN ₂ S ₂	chloro-(N-methyl-N'-{2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-{2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)-	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L.
ITEJEX	GaCIN ₂ S ₂ GaCIN ₂ S ₂	chloro-(N-methyl-N'-(2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-(2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S.
ITEJAT	GaCIN ₂ S ₂ GaCIN ₂ S ₂	chloro-(N-methyl-N'-(2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-(2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238
ITEJAT ITEJEX IWEQEG	GaCIN ₂ S ₂ GaCIN ₂ S ₂ GaNO ₄	chloro-(N-methyl-N'-{2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-{2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(µ4-Phosphato)-(µ2-4,4'-bipyridine)-di-gallium)	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003)
ITEJAT ITEJEX IWEQEG	GaCIN ₂ S ₂ GaCIN ₂ S ₂ GaNO ₄	chloro-(N-methyl-N'-{2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-{2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(µ4-Phosphato)-(µ2-4,4'-bipyridine)-di-gallium)	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252.
ITEJAT ITEJEX IWEQEG	GaCIN ₂ S ₂ GaCIN ₂ S ₂ GaNO ₄	chloro-(N-methyl-N'-(2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-(2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(µ4-Phosphato)-(µ2-4,4'-bipyridine)-di-gallium)	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252.
ITEJAT ITEJEX IWEQEG IWEQIK	GaCIN ₂ S ₂ GaCIN ₂ S ₂ GaNO ₄ GaNO ₄	chloro-(N-methyl-N'-{2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-{2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(µ4-Phosphato)-(µ2-4,4'-bipyridine)-di-gallium) catena-(bis(µ4-Arsenato)-(µ2-4,4'-bipyridine)-di-gallium)	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252.
ITEJAT ITEJEX IWEQEG IWEQIK	GaCIN ₂ S ₂ GaCIN ₂ S ₂ GaNO ₄ GaNO ₄	chloro-(N-methyl-N'-{2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-{2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(µ4-Phosphato)-(µ2-4,4'-bipyridine)-di-gallium) catena-(bis(µ4-Arsenato)-(µ2-4,4'-bipyridine)-di-gallium)	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252.
ITEJAT ITEJEX IWEQEG IWEQIK JARYOQ	GaClN ₂ S ₂ GaClN ₂ S ₂ GaNO ₄ GaNO ₄	chloro-(N-methyl-N'-{2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-{2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(μ4-Phosphato)-(μ2-4,4'-bipyridine)-di-gallium) catena-(bis(μ4-Arsenato)-(μ2-4,4'-bipyridine)-di-gallium) (tris(2-Mercaptobenzyl)amino)-{1-methylimidazolyl)-gallium(iii)	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D. A. Quarless Lunior, M. L.Welch (1998) Loorg
ITEJAT ITEJEX IWEQEG IWEQIK JARYOQ	GaClN ₂ S ₂ GaClN ₂ S ₂ GaNO ₄ GaNO ₄ GaN ₂ S ₃	chloro-(N-methyl-N'-{2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-{2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(μ4-Phosphato)-(μ2-4,4'-bipyridine)-di-gallium) catena-(bis(μ4-Arsenato)-(μ2-4,4'-bipyridine)-di-gallium) (tris(2-Mercaptobenzyl)amino)-(1-methylimidazolyl)-gallium(iii)	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg.
ITEJAT ITEJEX IWEQEG IWEQIK JARYOQ	GaCIN ₂ S ₂ GaCIN ₂ S ₂ GaNO ₄ GaNO ₄ GaN ₂ S ₃	chloro-(N-methyl-N'-(2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-(2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(µ4-Phosphato)-(µ2-4,4'-bipyridine)-di-gallium) catena-(bis(µ4-Arsenato)-(µ2-4,4'-bipyridine)-di-gallium) (tris(2-Mercaptobenzyl)amino)-(1-methylimidazolyl)-gallium(iii)	 I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902.
ITEJAT ITEJEX IWEQEG IWEQIK JARYOQ JASDEM	GaClN2S2 GaClN2S2 GaNO4 GaNO4 GaN2S3 GaN2O3	chloro-(N-methyl-N'-{2-(((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate(N-allyl-N'-(2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvatecatena-(bis(μ4-Phosphato)-(μ2-4,4'-bipyridine)-di-gallium)catena-(bis(μ4-Arsenato)-(μ2-4,4'-bipyridine)-di-gallium)(tris(2-Mercaptobenzyl)amino)-(1-methylimidazolyl)-gallium(iii)(tris(2-Hydroxybenzyl)amino)-(1-methylimidazolyl)-gallium(iii)	 I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon
ITEJAT ITEJEX IWEQEG IWEQIK JARYOQ JASDEM	GaClN ₂ S ₂ GaClN ₂ S ₂ GaNO ₄ GaNO ₄ GaN ₂ S ₃ GaN ₂ O ₃	chloro-(N-methyl-N'-{2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-{2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(μ4-Phosphato)-(μ2-4,4'-bipyridine)-di-gallium) catena-(bis(μ4-Arsenato)-(μ2-4,4'-bipyridine)-di-gallium) (tris(2-Mercaptobenzyl)amino)-(1-methylimidazolyl)-gallium(iii)	I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg.
ITEJAT ITEJEX IWEQEG IWEQIK JARYOQ JASDEM	GaClN ₂ S ₂ GaClN ₂ S ₂ GaNO ₄ GaNO ₄ GaN ₂ S ₃ GaN ₂ O ₃	chloro-(N-methyl-N'-{2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-{2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(μ4-Phosphato)-(μ2-4,4'-bipyridine)-di-gallium) catena-(bis(μ4-Arsenato)-(μ2-4,4'-bipyridine)-di-gallium) (tris(2-Mercaptobenzyl)amino)-(1-methylimidazolyl)-gallium(iii) (tris(2-Hydroxybenzyl)amino)-(1-methylimidazolyl)-gallium(iii)	 I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902.
ITEJAT ITEJEX IWEQEG IWEQIK JARYOQ JASDEM	GaCIN ₂ S ₂ GaCIN ₂ S ₂ GaNO ₄ GaNO ₄ GaN ₂ S ₃ GaN ₂ O ₃	chloro-(N-methyl-N'-(2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-(2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(μ4-Phosphato)-(μ2-4,4'-bipyridine)-di-gallium) catena-(bis(μ4-Arsenato)-(μ2-4,4'-bipyridine)-di-gallium) (tris(2-Mercaptobenzyl)amino)-(1-methylimidazolyl)-gallium(iii) (tris(2-Hydroxybenzyl)amino)-(1-methylimidazolyl)-gallium(iii)	 I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon
ITEJAT ITEJEX IWEQEG IWEQIK JARYOQ JASDEM	GaCIN ₂ S ₂ GaCIN ₂ S ₂ GaNO ₄ GaNO ₄ GaN ₂ S ₃ GaN ₂ O ₃	chloro-(N-methyl-N'-{2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-{2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(μ4-Phosphato)-(μ2-4,4'-bipyridine)-di-gallium) catena-(bis(μ4-Arsenato)-(μ2-4,4'-bipyridine)-di-gallium) (tris(2-Mercaptobenzyl)amino)-(1-methylimidazolyl)-gallium(iii) (tris(2-Hydroxybenzyl)amino)-(1-methylimidazolyl)-gallium(iii)	 I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902.
ITEJAT ITEJEX IWEQEG IWEQIK JARYOQ JASDEM	GaClN2S2 GaClN2S2 GaNO4 GaNO4 GaN2S3 GaN2O3 GaN04	chloro-(N-methyl-N'-{2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-{2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(μ4-Phosphato)-(μ2-4,4'-bipyridine)-di-gallium) catena-(bis(μ4-Arsenato)-(μ2-4,4'-bipyridine)-di-gallium) (tris(2-Mercaptobenzyl)amino)-(1-methylimidazolyl)-gallium(iii) (tris(2-Hydroxybenzyl)amino)-(1-methylimidazolyl)-gallium(iii)	 I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902.
ITEJAT ITEJEX IWEQEG IWEQIK JARYOQ JASDEM JASDIQ JASDIQ	GaCIN ₂ S ₂ GaCIN ₂ S ₂ GaNO ₄ GaNO ₄ GaN ₂ S ₃ GaN ₂ O ₃ GaNO ₄	 chloro-(N-methyl-N'-{2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-{2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(μ4-Phosphato)-(μ2-4,4'-bipyridine)-di-gallium) catena-(bis(μ4-Arsenato)-(μ2-4,4'-bipyridine)-di-gallium) (tris(2-Mercaptobenzyl)amino)-(1-methylimidazolyl)-gallium(iii) (tris(2-Hydroxybenzyl)amino)-(1-methylimidazolyl)-gallium(iii) (tris(2-Hydroxybenzyl)amino)-(dimethylformamido)-gallium(iii) 	 I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.E.Marsh (1990) Inorg. Chem., 28, 1449.
ITEJAT ITEJEX IWEQEG IWEQIK JARYOQ JASDEM JASDIQ JASLIYO1 JEQGUI	GaCIN ₂ S ₂ GaCIN ₂ S ₂ GaNO ₄ GaNO ₄ GaN ₂ S ₃ GaN ₂ O ₃ GaN ₂ O ₃ GaNO ₄	 chloro-(N-methyl-N'-{2- (((methylamino)(sulfanyl)methylene)hydrazono) acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-gallium dimethyl sulfoxide solvate (N-allyl-N'-{2- (((allylamino)(sulfanyl)methylene)hydrazono)acenaphthylen-1(2H)- ylidene)carbamohydrazonothioato)-chloro-gallium tetrahydrofuran solvate catena-(bis(μ4-Phosphato)-(μ2-4,4'-bipyridine)-di-gallium) catena-(bis(μ4-Arsenato)-(μ2-4,4'-bipyridine)-di-gallium) (tris(2-Mercaptobenzyl)amino)-(1-methylimidazolyl)-gallium(iii) (tris(2-Hydroxybenzyl)amino)-(1-methylimidazolyl)-gallium(iii) (tris(2-Hydroxybenzyl)amino)-(dimethylformamido)-gallium(iii) Chloro-bis(dihydrobis(pyrazolyl)borate-N,N')-gallium(iii) Dichloro-(bis(2-(N,N-dimethylamino)ethyl)amine)-gallium 	 I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 R. L. Arrowsmith, P. A. Waghorn, M. W. Jones, A. Bauman, S. K. Brayshaw, Z. Hu, G. Kociok-Kohn, T. L. Mindt, R. M. Tyrrell, S. W. Botchway, J. R. Dilworth, S. I. Pascu (2011) Dalton Trans., 40, 6238 Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. Ching-Yeh Chen, Kwang-Hwa Lii, A.J.Jacobson (2003) J. Solid State Chem., 172, 252. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.J.Motekaitis, A.E.Martell, S.A.Koch, JungWon Hwang, D.A.Quarless Junior, M.J.Welch (1998) Inorg. Chem., 37, 5902. R.E.Marsh (1990) Inorg. Chem., 28, 1449. Bing Luo, B.E. Kucera, W.L. Gladfelter (2006) Dalton

KAFMIP	$GaBr_3N_2$	bis(1H-benzotriazole)-tribromo-gallium(iii)	S. Zanias, G. S. Papaefstathiou, C. P. Raptopoulou, K. T. Papazisis, V. Vala, D. Zambouli, A. H. Kortsaris, D. A. Kyriakidis, T. F. Zafiropoulos (2010) Bioinorg. Chem.
			Appl., 2010, 168030
KAFMOV	$GaCl_3N_2$	bis(2,1,3-benzothiadiazole)(trichloro)gallium	S. Zanias, G. S. Papaefstathiou, C. P. Raptopoulou, K.
			T. Papazisis, V. Vala, D. Zambouli, A. H. Kortsaris, D. A.
			Kyriakidis, T. F. Zafiropoulos (2010) Bioinorg. Chem.
			Appl., 2010, 168030
KARSOL	GaFN ₄	bis(µ2-Fluoro)-tris(octaethylporphyrin-gallium) bis(tetrafluoroborate)	R.Guilard, JM.Barbe, P.Richard, P.Petit, J.J.Andre,
		toluene solvate	C.Lecomte, K.M.Kadish (1989) J. Am. Chem. Soc., 111,
			4684.
KIXRAM	GaN₅	(nitrilotriethane-2,1-diyl)tris([(2,4,6-trimethylphenyl)sulfonyl]azanide)-	N.S.Sickerman, S.M.Peterson, J.W.Ziller, A.S.Borovik
		-amine-gallium(iii) unknown solvate	(2014) Chem. Commun., 50 , 2515
KOBKAN	GaN ₂ O ₃	Acetato-bis(2-methyl-8-oxyquinolinato)-gallium(iii)	H.Schmidbaur, J.Lettenbauer, O.Kumberger,
			J.Lachmann, G.Muller (1991) Z. Naturforsch., B:
KODKED	CaN O	Conceptate his/2 method 2 averaging lights) gallium/iii)	Clieffi. 301. ;40, 1003.
KOBKER	GaN ₂ O ₃	Cyanoacetato-bis(2-metnyi-8-oxyquinoiinato)-gailium(iii)	H.Schmidbaur, J.Lettenbauer, O.Kumberger,
			Chem Sci 46 1065
KOBKIV	GaNaOa	(u2-Succinato)-bic(bic/2-methyl-8-ovyguinolinato)-gallium/iii))	H Schmidhaur, Llettenhauer, O Kumherger
KODKIV	Gan ₂ O ₃	nitrohenzene solvate	Lachmann G Muller (1991) 7 Naturforsch B
			Chem. Sci. ,46, 1065.
KOSXEV	GaHN₄	bis(µ3-1,2-bis(Methylamino)ethane)-pentahydrido-tri-gallium	J.L.Atwood, S.G.Bott, C.Jones, C.L.Raston (1991)
			Inorg. Chem., 30, 4868.
KUPPIU	GaH ₃ N ₂	catena-((µ2-1,3-bis(Dimethylamino)propane)-gallane)	J. Lorberth, R. Dorn, S. Wocadlo, W. Massa, E.O.
			Gobel, T. Marschner, H. Protzmann, O. Zsebok, W.
			Stolz (1992) Adv. Mater., 4, 576
LAHPAL	GaCN ₄	Pentynyl-tetraphenylporphyrinato-gallium(iii)	A.L.Balch, L.Latos-Grazynski, B.C.Noll, S.L.Phillips,
			Inorg.Chem. (1993), 32, 1124
LAQLAR	GaH_2N_3	bis(2-(Dimethylamino)ethyl)amido-gallane	Bing Luo, B.E. Kucera, W.L. Gladfelter (2005)Chem.
			Commun., 3463
LAQLEV	GaH_2N_3	(µ2-bis(2-(Dimethylamino)ethyl)amido-N,N,N',N'')-di-gallane	Bing Luo, B.E. Kucera, W.L. Gladfelter (2005)Chem.
			Commun., 3463
LAZDIB	$GaCl_2NO_2$	$bis (\mu 2 \text{-} 1 \text{-} (2 \text{-} oxyethyl) \text{-} 3, 5 \text{-} dimethyl pyrazole}) \text{-} tetrachloro-di-gallium}$	L.Kalita, M.G.Walawalkar, R.Murugavel (2011)
			Inorg.Chim.Acta ,377,105
LEKBUA	GaCO ₄	Tetra-aqua-(1,3-bis(2,6-di-isopropylphenyl)-1,3-dihydro-2H-imidazol-2-	S.Tang, J.Monot, A.El-Hellani, B.Michelet, R.Guillot,
		ylidene)-gallium(iii) hexafluoroantimonate dichloromethane solvate	C.Bour, V.Gandon (2012) Chem. –EurJ., 18, 10239
		hydrate	
LOMVUE	$GaCl_2N_3$	Dichloro-(bis(2-diethylaminoethyl)amido-N,N',N'')-gallium	H.Sussek, O.Stark, A.Devi, H.Pritzkow, R.A.Fischer
			(2000) J. Organomet. Chem., 602, 29.
LOMWEP	GaN₅	bis(Azido)-(bis(2-diethylaminoethyl)amido-N,N',N'')-gallium	H.Sussek, O.Stark, A.Devi, H.Pritzkow, R.A.Fischer
			(2000) J. Organomet. Chem., 602, 29.
MEAGAL	GaHNO ₃	N-Methyldiethanolamino-gallane dimer	S.J. Rettig, A. Storr, J.T rotter (1974) Can. J. Chem.,
			52, 2206
MECMOX	GaN₅	(Dimethylamido)-bis(N,N"-diisopropyl-N',N'-dimethylguanidinato)-	A.P.Kenney, G.P.A.Yap, D.S.Richeson, S.T.Barry (2005)
		gallium	Inorg. Chem., 44, 2926.
MEOGAL	GaH_2NO_2	bis((µ2-N,N-Dimethylaminoethanoxo)-dihydrido-gallium)	S.J. Rettig, A. Storr, J. Trotter (1975) Can. J. Chem.,
			53, 58
MOGVOU	GaClN ₂ O ₂	Chloro-bis(1-(dimethylamino)propan-2-olato-N,O)-gallium	S.Basharat, C.E.Knapp, C.J.Carmalt, S.A.Barnett,
			D.A. Iocher, New J.Chem. (2008), 32, 1513
MOGVUA	$GaCl_2O_3$	bis(µ2-1-Methoxy-2-methylpropan-2-olato-0,0,0')-tetrachloro-di-	S.Basharat, C.E.Knapp, C.J.Carmalt, S.A.Barnett,
		gallium	D.A.Tocher, New J.Chem. (2008), 32, 1513

MOGWAH	$GaCIN_2O_2$	Chloro-bis(2-(dimethylamino)ethanolato-N,O)-gallium	S.Basharat, C.E.Knapp, C.J.Carmalt, S.A.Barnett, D.A.Tocher, New J.Chem. (2008), 32, 1513
MOLGAV	GaN₅	(3-Nitro-5,10,15-tris(pentafluorophenyl)corrolato)-pyridyl-gallium(iii) benzene solvate	I.Saltsman, A.Mahammed, I.Goldberg, E.Tkachenko, M.Botoshansky, Z.Gross (2002) J. Am. Chem. Soc., 124, 7411.
MOLGID	GaN₅	(2,3,17-Trinitro-5,10,15-tris(pentafluorophenyl)corrolato)- pyridylgallium(iii) dichloromethane hexane solvate	I.Saltsman, A.Mahammed, I.Goldberg, E.Tkachenko, M.Botoshansky, Z.Gross (2002) J. Am. Chem. Soc., 124, 7411.
MOMNOS	GaClP ₂ S ₂	Chloro-bis(diphenyl(2-thiophenyl)phosphine-P,S)-gallium tetrahydrofuran solvate	A.M.Valean, S.Gomez-Ruiz, P.Lonnecke, I.Silaghi- Dumitrescu, L.Silaghi-Dumitrescu, E.Hey-Hawkins, Inorg.Chem. (2008), 47, 11284
MQOCGA	$GaCIN_2O_2$	bis(2-Methyl-8-quinolinolato)-chloro-gallium(iii)	M.Shiro, Q.Fernando (1971) Anal. Chem., 43, 1222.
MUWNIC	GalS ₄	lodo-bis(tris(2-mercapto-1-t-butylimidazolyl)hydroborato-S,S')-gallium toluene solvate	K. Yurkerwich, D. Buccella, J. G. Melnick, G. Parkin (2010) Chemical Science, 1, 210
NALSOI02	${\sf GaN_4O}$	Hydroxy-phthalocyaninato-gallium	K.Inami, K.Oka, K.Daimon (1995) J. Imaging Sci. Technol., 39, 298.
NAYWAN	GaCIN ₄	Chloro-bis(2-(2,6-diisopropylphenyliminomethyl)pyridyl)-gallium	K.Kowolik, M.Shanmugam, T.W.Myers, C.D.Cates, L.A.Berben (2012) Dalton Trans. ,41,7969
NAYWIV	GaN₄S	Methylthiolato-bis(2-(2,6-diisopropylphenyliminomethyl)pyridyl)-	K.Kowolik, M.Shanmugam, T.W.Myers, C.D.Cates,
		gallium tetrahydrofuran solvate	L.A.Berben (2012) Dalton Trans. ,41,7969
NIKNOL	GaClN₄	Chloro-bis(N,N'-di-isopropylpropanamidinato-N,N')-gallium	A.L. Brazeau, G.A. DiLabio, K.A. Kreisel, W. Monillas,G.P.A. Yap, S.T. Barry (2007) Dalton Trans., 3297
NIWTOD01	GaCl ₃ N ₂	catena-[(μ2-Pyrazine)-tri-chloro-gallium(iii)]	T.N.Sevastianova, M.Bodensteiner, A.S.Lisovenko, E.I.Davydova, M.Scheer, T.V.Susliakova, I.S.Krasnova, Alexey Y.Timoshkin (2013) Dalton Trans., 42, 11589
NIXTUJ	$GaClN_2O_2$	(N,N'-Phenylenebis(3,5-di-t-butylsalicylidenealdiminato))-chloro-	M.S.Hill, D.A.Atwood (1998) Eur. J. Inorg. Chem., 67.
		gallium	
NIZZUS	GaN ₄ O	gallium (5,10,15,20-Tetraphenylporphyrinato)-(trifluoromethanesulfonato)- gallium(iii) toluene solvate	A.G.DiPasquale, J.M.Mayer, J.Am.Chem.Soc. (2008), 130, 1812
NIZZUS	GaN₄O GaPS₄	gallium (5,10,15,20-Tetraphenylporphyrinato)-(trifluoromethanesulfonato)- gallium(iii) toluene solvate Tetraphenylphosphonium (phenylbis(2-thiolatophenyl)phosphine- P,S,S')- (phenylbis(2-thiolatophenyl)phosphine-S,S')-gallium diglyme solvate	A.G.DiPasquale, J.M.Mayer, J.Am.Chem.Soc. (2008), 130, 1812 E.Fischer-Fodor, AM. Valean, P. Virag, P. Ilea, C. Tatomir, F. Imre-Lucaci. M.P. Screpler, L.T. Krausz, L.B. Tudoran, C.G. Precup, Iulia Lupan, E. Hey- Hawkins, L. Silaghi-Dumitrescu (2014) <i>Metallomics</i> ,
NIZZUS NUMFOR01 OLIGIZ	GaPS ₄ GaPCl ₂ O ₂	gallium (5,10,15,20-Tetraphenylporphyrinato)-(trifluoromethanesulfonato)- gallium(iii) toluene solvate Tetraphenylphosphonium (phenylbis(2-thiolatophenyl)phosphine- P,S,S')- (phenylbis(2-thiolatophenyl)phosphine-S,S')-gallium diglyme solvate (2-Allyl-3-ethoxycarbonyl-1-(2-hydroxyethyl)cyclopropyl)- dichlorogallium	A.G.DiPasquale, J.M.Mayer, J.Am.Chem.Soc. (2008), 130, 1812 E.Fischer-Fodor, AM. Valean, P. Virag, P. Ilea, C. Tatomir, F. Imre-Lucaci. M.P. Screpler, L.T. Krausz, L.B. Tudoran, C.G. Precup, Iulia Lupan, E. Hey- Hawkins, L. Silaghi-Dumitrescu (2014) <i>Metallomics</i> , S.Araki, T.Tanaka, T.Hirashita, J.Setsune (2003) Tetrahedron Lett., 44, 8001.
NIZZUS NUMFOR01 OLIGIZ OMUCUV	GaN4O GaPS4 GaCCl2O2 GaCIN2O2	gallium (5,10,15,20-Tetraphenylporphyrinato)-(trifluoromethanesulfonato)- gallium(iii) toluene solvate Tetraphenylphosphonium (phenylbis(2-thiolatophenyl)phosphine- P,S,S')- (phenylbis(2-thiolatophenyl)phosphine-S,S')-gallium diglyme solvate (2-Allyl-3-ethoxycarbonyl-1-(2-hydroxyethyl)cyclopropyl)- dichlorogallium Chloro-bis(quinoline-2-carboxylato)-gallium(iii)	 A.G.DiPasquale, J.M.Mayer, J.Am.Chem.Soc. (2008), 130, 1812 E.Fischer-Fodor, AM. Valean, P. Virag, P. Ilea, C. Tatomir, F. Imre-Lucaci. M.P. Screpler, L.T. Krausz, L.B. Tudoran, C.G. Precup, Iulia Lupan, E. Hey- Hawkins, L. Silaghi-Dumitrescu (2014) <i>Metallomics</i>, S.Araki, T.Tanaka, T.Hirashita, J.Setsune (2003) Tetrahedron Lett., 44, 8001. D. Dobrzynska, L. B. Jerzykiewicz, J. Bejczak, J. Wietrzyk, M. Switalska (2011) J. Coord. Chem., 64, 1082
NIZZUS NUMFOR01 OLIGIZ OMUCUV PEDFIO	GaN4O GaPS4 GaCCl2O2 GaCIN2O2 GaN2O3	gallium (5,10,15,20-Tetraphenylporphyrinato)-(trifluoromethanesulfonato)- gallium(iii) toluene solvate Tetraphenylphosphonium (phenylbis(2-thiolatophenyl)phosphine- P,S,S')- (phenylbis(2-thiolatophenyl)phosphine-S,S')-gallium diglyme solvate (2-Allyl-3-ethoxycarbonyl-1-(2-hydroxyethyl)cyclopropyl)- dichlorogallium Chloro-bis(quinoline-2-carboxylato)-gallium(iii) (N,N,N'-tris(2-oxy-3,5-bis(t-butyl)benzyl)-1,2-diaminobenzene)- gallium(iii) chloroform solvate	A.G.DiPasquale, J.M.Mayer, J.Am.Chem.Soc. (2008), 130, 1812 E.Fischer-Fodor, AM. Valean, P. Virag, P. Ilea, C. Tatomir, F. Imre-Lucaci. M.P. Screpler, L.T. Krausz, L.B. Tudoran, C.G. Precup, Iulia Lupan, E. Hey- Hawkins, L. Silaghi-Dumitrescu (2014) <i>Metallomics</i> , S.Araki, T.Tanaka, T.Hirashita, J.Setsune (2003) Tetrahedron Lett., 44, 8001. D. Dobrzynska, L. B. Jerzykiewicz, J. Bejczak, J. Wietrzyk, M. Switalska (2011) J. Coord. Chem., 64, 1082 M. Lanznaster, H.P. Hratchian, M.J. Heeg, L.M. Hryhorczuk, B.R. McGarvey, H.B. Schlegel, C.N. Verani (2006) Inorg. Chem.,45, 955.
NIZZUS NUMFOR01 OLIGIZ OMUCUV PEDFIO PEDFIO	GaN4O GaPS4 GaCCl2O2 GaClN2O2 GaN2O3 GaN2O3	gallium (5,10,15,20-Tetraphenylporphyrinato)-{trifluoromethanesulfonato}-gallium(iii) toluene solvate Tetraphenylphosphonium (phenylbis(2-thiolatophenyl)phosphine-P,S,S')- (phenylbis(2-thiolatophenyl)phosphine-S,S')-gallium diglyme solvate (2-Allyl-3-ethoxycarbonyl-1-(2-hydroxyethyl)cyclopropyl)-dichlorogallium Chloro-bis(quinoline-2-carboxylato)-gallium(iii) (N,N,N'-tris(2-oxy-3,5-bis(t-butyl)benzyl)-1,2-diaminobenzene)-gallium(iii) chloroform solvate (2,6-Diphenylphenolato-IDO)-bis(2-methylquinolin-8-olato-ID2N,O)-gallium(iii)	 A.G.DiPasquale, J.M.Mayer, J.Am.Chem.Soc. (2008), 130, 1812 E.Fischer-Fodor, AM. Valean, P. Virag, P. Ilea, C. Tatomir, F. Imre-Lucaci. M.P. Screpler, L.T. Krausz, L.B. Tudoran, C.G. Precup, Iulia Lupan, E. Hey- Hawkins, L. Silaghi-Dumitrescu (2014) <i>Metallomics</i>, S.Araki, T.Tanaka, T.Hirashita, J.Setsune (2003) Tetrahedron Lett., 44, 8001. D. Dobrzynska, L. B. Jerzykiewicz, J. Bejczak, J. Wietrzyk, M. Switalska (2011) J. Coord. Chem., 64, 1082 M. Lanznaster, H.P. Hratchian, M.J. Heeg, L.M. Hryhorczuk, B.R. McGarvey, H.B. Schlegel, C.N. Verani (2006) Inorg. Chem.,45, 955. M. Rajeswaran, D.W. Place, J.C. Deaton, C.T. Brown, W.C. Lenhart (2007) Acta Crystallogr., Sect. E: Struct. Rep. Online, 63, m550.
NIZZUS NUMFOR01 OLIGIZ OMUCUV PEDFIO PEDFIO PEYDON	GaN4O GaPS4 GaCCl2O2 GaClN2O2 GaN2O3 GaN2O3	gallium (5,10,15,20-Tetraphenylporphyrinato)-(trifluoromethanesulfonato)-gallium(iii) toluene solvate Tetraphenylphosphonium (phenylbis(2-thiolatophenyl)phosphine-P,S,S')- (phenylbis(2-thiolatophenyl)phosphine-S,S')-gallium diglyme solvate (2-Allyl-3-ethoxycarbonyl-1-(2-hydroxyethyl)cyclopropyl)-dichlorogallium Chloro-bis(quinoline-2-carboxylato)-gallium(iii) (N,N,N'-tris(2-oxy-3,5-bis(t-butyl)benzyl)-1,2-diaminobenzene)-gallium(iii) chloroform solvate (2,6-Diphenylphenolato-型O)-bis(2-methylquinolin-8-olato-型2N,O)-gallium(iii) chloro-bis(5,7-dichloro-2-methylquinolin-8-olato)-gallium	 A.G.DiPasquale, J.M.Mayer, J.Am.Chem.Soc. (2008), 130, 1812 E.Fischer-Fodor, AM. Valean, P. Virag, P. Ilea, C. Tatomir, F. Imre-Lucaci. M.P. Screpler, L.T. Krausz, L.B. Tudoran, C.G. Precup, Iulia Lupan, E. Hey- Hawkins, L. Silaghi-Dumitrescu (2014) <i>Metallomics</i>, S.Araki, T.Tanaka, T.Hirashita, J.Setsune (2003) Tetrahedron Lett., 44, 8001. D. Dobrzynska, L. B. Jerzykiewicz, J. Bejczak, J. Wietrzyk, M. Switalska (2011) J. Coord. Chem., 64, 1082 M. Lanznaster, H.P. Hratchian, M.J. Heeg, L.M. Hryhorczuk, B.R. McGarvey, H.B. Schlegel, C.N. Verani (2006) Inorg. Chem., 45, 955. M. Rajeswaran, D.W. Place, J.C. Deaton, C.T. Brown, W.C. Lenhart (2007) Acta Crystallogr., Sect. E: Struct. Rep. Online, 63, m550. C.Bakewell, A.J.P.White, N.J.Long, C.K.Williams (2013) <i>Inorg.Chem.</i>, 52,12561
NIZZUS NUMFOR01 OLIGIZ OMUCUV PEDFIO PEDFIO PEYDON PIQHII PIQHOO	GaN4O GaPS4 GaCCl2O2 GaCIN2O2 GaN2O3 GaN2O3 GaN2O3	gallium(5,10,15,20-Tetraphenylporphyrinato)-(trifluoromethanesulfonato)- gallium(iii) toluene solvateTetraphenylphosphonium (phenylbis(2-thiolatophenyl)phosphine- P,5,5')- (phenylbis(2-thiolatophenyl)phosphine-S,5')-gallium diglyme solvate(2-Allyl-3-ethoxycarbonyl-1-(2-hydroxyethyl)cyclopropyl)- dichlorogallium(2-Allyl-3-ethoxycarbonyl-1-(2-hydroxyethyl)cyclopropyl)- dichlorogallium(2-Allyl-3-ethoxycarbonyl-1-(2-hydroxyethyl)cyclopropyl)- dichlorogallium(2-Allyl-3-ethoxycarbonyl-1-(2-hydroxyethyl)cyclopropyl)- dichlorogallium(2-Allyl-3-ethoxycarbonyl-1-(2-hydroxyethyl)cyclopropyl)- dichlorogallium(2-Allyl-3-ethoxycarbonyl-1-(2-hydroxyethyl)cyclopropyl)- dichlorogallium(2-Allyl-3-ethoxycarbonyl-1-(2-hydroxyethyl)cyclopropyl)- dichlorobis(quinoline-2-carboxylato)-gallium(iii)(10-o-bis(quinoline-2-carboxylato)-gallium(iii)(10-o-bis(quinoline-2-carboxylato)-gallium(iii)(2,6-Diphenylphenolato-DO)-bis(2-methylquinolin-8-olato-D2N,O)- gallium(iii)chloro-bis(5,7-dichloro-2-methylquinolin-8-olato)-galliumbis(5,7-dichloro-2-methylquinolin-8-olato)-galliumgallium	 A.G.DiPasquale, J.M.Mayer, J.Am.Chem.Soc. (2008), 130, 1812 E.Fischer-Fodor, AM. Valean, P. Virag, P. Ilea, C. Tatomir, F. Imre-Lucaci. M.P. Screpler, L.T. Krausz, L.B. Tudoran, C.G. Precup, Iulia Lupan, E. Hey- Hawkins, L. Silaghi-Dumitrescu (2014) <i>Metallomics</i>, S.Araki, T.Tanaka, T.Hirashita, J.Setsune (2003) Tetrahedron Lett., 44, 8001. D. Dobrzynska, L. B. Jerzykiewicz, J. Bejczak, J. Wietrzyk, M. Switalska (2011) J. Coord. Chem., 64, 1082 M. Lanznaster, H.P. Hratchian, M.J. Heeg, L.M. Hryhorczuk, B.R. McGarvey, H.B. Schlegel, C.N. Verani (2006) Inorg. Chem., 45, 955. M. Rajeswaran, D.W. Place, J.C. Deaton, C.T. Brown, W.C. Lenhart (2007) Acta Crystallogr., Sect. E: Struct. Rep. Online, 63, m550. C.Bakewell, A.J.P.White, N.J.Long, C.K.Williams (2013) <i>Inorg.Chem.</i>, 52, 12561

