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la formación recibida a lo largo de estos años. En especial al profesor Xosé Luis Otero
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Abstract

Continuous diagnostic tests (biomarkers or risk markers) are often used to discriminate
between healthy and diseased populations. For the clinical application of such tests, the
key aspect is how to select an appropriate cutpoint or discrimination value c that de-
fines positive and negative test results. In general, individuals with a diagnostic test
value smaller than c are classified as healthy and otherwise as diseased. In the liter-
ature, several methods have been proposed to select the threshold value c in terms of
different specific criteria of optimality. Among others, one of the methods most used
in clinical practice is the Symmetry point that maximizes simultaneously both types of
correct classifications. From a graphical viewpoint, the Symmetry point is associated
to the operating point on the Receiver Operating Characteristic (ROC) curve that inter-
sects the diagonal line passing through the points (0,1) and (1,0). However, this cutpoint
is actually valid only when the error of misclassifying a diseased patient has the same
severity than the error of misclassifying a healthy patient. Since this may not be the case
in practice, an important issue in order to assess the clinical effectiveness of a biomarker
is to take into account the costs associated with the decisions taken when selecting the
threshold value. Moreover, to facilitate the task of selecting the optimal cut-off point in
clinical practice, it is essential to have software that implements the existing optimal crite-
ria in an user-friendly environment. Another interesting issue appears when the marker
shows an irregular distribution, with a dominance of diseased subjects in noncontiguous
regions. Using a single cutpoint, as common practice in traditional ROC analysis, would
not be appropriate for these scenarios because it would lead to erroneous conclusions,
not taking full advantage of the intrinsic classificatory capacity of the marker.

In this work, we firstly review the basic concepts on ROC analysis and give a com-
prehensive overview of the existing methods in the literature to select optimal cutpoints
in the setting of a continuous diagnostic test. Secondly, we consider an interesting cost-
based generalization of the Symmetry point that incorporates the misclassification costs
and we propose how to construct confidence intervals for this optimal cut-off point and
its associated accuracy indexes (sensitivity and specificity) using two approaches: a para-
metric approach based on the Generalized Pivotal Quantity (GPQ) under the assump-
tion of normality and a nonparametric approach based on the Empirical Likelihood (EL)
methodology that does not require any parametric assumption. In addition, we describe
the main functions of the two R packages that we have developed in the framework
of this thesis, OptimalCutpoints and GsymPoint, to facilitate clinicians their usual
task of selecting optimal cutpoints in their daily practice. Finally, a new classification
rule that provides an improved discriminatory capacity is proposed by transforming the
original scale of the biomarker by means of the logistic generalized additive regression
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model (GAM), by considering the predicted probabilities obtained from that fit as the
new transformed biomarker, and by using the traditional optimal criteria on the trans-
formed scale to finally establish optimal cut-offs or intervals in the original scale on which
to base the classification. All this methodology is illustrated along the thesis through real
applications based on four real datasets taken from the medical field.

From the results obtained from this research work, we can conclude first that the
EL approach is competitive with the GPQ approach when the data follow the Box-Cox
model and outperforms the GPQ approach when the data do not follow such a model
and the healthy and diseased populations follow different parametric models. Therefore,
although the implementation of the EL method is more time consuming than the GPQ
method, we recommend the use of the EL method when the distributions of healthy and
diseased populations are unknown. In addition, when the relationship between the risk
marker and the disease risk (or outcome) is not monotone, we can conclude that using
the new transformed biomarker entails an improvement in terms of higher discrimina-
tory capacity. Under these situations, an optimal interval seems more reasonable than
a single cutpoint to define the two possible test results (positive or negative result). So,
statistical tools designed for flexible modeling can optimize the classificatory capacity
of a potential marker using the traditional ROC analysis on the transformed scale. It is
therefore important to question linearity in the marker-outcome relationship, in order to
take full advantage of the discriminatory capacity of a potential risk marker and avoid
erroneous conclusions in clinical practice.

Keywords: Biomarker; Diagnostic test; Empirical Likelihood; Generalized Pivotal Quan-
tity; Logistic GAM regression model; Misclassification costs; Optimal threshold; ROC
curve; R package; Symmetry point
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Resumen

Los tests de diagnóstico (biomarcadores o marcadores de riesgo) continuos se utilizan a
menudo para discriminar entre las poblaciones de sanos y enfermos. Para la aplicación
clı́nica de estos tests, el aspecto clave está en cómo seleccionar un punto de corte o valor
de discriminación c que defina los resultados positivos y negativos del test. En gen-
eral, los individuos con un valor del test de diagnóstico menor que c son clasificados
como sanos y en caso contrario como enfermos. En la literatura se han propuesto var-
ios métodos para seleccionar el punto de corte c en términos de diferentes criterios es-
pecı́ficos de optimalidad. Entre otros, uno de los métodos más utilizados en la práctica
clı́nica es el punto de Simetrı́a que maximiza simultáneamente ambos tipos de clasifi-
caciones correctas. Desde un punto de vista geométrico, el punto de Simetrı́a se cor-
responde con el punto sobre la curva ROC (“Receiver Operating Characteristic”) que
interseca con la lı́nea diagonal que une los puntos (0,1) y (1,0). Sin embargo, este punto
en realidad sólo es válido cuando el error de clasificar incorrectamente a un paciente en-
fermo tiene la misma gravedad que el error de no clasificar correctamente a un paciente
sano. Dado que este supuesto puede no ser cierto en la práctica clı́nica, con el objetivo
de evaluar la efectividad clı́nica de un biomarcador, un aspecto importante a la hora
de seleccionar el punto de corte es tener en cuenta los costes asociados a las decisiones
tomadas en base a dicho punto de corte. Además, para facilitar la tarea de seleccionar
el punto de corte óptimo en la práctica clı́nica es esencial disponer de software que im-
plemente los criterios óptimos existentes en un entorno amigable para el usuario final.
Otro aspecto interesante aparece cuando el marcador muestra una distribución irregu-
lar, con un dominio de sujetos enfermos en regiones no contigüas. La utilización de
un único punto de corte, siguiendo la práctica habitual en el análisis ROC tradicional,
no serı́a apropiado para estos escenarios ya que darı́a lugar a conclusiones erróneas, no
aprovechando al máximo la capacidad de clasificación intrı́nseca del marcador.

En este trabajo, se llevó a cabo en primer lugar una revisión de los conceptos básicos
del análisis ROC y una visión global de los métodos existentes en la literatura para se-
leccionar puntos de corte óptimos en el contexto de un test de diagnóstico continuo. En
segundo lugar, se consideró una interesante generalización del punto de Simetrı́a basada
en costes que incorpora los costes derivados de las clasificaciones incorrectas, y se pro-
puso la construcción de intervalos de confianza para este punto de corte óptimo y sus
medidas de efectividad (“accuracy”) asociadas (sensibilidad y especificidad) utilizando
dos planteamientos: un enfoque paramétrico basado en la Cantidad Pivotal General-
izada (o “Generalized Pivotal Quantity”, GPQ) bajo la hipótesis de normalidad y un
planteamiento no paramétrico basado en la metodologı́a de la Verosimilitud Empı́rica
(o “Empirical Likelihood”, EL). Además, se describieron las funciones principales de los
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dos paquetes que se desarrollaron en R en el marco de esta tesis, OptimalCutpoints
y GsymPoint, con el objetivo de facilitar a los clı́nicos su tarea habitual de seleccionar
puntos de corte óptimos en su práctica diaria. Finalmente, se propuso una nueva regla
de clasificación que proporciona una mejora en la capacidad de discriminación, trans-
formando la escala original del biomarcador mediante el modelo de regresión aditivo
generalizado (“Generalized Additive Model”, GAM) logı́stico, considerando las proba-
bilidades predichas obtenidas a partir de ese ajuste como el nuevo biomarcador transfor-
mado, y utilizando los criterios óptimos tradicionales sobre la escala transformada para
finalmente establecer puntos de corte óptimos o intervalos en la escala original sobre los
cuales basar la clasificación. Toda esta metodologı́a se ilustra a lo largo de la tesis a través
de aplicaciones reales basadas en cuatro conjuntos de datos reales tomados del ámbito
médico.

A raı́z de los resultados obtenidos en este trabajo de investigación, se puede con-
cluir en primer lugar que la aproximación EL es competitiva con la aproximación GPQ
cuando los datos siguen el modelo Box-Cox y es superior a la aproximación GPQ cuando
los datos no siguen dicho modelo y las poblaciones de sanos y enfermos siguen difer-
entes modelos paramétricos. Por lo tanto, aunque la implementación del método EL sea
más costosa desde un punto de vista computacional, se recomienda utilizar el método
EL cuando las distribuciones en las poblaciones de sanos y enfermos sean desconocidas.
Además, cuando la relación entre el riesgo de enfermedad y el marcador de riesgo no
sea monótona, se puede concluir que el nuevo biomarcador transformado proporciona
una mejorı́a en términos de mayor capacidad diagnóstica. Bajo estas situaciones, un in-
tervalo óptimo parece más razonable que un solo punto de corte para definir los dos
resultados posibles del test (resultado positivo o negativo). De modo que, herramien-
tas estadı́sticas diseñadas para una modelización flexible pueden optimizar la capacidad
clasificatoria de un marcador potencial utilizando el análisis ROC tradicional sobre la
escala transformada. Por tanto, es importante cuestionar la relación de linearidad entre
el marcador y la respuesta con el objetivo de aprovechar al máximo la capacidad de dis-
criminación intrı́nseca de un biomarcador potencial y evitar conclusiones erróneas en la
práctica clı́nica.

Palabras clave: Biomarcador; Cantidad Pivotal Generalizada; Costes de clasificación
errónea; Curva ROC; Modelo GAM de regresión logı́stica; Paquete de R; Punto de corte
óptimo; Punto de simetrı́a; Test de diagnóstico; Verosimilitud Empı́rica.
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Resumo

Os tests de diagnóstico (biomarcadores ou marcadores de risco) continuos empréganse
a menudo para discriminar entre as poboacións de sans e enfermos. Para a aplicación
clı́nica destes tests, o aspecto clave está en cómo seleccionar un punto de corte ou valor
de discriminación axeitado c que defina os resultados positivos e negativos do test. En
xeral, os individuos cun valor do test de diagnóstico menor que c son clasificados como
sans e noutro caso como enfermos. Na literatura propuxéronse varios métodos para se-
leccionar o punto de corte c en termos de diferentes criterios especı́ficos de optimalidade.
Entre outros, un dos métodos máis empregados na práctica clı́nica é o punto de Simetrı́a
que maximiza simultáneamente ambos tipos de clasificacións correctas. Desde un punto
de vista xeométrico, o punto de Simetrı́a correspóndese co punto sobre a curva ROC
(“Receiver Operating Characteristic”) que interseca coa liña diagonal que une os pun-
tos (0,1) e (1,0). Sen embargo, este punto de corte en realidade só é válido cando o erro
de clasificar incorrectamente a un paciente enfermo ten a mesma gravidade que o erro
de non clasificar correctamente a un paciente san. Dado que este suposto pode non ser
certo na práctica, co obxectivo de evaluar a efectividade clı́nica dun biomarcador, un as-
pecto importante á hora de seleccionar o punto de corte é ter en conta os costes asociados
ás decisións tomadas en base a ese punto de corte. Ademais, para facilitar a tarefa de
elexir os puntos de corte óptimos na práctica clı́nica é esencial dispoñer de software que
implemente os criterios óptimos existentes nun entorno amigable para o usuario final.
Outro aspecto interesante aparece cando o marcador mostra unha distribución irregular,
cun dominio de suxeitos enfermos en rexións non contigüas. Empregar un só punto de
corte, de acordo coa práctica habitual na análise ROC tradicional, non serı́a apropiado
para estes escenarios, xa que darı́a lugar a conclusións incorrectas, non aproveitando ó
máximo a capacidade de clasificación intrı́nseca do marcador.

Neste traballo, levouse a cabo en primeiro lugar unha revisión dos conceptos básicos
da análise ROC e unha visión global dos métodos existentes na literatura para elexir pun-
tos de corte óptimos no contexto dun test de diagnóstico continuo. En segundo lugar,
considerouse unha interesante xeralización do punto de Simetrı́a basada en costes que
incorpora os costes derivados das clasificacions incorrectas, e propúxose a construcción
de intervalos de confianza para este punto de corte óptimo e as súas medidas de efectivi-
dade (“accuracy”) asociadas (sensibilidade e especificidade) empregando dous plantea-
mentos: un enfoque paramétrico basado na Cantidade Pivotal Xeralizada (“General-
ized Pivotal Quantity”, GPQ) baixo a hipótese de normalidade e un planteamiento non
paramétrico basado na metodoloxı́a da Verosimilitude Empı́rica (“Empirical Likelihood”,
EL). Ademais, describı́ronse as funcións principais dos dous paquetes que se desen-
volveron en R no marco desta tese, OptimalCutpoints e GsymPoint, co obxectivo
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de facilitar ós clı́nicos a súa tarefa habitual de seleccionar puntos de corte óptimos na
súa práctica diaria. Para rematar, propúxose unha nova regra de clasificación que pro-
porciona unha mellora na capacidade de discriminación, transformando a escala orix-
inal do biomarcador mediante o modelo de regresión aditivo xeralizado (“Generalized
Additive Model”, GAM) loxı́stico, considerando as probabilidades preditas obtidas a
partir dese axuste como o novo biomarcador transformado, e empregando os criterios
óptimos tradicionais sobre a escala transformada para finalmente estabrecer puntos de
corte óptimos ou intervalos na escala orixinal sobre os cales basear a clasificación. Toda
esta metodoloxı́a é ilustrada ó longo da tese a través de aplicacións reais basadas en catro
conxuntos de datos reais tomados do ámbito médico.

Á raı́z dos resultados obtidos neste traballo de investigación, pódese concluir en
primeiro lugar que a aproximación EL é competitiva coa aproximación GPQ cando os
datos seguen o modelo Box-Cox e é superior á aproximación GPQ cando os datos non
seguen ese modelo e as poboacións de sans e enfermos seguen diferentes modelos paramé-
tricos. Polo tanto, aı́nda que a implementación do método EL sexa máis costosa desde
un punto de vista computacional, recoméndase empregar o método EL cando as dis-
tribucións nas poboacións de sans e enfermos sexan descoñecidas. Ademais, cando a
relación entre o risco de enfermidade e o marcador de risco non sexa monótona, pódese
concluir que o novo biomarcador transformado proporciona unha mellora en termos da
maior capacidade diagnóstica. Porén, baixo estas situacións, un intervalo óptimo parece
máis razoable que un só punto de corte para definir os dous resultados posibles do test
(resultado positivo ou negativo). De modo que, ferramentas estatı́sticas diseñadas para
unha modelización flexible poden optimizar a capacidade clasificatoria dun marcador
potencial empregando a análise ROC tradicional sobre a escala transformada. Polo tanto,
é importante cuestionar a relación de linearidade entre o marcador e a resposta co obxec-
tivo de aproveitar ó máximo a capacidade de discriminación intrı́nseca dun biomarcador
potencial e evitar conclusións erradas na práctica clı́nica.

Palabras clave: Biomarcador; Cantidade Pivotal Xeralizada; Costes de clasificación in-
correcta; Curva ROC; Modelo GAM de regresión loxı́stica; Paquete de R; Punto de corte
óptimo; Punto de simetrı́a; Test de diagnóstico; Verosimilitude empı́rica.
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It is good to have an end to journey toward;
but it is the journey that matters, in the end.

- Ernest Hemingway

Chapter 1

Introduction

1.1 Motivation and objectives

The problem of classification in diagnostic studies is a crucial first step in clinical practice
because it will largely determine the subsequent treatment (surgery, drug administration,
. . . ) and posterior care of the patient. There are many situations where the true disease
status of the patient is unknown and therefore it is important to have a good diagnostic
tool to classify correctly as many individuals as possible, specially in situations of seri-
ous or even mortal diseases such as cancer. Continuous diagnostic tests, risk markers or
biomarkers are often used for discriminating between alternative states of health. In this
work, we will focus on the two state case, the most recurrent and frequent case consid-
ered in practice, since normally the first question to answer is if the patient has (or not)
the event or outcome of interest, the target condition or disease under study. So, in mod-
ern medical practice, it is very important to know how to use a continuous diagnostic
test, Y , to discriminate between non-diseased and diseased individuals. For this reason,
for the clinical application of such tests it is useful to select an appropriate cutpoint or
discrimination threshold c that defines negative and positive test results. In general, un-
der the common assumption that higher values of the biomarker are associated with the
disease, this discrimination task is usually based on a cut-off value, c, such that depend-
ing on whether Y < c or Y ≥ c, the individual is classified as healthy (a negative test
result) or diseased (a positive test result), respectively. It should be noted, however, that
this classification is not error-free and the diagnostic test can incorrectly classify a patient
in the wrong group. Accordingly, it is recommendable that before routine application of
a diagnostic test in practice, the misclassification errors are quantified together with the
selection of the appropriate cutpoint to avoid erroneous conclusions.

In this context, the Receiver Operating Characteristic (ROC) curve is a commonly
used tool for evaluating the discriminatory capacity of Y (Metz, 1978) in distinguishing
between alternative states of health. The ROC curve is obtained by plotting the pairs
(1 − Sp(c), Se(c)), with −∞ < c < ∞, and where Sp(c) denotes the specificity or prob-
ability of correctly classifying a healthy patient (the true negative rate, TNR) and Se(c)
denotes the sensitivity or probability of correctly classifying a diseased patient (the true
positive rate, TPR). The ROC curve can be also reparameterized in the interval (0, 1) as
ROC(x) = 1 − F1(F−1

0 (1 − x)), where x ∈ (0, 1) is the false positive rate (FPR), that is,
x = 1 − Sp(c) = 1 − F0(c) = FPR(c), Fi denotes the cumulative distribution function
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(cdf) of the biomarker in the i-th population, Yi, and the subindex i = 0, 1 is used, respec-
tively, for the healthy and diseased populations. The area under the ROC curve (AUC),
although it is a summary index of the global performance or accuracy of a biomarker, it
can not be used to select an optimal cut-off value, a key point in this context to yield a
binary classification rule that can be used in practice.