ΡΙΥΗΙΡ	GaN_2O_3	bis(2-Methyl-8-quinolinolato-N,O)-(1-phenyl-2-naphtholato)- gallium(iii)	J.C.Deaton, D.W.Place, C.T.Brown, M.Rajeswaran, M.E.Kondakova, Inorg.Chim.Acta (2008), 361, 1020
ΡΙΥΗΟΥ	GaN_2O_3	bis(2-Methyl-8-quinolinolato-N,O)-(2,6-bis(3',5'- difluorophenyl)phenolato)-gallium(iii)	J.C.Deaton, D.W.Place, C.T.Brown, M.Rajeswaran, M.E.Kondakova, Inorg.Chim.Acta (2008), 361, 1020
POBZAJ	GaFN ₂ O ₂	(N,N'-bis(2,6-Di-isopropylphenyl)acenaphthylene-1,2-diimine)-(3,6-di- tbutylbenzene-1,2-diolato)-fluoro-gallium	I.L.Fedushkin, A.A.Skatova, V.A.Dodonov, V.A.Chudakova, N.L.Bazyakina, A.V.Piskunov, S.V.Demeshko, G.K.Fukin (2014) Inorg. Chem., 53, 5159
POCWEK	GaN ₂ O ₃	bis(2-methylquinolin-8-olato)-(3,4,5-tris(tetradecyloxy)benzoato)- gallium(iii)	D.Pucci, I.Aiello, A.Bellusci, A.Crispini, I.De Franco, M.Ghedini, M.La Deda, Chem.Commun. (2008), 2254
PUQLUJ	GaCIN ₂ O ₂	Chloro-bis((R)-2-((1-phenylethylimino)methyl)phenolato-N,O)-gallium	J. M. Becker, J. Barker, G. J. Clarkson, R. van Gorkum, G. K. Johal, R. I. Walton, P. Scott (2010) Dalton Trans., 39, 2309
PUQMAQ	GaCIN ₂ O ₂	Chloro-bis((R)-2,4-dimethyl-6-((1- phenylethyl)iminomethyl)phenolato)-gallium	J. M. Becker, J. Barker, G. J. Clarkson, R. van Gorkum, G. K. Johal, R. I. Walton, P. Scott (2010) Dalton Trans., 39, 2309
QABVOE	GaOS ₄	bis(Diethyl dithiocarbamato)-isopropoxy-gallium	A.Keys, S.G.Bott, A.R.Barron (1998) J. Chem. Cryst., 28, 629.
QATMUT	GaN₅	(5,10,15-tris(Pentafluorophenyl)corrolato)-pyridine-gallium(iii) p- xylene solvate	J.Bendix, I.J.Dmochowski, H.B.Gray, A.Mahammed, L.Simkhovich, Z.Gross (2000) Angew. Chem., Int. Ed., 39, 4048.
QAYKOQ	GaClHN₃	bis((μ2-2,2-Dimethyl-3-dimethylaminopropylamido-N,N,N')- chlorohydrido-gallium)	Bing Luo, M.Pink, W.L.Gladfelter (2001) Inorg. Chem., 40, 307.
QEWCEB	GalO ₄	$bis (\mu 3-1, 2-diphenyle thene-1, 2-diolato)-pentaiodo-tri-gallium (iii)$	S.P. Green, C. Jones, A. Stasch, R.P. Rose (2007) New J. Chem. (Nouv. J. Chim.), 31, 127.
QORBOO	GaN₅	(5,10,15-tris(Heptafluoropropyl)corrolato-N,N',N'',N''')-(pyridine-N)- gallium(iii) heptane solvate	L.Simkhovich, I.Goldberg, Z.Gross (2000) J. Inorg. Biochem., 80, 235.
QOXROK	GaCl ₂ O ₃	bis(2-Hydroxyphenolato)-tetrachloro-di-gallium(iii) tetrahydrofuran solvatebis(µ2-Catecholato)-tetrachloro-di-gallium(iii) tetrahydrofuran solvate	E.S. Schmidt, A. Schier, N.W. Mitzel, H. Schmidbaur (2001) Z. Naturforsch., B: Chem. Sci., 56, 337.
QOXRUQ	GaClO ₄	bis(μ2-2,3-Dimethyl-3-hydroxybutan-2-olato)-tetrachloro-di- gallium(iii) tetrahydrofuran solvatebis(μ2-Pinacolato)-tetrachloro-di- gallium(iii) tetrahydrofuran solvate	E.S. Schmidt, A. Schier, N.W. Mitzel, H. Schmidbaur (2001) Z. Naturforsch., B: Chem. Sci., 56, 337.
RALTON	GaN₄O	(μ2-4,5-bis(2,8,13,17-Tetraethyl-3,7,12,18-tetramethylporphyrin-5- yl)anthracene)-bis(methoxy-gallium(iii)) methanol solvate	P.D. Harvey, N. Proulx, G. Martin, M. Drouin, D.J. Nurco, K.M. Smith, F. Bolze, C.P. Gros, R. Guilard (2001) Inorg. Chem., 40, 4134.
REKMIE	GaN₄O	(21-(4-t-Butylbenzenesulfonamido)-5,10,15,20- tetraphenylporphyrinato)-hydroxy-gallium(iii) methanol solvate hemihydrate	Wei-Zhi Shil, Kuan-Yu Cho, Ching-Wen Cheng, Jyh- Horung Chen, Shin-Shin Wang, Feng-Ling Liao, Jo-Yu Tung, Hsi-Ying Hsieh, S.Elango (2006) Polyhedron, 25, 1864.
ROQBAA	$GaCN_4$	(5,10,15,20-Tetra-p-anisylporphyrin)-vinyl-gallium benzene solvate	R.D.Arasasingham, A.L.Balch, M.M.Olmstead, S.L.Phillips, Inorg.Chim.Acta (1997), 263, 161
RUFPEN	GaClN₃O	tetrakis(μ3-Oxo)-dodecakis(μ2-pyrazolyl)-tetrachloro-octa-gallium tetrahydrofuran solvate	M.V. Capparelli, P. Hodge, B. Piggott (1997) Chem. Commun. , 937.
RUZPOS	GaN₄O	(2-Oxy-N-(5,10,15,20-tetraphenylporphin-21(23H)-yl)benzamidato)- gallium(iii) chloroform methanol solvate	Cheng-Hsiung Cho, Ting-Yuan Chien, Jyh-Horung Chen, Shin-Shin Wang, Jo-Yu Tung (2010) Dalton Trans., 39,2609
SERNIN	GaN_2O_3	bis(2-Methylquinolin-8-olato)-phenoxy-gallium(iii)	A. Crispini, I. Aiello, M. Le Deda, I. De Franco, M. Amati, F. Lelj, M. Ghedini (2006) Dalton Trans., 5124.
SERNOT	GaN_2O_3	bis(2-Methylquinolin-8-olato)-(4-cyanophenoxy)-gallium(iii)	A. Crispini, I. Aiello, M. Le Deda, I. De Franco, M. Amati, F. Lelj, M. Ghedini (2006) Dalton Trans., 5124.
SERNUZ	GaN ₂ O ₃	bis(2-Methylquinolin-8-olato)-(4-nitrophenoxy)-gallium(iii)	A. Crispini, I. Aiello, M. Le Deda, I. De Franco, M.

			Amati, F. Lelj, M. Ghedini (2006) Dalton Trans., 5124.
SLCDGA	$GaCIN_2O_2$	N,N'-Ethylene-bis(salicylideneiminato)-chloro-gallium(iii)	K.S. Chong, S.J. Rettig, A. Storr, J. Trotter (1981) Can.
		dichloromethane solvate	J. Chem., 59, 94.
SULIUE	GaN₄S	(Octaethylporphyrinato)-(2-(trifluoroacetamide)phenylthiolato)- gallium(iii) toluene solvate	T. Okamura, N. Nishikawa, N. Ueyama, A. Nakamura (1998) Chem. Lett., 199.
SULLEQ	GaN₄S	Octaethylporphyrinato-phenylthiolato-gallium(iii)	T. Okamura, N. Nishikawa, N. Ueyama, A. Nakamura (1998) Chem. Lett., 199.
TAGWII	GaBr ₃ O ₂	Tribromo-bis(tetrahydrofuran)-gallium	S.D. Nogai, H. Schmidbaur (2003) Dalton Trans., 2488.
TELCES	GaClN₄	Chloro-(2.3.7.8.12.13.17.18-octaethylporphinato)-gallium(iii)	K.E. Brancato-Buentello, A.G. Coutsolelos, W.R.
		dichloromethane solvate	Scheidt (1996) Acta Crystallogr., Sect. C: Cryst. Struct.
			Commun., 52, 2707
TEMXOY	GaN₄O	(Acetato-O)-(meso-5,10,15,20-tetraphenylporphyrinato)-gallium(iii)	Yu-Ying Hsieh, Yeong-Horng Sheu, I-Chih Liu, Chu-
			Chieh Lin, Jyh-Horung Chen, Shin-Shin Wang, Hann-
			Jenn Lin (1996) J. Chem. Cryst., 26, 203.
TISFAC	GaClO ₂ S ₂	Chloro-bis(benzoyl(thiobenzoyl)methane)-gallium(iii) chloroform	S. Bhattacharya, N. Seth, D.K. Srivastava, V.D. Gupta,
		solvate	H. Noth, M. Thomann-Albach (1996) J. Chem. Soc.,
			Dalton Trans., 2815.
TISFEG	GaClS ₄	Chloro-bis(N,N-dimethyldithiocarbamato)-gallium(iii)	S. Bhattacharya, N. Seth, D.K. Srivastava, V.D. Gupta,
			H. Noth, M. Thomann-Albach (1996) J. Chem. Soc.,
			Dalton Trans.,2815
TOHCEA	GaClN ₂ O ₂	(4,4'-(Butane-1,4-diylbis(nitrilo))bis(pent-2-en-2-olato))-chloro-gallium	P.Marchand, D.Pugh, I.P.Parkin, C.J.Carmalt (2014)
			ChemEur.J. ,
тонсок	GaHN ₂ O ₂	(4,4'-(Ethane-1,2-diylbis(nitrilo))bis(pent-2-en-2-olato))-hydrido-	P.Marchand, D.Pugh, I.P.Parkin, C.J.Carmalt (2014)
		gallium	ChemEur.J. ,
TOHCUQ	$GaHN_2O_2$	Hydrido-(4,4'-(propane-1,3-diylbis(nitrilo))bis(pent-2-en-2-olato))-	P.Marchand, D.Pugh, I.P.Parkin, C.J.Carmalt (2014)
		gallium	ChemEur.J. ,
TUBKEG	GalN ₄	Iodo-bis(N-methyl-2-(methylamino)troponiminato)-gallium(iii)	H.V.R. Dias, Wiechang Jin (1996) Inorg. Chem., 35,
			6546.
TUNZUX	GaClN ₂ S ₂	Chloro-(2,9-dimethyl-4,7-diazadecane-2,9-dithiolato-N,N',S,S')-	Yong Yong Zheng, Sunita Saluja, G.P.A. Yap, M.
		gallium(iii)	Blumenstein, A.L. Rheingold, K.C. Francesconi (1996)
			Inorg. Chem., 35, 6656.
UJUNUJ	GaN_2O_3	(2-(((6-(bis(3,5-di-t-butyl-2-(hydroxy)benzyl)amino)-1,10-	F. D. Lesh, R. Shanmugam, M. M. Allard, M.
		phenanthrolin-5-yl)imino)methyl)-4,6-di-t-butylphenolato)-gallium	Lanznaster, M. J. Heeg, M. T. Rodgers, J. M. Shearer,
		acetonitrile solvate	C. N. Verani (2010) Inorg. Chem., 49, 7226
UNAJAU	GaN ₄ O	(µ2-Hydroxo)-bis(2,3,7,8,12,13,17,18-octaethylporphyrinato)-aqua-	P.G. Parzuchowski, J.W. Kampf, E. Rozniecka, Y.
		digallium(iii) perchlorate	Kondratenko, E. Malinowska, M.E. Meyerhoff (2003)
			Inorg. Chim. Acta, 355, 302.
VAJCAL	$GaNO_2S_2$	4-Methylpyridinium bis(2-mercaptoacetato-O,S)-(4-methylpyridine)-	K.K. Banger, S.A. Duraj, P.E. Fanwick, A.F. Hepp, R.A.
		gallium(iii)	Martuch (2003) J. Coord. Chem., 56, 307.
VALCAN	$GaCl_2NO_2$	bis(Tetra-n-butylammonium) (μ2-N,N'-bis(3,5-di-t-butyl-2-	U. Beckmann, E. Bill, T. Weyhermuller, K. Wieghardt
		hydroxyphenyl)oxamide)-tetrachloro-di-gallium(iii)	(2003) Eur. J. Inorg. Chem., 1768.
VIKKIJ	$GaClN_2S_2$	Chloro-(1'-cyclohexyl-spiro-4-(1,1,8,8-tetraethyl-3,6-diazaoctane-1,8-	L.C. Francesconi, Bo-Li Liu, J.J. Billings, P.J. Carroll, G.
		dithiolato-S,S',N,N'))-gallium(iii) dimethylformamide solvate	Graczyk, H.F. Kung (1991) Chem. Commun., 94.
VIWXEF	GaN ₄ O	(5,10,15,20-Tetraphenylporphyrinato)-hydroxy-gallium(iii)	A.G.DiPasquale, J.M.Mayer, J.Am.Chem.Soc. (2008),
			130, 1812
VOBDIB	GaIN ₂ O ₂	bis(3-allyl-2,4-di-t-butyl-6-((2,6-diisopropylphenyl)imino)cyclohexa-	A.V.Piskunov, I.V.Ershova, G.K.Fukin, A.S.Shavyrin
		1,4-dien-1-olato)-iodo-gallium	(2013) Inorg. Chem. Commun., 38, 127
VURGEU	GaClN ₄	(Dibenzotetramethyltetra-aza(14)annulene-N,N',N'',N''')-chloro-	D.A. Atwood, V.O. Atwood, A.H. Cowley, J.L. Atwood,
		gallium(iii) benzene solvate	E. Roman (1992) Inorg. Chem., 31, 3871.
WEPQIT	GaClO ₂ Se ₂	Chloro-bis(N-(diethylcarbamoselenoyl)-4-nitrobenzenecarboximidato)-	A.Molter, F.Mohr (2013) Z.Naturforsch., B:Chem.Sci.
		gallium	,68,91

WEQSEQ	GaN ₄ O	(Acetato-O)-(N-tosylimido-meso-5,10,15,20-tetraphenylporphyrinato)- gallium(iii)	Jo-Yu Tung, Jyh-Iuan Jang, Chu-Chieh Lin, Jyh-Horung Chen, Lian-Pin Hwang (2000) Inorg. Chem., 39, 1106.
WUTRIM	GaN₅	bis(2-(Dimethylaminomethyl)pyrrolyl-N,N')-(2- (dimethylaminomethyl)pyrrolyl-N)-gallium	Ru-Ching Yu, Jui-Hsien Huang, Gene-Hsiang Lee, Shie- Ming Peng (2002) J. Chin. Chem. Soc. (Taipei), 49, 975.
WUYZIZ	GaHN₄	Hydrido-(5,10,15,20-tetraphenylporphyrinato)-gallium	Yaoyu Feng, Say-Leong Ong, Jiangyong Hu, Wun-Jern Ng (2003) Inorg. Chem. Commun., 6, 466.
XARYUL	GaHN₄	bis(N,N'-bis(2,6-di-isopropylphenyl)formamidinato)-hydrido-gallium	M.L. Cole, C. Jones, P.C. Junk, M. Kloth, A. Stasch (2005) Chem Eur. J., 11, 4482.
XAVFIJ	$GaCl_2N_3$	Dichloro-(N-(3-(dimethylamino)propyl)-N'- (trimethylsilyl)benzamidinato-N,N',N'')-gallium	D. Doyle, Y.K. Gunko, P.B. Hitchcock, M.F. Lappert (2000) J. Chem. Soc., Dalton Trans., 4093.
XEYJAN	GaN₄S	(N-ferrocenylbenzamide-2-thiolato)-(octaethylporphyrinato)-gallium acetonitrile toluene solvate	T. Okamura, T. Iwamura, H. Yamamoto, N. Ueyama (2007) J. Organomet. Chem., 692, 248.
XIDVIP	GaCO ₄	bis(Tropolonato-O,O')-(bis(trimethylsilyl)methyl)-gallium(iii)	W.Uhl, M.Prott, G.Geiseler, K.Harms, Z.Naturforsch.,B:Chem.Sci. (2002), 57, 141
XIPDEH	$GaCl_2N_3$	Dichloro-(N,N'-(1H-isoindole-1,3(2H)-diylidene)dipyridin-2-aminato)- gallium	J.D.Dang, T.P.Bender (2013) Inorg. Chem. Commun., 30,147
XITXUT	$GaCl_3O_2$	Trichloro-bis(tetrahydrofuran)-gallium	M. Nieger, F. Thomas (2002) Private Communication.
XORGIV	GaO₅	catena-(bis(µ2-Ethoxo)-ethoxy-gallium(iii))	E.V.Suslova, N.Ya.Turova, A.S.Mityaev, A.V.Kepman, S.Gohil, Zh.Neorg.Khim.(Russ.)(Russ.J.Inorg.Chem.) (2008), 53, 725
XOVBOB	$GaClO_2S_2$	chlor-bis(pyridine-2-thiol N-oxide)-gallium(iii)	I. Machado, L.B. Marino, B. Demoro, G.A. Echeverria, O.E. Piro, C.Q.F. Leite, F.R. Pavan, D. Gambino (2014) Eur. J. Med. Chem., 87, 267
YASMIP	GaCIN ₂ O ₂	Chloro-(N,N'-ethylenedi-iminobis(acetylacetonato))- gallium(iii)gallium(acacen)chloride	J.K. Vohs, D.O. Miller, D.R. Denomme, J.W. Ziller, B.D. Fahlman (2005) Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 61, m287.
YEMWES	GaN₅	bis((µ2-N,N,N-tris(2-Methylaminoethyl)amine-N,N,N',N'',N''')-gallium)	J. Pinkas, T. Wang, R.A. Jacobson, J.G. Verkade (1994) Inorg. Chem., 33, 5244.
YICLUS	$GaCl_2N_2S$	Dichloro-((E)-1-(1-(pyridin-2-yl)ethylidene) thiosemicarbazonato- N,N',S)-gallium(iii)	Ying-Ju Fan, Jian-Ping Ma, Zhong-Xi Sun (2007)Acta Crystallogr., Sect. E: Struct. Rep. Online, 63, m1540
YOSLAV	GaBrN ₂ O ₂	bis(2,4-di-t-butyl-6-((2,6-diisopropylphenyl)amino)phenolato)- bromogallium diethyl ether solvate	A.V.Piskunov, I.V.Ershova, G.K.Fukin (2014) Izv.Akad.Nauk SSSR, Ser. Khim. (Russ.) (Russ. Chem. Bull.), 916
YUTBIZ	GaClN ₂ O ₂	Chloro-(2,2'-((2,2-dimethylpropane-1,3- diyl)bis((nitrilo)methylylidene))-bis(4-(2,2'-bithiophen-5- yl)phenolato))-gallium dichloromethane solvate	M. L. Mejia, G. Reeske, B. J. Holliday (2010) Chem. Commun., 46, 5355
YUTBOF	GaCIN ₂ O ₂	Chloro-(2,2'-((2,2-dimethylpropane-1,3- diyl)bis((nitrilo)methylylidene))-bis(4,6-di-t-butylphenolato))-gallium chloroform solvate	M. L. Mejia, G. Reeske, B. J. Holliday (2010) Chem. Commun., 46, 5355
ZUMWIN	$GaHN_2S_2$	bis(2-Diethylaminoethanethiolato-N,S)-hydrido-gallium	C. Jones, Fu Chin Lee, G.A. Koutsantonis, M.G. Gardiner, C.L. Raston (1996) J. Chem. Soc., Dalton Trans., 829.

Tabla A4.4- Compuestos de Ga(III) con I.C. 6.