Therefore, the main objective here is to select the optimal cutpoint of the diagnostic
marker that best discriminates between patients with and without the disease. How-
ever, the optimal cutpoint depends primarily on the situation where it is to be used, and
so, in general, one cannot talk in absolute terms of a “best choice” of cutpoint c. For
this task, several methods or strategies for identifying an optimal cutpoint in continu-
ous diagnostic tests in the sense of a specific optimality criterion have been proposed
in the literature depending mainly on the underlying reason or goal for this choice (see
Youden, 1950; Feinstein, SH, 1975; Metz, 1978; Albert and Harris, 1987; England, 1988;
Schäfer, 1989; Vermont et al., 1991; Greiner, 1995; Riddle and Stratford, 1999; Pepe, 2004;
Rota and Antolini, 2014, among others). The majority of such methods are based on the
ROC methodology. In fact, ROC curves can be used for computing the optimal cutpoints
taking into account the prevalence of the disease in the study population (the probability
of having the disease) and the ratio of relative costs (risk-benefit ratio) of the possible di-
agnostic decisions (either correct or incorrect classifications) derived from the diagnostic
test result. It is very important to take into account the value of such costs when selecting
the optimal cutpoint because not all situations can be equally assessed and, depending
on the specific circumstances of each situation (characteristics of the disease, available
treatment or not, invasive treatment, . . . ), a study of the selection of the optimal cutpoint
incorporating costs (or, equivalently, utilities) should be carried out. Besides, despite the
difficulties that may involve allocating costs in practice, the values of these costs must
be selected according to those specific circumstances. Thus, for example, in the case of a
serious or fatal disease that can not be overlooked, such as cancer, it is necessary to have
the highest possible sensitivity, that is, many true positives because it is primordial to
diagnose the disease, and consequently, few false negatives. From this perspective, the
cost of a false negative is more serious than the cost of a false positive and this should
be taken into account when estimating the appropriate optimal cutpoint by assigning a
higher value to the false negative than to the false positive cost.

A fundamental aspect for the real application of all these methods that facilitates the
task of selecting optimal values in clinical practice is the availability and development
of software that implements the different optimal-cutpoint selection criteria in a user-
friendly environment and with outputs easy to interpret by professionals of applied re-
search, especially in the biomedical field.

On the basis of all the aspects previously discussed so far, the main objectives that we
intend to address in this doctoral thesis are summarized below:

1. To review the basic concepts on the traditional ROC analysis.

2. To provide a comprehensive overview and study of the methods that have been
proposed in the literature to select optimal cutpoints for diagnostic tests, discussing
their relative advantages and disadvantages, and referring to the conditions of ap-
plication in clinical practice.
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3. To identify which selection methods are equivalent, similar or special cases of oth-
ers from a theoretical perspective in an intent to reduce the many options currently
available.

4. To develop efficient estimation and inference techniques for the selection of optimal
cutpoints that take into account the misclassification costs.

5. To develop software in a friendly environment that can be used easily, in a suitable
and comfortable way for all those professionals who are interested in the practical
use of this methodology.

6. To detect theoretical scenarios where the traditional ROC analysis may fail to take
full advantage of the discriminatory capacity of a continuous diagnostic marker, to
describe a new methodology that gives an improved solution under those situa-
tions, and to study its impact on the selection of the optimal cutpoints.

7. To apply this methodology to real data sets in the field of clinical practice.

8. To identify new interesting lines of future research.

1.2 Structure of the thesis

Considering this chapter devoted to introduce the motivation, objectives and structure,
this thesis is structured in seven chapters. In a nutshell, it is intended to provide advances
in the study of optimal cutoff points for classification purposes in diagnostic studies and
development of user-friendly software that can be used by those professionals interested
in this field. The contents of this work are structured as follows.

We first begin with a review of general and basic concepts on diagnostic tests in Chap-
ter 2, describing different types of diagnostic tests, its accuracy measures and the most
important or relevant aspects of the traditional ROC methodology. The main objective of
this first chapter is to introduce some essential contents that will be used in the following
chapters, according to our first objective. A spanish version of some of the contents of
this chapter is part of the book entitled “Técnicas de estimación e inferencia de las curvas
ROC”, published in 2012 by Editorial Académica Española (López-Ratón et al., 2012a). Ad-
ditionally, based on traditional ROC analysis, a real data application has been carried out
to compare the validity of two different methods (Olive-Basford’s method and Olmos’
method) as predictive methods of mandibular third molar impaction. This real appli-
cation has given rise to the publication entitled “Comparison between two radiographic
methods used for the prediction of mandibular third molar impaction” published in 2014
in Revista Portuguesa de Estomatologia, Medicina Dentária e Cirurgia Maxilofacial (Gallas-
Torreira et al., 2014).

According to our second and third objectives, Chapter 3 is devoted to give a detailed
and comprehensive review of the dichotomization methods that have been proposed
in the literature to select optimal cutpoints or thresholds in continuous diagnostic tests
when there are two groups of interest (healthy and diseased), discussing their relative
advantages and disadvantages, and identifying which methods are equivalent, similar
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or special cases of others in an intent to reduce the many options currently available. It is
important to mention here that in some of the existing methods the user or investigator
must select beforehand some specific values, for instance, the probability of disease or
the misclassification costs. Having in mind this aspect, the exposition of the currently
available methods is classified into two groups: dichotomization data-driven methods
and dichotomization methods with user requirements. The contents of this chapter are
partially based on the study carried out in collaboration with researchers from the Evan-
dro Chagas Infectious Diseases National Institute and the Oswaldo Cruz Foundation in
Brasil (Pedro Emmanuel Alvarenga Americano do Brasil and Marcel de Souza Borges),
from the German Peadiatric Pain Center and Chair for Children’s Pain Therapy and Pe-
diatric Palliative Care (Gerrit Hirschfeld), and from the University of Vigo (Marı́a Xosé
Rodrı́guez Álvarez). A version of this chapter has given rise to the publication entitled
“Methods to estimate decision thresholds for diagnostic tests in medicine: Comparing
similarities of 55 methods” which is under review for publication (Alvarenga Ameri-
cano do Brasil et al., 2015). Additionally, some of the most common criteria for selecting
the optimal cutpoints have been applied to a real dataset on diabetes mellitus in order
to study the discriminatory capacity of the glycated hemoglobin levels. This real appli-
cation has yielded the publication entitled “Relationship between glycated hemoglobin
and glucose concentrations in the adult Galician population: selection of optimal gly-
cated hemoglobin cut-off points as a diagnostic tool of diabetes mellitus”, published in
2012 in Endocrinologı́a y Nutrición (Botana-López et al., 2012).

After the revision presented in Chapter 3, we realized that some of the existing cri-
teria for selecting the optimal threshold have been most used in clinical practice and
consequently most studied in the literature. One of them is the Youden index (Youden,
1950) defined as J = maxc {Se(c) + Sp(c)− 1} . However, it should be noted that such
an index is a particular case of the Bayes rule for the minimum misclassification error
probability (in the sense of considering only binary classification rules based on a single
cutoff point), where the disease prevalence is assumed equal to 50% which, from a prac-
tical viewpoint, may be far from reality. In addition, there are clinical situations where it
could be more adequate to maximize simultaneously both types of correct diagnostic de-
cisions rather than the sum of them (Riddle and Stratford, 1999). So, in Chapter 4 we met
our fourth objective. More specifically, we focus on an specific optimality criterion, the
Symmetry point, defined as the point cS where Se(cS) = Sp(cS), that maximizes simul-
taneously the two types of correct classifications, and we introduce a cost-based general-
ization of it, the Generalized Symmetry point, taking into account the misclassifications
costs. After introducing these two optimal cutpoint criteria from a Bayes decision theory
perspective, we construct confidence intervals for the optimal cutpoint obtained by the
Generalized Symmetry point, and its associated specificity and sensitivity indexes us-
ing two approaches: one based on the Generalized Pivotal Quantity (Weerahandi, 1993,
1995) and the other based on Empirical Likelihood (Thomas and Grunkemeier, 1975). In
addition, we perform an extensive simulation study to check the practical behaviour of
both methods and we illustrate their use by means of three real biomedical data sets on
melanoma, prostate cancer and coronary artery disease which will be explained in detail
in the next section. The study performed for the Symmetry point and its cost-based gen-
eralization is the result of the communication entitled “Inference of the Symmetry point
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with different costs for the specificity and sensitivity” presented in the 27th International
Workshop on Statistical Modelling (López-Ratón et al., 2012b), and the work entitled
“Confidence intervals for the Symmetry point: an optimal cutpoint in continuous di-
agnostic tests”, which is under second revision in Pharmaceutical Statistics (López-Ratón
et al., 2015a).

In the framework of the methodology described and introduced in this thesis and
according to our fifth objective, we have developed two R (R Core Team, 2015) packages
which are freely available from the Comprehensive R Archive Network (CRAN). Albeit
later on we give a detailed description of each package in Chapter 5, now we present a
brief summary of them:
1) The OptimalCutpoints package (López-Ratón and Rodrı́guez-Álvarez, 2014), avail-
able at http://CRAN.R-project.org/package=OptimalCutpoints, includes al-
most all methods reviewed in Chapter 3 for selecting the optimal cutpoint in continuous
diagnostic tests. This package is described in Section 5.1 of Chapter 5. That description
is based on the paper “OptimalCutpoints: An R Package for selecting optimal cutpoints
in diagnostic tests” published in 2014 in Journal of Statistical Software (López-Ratón et al.,
2014).
2) The GsymPoint package, available at http://CRAN.R-project.org/package=
GsymPoint, see López-Ratón et al. (2013, 2015b), implements the two inference methods
introduced and studied in Chapter 4 for the Generalized Symmetry point. This package
is described in Section 5.2 of Chapter 5. A version of the contents of that section will be
submitted soon for publication in Journal of Statistical Software (López-Ratón et al., 2015c).
In the detailed description of both R packages given in Chapter 5, we follow the same
structure for each, we first explain the use of the main functions, and we then give an
illustration of their practical application using different real data sets.

Traditionally, in classical ROC analysis, marker levels above and below a given cut-off
value result in individuals being labeled as diseased or nondiseased, respectively. How-
ever, in cases where the marker shows an irregular distribution, with a dominance of
diseased subjects in non-contiguous regions, classification by reference to a cut-off value
is neither feasible nor logical. Indeed, use of such an analysis would lead to erroneous
conclusions, and a modification of the classification rule is therefore necessary (Lustres-
Pérez et al., 2010). According to our sixth objective and, in an intent to give a practical
solution to this issue, Chapter 6 is devoted to describe a procedure for improving the
discriminatory capacity of a continuous biomarker in the above-mentioned situations,
by using a flexible regression technique based on generalized additive models (GAMs)
(Hastie and Tibshirani, 1990) for binary data. Specifically, a new classification rule is
obtained by transforming the original scale of the biomarker by means of the logistic
GAM regression model, and by considering the predicted probabilities obtained from
that fit as the new transformed biomarker. Based on the scale of this new transformed
biomarker, we propose to establish optimal cut-offs or intervals in the original scale of
the biomarker and use them for classification purposes. In addition, we validate this
methodology under different theoretical scenarios, and we present a real application us-
ing data from a prospective study of patients undergoing surgery at a University Teach-
ing Hospital, where the first objective was to examine the plasma glucose levels as a po-
tential biomarker for postoperative infection (Figueiras and Cadarso-Suárez, 2001). This
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chapter is partially based on the contents of the manuscript entitled “Application of gen-
eralized additive models to the evaluation of continuous markers for classification pur-
poses”, recently published in 2015 in International Journal of Statistics in Medical Research
(López-Ratón et al., 2015d). Besides, this GAM based methodology has been applied to
determine the diagnostic accuracy of the use of surface electromyography (sEMG) as a
potential diagnostic tool to detect chronic temporomandibular disorders (TMD). This real
application has given rise to the publication entitled “Surface raw electromyography has
a moderate discriminatory capacity for differentiating between healthy individuals and
those with TMD: A diagnostic study” published in 2014 in Journal of Electromyography and
Kinesiology (Santana-Mora et al., 2014).

Finally, this work ends with a brief discussion in Chapter 7, that provides not only
some conclusions of the studies carried out in Chapters 3–6 but also new interesting
extensions of them for future research lines.

1.3 Data sets

To exemplify and illustrate all the methodology developed along the thesis, we will use
four real biomedical applications on melanoma, prostate cancer, coronary artery disease
and postoperative infection, covering thus pathologies with different characteristics. In
this section we explain in detail such data sets.

1.3.1 Melanoma dataset

In order to determine if a suspicious pigmented lesion on the skin is a melanoma, der-
matologists use a clinical scoring scheme without dermoscope (CSS) or a dermoscopic
scoring scheme (DSS) to clinically evaluate the lesion on the basis of several visible fea-
tures such as asymmetry, border irregularity, colouration and size. Venkatraman and
Begg (1996) have analyzed a dataset on 72 patients with suspicious lesions of being a
melanoma. All these patients underwent a biopsy and it turned out that 21 out of them
were diagnosed as suffering from melanoma. In cutaneous melanoma, the true diagnosis
is produced when removing the lesion and examining the anatomo-pathological charac-
teristics of the piece biopsied. In order to avoid this invasive technique, it is interesting
to analyze if there exist other less invasive alternatives on which to base the diagnose of
melanoma, such as the CSS or the DSS markers. We will analyze here and in some of the
following chapters, the CSS marker, as a potential continuous diagnostic marker to de-
tect the presence of melanoma. Here we simply collect in Table 1.1 the main descriptive
statistics for each group. It is observed that higher values of CSS are associated with the
presence of melanoma.

Table 1.1: Descriptive statistics of melanoma dataset.

n Mean Median Variance sd Min Max
Melanoma 21 (29%) 0.557 0.406 2.321 1.523 -2.763 3.032

Non melanoma 51 (71%) -2.426 -2.293 3.099 1.760 -5.881 1.751
Total 72 -1.556 -1.696 4.701 2.168 -5.881 3.032
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1.3.2 Prostate cancer dataset

In order to design an appropriate treatment strategy for a patient with prostate cancer,
it is important to know first whether cancer has spread or not to the neighboring lymph
nodes. Although the true status of the patient could be confirmed through a laparoscopic
surgery, it is interesting to find a non-invasive diagnostic method to predict whether
nodal involvement is present. Some possible predictors include X-ray, palpation, biopsy
and “acid phosphatase level in blood serum”, among others (Le, 2006). We analyze here
the continuous measurement of the level of acid phosphatase in blood serum (APBS)
×100 as a potential continuous diagnostic test for predicting nodal involvement, using
a dataset on prostate cancer taken from Miller et al. (1980) and that has been previously
studied in detail in Le (2006). This dataset has 20 patients with nodal involvement and 33
without (Le, 2006). For the practical use of this marker in clinical practice, it is necessary
to dichotomize the marker so that we can classify the individuals into the two groups
of interest (patients with nodal involvement and patients without nodal involvement).
For the case of APBS, clinicians have long observed that an elevated level tend to be
associated with a nodal involvement, that is, higher marker values are associated with
disease. In Table 1.2 we show the basic descriptive statistics (mean, median, variance and
standard deviation in parentheses, minimum and maximum value) of the APBS×100 for
each group.

Table 1.2: Descriptive statistics of prostate cancer dataset.

n Mean Median Variance sd Min Max
With nodal involvement 20 (38%) 77.500 74 515.105 22.696 48 136

Without nodal involvement 33 (62%) 64.515 55 744.133 27.279 40 187
Total 53 69.42 65 686.517 26.201 40 187

1.3.3 Coronary artery disease dataset

The main disadvantage of the existing non-invasive methods to detect coronary artery
disease (CAD), such as electrocardiographies (with or without effort) and echocardiogra-
phies (with or without stress), is their limited success in the detection of CAD in its early
stages. Therefore, in order to provide an early diagnosis of CAD, it is of main interest
to analyze the diagnostic capability of biochemical factors, such as the peripheral blood
leukocyte elastase concentration, a proteolytic enzyme contained in the azurophilic gran-
ules of neutrophils, that has been implicated in the pathophysiology of ischaemic heart
disease. We analyze here this biochemical factor as a potential diagnostic indicator of
CAD using the data from a study conducted on 141 consecutive patients admitted to
the Cardiology Department of a Teaching Hospital in Galicia (northwest of Spain) for
evaluation of chest pain or cardiovascular disease (Amaro et al., 1995). All patients un-
derwent coronary angiography during investigation: 96 had coronary lesions and 45 had
non-stenotic coronaries. In Table 1.3 we present some basic descriptive statistics for each
group. From these results, it is observed that higher elastase values are associated with
coronary lesions and that there is more variability in this group.
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Table 1.3: Descriptive statistics of coronary artery disease dataset.

n Mean Median Variance sd Min Max
Coronary lesions 96 (68%) 49.729 43 752.621 27.434 13 163

Non-stenotic coronaries 45 (32%) 29.522 31 213.704 14.619 5 56
Total 141 43.28 39 667.230 25.831 5 163

1.3.4 Postoperative infection dataset

Infections after surgical procedures can cause several problems such as pain, need for
further treatment including antibiotics, longer hospital stays, increased health care costs,
and even severe complications as failure of the operation, sepsis, organ failure or death
(Torpy et al., 2010). So, it is important to avoid the presence of postoperative infection
(POI) in order to prevent all these possible problems and complications. We considered
here data drawn from a prospective study of patients who underwent surgical interven-
tions at the Hospital Clı́nico Universitario de Santiago (Santiago de Compostela, Spain)
in the period from January 1996 to March 1997 (Figueiras and Cadarso-Suárez, 2001). The
aim of this study was to ascertain factors associated with the appearance of postopera-
tive infection (POI). Some known risk factors for postoperative infection are diabetes,
obesity, older age, emergency operations and obvious contamination (with pus, stool, or
other substances) of the injury or the surgical area (Torpy et al., 2010). Of the 2353 in-
dividuals contained in the database, postoperative infection was detected in 460 during
follow-up, and infection was strongly correlated with the type of surgery performed. The
classification of the surgery type was based on the Altemeier classification (Altemeier,
1979), which categorizes surgery into the following 4 types: clean; clean-contaminated;
contaminated; and dirty to a lesser or greater degree of bacterial contamination. This
study evaluated whether glucose levels could predict appearance of infection in the im-
mediate postoperative period. In order to prevent the presence of possible confounding
variables, only the group of clean surgical interventions on nondiabetic individuals was
considered for analysis purposes in the following chapters of the thesis. The final sample
consisted of 836 patients, 45 of whom had POI. In Table 1.4 we show some descriptive
statistics of this reduced dataset that, from here on, we will refer to it as the postoperative
infection dataset. From these results, it is observed that subjects with POI present higher
mean glucose values, although the maximum value is reached in the non-POI group and
the minimum value in the group with POI . This dataset will be specially interesting for
the illustrative application of the GAM-based methodology presented in Chapter 6.

Table 1.4: Descriptive statistics of coronary artery disease dataset.

n Mean Median Variance sd Min Max
POI 45 (5%) 116.600 106.000 1393.568 37.331 56.000 240.000

Non POI 791 (95%) 103.400 98.000 556.458 23.589 68.000 265.000
Total 836 104.100 99.000 608.802 24.674 56.000 265.000
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All human knowledge begins with intuitions,
proceeds from thence to concepts,
and ends with ideas.

- Immanuel Kant

Chapter 2

Basic concepts on diagnostic tests

As a first step to address the study of the selection of optimal cutoff points for classifica-
tion in diagnostic studies, it is necessary to know some basic concepts on diagnostic tests.
In this chapter we review the basic concepts primarily related to the different accuracy
measures of diagnostic tests, specifying their advantages, disadvantages and indications
for further application in clinical practice. This review aims to be didactic and the corner-
stone to understand in an easy and logical way the need of selecting the optimal cutoff
point in continuous diagnostic tests, and the rationale of the different criteria of optimal-
ity proposed in the literature (see Chapter 3 for more details).

The diagnosis can be considered as one of the most important results of medical
practice, the key that leads to the treatment and prognosis of the patient. The different
phases of the diagnostic process generally involve several sources of information, such
as medical history, physical examination, epidemiological information and complemen-
tary tests (Sandler, 1980; Sackett et al., 1994). A diagnostic test could be defined as any
kind of medical test performed to aid in the diagnosis or detection of disease and it is an
essential tool in the practice of modern medicine (Barrat et al., 1999). Other possible defi-
nitions are: a diagnostic test is any process, more or less complex, that seeks to determine
in the patient the presence of some supposedly pathological condition that it is likely to
not be directly observed (with any of the five basic senses). For instance, a diagnostic
test is useful to diagnose diseases, to confirm that a person is free from disease and/or
to measure the progress or recovery from disease. So, diagnostic tests are often used for
discriminating between healthy and diseased populations and it is important to know
how to do this classification. However, from a statistical point of view we may consider
medical diagnose in a much broader context, since statistical methodologies pertinent to
diagnosing disease also apply to other important classification problems in medicine, for
example, the prognosis or disease screening test.

The interpretation of a diagnostic test in turn depends on several factors:

(i) The intrinsic ability of the diagnostic test to distinguish between healthy and dis-
eased patients (ability or discrimination accuracy).

(ii) The individual characteristics of each patient.

(iii) The environment where the diagnostic test is applied.
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Some authors (Begg and Greenes, 1983; Silva, 1987) stated that the use of diagnostic
tests for the detection and evaluation of various diseases in clinical practice has increased
significantly and tends to keep increasing exponentially. On one hand, the incorporation
into clinical practice of more sophisticated and novel diagnostic methods (due largely to
great technological development in recent years) have made this a reality. On the other
hand, however, these technological advances have led to a somewhat indiscriminate use
by some clinicians that do not always act in the most appropriate way.

Assessment of the reliability, accuracy and impact of the available tests is essential
to guide on the selection of the optimal test and to interpret appropriately tests results.
It is clear that a good diagnostic test is that which provides positive results in diseased
individuals and negative results otherwise. Therefore, according to the ideas presented
in Morrison (1992), the required conditions of a diagnostic test are the following:

• Validity: the degree to which the test measures what it is supposed to measure
(Khan and Chien, 2001; Seffinger et al., 2004). This involves comparing the results
of the diagnostic test to the results of a reference test or gold standard that even
when it does provide more reliable results on the state of the patient regarding the
condition under study, it has the disadvantage of being too expensive and/or im-
practical for routine use in clinical practice; that is, the validity answer the question
of “how often the test result is confirmed by more complex and rigorous diagnostic
procedures?”

• Reproducibility: the ability of the test to give the same results when applied in
similar circumstances or conditions (Khan and Chien, 2001; Seffinger et al., 2004;
Bruno et al., 2011). A test to be of potential use in practice has to give consistent
results. Several sources of variability such as biological variability of the observed
fact, variability introduced by the observer himself (or herself) and intrinsic vari-
ability of the test itself, determine its reproducibility.

• Safety: the degree to which the test will predict the presence or absence of disease.
For example, what is the probability that a positive diagnostic test result indicates
the presence of disease?

In turn, it is desirable that a diagnostic test is simple to apply or implement, accepted
by the patients or the population in general, to have the minimum adverse effects and be
economically acceptable.

Depending on the outcome of the test, these are classified into:

• Binary tests: The test has only two possible outcomes, positive or negative for
indicating the presence of disease, that is, the test is a binary variable. For instance,
developing a certain disease or not.

• Discrete tests: The test can take different values (usually integer values) and the set
of possible outcomes is finite. For instance, positive, negative or uncertain results.

• Ordinal tests: The test can take different values (usually integer values), the set
of possible outcomes is finite and, unlike the discrete diagnostic tests, an order
can be established on the different test results. Tests that involve an element of

10



subjective assessment are often ordinal in nature (Pepe, 2004). For example, from
the radiologists reading of an image the possible results to detect a disease could
be “definitely”, “probably”, “possible” or “definitely not”. Clinical symptoms are
also used as diagnostic tools and they are often classified as “severe”, “moderate”,
“mild” or “not present”.

• Continuous tests (or biomarkers): The test can take infinite (real) values. For ex-
ample, glycated hemoglobin (HbA1c) as a marker for diabetes mellitus or leukocyte
elastase to diagnose coronary artery disease (CAD).

In all these types of tests the objective is the same: to classify an individual as healthy
or diseased depending on the absence or presence (respectively) of a particular symptom
or sign, which is presumed to be indicative of the absence or presence of the condition
under study. For binary tests, the outcome directly provides the classification rule. Nev-
ertheless, in ordinal or continuous tests, the classification rule is a bit more complex.

The most common diagnostic tests used in clinical practice are either binary tests
because of its simplicity and ease of handling, or continuous tests given the continuous
nature of many analytical measurements. So, we will focus here on these two types of
tests.

2.1 Binary tests

The simplest diagnostic test is one in which the test result is dichotomous, that is, it is a
test that has only two possible outcomes, positive or negative for the disease. In this type
of tests the classification is performed straightforward from the test result, each patient
is classified as healthy or diseased depending on whether the test result is negative or
positive, respectively, as in general a positive result is associated with the presence of
disease and a negative result with the absence of disease.

Defining D as the random variable that models the true disease status or gold stan-
dard result, D = 1 indicates the patient has the disease, and D = 0 the patient does
not have such a disease. The disease prevalence is the probability that a subject has the
disease and it is normally denoted by p or π, that is, p = π = Pr(D = 1). Let Y be the
random variable that models the test results in the population under study. The notation
Y+ indicates a positive test result (tentatively indicating the presence of disease), and
Y− indicates a negative test result (tentatively indicating the absence of disease).

When a sample of patients is studied, the data obtained from the binary test allow us
to classify the subjects into four groups according to a 2 × 2 table known as confusion
matrix or classification table. For an example, see Table 2.1. In the confusion matrix, the
diagnostic test result (in rows) is faced with the true disease status of the patient deter-
mined by the reference test or the gold standard (in columns).

The classification of the true status (healthy/diseased) of the patient based on the
result of a diagnostic test is not error-free. So, it is necessary to measure the errors to
check its validity on diagnosing, that is, to evaluate the diagnostic accuracy or ability
to discriminate or differentiate between healthy and diseased populations. The test may
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err or fail in its task of detecting the disease in two different ways, namely, by incorrectly
classifying a healthy patient (a false positive, denoted by FP or F+) or, alternatively,
by declaring a patient to be healthy when he or she is in fact diseased (a false negative,
denoted by FN or F−). Conversely, the test may correctly classify a healthy patient (a
true negative, denoted by TN or T−) or a diseased patient (a true positive, denoted by
TP or T+).

Table 2.1: Classification of test results by disease status.
True Disease Status (D)

Test result (Y ) Diseased (D = 1) Healthy (D = 0) Total
Positive (Y+) True Positive (TP) False Positive (FP) TP+FP

Negative (Y−) False Negative (FN) True Negative (TN) FN+TN
Total TP+FN FP+TN N= (TP+FP+FN+TN)

The accuracy of a diagnostic test to detect an individual with the disease or exclude
an individual without the disease can be often measured in terms of different accuracy
measures. Such measures must be individually considered by the clinicians in order
to appropriately interpret the results that they obtain when performing the test on a
patient (Bland, 1987; Murphy et al., 2006), but many clinicians are frequently unclear
about the practical application of these terms (Steurer et al., 2002). In the following, the
most important accuracy measures of a binary diagnostic test are presented, defined from
the probabilities of the four possible events (collected in the confusion matrix, see Table
2.1) and the disease-specific classification probabilities (that is, the disease prevalence,
p = π = Pr(D = 1), and its complementary, 1 − p = 1 − π = 1 − Pr(D = 0) = Pr(H),
where H is an alternative notation to refer to the event D = 1).

2.1.1 Sensitivity and specificity

The validity of a diagnostic test in clinical practice (Feinstein, AR, 1975; Swets, 1979;
Swets et al., 1979; Altman and Bland, 1994a) is usually measured by the conditional prob-
abilities of correctly classifying a patient, the sensitivity and specificity, the most well-
known accuracy measures. Yerushalmy (1947) introduced these two terms as statistical
indicators for evaluating the degree of inherent efficacy of a diagnostic test in relation to
a reference criterion that is considered to yield “the truth” (Feinstein, AR, 1975; Griner
et al., 1981; Robertson et al., 1983; Fescina et al., 1985; Sox, 1986; Taube, 1986; Silva, 1987;
Knottnerus and Leffers, 1992).

• Sensitivity (Se) is the probability of correctly classifying a diseased patient, that
is, the probability that a diseased patient gets a positive test result (Bland, 1987;
Altman, 1991; Hastie et al., 2000; Chien and Khan, 2001; Davidson, 2002). Sensitiv-
ity is, therefore, the ability of the test to detect the disease when it is present, that
is, how “sensitive” is the test to the presence of the disease (Feinstein, AR, 1975;
Griner et al., 1981; Robertson et al., 1983; Feinstein, 1985; Fescina et al., 1985; Sox,
1986; Taube, 1986; Hlatky et al., 1987; Silva, 1987; Sackett et al., 1989; Riegelman
and Hirsch, 1991; Knottnerus and Leffers, 1992), and it is also known as true posi-
tive fraction (TPF ) or true positive rate (TPR). Keep in mind that the sensitivity
can only be calculated from those individuals who have the disease (Mayer, 2004).
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This means that the sensitivity of a test tells us nothing about whether or not some
people without the disease would test also positive and, if so, in what proportion
(Akobeng, 2007). From the confusion matrix given in Table 2.1, it is easy to estimate
the sensitivity as the proportion of diseased individuals who tested positive, that
is:

Se = Pr(Y + |D = 1) = Pr(TP ) = TP/(TP + FN).

• Specificity (Sp) or true negative fraction (TNF ) is the probability of correctly clas-
sifying a healthy patient, that is, the probability that for a healthy subject a nega-
tive test result is obtained (Bland, 1987; Altman, 1991; Hastie et al., 2000; Chien and
Khan, 2001; Davidson, 2002). In other words, specificity can be defined as the abil-
ity of the test to exclude the disease in patients who are disease-free (Feinstein, AR,
1975; Griner et al., 1981; Robertson et al., 1983; Feinstein, 1985; Fescina et al., 1985;
Sox, 1986; Taube, 1986; Hlatky et al., 1987; Silva, 1987; Sackett et al., 1989; Riegelman
and Hirsch, 1991; Knottnerus and Leffers, 1992). Similarly to sensitivity, specificity
can only be calculated from those people who do not have the disease, and there-
fore, specificity tells us nothing about whether or not some people with the disease
would also have a negative result and, if so, in what proportion (Akobeng, 2007).
From the confusion matrix given in Table 2.1, the specificity is estimated as:

Sp = Pr(Y − |D = 0) = Pr(TN) = TN/(TN + FP ).

The sensitivity and specificity of a binary diagnostic test can be estimated either from
a single sample (cross sampling study) as from two independent samples of diseased
and non-diseased individuals (case-control studies). The only difference is that in case-
control sampling, the number of diseased individuals and healthy subjects, that is, TP +
FN and TN + FP are set by the researcher.

Both sensitivity and specificity are probabilities of success in the diagnosis of disease.
From these correct decisions, the probabilities of the corresponding classification errors
or misclassifications are defined as follows:

• 1-sensitivity (1 − Se), also called false negative fraction (FNF ), is the probability
of incorrectly classifying a diseased patient:

1− Se = Pr(Y − |D = 1) = Pr(FN) = FN/(TP + FN).

• 1-specificity (1− Sp), also called false positive fraction (FPF ), is the probability of
incorrectly classifying a healthy patient:

1− Sp = Pr(Y + |D = 0) = Pr(FP ) = FP/(TN + FP ).

The sum of the probability of a true positive (sensitivity) and the probability of a false
negative is equal to one:

Pr(Y + |D = 1) + Pr(Y − |D = 1) = 1.

Similarly, the sum of the probability of a true negative (specificity) and the probability of
a false positive is equal to one:

Pr(Y − |D = 0) + Pr(Y + |D = 0) = 1.
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In the context of the statistical hypothesis testing of the null hypothesis (D = 0) ver-
sus the alternative hypothesis (D = 1), the sensitivity (TPF ) is the statistical power β and
1-specificity (FPF ) is the significance level α.

The sensitivity and specificity represent the efficacy of the diagnostic test and they
depend only on the intrinsic ability of the test for distinguishing between healthy and
diseased individuals. Therefore, both parameters depend on the physical, chemical, bio-
logical, . . . basis of the test to discriminate between the two types of patients. It should be
noted that a test with high sensitivity is useful to exclude the disease (that is, for “ruling
out” the disease if an individual tests negative (Sackett et al., 2000; Davidson, 2002), since
the probability of a false negative is low), and a test with high specificity is useful to con-
firm the disease (for “ruling in” the disease if an individual tests positive (Sackett et al.,
2000; Davidson, 2002) since the probability of a false positive is low). The mnemonic
SnNout (high Sensitivity, Negative test = rule out) and SpPin (high Specificity, Positive
test, rule in) are useful ways of remembering these principles (Sackett et al., 2000). An
ideal test has FPF = 0 and TPF = 1 and a useless test has TPF = FPF.

In general, screening tests should have a high sensitivity to detect all diseased sub-
jects. A highly sensitive test will be specially useful in situations where not to diagnose
the disease can be fatal for the diseased individuals, as in the case of serious but treat-
able diseases, such as tuberculosis or lymphoma, or diseases in which a false positive
does not cause serious psychological or economic problems for the patient (for example,
performing a mammography in breast cancer). Furthermore, confirmatory diagnostic
testing must have a high specificity to avoid false positives. Tests with high specificity
are needed in severe diseases for which there is no treatment available, when there is
great interest in the absence of disease, or when diagnosing a patient who does not re-
ally have the disease can have severe consequences, whether psychological, physical or
economic, for example, in the case of AIDS (Pita-Fernández and Pértega-Dı́az, 2003). A
test with high sensitivity is more useful to the clinicians when the test result is negative,
while a high specificity test is more useful to the clinician when the test result is positive.

To illustrate the usefulness of such indexes or measures, we consider an example cor-
responding to real data of a follow-up study which includes a total of 2641 patients with
suspected prostate cancer who attended an Urology consultation for a specified interval
time. During their exploration, the result of the digital rectal examination (DRE) (the di-
agnostic test) performed to each patient was collected, according to normal or abnormal,
and this result was compared with the subsequent diagnosis obtained from a prostate
biopsy performed to each patient (the reference test or gold standard). Data from this
study are presented in Table 2.2. By prostate biopsy a total of 1121 cases with prostate
cancer were detected (the 42.45% of the patients enrolled). However, only for 903 pa-
tients the DRE was abnormal (the 34.19% of the patients enrolled). The DRE marker for
the diagnosis of prostate cancer had a sensitivity = 634/(634 + 487) = 634/1121 = 0.566,
so that the DRE was abnormal in 56.6% of cases with prostate cancer, that is, 56.6% of
patients with prostate cancer were correctly classified by the DRE marker. Therefore,
43.44% (= 100% - 56.56%) of patients who actually had cancer, had a normal rectal exam-
ination, and so they were incorrectly classified as healthy patients. This clearly indicates
the need for other more sensitive markers such as PSA or their derivatives to make the di-
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agnosis more precise (Pita-Fernández and Pértega-Dı́az, 2003). In addition, a specificity
= 1251/(1251 + 269) = 1251/1520 = 0.823 was obtained, which means that DRE was
normal in 82.3% of cases who did not finally developed prostate cancer, that is, 82.3% of
patients without cancer were correctly classified.

Table 2.2: Results of exploration and prostate biopsy of a sample of patients with suspi-
cious of prostate cancer.

Prostate biopsy
Rectal exam Diseased Healthy Total

Positive or abnormal 634 269 903
Negative or normal 487 1251 1738

Total 1121 1520 2641

The concepts of sensitivity and specificity allow therefore, assess the validity of a
diagnostic test. Despite the fact that such measures are considered the fundamental op-
erating characteristics of a diagnostic test, in some situations they may lack utility in
clinical practice because they can not be used to estimate the probability of disease for
each patient. Both the sensitivity and specificity provide information about the proba-
bility of a particular result (positive or negative) based on the true disease status of the
patient. However, in general, when a diagnostic test is performed to a patient, he (or
she) presents a series of symptoms rather than a diagnosis, the clinician (or observer of
a diagnostic test) does not have a priori information about his (or her) true diagnosis,
and sometimes, it is more interesting to answer the questions in reverse, that is, what
is the probability that an individual who has tested positive is actually diseased, and
vice-versa, that is, what is the probability that an individual who has tested negative is
disease-free. Sensitivity and specificity cannot be used to answer these two questions,
but those two probabilities can be computed from the sensitivity and specificity apply-
ing the Bayes theorem, whenever the “a priori” probability that the subject is diseased is
known beforehand, which is also known as the pre-test probability. If we have no addi-
tional information on the subject, the pre-test probability will be considered equal to the
disease prevalence, which is only applicable in the case of screening programs designed
for the general population. In clinical practice, when a diagnostic test is performed to
a patient is because there is the suspicions from previous symptoms and, therefore, the
probability of disease under suspicion will be higher than the disease prevalence. The
predictive values are the measures that allow us to answer these questions.

2.1.2 Predictive values

The accuracy of a diagnostic test can be quantified by how well the test result predicts
true disease status, that is, it makes a diagnosis (Altman and Bland, 1994b). The predic-
tive values allow us to measure the safety of the diagnostic test, that is, the probability
that the known specific test result, positive or negative, ensures the presence or absence
of disease, respectively. Based on this, the positive and negative predictive values can be
defined as follows (Feinstein, AR, 1975; Griner et al., 1981; Robertson et al., 1983; Fescina
et al., 1985; Sox, 1986; Taube, 1986; Silva, 1987; Knottnerus and Leffers, 1992).

• The positive predictive value (PPV ) or the predictive value of a positive test is the
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probability of developing the disease if a positive test result is obtained (Altman,
1991; Hastie et al., 2000; Chien and Khan, 2001; Davidson, 2002). PPV is, some-
times, also referred to as the “post-test probability of disease given a positive test”.
Therefore, the positive predictive value can be estimated based on the proportion
of patients with a positive test result that ultimately proved to be diseased. From
Bayes theorem, the PPV is related to the sensitivity and specificity measures, and
the prevalence of the disease under study (Last, 2001):

PPV = Pr(D = 1|Y+) =
pSe

pSe+ (1− p)(1− Sp)
= TP/(TP + FP ).

• The negative predictive value (NPV ) or the predictive value of a negative test
is the probability that a subject who tested negative is actually healthy (Altman,
1991; Hastie et al., 2000; Chien and Khan, 2001; Davidson, 2002). It is estimated as
the ratio of the number of true negatives to the total number of the patients who
tested negative, and similarly to PPV , it can be estimated based on sensitivity and
specificity measures, and disease prevalence by Bayes theorem (Last, 2001):

NPV = Pr(D = 0|Y−) =
(1− p)Sp

(1− p)Sp+ p(1− Se)
= TN/(TN + FN).