CSD	Kernel	Nombre	Referencia
ABOZUM	GaN₃O₃	(tris(2-((5-Bromosalicyclidene)amino)ethyl)amine)-gallium(iii)	M.Figuet, M.T.Averbuch-Pouchot, A.du Moulinet
		methanol solvate	d'Hardemare, O.Jarjayes (2001) Eur.J.Inorg.Chem.,
			2089
ACACGA02	GaO_6	tris(Acetylacetonato)-gallium	M.Sultan, M.Mazhar, M.Zeller, A.D.Hunter (2005)

			Private Communication
ALANEG	GaO ₆	tris(µ2-3-(4-Bromophenyl)-1-(5-(3-(4-bromophenyl)-3-oxyacryloyl)-	M.Albrecht, S.Schmid, M.deGroot, P.Weis, R.Frohlich
		2,2-dimethyl-(1,3)dioxolan-4-yl)-3-hydroxypropenone)-di-gallium(iii) monohydrate	(2003) Chem.Commun. ,2526
ALETIV	$GaCl_2N_2O_2$	(Benzoato)-dichloro-bis(4-methylpyridine)-gallium 4-methylpyridine solvate	S. A. Duraj, A. F. Hepp, R. Woloszynek, J. D. Protasiewicz, M. Dequeant, Tong Ren (2011) Inorg. Chim. Acta, 365, 54
AMAJEE	GaN ₄ O ₂	(2,2'-(4,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1,7-	V. Kubicek, J. Havlickova, J. Kotek, G. Tircso, P.
		diyl) diacetato)-gallium perchlorate hemikis(perchloric acid) hydrate	Hermann, E. Toth, I. Lukes (2010) Inorg. Chem., 49, 10960
APIRUN	GaF_4N_2	catena-[(μ_2 -4,4'-Bipyridine-N,N')-(μ_2 -fluoro)-difluoro-gallium(iii)]	S. P. Petrosyants, A. B. Ilyukhin (2010) Zh. Neorg. Khim. (Russ.) (Russ. J. Inorg. Chem.), 55, 33
AQOKIA	GaO ₆	Dimethylammonium bis(N,N-dimethylformamide)-bis(5-hydroxy-2,6- dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylato)-gallium(iii) dimethylformamide solvate monohydrate	G.S.Papaefstathiou, S.Manessi, C.P.Raptopoulou, E.J.Behrman, T.F.Zafiropoulos (2004) Inorg. Chem. Commun. , 7, 69.
AQUZUH	GaO ₆	a-b"-tetrakis(4,5:4',5'-bis(Ethylenedithio)tetrathiafulvalenium) ammonium tris(oxalato)-gallium N-methyl-N-formylaniline solvate	H.Akutsu, A.Akutsu-Sato, S.S.Turner, P.Day, E.Canadell, S.Firth, R.J.H.Clark, J.Yamada, S.Nakatsuji (2004) Chem. Commun. ,18
ARABAW	GaO ₆	a-b"-tetrakis(4,5:4',5'-bis(Ethylenedithio)tetrathiafulvalenium) ammoniumtris(oxalato)-gallium phenylacetonitrile solvate	H.Akutsu, A.Akutsu-Sato, S.S.Turner, P.Day, E.Canadell, S.Firth, R.J.H.Clark, J.Yamada, S.Nakatsuji (2004) Chem. Commun. ,18
AREQUJ	GaN_2O_4	catena-((μ2-hydrogen phosphato)-(μ2-dihydrogen phosphato)-(2,2'- bipyridyl)-gallium)	Zin-En Lin, Jie Zhang, Yan-Qiong Sun, Guo-Yu Yang (2004) Inorg.Chem. ,43,797
ASUTEO	GaN_2O_4	(Acetato-O,O')-bis(2-(1,3-benzothiazol-2-yl)phenolato-N,O)- gallium(iii)	Yi-Ping Tong, Yan-Wen Lin (2010) Synth. Met., 160, 1662
BAMSEN	GaF_2N_4	catena-(Fluoro-phthalocyaninato-gallium(iii))	R.S.Nohr, K.J.Wynne (1981) Chem. Commun., 1210.
BAWRAU	GaN₅O	bis(μ2-3,3'-(3,7,12,17-tetramethyl-8,13-divinylporphyrin-2,18-diyl) dipropanoato)-dipyridine-di-gallium benzene solvate	D.S.Bohle, E.L.Dodd (2012) Inorg.Chem., 51, 4411
BEFNOP01	GaN_2O_4	bis(3,5-Di-t-butyl-1,2-quinone-1-(2-oxy-3,5-di-t-butylphenyl)imine- N,O,O') -gallium(iii)	M.A.Brown, J.A.Castro, B.R.McGarvey, D.G.Tuck (1999) Can.J.Chem. ,77,502
BIMBAB	GaN ₆	bis(N-(2-(4-Imidazolyl)ethyl)pyridine-2-carboxamide)-gallium(iii) chloride dihydrate	A.Manessi, G.S.Papaefstathiou, C.P.Raptopoulou, A.Terzis, T.F.Zafiropoulos (2004) J. Inorg. Biochem., 98, 2052.
BIMBEF	GaN_4O_2	tetrakis((µ2-N-(2-(4-Imidazolyl)ethyl)pyridine-2-carboxamide)- (acetylacetonato)-gallium(iii)) hydrate	A.Manessi, G.S.Papaefstathiou, C.P. Raptopoulou, A.Terzis, T.F.Zafiropoulos (2004) J.Inorg.Biochem. ,98,2052
BIPYGA10	$GaCl_2N_4$	cis-Dichloro-bis(2,2'-bipyridyl)-gallium(iii) tetrachloro-gallium(iii)	R. Restivo, G.J. Palenik (1972) J. Chem. Soc., Dalton Trans., 341.
BIQREA	GaO ₆	catena-[bis(1,4-dimethylpiperazinediium) tetrakis(μ2-phosphito)- tetrakis(μ2-hydrogen phosphito)-bis(μ2-oxalato)-tetra-gallium]	Caixia Li, Liangliang Huang, Mingdong Zhou, Jing Xia, Hongwei Ma, Shuliang Zang, Li Wang (2013) <i>J.Solid</i> State Chem. , 208, 86
BIQRIE	GaO ₆	catena-[hemikis(1,4-dimethylpiperazinediium) bis(μ3-phosphito)-(μ2- hydrogen phosphito)-(μ2-oxalato)-di-gallium]	Caixia Li, Liangliang Huang, Mingdong Zhou, Jing Xia, Hongwei Ma, Shuliang Zang, Li Wang (2013) <i>J.Solid</i> State Chem. , 208, 86
BOBZUP	GaO ₆	dodeca-potassium hexakis(µ2-3,3'-(naphthalene-1,5- diyldicarbamoyl)bis(6-((3,3-dimethylbutan-2-yl)carbamoyl)benzene- 1,2-diolato))-tetragallium tetrahydrofuran solvate	Chen Zhao, Qing-Fu Sun, W.M.Hart-Cooper, A.G.DiPasquale, F.Dean Toste, R.G.Bergman, K.N.Raymond (2013) <i>J.Am.Chem.Soc.</i> , 135 ,18802
BOQSOR	GaO ₆	tris(2,2,6,6-tetramethylheptane-3,5-dionato)-gallium	M.A.K.Ahmed, H.Fjellvag, Arne Kjekshus, D.S.Wragg (2013) <i>Z.Anorg.Allg.Chem.</i> , 639, 770
CAGJEA	$GaCl_2N_4$	(1,4,8,11-Tetra-azabicyclo(6.6.2)hexadecane)-dichloro- gallium(iii)chloride monohydrate	Weijun Niu, E.H.Wong, G.R.Weisman, R.D.Sommer, A.L.Rheingold (2002) Inorg. Chem. Commun.,5, 1.

CAJBIZ	${\sf GaN}_2{\sf O}_4$	bis(4-n-Butylpyridine-N)-(3,5-di-t-butylcatecholato-O,O')-(3,5-di-t-	M.A.Brown, A.A.El-Hadad, B.R.McGarvey, R.C.W.Sung,
		butyl-1,2-benzosemiquinonato-O,O')-gallium	A.K.Trikha, D.G.Tuck (2000) Inorg.Chim.Acta ,300,613
CALCUO	GaN ₂ O ₄	catena-((1S,2S)-Cyclohexane-1,2-diammonium bis(µ3-phosphato)-	Chia-Her Lin, Sue-Lein Wang (2001) Inorg. Chem., 40,
		(µ2-hydrogenphosphato)-((1S,2S)-1,2-diaminocyclohexane)-di-	2918.
		gallium)	
CAWTID	GaN ₂ O ₄	bis(Ethylene-bis((o-hydroxyphenyl)glycine)-gallium(iii)) hexa-aqua	P.E.Riley, V.L.Pecoraro, C.J.Carrano, K.N.Raymond
		magnesium trihvdrate	(1983) Inorg. Chem., 22, 3096.
	620	$h_{i}(u) = 2$ (dit hutulhannana 1 2 dialata) (2 (dit hutulhannana 1 2	
CEJWIZ	GaO ₆		
		diolato)-bis(diethyl ether)-di-gallium	Fukin (2012) Eur.J.Inorg.Chem. ,4318
CESGAJ	GaO ₆	decakis((µ2-Acetato-O,O')-bis(µ2-methoxo)-gallium) methanol solvate	P. King, T.C. Stamatatos, K.A. Abboud, G. Christou
			(2006) Angew. Chem., Int. Ed., 45, 7379.
CESGEN	GaO ₆	dodecakis(µ3-Propane-1,3-diolato-O,O,O',O')-dodecakis(µ2-	P. King, T.C. Stamatatos, K.A. Abboud, G. Christou
		hydrogenpropane-1,3-diolato-0,0,0')-hexakis(µ2-acetato-0,0')-	(2006) Angew. Chem., Int. Ed., 45, 7379.
		hexakis(nitrato-O)-octadeca-gallium(iii) hexanitrate acetonitrile	
		solvate	
CIMOLIK	620	trie(lide V., T.N. Deres, K.N. Deumond
CIVIQUE	GaO ₆	tris(µ2-1,3-bis((3-0x)-1-metriy)-2-0x0-1,2-diriydropyhdin-4-	
		yl)carboxamido)-2,2-dimethylpropane)-di-gallium chloroform	(1999)Angew.Chem.,Int.Ed. ,38,2878
		cyclohexanemethanol solvate	
CIMROF	GaO ₆	tris(µ3-1,3,5-tris(3-Methyl-5-oxy-1-phenylpyrazol-4-	D.W.Johnson, Jide Xu, R.W.Saalfrank, K.N.Raymond
		ylcarbonyl)benzene)-hexa-gallium dimethylformamide hexane solvate	(1999) Angew.Chem.,Int.Ed. ,38,2882
		hydrate	
CIWXIP	GaN ₃ O ₃	1,1,1-tris(((5-Methoxysalicylaldimino)methyl)ethane-N,O)-gallium	M.A.Green, M.J.Welch, J.C.Huffman (1984)
		, , , , , , , , , , , , , , , , , , ,	1 Am Chem Soc 106 3689
	0.01.11		
CLPYGA	GaCl ₂ N ₄	trans-Dichloro-tetrakis(pyridine)-gailium(iii) tetrachloro-gailium(iii)	I. Sinclair, R.W.H. Smail, I.J. Worrall (1981) Acta
			Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.,
			37.1290.
CMPMGA	GaCIN ₃ O ₂	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2-	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem.
CMPMGA	GaClN ₃ O ₂	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218
CMPMGA	GaClN ₃ O ₂ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr.,
CMPMGA COKFIR	GaClN₃O₂ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829
CMPMGA COKFIR	GaClN ₃ O ₂ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Yougo-Zanda, Jin Huang, E.Anokhina, Yinu Wang
CMPMGA COKFIR COMDOY	GaClN ₃ O ₂ GaO ₆ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-0,0',0'',0''')-(µ2-hydroxo)- pallium(iii) avridiae alethato]	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang,
CMPMGA COKFIR COMDOY	GaClN ₃ O ₂ GaO ₆ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate]	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535
CMPMGA COKFIR COMDOY CUBLOB	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaN ₄ S ₂	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)-	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro,
CMPMGA COKFIR COMDOY CUBLOB	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaN ₄ S ₂	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870
CMPMGA COKFIR COMDOY CUBLOB DARQIW	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaN ₄ S ₂ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27-	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.
CMPMGA COKFIR COMDOY CUBLOB DARQIW	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaN ₄ S ₂ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)-	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522
CMPMGA COKFIR COMDOY CUBLOB DARQIW	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaN ₄ S ₂ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''',O'''')-	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522
CMPMGA COKFIR COMDOY CUBLOB DARQIW	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522
CMPMGA COKFIR COMDOY CUBLOB DARQIW	GaCIN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N N N-tris(2-(3-(Methylaminocarbonyl)-2-	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522
CMPMGA COKFIR COMDOY CUBLOB DARQIW	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- owhonzamidolottyd)mino_O O',O''' O'''') gallium(iii) diathyd	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522
CMPMGA COKFIR COMDOY CUBLOB DARQIW	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- oxybenzamido)ethyl)amine-O,O',O'',O''',O'''')-gallium(iii) diethyl	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.Chem., 38, 4522
CMPMGA COKFIR COMDOY CUBLOB DARQIW	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- oxybenzamido)ethyl)amine-O,O',O'',O''',O'''')-gallium(iii) diethyl ether methanol solvate	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.Chem., 38, 4522
CMPMGA COKFIR COMDOY CUBLOB DARQIW DARQUI DARQUI	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- oxybenzamido)ethyl)amine-O,O',O'',O''',O'''',O'''')-gallium(iii) diethyl ether methanol solvate 2,6-Diaminopyridinium bis(2,6-pyridinedicarboxylato-O,O')-gallium(iii)	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.Chem., 38, 4522 H.Aghabozorg, F.Ramezanipour, P.D.Kheirollahi,
CMPMGA COKFIR COMDOY CUBLOB DARQIW DARQUI DARQUI	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- oxybenzamido)ethyl)amine-O,O',O'',O''',O'''',O'''')-gallium(iii) diethyl ether methanol solvate 2,6-Diaminopyridinium bis(2,6-pyridinedicarboxylato-O,O')-gallium(iii)	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.Chem., 38, 4522 H.Aghabozorg, F.Ramezanipour, P.D.Kheirollahi, A.A.Saei, A.Shokrollahi, M.Shamsipur, F.Manteghi,
CMPMGA COKFIR COMDOY CUBLOB DARQIW DARQUI DARQUI	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- oxybenzamido)ethyl)amine-O,O',O'',O''',O'''',O'''')-gallium(iii) diethyl ether methanol solvate 2,6-Diaminopyridinium bis(2,6-pyridinedicarboxylato-O,O')-gallium(iii) methanol solvate hydrate	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.Chem., 38, 4522 H.Aghabozorg, F.Ramezanipour, P.D.Kheirollahi, A.A.Saei, A.Shokrollahi, M.Shamsipur, F.Manteghi, J.Soleimannejad, M.A.Sharif (2006)
CMPMGA COKFIR COMDOY CUBLOB DARQIW DARQUI DARQUI	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- oxybenzamido)ethyl)amine-O,O',O'',O''',O'''')-gallium(iii) diethyl ether methanol solvate 2,6-Diaminopyridinium bis(2,6-pyridinedicarboxylato-O,O')-gallium(iii) methanol solvate hydrate	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.Chem., 38, 4522 H.Aghabozorg, F.Ramezanipour, P.D.Kheirollahi, A.A.Saei, A.Shokrollahi, M.Shamsipur, F.Manteghi, J.Soleimannejad, M.A.Sharif (2006) Z.Anorg.Allg.Chem., 632,147
CMPMGA COKFIR COMDOY CUBLOB DARQIW DARQUI DARQUI DEBVEM	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- oxybenzamido)ethyl)amine-O,O',O'',O''',O'''')-gallium(iii) diethyl ether methanol solvate 2,6-Diaminopyridinium bis(2,6-pyridinedicarboxylato-O,O')-gallium(iii) methanol solvate hydrate	 K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.Chem., 38, 4522 H.Aghabozorg, F.Ramezanipour, P.D.Kheirollahi, A.A.Saei, A.Shokrollahi, M.Shamsipur, F.Manteghi, J.Soleimannejad, M.A.Sharif (2006) Z.Anorg.Allg.Chem. ,632,147 Sa-Ying Li, Zhi-Hong Liu (2013) <i>Inorg.Chim.Acta</i>
CMPMGA COKFIR COMDOY CUBLOB DARQIW DARQIW DARQUI DEBVEM	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₂	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- oxybenzamido)ethyl)amine-O,O',O'',O''',O'''')-gallium(iii) diethyl ether methanol solvate 2,6-Diaminopyridinium bis(2,6-pyridinedicarboxylato-O,O')-gallium(iii) methanol solvate hydrate	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun., 40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.Chem., 38, 4522 H.Aghabozorg, F.Ramezanipour, P.D.Kheirollahi, A.A.Saei, A.Shokrollahi, M.Shamsipur, F.Manteghi, J.Soleimannejad, M.A.Sharif (2006) Z.Anorg.Allg.Chem., 632,147 Sa-Ying Li, Zhi-Hong Liu (2013) <i>Inorg.Chim.Acta</i> ,404,219
CMPMGA COKFIR COMDOY CUBLOB DARQIW DARQIW DARQUI DEBVEM DEFKIK02	GaCIN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- oxybenzamido)ethyl)amine-O,O',O'',O''',O'''',O'''')-gallium(iii) diethyl ether methanol solvate 2,6-Diaminopyridinium bis(2,6-pyridinedicarboxylato-O,O')-gallium(iii) methanol solvate hydrate	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun., 40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.Chem., 38, 4522 H.Aghabozorg, F.Ramezanipour, P.D.Kheirollahi, A.A.Saei, A.Shokrollahi, M.Shamsipur, F.Manteghi, J.Soleimannejad, M.A.Sharif (2006) Z.Anorg.Allg.Chem., 632,147 Sa-Ying Li, Zhi-Hong Liu (2013) <i>Inorg.Chim.Acta</i> ,404 ,219
CMPMGA COKFIR COMDOY CUBLOB DARQIW DARQIW DARQUI DEBVEM DEBVEM DEFKIKO2 DEKPAL	GaClN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaN ₂ O ₄ GaN ₂ O ₄	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- oxybenzamido)ethyl)amine-O,O',O'',O''',O'''',O'''')-gallium(iii) diethyl ether methanol solvate 2,6-Diaminopyridinium bis(2,6-pyridinedicarboxylato-O,O')-gallium(iii) methanol solvate hydrate	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.Chem., 38, 4522 H.Aghabozorg, F.Ramezanipour, P.D.Kheirollahi, A.A.Saei, A.Shokrollahi, M.Shamsipur, F.Manteghi, J.Soleimannejad, M.A.Sharif (2006) Z.Anorg.Allg.Chem. ,632,147 Sa-Ying Li, Zhi-Hong Liu (2013) <i>Inorg.Chim.Acta</i> ,404,219 Zhanhui Yuan, W. Clegg, M.P. Attfield (2006) J. Solid
CMPMGA COKFIR COMDOY CUBLOB DARQIW DARQIW DARQUI DEBVEM DEFKIK02 DEFKIK02	GaCIN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaN ₂ O ₄ GaN ₄ O ₂	 Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2-pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)-gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)-gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27-heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- oxybenzamido)ethyl)amine-O,O',O'',O''',O'''',O'''')-gallium(iii) diethyl ether methanol solvate 2,6-Diaminopyridinium bis(2,6-pyridinedicarboxylato-O,O')-gallium(iii) methanol solvate hydrate catena-((µ2-Dihydrogen pentaborato)-bis(ethylenediamine)-gallium catena-(tetrakis(µ6-Ethane-1,2-diphosphonato)-bis(µ2-fluoro)-dipyridylhexa-gallium) 	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.Chem., 38, 4522 H.Aghabozorg, F.Ramezanipour, P.D.Kheirollahi, A.A.Saei, A.Shokrollahi, M.Shamsipur, F.Manteghi, J.Soleimannejad, M.A.Sharif (2006) Z.Anorg.Allg.Chem. ,632,147 Sa-Ying Li, Zhi-Hong Liu (2013) <i>Inorg.Chim.Acta</i> ,404,219 Zhanhui Yuan, W. Clegg, M.P. Attfield (2006) J. Solid State Chem., 179, 1739.
CMPMGA COKFIR COMDOY CUBLOB DARQIW DARQIW DARQUI DEBVEM DEFKIK02 DEFKIK02 DEKPAL DEKPEP	GaCIN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaA ₂ O ₄ GaN ₄ O ₂ GaF ₂ O ₄	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- oxybenzamido)ethyl)amine-O,O',O'',O''',O'''')-gallium(iii) diethyl ether methanol solvate 2,6-Diaminopyridinium bis(2,6-pyridinedicarboxylato-O,O')-gallium(iii) methanol solvate hydrate catena-((µ2-Dihydrogen pentaborato)-bis(ethylenediamine)-gallium monohydrate) catena-(tetrakis(µ6-Ethane-1,2-diphosphonato)-bis(µ2-fluoro)- dipyridylhexa-gallium) catena-(bis(Pyridinium) bis(µ6-ethane-1,2-diphosphonato)-(µ4-	K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.Chem., 38, 4522 H.Aghabozorg, F.Ramezanipour, P.D.Kheirollahi, A.A.Saei, A.Shokrollahi, M.Shamsipur, F.Manteghi, J.Soleimannejad, M.A.Sharif (2006) Z.Anorg.Allg.Chem., 632,147 Sa-Ying Li, Zhi-Hong Liu (2013) <i>Inorg.Chim.Acta</i> ,404,219 Zhanhui Yuan, W. Clegg, M.P. Attfield (2006) J. Solid State Chem., 179, 1739.
CMPMGA COKFIR COMDOY CUBLOB DARQIW DARQIW DARQUI DEBVEM DEBVEM DEFKIK02 DEFKIK02 DEKPAL DEKPEP	GaCIN ₃ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaO ₆ GaN ₂ O ₄ GaN ₄ O ₂ GaF ₂ O ₄	Di-m-hydroxo-bis(chloro(methyl-(6-methyl-2-pyridylmethyl)-(2- pyridylmethyl)amine)gallium(iii)) chloride monohydrate tris(Ammonium) tris(oxalato)-gallium(iii) trihydrate catena-[(µ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(µ2-hydroxo)- gallium(iii) pyridine clathrate] bis(N4-Ethyl 2-pyridineformamide thiosemicarbazonato-N,N',S)- gallium(iii) nitrate dimethylsulfoxide solvate (62,162,252-Trioxy-5,7,15,17,24,26-hexaoxo-4,8,11,14,18,23,27- heptaaza-1-azonia-6,16,25(1,3)- tribenzenabicyclo(9.9.9)nonacosaphane-O,O',O'',O''',O'''')- gallium(iii) perchlorate dimethylformamidetetrahydrofuran solvate (N,N,N-tris(2-(3-(Methylaminocarbonyl)-2- oxybenzamido)ethyl)amine-O,O',O'',O''',O'''')-gallium(iii) diethyl ether methanol solvate 2,6-Diaminopyridinium bis(2,6-pyridinedicarboxylato-O,O')-gallium(iii) methanol solvate hydrate	 K.Dymock, G.J.Palenik, A.J.Carty (1972) Chem. Commun., 1218 N.Bulc, L.Golic, J.Siftar (1984), Acta Crystallogr., Sect.C: Cryst. Struct. Commun. ,40,1829 M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang, A.L.Jacobson, Inorg.Chem. (2008), 47, 11535 I.C.Mendes, M.A.Soares, R.G.dos Santos, C.Pinheiro, H.Beraldo, Eur.J.Med.Chem. (2009), 44, 1870 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg. Chem., 38, 4522 S.M.Cohen, S.Petoud, K.N.Raymond (1999) Inorg.Chem., 38, 4522 H.Aghabozorg, F.Ramezanipour, P.D.Kheirollahi, A.A.Saei, A.Shokrollahi, M.Shamsipur, F.Manteghi, J.Soleimannejad, M.A.Sharif (2006) Z.Anorg.Allg.Chem., 632,147 Sa-Ying Li, Zhi-Hong Liu (2013) <i>Inorg.Chim.Acta</i> A04,219 Zhanhui Yuan, W. Clegg, M.P. Attfield (2006) J. Solid State Chem., 179, 1739.

		acetate)-gallium(iii) hydrate	(2006) Polyhedron, 25, 3457.
DICLEH	GaN_4O_2	bis((µ2-Hydroxo)-bis(2,2'-bipyridyl)-gallium(iii)) tetranitrate methanol	G.S. Papaefstathiou, A. Sofetis, C.P. Raptopoulou, A.
		solvate hydrate	Terzis, G.A. Spyroulias, T.F. Zafiropoulos (2007) J. Mol.
			Struct., 837, 5
DICLIL	GaN ₄ O ₂	bis((µ2-Hydroxo)-bis(1,10-phenanthroline)-gallium(iii))	G.S. Papaefstathiou, A. Sofetis, C.P. Raptopoulou, A.
		tetranitratemethanol solvate	Terzis, G.A. Spyroulias, T.F. Zafiropoulos (2007) J. Mol.
			Struct., 837, 5
DICLOR	GaN ₃ O ₃	bis((µ2-Hydroxo)-aqua-(2,2';6',2''-terpyridyl)-gallium(iii)) tetranitrate	G.S. Papaefstathiou, A. Sofetis, C.P. Raptopoulou, A.
			Terzis, G.A. Spyroulias, T.F. Zafiropoulos (2007) J. Mol.
			Struct., 837, 5
DIFQIS	GaO ₆	catena-(Dihydroxo-(4-(4-pyridinium)pyridyl-N)-oxalato-	Ching-Yeh Chen, P.P.Chu, Kwang-Hwa Lii (1999)
		tetraphosphatopenta-gallium dihydrate)	Chem. Commun. ,1473
DIPCAI	GaN ₃ O ₃	tris(µ2-Hydroxo)-bis(1,4,7-trimethyl-1,4,7-triazacyclononane)-	R.Bhalla, C.Darby, W.Levason, S.K.Luthra,
		digallium(iii) tribromide dichloromethane solvate	G.McRobbie, Gillian Reid, G.Sanderson, Wenjian
			Zhang (2013) Chemical Science, 4, 381
DIPCOW	GaCl ₂ N ₂	Trichloro-(1.4.7-trimethyl-1.4.7-triazacyclononane)-galliun(iii)	R.Bhalla, C.Darby, W.Levason, S.K.Luthra,
			G.McRobbie. Gillian Reid. G.Sanderson. Wenijan
			Zhang (2013) Chemical Science, 4 , 381
DIPDIR01	GaFaNa	Trifluoro-(1 4 7-trimethyl-1 4 7-triazonane)-gallium tetrahydrate	K S Pedersen G Lorusso L I Morales
Dir Dirioi	6013113		T Weyhermueller S Piligkos S K Singh M Schau-
			Magnussen, G. Rajaraman, M. Evangelisti, J. Bendix
			(2014) Angew Chem. Int Ed. 53 ,2257
	620.	catena [(u/A Renzene 1 / dicarboxylate 0 0' 0'' 0''') (u/2 hydroxo)	M Vougo Zanda, lin Huang, E Anokhina, Yigu Wang
DONNAW	0006	gallium/iii) benzene-1 4-dicarboxylic acid clathrate	A Liacobson inorg Chem (2008) 47 11535
DOMNEA	6-0		A Marine Zende lie Hunge 5 Applicies View Mare
DONNEA	GaO ₆	catena-[(µ4-Benzene-1,4-dicarboxylato-0,0,0,0,0,0)-(µ2-nydroxo)-	M. Vougo-Zanda, Jin Huang, E. Anoknina, Xiqu Wang,
DONINIE	~ ~		A.E.Jacobson, morg.enem. (2008), 47, 11555
DONNIE	GaO ₆	catena-[(μ4-Benzene-1,4-dicarboxylato-O,O',O'',O''')-(μ2-hydroxo)-	M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang,
		gailium(iii) pyridine clathratej	A.L.Jacobson, Inorg.Chem. (2008), 47, 11535
DONRAB	GaN_4O_2	bis(4-((7-chloroquinolin-4-yl)amino)-N,N-diethylpentan-1-	E.L.Dodd, D.Scott Bohle (2014) Chem. Commun., 50,
		aminium)bis(µ2-3,3'-(3,7,12,17-tetramethyl-8,13-divinylporphyrin-	13765
		2,18-diyl)dipropanoato)-bis(methanol)-di-gallium(iii) methanol	
		solvate hydrate	
DOPJEY	GaO ₆	catena-(Cholinium 4,4'-(trimethylene)-dipiperidinium bis(μ3-	Pei-Ci Jhang, Ya-Ching Yang, Yi-Chun Lai, Wei-Ren Liu,
		phosphito)-(µ2-oxalato)-aqua-hydroxido-di-gallium hemihydrate)	Sue-Lein Wang, Angew.Chem.,Int.Ed. (2009), 48, 742
DOPJIC	GaO_6	catena-(Cholinium bis(µ3-phosphito)-(µ2-oxalato)-aqua-hydroxido-di-	Pei-Ci Jhang, Ya-Ching Yang, Yi-Chun Lai, Wei-Ren Liu,
		gallium hemihydrate)	Sue-Lein Wang, Angew.Chem.,Int.Ed. (2009), 48, 742
DOPJOI	GaO_6	catena-(hemikis(Cholinium) 4,4'-(trimethylene)-dipyridinium bis(μ 3-	Pei-Ci Jhang, Ya-Ching Yang, Yi-Chun Lai, Wei-Ren Liu,
		phosphito)-(µ2-oxalato)-aqua-hydroxido-di-gallium hemihydrate)	Sue-Lein Wang, Angew.Chem.,Int.Ed. (2009), 48, 742
DOPJUO	GaO ₆	catena-(Cholinium 4,4'-(trimethylene)-dipyridinium bis(μ 3-	Pei-Ci Jhang, Ya-Ching Yang, Yi-Chun Lai, Wei-Ren Liu,
		phosphito)-(µ2-oxalato)-aqua-hydroxido-di-gallium hemihydrate)	Sue-Lein Wang, Angew.Chem.,Int.Ed. (2009), 48, 742
DOQZUF	GaO ₆	$hexakis (\mu 4-C-butylpy rogallol [4] are ne)-tetra cosa aqua-do de ca-gallium$	Ping Jin, S.J.Dalgarno, C.Barnes, S.J.Teat, J.L.Atwood,
		cesium methanol solvate hydrate	J.Am.Chem.Soc. (2008), 130, 17262
DORBAO	GaO ₆	hexakis(µ4-C-butylpyrogallol[4]arene)-tetracosaaqua-dodeca-gallium	Ping Jin, S.J.Dalgarno, C.Barnes, S.J.Teat, J.L.Atwood,
		(nitrato)-silver acetonitrile acetone solvate hydrate	J.Am.Chem.Soc. (2008), 130, 17262
DORYEO	GaNO₅	catena-((μ4-Phosphate-O,O',O'',O''')-(μ3-hydrogen phosphate-	Ching-Yeh Chen, Fang-Rey Lo, Hsien-Ming Kao,
		O,O',O'')-(μ3-phosphate-O,O',O'')bis(μ2-dihydrogen phosphate-O,O')-	Kwang-Hwa Lii (2000) Chem. Commun.,1061
		diaquabis(4-(4-bipyridinium) pyridyl-N)-bis(hydrogen phosphate-O)-	
		tetra-gallium monohydrate)	
DOSGIC	GaF_2O_4	1-Ethyl-3-methylimidazoium bis(µ3-t-butylphosphonato-O,O',O'')-	P.J.Byrne, D.S.Wragg, J.E.Warren, R.E.Morris, Dalton
		bis(μ3-fluoro)-tetrakis(μ2-hydrogen t-butylphosphonato-O,O')-(t-	Trans. (2009), 795
		butylphosphonato-O)-(hydrogen t-butylphosphonato-O)-tetra-gallium	
DOTTEM	GaFO₅	catena-[(µ4-Benzene-1,4-dicarboxylato-0,0',0'',0''')-(µ2-hydroxo)-	M.Vougo-Zanda, Jin Huang, E.Anokhina, Xiqu Wang,