It can be observed that the roles of true disease status D and diagnostic test Y are
reversed in the predictive values relative to their roles in the classification probabilities.

A perfect test (that will predict disease perfectly) has PPV = 1 and NPV = 1. On
the other hand, a useless test has no information about the true disease status of the pa-
tients, so that Pr(D = 1|Y+) = Pr(D = 1) and Pr(D = 0|Y−) = Pr(D = 0), that is,
PPV = p = π and NPV = 1− p = 1− π.

From the positive and negative predictive values that measure the probabilities of a
correct prediction of the true disease status of the patient, the probabilities of performing
an incorrect prediction can be also defined:

• 1-positive predictive value (1−PPV ), also called the false discovery rate (FDR), is
the post-test probability of not having the disease if a positive test result is obtained.
Similarly, it is related to measures of sensitivity and specificity, and the prevalence
of the disease. According to Bayes theorem, it follows that:

1− PPV = Pr(D = 0|Y+) =
p(1− Se)

(1− p)(1− Sp) + p(1− Se)
= FP/(TP + FP ).

• 1-negative predictive value (1 −NPV ), also called the false omission rate (FOR),
is the post-test probability of disease if a negative test result is obtained. According
to Bayes theorem, it also relates to sensitivity and specificity measures, and disease
prevalence:

1−NPV = Pr(D = 1|Y−) =
(1− p)(1− Sp− Se)
pSe+ (1− p)(1− Sp)

= FN/(TN + FN).
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The predictive values can be estimated without any problems in a cross sectional
study, because the sensitivity, specificity and prevalence can be estimated in such stud-
ies. The prevalence can be estimated from the sample prevalence as the ratio between
the number of diseased cases in the sample and the total number of cases. However, in
a case-control study, we need to have an estimate of the disease prevalence taken from
other studies, since in a case-control study the total number of healthy and diseased in-
dividuals is set by the researcher and, consequently, the sample prevalence would not be
a good estimate of the true prevalence.

If we consider the previous example of prostate cancer, the negative predictive value
was NPV = 1251/1738 = 0.7198. So, 72% of the patients with no abnormality test result
(normal DRE) were actually healthy, not suffering from prostate cancer. The positive pre-
dictive value was PPV = 634/903 = 0.7021. This means that 70% of patients with normal
DRE were indeed diseased individuals suffering from prostate cancer.

As we have seen, the values of sensitivity and specificity allow define the validity of
a diagnostic test, to measure how well the test reflects the true disease status, but have
the disadvantage of not providing relevant information when making a clinical decision.
The patient and the caregiver are most interested in how likely is that the individual
is diseased given the test result. However, Se and Sp have the additional advantage
that they are intrinsic properties to the diagnostic test and they define the diagnostic test
validity regardless of the disease prevalence in the study population.

By contrast, predictive values PPV and NPV are extremely useful when making
clinical decisions and transmit information to patients about their diagnosis, quantify-
ing the clinical value of the test. Therefore, it seems natural to use them as comparison
indices when evaluating two different diagnostic methods. However, as we have previ-
ously discussed, they depend on the disease prevalence in the study population, and so,
it will be wrong for clinicians to directly apply published predictive values of a test to
their own populations if the disease prevalence differs from that.

The higher the disease prevalence, the higher the PPV and the lower the NPV , that
is, the more likely a positive result is able to predict the presence of disease. When the
prevalence of disease is low, a negative result rules out the disease more safely, with
greater negative predictive value; but a positive result does not allow to confirm the
diagnosis, resulting in a low positive predictive value, even when using a test with high
sensitivity and specificity (Altman, 1991). So, a low PPV may simply be a result of a
low prevalence or it may be due to a test that does not reflect the true disease status of
the subject very well. Hence, we can say that either a diagnostic test is useful to confirm
the disease if the positive predictive value is high, or it is useful to rule out the disease if
the negative predictive value is high, or it is useful for both reasons if the two predictive
values are high.

Zweig and Campbell (1993) did an in depth discussion of the concepts of accuracy
versus usefulness. In many biomedical research studies, both the disease-specific classi-
fication probabilities and the predictive values are reported; what this means in practice
is that the clinical usefulness of the diagnostic test for a patient depends on the prevalence
of the disease in the study population. The diagnostic value of a test is greatly improved
if based in the clinical assessment, that is, if the use of the test is limited to those patients
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who are likely to have the disease. So, a positive or negative test result is more likely to
be meaningful in that setting than when the test is applied indiscriminately to patients.
A diagnostic test should be used as a supplement rather than as a substitute for clinical
judgment (Akobeng, 2007).

As prevalence is a determinant factor in the predictive values of a test, they can not be
used as indices when comparing two different procedures nor for extrapolating the re-
sults of other studies to our own data or vice versa. Thus, it may be useful and necessary
to determine indices of valuation (responding to the real needs for patient classification,
that is, being clinically useful), that are not dependent on the proportion of diseased in
the sample. Besides, the use of sensitivity, specificity and predictive values alone can oc-
casionally lead clinicians to make misleading inferences regarding the value of a clinical
test and the results derived from it when used in clinical practice (Chien and Khan, 2001;
Bruno et al., 2011). So, in addition to the concepts of sensitivity, specificity and predic-
tive values, we often talk in terms of likelihood ratios (Sackett et al., 1985; Boyko, 1994;
Dujardin et al., 1994; Boyd, 1997).

2.1.3 Likelihood ratios

Other measures of the performance of a binary diagnostic test are the likelihood ratios
(LRs). Feinstein (1985) describes the LR as a “recent and popular” indicator of the effec-
tiveness of a diagnostic test. Some authors (Sackett et al., 1985; Boyko, 1994; Boyd, 1997)
have discussed its usefulness in the evaluation of diagnostic tests versus other measures
and its application in clinical research (Giard and Hermans, 1993; Kerlikowske et al.,
1996). These measures are likelihood ratios in the true statistical sense, although they
are also called diagnostic likelihood ratios (DLRs) to distinguish the context. The diag-
nostic likelihood ratios measure how much more likely is an specific result (positive or
negative) according to the presence or absence of disease, and they can also be used to
compute the probability of disease for single patients (Deeks and Altman, 2004). So, they
are literally, the ratios of the likelihood of the observed test result in the diseased versus
non-diseased populations (Halkin et al., 1998; Pepe, 2004) and it is a similar concept to
the relative risk as used in modern epidemiology. So, for a test result i, the likelihood
ratio is a ratio of two probabilities defined as:

DLR =
Pr(Y = i|D = 1)

Pr(Y = i|D = 0)
.

There are two likelihood ratios, two dimensions of accuracy, one for a positive test and
one for a negative test. If the test result is positive, the likelihood ratio is called posi-
tive likelihood ratio, while if the test result is negative, the negative likelihood ratio is
obtained.

• The positive diagnostic likelihood ratio (DLR+) is computed by dividing the
probability of a positive test result in diseased individuals between the probabil-
ity of a positive result among healthy. Note that it can be obtained in terms of
sensitivity and specificity measures as the ratio between the true positive fraction
(sensitivity) and the false positive fraction (1-specificity). So, the positive diagnostic
likelihood ratio is defined as:

DLR+ = Pr(Y + |D = 1)/Pr(Y + |D = 0) =
Se

1− Sp
.
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The DLR+ responds therefore to the question of how many times more likely the
test is positive in diseased patients than in non-diseased.

• The negative diagnostic likelihood ratio (DLR−) is computed by dividing the
probability of a negative test result in the presence of the disease between the prob-
ability of a negative result in the absence of it. It is estimated, therefore, as the
ratio between the false negative fraction (1-sensitivity) and true negative fraction
(specificity):

DLR− = Pr(Y − |D = 1)/Pr(Y − |D = 0) =
1− Se
Sp

.

The DLR− responds therefore to the question of how many times more likely the
test is negative in diseased patients than in non-diseased.

It is important to consider both DLRs in order to have a complete idea of the effec-
tiveness of the test. Therefore, although the sensitivity and specificity can not be used to
estimate the probability of disease of an individual, they can be combined into a single
measure, the likelihood ratio, which can be clinically more useful than the sensitivity and
specificity indexes.

Likelihood ratios take values between zero and infinite and do not dependent on the
disease prevalence. When the diagnostic test and the gold standard are independent,
then both likelihood ratios are equal to one (the test is useless, because it does not alter
the probability), and if the diagnostic test correctly classifies all patients (having or not
the disease), then DLR+ =∞ (it is not possible to specify an upper limit for the DLR+)
and DLR− = 0. If the likelihood ratios are greater than one, it indicates an increase in the
disease probability. Higher values of DLR+ indicate improved ability to diagnose the
presence of the disease. Thus, a value DLR+ > 1 indicates that a positive test result is
more likely in a diseased subject than in a non-diseased subject, and a DLR− ≥ 1 means
that a negative test result is more likely in diseased people than in non-diseased people.
A DLR less than 1 indicates a decreased likelihood of disease; thus, a DLR− < 1 indi-
cates that a negative test result is more likely in a non-diseased patient than in a diseased
patient, and a DLR+ < 1 indicates that a positive test is less likely in a diseased patient
than in a non-diseased patient. In general, one can say that for patients with a positive
test result, values ofDLR+ ≥ 10 significantly increase the likelihood of disease (“rule in”
disease) while values of DLR+ very low (DLR+ ≤ 0.1) virtually “rule out” the chance
that an individual has the disease (Jaescheke et al., 2002). In a similar way, for patients
who had a negative test result, DLR − s ≥ 10 significantly increase the probability of
disease (“rule in” disease) while values of DLR− very low (DLR− ≤ 0.1) virtually “rule
out” the chance that an individual has the disease (Jaescheke et al., 2002).

If we consider again the above example of prostate cancer, we obtain that the dig-
ital rectal exam for prostate cancer diagnosis has a positive diagnostic likelihood ratio
equal to DLR+ = 0.566/(1-0.823) = 3.20 and a negative diagnostic likelihood ratio equal
to DLR− = (1-0.566)/ 0.823 = 0.53. This means that any patient with a positive test result
would be three times more likely to have than not to have prostate cancer, and that a
negative result is almost twice (1/0.53 = 1.89) more likely in a patient without prostate
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cancer than in a patient with the disease.

One of the main advantages of likelihood ratios is that they can be used to help the
clinician when adjusting the values of sensitivity and specificity of the test to individual
patients. The likelihood ratios quantify the increase in knowledge about presence of dis-
ease that is gained through the application of the diagnostic test, as discussed below.

Before performing the diagnostic test (that is, in the absence of the test result) usually
the clinician has a rough estimate of the patient’s chance, probability or odds of having
the disease. The estimated probability of disease before the test result is known as the
pre-test probability, which is usually estimated on the basis of the local prevalence, the
clinician’s experience and published reports (Espallardo, 2003):

pre-test odds =
Pr(D = 1)

Pr(D = 0)
=

p

1− p
.

The most important reason why the clinician performs the test is to obtain further
information which may modify the pre-test probability of disease. So, a negative test
may reduce the pre-test probability and a positive test may increase such probability.
The probability that the patient has the disease after the test result is known as the post-
test probability. This is the probability that clinicians and patients are more interested
in, and it can serve as a guide or aid in deciding whether to confirm a diagnosis, rule
out a diagnosis or even perform further and additional tests. Therefore, after the test is
performed, that is, with knowledge of the test result, the odds of disease can be defined
as:

post-test odds =
Pr(D = 1|Y = i)

Pr(D = 0|Y = i)
.

Also, if we know or we can make an estimate of the pre-test probability of a subject
suffering from the disease, once the test result is known, we can “correct” the value of
that probability using likelihood ratios according to the result obtained (in such a way
that it increases or decreases depending on whether the result is positive or negative),
using the following formula:

p− post =
pDLR

1 + p(DLR− 1)
,

where p is the pre-test probability, DLR is the likelihood ratio (positive if we want to
compute the probability that the patient has the disease and negative otherwise) and
p− post is the post-test probability.

In the previous example of prostate cancer, if we assume that the pre-test probability
of having the disease is 0.7, and the result of DRE is positive for the diagnosis of prostate
cancer, it follows that the probability of having the disease has changed to 0.88. If the test
result was, however negative, this probability would decrease to 0.55.

Therefore, due to everything mentioned above, the likelihood ratios relate the pre-
test to post-test odds and quantify the change in the odds of disease obtained by taking
into account the test result. They are also called Bayes factors, because if we consider
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Pr(D = 1) as the prior probability of disease and Pr(D = 1|Y ) as the posterior probabil-
ity in a Bayesian sense, the DLR is the Bayesian multiplication factor relating the prior
and posterior distributions. The positive likelihood ratio is the multiplicative change in
the post-test odds of being sick after having a positive test result and the negative likeli-
hood ratio is the multiplicative change in the post-test odds of not being diseased after a
negative test result:

post-test odds (Y+) = DLR+ (pre-test odds),

post-test odds (Y−) = DLR− (pre-test odds).

Likelihood ratios offer the advantage to relate the sensitivity and specificity in one
index, and are available according to several levels of a new measure. Moreover, they
are motivated by the concept of predicting disease status from the test result, as the pre-
dictive values. Indeed, the post-test odds also can be defined in terms of the predictive
values:

PPV

1− PPV
= post-test odds (Y+),

1−NPV
NPV

= post-test odds (Y−).

In the sense that they relate to prediction but do not depend on the population preva-
lence, they can be considered as a compromise between classification probabilities and
predictive values. However, the advantage of the DLR+ and DLR− compared to pos-
itive and negative predictive values is that, unlike them, do not depend on the pro-
portion of patients in the sample, but only on the classification probabilities of sensi-
tivity and specificity, hence likelihood ratios are useful to compare different tests for
the same diagnosis. So, if we compare two diagnostic tests A and B, we can make
this comparison based on the corresponding likelihood ratio. For instance, if we have
DLR+A > DLR+B , then the test A is better than B to confirm the presence of the dis-
ease. In addition, if we have that DLR−A < DLR−B , then the test A is better than B to
confirm the absence of disease.

2.1.4 Youden index

The Youden index (Youden, 1950) (denoted in the literature by J or Y I) is another mea-
sure of the effectiveness of a diagnostic test defined as

J = Se+ Sp− 1 = Se− (1− Sp),

in order to maximize the effectiveness of the biomarker. J takes values between 0 and 1
and is the maximum difference between the probability of correctly classifying diseased
subjects or true positive rate (sensitivity) and the probability of misclassifying healthy
individuals or false positive rate (one minus the specificity).

This index has the following properties:

• When the test is independent of the disease, the specificity and sensitivity are com-
plementary, that is, if the test and gold standard are independent: Se + Sp = 1.
Therefore in this case a value of J = 0 is obtained, that is, it corresponds to a com-
pletely ineffective test to diagnose the disease.
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• Youden index measures the discrepancy of the diagnostic test with the indepen-
dence of the gold standard, so that the maximum discrepancy is obtained when
Se = Sp = 1. In this situation we talk of total dependence, providing a value of
J = 1 that indicates a perfect diagnostic effectiveness.

• The situation where both probabilities are zero results in a situation that makes no
sense in practice.

• When the diagnostic test is related to the disease (a desirable situation for a diag-
nostic test), then you get that Se + Sp > 1. This result is very important because
otherwise, that is, in case that Se + Sp < 1, one of the two terms has inevitably be
less than 0.5, which implies that the test fails more than a random allocation rule.

The Youden index is a measure of the accuracy of a diagnostic test that does not de-
pend on the disease prevalence and is preferred to the combination of the simple values
of sensitivity and specificity (Feinstein, SH, 1975; Feinstein, 1985), but it has the disad-
vantage of a more difficult interpretation since the idea of whether the diagnostic test is
good in sensitivity or specificity is lost. Feinstein, SH (1975) based this statement on the
following example: if the Youden index is equal to 0.55, it may happen that the sensitivity
is 0,95 and that the specificity is 0.60, or vice versa.

2.2 Continuous tests

So far we have studied the simplest test with a dichotomous outcome (positive or neg-
ative), but often the confirmation of a diagnosis must be made from a quantitative di-
agnostic test, especially when it is a laboratory test or an analytical determination, such
as measuring blood glucose levels in an individual. A continuous diagnostic test takes
values in a continuous range or scale. In this type of tests, the following question arises:
how could we classify an individual as healthy or disease from the values of Y ? When
the result of the diagnostic test Y is ordinal or continuous, the classification rule is more
complex than in the case of a binary test. In continuous diagnostic tests it is necessary
to select a cutpoint or discrimination value c, a certain value of the test, that defines the
boundary between healthy and diseased, that is, to allow us to define the positive and
negative test results. In general, without loss of generality, we will assume that higher
values of the diagnostic test are associated with disease. Under this assumption, you
have the following classification rule (see Figure 2.1): if the diagnostic test value Y is
equal to or higher than the cutpoint c, the patient is classified as diseased (positive test
result Y+), whereas if the test value is lower than c, the patient is classified as healthy
(negative test result Y−). If this assumption is not valid, it would suffice to change the
sign of the diagnostic test.
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Healthy Diseased

Classification of an individual as healhty Classification of an individual as diseased

Figure 2.1: Classification of an individual as healthy or diseased as function of a fixed
cutoff c.

Analogously to a binary diagnostic test, this classification is not error-free and the
continuous diagnostic test may fail in its task of detecting disease (see Table 2.3). There-
fore, before routine application of a continuous diagnostic test in practice, the misclassi-
fication errors must be quantified.

Table 2.3: Classification of continuous test results by disease status.
True Disease Status (D)

Test result (Y ) Diseased (D = 1) Healthy (D = 0)
Positive (Y ≥ c) True Positive (TP(c)) False Positive (FP(c))

Negative (Y < c) False Negative (FN(c)) True Negative (TN(c))
Total TP(c)+FN(c) FP(c)+TN(c)

Obviously, each choice of c gives rise to a binary test, and then you can use all the
considerations made so far for a binary test. For instance, with respect to any given
cutpoint, different measures of accuracy can be considered such as the the sensitivity
and specificity (see Figure 2.2). The essential difference now is that you do not have a
single pair of sensitivity and specificity values that define the accuracy of the test, but
rather a set of pairs of values corresponding each at a different cutpoint c:

Se(c) = TPF (c) = Pr(Y + |D = 1) = Pr(Y ≥ c|D = 1),

Sp(c) = TNF (c) = Pr(Y − |D = 0) = Pr(Y < c|D = 0).

From the above measures, you can define the corresponding probabilities of incorrect
classifications of diagnosis (see Figure 2.3):

1− Se(c) = FNF (c) = Pr(Y < c|D = 1),

1− Sp(c) = FPF (c) = Pr(Y ≥ c|D = 0).
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Sensitivity(c)=P[Y>=c|D=1]

10 15 20 c 30 35

Healthy Diseased

Specificity(c)=P[Y<c|D=0]

Figure 2.2: Sensitivity and specificity measures of the diagnostic test Y for the cut-off
value c.

Figure 2.3: Sensitivity and 1-specificity (FPF) of the diagnostic test Y for the cut-off value
c.

In continuous diagnostic tests, the selection of an optimal cutoff point is the most
important task. However, this choice is not an easy task. As is illustrated in Figure 2.4,
different choices of c will differ for all kinds of correct and incorrect diagnosis decisions
frequencies. In Chapter 3 we present a review of many of the existing criteria in the
literature for selecting the optimal threshold value in the sense of different optimality
criteria.

FN FP

Healthy Diseased

Figure 2.4: Healthy and diseased distributions and variation of the cutoff point depend-
ing on the different diagnostic decisions.
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In general, there is a range of potential test results for which the distributions of
healthy subjects and diseased overlap. If you want to increase the probability of de-
tecting diseased patients, that is, if the cutpoint is moved to the left, then the number of
false positives also increases. On the contrary, if the cutoff is moved to the right, false
positives will be reduced, but at the cost of increasing false negatives. Therefore, as the
sensitivity decreases the specificity increases and vice versa. Hence, when selecting the
“best” cutoff c, a balance between sensitivity and specificity measures will be sought.

Similarly to a binary test, on the basis of the specificity and sensitivity measures, other
accuracy measures can be also defined for each cutpoint c, such as positive and negative
predictive values (PPV andNPV ) and diagnostic likelihood ratios (DLR+ andDLR−):

• Positive Predictive Value (PPV ):

PPV (c) = Pr(D = 1|Y ≥ c) =
pSe(c)

pSe(c) + (1− p)(1− Sp(c))
.

• Negative Predictive Value (NPV ):

NPV (c) = Pr(D = 0|Y < c) =
(1− p)Sp(c)

(1− p)Sp(c) + p(1− Se(c))
.

• Diagnostic positive likelihood ratio (DLR+):

DLR+ =
Pr(Y ≥ c|D = 1)

Pr(Y ≥ c|D = 0)
=

Se(c)

1− Sp(c)
.

• Diagnostic Negative Likelihood Ratio (DLR−):

DLR− =
Pr(Y < c|D = 1)

Pr(Y < c|D = 0)
=

1− Se(c)
Sp(c)

.

We remind here that predictive values measure the safety of the diagnostic test and they
depend on the disease prevalence. Besides, from positive and negative predictive values
that measure the probabilities of a correct prediction of the disease status, you can also
define the probabilities of making a wrong prediction:

1− PPV (c) = Pr(D = 1|Y < c) =
(1− p)(1− Sp(c)− Se(c))
pSe(c) + (1− p)(1− Sp(c))

,

1−NPV (c) = Pr(D = 0|Y ≥ c) =
p(1− Se(c))

(1− p)(1− Sp(c)) + p(1− Se(c))
.

Note that all these definitions of the measures of accuracy of a diagnostic test are valid
under the conventional assumption that larger values of Y are more indicative of dis-
ease. In probabilistic terms, this means that the random variable Y in the diseased group
is stochastically greater than the random variable Y in the healthy group. It should be
noted however that, when high marker values are linked to health, a positive test result
would be considered when Y ≤ c and the above definitions should be changed accord-
ingly. Another possibility for not to change the previous definitions is to consider −Y
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instead of Y. All these measures constitute the classic indexes for assessing the diagnos-
tic accuracy of a test. However, these indices have the disadvantage of depending on the
cutoff c considered to define the binary rule of classification (Turner, 1978).

Table 2.4: Classification of elastase results by CAD status for cutpoint c = 22 µgl−1.
CAD

elastase Diseased Healthy Total
Positive (elastase ≥ 22 µgl−1) 92 28 120

Negative (elastase < 22 µgl−1) 4 17 21
Total 96 45 141

In order to illustrate these measures, we consider here the coronary artery disease
dataset, previously introduced in Section 1.3 of Chapter 1. For instance, considering the
use of leukocyte elastase determination as a screening test prior to performing a coronary
angiography for detecting CAD, one would be interested in high sensitivity in order to
identify as many diseased patients as possible. In Table 2.4 we show the confusion matrix
for this cutpoint c = 22 µgl−1, which provides a sensitivity of 0.96, and consequently we
could conclude that a coronary angiography would be performed on any patient having
a leukocyte elastase level greater or equal to 22 µgl−1. Using this cutpoint, 96% of CAD
patients would be correctly classified (sensitivity), whereas only 38% (specificity) of pa-
tients without CAD would be correctly identified (28 false positive classifications). More-
over, 81% of the patients (the negative predictive value) with elastase below 22 µgl−1 are
correctly classified as healthy (4 false negative results); and 77% of the patients (the posi-
tive predictive value) with an elastase value greater than or equal to 22 µgl−1 had in fact
CAD. In addition, any patient having an elastase value ≥ 22 µgl−1 would be 1.5 times
more likely to have CAD than to not (DLR+ = 1.54), and a negative result of the test,
that is, an elastase value < 22 µgl−1 is more likely in a patient without CAD than in a
diseased patient, in particular the probability of a negative result is nine times higher in
healthy patients than in patients with CAD (1/DLR−=1/0.11 = 9.09).

Table 2.5: Classification of elastase results by CAD status for cutpoint c = 38 µgl−1.
CAD

elastase Diseased Healthy Total
Positive (elastase ≥ 38 µgl−1) 65 15 80

Negative (elastase < 38 µgl−1) 31 30 61
Total 96 45 141

If we consider, however, a higher cutpoint, for example, an elastase value of 38 µgl−1,
that provides an equilibrium between both measures of sensitivity and specificity, 68%
of patients with CAD and 67% of patients without CAD would be correctly detected.
Moreover, about half of the patients with a negative test result (elastase < 38 µgl−1) are
really free of CAD. However, 81% of patients with a positive test result (elastase ≥ 38
µgl−1 are really diseased. In addition, the probability of negative test result is twice
as high in patients without CAD than in patients with CAD, and the patients with a
positive test result would be two times more likely to have CAD than not. Thus, we
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confirm that when increasing the cutoff point, the specificity, the false negative rate, the
positive predictive value and the likelihood ratios increase, at the cost of decreasing the
sensitivity, the false positive rate, and the negative predictive value. In Table 2.5 the
corresponding confusion matrix is shown.

2.2.1 Receiver Operating Characteristic curve

An useful tool for assessing the diagnostic capacity of a quantitative test for all possible
cutoff values of a continuous diagnostic test is called the Receiver Operating Character-
istic (ROC) curve (Swets, 1979; Swets and Pickett, 1982). The ROC curve is constructing
by plotting the sensitivities in the y-axis and the corresponding false positive fractions
(1-sensitivity) in the x-axis:

ROC(.) = (1− Sp(c), Se(c)), c ∈ (−∞,∞).

In Figure 2.5, we show the typical shape of the ROC curve of a continuous diagnostic
test whose graph is in the unit square.
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Figure 2.5: ROC curve of a continuous diagnostic test.

The construction process of the ROC curve is then made from different cutoff values
c, in such a way that if the cutoff c moves from left to right, the operating points on the
ROC curve are generated from right to left (see Figure 2.6).

If the ROC curve lies below the diagonal, the diagnostic test distribution has the
wrong orientation and a reversal is needed (either allocating to the diseased group when
Y ≤ c rather than when Y ≥ c or considering −Y rather than Y without having to
interchange the allocating rule between groups).

The ROC curve was originated in the theory of signal detection in the years 1950-
1960 (Green and Swets, 1966; Egan, 1975) to discriminate between signal and noise, and
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its potential to be used in diagnostic tests was recognized in 1960 (Lusted, 1960). In
fact, after the publication of Swets and Pickett (1982), they became very popular in the
field of biomedicine, especially in the field of radiology (Metz, 1989), but they have been
used in many other scientific areas such as psychiatry (Hsiao et al., 1989), epidemiology
(Aoki et al., 1997) or biomedical informatics (Lasko et al., 2005), among others. It has
recently increased its use in biomedical problems to assess the effectiveness of continuous
diagnostic markers to differentiate between groups of healthy and diseased individuals
(Shapiro, 1999; Greiner et al., 2000; Zhou et al., 2002; Pepe, 2004).

Figure 2.6: Generating process of ROC curve.
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The ROC curve can be represented in terms of the cdfs of the diagnostic test in both
populations (healthy and diseased) as follows:

ROC(t) = 1− FD(F−1
D

(1− t)), t ∈ (0, 1),

where FD and FD are the distribution functions of the diagnostic test in the diseased (D)
and non-diseased (D) populations, that is,

FD(y) = Pr(Y ≤ y|D = 1),

FD(y) = Pr(Y ≤ y|D = 0).

A graphical example can be seen in Figure 2.7.
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Figure 2.7: Diagnostic test distributions in healthy and diseased populations and the
corresponding ROC curve.

Equivalently, the ROC curve can be represented in terms of survival functions (de-
fined as one minus the distribution functions) as follows:

ROC(t) = SD(S−1
D

(t)), t ∈ (0, 1),

where SD and SD are the survival functions of the diagnostic test in the diseased (D) and
healthy (D) populations, that is,

SD(y) = Pr(Y ≥ y|D = 1),

SD(y) = Pr(Y ≥ y|D = 0).

This last representation is very important in a ROC regression context.

The ROC curve has also a number of interesting properties:

• The ROC curve is a monotone increasing function defined in the unit square [0, 1]x[0, 1].

• The ROC curve joins the points (0,0) and (1,1).
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• The ROC curve is invariant to strictly increasing transformations of the marker Y .

From a practical point of view, the ROC curve has a very simple and interesting in-
terpretation:

• It is a global measure of the discriminatory ability (accuracy) of a continuous (or
ordinal) diagnostic test, independent of the cutoff point and the disease prevalence,
that fulfills the two conditions set by Swets (1988) as indispensable characteristics
of any indicator of the diagnostic accuracy.

• It represents the discriminative ability of a diagnostic test along all possible cutoffs
in the scale or range of the diagnostic marker.

• It serves as a guide when selecting the optimal cutoff point in diagnostic tests.

• It provides a method for comparing different diagnostic tests.

• It reflects the degree of overlapping of test results in both healthy and diseased
populations. When there exists total overlapping between healthy and diseased
distributions, the diagnostic test is useless (that is, it is not valid to differentiate
between the two populations) and the corresponding ROC curve coincides with
the positive diagonal line of the unit square since for any cutpoint c, it is satisfied
that Se(c) = 1 − Sp(c). However, when the overlap between the two distributions
is null, the test is perfect, that is, it discriminates perfectly between the two groups
of healthy and diseased individuals. In this ideal situation, the corresponding ROC
curve is a line that would pass through the left and top sides of the unit square
because it happens that for any point either Se = 1 or 1 − Sp = 0, having a cutoff
point where both situations are met (Se = 1 and 1−Sp = 0). In general, the overlap
of test results between healthy and diseased will be partial in practice, generating
ROC curves between the two extreme situations previously described (Weinstein
and Fineberg, 1980).

Numerical indices for ROC curves are often used to summarize the accuracy of a
diagnostic test. We explain in detail such indices in the next subsection.

2.2.2 Summary measures

As previously stated, the closer to the upper left corner it is placed the ROC curve, the
better the discriminatory power of the corresponding diagnostic test. This raises the idea
of identifying measures to reduce or summarize a ROC curve into one quantitative index
indicating the efficiency of diagnosis, similar to the use of average and variance as sum-
mary measures to describe a probability distribution. In addition, these measures will
be very convenient for comparison of various diagnostic tests from their corresponding
ROC curves. For example, if the ROC curve of a test, say A, is always above the ROC
curve of another, say B, then at any given value of the FPF , the corresponding sensi-
tivity of the test A is higher than the sensitivity of the test B. Similarly, if we choose
thresholds cA and cB for which SeA(cA) = SeB(cB), the corresponding FPF are ordered
in favour of test A, so that FPFA(cA) < FPFB(cB).

30



So, it is common to summarize the information provided for the ROC curve into a
single global value or index. Several such indexes or measures are defined in the litera-
ture and they have been used in several applications (Shapiro, 1999; Greiner et al., 2000).
Some of these summary measures which have been defined in the literature are the area
under the ROC curve (AUC) (Swets, 1979), single points of the ROC curve, the partial
area under the ROC curve (pAUC) (McClish, 1989; Jiang et al., 1996) and the Youden in-
dex (J) (Youden, 1950).

Area under the ROC curve
Just a way to assess comprehensively the ability of a diagnostic test to discriminate is

to calculate the polygon area that remains under the ROC curve (see Figure 2.8), which
is called the area under the curve (AUC) (Swets, 1979). The AUC is independent of
the disease prevalence and then it serves as a reference index for comparing different
diagnostic tests (Zweig and Campbell, 1993; Altman and Bland, 1994c; Burgueño et al.,
1995; López de Ullibarri Galparsoro and Pita Fernández, 1998). In fact, the AUC is the
most popular ROC based summary index of the overall diagnostic performance of a test
and it is given by:

AUC =

∫ 1

0
ROC(t)dt.
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Figure 2.8: Area under the ROC curve (AUC)

By simply looking at the construction of the AUC and the ROC curve, we see that the
AUC takes values between 0.5 (uninformative test, the same as a random prediction and
corresponds to the diagonal ROC curve that passes through the points (0,0) and (1,1))
and 1 (perfect test, all cases are correctly classified), and represents the diagnostic capac-
ity of the test Y , so that the larger the area the better the diagnostic ability of Y. Thus,
values closer to 1 indicate that Y optimally discriminate between healthy and diseased
individuals, while values near 0.5 indicate that the test is not informative.
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Bamber (1975) showed that the AUC can be interpreted as the probability that a ran-
domly chosen diseased individual will have a test value greater than that of a randomly
chosen healthy individual:

AUC = Pr(Y1 > Y0),

where Y1 and Y0 represent values of the diagnostic test from the diseased and healthy
groups, respectively.

If two diagnostic tests A and B are ordered in such a way that A is uniformly better
that B in the sense that ROCA(t) ≥ ROCB(t) for all 0 < t < 1, then it is also satisfied that
AUCA ≥ AUCB . However, the converse is not necessarily true.

Partial area under the ROC curve
When the AUC values are globally the same but the two ROC curves intersect and

are significantly different in a specific range of interest from a clinical point of view, it is
necessary to carry out a partial analysis of the ROC curve. The “global” index used here
is the partial area under the ROC curve (pAUC) (McClish, 1989; Jiang et al., 1996) in the
interval of clinical interest (t0, t1):

pAUC =

∫ t1

t0

ROC(t)dt.

The pAUC region can be defined as a portion of specificity (McClish, 1989) or as a
portion of sensitivity (Jiang et al., 1996). The estimation and inference of pAUC is an area
in continuous development (Walter, 2005; Cai and Dodd, 2008; Komori and Eguchi, 2010,
among others).

Youden index
Although the area under the ROC curve (AUC) is the overall index of diagnostic accu-

racy most commonly used, the Youden index (J) (Youden, 1950) is also another summary
measure commonly used in clinical practice (Aoki et al., 1997; Grmec and Gasparovic,
2001). As it will be clear soon, unlike the AUC, the Youden index is related to a specific
cutpoint c in the scale of the diagnostic test.

The Youden index, previously defined for binary tests, also makes sense for continu-
ous diagnostic tests which can be defined as follows:

J = maxc{Se(c) + Sp(c)− 1}.

Equivalently, it can be rewritten in several ways:

J = maxc{TPF (c)− FPF (c)} = maxc{F0(c)− F1(c)} = maxt{ROC(t)− t}.

From the first expression above, we observe clearly that the Youden index is the max-
imum difference between the true positive fraction (TPF ) and the false positive fraction
(FPF ). From the second expression, we interpret the Youden index as the maximum
separation between both healthy and diseased populations and it is somehow related to
the well-known Kolmogorov-Smirnov statistic.

Therefore, J represents the diagnostic capacity of the diagnostic marker Y , and takes
values between 0 and 1, so that values close to 1 indicate that Y optimally discriminate
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between healthy and diseased populations, while values close to 0 indicate that the test
Y is uninformative. In fact, a complete separation of the two distributions yields a value
of J = 1, while a full overlap between the two distributions gives J = 0. From the third
expression of J , we obtain an interesting geometrical interpretation of the Youden index:
it corresponds to the maximum vertical distance between the ROC curve and the positive
diagonal line in the unit square.

It also presents a very interesting property that does not have the AUC, the cutoff
c defining the index, the cutoff cJ for which Se(c) + Sp(c)− 1 is maximized, can often
be used to establish a reasonable optimal cut-off for the diagnostic marker in clinical
practice. In fact, there are a number of recent studies in the literature on the estimation
of the Youden index and its corresponding optimal cutpoint (Fluss et al., 2005; Lai et al.,
2012; Molanes-López and Letón, 2011, among others). This optimal criterion to select the
optimal cutoff point will be treated with a more rigorous detail in Chapter 3.

2.2.3 Predictive Receiver Operating Characteristic curve

There has been a tendency in recent years to consider only the ROC curves to graphically
determine the cutoffs and sometimes a low sensitivity is intuitively associated with a
low positive predictive value. However, this is not the case. For high values of the cutoff,
sensitivity tends to be very small while the PPV is close to 1, that is, points in the left
corner of the ROC curve correspond to cutpoints where sensitivity is small but where the
PPV is close to 1.

If positive and negative predictive values are considered instead of sensitivity and
specificity in a similar way as for the ROC curve, the Predictive ROC curve (PROC) is
obtained (Vermont et al., 1991; Gallop et al., 2003), that is, the PROC curve is obtained by
plotting the coordinate points (1−NPV (c), PPV (c)) (see Figure 2.9).
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Figure 2.9: PROC curve of a continuous diagnostic test
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The PROC curve is generally not as convenient as the ROC curve, specially because it
depends on the disease prevalence. However, it is still helpful in some aspects. Under the
generally accepted restriction that only the threshold values c satisfying that PPV (c) ≥ p
and NPV (c) ≥ (1 − p) provide relevant information on the diagnostic performance of
the test, PROC curves of interest are those located in the rectangle defined by the vertical
and horizontal lines passing through the point with ordinate and abscissa equal to the
disease prevalence p and by the vertical and horizontal lines passing through the point
(1,1).

2.3 Estimation and inference for ROC curve and accuracy mea-
sures

There are several approaches for estimating the ROC curve and consequently its associ-
ated accuracy and summary measures. All these approaches differ in the way the distri-
bution functions of both populations are estimated based on sample values. In general,
we can distinguish between parametric and nonparametric methods, depending on if
some known parametric distribution is assumed or not for the diagnostic marker in both
populations, respectively. In López-Ratón et al. (2012a), a review of all these methods to
estimate ROC curve and its accuracy measures is performed.

Consider two independent samples of i.i.d. (independently and identically distributed)
observations, {Y0k0}

n0
k0=1 and {Y1k1}

n1
k1=1, taken from the healthy and diseased popula-

tions, Y0 and Y1, respectively, with sample sizes n0 and n1.