		gallium(iii) benzene-1,4-dicarboxylic acid clathrate]	A.L.Jacobson, Inorg.Chem. (2008), 47, 11535
DOXXAQ	GaN_3S_3	(1,4,7-tris(2-Mercaptoethyl)-1,4,7-triazacyclodecane-N,N',N'',S,S',S'')-	J.Notni, K.Pohle, J.A.Peters, H.Gorls, C.Platas-Iglesias,
		gallium(iii)	Inorg.Chem. (2009), 48, 3257
DOXXUK	GaN_3S_3	(1,4,7-tris(2-Mercaptoethyl)-9-methyl-1,4,7-triazacyclodecane-	J.Notni, K.Pohle, J.A.Peters, H.Gorls, C.Platas-Iglesias,
		N,N',N'',S,S',S'')-gallium(iii)	Inorg.Chem. (2009), 48, 3257
ECAGOE	GaN ₂ O ₄	hexakis((µ2-N'-Formylsalicylhydrazidato)-(ethanol)-gallium(iii))	Inhoe Kim, Byunghoon Kwak, Myoung Soo Lah (2001)
		ethanol solvate hydrate	Inorg.Chim.Acta ,317,12
ECAGUK	GaN ₂ O ₄	hexakis((µ2-N'-Acetylsalicylhydrazidato)-(methanol)-gallium(iii))	Inhoe Kim, Byunghoon Kwak, Myoung Soo Lah (2001)
		methanol solvate	Inorg.Chim.Acta ,317,12
ECAHAR	GaN ₂ O ₄	hexakis((µ2-N'-Propanoylsalicylhydrazidato)-(ethanol)-gallium(iii))	Inhoe Kim, Byunghoon Kwak, Myoung Soo Lah (2001)
		ethanol solvate	Inorg.Chim.Acta ,317,12
ECAHEV	GaN ₂ O ₄	hexakis((µ2-N'-Lauroylsalicylhydrazidato)-(ethanol)-gallium(iii))	Inhoe Kim, Byunghoon Kwak, Myoung Soo Lah (2001)
		ethanol solvate	Inorg.Chim.Acta ,317,12
ECOVUO	GaN ₄ O ₂	bis(2-((2-(9-bromo-7,12-dihydroindolo[3,2-d][1]benzazepin-6-	A. Dobrov, V.B. Arion, N. Kandler, W. Ginzinger, M.A.
		yl)hydrazono)methyl)phenolato-N,N',O)-gallium chloride methanol	Jakupec, A. Rufinska, N.G. von Keyserlingk, M.
		solvate	Galanski, C. Kowol, B.K. Keppler (2006) Inorg. Chem.,
			45, 1945
EDTAGA01	GaN ₂ O ₄	Aqua-(ethylenediaminetriacetato-acetic acid)-gallium(iii)	S.P.Petrosyants, A.B.Ilyukhin, Yu.A.Buslaev (1998)
			Zh.Neorg.Khim.(Russ.)(Russ.J.Inorg.Chem.) ,43,1816
EDTCGA01	GaS ₆	tris(N,N-Diethyldithiocarbamato-S,S')-gallium(iii)	U.Abram, S.Ritter (2000) Private Communication
EKIRUL	GaO ₆	trans-bis(2,4-Pentanedionato)-bis(tetrahydrofuran)-gallium(iii)	O.T. Beachley Junior, J.R. Gardinier, M.R. Churchill
		tetrachlorogallium	(2003) Organometallics, 22, 1145.
ETELAQ	GaN ₃ O ₃	mer-tris(Quinolin-8-olato)-gallium(iii)	M.Rajeswaran, V.V.Jarikov (2004) Acta Crystallogr.,
			Sect.E: Struct.Rep.Online ,60,m217
FADJEA	GaN ₂ O ₄	Di-potassium (ethylenediaminotetra-acetato-N,N',O,O',O'')-	A.B.Ilyukhin, S.P.Petrosyants (2001) Kristallografiya
		hydroxygallium(iii) hexahydrate	(Russ.) (Crystallogr.Rep.) ,46,845
FADJIE	GaN ₂ O ₄	1,4-Diphenyl-3-(phenylamino)-1,2,4-triazolium	A.B.Ilyukhin, S.P.Petrosyants (2001) Kristallografiya
		(ethylenediaminotetraacetato-N,N',O,O',O'',O''')-gallium(iii)	(Russ.) (Crystallogr.Rep.), 46, 845.
		tetrahydrate	
FALWAR01	GaO ₆	hexakis(dimethyl sulfoxide)-gallium(iii) triperchlorate	E.J.Chan, B.G.Cox, J.M.Harrowfield, M.I.Ogden,
			B.W.Skelton, A.H.White (2004) Inorg. Chim. Acta,
			357, 2365
FEBCOE	GaO ₆	tris(Trifluoroacetyl-acetylacetonato)-gallium	V.I.Lisoivan, S.A.Gromilov (1986) Zh. Neorg. Khim.
			(Russ.) (Russ.J.Inorg.Chem.) ,31,2539
FEGSUG	GaO ₆	bis(hexakis(N,N-Dimethylformamide-O)-gallium) tris(hexabromo-	T.Duan, H.Schnockel (2004) Z.Anorg.Allg.Chem. ,630,
		digallium) N,N-dimethylformamide solvate	2622
FEQQAU	GaO ₆	tetrakis(bis(Ethylenediothio)tetrathiafulvalene)	A.Akutsu-Sato, H.Akutsu, S.S.Turner, P.Day,
		tetraammoniumbis(tris(oxalato)-gallium(iii)) 18-crown-6	M.R.Probert, J.A.K.Howard, T.Akutagawa, S.Takeda,
		pentahydrate	T.Nakamura, T.Mori (2005) Angew. Chem., Int. Ed,
			44, 292.
FEYKEA	GaN_2O_4	catena-(bis(μ3-Hydrogen phosphato)-(μ2-fluoro)-aqua-fluoro-(1,10-	Yu-Lin Yang, Zhong-Cheng Mu, Wei Wang, Ling
		phenanthroline)-di-gallium)	Ye,Chao Chen, Zhuo Yi, Wen-Qin Pang (2004)
			Gaodeng Xuexiao Huaxue Xuebao (Chin.) (Chem. J.
			Chin. Univ. (Chinese Edition)), 25, 793
FINGIS	GaS ₆	tris(O-Ethylxanthato-S,S')-gallium(iii)	B.F.Hoskins, E.R.T.Tiekink, R.Vecchiet, G.Winter
			(1984) Inorg. Chim. Acta , 90, 197
FIVQOR	GaFO₅	catena-(sesquikis(Propane-1,3-diammonium) tetrakis(µ4-phosphato)-	T.Loiseau, G.Ferey, M.Haouas, F.Taulelle (2004)
		bis(µ2-fluoro)-(µ2-oxalato)-diaqua-penta-gallium)	Chem. Mater. ,16,5318
FIVTOU	GaN ₂ O ₄	catena-(bis(µ3-Hydrogen phosphato-O,O',O'')-(µ2-hydrogen	Zhi-En Lin, Jie Zhang, Shou-Tian Zheng, Guo-Yu Yang
		phosphato-O,O')-(1,10-phenanthroline-N,N')-di-gallium)	(2004) Microporous and Mesoporous Materials, 72,
			43

FOCMIV	GaO ₆	tris(3,6-di-t-butyl-1,8-diazatricyclo[6.2.2.02,7]dodeca-2,4,6-triene-4,5- diolato)-gallium tetrahydrofuran solvate	A.V.Piskunov, I.N.Meshcheryakova, A.V.Maleeva, A.S.Bogomyakov, G.K.Fukin, V.K.Cherkasov, G.A.Abakumov (2014) <i>Eur.J.Inorg.Chem</i> .
FOCMOB	GaO ₆	tris(3,6-di-t-butyl-1,8-diazatricyclo[6.2.2.02,7]dodeca-2,4,6-triene-4,5- diolato)-gallium	A.V.Piskunov, I.N.Meshcheryakova, A.V.Maleeva, A.S.Bogomyakov, G.K.Fukin, V.K.Cherkasov, G.A.Abakumov (2014) <i>Eur.J.Inorg.Chem</i> .
GACQIM	GaO ₆	bis(µ4-2-(oxymethyl)-2-phenylpropane-1,3-diolato)- hexakis(dipivaloylmethanato)-tetra-gallium(iii) diethyl ether solvate	E. Tancini, M. J. Rodriguez-Douton, L. Sorace, AL. Barra, R. Sessoli, A. Cornia (2010) ChemEur. J. , 16, 10482
GACQIM	GaO ₆	bis(µ4-2-(oxymethyl)-2-phenylpropane-1,3-diolato)- hexakis(dipivaloylmethanato)-tetra-gallium(iii) diethyl ether solvate	E. Tancini, M. J. Rodriguez-Douton, L. Sorace, AL. Barra, R. Sessoli, A. Cornia (2010) ChemEur. J. , 16, 10482
GAGRIQ	GaO ₆	tris(N-Nitroso-N-phenylhydroxylaminato-O,O')-gallium	K.Sardar, C.N.R.Rao (2004) Adv.Mater. ,16,425
GAVZIM	GaO ₆	tris(3-Hydroxy-1,2-dimethyl-4-pyridinonato-O,O')- gallium(iii)dodecahydrate	W.O.Nelson, T.B.Karpishin, S.J.Rettig, C.Orvig (1988) Inorg. Chem.,27, 1045
GEDWAO	GaN_4O_2	bis(µ2-Hydroxo)-tetrakis(2,2'-bipyridine-N,N')-di-gallium(iii) tetranitrate pentahydrate	P.C.Junk, B.W.Skelton, A.H.White (2006) Aust. J. Chem., 59, 147.
GEDWIW	$GaBr_2N_4$	Dibromo-bis(1,10-phenanthroline-N,N')-gallium(iii) hemikis(ammonium) sesquibromide tetrahydrate	P.C.Junk, B.W.Skelton, A.H.White (2006) Aust. J. Chem., 59, 147.
GEDWOC	GaN_4O_2	bis(µ2-Hydroxo)-tetrakis(2,2'-bipyridine-N,N')-di-gallium(iii) tetranitrate tetrahydrate	P.C.Junk, B.W.Skelton, A.H.White (2006) Aust. J. Chem., 59, 147.
GIDTIX	GaN_4O_2	(μ2-Chloranilato)-bis(tris(2-aminoethyl)amine)-di- gallium(iii)bis(tetraphenylborate) methanol solvate	Dong Guo, J.K. McCusker (2007) Inorg. Chem., 46, 3257
GIFQOC	GaN_4S_2	bis(acetylpyrazine N,N-dimethylthiosemicarbazonato-N,N',S)- gallium(iii)hexafluorophosphate	C.R. Kowol, R. Berger, R. Eichinger, A. Roller, M.A. Jakupec, P.P. Schmidt, V.B. Arion, B.K. Keppler (2007) J. Med. Chem., 50, 1254
GIFRAP	GaN ₄ S ₂	bis(acetylpyrazine N-pyrrolidinylthiosemicarbazonato-N,N',S)- gallium(iii) hexafluorophosphate chloroform solvate	C.R. Kowol, R. Berger, R. Eichinger, A. Roller, M.A. Jakupec, P.P. Schmidt, V.B. Arion, B.K. Keppler (2007) J. Med. Chem., 50, 1254
GIPBOW	GaO ₆	Tripotassium tris(catecholato-O,O')-gallium(iii) sesquihydrate	B.A.Borgias, S.J.Barclay, K.N.Raymond (1986) J. Coord. Chem.,15, 109
GIPBUC	GaO ₆	tris(Benzohydroxamato-O,O')-gallium monohydrate ethanol solvate	B.A.Borgias, S.J.Barclay, K.N.Raymond (1986) J. Coord. Chem.,15, 109
GIQGES01	GaN_4O_2	catena-[tetrakis(μ4-Phosphato)-dihydroxy-(1,4,8,11- tetraazacyclotetradecane)-penta-gallium fluorine clathrate]	D.Wragg, R.E.Morris (2001) J. Mater. Chem., 11, 513.
GOKSII	GaN_2O_4	Potassium ethylenediaminotetra-acetato-gallium(iii) dihydrate	S.P.Petrosyants, A.B.Ilyukhin, Yu.A.Buslaev (1998) Zh. Neorg. Khim. (Russ.) (Russ.J.Inorg.Chem.), 43, 1816.
GOKSOO*	GaN ₂ O ₄	Cesium ethylenediaminotetra-acetato-gallium(iii) dihydrate	S.P.Petrosyants, A.B.Ilyukhin, Yu.A.Buslaev (1998) Zh. Neorg. Khim. (Russ.) (Russ.J.Inorg.Chem.), 43, 1816.
GOKSUU*	GaN_2O_4	(2,2'-Bipyridinium) (ethylenediaminetetra-acetato)-gallium(iii) monohydrate	S.P.Petrosyants, A.B.Ilyukhin, Yu.A.Buslaev (1998) Zh. Neorg. Khim. (Russ.) (Russ.J.Inorg.Chem.), 43, 1816.
GOKTAB	GaN_3O_3	Potassium isothiocyanato-ethylenediamino(carboxymethyl)triacetato gallium (iii) monohydrate	S.P.Petrosyants, A.B.Ilyukhin, Yu.A.Buslaev (1998) Zh. Neorg. Khim. (Russ.) (Russ.J.Inorg.Chem.), 43, 1816.
GOKTEF	$GaFN_2O_3$	Potassium fluoro-(ethylenediaminetriacetato-acetic acid)-gallium(iii) monohydrate	S.P.Petrosyants, A.B.Ilyukhin, Yu.A.Buslaev (1998) Zh. Neorg. Khim. (Russ.) (Russ.J.Inorg.Chem.), 43, 1816.
GOKTIJ	$GaFN_2O_3$	bis(Tetramethylammonium) fluoro-(ethylenediaminetetra-acetato- N,N',O,O',O'')-gallium(iii) tetrahydrate	S.P.Petrosyants, A.B.Ilyukhin, Yu.A.Buslaev (1998) Zh. Neorg. Khim. (Russ.) (Russ.J.Inorg.Chem.), 43, 1816.
GUQTOC	GaN_4S_2	bis(2-acetylpyridine 4-methylthiosemicarbazonato)-gallium nitrate	J. Chan, A. L. Thompson, M. W. Jones, J. Peach (2010) Inorg. Chim. Acta, 363, 1140
GUQTUI	GaN_4S_2	bis(2-acetylpyridine 4-ethylthiosemicarbazonato)-gallium nitrate	J. Chan, A. L. Thompson, M. W. Jones, J. Peach (2010) Inorg. Chim. Acta, 363, 1140

GUQVAQ	${\sf GaN_4S_2}$	bis(2-acetylpyridine 4-phenylthiosemicarbazonato)-gallium	J. Chan, A. L. Thompson, M. W. Jones, J. Peach (2010) Inorg. Chim. Acta. 363, 1140
GUYBAD	GaO ₆	tris(3-Hydroxy-2-methyl-4H-pyran-4-onato-O,O')- galliumtris(Maltolato-O,O')-gallium	L.R.Bernstein, T.Tanner, C.Godfrey, B.Noll (2000) MetBased Drugs ,7, 33.
GUZNEU	${\sf GaN_4O_2}$	(1,12-bis(2-Hydroxy-3-ethylbenzyl)-1,5,8,12-tetra-azadodecane)- gallium(iii) perchlorate	S.E.Harpstrite, A.A.Beatty, S.D.Collins, A.Oksman, D.E. Goldberg, V.Sharma (2003) Inorg. Chem., 42, 2294.
HAKWUM	GaF_2O_4	catena-((μ6-Ethane-1,2-diphosphonato)-bis(μ2-fluoro)-diaqua-di- galliumdihydrate)	H.G. Harvey, A.C. Herve, H.C. Hailes, M.P. Attfield (2004)Chem. Mater., 16, 3756
HAKXEX01	GaF_2O_4	catena-((μ6-Benzene-1,4-bis(methylphosphonato))-bis(μ2-fluoro)- diaqua-di-gallium)	H.G.Harvey, A.C.Herve, H.C.Hailes, M.P.Attfield (2004) Chem. Mater.,16, 3756.
HASFIS	GaN ₃ O ₃	(μ2-2,6-bis((bis(pyridin-2-ylmethyl)amino)methyl)-4-t- butylphenolato)-dihydroxo-di-aqua-di-gallium triperchlorate acetonitrile solvate dihydrate	S.Svane, F.Kryuchkov, A.Lennartson, C.J.McKenzie, F. Kjeldsen (2012) Angew. Chem., Int.Ed., 51, 3216
HECXIW	GaO ₆	tris(3,6-Di-t-butylsemiquinonato)-gallium(iii)	C.W.Lange, B.J.Conklin, C.G.Pierpont (1994) Inorg. Chem., 33, 1276.
HEFTUH	GaO ₆	tris(Hexafluoroacetylacetonato)-gallium	B.Ballarin, G.A.Battiston, F.Benetollo, R.Gerbasi, M.Porchia, D.Favretto, P.Traldi (1994) Inorg. Chim. Acta , 217, 71.
HEGNAJ	GaN_3O_3	catena-((µ4-Phosphato)-(µ3-phosphato)-(diethylenetriamine- N,N',N'')-di-gallium monohydrate)	Chia-Her Lin, Ya-Ching Yang, Chun-Yu Chen, Sue-Lein Wang (2006) Chem. Mater., 18, 2095.
HEXGEX	GaO ₆	hexakis(µ2-4-methylbenzyloxo)-tris(4-methylbenzyloxy)-trimethyl- tetragallium(iii) tetrahydrofuran solvate	S. Basharat, W. Betchley, C.J. Carmalt, S. Barnett, D.A. Tocher, H.O. Davies (2007) Organometallics, 26, 403.
HEYJUS	GaO ₆	tris(µ2-1,1'-benzene-1,3-diylbis[3-(ferrocen-1-yl)-3-oxoprop-1-en-1- olato])-di-gallium chloroform diethyl ether solvate	M. Raja, R.G. Iyer, Chengeto Gwengo, D.L. Reger, P.J. Pellechia, M.D. Smith, A.E. Pascui (2013) Organometallics, 32, 95
HEYKED	GaO ₆	bis(2,3,4,6,7,8,9,10-Octahydropyrimido[1,2-a]azepin-1-ium) bis(trifluoromethanesulfonate) tris(µ2-1,1'-benzene-1,3-diylbis[3- (ferrocen-1-yl)-3-oxoprop-1-en-1-olato])-di-gallium chloroform solvate	M. Raja, R.G. Iyer, Chengeto Gwengo, D.L. Reger, P.J. Pellechia, M.D. Smith, A.E. Pascui (2013) Organometallics, 32, 95
HEZDEW	GaO ₆	Di-potassium (N,N'-([[2-([[3-oxy-1-methyl-2-oxo-1,2-dihydropyridin-4- yl)carbonyl]amino)ethyl)imino]diethane-2,1-diyl)bis[2,3-dioxy-N-(2- methoxyethyl)benzene-1,4-dicarboxamide])- gallium(iii)dimethylformamide solvate tetrahydrate	K.M.C. Jurchen, K.N. Raymond (2006) Inorg. Chem., 45, 1078
HICFIJ	GaFO₅	catena-(Piperazinedi-ium (μ3-selenito)-fluoro-(oxalato)-gallium(iii) monohydrate)	Mei-Ling Feng, Xiu-Ling Li, Jiang-Gao Mao (2007)Cryst.Growth Des. ,7,770
HIWFOK	GaN_2O_5	catena-[bis(μ2-biphenyl-2,2'-dicarboxylato)-(μ2-terephthalato)- bis(1,10-phenanthroline)-di-gallium monohydrate]	Xin Ming Wang, Rui Qing Fan, Liang Sheng Qiang, Wei Qi Li, Ping Wang, Hui Jie Zhang, Yu Lin Yang (2014) Chem. Commun., 50, 5023
HOBNUI	GaO ₆	catena-((μ2-iodato)-(μ2-diiodato)-(2,2'-bipyridine)-gallium iodic acid)	Xiaomin Liu, Guanghua Li, Bin Hu, Yang Yu, Yawei Hu, Minghui Bi, Zhan Shi, Shouhua Feng, Eur.J.Inorg.Chem. (2008), 2522
HOBPAQ	GaO ₆	catena-((μ2-iodato)-bis(iodato)-(1,10-phenanthroline)-gallium monohydrate)	Xiaomin Liu, Guanghua Li, Bin Hu, Yang Yu, Yawei Hu, Minghui Bi, Zhan Shi, Shouhua Feng, Eur.J.Inorg.Chem. (2008), 2522
HOBRIB	GaO ₆	tetrakis(bis(ethylenedithio)tetrathiafulvalene) potassium oxoniumtris(oxalato)-gallium bromobenzene solvate 1,2- dibromobenzene solvate	T.G.Prokhorova, L.I.Buravov, E.B.Yagubskii, L.V.Zorina, S.V.Simonov, R.P.Shibaeva, V.N.Zverev (2014) Eur.J.Inorg.Chem.,
HOBROH	GaO ₆	tetrakis(bis(ethylenedithio)tetrathiafulvalene) potassium oxonium tris(oxalato)-gallium bromobenzene solvate	T.G.Prokhorova, L.I.Buravov, E.B.Yagubskii, L.V.Zorina, S.V.Simonov, R.P.Shibaeva, V.N.Zverev (2014) Eur.J.Inorg.Chem.,
HODCAE	GaN_4O_2	(N-(1-(1,4,7,10-Tetra-azacyclododecane-4,7,10- triacetato)acetyl)phenylalanamide)-gallium(iii) trihydrate	A.Heppeler, S.Froidevaux, H.R.Macke, E.Jermann, M.Behe, P.Powell, M.Hennig (1999) ChemEur.J., 5,

			1974.
HOMRUX	GaO ₆	undecakis(Benzyl-trimethylammonium) hexakis(µ2-N,N'-bis(2,3-	M.D.Pluth, D.W.Johnson, G.Szigethy, A.V.Davis,
		dioxybenzoyl)naphthalene-1,5-diamine)-tetra-gallium(iii) benzyl-	S.J.Teat, A.G.Oliver, R.G.Bergman, K.N.Raymond,
		trimethylammonium clathrate acetone N,N-dimethylformamide unknown solvate	Inorg.Chem. (2009), 48, 111
HOMSEI	GaO ₆	Nona-potassium bis(decamethylcobaltocenium) hexakis(µ2-N,N'-	M.D.Pluth, D.W.Johnson, G.Szigethy, A.V.Davis,
		bis(2,3-dioxybenzoyl)naphthalene-1,5-diamine)-tetra-gallium(iii)	S.J.Teat, A.G.Oliver, R.G.Bergman, K.N.Raymond,
		decamethylcobaltocenium clathrate methanol solvate	Inorg.Chem. (2009), 48, 111
		heptacontahydrate	
HUCPEC	GaN ₆	(5,10,15-tris(pentafluorophenyl)-2,3,17-tris(iodo)corrole-21,22,23,-	J.Vestrid, Z.Gross, I.Goldberg (2014) Inorg.Chem. ,14,
		triyl)-bis(pyridine)-gallium unknown solvate	10536
HUNQIQ01	GaO ₆	b"-tetrakis(bis(Ethylenedithio)tetrathiafulvalene) hydroxonium	H.Akutsu, A.Akutsu-Sato, S.S.Turner, D.Le Pevelen,
		tris(oxalato-O,O')-gallium(iii) pyridine clathrate	P.Day, V.Laukhin, AK.Klehe, J.Singleton, D.A.Tocher,
			M.R.Probert, J.A.K.Howard (2002) J. Am. Chem. Soc.,
			124, 12430.
IBAVOX	GaN_2O_4	4,4'-Bipyridinium bis(ethylenediaminotetraacetato-gallium(iii))	S.P.Petrosyants, A.B.Ilyukhin (2004) Zh. Neorg. Khim.
		tetrahydrate	(Russ.) (Russ. J. Inorg. Chem.) , 49, 388.
IBAVUD	GaN_2O_4	Hexamethylenediammonium bis(ethylenediaminotetraacetato-	S.P.Petrosyants, A.B.Ilyukhin (2004) Zh. Neorg. Khim.
		gallium(iii)) tetrahydrate	(Russ.) (Russ. J. Inorg. Chem.) , 49, 388.
IBEZOF	GaO ₆	hexakis(µ2-1,1'-(1,4-Phenylene)-bis(1,3-hexanedionato))-	J.K.Clegg, L.F.Lindoy, B.Moubaraki, K.S.Murray,
		tetragallium(iii) tetrahydrofuran clathrate tetrahydrofuran solvate	J.C.McMurtrie (2004) Dalton Trans., 2417.
		hemihydrate	
ICICON	GaO ₆	$catena-[Propylene-1,3-diammonium\ octakis(\mu3-methylphosphonato)-$	Chia-Hui Lin, Kwang-Hwa Lii (2004) Inorg. Chem., 43,
		bis(μ2-oxalato)-hexa-gallium monohydrate]	6403.
INAPIX	GaN_2O_4	(µ2-oxo)-diaqua-bis(2,2'-(1,2-phenylenebis(nitrilomethylylidene))-	M. L. Mejia, J. H. Rivers, S. F. Swingle, Zheng Lu,
		bis(4-bromo-6-methoxyphenolato))-di-gallium methanol solvate	Xiaoping Yang, M. Findlater, G. Reeske, B. J. Holliday
		monohydrate	(2010) Main Group Chem., 9, 167
INAPOD	GaN_2O_4	Aqua-(methanol)-(2,2'-(1,2-phenylenebis((nitrilo)methylylidene))-	M. L. Mejia, J. H. Rivers, S. F. Swingle, Zheng Lu,
		bis(4-bromo-6-methoxyphenolato))-gallium nitrate methanol solvate	Xiaoping Yang, M. Findlater, G. Reeske, B. J. Holliday
		C ALSON	(2010) Main Group Chem., 9, 167
INAPUJ	GaN_2O_4	(2,2'-((2,2-dimethylpropane-1,3-diyl)bis(nitrilomethylylidene))-bis(4,6-	M. L. Mejia, J. H. Rivers, S. F. Swingle, Zheng Lu,
		di-tbutylphenolato))-(nitrato)-gallium toluene solvate	Xiaoping Yang, M. Findlater, G. Reeske, B. J. Holliday
			(2010) Main Group Chem., 9, 167
INAQUK	GaN_2O_4	(2,2'-((2,2-dimethylpropane-1,3-diyl)bis(nitrilomethylylidene))-bis(4-	M. L. Mejia, J. H. Rivers, S. F. Swingle, Zheng Lu,
		(2,2'-bithiophen-5-yl)phenolato))-(nitrato)-gallium	Xiaoping Yang, M. Findlater, G. Reeske, B. J. Holliday
			(2010) Main Group Chem., 9, 167
IRAJER	GaO ₆	catena-(2-(3-ammoniopropyl)propane-1,3-diammonium bis(µ4-	P.Ramaswamy, S.Mandal, S.Natarajan (2011) Inorg.
		phosphato)-bis(μ3-phosphato)-(μ2-oxalato)-(μ2-	Chim. Acta, 372, 136
		monohydrogenphosphato)-tetra-gallium dihydrate)	
ISEZAH	GaO ₆	catena-(Tetramethylammonium (μ3-hydrogen	H.G.Harvey, M.P.Attfield (2004) Chem. Mater.,16,
		methylenediphosphonato)-(µ3-methylenediphosphonato)-diaqua-di-	199.
		gailium)	
ISEZEL	GaO ₆	catena-(Pyridinium (μ3-methylenediphosphonato)-aqua-gallium)	H.G.Harvey, M.P.Attfield (2004) Chem. Mater.,16,
	Cell C	his/his/up (hudsoup) totachis/2 21 his midda -> 10 00 (001) 1 1 1	
ISILEB	GaN ₄ O ₂	bis(bis(μ2-Hydroxo)-tetrakis(2,2-bipyridine)-di-gallium(iii)) hexaiodo-	к.J.вакег, C.Jones, M.Kiotn, D.P.Mills (2004) New J.
	0.11.5		
ISILIF	GaN ₄ O ₂	DIS(μ2-Hydroxo)-tetrakis(2,2'-bipyridine)-di-gallium(iii) hexaiodide	к.J.Baker, C.Jones, M.Kloth, D.P.Mills (2004) New J.
101100	0 N		
ISIMOM	GaN ₆	trıs(z,z'-Вıругіdine)-gallıum(iii) triiodide acetonitrile solvate	к.J.Baker, C.Jones, M.Kloth, D.P.Mills (2004) New J.
			cnem. (Nouv. J. Cnim.), 28, 207.
ITAZEI	GaN ₆	(trıs(2-(((Pyrrol-2-yl)methylene)amino)ethyl)amine)-gallium(iii)	Xiaofan Ren, B.D.Alleyne, P.I.Djurovich, C.Adachi,
			I. I syba, R.Bau, M.E.Thompson (2004) Inorg. Chem.,