2.3.1 Parametric methods

Parametric estimation methods consider a known parametric distribution of the diagnos-
tic test in both healthy and diseased populations. The normal or lognormal distributions
are the most popular alternatives (Tosteson and Begg, 1988; Hajian-Tilaki et al., 1997;
Walsh, 1997), taking into account that the more appropriate the choice of such distribu-
tion is (Hajian-Tilaki et al., 1997; Walsh, 1997), the better the results. In practice it is not
easy to select an appropriate distribution and even sometimes is something subjective
(Sorribas et al., 2000), which is a big disadvantage of this approach and, specially, when
there is no much information on the true distribution of the marker.

Binormal model
The first parametric method is based on the assumption that the distribution of the

marker (or any monotonic transformation of it, for example of Box-Cox type) in both
healthy and diseased populations follows a normal distribution. This approach is known
as the binormal method (Metz, 1986; Hanley, 1996; Hajian-Tilaki et al., 1997; Walsh, 1997;
Metz et al., 1998).

So, assuming that Yi follows a normal distribution with mean µi and standard devi-
ation σi, for i = 0, 1, (using if necessary a monotone transformation of Box-Cox type to
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achieve normality), for each cutpoint c, it follows that

FPF (c) = 1− Sp(c) = P (Y0 ≥ c) = P

(
Z ≥ c− µ0

σ0

)
,

Se(c) = P (Y1 ≥ c) = P

(
Z ≥ c− µ1

σ1

)
,

where Z denotes a random variable that follows the standard normal distribution.

Under this condition, there is a linear relationship between the quantiles of the stan-
dard normal distribution defined by the values of sensitivity and 1-specificity, that is, it
follows that:

Φ−1(Se(c)) = a+ bΦ−1(1− Sp(c)),

where a =
µ1 − µ0

σ1
is the intercept, b =

σ0

σ1
is the slope, and Φ denotes the standard

normal cdf. Consequently, it follows that the ROC curve can be expressed as:

ROC(t) = Φ(a+ bΦ−1(t)),

where t = 1− Sp(c) is the FPF .

Under the binormal model, the AUC can be rewritten also in terms of a, b and Φ as
follows:

AUC = Φ

(
a√

1 + b2

)
.

In the literature, several inference methods have been proposed for AUC, mainly based
on the binormality assumption and the bootstrap technique.

For the sake of illustration, if we consider the real melanoma dataset, introduced in
Section 1.3 of Chapter 1, we can assume normality for the CSS marker in both popu-
lations, according to the p-values > 0.5 obtained from the Shapiro-Wilk normality test
(p-value = 0.4719 for the healthy group and p-value = 0.9084 for the diseased group),
and then we can estimate the ROC curve by assuming the binormal model. Specif-
ically, in this example, it follows that Y0 ≈ N(µ0 = −2.42649, σ0 = 1.760389) and
Y1 ≈ N(µ1 = 0.556619, σ1 = 1.523482). Therefore, for a cutpoint value of c = -2.763,
it follows that

FPF = 1−Sp = Pr(Y0 ≥ −2.763) = Pr(Z ≥ (−2.763−(−2.42649))/1.760389) = 0.5757985,

Se = Pr(Y1 ≥ −2.763) = Pr(Z ≥ (−2.763− 0.556619)/1.523482) = 0.985333.

Analogously, for the cutpoint c = 1.751, it turns out that

FPF = 1− Sp = Pr(Y0 ≥ 1.751) = Pr(Z ≥ (1.751− (−2.42649))/1.760389) = 0.00882,

Se = Pr(Y1 ≥ 1.751) = Pr(Z ≥ (1.751− 0.556619)/1.523482) = 0.2165.

35



●

no
n 

m
el

an
om

a
m

el
an

om
a

−6 −4 −2 0 2

Boxplot of CSS indicating the cutpoint c= −2.763

●

no
n 

m
el

an
om

a
m

el
an

om
a

−6 −4 −2 0 2

Boxplot of CSS indicating the cutpoint c= 1.751

Figure 2.10: Boxplot of CSS as a marker of melanoma, with the cutpoints c = -2.763 (left
panel) and c = 1.751 (right panel) indicated through dotted vertical lines.

In Figure 2.10 we plot the boxplots in both populations indicating by a vertical line
the two cutpoints c = -2.763 and c = 1.751, previously considered. These graphs allow us
to visualize the separation existing between melanoma and non-melanoma populations
as a function of such threshold values. Computing in a similar way the pairs (FPF ,Se)
for all possible cutpoints c in the marker scale, we obtain the binormal ROC curve of the
CSS marker for diagnosing melanoma (see Figure 2.11).
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Figure 2.11: ROC curve estimate of CSS marker for diagnosing melanoma based on the
binormal model.
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The AUC value estimated by the binormal method is equal to 0.90, indicating a very
good classification performance of the CSS marker for diagnosing melanoma.

2.3.2 Nonparametric methods

To solve the problem of specifying an appropriate distribution, different nonparametric
methods have been proposed in the literature. The nonparametric methods are charac-
terized by not assuming any known distribution for the diagnostic tests in both healthy
and diseased populations.

Empirical method
The empirical method is one of the most common and simple nonparametric meth-

ods proposed in the literature (Zweig and Campbell, 1993; Campbell, 1994). It estimates
the distribution function of the diagnostic test by using the empirical distribution func-
tion of the sample; that is, the empirical estimator of the ROC curve simply applies the
definition of the ROC curve to the observed data. So, for each possible cut-off value,
c, the empirical TPF (Se) and the empirical FPF are estimated by Ŝe(c) = proportion
of diseased individuals in the sample with Y ≥ c, and F̂PF (c) = proportion of healthy
individuals with Y ≥ c, that is,

Ŝe(c) = T̂PF (c) =
1

n1

n1∑
i=1

I[Y1i ≥ c] =
#[Y1i ≥ c]

n1
,

1− Ŝp(c) = F̂PF (c) =
1

n0

n0∑
j=1

I[Y0j ≥ c] =
#[Y0j ≥ c]

n0
.

Therefore, the empirical ROC curve is a plot of the pairs (F̂PF (c), T̂PF (c)) for all−∞ <
c <∞.

Equivalently, we can write the empirical ROC curve as follows:

̂ROCemp(t) = 1− F̂1(F̂0
−1

(1− t)),

where F̂0 and F̂1 are the empirical distribution functions obtained from the two samples
of healthy and diseased populations, respectively:

F̂0(c) =
1

n0

n0∑
i=1

I[Y0i ≤ c],

F̂1(c) =
1

n1

n1∑
j=1

I[Y1j ≤ c].

The empirical method presents the following properties:

• It is an increasing step function that approaches the theoretical ROC curve, as it is
based on empirical distribution functions.
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• If there are no ties in the data, horizontal jumps are sized 1/n0 and vertical jumps
are sized 1/n1.

• If, on the contrary, there are some ties in the data, they provide larger jumps, where
the size of the jumps depend on the number of ties.

• It depends only on the ranks of the combined set of scores, so it is invariant under
strictly increasing transformations of the data.

The typical shape of an empirical ROC curve can be seen in Figure 2.12, where we
have plotted the empirical ROC curve obtained with the melanoma dataset (previously
introduced in Section 1.3 of Chapter 1).
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Figure 2.12: Empirical ROC curve of CSS as marker of melanoma

From the empirical ROC curve, you can obtain empirical estimators of summary mea-
sures such as the AUC and Youden index, by simply applying their definition to the
empirical ROC curve.

For instance, the empirical estimator of the AUC is given by:

ÂUC =

∫ 1

0
R̂OCemp(t)dt.

If there are no ties in the data, the empirical estimate of the AUC is equivalent to the
well-known Mann-Whitney statistic:

ÂUC =
1

n0n1

n0∑
i=1

n1∑
j=1

I[Y1j ≥ Y0i].

In order make inference on the AUC, it is necessary to study the asymptotic behavior
of the empirical estimate of the AUC. On one hand, the construction of confidence in-
tervals can be done using the nonparametric methods proposed by Hanley and McNeil
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(1982); Delong et al. (1988). On the other hand, it is of great interest to test whether a spe-
cific diagnostic marker Y can discriminate between healthy and diseased populations,
and this can be done by solving a hypothesis test based on AUC, where the null hypoth-
esis H0 : AUC = 0.5 is tested versus the alternative hypothesis H1 : AUC > 0.5, which
is equivalent to testing if Y1 is stochastically greater than Y0 or, equivalently, if there is
some degree of separation between the two distributions. For large sample sizes, the test
will reject the null hypothesis if:

ÂUC − 0.5√
n0 + n1 + 1

12n0n1

> z1−α.

Taking into account the equivalence established between the empirical estimator of the
AUC and the Mann-Whitney statistic, this hypothesis test can also be solved for small
sample sizes using the exact distribution of the Mann-Whitney statistic.

Similarly to the previous test, only useful for detecting whether a marker or diagnos-
tic procedure is better than random allocation, it may also be of interest to determine if
it has a satisfactory AUC. In this case, denoting by θ0 the minimum acceptable value for
AUC, the corresponding contrast assumption would be:

H0 : AUC = θ0 versus H1 : AUC > θ0.

Thus, given a level of signification, α, the null hypothesis H0 will be rejected if:

ÂUC − θ0

v̂ar(ÂUC)
> z1−α,

where ÂUC is the empirical estimator of the AUC, and v̂ar(ÂUC) is the estimate of
var(ÂUC).

The empirical estimator of the Youden index is given by:

Ĵ = max
t

{
R̂OC(t)− t

}
,

and it is equivalent to the well-known Kolmogorov-Smirnov statistic for comparison of
distribution functions:

Ĵ = sup
c

{
T̂PF (c)− F̂PF (c)

}
= sup

c

{
(1− F̂1(c))− (1− F̂0(c))

}
= sup

c

{
F̂0(c)− F̂1(c)

}
.

Therefore, the following hypothesis test:

H0 : J = 0 versus H1 : J > 0

can be solved based on the classical Kolmogorov-Smirnov test for equality of distribu-
tions.

For illustrative purposes, we consider the same melanoma dataset. Instead of assum-
ing normality, in Tables 2.6-2.7, we show the confusion matrix for the cutpoints c = -2.763
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and c = 1.751, respectively, based on empirical estimates. From these tables, it follows
that Se = 1 and FPF= 0.588 for the cutpoint c = -2.763, and Se = 0.238 and FPF = 0.020
for the cutpoint c = 1.751.

Table 2.6: Classification of CSS results by melanoma status for c = -2.763.
CSS melanoma non melanoma Total

Positive (CSS ≥ −2.763) 21 30 51
Negative (CSS < −2.763) 0 21 21

Total 21 51 72

Table 2.7: Classification of CSS results by melanoma status for c = 1.751.
CSS melanoma non melanoma Total

Positive (CSS ≥ 1.751) 5 1 6
Negative (CSS < 1.751) 16 50 66

Total 21 51 72

The empirical method is well-known and applied due to its simplicity, but the main
drawback of the empirical method is that the empirical estimator of the ROC curve is
a step function rather than a continuous function (built from empirical cdfs and em-
pirical quantile distributions, both non-continuous). Since we are dealing with contin-
uous diagnostic tests, the ROC curve should be a continuous function and therefore it
seems reasonable to construct estimators that are also continuous. The continuity of the
ROC curve estimator can be obtained parametrically, assuming a parametric model for
the ROC curve (as we saw in the previous section), but also non parametrically using
smoothing techniques. In the following, we briefly discuss two smoothing techniques.

Kernel smoothing
Kernel smoothing is a smooth approach based on kernel estimation (Zou et al., 1997;

Lloyd, 1998) of the distribution functions F1 and F0, thus providing a smooth estimate of
these functions. Specifically F1 and F0 are estimated by, respectively,

F̂1,h1(y) =
1

n1

n1∑
i=1

K
(
y − Y1i

h1

)
,

F̂0,h0(y) =
1

n0

n0∑
j=1

K
(
y − Y0j

h0

)
,

where K(u) =
∫ u
−∞K(v)dv, K denote a kernel function (a symmetric density) and hi, i =

0, 1 is the smoothing parameter for each population.

The kernel smooth estimate of the ROC curve is obtained by simply taking into ac-
count the previous estimates, that is, by plotting the corresponding pairs of coordinate
points, that is,

R̂OC(t) = 1− F̂1,h1(F̂−1
0,h0

(1− t)), t ∈ (0, 1)
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In kernel smoothing it is necessary to choose the kernel function K, for instance, the
Gaussian kernel or the Epanechnikov Kernel (Epanechnikov, 1969) and, most impor-
tantly, the optimal smoothing bandwidth h (Zou et al., 1997; Lloyd and Yong, 1999; Hall
and Hyndman, 2003).

The kernel method has some limitations. For instance, it often suffers from boundary
effects, that is, it has trouble to estimate at the borders, and therefore, the kernel estimator
may not be valid at the ends of the ROC curve. Besides, the kernel estimator of the ROC
curve is not invariant under a monotone transformation of the data.

Considering the melanoma dataset, we plot in Figure 2.13 the smooth ROC curve of
CSS for diagnosing melanoma using three different bandwidths proposed in the litera-
ture. We observe that the three estimations are very similar.

Smooth ROC curve of CSS 
 (Bandwidth Zou et al. 1997)
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Figure 2.13: Smooth ROC curve of CSS as marker of melanoma
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P-spline smoothing
P-spline smoothing is an alternative nonparametric approach (Eilers and Marx, 1992,

1996). Before discussing this smoothing method in some more detail, it is necessary to
introduce first some basic concepts.

An spline is a numeric function piecewise-defined by polynomial functions. A B-
spline basis (of orderm+1) is constructed such that each basis function is non-zero over
the interval between m+3 adjacent nodes, with m+1 the order of the basis (for instance,
m=2 for a cubic spline). In order to define a B-spline basis of k parameters it is therefore
necessary to consider k+m+1 nodes, x1 ≤ x2 ≤ ... ≤ xk+m+1, where B-splines basis
functions are defined recursively (de Boor, 1978) as follows:

Bm
i (x) =

x− xi
xi+m+1 − xi

Bm−1
i (x) +

xi+m+2 − x
xi+m+2 − xi+1

Bm−1
i+1 (x), i = 1, ..., k

B−1
i (x) =

{
1, xi ≤ x ≤ xi+1,
0, otherwise.

Based on this B-spline basis, the estimation is given by

k∑
i=1

Bm
i (x)βi.

P-spline smoothing uses a B-spline basis, usually defined in equidistant nodes, with
a penalty directly on the parameters βi:

P =

k−1∑
i=1

(βi+1 − βi)2 = β2
1 − 2β1β2 + 2β2

2 − 2β2β3 + ...+ β2
k.
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Figure 2.14: Smooth P-spline ROC curve of CSS as marker of melanoma

42



Du and Tang (2009) proposed the estimation of the ROC curve by P-spline smooth-
ing based on plugging the P-spline estimation of the distribution functions of both pop-
ulations into the theoretical expression of the ROC curve. In Figure 2.14, we show the
P-spline smooth ROC curve of CSS estimated using source code in R kindly provided by
Du and Tang (2009).
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He had the vague sense of standing on a threshold,
the crossing of which would change everything.

- Kate Morton

Chapter 3

Criteria to select the optimal cutoff
point in diagnostic tests

The selection of the appropriate cutpoint is crucial to avoid erroneous conclusions being
drawn in clinical practice. In medical decision theory and epidemiologic research, deter-
mining a cutpoint for a quantitative variable is a common problem, and has indeed been
an active area of research (Miller and Siegmund, 1982; Altman et al., 1994; Lausen and
Schumacher, 1996; Mazumdar and Glassman, 2000). The objective is to select the optimal
cutpoint c of a continuous diagnostic marker that best discriminates between patients
with and without the disease, under the assumption that high values of the test are as-
sociated with disease, and in such a way that individuals with a diagnostic test value Y
equal to or higher than c are classified as diseased (positive test), whereas patients with
a lower value are classified as healthy (negative test). It must be borne in mind that the
optimal cutpoint depends on the situation in which it is to be used, and so generally one
cannot talk in absolute terms of a “best choice” of cutpoint c. The optimal selection of
a cutoff point will depend on the analysis of the use proposed for that point and such
analysis together with the study of the corresponding empirical curves and/or theoreti-
cal formulas will influence the determination of a cutpoint and will allow its justification.
This is the reason why several strategies for selecting optimal cutpoints in continuous di-
agnostic tests have been proposed in the literature (see Youden, 1950; Feinstein, SH, 1975;
Metz, 1978; Albert and Harris, 1987; England, 1988; Schäfer, 1989; Vermont et al., 1991;
Greiner, 1995; Riddle and Stratford, 1999, among others). While the choice of the number
and values of the cutpoints may be made in accordance with criteria already established
by earlier studies or, for theoretical reasons, be based on clinical, biological or physiologi-
cal information (this is the desirable approach), at other times, however, this information
is not available and it is the researcher him/herself who has to decide on the cutpoints
that are to be set on the basis of certain criteria. Therefore, in the absence of any “a priori”
clinical information showing the prognostic relationship between the continuous marker
and the presence of certain disease, the choice of a cutpoint must be determined based
on graphs and numerical results (Greiner, 1995; Hilsenbeck and Clark, 1996; Lausen and
Schumacher, 1996; Mazumdar and Glassman, 2000; Abdolell et al., 2002).

In this chapter of the thesis we show a comprehensive overview of the dichotomiza-
tion methods that have been proposed in the literature to select cutpoints in the setting
of a continuous diagnostic test, discussing their relative advantages and disadvantages,
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giving an overview of their use in many medicine fields, and finally, identifying which
methods are similar or special cases of others in an intent to reduce the many options
currently available.

The methods for selecting the optimal cutoff value in continuous diagnostic tests may
initially be divided into two groups: bench level methods (or analytical methods) and
clinical or epidemiological methods. Bench level methods are based on the analytical
characteristics of the test. Often researchers use methods to select the optimal cutoff point
based on arbitrary values that may have no relationship with patient outcomes. Thus,
a procedure that has been widely used for selecting the cutoffs is based on choosing the
values of the quartiles or specific percentiles (median, 25th percentile, 75th percentile) of
the sample distribution, the median or some other value that has been admitted so far
as clinically relevant. But these methods are in general arbitrary, may not be useful in
many practical situations, and do not determine the true prognostic value of a diagnos-
tic marker (Courdi et al., 1988; Altman, 1991; Altman et al., 1994; Hilsenbeck and Clark,
1996; Mazumdar and Glassman, 2000). At other times, the optimal cutoff points consid-
ered in clinical practice are often determined as the mean plus several (usually two or
three) standard deviations of the observed results in the non-diseased sample (Richard-
son et al., 1983). For example, some authors have determined the optimal cutoff points to
be the mean of the control group +1.00SD, +1.64SD and +2.00SD. Under the assump-
tion of normality, these cutoff points correspond to the 84th, 95th, and 97.7th percentiles,
respectively, that is, they automatically achieve an specificity value equal to 84%, 95%,
and 97.7%, respectively (Barajas-Rojas et al., 1993). Recently, some authors have indi-
cated that such a method for computing the optimal cutoff point without taking into
account the value of the sensitivity cannot reflect the best cutoff point for discriminating
between diseased and healthy populations (Greiner and Böhning, 1994).