			43, 1697.
IWEQAC	GaN_2O_4	catena-((µ2-Fluoro)-bis(µ3-hydrogen phosphato)-aqua-fluoro-(2,2'-	Wen-Jung Chang, Chun-Yu Chen, Kwan-Hwa Lii (2003)
		bipyridine)-di-gallium)	J. Solid State Chem., 172, 6.
IWIJED	GaN ₃ O ₃	Aqua-hydroxy-(sulfato)-(2,2':6',2''-terpyridine)-gallium(iii)	A. Sofetis, G.S. Papaefstathiou, A. Terzis, C.P.
		monohydrate	Raptopoulou, T.F. Zafiropoulos (2004) Z. Naturforsch.,
			B: Chem. Sci., 59, 291.
JABLAZ	GaO ₆	tris(Hydrazinocarboxylato)-gallium monohydrate	B.Volavsek, A.Rahten (1986) Vestn. Slov. Kem. Drus.
			(Bull. Slovenian Chem. Soc.), 33, 141.
JADGEB	GaN ₆	catena-(tris(1,2-Diaminoethane)-gallium(iii) (μ2-diselenido)-	A.Fehlker, R.Blachnik, H.Reuter (1999) Z. Anorg. Allg.
		tetrakis(µ2-selenido)-(1,2-diaminoethane)-selenoxo-tri-gallium(iii)	Chem., 625, 1225.
		monohydrate)	
JASMEV	GaO ₆	tris(1-Ethyl-3-hydroxy-2-methyl-4-pyridinato-0,0')-gallium(iii)	W.O.Nelson, S.J.Rettig, C.Orvig (1989) Inorg. Chem.,
		dodecahydrate clathrate	28, 3153.
JAYTIM11	GaN ₂ O ₂	(1.4.7-Triazacyclononane-1.4.7-triacetato-N.N'.N".O.O'.O")-gallium(iii)	A.S.Batsanov, H.Puschmann (2005) Private
]-]	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Communication.
IEBCI IP	GaNaO	catena-((u2-Dibydrogen phosphate)-(u2-bydrogen phosphate)-(1 10-	Wen-lung Chang Pai-Ching Chang Hsien-Ming Kao
120001	6411204	phenanthroline)-gallium monohydrate)	Kwang-Hwa Lii (2005) J. Solid State Chem., 178, 3722.
IEBDAW/	GaN ₂ O ₄	catena-(his(u)3-Hydrogen phosphato)-his(dihydrogen phosphato)-	Wen-lung Chang, Pai-Ching Chang, Hsien-Ming Kao
JEDDAW	0411204	his(1.10-nhenanthroline)-di-gallium tribydrate)	Kwang-Hwa Lii (2005) Solid State Chem 178 3722
IECVE7	GaNIS	(1.4.7 tric/2 Marcaptoothul) 1.4.7 triczacyclopopapo N.N' N" S.S' S'')	D A Moore D E Eppwick M I Wolch (1990) Inorg
JEGTEZ	Gaiv ₃ 33	(1,4,7-tils(2-ivie) captoethyn=1,4,7-tilazacyclofionane-w,w,w, 5,5,5,7	Chem 29,672
	6-0		C Dhattacharria C Sirach V D Cursta (2002) L Charr
JINRONU1	GaO ₆	tris(1,3-Dipnenyipropane-1,3-dionato)-gailium(iii)	S.Bhattacharya, S.Singh, V.D.Gupta (2002) J. Chem.
			Cryst., 32, 299.
JIYHAB	GaN₃O₃	(1,4,7-Triazacyclononane-1,4,7-tris(5-hydroxy-2-(hydroxymethyl)-4H-	Chang-Tong Yang, S.G.Sreerama, Wen-Yuan Hsieh,
		pyran-4-one-6-methylene)-N,N',N'',O,O',O'')-gallium(iii) trihydrate	Shuang Liu, Inorg.Chem. (2008), 47, 2719
JOCFOX	GaNO₅	bis(µ3-(Pyridinium-2-yl)phosphonato-O,O',O'')-tetrakis(µ3-2-	C.R.Samanamu, M.M.Olmstead, J.L.Montchamp,
		pyridylphosphonato-N,O,O',O'')-bis(tetrahydrofuran)-tetra-aqua-	A.F.Richards, Inorg.Chem. (2008), 47, 3879
		dodecachloro-octa-gallium(iii) dinitrate tetrahydrofuran solvate	
JOCFUD	GaO ₆	catena-[bis(µ3-(Pyridinium-4-ylmethyl)phosphonato-0,0',0'')-hexa-	C.R.Samanamu, M.M.Olmstead, JL.Montchamp,
		aqua-di-gallium(iii) tetranitrate monohydrate]	A.F.Richards, Inorg.Chem. (2008), 47, 3879
JODJOB10	GaN_3O_3	(1,4,7-Triazacyclononane-1,4,7-triyl-tris(methylene(phenyl)	E.Cole, R.C.B.Copley, J.A.K.Howard, D.Parker,
		phosphinato)-O,O',O'',N,N',N'')-gallium(iii) pentahydrate	G.Ferguson, J.F.Gallagher, B.Kaitner, A.Harrison,
		\sim	L.Royle (1994)J.Chem.Soc.,Dalton Trans. ,1619
JODPOJ	GaN_4O_2	(2,2'-(propane-1,3-diylbis(((pyridin-2-yl)methyl)imino))diacetato)-	D.S.Kissel, Jan Florian, C.C.McLauchlan, A.W.Herlinger
		gallium hexafluorophosphate	(2014) Inorg.Chem. ,53,3404
JONLIJ	GaO ₆	catena-[hexakis(m-methanesulfonate)-di-gallium(iii)]	Neuschulz, Kai, Wickleder, Mathias S. (2014) Private
			Communication,
JOVMIQ	GaN_2O_4	bis(µ3-Hydroxo)-tetrakis(µ2-hydroxo)-decakis(5-t-butylpyrazole)-	P.Hodge, B.Piggott (1998) Chem. Commun., 1933.
		tetragalliumhexaiodide acetonitrile solvate	
JOVMIQ	GaN_3O_3	bis(µ3-Hydroxo)-tetrakis(µ2-hydroxo)-decakis(5-t-butylpyrazole)-	P.Hodge, B.Piggott (1998) Chem. Commun., 1933.
		tetragalliumhexaiodide acetonitrile solvate	
JUTVUP	GaO ₆	Tri-potassium (tris(N,N'-diethyl-2,3-	T.B.Karpishin, T.D.P.Stack, K.N.Raymond (1993) J. Am.
		dihydroxoterephthalamide)diamine)-gallium(iii) dimethylformamide	Chem. Soc., 115, 182.
		solvate monohydrate	
KAJWEZ	GaN ₆	bis(hydrogen tris(3,5-dimethylpyrazol-1-yl)borate)-gallium iodide	K. Yurkerwich, G. Parkin (2010) J. Cluster Sci., 21, 225
		dichloromethane solvate	
KARSOL	GaF ₂ N ₄	$bis(\mu 2$ -Fluoro)-tris(octaethylporphyrin-gallium) $bis(tetrafluoroborate)$	R.Guilard, JM.Barbe, P.Richard, P.Petit, J.J.Andre,
		toluene solvate	C.Lecomte, K.M.Kadish (1989) J. Am. Chem. Soc., 111,
			4684.
KAZNAB	GaO ₆	bis(tris(3-Benzyl-4-(phenylphosphinato)-3-azoniabutyl)amine-	M.S.Kovacs, V.Monga, B.O.Patrick, C.Orvig (2006)
		O,O',O")-gallium(iii) dinitrate chloride methanol solvate	Dalton Trans., 31.

KEJBOR	$GaCl_2N_4$	cis-Dichloro-bis(4,4'-dimethyl-2,2'-bipyridine)-gallium(iii) tetrachlorogallium(iii)	A. Sofetis, C.P. Raptopoulou, A. Terzis, T.F. Zafiropoulos (2006) Inorg. Chim. Acta, 359, 3389.
KEJBUX	GaCl ₂ N ₄	cis-Dichloro-bis(4,4'-dimethyl-2,2'-bipyridine)-gallium(iii) perchlorate	A. Sofetis, C.P. Raptopoulou, A. Terzis, T.F. Zafiropoulos (2006) Inorg. Chim. Acta, 359, 3389.
KEJCAE	GaN_4O_2	cis-Diaqua-bis(4,4'-dimethyl-2,2'-bipyridine)-gallium(iii) trinitrate	A. Sofetis, C.P. Raptopoulou, A. Terzis, T.F. Zafiropoulos (2006) Inorg. Chim. Acta, 359, 3389.
KENXEI	GaN ₃ O ₃	(4,4',4''-(Nitrilotris(ethane-2,1-diyl(nitrilo)methylylidene))tris(4'- (methylsulfanyl)biphenyl-3-olato))-gallium dichloromethane solvate	A.Schramm, C.Stroh, K.Dossel, M.Lukas, M.Fischer, F.Schramm, O.Fuhr, H.v.Lohneysen, M.Mayor (2013) Eur. J. Inorg. Chem., 70
KIJVOP	GaN ₆	tris(N,N'-bis(Trimethylsilyl)formamidinato-N,N')-gallium	C. Ritter, A.V.G. Chizmeshya, T.L. Gray, J. Kouvetakis(2007) Appl. Organomet. Chem., 21, 595
KOTPEQ	GaN_2O_4	2,9-dimethyl-1,10-phenanthrolin-1-ium bis(pyridine-2,6- dicarboxylato)-gallium dihydrate	J. Soleimannejad, S. Sheshmani, M. Solimannejad, E. Nazarnia, F. Hosseinabadi (2014) Zh. Strukt. Khim. (Russ.) (J. Struct. Chem.), 55, 342
ΚΟΤΡΙU	GaN_2O_4	hemikis(4,4'-bipyridinium) hemikis(pyridine-2,6-dicarboxylic acid) bis(pyridine-2,6-dicarboxylato)-gallium tetrahydrate	J. Soleimannejad, S. Sheshmani, M. Solimannejad, E. Nazarnia, F. Hosseinabadi (2014) Zh. Strukt. Khim. (Russ.) (J. Struct. Chem.), 55, 342
LAKCEF	GaN₃O₃	(1,1,1-tris(((2'-Hydroxybenzyl)amino)methyl)ethane)-gallium hydrate	Shuang Liu, E.Wong, V.Karunaratne, S.J.Rettig, C.Orvig (1993) Inorg. Chem., 32, 1756.
LAXNED	GaN_3O_3	(1,2,3-tris((2-Hydroxy-5-methoxybenzyl)amino)propane)-gallium methanol solvate	Shuang Liu, E.Wong, S.J.Rettig, C.Orvig (1993) Inorg. Chem., 32, 4268.
LEGFUZ01	GaN ₆	bis(4,5-Diiodo-4',5'-(ethylenedithiolato)tetrathiafulvalene) bis(isoquinoline-N)-tetrakis(isothiocyanato)-gallium(iii)	K.Herve, O.Cador, S.Golhen, K.Costuas, JF.Halet, T.Shirahata, T.Muto, T.Imakubo, A.Miyazaki, L.Ouahab (2006) Chem. Mater., 18, 790.
LEGGAG	GaN ₆	bis(4,5-Diiodo-4',5'-(ethylenedithiolato)diselenadithiafulvalene) bis(isoquinoline-N)-tetrakis(isothiocyanato)-gallium(iii)	K.Herve, O.Cador, S.Golhen, K.Costuas, JF.Halet, T.Shirahata, T.Muto, T.Imakubo, A.Miyazaki, L.Ouahab (2006) Chem. Mater., 18, 790.
LIYYIC	GaN ₃ O ₃	tris(4,6-Di-t-butyl-N-(3,5-di-t-butylphenyl)-o- iminobenzosemiquinonato radical-N,O)-gallium(iii)	P.Chaudhuri, R.Wagner, U.Pieper, B.Biswas, T.Weyhermuller, Dalton Trans. (2008), 1286
LIYYOI	GaN ₃ O ₃	tris(4,6-Di-t-butyl-N-(3,5-dichlorophenyl)-o- iminobenzosemiquinonatoradical-N,O)-gallium(iii) triethylamine solvate	P.Chaudhuri, R.Wagner, U.Pieper, B.Biswas, T.Weyhermuller, Dalton Trans. (2008), 1286
LOBXAD	GaBr₃N₃	Tribromo-(2,2',2''-terpyridyl)-gallium(iii)	I.V.Kazakov, M.Bodensteiner, A.Y.Timoshkin (2014) Acta Crystallogr.,Sect.C:Cryst.Struct.Chem. ,70,312
LOFCAK	GaN_3O_3	Diammonium nitrilotriacetato-bis(isothiocyanato)-gallium(iii)	A.M.Shpirt, A.B.Ilyukhin, S.P.Petrosyants (1999) Koord. Khim. (Russ.) (Coord. Chem.), 25, 498.
LOFCEO	GaN ₃ O ₃	Di-cesium nitrilotriacetato-bis(isothiocyanato)-gallium(iii) hemihydrate	A.M.Shpirt, A.B.Ilyukhin, S.P.Petrosyants (1999) Koord. Khim. (Russ.) (Coord. Chem.), 25, 498.
LOFCIS	GaN_3O_3	bis(Cesium) bis(hydroxy-nitrilotriacetato-gallium(iii)) (sodium hydroxide) monohydrate	A.M.Shpirt, A.B.Ilyukhin, S.P.Petrosyants (1999) Koord. Khim. (Russ.) (Coord. Chem.), 25, 498.
LOQLIN	GaO ₆	catena-(tris(µ4-Terephthalato)-tris(µ2-hydroxo)-tri-gallium(iii))	C.Volkringer, M.Meddouri, T.Loiseau, N.Guillou, J.Marrot, G.Ferey, M.Haouas, F.Taulelle, N.Audebrand, M.Latroche, Inorg.Chem. (2008), 47, 11892
LOQVUI	GaN_3O_3	trans-tris(8-Oxyquinoline)-gallium diethyl ether solvate	Yue Wang, Weixing Zhang, Yanqin Li, Ling Ye, Guangdi Yang (1999) Chem. Mater., 11, 530.
LUJGOM	GaO ₆	$hexakis (\mu 2-Benzoxo)-tribenzoxy-trimethyl-tetra-gallium$	S.Chitsaz, E.Iravani, B.Neumuller (2002) Z. Anorg. Allg. Chem., 628, 2279.
LUNBUR	GaO ₆	catena-(1,4-bis(3-Ammoniopropylpiperazinium) bis(μ4-phosphato)-	C.T.S.Choi, E.V.Anokhina, C.S.Day, Yue Zhao,
		bis(oxalato)-hexa-gallium hydrate)	(2002) Chem. Mater., 14, 4096.

LUNCAY	GaO ₆	catena-{1,4-bis(3-Ammoniopropylpiperazinium) bis(μ4-phosphato)- tetrakis(μ3-hydrogen phosphato)-bis(μ2-hydroxo)-(μ2-oxalato)- bis(oxalato)-hexa-gallium)	C.T.S.Choi, E.V.Anokhina, C.S.Day, Yue Zhao, F.Taulelle, C.Huguenard, Zhehong Gan, A.Lachgar (2002) Chem. Mater., 14, 4096.
LUNCEC	GaO ₆	catena-(1,4-bis(3-Ammoniopropylpiperazinium) bis(μ4-phosphato)- tetrakis(μ3-hydrogen phosphato)-bis(μ2-hydroxo)-(μ2-oxalato)- bis(oxalato)-hexa-gallium hydrate)	C.T.S.Choi, E.V.Anokhina, C.S.Day, Yue Zhao, F.Taulelle, C.Huguenard, Zhehong Gan, A.Lachgar (2002) Chem. Mater., 14, 4096.
LUQCOQ	GaO ₆	catena-[bis(1,4-Diazoniabicyclo[2.2.2]octane) bis(µ3- hydrogenphosphito)-dihydroxy-bis(oxalato)-di-gallium(iii) dihydrate]	Guangpeng Zhou, Yunlin Yang, Ruiqing Fan, Xinrong Liu, Qing Wang, Fuping Wang (2010) Solid State Sciences, 12, 873
LUQCUW	GaO ₆	catena-[N,N,N',N'-Tetramethylethylenediammonium bis(μ3- hydrogenphosphito)-(μ2-oxalato)-dihydroxy-di-gallium(iii)]	Guangpeng Zhou, Yunlin Yang, Ruiqing Fan, Xinrong Liu, Qing Wang, Fuping Wang (2010) Solid State Sciences, 12, 873
LUQDAD	GaNO₅	catena-[bis(μ3-Hydrogen phosphito)-(μ2-oxalato)-bis(1H-imidazole)- digallium(iii)]	Guangpeng Zhou, Yunlin Yang, Ruiqing Fan, Xinrong Liu, Qing Wang, Fuping Wang (2010) Solid State Sciences, 12, 873
LUZPAY	GaO₅S	bis(μ2-hydroxo)-bis(5,11,17,23-tetra-t-butyl-2,8,14,20- tetrathiapentacyclo[19.3.1.13,7.19,13.115,19]octacosa- 1(25),3(28),4,6,9(27),10,12,15(26),16,18,21,23-dodecaene-25,26-diol- 27,28-diolato)-bis(N,N-dimethylformamide)-di-gallium N,N- dimethylformamide solvate	A. Bilyk, J. W. Dunlop, A. K. Hall, J. M. Harrowfield, M. W. Hoseini, G. A. Koutsantonis, B. W. Skelton, A. H. White (2010) Eur. J. Inorg. Chem., 2089
MAGLUC	GaN_3O_3	(2-(Isobutoxy)-1,1,1-tris(salicylaldiminomethyl)ethane)-gallium	M.A.Green, C.J.Mathias, W.L.Neumann, P.E.Fanwick, M.Janik, E.A.Deutsch (1993) J. Nucl. Med., 34, 228.
MAQMIA	$GaBr_3N_3$	fac-Tribromo-(1,4,7-trimethyl-1,4,7-triazacyclononane-N,N',N'')- gallium(iii)	G.R.Willey, D.R.Aris, A.L.Beaumont, W.Errington (1999) Main Group Metal Chemistry, 22, 515.
MAVVEL	GaNO₅	Diaqua-(N-(2-hydroxy-5-nitrobenzyl)iminodiacetato-N,O,O',O'')- gallium(iii)	O.Jarjayes, F.Mortini, A.du Moulinet d'Hardemare, C.Philouze, G.Serratrice (2005) Eur. J. Inorg. Chem., 4417.
MECNOY	GaN ₆	tris(N,N''-Diisopropyl-N',N'-dimethylguanidinato)-gallium	A.P.Kenney, G.P.A.Yap, D.S.Richeson, S.T.Barry (2005) Inorg. Chem., 44, 2926.
MERCUH	GaO ₆	Hexa-potassium hexakis(tetraethylammonium) hexakis(µ2-N,N'- bis(1,2-dioxybenzoyl)pyrene-1,6-diamine)-tetra-gallium clathrate methanol solvate tetrahydrate	D.W.Johnson, K.N.Raymond (2001) Inorg. Chem., 40, 5157.
MIKJAR01	GaN_3O_3	catena-((μ4-Phosphato)-(μ3-phosphato)-(diethylenetriamine- N,N',N'')-di-gallium dihydrate)	Chia-Her Lin, Ya-Ching Yang, Chun-Yu Chen, Sue-Lein Wang (2006) Chem. Mater., 18, 2095.
MOFMIF	GaN ₄ O ₂	(2-oxy-5-methyl-N-((pyridin-1-ium-2-yl)methyl)-N'-((pyridin-2- yl)methyl) benzene-1,3-disulfonamidato)-(2-oxy-5-methyl-N,N'- bis((pyridin-2-yl) methyl)benzene-1,3-disulfonamidato)-gallium monohydrate unknown solvate	J.Sundberg, H.Witt, L.Cameron, M.Hakansson, J.Bendix, C.J.McKenzie (2014) <i>Inorg.Chem.</i> ,53, 2873
MOLGEZ	GaN ₆	(3,17-Dinitro-5,10,15-tris(pentafluorophenyl)corrolato)- dipyridylgallium(iii) sodium nitrate	I.Saltsman, A.Mahammed, I.Goldberg, E.Tkachenko, M.Botoshansky, Z.Gross (2002) J. Am. Chem. Soc., 124, 7411.
MONQOW	GaO ₆	icosakis(μ3-Propane-1,3-diolato-Ο,Ο,Ο',Ο')-icosakis(μ2-acetato-Ο,Ο')- icosa-gallium(iii) acetonitrile solvate	T.C.Stamatatos, S.Mukherjee, K.A.Abboud, G.Christou, Chem.Commun. (2009), 62
Μυκροχ	GaNOs	Piperazinium bis(µ2-N,N,N',N'-tetrakis(carboxylatomethyl)-1,3-	W.Schmitt, C.E.Anson, R.Sessoli, M.van Veen,
		diamino-2-propoxy)-(µ2-hydroxo)-(µ2-oxo)-bis(µ2-O,O'- piperazinecarbamato)-tetra-gallium tetradecahydrate	A.K.Powell (2002) J. Inorg. Biochem., 91, 173.
MUYJEW	GaN ₃ O ₃	diamino-2-propoxy)-(µ2-hydroxo)-(µ2-oxo)-bis(µ2-O,O'- piperazinecarbamato)-tetra-gallium tetradecahydrate (3,3',3''-((1,4,7-Triazonane-1,4,7-triyl)tris(methylene((hydroxy) phosphoryl)))tripropanoato)-gallium(iii) dihydrate	A.K.Powell (2002) J. Inorg. Biochem., 91, 173. J. Notni, P. Hermann, J. Havlickova, J. Kotek, V. Kubicek, J. Plutnar, N. Loktionova, P. J. Riss, F. Rosch, I. Lukes (2010) ChemEur. J., 16, 7174

NACSIT01	GaO ₆	hexakis((Isophthal-bis-N-(p-tolyl)hydroxamato))-tetra-gallium(iii)	T.Beissel, R.E.Powers, T.N.Parac, K.N.Raymond (1999)
		dimethylformamide solvate	J. Am. Chem. Soc., 121, 4200.
NAFXOJ	GaN_4O_2	(1,1'-(4,4,11,11-Tetramethyl-2,6,9,13-tetraazatetradeca-1,13-diene-	J. Sivapackiam, S. E. Harpstrite, J. L. Prior, H. Gu, N. P.
		1,14-diyl)bis(3-ethoxy-2-naphtholato))-gallium(iii) perchlorate	Rath, V. Sharma (2010) Dalton Trans., 39, 5842
NAMCIN01	GaN ₆	tris(Azide-pyridine)-gallium	C.J.Carmalt, A.H.Cowley, R.D.Culp, R.A.Jones (1996)
			Chem. Commun., 1453.
NEMKEV	GaN ₆	tris(Ethylenediamine-N,N')-gallium tetraselenoantimonate	R.Blachnik, A.Fehlker, H.Reuter (2001) Z. Kristallogr
			New Cryst. Struct., 216, 211.
NEXDAW	GaN ₆	tris(5-mesityldipyrrinato)-gallium(iii) deuterochloroform solvate	V.S. Thoi, J.R. Stork, D. Magde, S.M. Cohen (2006)
			Inorg. Chem., 45, 10688.
NEXDIE	GaN ₆	tris(5-(4-cyanophenyl)dipyrrinato)-gallium(iii) chloroform solvate	V.S. Thoi, J.R. Stork, D. Magde, S.M. Cohen (2006)
		hydrate	Inorg. Chem., 45, 10688.
NIGJOC	GaCl ₂ N ₄	tetrakis(4-Methylpyridine)-dichloro-gallium(ii) tetrachloro-gallium 4-	E.M. Gordon, A.F. Hepp, S.A. Duraj, T.S. Habash, P.E.
		methylpyridine solvate	Fanwick, J.D. Schupp, W.E. Eckles, S. Long (1997)
			Inorg. Chim. Acta, 257, 247.
NIGJUI	GaCl ₂ N ₂ S ₂	Dichloro-(diethyldithiocarbamato)-bis(4-methylpyridine)-gallium(ii)	E.M.Gordon, A.F.Hepp, S.A.Durai,
			T.S.Habash,P.E.Fanwick, J.D.Schupp, W.E.Eckles,
			S.Long (1997) Inorg. Chim. Acta , 257, 247.
NILCUG	GaF ₃ N ₃	(1,4,7-tris(2-Amino-3,5-di-t-butylbenzyl)-1,4,7-triazacyclononane)-	F.N.Penkert, T.Weyhermuller, K.Wieghardt (1998)
	5.5	trifluoro-gallium methanol dichloromethane solvate	Chem. Commun., 557.
NISHEC	GaN₂O₄	Sodium bis(methyliminodiacetato)-gallium(iii)	A.B.Ilvukhin, S.P.Petrosvants, S.V.Milovanov.
			M.A.Malyarik (1997) Kristallografiya (Russ.)
			(Crystallogr. Rep.), 42, 1034
NISHIG	GaN₂O₄	Tetramethylammonium bis(methyliminodiacetato)-gallium(iii)	A.B.Ilvukhin, S.P.Petrosvants, S.V.Milovanov.
		monohydrate	M.A.Malyarik (1997) Kristallografiya (Russ.)
			(Crystallogr. Rep.), 42, 1034
NITGON	GaN₂O₄	(Λ.Λ)-hexakis(μ2-3-Oxy-N'-(3-phenylprop-2-enoyl)-2-	Kyungiin Lee, R.P.John, M.Park, Dohyun Moon,
		naphthohydrazide-N.N'.O.O'.O'')-hexakis(ethanol)-hexa-gallium(iii)	Hyeong-Cheol Ri, Ghyung Hwa Kim, Myoung Soo Lah,
		ethanol solvate hemihydrate	Dalton Trans. (2008),
NIYFEG	GaN ₂ O ₂	tris(2-Methyl-8-oxyguinolinato)-gallium(iii)	G.G.Aleksandrov, V.S.Sergienko, Ya.V.Ashaks,
	3-3		Ya.E.Leeis, L.Ya.Pech, Yu.A.Bankovsky, N.A.Ivanova.
			I.A.Efimenko (1997) Zh. Neorg. Khim. (Russ.) (Russ. J.
			Inorg. Chem.), 42, 1820.
NIYFEI	GaN₄S₂	bis(N,2-bis(1-(pyrazin-2-yl) ethylidene) hydrazinecarbohydra	Nan Zhang, Yanxue Tai, Mingxue Li, Pengtao Ma,
		zonothiolato)-gallium unknown solvate	Junwei Zhao, Jingyang Niu (2014) Dalton Trans., 43,
		A	5182
NIYQUI	GaN₄O ₂	(2,2'-Bipyridine)-bis(2-methyl-8-oxyquinoline)-gallium(iii) dinitrate	A.Crispini, M.Ghedini, I.De Franco, I.Aiello, M.La Deda,
		dichloromethane solvate	N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186
NIYRAP	GaN₄O₂	bis(2-Methyl-8-oxyguinoline)-(1.10-phenanthroline)-gallium(iii)	A.Crispini, M.Ghedini, J.De Franco, J.Aiello, M.La Deda,
	4-2	nitrate ethanol solvate	N.Godbert, A.Bellusci, Dalton Trans. (2008). 1186
NIVRET	GaN ₄ O ₂	(2.2'-Binyridine)-his(2-methyl-8-oxyguinoline)-gallium(iii)	A Crispini M Ghedini I De Franco I Aiello M La Deda
	0414402		
NIVRIX		hexafluorophosphate	N Godbert A Bellusci Dalton Trans (2008) 1186
MITTUA	GaN O	hexafluorophosphate	N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186
	GaN ₄ O ₂	hexafluorophosphate bis(2-Methyl-8-oxyquinoline)-(1,10-phenanthroline)-gallium(iii) bexafluorophosphate	N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Crispini, M.Ghedini, I.De Franco, I.Aiello, M.La Deda, N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186
NIVVID	GaN ₄ O ₂	hexafluorophosphate bis(2-Methyl-8-oxyquinoline)-(1,10-phenanthroline)-gallium(iii) hexafluorophosphate (1.7-Dicarboxymethyl=1.4.7.10.tetra-procyclododocopo.4.10	N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Crispini, M.Ghedini, I.De Franco, I.Aiello, M.La Deda, N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186
NIYXID	GaN ₄ O ₂ GaN ₄ O ₂	hexafluorophosphate bis(2-Methyl-8-oxyquinoline)-(1,10-phenanthroline)-gallium(iii) hexafluorophosphate (1,7-Dicarboxymethyl-1,4,7,10-tetra-azacyclododecane-4,10- diacetato-N N' N''' O O'Leallium(iii) chlorida pentabudrate	N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Crispini, M.Ghedini, I.De Franco, I.Aiello, M.La Deda, N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Heppeler, J.P.Andre, I.Buschmann, Xuejuan Wang, L-C Reubi, M.Hennig, T.A.Kadan, H.P. Maasko, Cham
NIYXID	GaN_4O_2 GaN_4O_2	hexafluorophosphate bis(2-Methyl-8-oxyquinoline)-(1,10-phenanthroline)-gallium(iii) hexafluorophosphate (1,7-Dicarboxymethyl-1,4,7,10-tetra-azacyclododecane-4,10- diacetato-N,N',N'',O,O')-gallium(iii) chloride pentahydrate	N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Crispini, M.Ghedini, I.De Franco, I.Aiello, M.La Deda, N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Heppeler, J.P.Andre, I.Buschmann, Xuejuan Wang, JC.Reubi, M.Hennig, T.A.Kaden, H.R.Maecke, Chem Eur L (2008), 14, 3026
NIYXID	GaN ₄ O ₂ GaN ₄ O ₂	hexafluorophosphate bis(2-Methyl-8-oxyquinoline)-(1,10-phenanthroline)-gallium(iii) hexafluorophosphate (1,7-Dicarboxymethyl-1,4,7,10-tetra-azacyclododecane-4,10- diacetato-N,N',N'',O,O')-gallium(iii) chloride pentahydrate	N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Crispini, M.Ghedini, I.De Franco, I.Aiello, M.La Deda, N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Heppeler, J.P.Andre, I.Buschmann, Xuejuan Wang, JC.Reubi, M.Hennig, T.A.Kaden, H.R.Maecke, Chem- Eur.J. (2008), 14, 3026
NIYXID	GaN4O2 GaN4O2 GaN4O2	hexafluorophosphate bis(2-Methyl-8-oxyquinoline)-(1,10-phenanthroline)-gallium(iii) hexafluorophosphate (1,7-Dicarboxymethyl-1,4,7,10-tetra-azacyclododecane-4,10- diacetato-N,N',N'',N''',O,O')-gallium(iii) chloride pentahydrate (5,10,15,20-Tetraphenylporphyrinato)-diaqua-gallium(iii) perchlorate	N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Crispini, M.Ghedini, I.De Franco, I.Aiello, M.La Deda, N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Heppeler, J.P.Andre, I.Buschmann, Xuejuan Wang, JC.Reubi, M.Hennig, T.A.Kaden, H.R.Maecke, Chem Eur.J. (2008), 14, 3026 A.G.DiPasquale, J.M.Mayer, J.Am.Chem.Soc. (2008), 120, 1912
NIYXID	GaN4O2 GaN4O2 GaN4O2	hexafluorophosphate bis(2-Methyl-8-oxyquinoline)-(1,10-phenanthroline)-gallium(iii) hexafluorophosphate (1,7-Dicarboxymethyl-1,4,7,10-tetra-azacyclododecane-4,10- diacetato-N,N',N'',O,O')-gallium(iii) chloride pentahydrate (5,10,15,20-Tetraphenylporphyrinato)-diaqua-gallium(iii) perchlorate	N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Crispini, M.Ghedini, I.De Franco, I.Aiello, M.La Deda, N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Heppeler, J.P.Andre, I.Buschmann, Xuejuan Wang, JC.Reubi, M.Hennig, T.A.Kaden, H.R.Maecke, Chem Eur.J. (2008), 14, 3026 A.G.DiPasquale, J.M.Mayer, J.Am.Chem.Soc. (2008), 130, 1812
NIYXID NOBBAI NODPAZ01	GaN4O2 GaN4O2 GaN4O2 GaO6	hexafluorophosphate bis(2-Methyl-8-oxyquinoline)-(1,10-phenanthroline)-gallium(iii) hexafluorophosphate (1,7-Dicarboxymethyl-1,4,7,10-tetra-azacyclododecane-4,10- diacetato-N,N',N'',O,O')-gallium(iii) chloride pentahydrate (5,10,15,20-Tetraphenylporphyrinato)-diaqua-gallium(iii) perchlorate tris(acetylacetonato)-chromium tris(acetylacetonato)-gallium	N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Crispini, M.Ghedini, I.De Franco, I.Aiello, M.La Deda, N.Godbert, A.Bellusci, Dalton Trans. (2008), 1186 A.Heppeler, J.P.Andre, I.Buschmann, Xuejuan Wang, JC.Reubi, M.Hennig, T.A.Kaden, H.R.Maecke, Chem Eur.J. (2008), 14, 3026 A.G.DiPasquale, J.M.Mayer, J.Am.Chem.Soc. (2008), 130, 1812 M. Kannan Raghavan, P. Jaiswal, N. Sundaram, S.A.