Unlike bench level methods, the clinical (or epidemiological) methods are concerned
with the subject classification and they assume, whatever characteristic of interest (an an-
alytic measure, a biomarker, an image, signs or symptoms,. . . ) that the measurement rep-
resents the status of a patient at a particular time. Clinical methods are generally based
on a balance between the ability of the test to correctly classify patients with the dis-
ease (sensitivity) and the ability to correctly classify patients without the disease (speci-
ficity). In general, this balance is usually represented by the ROC curve, and therefore the
ROC-based optimal-cutpoint selection methods are included here. A popular method of
this group is to maximize the Youden index (Youden, 1950). These clinical methods, in
turn, can be further divided into several groups. Some authors (Gönen and Sima, 2013)
talk in general of two main statistical approaches to the problem of selecting an opti-
mal cutpoint, an approach based on the ROC curve, and another approach that seeks to
maximize an appropriately chosen statistical test (Mazumdar and Glassman, 2000). The
ROC analysis furnishes several optimal cutpoint selection criteria based on sensitivity
and specificity measures (Green and Swets, 1966; Zweig and Campbell, 1993; Coffin and
Sukhatme, 1997; Pepe, 2004), by imposing certain specifications on such measures such
as to assume certain values or to consider a linear combination or any other function
of both measures. Furthermore, ROC-curve criteria allow for the choice of optimal cut-
points based on the disease prevalence and the relative cost ratio (risks and benefits) of
the possible (correct and incorrect) medical decisions derived from the diagnostic test
result. The other widely used approach is the maximization of an appropriate statistical
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test, often one that is based on two samples and compares the groups that result from the
dichotomization. This method first appeared in the context of a binary diagnostic test us-
ing the Pearson Chi-squared test (Miller and Siegmund, 1982), and it is frequently known
as the maximum Chi-squared or minimum p-value method (Mazumdar and Glassman,
2000).

Despite this initial classification, given the large number of dichotomization criteria
existing in the literature, we consider appropriate to split them in the following two
groups:

(i) Completely data driven methods

(ii) Methods with researcher (or user) requirements

In Section 3.1, we present an exploratory graphical analysis (Williams et al., 2006)
that allows the graphical visualization of possible cutpoints and that it is recommended
to carry out before a more formal selection. Then, Sections 3.2-3.3 are devoted to explain
in detail each of these two groups of methods or strategies for selecting optimal cutpoints
in continuous diagnostic tests.

3.1 Exploratory analysis

Once it has been determined that a continuous variable is significantly associated with
the outcome variable or presence of the event of interest (here, the presence of disease),
the first thing you should do is to examine this relationship graphically. The exploratory
graphs can reveal obvious thresholds suggesting possible cutpoints or a range of values
which should be taking into account a priori (Williams et al., 2006). In the literature, a
series of graphs have been suggested: scatter-plots, grouped data plots, lowess smoothed
plots, . . .
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Figure 3.1: Scatter-plot of plasma glucose levels (a continuous variable) as potential
marker for predicting postoperative infection.
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For a binary response variable (for instance, presence/absence), a scatter-plot graph
on the observed outcome of the prognostic variable or marker Y ideally shows the de-
gree to which the factor separates patients into risk groups. This plot will be generally
uninformative unless there is a fairly clear separation, in which case you will see a step
function that displays the existence of at least one cutoff point. However, this graph is
often difficult to interpret, since all points are distributed in only two ordinate values
due to the binary nature of the event of interest (see Figure 3.1 where we have plot-
ted the scatter-plot corresponding to real data from a prospective study for examining
plasma glucose as a potential marker for predicting postoperative infection (Figueiras
and Cadarso-Suárez, 2001), that has been previously introduced in Section 1.3 of Chap-
ter 1). A more illustrative graph is obtained by dividing first the continuous variable into
equal intervals (for example, deciles or some other grouping into quantiles) and repre-
senting then the proportion of occurrences in each interval against the midpoint of each
interval. These graphs are called grouped data plots and they are an useful diagnostic
graphic when the outcome is binary (Mazumdar and Glassman, 2000). However, the dis-
advantage of this type of representation is that it can be sensitive to the interval width
used, so it is a good idea to consider different amplitudes, and especially to check the
frequency of individuals in each interval, because if it is too small, the information will
not be accurate. In Figure 3.2, we see an example of a grouped data plot with deciles for
the same data considered in Figure 3.1.

●

●●
●

●

●

●

● ●

●

80 120 160 200

0.
05

0.
10

0.
15

centers

m
ea

ns

80 120 160 200

0.
05

0.
10

0.
15

centers

m
ea

ns

Figure 3.2: Grouped data plot of plasma glucose levels (a continuous variable) as poten-
tial marker for predicting postoperative infection.

There exist various techniques that allow flexible modeling of a continuous variable,
including smoothing splines, piecewise polynomial regression and nonparametric re-
gression (Greenland, 1995; Harrell, 2001). Of these techniques, the smoothing splines
are those who have received more attention and, in fact, they are incorporated in many
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standard statistical packages. The results of the regression models using splines allow
the representation of the continuous variable as a function of the response or any trans-
formed version of the response, for instance, the odds ratio (OR) of a logistic regression
model. In Figure 3.3 a lowess smoothed plot of plasma glucose levels as a potential
marker for predicting postoperative infection is shown.
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Figure 3.3: Lowess smoothed plot of plasma glucose levels (a continuous variable) as a
potential marker for predicting postoperative infection.

3.2 Completely data-driven methods

We use the term “completely data-driven methods” to refer to those methods that use
only the observed test results to compute the threshold. This group of methods is mostly
based on ROC analysis, that is, criteria based mainly on sensitivity and/or specificity
measures.

First of all, we list below the criteria included in this group of completely data-driven
methods. As you can see, some of them have been additionally grouped in different sub-
categories: I. Criteria based on sensitivity and specificity measures; II. Criteria based on
diagnostic likelihood ratios; III. Criteria based on predictive values; IV. Prevalence-based
methods; V. Methods not based on ROC analysis; VI. Other methods.

I. Criteria based on sensitivity and specificity measures

• 1. Maximization of sensitivity

• 2. Maximization of specificity

• 3. Sensitivity-specificity equality approach (or simultaneous maximization of sen-
sitivity and specificity)
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• 4. Maximization of the Youden index (maximization of the sum of sensitivity and
specificity, maximization of concordance, or maximization of net gain)

• 5. Minimum ROC distance (point on ROC curve closest to (0, 1), ROC plot-based
approach, K index, Euclidean distance or geometric approach)

• 6. Maximization of concordance probability (accuracy related area or percent cor-
rect answers area)

II. Criteria based on diagnostic likelihood ratios

• 7. Maximum diagnostic positive likelihood ratio

• 8. Minimum diagnostic negative likelihood ratio

III. Criteria based on predictive values

• 9. Maximization of positive predictive value

• 10. Minimization of negative predictive value

• 11. Positive Predictive value-Negative Predictive value equality approach

• 12. Simultaneous maximization of positive and negative predictive values

• 13. Maximum Predictive Summary index (or maximization of the sum of positive
and negative predictive values)

• 14. Criterion of the point on PROC curve closest to (0,1) point (or minimum P-ROC
distance)

• 15. Maximization of the product of positive and negative predictive values

• 16. P-R (precision-recall) break-even point approach (PPV = Se)

• 17. P-R (precision-recall) plot-based approach

IV. Prevalence-based methods

• 18. Observed prevalence

• 19. Mean predicted probability

• 20. Prevalence approach (or prevalence = predicted prevalence)

V. Methods not based on ROC analysis

• 21. Split test values at median

• 22. Maximum Chi-squared (or minimum p-value)

VI. Other methods

• 23. Maximization of diagnostic odds ratio

• 24. Maximization of Kappa index
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I. Criteria based on sensitivity and specificity measures

1. Maximization of sensitivity
2. Maximization of specificity

In some diagnostic situations, it is desirable to have a higher probability of detecting
a true negative or a true positive result, and in such a case the optimal cutpoint should
therefore be chosen with this aim in mind. Therefore, one criterion for selecting the op-
timal value is based on the maximization of one of the two accuracy measures, i.e., the
maximization of sensitivity (Filella et al., 1995; Hoffman et al., 2000; Álvarez Garcı́a et al.,
2003) or the maximization of specificity (Bortheiry et al., 1994; Hoffman et al., 2000). So,
in these methods the cutpoint c that maximizes either Se(c) or Sp(c), respectively, is
chosen. If there are different values verifying such a condition, the value that has the
higher value of the non maximized measure (either specificity or sensitivity) is usually
selected. However, these procedures prove somewhat extreme, since the choice of an
optimal cutpoint should generally imply an equilibrium between both Se and Sp. Con-
sequently, the equality or simultaneous maximization of these two quantities (sensitivity
and specificity) (Riddle and Stratford, 1999; Peng and So, 2002; Gallop et al., 2003) or the
maximization/minimization of a given combination of such quantities tend in general to
be more appropriate criteria.

3. Sensitivity-specificity equality approach

Another strategy for selecting the optimal cutoff point is to choose the optimal value
as the cutoff point c0 for which both sensitivity and specificity measures are similar or
virtually identical: Se(c0) ∼= Sp(c0) (Amaro et al., 1995; Greiner et al., 1995; Cantor et al.,
1999; Hosmer and Lemeshow, 2000; Álvarez Garcı́a et al., 2003; Liu et al., 2005; Chen
et al., 2006; Freeman and Moisen, 2008; Brandao et al., 2009; Caraguel et al., 2011). This
is equivalent to select the cutpoint c0 minimizing the absolute value of the difference of
such measures, that is, c0 = arg minc |Sp(c)−Se(c)|. This point is known as the Symmetry
point, also known in the literature as the point of equivalence (see Greiner et al., 1995; De-
freitas et al., 2004; Adlhoch et al., 2011) and it corresponds to the operating point where
the ROC curve and the line y = 1 − x (the perpendicular line to the positive diagonal
passing through the (0, 1) point) intersect.

The point on the ROC curve with sensitivity equal to specificity can also be seen
as the point that minimizes the total error, or equivalently, as the point that maximizes
simultaneously both types of correct classifications (Riddle and Stratford, 1999; Gallop
et al., 2003), that is, it balances the two types of correct classifications and therefore it
corresponds to the probability of correctly classifying any individual, whether he/she is
healthy or diseased (Jiménez-Valverde, 2012, 2014). So, it may also be used as an accuracy
measure and to compare different diagnostic tests, since it does not depend on the test
scale. However, it tends to overestimate (underestimate) the positive predictive value
for low (high) prevalence situations. Moreover, in clinical practice, the false negative and
false positive results often do not have the same cost (Rutter and Miglioretti, 2003). The
extension of this criterion taking into account different costs for false negative and false
positive misclassifications will be treated in detail in Chapter 4.

51



Sometimes, a level α is set and the optimal cutoff point is the value for which the
absolute value of the difference between the sensitivity and specificity measures is below
that level. When there exist multiple cutpoints verifying such a condition, sometimes
the optimal value is defined as the average of those points, and since in some practical
situations, the sensitivity achieved is not exactly equal to the specificity, if you want to
work with a single accuracy value, this value is obtained, for instance, as the mean of the
values (practically equal) of sensitivity and specificity measures.

The optimal cutpoint computed from the criterion that sets an equal value for the
sensitivity and specificity indexes, can be estimated by parametric methods (for instance,
a normal distribution can be assumed for the marker distribution in both populations of
healthy and diseased individuals) or non-parametric methods (when a deviation of the
normal distribution is observed).

In addition, this criterion is theoretically equivalent to the simultaneous maximization
of sensitivity and specificity, that is, instead of selecting either a high sensitivity or a high
specificity, an alternative for selecting the optimal cutoff point is to determine the oper-
ating point on the ROC curve where both measures are maximized simultaneously: Se
and Sp (Riddle and Stratford, 1999; Gallop et al., 2003).

This criterion has been applied in various fields, including studies in psychotherapy
(Crits-Christoph et al., 2001), cancer (Yang et al., 2004), pediatrics (Schurman et al., 2007)
and cardiology (Maneesai and Krittayaphong, 2007).

In the following we will prove the equivalence between the sensitivity-specificity equal-
ity approach and the simultaneous maximization of sensitivity and specificity.

The criterion based on simultaneous maximization of sensitivity and specificity de-
fines the optimal cutpoint by:

max
c
{min{Sp(c), Se(c)}}.

Taking into account that:

{c : Se(c) ≤ Sp(c)} = {c : ROC(t) ≤ 1− t,where t = 1− F0(c)},

where F0 denotes the cdf of the marker in the healthy population, it follows that:

min{Sp(c), Se(c)} =

{
Se(c), if ROC(t) ≤ 1− t,
Sp(c), if ROC(t) ≥ 1− t,

=

{
Se(c), if Se(c) ≤ Sp(c),
Sp(c), if Se(c) ≥ Sp(c).

Therefore, for t such that ROC(t) ≤ 1− t, we have to compute the maximum of ROC(t),
and given that the theoretical ROC curve is always monotone increasing, the maximum
of ROC(t) where ROC(t) ≤ 1 − t will be attained at the largest t, that is, at the point t0,
where ROC(t0) = 1− t0, with t0 = 1− F0(c0), and, consequently, Se(c0) = Sp(c0).
Analogously, for t such thatROC(t) ≥ 1−t, we need to maximize 1−t and this maximum
is reached at the smallest t value, that is, at the same point where Se(c0) = Sp(c0). See
Figure 3.4 for a graphical example that illustrates this equivalence.
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Figure 3.4: Objective function to maximize in the simultaneous maximization of sensitiv-
ity and specificity criterion.

4. Maximization of the Youden index

One of the most frequently studied methods of this group of completely data-driven
methods is the maximization of the Youden index or simply called the Youden index. We
remind that the Youden index is a summary measure of the ROC curve frequently used
in clinical practice, first introduced in the context of binary tests (Youden, 1950; Aoki
et al., 1997; Shapiro, 1999; Greiner et al., 2000; Grmec and Gasparovic, 2001; Kramar et al.,
2001; Fluss et al., 2005; Schisterman et al., 2005; Perkins and Schisterman, 2006, among
others), and therefore an overall measure of the effectiveness of a diagnostic marker.
So, the Youden index maximization corresponds to the cutpoint c where the sum of the
sensitivity and specificity of the test reaches its maximum:

Y I(c) = max
c
{Se(c) + Sp(c)− 1}.

As we already said in Chapter 2, the Youden index is another commonly used optimal
criteria for selecting the optimal cutpoint. The Youden index, also known in the litera-
ture as the Kolmogorov-Smirnov index, see for example, Pepe (2004), maximizes the sum
of the two correct classification probabilities and it can be seen geometrically as the point
that maximizes the Euclidean distance from the ROC curve to the positive diagonal or
no discrimination line, that is, the maximum of the Youden index is the furthest point
from chance (Perkins and Schisterman, 2006; Schisterman and Perkins, 2007). The most
intuitive characteristic of the Youden index is that it takes into account the distribution
of the test results from those individuals with (sensitivity) and without (specificity) the
target condition, and it also adapts to skewed distributions. The Youden index is a very
well-known and used criterion in practice to select the classification threshold, although
it coincides with the Bayes rule for the minimum misclassification error probability when
the prevalence of disease is assumed 0.5 (Webb, 2002; Skaltsa et al., 2010), which may be
far from reality. In fact, several published articles (Perkins and Schisterman, 2006; Liu,
2012; Rota and Antolini, 2014) have encouraged its use. In addition, there are several
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recent studies in the literature about the estimation of the Youden index and the corre-
sponding optimal cutpoint (Fluss et al., 2005; Molanes-López and Letón, 2011; Lai et al.,
2012, among others). The bias of the estimation of the Youden index and its correspond-
ing cutpoint depends on the test accuracy, disease prevalence, underlying population
distribution, and assumptions made for sample estimation (Fluss et al., 2005). The es-
timation of the optimal cutpoint maximizing the Youden index in case-control studies
does not differ from the estimation in cross-sectional studies (Fluss et al., 2005).

Taking into account that Se(c) = 1−F1(c) and Sp(c) = F0(c) where Fi, i = 0, 1, is the
marker distribution in healthy and diseased populations, respectively, the Youden index
can be also expressed in terms of both distribution functions as follows:

Y I = max
c
{F0(c)− F1(c)}.

Therefore, a plug-in type estimate of the Youden index can be performed by estimating
the distributions F0 and F1, and substituting such estimations in the above equation, that
is, Ŷ I = maxc{F̂0(c)− F̂1(c)}. Different approximations for estimating F0 and F1 provide
different estimates of the Youden index and its associated optimal cutpoint.

It should be noted that the Youden index method is identical (from an optimization point
of view) to the method that maximizes the sum of sensitivity and specificity (Albert and Har-
ris, 1987; Zweig and Campbell, 1993), to the criterion that maximizes concordance, which is
a function of the AUC defined as Se + Sp − 0.5 (Begg et al., 2000; Mogulkoc et al., 2001;
Silman and Macfarlane, 2002; Schwarz et al., 2009; Gönen and Sima, 2013), and to the
method based on the maximum net gain: (

√
2/2)(Se(c)+Sp(c)−1) (Koepsell and Connell,

2002). All these criteria correspond to a point that minimizes the probability of misclas-
sification of any type (false positives and false negatives).

5. Minimum ROC distance

Whereas the ideal situation is when sensitivity and specificity are equal to 1, a possible
method for selecting the optimal cutoff point is to find a cutoff such that the pair of values
(Se, Sp) is as close as possible to the pair of perfect classification given by (1,1). This is
equivalent to the point on the ROC curve closest to the (0,1) point orK index (Metz, 1978;
Vermont et al., 1991; Cantor et al., 1999; Liu et al., 2005; Perkins and Schisterman, 2006;
Freeman and Moisen, 2008; Irwin and Irwin, 2011; Liu, 2012; Zou et al., 2013; Rota and
Antolini, 2014). It is also called the North-West corner or the closest-to-(0,1) criterion. It is
also one of the completely data-driven methods, most frequently studied.

This optimal cutpoint minimizes the Euclidean distance between the pair (Se, Sp) (or
equivalently the point (1−Sp, Se) on the ROC plane) and the point (1, 1) (or equivalently
the point (0, 1) on the ROC plane), that is, the point on the ROC curve which has the
shortest distance to the top-left corner (0, 1):

c = arg min
c

{√
(1− Se(c))2 + (1− Sp(c))2

}
,

or, equivalently, in terms of the survival distributions in both populations (Perkins and
Schisterman, 2006):

c = arg min
c

{√
(1− SD(c))2 + (SD̄(c))2

}
.
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Moreover, deriving the above expression with respect to the cutoff c and equating the
derivative to zero, it follows that the slope of the ROC curve at this optimal cutpoint is

equal to S =
1− Sp(c)
1− Se(c)

, where c denotes the optimal cutpoint.