NODPIH01	GaO_6	tris(acetylacetonato)-chromium tris(acetylacetonato)-gallium	M. Kannan Raghavan, P. Jaiswal, N. Sundaram, S.A. Shivashankar (2014) Polyhedron, 70, 188
NODPUT	GaO ₆	tris(acetylacetonato)-chromium tris(acetylacetonato)-gallium	M. Kannan Raghavan, P. Jaiswal, N. Sundaram, S.A. Shivashankar (2014) Polyhedron, 70, 188
NOFQOP	GaFN ₂ O ₃	catena-[bis(μ3-Phosphito)-bis(μ2-fluoro)-(μ2-hydrogen phsophito)- (μ2-phosphito)-bis(2,2'-bipyridine)-tri-gallium(iii)]	Liangliang Huang, Tianyou Song, Suhua Shi, Zhenfen Tian, Li Wang, Lirong Zhang, J.Solid State Chem. (2008), 181, 1279
NONQOX	GaN ₄ S ₂	bis(Acetylpyrazine 4N-phenylthiosemicarbazonato-N,N',S)-gallium(iii) nitrate monohydrate	C.R.Kowol, E.Reisner, I.Chiorescu, V.B.Arion, M.Galanski, D.V.Deubel, B.K.Keppler, Inorg.Chem. (2008), 47, 11032
NOPDEB	GaN ₆	(N,N',N''-tris(2-Pyridylmethyl)-cis-1,3,5-triaminocyclohexane)- gallium(iii) trinitrate dimethylformamide solvate	K.A.Hilfiker, M.W.Brechbiel, R.D.Rogers, R.P.Planalp (1997) Inorg. Chem., 36, 4600.
NOPHOP	GaN₄O ₂	bis((u2-Hydroxo)-(tris((pyrid-2-yl)methyl)amine)-gallium)	A.Hazell, J.McGinley, H.Toftlund (2001) Inorg, Chim.
		tetrachloride methanol solvate tetrahydrate	Acta, 323, 113.
NOYNOE	GaN₄O ₂	(1.12-bis(2-Hydroxy-3-methoxybenzyl)-1.5.8.12-tetra-azadodecane)-	V.Sharma, A.Beatty, D.E.Goldberg, D.Piwnica-Worms
	4-2	gallium(iii) perchlorate	(1997) Chem. Commun., 2223.
NUCYOB	GaN ₄ S ₂	bis(N-(2-chlorophenyl)-N'-(1-(pyridin-2-	G.L.Parrilha, K.S.O.Ferraz, J.A.Lessa, K.N.de Oliveira.
	4-2	yl)ethylidene)carbamohydrazono thioato)-gallium nitrate hydrate	B.L. Rodrigues, J.P.Ramos, E.M. Souza-Fagundes, Ingo Ott, H.Beraldo (2014) Eur.J.Med.Chem. , 84, 537
NUHBUP	GaF_3N_3	bis(µ2-fluoro)-bis(2,2':6',2"-terpyridine)-difluoro-di-galllium bis(hexafluorophosphate) tetrahydrate	R. Bhalla, W. Levason, S.K. Luthra, G.McRobbie, F.M. Monzittu, J. Palmer, Gillian Reid, G.Sanderson, Wenjian Zhang (2015) Dalton Trans. ,
NUHCEA	GaF₃ON₂	aqua-(2,2'-bipyridine)-trifluoro-gallium(iii) dihydrate	R. Bhalla, W. Levason, S.K. Luthra, G.McRobbie, F.M. Monzittu, J. Palmer, Gillian Reid, G.Sanderson, Wenjian Zhang (2015) Dalton Trans. ,
NUHCIE	GaF_3N_2O	aqua-trifluoro-(1,10-phenanthroline)-gallium	R. Bhalla, W. Levason, S.K. Luthra, G.McRobbie, F.M. Monzittu, J. Palmer, Gillian Reid, G.Sanderson, Wenjian Zhang (2015) Dalton Trans. ,
NUHCOK	GaF₃N₃	trifluoro-(2,2':6',2"-terpyridine)-gallium trihydrate	R. Bhalla, W. Levason, S.K. Luthra, G.McRobbie, F.M. Monzittu, J. Palmer, Gillian Reid, G.Sanderson, Wenjian Zhang (2015) Dalton Trans. ,
NUHLOR	GaN_3O_3	(1,4,7-Triazacyclononane-1-succinato-4,7-diacetato)-gallium(iii) trihydrate.	J.P.Andre, H.R.Maecke, M.Zehnder, L.Macko, K.G.Akyel (1998) Chem. Commun., 1301.
NUMYUP	GaNO ₅	(μ2-N,N'-(2-Hydroxylato-5-methyl-m-phenylenedimethylene)bis(N- (carboxylatomethyl)glycinato))-triaqua-hydroxo-di-gallium(iii) hydrate	O.Jarjayes, A.Du Moulinet D'Hardemare, A.Durif,M T.Averbuch-Pouchot (1998) Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 54, 931
NURVAY	GaN_4O_2	(N,N'-bis(2-oxy-4,6-dihydroxy-3,5-diaminocyclohexyl)ethane-1,2- diamine)-gallium(iii) nitrate dihydrate	M. Bartholoma, S. Gisbrecht, S. Stucky, C. Neis, B. Morgenstern, K. Hegetschweiler (2010) ChemEur. J., 16, 3326
NUXLAT	GaO ₆	tris(Ammonium) bis(citrato)-gallium tetrahydrate	P.O'Brien, H.Salacinski, M.Motevalli (1997) J. Am. Chem. Soc., 119, 12695.
OBICUY	GaF_3O_3	catena-(bis(1,3-Propanediammonium) (μ6-ethylene diphosphonato)- tetrakis(μ2-fluoro)-difluoro-di-gallium)	M.P.Attfield, H.G.Harvey, S.J.Teat (2004)J.Solid State Chem. ,177,2951
OBINOD	GaN ₂ O ₄	bis(μ2-N-(Salicylidene)-o-hydroxyanilino)-bis(8-hydroxy-quinolinato)- digallium	Juan Qiao, Li D.Wang, Lian Duan, Yang Li, De Q.Zhang,Yong Qiu (2004) Inorg. Chem., 43, 5096.
ODUNUX	GaN ₄ O ₂	(N,N'-bis(3,5-Di-t-butyl-2-oxybenzyl)-N,N'-bis(2- pyridylmethyl)ethylenediamine)-gallium(iii) perchlorate methanol solvate dihydrate	A. dos Anjos, A.J. Bortoluzzi, M.S.B. Caro, R.A. Peralta,G.R. Friedermann, A.S. Mangrich, A. Neves (2006) J. Braz. Chem. Soc., 17, 1540
ONIJEB	GaO ₆	tris(Tetra-n-butylammonium) tris(3,4,5-trioxocyclopentene-1,2- diolato-O,O')-gallium(iii)	F.Artizzu, P.Deplano, L.Pilia, A.Serpe, L.Marchio, K.Bernot, M.L.Mercuri (2011) Inorg. Chim. Acta, 370, 474
OQIHOM	GaN ₂ O ₄	bis(2-(3-ethoxy-2-(hydroxy)benzylidene)hydrazinecarboxamidato)-	D. Gambino, M. Fernandez, D. Santos, G. A.

		gallium nitrate dihydrate	Etcheverria, O. E. Piro, F. R. Pavan, C. Q. F. Leite, I.
			Tomaz, F. Marques (2011) Polyhedron, 30, 1360
OSAHAS	GaO ₆	pentakis((Mesitylbenzyl)trimethylphosphonium) tri-potassium	J. S. Mugridge, G. Szigethy, R. G. Bergman, K. N.
		$hexakis(\mu 2\text{-}N,N'\text{-}bis(2,3\text{-}ioxybenzoyl)naphthalene-1,5\text{-}diamine)\text{-}tetra-$	Raymond (2010) J. Am. Chem. Soc., 132, 16256
		gallium dimethylformamide methanol solvate hydrate	
OSOXAW	GaN_3O_3	(2,2'-(7-(2-(Benzylamino)-2-(oxo)ethyl)-1,4,7-triazonane-1,4-diyl)	D. Shetty, Soo-Young Choi, Jae Min Jeong,
		diacetato)-gallium trifluoroacetate monohydrate	L.Hoigebazar, Yun-Sang Lee, Dong Soo Lee, June-Key
			Chung, Myung Chul Lee, Young Keun Chung (2010)
			Eur. J. Inorg. Chem., 5432
OSOXEA	GaN_4O_2	(2,2'-(7-(2-(Benzylamino)-2-oxoethyl)-1,4,7-triazonane-1,4-	D. Shetty, Soo-Young Choi, Jae Min Jeong,
		diyl)diacetato)-gallium dihydrate	L.Hoigebazar, Yun-Sang Lee, Dong Soo Lee, June-Key
			Chung, Myung Chul Lee, Young Keun Chung (2010)
			Eur. J. Inorg. Chem. , 5432
OSOXIE01	GaN_4O_2	(2,2'-(7-(2-(Methylamino)-2-oxoethyl)-1,4,7-triazonane-1,4-	D. Shetty, Soo-Young Choi, Jae Min Jeong,
		diyl)diacetato)-gallium monohydrate	L.Hoigebazar, Yun-Sang Lee, Dong Soo Lee, June-Key
			Chung, Myung Chul Lee, Young Keun Chung (2010)
			Eur. J. Inorg. Chem. , 5432
OSUDOW	GaN_4O_2	(6,6'-(Ethane-1,2-diylbis((imino)methylene))dipyridine-2-carboxylato)-	E. Boros, C. L. Ferreira, J. F. Cawthray, E. W. Price, B.
		gallium perchlorate	O. Patrick, D. W. Wester, M. J. Adam, C. Orvig (2010)
			J. Am. Chem. Soc., 132, 15726
OSUDUC	GaN_4O_2	(6,6'-(Ethane-1,2-diylbis(((4-nitrobenzyl)imino)methylene))dipyridine-	E. Boros, C. L. Ferreira, J. F. Cawthray, E. W. Price, B.
		2-carboxylato)-gallium perchlorate methanol solvate	O. Patrick, D. W. Wester, M. J. Adam, C. Orvig (2010)
			J. Am. Chem. Soc., 132, 15726
OTUKOE	GaN_3O_3	(1-((2-(2-Nitroimidazolyl)ethyl)aminocarbonylmethyl)-4,7-	D. Shetty, Soo-Young Choi, Jae Min Jeong,
		bis(carboxylato methyl)-1,4,7-triazacyclononane)-gallium carbonate	L.Hoigebazar, Yun-Sang Lee, Dong Soo Lee, June-Key
			Chung, Myung Chul Lee, Young Keun Chung (2010)
			Eur. J. Inorg. Chem., 5432
PAFJOW	GaNO₅	bis(µ2-N,N-Diacetyl-2-aminoethanolato-N,O,O,O',O'')-diaqua-	J.C.Goodwin, S.J.Teat, S.L.Heath (2004) Angew.
		digallium(iii)	Chem., Int. Ed.,43, 4037.
PAFJUC	GaNO₅	bis(µ3-Hydroxo)-tetrakis(µ2-N,N-diacetyl-2-aminoethanolato-	J.C.Goodwin, S.J.Teat, S.L.Heath (2004) Angew.
		N,O,O,O',O'')-octakis(µ2-hydroxo)-tetra-aqua-bis(pyridine-N)-octa-	Chem., Int. Ed.,43, 4037.
		gallium(iii) dinitrate ethanol solvate nonahydrate	
PAFJUC	GaO ₆	bis(µ3-Hydroxo)-tetrakis(µ2-N,N-diacetyl-2-aminoethanolato-	J.C.Goodwin, S.J.Teat, S.L.Heath (2004) Angew.
		N,O,O,O',O'')-octakis(µ2-hydroxo)-tetra-aqua-bis(pyridine-N)-octa-	Chem., Int. Ed.,43, 4037.
		gallium(iii) dinitrate ethanol solvate nonahydrate	
PAFKAJ	GaNO₅	bis(hexakis(μ3-Hydroxo)-hexakis(μ2-N,N-diacetyl-2-	J.C.Goodwin, S.J.Teat, S.L.Heath (2004) Angew.
		aminoethanolato)-dodecakis(µ2-hydroxo)-hexa-aqua-trideca-	Chem., Int. Ed.,43, 4037.
		gallium(iii)) hexakis(µ3-hydroxo)-hexakis(µ2-N,N-diacetyl-2-	
		aminoetnanoiato)-dodecakis(µ2-nydroxo)-nexa-aqua-trideca-	
DAEKAL			
РАРКАЈ	GaO ₆	bis(nexakis(µ3-Hydroxo)-nexakis(µ2-N,N-diacetyi-2-	J.C.Goodwin, S.J. leat, S.L.Heath (2004) Angew.
		aminoetnanoiato)-dodecakis(µ2-nydroxo)-nexa-aqua-trideca-	Chem., Int. Ed.,43, 4037.
		gailum(iii)) nexakis(µ3-nyuroxo)-nexakis(µ2-iv,iv-ulacelyi-z-	
		annioettanolatoj-uduetanis(µ2-nyuloxo)-nexa-aqua-thueta-	
PAGCACO1	GaN.O-	(1 4 7 10-Tetra-azabicvc)o(5 5 2)tetradecane-4 10-diacetato)-	W Niu FH Wong GR Weisman Viije Peng
		<pre>gallium(iii) nitrate</pre>	C Anderson N Zakharov A Golen A Rheingold
		Bandering induce	(2006) Eur. J. Inorg. Chem., 676.
PAGCU	GaClaN.	trans-Dichloro-tetrakis(5-methylovrazole)-gallium/iii)	E Kratz B Nuber Weiss B K Keppler (1902)
	00012114	tetrachlorogallium(iii)	Polyhedron. 11. 487
ΡΔΡ\Λ/ΙΝ	620-	heyakis(IIrea-O)-gallium trichloride	K Sardar M Dan B Schwenzer C N P Pag (2005)
	0006	Texasistorea Of Ballant tremonae	Mater Chem 15 2175

PARPUU	GaO ₆	catena-[(μ4-Benzene-1,5-dicarboxylato-2,4-dicarboxylic acid)-(μ2- hydroxo)-gallium hemihydrate]	T.Loiseau, H.Muguerra, M.Haouas, F.Taulelle, G.Ferey (2005) Solid State Sciences, 7, 603.
PAWKII	GaO ₆	hexakis(µ4-C-Propylpyrogallol(4)arene)-tetracosa-aqua-dodeca- gallium nonadecakis(acetone) hexadecahydrate clathrate	R.M.McKinlay, P.K.Thallapally, G.W.V.Cave, J.L.Atwood (2005) Angew. Chem., Int. Ed., 44, 5733.
PAXPEJ	GaO ₆	catena-(bis(Aqua-(μ3-propanoic-phosphonato)-(μ2-hydroxy)-gallium))	F.Fredoueil, D.Massiot, D.Poojary, M.Bujoli-Doeuff, A.Clearfield, B.Bujoli (1998) Chem. Commun., 175.
PAYXEU	GaN ₆	(8-Amino-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosan-1-aminium) gallium tetranitrate	M.T.Ma, O.C.Neels, D.Denoyer, P.Roselt, J.A.Karas, D.B.Scanlon, J.M.White, R.J.Hicks, P.S.Donnelly (2011) Bioconjugate Chem., 22, 2093
PECCUV01	GaO ₆	tris(3,5-Di-t-butyl-1,2-benzosemiquinonato)-gallium(iii)	A.Ozarowski, B.R.McGarvey, A.El-Hadad, Z.Tian, D.G.Tuck, D.J.Krovich, G.C.DeFotis (1993) Inorg. Chem., 32, 841.
PEJFAM	GaO ₆	catena-[Propane-1,3-diammonium bis(μ4-phosphato)-bis(μ2- phosphato)-bis(μ2-oxalato)-diaqua-tetra-gallium(iii) dihydrate]	Zhenxia Chen, Songliang Tan, Linhong Weng, Yaming Zhou, Xiang Gao, Dongyuan Zhao (2006) J. Solid State Chem., 179, 1931.
PEJFEQ	GaO ₆	catena-[Ethane-1,2-diammonium tetrakis(μ4-phosphato)-(μ2- oxalato)-tetra-gallium(iii) dihydrate]	Zhenxia Chen, Songliang Tan, Linhong Weng, Yaming Zhou, Xiang Gao, Dongyuan Zhao (2006) J. Solid State Chem., 179, 1931.
PEJFIU	GaO ₆	catena-[Propane-1,3-diammonium tetrakis(µ4-phosphato)-(µ2- oxalato)-tetra-gallium(iii)]	Zhenxia Chen, Songliang Tan, Linhong Weng, Yaming Zhou, Xiang Gao, Dongyuan Zhao (2006) J. Solid State Chem., 179, 1931.
PEJFOA	GaO₅	catena-[bis(2-Ammonioethyl)amine tetrakis(μ4-phosphato)-(μ3- phosphato)-(μ2-oxalato)-triaqua-penta-gallium(iii)]	Zhenxia Chen, Songliang Tan, Linhong Weng, Yaming Zhou, Xiang Gao, Dongyuan Zhao (2006) J. Solid State Chem., 179, 1931.
PEJFUG	GaO ₆	catena-[Diethylenetriammonium bis(μ4-phosphato)-bis(μ3- phosphato)-(μ2-dihydrogen phosphato)-(μ2-oxalato)-tetra-gallium(iii) trihydrate]	Zhenxia Chen, Songliang Tan, Linhong Weng, Yaming Zhou, Xiang Gao, Dongyuan Zhao (2006) J. Solid State Chem., 179, 1931.
PEJTON	GaN₃O₃	((1,3,5-Triamino-1,3,5-trideoxy-cis-inositol-O,O',O'')-(1,3,5-triamino- 1,3,5-trideoxy-cis-inositol-N,N',N''))-gallium(iii) trinitrate trihydrate	K.Hegetschweiler, M.Ghisletta, I.F.Fassler, R.Nesper, H.W.Schmalle, G.Rihs (1993) Inorg. Chem., 32, 2032.
PEJTON PIBTID	GaN ₃ O ₃ GaN ₂ O ₄	((1,3,5-Triamino-1,3,5-trideoxy-cis-inositol-O,O',O'')-(1,3,5-triamino- 1,3,5-trideoxy-cis-inositol-N,N',N''))-gallium(iii) trinitrate trihydrate (Acetato-O,O')-bis(2-(2'-hydroxyphenyl)-2-benzoxazolato)-gallium(iii)	K.Hegetschweiler, M.Ghisletta, I.F.Fassler, K.Nesper, H.W.Schmalle, G.Rihs (1993) Inorg. Chem., 32, 2032. H.R.Hoveyda, S.J.Rettig, C.Orvig (1993) Inorg. Chem., 32, 4909.
PEJTON PIBTID PIPFOL	GaN₃O₃ GaN₂O₄ GaN ₆	((1,3,5-Triamino-1,3,5-trideoxy-cis-inositol-O,O',O'')-(1,3,5-triamino- 1,3,5-trideoxy-cis-inositol-N,N',N''))-gallium(iii) trinitrate trihydrate (Acetato-O,O')-bis(2-(2'-hydroxyphenyl)-2-benzoxazolato)-gallium(iii) catena-(tris(μ2-1,2,4-Triazolato)-gallium)	 K.Hegetschweiler, M.Ghisletta, I.F.Fassler, R.Nesper, H.W.Schmalle, G.Rihs (1993) Inorg. Chem., 32, 2032. H.R.Hoveyda, S.J.Rettig, C.Orvig (1993) Inorg. Chem., 32, 4909. JC.Rybak, A.Rekawka, K.Muller-Buschbaum (2013) Z.Anorg.Allg.Chem., 639,2382
PEJTON PIBTID PIPFOL POKYEV	GaN ₃ O ₃ GaN ₂ O ₄ GaN ₆ GaN ₄ O ₂	<pre>((1,3,5-Triamino-1,3,5-trideoxy-cis-inositol-O,O',O'')-(1,3,5-triamino- 1,3,5-trideoxy-cis-inositol-N,N',N''))-gallium(iii) trinitrate trihydrate (Acetato-O,O')-bis(2-(2'-hydroxyphenyl)-2-benzoxazolato)-gallium(iii) catena-(tris(μ2-1,2,4-Triazolato)-gallium) catena-[(μ2-phosphato)-bis(ethane-1,2-diamine)-gallium dihydrate]</pre>	 K.Hegetschweiler, M.Ghisletta, I.F.Fassler, K.Nesper, H.W.Schmalle, G.Rihs (1993) Inorg. Chem., 32, 2032. H.R.Hoveyda, S.J.Rettig, C.Orvig (1993) Inorg. Chem., 32, 4909. JC.Rybak, A.Rekawka, K.Muller-Buschbaum (2013) Z.Anorg.Allg.Chem., 639,2382 L.Torre-Fernandez, A.Espina, S.A.Khainakov, Z.Amghouz, J.R.Garcia, S.Garcia-Granda (2014) J. Solid State Chem., 215, 143
PEJTON PIBTID PIPFOL POKYEV PORYEB	GaN ₃ O ₃ GaN ₂ O ₄ GaN ₆ GaN ₄ O ₂ GaO ₆	((1,3,5-Triamino-1,3,5-trideoxy-cis-inositol-O,O',O'')-(1,3,5-triamino- 1,3,5-trideoxy-cis-inositol-N,N',N''))-gallium(iii) trinitrate trihydrate (Acetato-O,O')-bis(2-(2'-hydroxyphenyl)-2-benzoxazolato)-gallium(iii) catena-(tris(μ2-1,2,4-Triazolato)-gallium) catena-[(μ2-phosphato)-bis(ethane-1,2-diamine)-gallium dihydrate] tris(Di-t-butyl malonato-O,O')-gallium	 K.Hegetschweiler, M.Ghisietta, I.F.Fassier, K.Nesper, H.W.Schmalle, G.Rihs (1993) Inorg. Chem., 32, 2032. H.R.Hoveyda, S.J.Rettig, C.Orvig (1993) Inorg. Chem., 32, 4909. JC.Rybak, A.Rekawka, K.Muller-Buschbaum (2013) Z.Anorg.Allg.Chem., 639,2382 L.Torre-Fernandez, A.Espina, S.A.Khainakov, Z.Amghouz, J.R.Garcia, S.Garcia-Granda (2014) J. Solid State Chem., 215, 143 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110
PEJTON PIBTID PIPFOL POKYEV PORYEB PORYIF	GaN ₂ O ₄ GaN ₆ GaN ₄ O ₂ GaO ₆ GaO ₆	<pre>((1,3,5-Triamino-1,3,5-trideoxy-cis-inositol-O,O',O'')-(1,3,5-triamino- 1,3,5-trideoxy-cis-inositol-N,N',N''))-gallium(iii) trinitrate trihydrate (Acetato-O,O')-bis(2-(2'-hydroxyphenyl)-2-benzoxazolato)-gallium(iii) catena-(tris(μ2-1,2,4-Triazolato)-gallium) catena-[(μ2-phosphato)-bis(ethane-1,2-diamine)-gallium dihydrate] tris(Di-t-butyl malonato-O,O')-gallium tris(Dimethyl malonato-O,O')-gallium</pre>	 K.Hegetschweiler, M.Ghisietta, I.F.Fassier, K.Nesper, H.W.Schmalle, G.Rihs (1993) Inorg. Chem., 32, 2032. H.R.Hoveyda, S.J.Rettig, C.Orvig (1993) Inorg. Chem., 32, 4909. JC.Rybak, A.Rekawka, K.Muller-Buschbaum (2013) Z.Anorg.Allg.Chem., 639,2382 L.Torre-Fernandez, A.Espina, S.A.Khainakov, Z.Amghouz, J.R.Garcia, S.Garcia-Granda (2014) J. Solid State Chem., 215, 143 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110
PEJTON PIBTID PIPFOL POKYEV PORYEB PORYIF	GaN ₃ O ₃ GaN ₂ O ₄ GaN ₆ GaN ₄ O ₂ GaO ₆ GaO ₆	((1,3,5-Triamino-1,3,5-trideoxy-cis-inositol-O,O',O'')-(1,3,5-triamino- 1,3,5-trideoxy-cis-inositol-N,N',N''))-gallium(iii) trinitrate trihydrate (Acetato-O,O')-bis(2-(2'-hydroxyphenyl)-2-benzoxazolato)-gallium(iii) catena-(tris(μ2-1,2,4-Triazolato)-gallium) catena-[(μ2-phosphato)-bis(ethane-1,2-diamine)-gallium dihydrate] tris(Di-t-butyl malonato-O,O')-gallium tris(Dimethyl malonato-O,O')-gallium tris(bis(Trimethylsilyl) malonato-O,O')-gallium	 K.Hegetschweiler, M.Ghisietta, I.F.Fassier, R.Nesper, H.W.Schmalle, G.Rihs (1993) Inorg. Chem., 32, 2032. H.R.Hoveyda, S.J.Rettig, C.Orvig (1993) Inorg. Chem., 32, 4909. JC.Rybak, A.Rekawka, K.Muller-Buschbaum (2013) Z.Anorg.Allg.Chem., 639,2382 L.Torre-Fernandez, A.Espina, S.A.Khainakov, Z.Amghouz, J.R.Garcia, S.Garcia-Granda (2014) J. Solid State Chem., 215, 143 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110
PEJTON PIBTID PIPFOL POKYEV PORYEB PORYEB PORYIF PORYUR	GaN ₃ O ₃ GaN ₂ O ₄ GaN ₆ GaN ₄ O ₂ GaO ₆ GaO ₆ GaO ₆	<pre>((1,3,5-Triamino-1,3,5-trideoxy-cis-inositol-O,O',O'')-(1,3,5-triamino- 1,3,5-trideoxy-cis-inositol-N,N',N''))-gallium(iii) trinitrate trihydrate (Acetato-O,O')-bis(2-(2'-hydroxyphenyl)-2-benzoxazolato)-gallium(iii) catena-(tris(μ2-1,2,4-Triazolato)-gallium) catena-[(μ2-phosphato)-bis(ethane-1,2-diamine)-gallium dihydrate] tris(Di-t-butyl malonato-O,O')-gallium tris(Dimethyl malonato-O,O')-gallium tris(bis(Trimethylsilyl) malonato-O,O')-gallium tris(Diethyl malonato-O,O')-gallium</pre>	 K.Hegetschweiler, M.Ghisletta, I.F.Fassler, R.Nesper, H.W.Schmalle, G.Rihs (1993) Inorg. Chem., 32, 2032. H.R.Hoveyda, S.J.Rettig, C.Orvig (1993) Inorg. Chem., 32, 4909. JC.Rybak, A.Rekawka, K.Muller-Buschbaum (2013) Z.Anorg.Allg.Chem., 639,2382 L.Torre-Fernandez, A.Espina, S.A.Khainakov, Z.Amghouz, J.R.Garcia, S.Garcia-Granda (2014) J. Solid State Chem., 215, 143 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110
PEJTON PIBTID PIPFOL POKYEV PORYEB PORYEB PORYUF PORYUR PORYUR	GaN ₃ O ₃ GaN ₂ O ₄ GaN ₆ GaN ₄ O ₂ GaO ₆ GaO ₆ GaO ₆ GaO ₆	<pre>((1,3,5-Triamino-1,3,5-trideoxy-cis-inositol-O,O',O'')-(1,3,5-triamino- 1,3,5-trideoxy-cis-inositol-N,N',N''))-gallium(iii) trinitrate trihydrate (Acetato-O,O')-bis(2-(2'-hydroxyphenyl)-2-benzoxazolato)-gallium(iii) catena-(tris(μ2-1,2,4-Triazolato)-gallium) catena-[(μ2-phosphato)-bis(ethane-1,2-diamine)-gallium dihydrate] tris(Di-t-butyl malonato-O,O')-gallium tris(Di-t-butyl malonato-O,O')-gallium tris(Dimethyl malonato-O,O')-gallium tris(bis(Trimethylsilyl) malonato-O,O')-gallium tris(bis(Trimethylsilyl) malonato-O,O')-gallium</pre>	 K.Hegetschweiler, M.Ghisletta, I.F.Fassler, R.Nesper, H.W.Schmalle, G.Rihs (1993) Inorg. Chem., 32, 2032. H.R.Hoveyda, S.J.Rettig, C.Orvig (1993) Inorg. Chem., 32, 4909. JC.Rybak, A.Rekawka, K.Muller-Buschbaum (2013) Z.Anorg.Allg.Chem., 639,2382 L.Torre-Fernandez, A.Espina, S.A.Khainakov, Z.Amghouz, J.R.Garcia, S.Garcia-Granda (2014) J. Solid State Chem., 215, 143 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110 M.Hellwig, Ke Xu, D.Barreca, A.Gasparotto, M.Winter, E.Tondello, R.A.Fischer, A.Devi, Eur.J.Inorg.Chem. (2009), 1110

		carboxylato)-gallium perchlorate methanol solvate hydratev	B.O.Patrick, M.J.Adam, C.Orvig (2015) Inorg.Chem. ,54,2017
ΡΟΧQUQ	GaN ₃ O ₃	(hydrogen 6,6'-(cyclohexane-1,2-diylbis((((carboxylato)methyl)imino) methylene))dipyridine-2-carboxylato)-gallium monohydrate	C.F.Ramogida, J.F.Cawthray, E.Boros, C.L.Ferreira, B.O.Patrick, M.J.Adam, C.Orvig (2015) Inorg.Chem., 54, 2017
QACLUC	GaN_4O_2	catena-((µ3-hydrogen phosphato)-(µ3-phosphato)-bis(µ2-hydrogen phosphato)-(1,4,8,11-tetraazacyclotetradecane)-tri-gallium)	P.Reinert, J.Patarin, B.Marler (1998) Eur. J. Solid State Inorg. Chem., 35, 389.
QADJEL	GaO ₆	catena-(bis(Ethane-1,2-diammonium) bis(μ3-hydrogen phosphato)- (μ2-hydrogen phosphato)-bis(oxalato)-di-gallium monohydrate)	M.Mrak, U.Kolitsch, C.Lengauer, V.Kaucic, E.Tillmanns (2003) Inorg. Chem., 42, 598.
QADJIP	GaO ₆	catena-(tris(Ethane-1,2-diammonium) tetrakis(μ3-hydrogen phosphato)-bis(μ2-dihydrogen phosphato)-tetrakis(oxalato)-tetra- gallium)	M.Mrak, U.Kolitsch, C.Lengauer, V.Kaucic, E.Tillmanns (2003) Inorg. Chem., 42, 598.
QAJKOB	GaNO₅	catena-(tris(µ4-Phosphato)-(µ2-aquo)-(1,3-propanediamine)-tri- gallium)	C.Brouca-Cabarrecq, A.Mosset (2000) J. Mater. Chem., 10, 445.
QAWBUN	GaO ₆	catena-[(μ4-Biphenyl-2,4'-dicarboxylato)-(μ2-hydroxo)-gallium(iii)]	Guangpeng Zhou, Yulin Yang, Ruiqing Fan (2012) Inorg. Chem. Commun., 16, 17
QEHRIG	GaNO₅	bis((μ2-2,2',2"-Nitrilotriacetato)-(μ2-hydroxo))-tetrakis(1,10- phenanthroline)-di-copper-di-gadolinium bis((μ2-hydroxo)-(2,2',2"- nitrilotriacetato))-di-gallium N,N-dimethylformamide solvate hexadecahydrate	L.V.Mingalieva, V.Ciornea, S.Shova, V.K.Voronkova, J P.Costes, R.T.Galeev, A.Gulea, G.Novitchi (2012) Polyhedron, 45, 238
QEMHUL	GaO ₆	D,D,D,D-Tetraethylammonium hexakis(µ3-1,5-bis(2,3- dioxybenzamido)naphthalene)-tetra-gallium(iii) unknown solvate	A.J.Terpin, M.Ziegler, D.W.Johnson, K.N.Raymond (2001) Angew. Chem., Int. Ed., 40, 157.
QEQTEL	GaN₃S₃	tris(8-Quinolinethiolato)-gallium(iii) methanol solvate	L.Pech, Yu.Bankovsky, V.Bel'sky, E.Silina, J.Ashaks, A.Sturis (2000) Latv. Khim. Z. (Latvian J. Chem.), 3-3.
QIBYAB	GaO ₆	Penta-ammonium bis(citrato-O,O',O'')-gallium(iii) dihydrate	M. Matzapetakis, M. Kourgiantakis, M. Dakanali, C.P. Raptopoulou, A. Terzis, A. Lakatos, T. Kiss, I. Banyai, L. Iordanidis, T. Mavromoustakos, A. Salifoglou (2001) Inorg. Chem., 40, 1734.
QICGUE	GaO ₆	Tetra-ammonium (citrato-O,O',O'')-(hydrogen citrato-O,O',O'')- gallium(iii) trihydrate	M. Matzapetakis, M. Kourgiantakis, M. Dakanali, C.P. Raptopoulou, A. Terzis, A. Lakatos, T. Kiss, I. Banyai, L. Iordanidis, T. Mavromoustakos, A. Salifoglou (2001) Inorg. Chem., 40, 1734.
QICMIY	GaO ₆	Tetra-potassium (citrato-O,O',O'')-(hydrogen citrato-O,O',O'')- gallium(iii) tetrahydrate	M. Matzapetakis, M. Kourgiantakis, M. Dakanali, C.P. Raptopoulou, A. Terzis, A. Lakatos, T. Kiss, I. Banyai, L. Iordanidis, T. Mavromoustakos, A. Salifoglou (2001) Inorg. Chem., 40, 1734.
QOBZEM	GaO ₆	catena-(Di-potassium tetrakis(µ4-phosphato)-(µ2-oxalato- O,O',O'',O''')-tetra-gallium dihydrate)	Li-Chun Hung, Hsien-Ming Kao, Kwang-Hwa Lii (2000) Chem. Mater., 12, 2411.
QOHVOY	GaN_3O_3	(cis,cis-1,3,5-Triaminocyclohexane-N,N',N''-triacetato)-gallium(iii)	Hongyan Luo, N. Eberly, R.D. Rogers, M.W. Brechbiel (2001) Inorg. Chem., 40, 493.
QOVWO001	GaO ₆	catena-[tetrakis(µ4-Terephthalato)-tetrakis(µ2-hydroxo)-tetra-gallium tetrahydrate]	G.Ortiz, G.Chaplais, JL.Paillaud, H.Nouali, J.Patarin, J.Raya, C.Marichal (2014) <i>J.Phys.Chem.C</i> , 118 , 22021
QOVWUU	GaO ₆	$catena-(bis(\mu 4-Terephthalato)-tris(\mu 2-hydroxo)-di-gallium)$	C.Volkringer, T.Loiseau, N.Guillou, G.Ferey, E.Elkaim, A.Vimont, Dalton Trans. (2009), 2241
QOWTON	$GaFN_3O_2$	(2,2'-(7-benzyl-1,4,7-triazonane-1,4-diyl)diacetato)-fluoro-gallium(iii) dihydrate	R.Bhalla, W.Levason, S.K.Luthra, G.McRobbie, G. Sanderson, Gillian Reid (2015) ChemEur. J. ,
QOWTUT	$GaClN_3O_2$	(2,2'-(7-benzyl-1,4,7-triazonane-1,4-diyl)diacetato)-chloro-gallium(iii) dihydrate	R.Bhalla, W.Levason, S.K.Luthra, G.McRobbie, G. Sanderson, Gillian Reid (2015) ChemEur. J. ,
QOWVAB	GaClN ₃ O ₂	(2,2'-(7-benzyl-1,4,7-triazonane-1,4-diyl)diacetato)-chloro-gallium(iii) acetontrile solvate	R.Bhalla, W.Levason, S.K.Luthra, G.McRobbie, G. Sanderson, Gillian Reid (2015) ChemEur. J. ,
QOXRUR	GaN ₂ O ₄	hexakis(µ2-N-Methylbis(2-oxyethyl)amine-N,O,O,O')-tetra-gallium(iii) chloroform solvate	S.Mishra, S.Daniele, S.Petit, E.Jeanneau, M.Rolland, Dalton Trans. (2009), 2569

QOXRUR	GaO_6	hexakis(µ2-N-Methylbis(2-oxyethyl)amine-N,O,O,O')-tetra-gallium(iii) chloroform solvate	S.Mishra, S.Daniele, S.Petit, E.Jeanneau, M.Rolland, Dalton Trans. (2009), 2569
QOZYAG	GaO ₆	catena-(bis(μ2-Acetato-O,O')-(μ2-hydroxo)-gallium acetic acid solvate monohydrate)	Z.L.Mensinger, L.N.Zakharov, D.W.Johnson, Inorg.Chem. (2009), 48, 3505
QUDBIA	GaO ₆	bis(μ2-Methoxo)-tetrakis(dibenzoylmethane-O,O')-digallium(iii)	G.L. Abbati, LC. Brunel, H. Casalta, A. Cornia, A.C. Fabretti, D. Gatteschi, A.K. Hassan, A.G.M. Jansen, A.L. Maniero, L. Pardi, C. Paulsen, U. Segre (2001) ChemEur. J., 7, 1796.
QUMMIU	GaO ₆	hexakis(µ2-Isopropoxo)-hexakis(isopropoxy)-tetra-gallium	M. Valet, D.M. Hoffman (2001) Chem. Mater., 13, 2135.
RABGIM	GaN_2O_4	bis(2,2'-((2-ammonioethyl)imino)diacetato)-gallium(iii) chloride dihydrate	F. Coleman, M. J. Hynes, A. Erxleben (2010) Inorg. Chem., 49, 6725
RAWNEJ	GaN ₄ O ₂	bis(N-(2-oxy-3,5-di-t-butylbenzylidene)-N-(2-pyridylmethyl)amine)- gallium(iii) perchlorate	C. Imbert, H.P. Hratchian, M. Lanznaster, M.J. Heeg, L.M. Hryhorczuk, B.R. McGarvey, H.B. Schlegel, C.N. Verani (2005) Inorg. Chem., 44, 7414.
REBLIV	GaN ₄ O ₂	bis(2-acetylpyridinephenylhydrazonate)gallium(iii) unknown solvate	A.A.R.Despaigne, G.L.Parrilha, J.B.Izidoro, P.R.da Costa, R.G.dos Santos, O.E.Piro, E.E.Castellano, W.R.Rocha, H.Beraldo (2012) Eur. J. Med. Chem., 50, 163
RETBEY	GaO ₆	decakis(µ2-hydroxy(diphenyl)acetato)-icosakis(µ2-methoxo)- decagallium(iii) hemihydrate methanol solvate	G.S. Papaefstathiou, A. Manessi, C.P. Raptopoulou, A. Terzis, T.F. Zafiropoulos (2006) Inorg. Chem., 45, 8823.
REZPIV	GaNO₅	Disodium bis(µ2-hydroxo)-bis(nitrilotriacetato)-di-gallium(iii) pentahydrate	S.P. Petrosyants, M.A. Malyarik, A.B. Ilyukhin, Yu.A. Buslaev (1997) Zh. Neorg. Khim. (Russ.) (Russ. J. Inorg. Chem.), 42, 376.
REZPOB	GaF_2NO_3	Tetramethylammonium difluoro-nitrilotriacetato-gallium(iii) dihydrate	S.P. Petrosyants, M.A. Malyarik, A.B. Ilyukhin, Yu.A. Buslaev (1997) Zh. Neorg. Khim. (Russ.) (Russ. J. Inorg. Chem.), 42, 376.
RODTUA	GaN_2O_4	hemikis(Piperazinediium) bis(pyridine-2,6-dicarboxylato-k3O,N,O')- gallium(iii) pyridine-2,6-dicarboxylic acid dihydrate	M.Rafizadeh, A.Nemati, Z.Derikvand, Acta Crystallogr.,Sect.E:Struct.Rep.Online (2008), 64, m1298
ROQZAA	GaO ₆	tris((Hydroxy)(diphenyl)acetato)-gallium methanol solvate trihydrate	E.Halevas, A.Hatzidimitriou, M.Bertmer, A.A.Vangelis, A.Antzara, C.Mateescu, A.Salifoglou (2014) Cryst.Growth Des. ,14, 4041
RUFPEN	GaN_3O_3	tetrakis(µ3-Oxo)-dodecakis(µ2-pyrazolyl)-tetrachloro-octa-gallium tetrahydrofuran solvate	M.V. Capparelli, P. Hodge, B. Piggott (1997) Chem. Commun. , 937.
RUVLOJ	GaClN ₃ O₂	(Tetrachlorocatecholato)-chloro-pyridyl-(1,10-phenanthroline)- gallium (iii) pyridine solvate	Y.G. Lawson, N.C. Norman, A.G. Orpen, M.J. Quayle (1997) Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 53, 1805.
SAGQIA	GaN_2O_4	bis(µ2-Methoxy)-bis(anguibactin-gallium(iii)) methanol solvate	M.B.Hossain, M.A.F.Jalal, D.van der Helm, J.Chem.Cryst. (1998), 28, 57
SALCOX	GaN_6	bis(tris(3,5-Dimethyl-1-pyrazolyl)hydroborate-N,N',N'')-gallium(iii) tetrachloro-gallium acetonitrile solvate	A.H. Cowley, C.J. Carrano, R.L. Geerts, R.A. Jones, C.M. Nunn (1988) Angew. Chem., Int. Ed., 27, 277.
SAXVUK	$GaCl_2N_4$	Dichloro-(bis(1,10-phenanthroline))-gallium chloride acetonitrile solvate monohydrate	Wenchan Jiang, J.D.Gorden, C.R.Goldsmith (2012) Inorg. Chem., 51, 2725
SEGRIF	GaClN₅	Chloro-pyridyl-(a,b,g,d-tetraphenylporphinato)-gallium(iii) pyridine pentane solvate	K.M. Kadish, JL. Cornillon, J.D. Korp, R. Guilard (1989) J. Heterocycl. Chem., 26, 1101.
SEWHAF	GaN₃O₃	(N-(1,4-bis(1-Carboxylatoethyl)-6-phenyl-1,4-diazepan-6- yl)alaninato)-gallium	D.Parker, B.P.Waldron, D.S.Yufit (2013) Dalton Trans., 42, 8001
SICDAL	GaO ₆	catena-[(μ4-Terephthalato)-(μ2-hydroxo)-gallium hydrate]	A.Boutin, D.Bousquet, A.U.Ortiz, FX.Coudert, A.H.Fuchs, A.Ballandras, G.Weber, I.Bezverkhyy, J P.Bellat, G.Ortiz, G.Chaplais, JL.Paillaud, C.Marichal,

			H.Nouali, J.Patarin (2013) J. Phys. Chem. C, 117, 8180
SILZUJ	GaN_4S_2	bis((E)-1-(1-(2-Pyridyl)ethylidene)thiosemicarbazonato-N,N',S)- gallium(iii) nitrate	Ying-Ju Fan, Jian-Ping Ma, Zhong-Xi Sun (2007) Acta
CINICAD	GaN O	$(u_2 \land cotato \land \land \land)$ bis((u_2 budrava) (1.4.7 triazapapapa N N! N!!)	K Wiegbardt M Kleine Reymann P. Nuber I. Weiss
SINKAD	Galv ₃ O ₃	gallium(iii)) tri-iodide monohydrate	(1986) Z. Anorg. Allg. Chem.,536, 179.
SISSIW	GaO ₆	tris(N-Methyl-4-methylbenzohydroxamato-O,O')-gallium(iii) acetone	A. Dietrich, K.A. Fidelis, D.R. Powell, D. van der Helm,
		solvate monohydrate	D.L. Eng-Wilmot (1991) J. Chem. Soc., Dalton Trans.,
			231.
SIZZEH	GaO ₆	tris(Trifluoromethanesulfonato)-tris(tetrahydrofuran)-gallium(iii)	G.Linti, A.Seifert, Z.Anorg.Allg.Chem. (2008), 634,
			1312
SIZZIL	GaHO₅	(Trifluoromethanesulfonato)-hydrido-tetrakis(tetrahydrofuran)-	G.Linti, A.Seifert, Z.Anorg.Allg.Chem. (2008), 634,
		gallium(iii) tetrakis(trifluoromethanesulfonato)-bis(tetrahydrofuran)-	1312
		gallium(iii) tetrahydrofuran solvate	
SIZZIL	GaO ₆	(Trifluoromethanesulfonato)-hydrido-tetrakis(tetrahydrofuran)-	G.Linti, A.Seifert, Z.Anorg.Allg.Chem. (2008), 634,
		gallium(iii) tetrakis(trifluoromethanesulfonato)-bis(tetrahydrofuran)-	1312
		gallium(iii) tetrahydrofuran solvate	
SOBHEY	GaN ₆	tris(N,N'-bis(3,5-bis(trifluoromethyl)phenyl)acenaphthylene-1,2-	I.L. Fedushkin, A.A. Skatova, N.L.Bazyakina, V.A.
		diimine)-gallium toluene solvate	Chudakova, N.M. Hvoinova, A.S. Nikipelov, O.V.
			Eremenko, A.V. Piskunov, G.K. Fukin, K.A.Lyssenko
			(2013) Izv.Akad.Nauk SSSR, Ser. Khim. (Russ.) (Russ.
			Chem. Bull.), 1815
SOMSIY	GaN ₄ O ₂	catena-[(m-4,4'-bipyrazolato)-(m-hydroxo)-gallium dihydrate]	S.Spirkl, M.Grzywa, C.S.Zehe, J.Senker, S.Demeshko,
			F.Meyer, S.Riegg, D.Volkmer (2015) CrystEngComm,
			17, 313
SUPNEW	GaO ₆	hexakis(Tetraethylammonium) tris(µ2-(R,R)-1,3-dimethyl-1,3-	E.J. Enemark, T.D.P. Stack (1995) Angew. Chem., Int.
		bis(benzamide-2,3-diolato)propane)-di-gallium hydrate	Ed., 34, 996.
TACWEX	GaN ₄ O ₂	(Acetato-0,0')-bis(dihydro-bis(1-pyrazolyl)borato)-gallium(iii)	D.L. Reger, S.J. Knox, L. Lebioda (1990)
			Organometallics, 9, 2218.
TACZIG	GaCl ₂ O ₄	bis(Dimethylglycol ether-O,O')-dichloro-gallium tetrachloro-gallium	S. Bock, H. Noth, A. Wietelmann (1990) Z.
			Naturforsch., B: Chem. Sci., 45, 979.
TANJEX	GaO ₆	tris(3-Hydroxy-2-methyl-1-n-propyl-4-pyridinonato)-gallium(iii)	L. Simpson, S.J. Rettig, J. Trotter, C. Orvig (1991) Can.
		trihydrate	J. Chem., 69, 893.
TEHPUS	GaO ₆	octakis(µ2-2,3-bis(3-(4-bromophenyl)-3-hydroxyprop-2-en-1-one)-	M. Albrecht, S. Dehn, R. Frohlich (2006) Angew.
		5,6-dimethoxy-5,6-dimethyl-1,4-dioxane)-dodecakis(µ2-hydroxo)-	Chem., Int. Ed., 45, 2792.
		octagallium(iii) nitrate	
TESYIZ	GaO ₆	tris(N-(P,P-Diphenylphosphinoyl)-P,P-diphenylphosphinimidato)-	V.Garcia-Montalvo, R. Cea-Olivares, D.J. Williams, G.
		gallium(iii) dichloromethane solvate	Espinosa-Perez (1996) Inorg. Chem., 35, 3948.
TISFOQ	GaS ₆	tris(Pyrrole-1-carbodithioato)-gallium(iii)	S. Bhattacharya, N. Seth, D.K. Srivastava, V.D. Gupta,
			H. Noth, M. Thomann-Albach (1996) J. Chem. Soc.,
			Dalton Trans., 2815.
TIWXUS01	GaO ₆	hexakis(Tetramethylammonium) tris(N,N'-bis(2,3-dioxo-4-	M. Meyer, B. Kersting, R.E. Powers, K.N. Raymond
		carbamoylbenzoyl)-1,4-phenylenediamine)-di-gallium(iii)	(1997) Inorg. Chem.,36, 5179.
		dimethylformamide solvate tetrahydrate	
TIWYAZ	GaO ₆	Hexa-potassium tris(bis(4-isopropylamido-2,3-dihydroxybenzamido)-	B. Kersting, M. Meyer, R.E. Powers, K.N. Raymond
		pphenylene)-di-gallium	(1996) J. Am. Chem. Soc., 118, 7221.
TIXHOZ	GaN ₄ O ₂	(3,3'-Dioxy-2,2'-binaphthalene-1,1',4,4'-tetrone)-(N.N'-dimethvl-N.N'-	F.L.S.Bustamante, F.S.Miranda, F.A.V.Castro.
		bis(pyridin-2-ylmethyl)ethane-1,2-diamine)-gallium nitrate dihvdrate	J.A.L.C.Resende, M.D.Pereira, M.Lanznaster (2014)
		· · · · · · · · · · · · · · · · · · ·	J.Inorg.Biochem. , 53, 37
TIXHUF	GaN ₄ O ₂	(N,N'-bis((Pyridin-2-yl)methyl)ethane-1,2-diamine)-(3.3'-dioxv-2.2'-	F.L.S.Bustamante, F.S.Miranda, F.A.V.Castro.
-		binaphthalene-1,1',4,4'-tetrone)-gallium tetrafluoroborate	J.A.L.C.Resende, M.D.Pereira, M.Lanznaster (2014)
		monohydrate	J.Inorg.Biochem. , 53, 37
		·	M Clamanta Loon E Coronada M Lonaz Jorda J C
TIXXII	GaN₄O₂	catena-(p)s((2,2-(2,5,8,1)-)etra-azadodeca-)))-dene-))/-	

		diyl)diphenolato)-gallium) hexakis(µ2-oxalato)-tetra- chromiumdichloromethane solvate)	Waerenborgh, C. Desplanches, Hongfeng Wang, JF. Letard, A. Hauser, A. Tissot (2013) J. Am. Chem. Soc., 135, 8655
TIZKUJ	GaN_3O_3	rac-(tris(1-Methyl-2-(2-oxybenzylidene)hydrazino)phosphine sulfide- N,N',N'',O,O',O'')-gallium(iii) dichloromethane solvate	V.Chandrasekhar, R.Azhakar, B.M.Pandian, J.F.Bickley, A.Steiner, Eur.J.Inorg.Chem. (2008), 1116
TPYGAC01	$GaCl_3N_3$	Trichloro-(2,2',2''-terpyridyl)-gallium(iii)	I.V.Kazakov, M.Bodensteiner, A.Y.Timoshkin (2014) Acta Crystallogr.,Sect.C:Cryst.Struct.Chem. ,70,312
TUXNUW	GaO ₆	hexakis(μ2-4-(Hydroxy-O)-3-(3'-[2-(hydroxy-O)-4-(oxo)pent-2-en-3-yl]- 2,2'-bis(methoxymethoxy)-5,5',6,6'-tetramethylbiphenyl-3-yl)pent-3- en-2-onato-O)-tetra-gallium dimethylformamide icosahydrate	Taifeng Liu, Yan Liu, Weimin Xuan, Yong Cui (2010) Angew. Chem., Int. Ed., 49, 4121
TUZLAC	GaCINO ₄	hexakis(µ3-2,2'-(methylimino)diethanolato)-hexachloro-hexa- gallium(iii) chloroform solvate	S. Mishra, E. Jeanneau, S. Daniele, V. Mendez (2010) Dalton Trans., 39, 7440
UCIGAO	$GaCl_2N_2S_2$	Dichloro-bis(4-methylpyridyl)-(dimethyldithiocarbamato-S,S')- gallium(iii)	Xing Zhou, M.L. Breen, S.A. Duraj, A.F. Hepp (1999) Main Group Metal Chemistry, 22, 35.
UFOPOV	GaN ₃ O ₃	(2,4-Di-t-butyl-6-((2-((3,5-di-t-butyl-2-oxyphenyl)(2-((3,5-di-t-butyl-2-oxyphenyl)(3,5-dimethoxyphenyl)amino)-3,5-dimethoxyphenyl)amino)-1-oxycyclohexa-2,4-dienyl radical-N,N',N'',O,O',O'')-gallium(iii) diethyl ether solvate	P.Chaudhuri, E.Bill, R.Wagner, U.Pieper, B.Biswas, T.Weyhermuller, Inorg.Chem. (2008), 47, 5549
UHOQIR	GaN_4O_2	(1,12-bis(2-oxy-5-methoxybenzyl)-1,5,8,12-tetraazadodecane)- gallium(iii) hexafluorophosphate	J.A. Ocheskey, V.R. Polyakov, S.E. Harpstrite, A. Oksman,D.E. Goldberg, D. Piwnica-Worms, V. Sharma (2003) J. Inorg. Biochem., 93, 265.
UJEYIR	GaO ₆	tetrakis(4,5:4',5'-bis(Ethylenedithio)tetrathiafulvalene) 18-crown-6 bis(tris(oxalato-O,O')-gallium) hexahydrate	M.B.Hursthouse, M.E.Light, S.S.Turner (2003) Private Communication.
UNAJAU	GaN_4O_2	(μ2-Hydroxo)-bis(2,3,7,8,12,13,17,18-octaethylporphyrinato)-aqua- digallium(iii) perchlorate	P.G. Parzuchowski, J.W. Kampf, E. Rozniecka, Y. Kondratenko, E. Malinowska, M.E. Meyerhoff (2003) Inorg. Chim. Acta, 355, 302.
UVEWUO	GaO ₆	catena-((μ4-4-Carboxybenzene-1,2-dicarboxylato)-tetrakis(μ2- hydroxo)-di-gallium)	R. Hajjar, C. Volkringer, T. Loiseau, N. Guillou, J. Marrot, G. Ferey, I. Margiolaki, G. Fink, C. Morais, F. Taulelle (2011) Chem. Mater., 23, 39
UVEXAV	GaO ₆	catena-((μ8-Benzene-1,2,4,5-tetracarboxylato)-octakis(μ2-hydroxo)- tetra-gallium dihydrate)	R. Hajjar, C. Volkringer, T. Loiseau, N. Guillou, J. Marrot, G. Ferey, I. Margiolaki, G. Fink, C. Morais, F. Taulelle (2011) Chem. Mater., 23, 39
VALNOL	GaN ₃ O ₃	(1-(3,5-Dimethyl-2-hydroxybenzyl)-4,7-bis(3,5-dimethylbenzyl-2-oxy)- 1,4,7-triazacyclononane-O,O',O'',N,N',N'')-gallium(iii) perchlorate methanol solvate	D.A. Moore, P.E. Fanwick, M.J. Welch (1989) Inorg. Chem., 28, 1504.
VAMNIH	GaO ₆	hexakis(dimethylsulfoxide)-gallium(iii) triiodide	A. Molla-Abbassi, M. Skripkin, M. Kritikos, I. Persson, J. Mink, M. Sandstrom (2003) Dalton Trans., 1746.
VEMRUB	GaO ₆	tetrakis(μ4-2,8,14,20-Tetra-n-pentyl-4,5,6,10,11,12-hexaoxy- 16,17,18,22,23,24-hexahydroxycalix(4)arene)-bis(μ4-2,8,14,20-tetra- n-pentyl-4,5,6,16,17,18-hexaoxy-10,11,12,22,23,24- hexahydroxycalix(4)arene)-tetracosa-aqua-dodeca-gallium(iii) acetone clathrate hydrate	R.M. McKinlay, P.K. Thallapally, J.L. Atwood (2006) Chem. Commun., 2956.
VEMSAI	GaO ₆	tetrakis(μ4-2,8,14,20-Tetra-n-pentyl-4,5,6,10,11,12-hexaoxy- 16,17,18,22,23,24-hexahydroxycalix(4)arene)-bis(μ4-2,8,14,20-tetra- n-pentyl-4,5,6,16,17,18-hexaoxy-10,11,12,22,23,24- hexahydroxycalix(4)arene)-tetracosa-aqua-dodeca-gallium(iii) acetonitrile clathrate hydrate	R.M. McKinlay, P.K. Thallapally, J.L. Atwood (2006) Chem. Commun., 2956.
VENDEZ	GaN ₆	bis(bis(4-methyl-2-(1H-pyrazol-1-yl)phenyl)amido)-gallium(iii) hexafluorophosphate dichloromethane solvate	B.J.Liddle, S.Wanniarachchi, J.S.Hewage, S. V. Lindeman, B. Bennett, J.R.Gardinier (2012) Inorg. Chem., 51, 12720
VENDID	GaN ₆	bis(bis(4-methyl-2-(1H-pyrazol-1-yl)phenyl)amido)-gallium(iii) (bis(4-	B.J.Liddle, S.Wanniarachchi, J.S.Hewage, S. V.

		methyl-2-(1H-pyrazol-1-yl)phenyl)amido)-(bis(4-methyl-2-(1H-pyrazol- 1-yl)phenyl)amido radical)-gallium(iii) tris(hexafluorophosphate)	Lindeman, B. Bennett, J.R.Gardinier (2012) Inorg. Chem., 51, 12720
VENDOJ	GaN ₆	dichloromethane toluene solvate hydrate bis(bis(4-methyl-2-(1H-pyrazol-1-yl)phenyl)amido radical)-gallium(iii) bis(hexafluorophosphate) hexachloroantimonate dichloromethane	B.J.Liddle, S.Wanniarachchi, J.S.Hewage, S. V. Lindeman, B. Bennett, J.R.Gardinier (2012) Inorg.
		toluene solvate	Chem., 51, 12720
VEXQOF	GaF ₂ O ₄	Di-n-propylammonium octakis(μ2-fluoro)-hexadecakis(μ2-pivalato- Ο,Ο')-octa-gallium(iii)	E.C. Sanudo, C.A. Muryn, M.A. Halliwell, G.A. Timco,W. Wernsdorfer, R.E.P. Winpenny (2007) Chem. Commun., 801
VIIQUC	GaN_2O_4	(Acetylacetonato)-(2,2'-(propane-1,3-diylbis (nitrilomethylylidene)) bis(4-methylphenoxy))-gallium	S.Tella, V.Bekiari, V.G.Kessler, G.S. Papaefstathiou (2013) Polyhedron, 64, 77
VIJRAJ	GaN_2O_4	(Acetylacetonato)-(2,2'-(propane-1,3-diylbis(nitrilomethylylidene)) bis(4-nitrophenoxy))-gallium	S.Tella, V.Bekiari, V.G.Kessler, G.S. Papaefstathiou (2013) Polyhedron, 64, 77
VIJREN	${\sf GaN}_2{\sf O}_4$	(Acetylacetonato)-(2,2'-(propane-1,3- diylbis(nitrilomethylylidene))bis(4-bromophenoxy))-gallium	S.Tella, V.Bekiari, V.G.Kessler, G.S. Papaefstathiou (2013) Polyhedron, 64, 77
VIJRIR	GaN_2O_4	(Acetylacetonato)-(2,2'-(propane-1,3- diylbis(nitrilomethylylidene))bis(4-chlorophenoxy))-gallium	S.Tella, V.Bekiari, V.G.Kessler, G.S. Papaefstathiou (2013) Polyhedron, 64, 77
VIJROX	GaN_2O_4	(Acetylacetonato)-(2,2'-(propane-1,3- diylbis(nitrilomethylylidene))diphenoxy)- gallium hemihydrate	S.Tella, V.Bekiari, V.G.Kessler, G.S. Papaefstathiou (2013) Polyhedron, 64, 77
VIRBAZ	GaO ₆	tris(3-Hydroxy-2-methyl-1-p-tolyl-4-pyridonato-O,O')-gallium(iii) hydrate	Zaihui Zhang, S.J. Rettig, C. Orvig (1991) Inorg. Chem., 30, 509.
VIYZUY	GaN₃O₃	tris(8-Oxyquinoline-O,N)-gallium methanol solvate	H. Schmidbaur, J. Lettenbauer, D.L. Wilkinson, G. Muller, O. Kumberger (1991) Z. Naturforsch., B: Chem. Sci., 46, 901.
VOCPUA	GaO ₆	catena-[(µ2-Dihydrogen ((pyridin-2-ylammonio)methylene) diphosphonato)-(µ2-hydrogen ((pyridin-2-ylammonio)methylene) diphosphonato)-gallium(iii)]	Xiaomin Hou, Lingling Tan (2013) Inorg. Chem. Commun., 37, 211
VOVBAJ	GaNO₅	(μ3-Oxo)-tris(bis(μ2-benzoato-O,O)-(4-methylpyridine)-gallium) tetrachloro-gallium 4-methylpyridine	M.T. Andras, S.A. Duraj, A.F. Hepp, P.E. Fanwick, M.M. Bodnar (1992) J. Am. Chem. Soc., 114, 786.
WACYUU	GaN_4O_2	(tris(5'-Bromo-2'-hydroxybenzylaminoethyl)amine-O,O',N,N',N'',N''')- gallium chloride chloroform solvate	Shuang Liu, S.J. Rettig, C. Orvig (1992) Inorg. Chem., 31, 5400.
WADKAN	GaN_3O_3	tris(2-(2'-Hydroxyphenyl)-2-oxazolinato)-gallium(iii) methanol solvate	H.R. Hoveyda, V. Karunaratne, S.J. Rettig, C. Orvig (1992) Inorg. Chem., 31, 5408.
WADKOB	GaN_3O_3	tris(2-(2'-Hydroxy-3'-allylphenyl)-2-oxazolinato)-gallium(iii)	H.R. Hoveyda, V. Karunaratne, S.J. Rettig, C. Orvig (1992) Inorg. Chem., 31, 5408.
WASDID	GaO ₆	tris(Tetramethylammonium) tris(N,N"-bis((S)-a-methylbenzyl)-2,3- dihydroxyterephthalamide-O,O')-gallium methanol solvate	T.B. Karpishin, T.D.P. Stack, K.N. Raymond (1993) J. Am. Chem. Soc., 115, 6115.
WEZWOO	GaO ₆	catena-(tris(µ2-Formato)-gallium(iii) carbon dioxide formic acid clathratehydrate)	Yun-Qi Tian, Yu-Ming Zhao, Hai-Jun Xu, Cheng-Yu Chi(2007) Inorg. Chem., 46, 1612
WIHXUI	GaClN₅	Chloro(N,N,N'-tris((pyridin-2-yl)methyl)ethane-1,2-diamine)gallium dichloride acetonitrile solvate trihydrate	Wenchan Jiang, J.D.Gorden, C.R.Goldsmith (2013) Inorg. Chem., 52, 5814
WIHYET	${\sf GaCl_2N_4}$	(N,N'-bis((pyridin-2-yl)methyl)ethane-1,2-diamine)(dichloro)gallium chloride trihydrate	Wenchan Jiang, J.D.Gorden, C.R.Goldsmith (2013) Inorg. Chem., 52, 5814
WIJTOY	GaO ₆	catena-(bis((R)-2-Methylpiperidinium) bis(μ4-phosphato)-bis(μ3- phosphato)-(μ2-oxalato)-bis(dihydrogen phosphato)-tetra- gallium(iii)dihydrate)	Kwang-Hwa Lii, Ching-Yeh Chen (2000) Inorg. Chem., 39, 3374
WOXVOW	GaN_4O_2	(2,2'-(((2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl)imino)bis(ethane-2,1- diyl(imino) methylene))diphenolato)-gallium perchlorate chloroform solvate	F.Silva, M.P.C.Campello, L.Gano, C.Fernandes, I.C.Santos, I.Santos, J.R.Ascenso, M.Joao Ferreira, A.Paulo (2015) Dalton Trans., 44, 3342
WOXVUC	GaN_4O_2	(2,2'-(7-(2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl)-2-oxa-4,7,10- triazaundec-10-ene-3,11-diyl)diphenolato)-gallium perchlorate	F.Silva, M.P.C.Campello, L.Gano, C.Fernandes, I.C.Santos, I.Santos, J.R.Ascenso, M.Joao Ferreira,
Apéndice 4 – Referencias bibliográficas de las estructuras recogidas en la revisión estructural de Ga(III)

		methanol solvate	A.Paulo (2015) Dalton Trans., 44, 3342
WOXWAJ	GaN ₄ O ₂	(2,2'-(((2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl)imino)bis(ethane-2,1-	F.Silva, M.P.C.Campello, L.Gano, C.Fernandes,
		diyl(imino) methylene))diphenolato)-gallium perchlorate methanol	I.C.Santos, I.Santos, J.R.Ascenso, M.Joao Ferreira,
		solvate	A.Paulo (2015) Dalton Trans., 44, 3342
WOXWEN	GaN_4O_2	(2,2'-((((pyridin-2-yl)methyl)imino)bis(ethane-2,1-	F.Silva, M.P.C.Campello, L.Gano, C.Fernandes,
		diyl(imino)methylene)) diphenolato) gallium perchlorate	I.C.Santos, I.Santos, J.R.Ascenso, M.Joao Ferreira,
			A.Paulo (2015) Dalton Trans., 44, 3342
WUCFOP	GaN ₂ O ₄	Ammonium ethylenediaminetetracetato-gallium(iii) dihydrate	Woo-Sik Jung, Young Keun Chung, Dong Mok Shin,
			Sun-Deuk Kim (2002) Bull. Chem. Soc. Jpn., 75, 1263.
WUGCIK	GaN_4S_2	bis(2-Acetylpyridine N,N-dimethylthiosemicarbazono)-gallium(iii)	V.B. Arion, M. Jakupec, M. Galanski, P. Unfried, B.K.
		tetrachloro-gallium	Keppler (2002) J. Inorg. Biochem., 91, 298.
XANYUH	GaO_3S_3	tris(Thiomaltolato-O,S)-gallium	V. Monga, B.O. Patrick, C. Orvig (2005) Inorg. Chem.,
			44, 2666.
XEDBOZ	GaO ₆	catena-((µ2-DL-tartrato)-(µ2-hydroxido)-gallium(iii) monohydrate)	Xiaojing Liu, Ruijing Tian, Cailing Zhang, Xia Zhi, Qinhe
			Pan (2012) Acta Crystallogr., Sect.E: Struct. Rep.
			Online, 68, m989
XEJRAG	GaN ₄ O ₂	bis(4,6-Dichloro-2-(2-pyridylmethylaminomethyl)phenolato-N,N',O)-	R. Shakya, Fangyu Peng, Jianguo Liu, M.J. Heeg, C.N.
		gallium(iii) perchlorate methanol solvate	Verani (2006) Inorg. Chem., 45, 6263.
XEJREK	GaN ₄ O ₂	bis(6-Methoxy-2-(2-pyridylmethylaminomethyl)phenolato-N,N',O)-	R. Shakya, Fangyu Peng, Jianguo Liu, M.J. Heeg, C.N.
		gallium(iii) perchlorate	Verani (2006) Inorg. Chem.,45, 6263.
XENPAJ	GaN ₂ O ₂	(N-(1.4-bis(carboxymethyl)-6-methyl-1.4-diazepan-6-yl)-	B.P.Waldron, D.Parker, C.Burchardt, D.S.Yufit.
)-)	Nmethylg/ycinato)-gallium hemihydrate	M.Zimny, F.Roesch (2013) Chem.Commun., 49, 579
XENPEN	GaNaOa	(N-(1 4-bis(1-carboyvetbyl)-6-metbyl-1 4-diazenan-6-vl)alaninato)-	B P Waldron D Parker C Burchardt D S Yufit
	6611363	gallium monohydrate	M.Zimny, F.Roesch (2013) Chem.Commun., 49, 579
XENPIR	GaN ₂ O ₂	(N-(1 4-bis(carboxymethyl)-6-phenyl-1 4-diazepan-6-yl)glycinato)-	B P Waldron D Parker C Burchardt D S Yufit
	64.1303	gallium	M.Zimny, F.Roesch (2013) Chem.Commun., 49, 579
XFRDAA	GaSec	his(hydrogen tris(2-seleno-1-mesityl-3-imidazolyl)borato-Se Se' Se'')-	M Minoura V K Landry LG Melnick Keliang Pang
, English	euse ₀	gallium tetrachloro-gallium acetonitrile solvate	L. Marchio, G. Parkin (2006) Chem. Commun., 3990.
XEVCIM	GaO6	hexakis(2.5-bis(1.3-Dithiolan-2-vlidene)-1.3.4.6-tetrathiapentalene)	L.Pilia. E.Sessini. F.Artizzu. M.Yamashita. A.Serpe.
		tris(3.4.5-trioxocyclopentene-1.2-diolato)-gallium dichloromethane	K.Kubo, H.Ito, H.Tanaka, S.Kuroda, J.Yamada,
		solvate	P.Deplano, C.J. Gomez-Garcia, M.L.Mercuri (2013)
			Inorg. Chem., 52, 423
XEYVOM	GaΩ∉	Potassium pentakis(N-methyl-3-(N-methylazacyclopentan-2-	R M Yeh M Ziegler D W Johnson A L Ternin K N
	6460	vl)pyridinium)tris(u2-N.N'-bis(2.3-dihydroxybenzovl)-1.4-	Raymond (2001) Inorg. Chem., 40, 2216.
		phenylenediamine)-digallium methanol solvate hydrate	
XIDVUB	GaCl ₂ N ₄	trans-Dichloro-tetrakis(pyrazole)-gallium(iii) chloride	S. Nogai, A. Schier, H. Schmidbaur (2002) Z.
			Naturforsch B: Chem. Sci 57.183.
ΧΙΟΨΑΙ	GaClaNa	trans-Dichloro-tetrakis(nyrazole)-gallium(iii) tetrachloro-gallate	S Nogai A Schier H Schmidhaur (2002) 7
,	00012114		Naturforsch B: Chem. Sci 57.183.
XIIHED	GaSc	tris(Morpholinodithiocarbamato)-gallium(iii) dichloromethane solvate	D.P. Dutta V.K. Jain A.Knoedler W. Kaim (2002)
ABITED	6056		Polyhedron, 21, 239.
XIOW/LIP	635.	tris(N N-Dimethyldithiocarbamato_S S')-gallium(iii) dichloromethane	PC Andrews SM Lawrence CL Baston BW
XIQWOI	0056		Skelton V - A Tolburst A H White (2000) Inorg Chim
		Solvate	Acta 300 56
XIOXA\A/	625	tris(N N-Diathyldithiocarbamata S S ¹ , gallium/iii) chloroform schiata	PC Andrews SM Lawrence CL Paston P.W
AIQAAW	Gas ₆		F.C. Andrews, S.M. Lawrence, C.L. Raston, B.W.
			Acto 200 EC
240245	<u> </u>		
XIQXIE	GaS ₆	tris(N,N-Ulbenzyldithiocarbamato-S,S')-gallium(iii)	P.C. Andrews, S.M. Lawrence, C.L. Raston, B.W.
			Skeiton, VA. Ioinurst, A.H. White (2000) Inorg. Chim.
XITZIK	GaO ₆	catena-Įbis(1,3-bis(4-Pyridinio)propane) bis(μ5-phosphato)-	Ya-Ching Yang, Sue-Lein Wang, J.Am.Chem.Soc.

		hexakis(µ4-phosphato)-tetrakis(µ2-hydroxo)-(µ2-hydrogen	(2008), 130, 1146
		phosphato-0,0')-bis(µ2-oxalato-0,0',0'',0''')-deca-gallium trihydrate]	
XIZLOH	GaN_3O_3	Ammonium bis(hydroxonium) tris(µ2-1,3-bis(8-hydroxyquinolin-7-yl)-	M. Albrecht, O. Blau, R. Frohlich (2002) Proc. Nat.
		2-methylene-propane)-di-gallium(iii) trinitrate	Acad. Sci. USA, 99, 4867.
XIZLUN	GaN_3O_3	bis(Hydroxonium) potassium tris(µ2-1,3-bis(8-hydroxyquinolin-7-yl)-	M. Albrecht, O. Blau, R. Frohlich (2002) Proc. Nat.
		2-methydene-propane)-di-gallium(iii) trinitrate	Acad. Sci. USA, 99, 4867.
XIZMAU	GaN_3O_3	Cesium bis(hydroxonium) tris(μ 2-1,3-bis(8-hydroxyquinolin-7-yl)-2-	M. Albrecht, O. Blau, R. Frohlich (2002) Proc. Nat.
		methylene-propane)-di-gallium(iii) trinitrate	Acad. Sci. USA, 99, 4867.
XOKZEC	GaN ₆	catena-(tris(Ethylenediamine)-gallium hepta-tellurium-tri-indium)	Zhen Chen, Jing Li, D.M.Proserpio, Zi-Xiang Huang
			(2000) Huaxue Xuebao (Chin.)(Acta Chim. Sinica), 58,
			835.
XUWVEQ	GaF_2O_4	catena-((µ6-Ethylenediphosphonato)-trans-bis(µ2-fluoro)-diaqua-	M.P. Attfield, H.G. Harvey (2001) Mat. Res. Soc. Symp.
		digalliummonohydrate)	Proc., 658, 31
YAJGEV	GaO ₆	tris(1-Ethyl-2-methyl-3-hydroxy-4-pyridinone)-gallium(iii) trihydrate	Gaoyi Xiao, D. van der Helm, R.C. Hider, P.S. Dobbin
			(1992) J. Chem. Soc., Dalton Trans., 3265.
YAKMOM	GaN ₄ O ₂	(5,10,15,20-Tetraphenyl-porphyrinato)-bis(tetrahydrofuran)-gallium	B.R. Serr, C.E.L. Headford, O.P. Anderson, C.M. Elliott,
		(µ2-cis-1,2-dicyanoethylenedithiolato)-(cis-1,2-	K. Spartalian, V.E. Fainzilberg, W.E. Hatfield, B.R.
		dicyanoethylenedithiolato)-copper(ii)-(5,10,15,20-tetraphenyl-	Rohrs, S.S. Eaton, G.R. Eaton (1992) Inorg. Chem., 31,
		porphyrinato)-tetrahydrofuran-iron(iii)tetrahydrofuran solvate	5450.
YAXTIA	GaO ₆	tris(Tropolonato)-gallium(iii)	F. Nepveu, F. Jasanada, L. Walz (1993) Inorg. Chim.
			Acta, 211, 141.
YAYJIR	GaO ₆	tris(2,4-Pentanedionato-O,O')-gallium trans-1,2-dichloroethene	L. Pang, M.A. Whitehead, E.A.C. Lucken (1993) Inorg.
			Chim. Acta, 203, 239.
YICLUR	GaN_4O_2	(bis(4,6-Dimethoxysalicylaldiminato)-N,N'-bis(2,2-dimethyl-3-	B.W. Tsang, C.J. Mathias, P.E. Fanwick, M.A. Green
		aminopropyl)ethylenediamine)-gallium(iii) iodide monohydrate	(1994) J. Med. Chem., 37, 4400.
YIKJIL	GaN_4O_2	(1,10-bis(5-Bromo-2-hydroxybenzyl)-1,4,7,10-tetra-azadecane-	E. Wong, Shuang Liu, T. Lugger, F.E. Hahn, C. Orvig
		N,N',N'',N''',O,O')-gallium perchlorate dimethylsulfoxide	(1995) Inorg. Chem., 34, 93.
YINRIW01	GaN_3O_3	tris(8-Quinolinolato)-gallium(iii) ethanol solvate	L. Pech, Yu. Bankovsky, V. Bel'sky, E. Silina, J. Ashaks,
			A. Sturis (2000) Latv. Khim. Z. (Latvian J. Chem.), 3-3.
YOTYAJ	GaNO₅	catena-[(m-pyridine-2,4,6-tricarboxylato)-diaqua-gallium]	M.T. Wharmby, M. Snoyek, T. Rhauderwiek, K. Ritter,
			N. Stock (2014) Cryst. Growth Des., 14, 5310
YUSHAV	GaN_3O_3	cis-1,3,5-tris(Salicylamino)cyclohexane-gallium(iii) hydrate	J.E. Bollinger, J.T. Mague, C.J. O'Connor, W.A. Banks,
			D.M. Roundhill (1995) J. Chem. Soc., Dalton Trans.,
			1677.
YUSQAF	GaO_6	catena-(tetrakis(µ6-Propane-1,3-diphosphonato)-bis(µ2-hydroxo)-	M. P. Attfield, Zhanhui Yuan, H. G. Harvey, W. Clegg
		hexagallium)	(2010) Inorg.Chem., 49, 2656
YUSQEJ	GaNO₅	$catena-(tris(\mu 6-Pentane-1,5-diphosphonato)-bis(pyridine-N)-tetra-$	M. P. Attfield, Zhanhui Yuan, H. G. Harvey, W. Clegg
		gallium)	(2010) Inorg. Chem., 49, 2656
YUSQIN	GaO ₆	catena-(bis(µ5-Hydrogen decane-1,10-diphosphonato)-di-gallium)	M. P. Attfield, Zhanhui Yuan, H. G. Harvey, W. Clegg
			(2010) Inorg.Chem., 49, 2656
YUWHOO	GaN ₆	catena-(pentakis(µ2-Imidazolato)-(imidazolato-N3)-(imidazole-N3)-	A. Zurawski, F. Hintze, K. Muller-Buschbaum (2010) Z.
		digallium(iii))	Anorg. Allg. Chem., 636, 1333
ZACPAU	GaN_4O_2	(N,N'-bis(5-Chloro-2-hydroxybenzyl)-N,N'-bis(2-	E. Wong, Shuang Liu, S.J. Rettig, C. Orvig (1995) Inorg.
		methylpyridyl)ethylenediamine)-gallium perchlorate	Chem., 34, 3057.
ZASXOG	GaN_2O_4	Potassium bis(iminodiacetato-N,O,O')-gallium(iii) trihydrate	S.P.Petrosyants, M.A.Malyarik, A.B.Ilyukhin (1995)
			Zh.Neorg.Khim.(Russ.)(Russ.J.Inorg.Chem.) ,40,765
ZAVNER	GaN ₆	tris(µ2-4,4'-(propane-2,2'-diyl)-bis(2-((phenyl)(2H-pyrrol-2-ylidene)	Zhan Zhang, Yakun Chen, D.Dolphin (2012) Dalton
		methyl)pyrrolato))-di-gallium(iii) unknown solvate	Trans., 41, 4751
ZAWLIS	GaN_3S_3	tris(Pyridine-2-thiolato)-gallium(iii)	D.J. Rose, Yuan Da Chang, Qin Chen, P.B. Kettler, J.
			Zubieta (1995) Inorg. Chem., 34, 3973.
ZAWLOY	$GaN_2O_2S_2$	bis((µ2-Ethoxo)-bis(pyridine-2-thiolato)-gallium(iii))	D.J. Rose, Yuan Da Chang, Qin Chen, P.B. Kettler, J.

			Zubieta (1995) Inorg. Chem., 34, 3973.
ZAWNEQ	GaO ₆	bis(1,3,5-Trideoxy-1,3,5-tris(dimethylamino)-cis-inositol)-gallium(iii)	K. Hegetschweiler, T. Kradolfer, V. Gramlich, R.D.
		trichloride pentadecahydrate	Hancock (1995) Chem Eur. J., 1, 74.
ZEGNEG	GaO_6	(18-crown-6)-gallium tetrakis(tris(trifluoromethyl)methoxy)-	A.Higelin, C.Haber, S.Meier, I.Krossing (2012) Dalton
		aluminium fluorobenzene solvate	Trans. ,41,12011
ZOCQUD	GaO ₆	Dibarium bis(µ2-pentadehydro-b-D-mannose)-di-gallium	J. Burger, C. Gack, P. Klufers (1995) Angew. Chem.,
		tridecahydrate	Int. Ed., 34, 2647.
ZOJXUR	${\sf GaN}_2{\sf O}_4$	bis((µ2-Hydroxo)-bis(quinaldic acid-O,N)-gallium) pyridine solvate	Wei Li, M.M. Olmstead, D. Miggins, R.H. Fish (1996)
			Inorg. Chem., 35, 51.
ZOTQAA	GaN_4O_2	(1,12-bis(2-Hydroxy-5-bromobenzyl)-1,5,8,12-tetrazadodecane)-	E. Wong, P. Caravan, Shuang Liu, S.J. Rettig, C. Orvig
		gallium perchlorate	(1996) Inorg. Chem., 35, 715.