This optimal criterion is commonly used in studies of diagnostic accuracy (Costello-
Boerrigter et al., 2006; Wheeler et al., 2007; Al-Mawali et al., 2009; Bartlett et al., 2012).
Often this strategy provides a point near the intersection of the ROC curve with the
equation y = 1− x, which is the negative diagonal of the unit square. Geometrically, this
criterion is similar to the Pythagoras theorem, where the smallest hypotenuse should be
chosen; or the shortest radius from the (0, 1) point. This is the reason why the closest-to-
(0,1) criterion is also known in the literature as the geometric approach.

It may not yield the same threshold as the Youden index. Indeed, Perkins and Schis-
terman (2006) do not recommend the use of the North-West corner because it involves
the minimization of a quadratic term that does not own a clinical meaning, and advocate
the use of the Youden index instead, which maximizes the sum of the two types of cor-
rect classifications. In addition, this method tends to overestimate the positive predictive
value.

6. Maximization of concordance probability

Similarly to using the sum of sensitivity and specificity measures as the objective func-
tion, the product of both measures has been also considered in the literature to define
another optimal criterion, in this case, the cutpoint that provides the maximum product of
sensitivity and specificity measures (Johnson, 1998; Lewis et al., 2008):

c = arg max
c
{Se(c)Sp(c)}.

According to Liu (2012) and Rota and Antolini (2014), the empirical estimate of this cri-
terion has small bias when compared to the empirical estimate of the Youden index and
minimum p-value approaches.

II. Criteria based on diagnostic likelihood ratios

7. Maximization of the diagnostic positive likelihood ratio
8. Minimization of the diagnostic negative likelihood ratio

When the aim of the diagnostic test is predictive, cutpoints based on the diagnos-
tic likelihood ratio may be more useful (Boyko, 1994). In fact, optimal-cutpoint selec-
tion criteria based on DLR+ and DLR− have been proposed in the literature. Specif-
ically, the maximum diagnostic positive likelihood ratio, that is, the cutpoint c maximizing
DLR+(c) = Se(c)/(1− Sp(c)) (Caraguel et al., 2011); and the minimum diagnostic negative
likelihood ratio, i.e., the value c minimizing DLR−(c) = (1−Sp(c))/Se(c) (Caraguel et al.,
2011).
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III. Criteria based on predictive values

As with Se and Sp, in the case of PPV and NPV, there are similar strategies for
selecting an optimal cutpoint (Vermont et al., 1991; Schapire et al., 1998; Gallop et al.,
2003; Liu et al., 2005), such as selecting the point at which the predictive values are prac-
tically the same (Vermont et al., 1991), the point on the predictive ROC (PROC) curve
closest to the point (0,1) (Vermont et al., 1991; Gallop et al., 2003), the average proba-
bility/suitability approach (Cramer, 2003; Liu et al., 2005) or the precision and recall-
combined approaches: the called precision-recall break-even point and precision-recall
plot-based approaches (Schapire et al., 1998; Liu et al., 2005), among others. In the fol-
lowing we explain in more detail these criteria based on the predictive values.

9. Maximization of positive predictive value
10. Minimization of negative predictive value

In some diagnostic situations, it is desirable to have the highest probability of a pos-
itive prediction or the lowest probability of a negative prediction and in such cases
the optimal cutpoint should therefore be chosen taking into account these objectives.
Therefore, one criterion for selecting the optimal value is based on the maximization of
positive predictive value (Caraguel et al., 2011) or the minimization of negative predictive
value (Bortheiry et al., 1994; Hoffman et al., 2000; Caraguel et al., 2011). So, in these
methods the cutpoint c maximizing PPV (c) = TP (c)/(TP (c) + FP (c)) or minimizing
NPV (c) = TN(c)/(TN(c) + FN(c)) respectively is chosen.

However, these procedures turn out to be somewhat extreme in the sense that the
choice of an optimal cutpoint should generally imply equilibrium between both predic-
tive values. Accordingly, the equality or simultaneous maximization of the positive pre-
dictive value and negative predictive value (Vermont et al., 1991; Gallop et al., 2003) or
the maximization/minimization of a given combination of such quantities tends to be
more appropriate in general.

11. Positive predictive value-Negative predictive value equality approach

Similarly to the criterion based on the equality of sensitivity and specificity measures,
this strategy selects the threshold value c where both predictive values are similar or
practically equal (Vermont et al., 1991), that is, the cutpoint c minimizing |NPV (c) −
PPV (c)|. Sometimes, a level α is set and the optimal cutoff point is the value for which
the absolute value of the difference between the positive predictive value and negative
predictive value is below that level. When multiple cutpoints satisfy this condition, the
optimal value is usually defined as the average of those points, and since in some practi-
cal situations, the positive predictive value achieved is not exactly equal to the negative
predictive value, if a single value is desired, this is obtained, for example, by averaging
the positive and negative predictive values (practically equal).
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12. Simultaneous maximization of positive and negative predictive values

Instead of maximizing only one of the predictive values, this method maximizes both
quantities simultaneously, that is, the optimal cutpoint c defined by this criterion maxi-
mizes the minimum of NPV (c) and PPV (c).

13. Maximization of Predictive summary index

Analogously to the Youden index that can be seen as a summary measure of the
ROC curve, the predictive summary index (PSI) can be seen as a summary index of the
PROC curve (Linn and Grunau, 2006; Zetterberg, 2006). For a fixed threshold value c, it
is defined as follows:

PSI(c) = PPV (c) +NPV (c)− 1

=
pSe(c)

pSe(c) + (1− p)(1− Sp(c))
+

(1− p)Sp(c)
(1− p)Sp(c) + p(1− Se(c))

− 1.

The threshold value c that maximizes PSI(c) is selected as the optimal cutpoint, that is

c = arg max
c
{PSI(c)} .

The Predictive summary index provides more information than the Youden index and
the predictive values, making it more appropriate in clinical settings. The inverse of the
Predictive summary index is known as the “number needed to predict” (NNP = 1/PSI)
and represents how many patients are needed to be examined in the population in order
to correctly identify (predict) the positive diagnosis of one individual. It describes how
much more likely the patient is to be correctly diagnosed with the disease after a positive
test result, and how much more likely the patient is not to be incorrectly diagnosed with
the disease after a negative test result.

14. Criterion of the point on PROC curve closest to (0,1) point

Considering that the ideal situation is when both predictive values are equal to one, a
possible method for selecting the optimal cutpoint is to select the cutoff for which the pair
of values (PPV (c), NPV (c)) is as close as possible to the pair (1,1). This is equivalent
to the point on the PROC curve closest to the (0,1) point (Vermont et al., 1991; Gallop
et al., 2003). So, the optimal cutpoint is the value c that minimizes the Euclidean distance
between the pair (PPV (c), NPV (c)) and the point (1,1) (or equivalently, the distance
between the PROC curve and the point (0,1)), that is, the point on the PROC curve which
has the shortest distance to the top-left corner (0,1)):

c = arg min
c
{
√

(1− PPV (c))2 + (1−NPV (c))2}

or, equivalently: c = arg minc{(1− PPV (c))2 + (1−NPV (c))2}.
This strategy often provides a point near the intersection of the PROC curve with the

equation y = 1 − x, which is the negative diagonal on the unit square passing through
the points (0,1) and (1,0), that is, the corresponding predictive values are almost equal.
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15. Maximization of the product of positive and negative predictive values

This criterion maximizes the product of the two predictive values (positive and neg-
ative), that is, c = arg maxc {NPV (c)PPV (c)} .

16. P-R (precision-recall) break-even point approach

Precision and recall are indices widely used in the field of information retrieval. Pre-
cision is the proportion of the retrieved items that are relevant, that is, the proportion
of predicted presences that are real presences; here in diagnostic situations the presence
of a target condition or disease, and therefore it corresponds to the positive predictive
value. Recall is the proportion of the relevant items that are retrieved, which is equal to
sensitivity.

P-R (precision-recall) break-even point approach for selecting the optimal cutpoint
is based on selecting the optimal cutpoint as the value c where PPV (c) (precision) =
Se(c) (recall), that is, the absolute value of the difference between precision and recall
|PPV (c) − Se(c)| is minimized (Schapire et al., 1998; Liu et al., 2005). Often, interpola-
tion of the scores to obtain the break-even point is necessary. Interpolation gives values
not achievable by the system. The point where recall equals precision is neither a desir-
able nor an informative target from a researcher’s perspective (Schapire et al., 1998).

17. P-R (precision-recall) plot-based approach

The P-R (Precision-Recall) curve is the graph of sensitivity against positive predictive
value. Similarly to the criteria of the point on ROC curve closest to (0,1) point and the
point on PROC curve closest to (0,1), the point on the P-R (i.e, precision-recall) curve that
is closest to the upper-right corner (1,1) in the P-R plot can also be used to determine
the threshold, since the point in this corner represents a perfect classification with 100%
precision and recall. So, according to this criterion, the cutoff corresponding to the point
on the P-R curve which has the shortest distance to the top-right corner (1,1) is chosen as
the optimal cutpoint (Schapire et al., 1998; Liu et al., 2005), that is,

c = arg min
c

{
(1− Se(c))2 + (1− PPV (c))2

}
.

IV. Prevalence-based methods

18. Observed prevalence
19. Mean predicted probability

20. Prevalence approach

Strategies have also been proposed for the selection of optimal prevalence-based cut-
points, designed mainly for situations in which the marker assumes values from 0 to
1 (prevalence values), e.g., the probabilities obtained on the basis of a statistical model
(Manel et al., 2001; Kelly et al., 2008).
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The observed prevalence criterion simply consists of selecting as optimal the value closest
to the observed prevalence, that is,

c = arg min
c
|c− p̃|,

where p̃ denotes the sample prevalence.

The mean predicted probability criterion chooses the closest value to the mean predicted
probability.

The prevalence approach selects the cutoff value for which the prevalence predicted on
the basis of the statistical model is practically equal to the observed prevalence (Liu et al.,
2005), that is,

c = arg min
c
|p(1− Se(c))− (1− p)(1− Sp(c))|.

Criteria 18 and 20 are useful strategies in cases in which preserving prevalence is of
crucial interest.

V. Methods not based on ROC analysis

21. Split test values at median

It consists simply on selecting the optimal value as the median of the diagnostic test
values (Liu et al., 2005). This criterion is not recommended mainly because it ignores the
distribution of those with and without the target condition.

22. Maximum Chi-squared

Another approach for selecting the optimal cutpoint consists of maximizing a sta-
tistical test which represents the association between the marker and the binary result
obtained based on the cutoff value (Mazumdar and Glassman, 2000). The minimal p-
value criterion is based on either the exact Fisher test or the Pearson Chi-squared test
applied on 2 × 2 contingency tables, where each table is a binary split of the test scale
at all potential thresholds, that is, the pertinent Chi-squared test is calculated for each of
the observed diagnostic marker values (candidates for the optimal cutpoint), except for
the most extreme values. The optimal cutpoint is chosen at the split/point for which the
maximum Chi-squared or, equivalently, the corresponding minimum p-value is obtained
(Miller and Siegmund, 1982; Mazumdar and Glassman, 2000). This criterion has been
criticized mainly due to multiplicity (Altman et al., 1994); so, in a attempt to overcome
the most serious problems associated with multiple testing, several correction methods
have been proposed for adjusting for the increase of the type-I error which is associ-
ated with the minimum p-value approach, such as the maximally selected rank statistical
method (Schulgen et al., 1994; Lausen and Schumacher, 1996) or the use of a permutation
test approach (Hilsenbeck and Clark, 1996). The former is an easily applicable method
but has the drawback of being too conservative in cases where there are few cutpoints.
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VI. Other methods

23. Maximization of the diagnostic odds ratio

Many quantitative indicators of the performance of a diagnostic test have been intro-
duced in the literature, some already discussed, such as sensitivity, specificity, predictive
values, concordance, likelihood ratios, and area under the ROC curve (AUC), among
others. Less known is the odds ratio (OR) as a simple indicator of the effectiveness.

The OR is a very well-known statistic used in epidemiology, expressing the strength
of association between exposure and disease. It can also be applied to measure the
strength of association between the test results and the presence of disease. In a diag-
nostic context, it is commonly known as the diagnostic odds ratio and denoted by DOR
rather than OR.

For each cutpoint c, the DOR of a diagnostic test is the ratio of the odds of a positive
outcome in the diseased group relative to the odds of a positive result in the non-diseased
individuals (Kraemer, 1992), that is,

DOR(c) =

TP (c)

FN(c)

FP (c)

TN(c)

=

Se(c)

(1− Se(c))
(1− Sp(c))
Sp(c)

=
Se(c)

(1− Se(c))
Sp(c)

(1− Sp(c))
.

Alternatively, the DOR can be understood or interpreted as the ratio of the odds of
disease in positive test results relative to the odds of disease in negative test results:

DOR(c) =

TP (c)

FP (c)

FN(c)

TN(c)

=

PPV (c)

(1− PPV (c))

(1−NPV (c))

NPV (c)

=
PPV (c)

(1− PPV (c))

NPV (c)

(1−NPV (c))
.

Moreover, the DOR can be expressed in terms of the likelihood ratios:

DOR(c) =

TP (c)

FP (c)

FN(c)

TN(c)

=
DLR+

DLR−
.

The possible values for DOR are between 0 and ∞, with higher values indicating
better discriminatory power of the test. A value of 1 means that the test does not dis-
criminate at all between patients with and patients without disease. Lower values of 1
indicate an incorrect interpretation of the test (more negative tests among diseased indi-
viduals, that is, a greater number of false negatives). Note that the inverse of the DOR
can be interpreted as the ratio of the odds of negative test results among diseased pa-
tients relative to the odds of negative results in the healthy group. The DOR increases
abruptly where the sensitivity or specificity are almost perfect (Kraemer, 1992).

As concluded from the above formulas, the DOR does not depend on the disease
prevalence. Another point to consider is that it can not be used as a global measure to
judge the error rates of the test. Two tests with the same DOR can have a sensitivity and
a specificity very different, with different clinical consequences.
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If the 2× 2 contingency table of the different diagnostic test decisions contains zeros,
the DOR is not defined. Adding 0.5 to all the cells in the table is a common method
for computing an approximation of the DOR in this case (Haldane, 1955; Littenberg and
Moses, 1993).

According to the DOR, how to select the optimal cutpoint? Some authors (Greiner
et al., 2000; Böhning et al., 2011; Caraguel et al., 2011) compute the optimal cutpoint c
based on the maximization of the DOR, that is,

c = arg max
c
{DOR(c)} = arg max

c


Se(c)

(1− Se)(c)
(1− Sp)(c)
Sp(c)

 = arg max
c

{
DLR+

DLR−

}
.

Other authors (Magder and Fix, 2003) point out that the optimal cutpoint should be
selected as the value that maximizes the precision of the DOR estimate, for instance, the
mean squared error (MSE), which is the mean squared distance between the estimate
and the true value (Bickel and Doksum, 1977). Moreover, for determining the precision
of the DOR estimate it is very common and convenient to work on a logarithmic scale.
Given the estimate, the problem is thus reduced to find the cutoff value minimizing the
MSE.

The main advantage of this criterion is that the OR (here, the DOR) has several well-
known mathematical properties. Besides, it is appealing because it is an accuracy mea-
sure that combines both Se and Sp. However, it presents some disadvantages. For in-
stance, it is noisy (unstable) along the range of test results due to its multiplicative nature
and its log transformation leads to a convex curve. In addition, it may easily lead to cut-
off values on the boundary of the parameter range (Böhning et al., 2011). For this reason,
this criterion is not recommended for the selection of the optimal cutpoint in clinical
practice.

24. Maximum Kappa index

The variation of an observer in himself, a gold standard or other observers can be
measured by means of agreement to examine and classify a number of elements (patients,
radiographs, biological samples, . . . ). In this case we have the situation of a diagnostic
test (which plays the role of the observer) and a reference test, which here is the true
disease state of the patient. Several indexes of agreement that provide quantitative in-
formation that attempts to measure the degree of agreement and/or variation have been
proposed. For instance, the so called Kappa (K) index originally proposed by Cohen (1960)
for the case of two evaluators or two methods. This index relates the agreement that the
observer shows with the standard or reference test, beyond the potential agreement by
chance.

How to compute the Kappa index?
In essence, the process of constructing the index is as follows: the difference between the
proportion of observed agreement and the proportion of agreement expected by chance
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is computed; if it is zero, then the degree of agreement that has been observed can be
entirely attributed to chance; if the difference is positive, it indicates that the degree of
agreement is higher than it was expected by chance; and vice versa, if the difference is
negative (really unlikely) then the degree of agreement is less than it was expected by
chance.

The Kappa index is the ratio between that amount and the maximum expected with-
out the intervention of chance

K =
P0 − Pe
1− Pe

,

where P0 is the ratio of observed agreements and Pe is the the ratio of expected agree-
ments by chance, that is, the proportion of agreements on the assumption of indepen-
dence between observers, that is, agreements by chance.

From the corresponding 2 × 2 contingency table which includes the true positive
(TP ), false positive (FP ), false negative (FN ) and true negative (TN ) decisions of the
diagnostic test, the observed agreement is computed as follows:

P0 =
TP + TN

TP + FP + FN + TN
.

Once you have the observed values of the four types of decisions taken, the expected
values, under the assumption that the classification had been made at random, are con-
structed from those:

TPe =
(TP + FP )(TP + FN)

TP + FP + FN + TN
,

TNe =
(TN + FN)(TN + FP )

TP + FP + FN + TN
,

where TPe and TNe denote the number of true positive and true negative classifications
that would be expected by chance, respectively. Thus, the ratio of expected agreements
by chance (potential agreement) is calculated as follows:

Pe =
TPe + TNe

TP + FP + FN + TN
.

The Kappa index takes values between −1 and 1. The maximum value is reached if
there is total agreement between the classification of the diagnostic test and the true state,
that is, it occurs only when the observed agreement is 100% (a perfect agreement). This
would correspond to an ideal test with a sensitivity and specificity of 100%.

The question about the Kappa index refers to how it can be considered as an indicator
of good agreement. There is no an exact answer to this issue, since what is considered
appropriate (or not) will depend on the problem under study. Landis and Koch (1977)
considered acceptable values for the Kappa index those greater than or equal to 0.40 and
excellent those greater than 0.75, and proposed the following scale value interpretation:

• ≤ 0,00: without agreement

• 0,00 - 0,20: insignificant

• 0,21 - 0,40: discrete
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• 0,41 - 0,60: moderate

• 0,61 - 0,80: substantial

• 0,81 - 1,00: almost perfect

How to compute the optimal cutpoint from the Kappa index?
The optimal cutpoint c derived from the Kappa index is simply that which reaches the
maximum value of the Kappa index.

3.3 Methods with researcher (or user) requirements

Unlike the completely data driven methods, which rely on maximizing accuracy with-
out considering usefulness, which has been defined as the practical clinical value of the
information provided by the marker (Zweig and Campbell, 1993), some authors have
addressed the question of incorporating usefulness into the cutpoint estimation (see, for
example, Metz, 1978; DeNeef and Kent, 1993; Zweig and Campbell, 1993; Halpern et al.,
1996). Usefulness depends on the prevalence and costs of classification made on the basis
of the test results and thus, several kinds of usefulness could be defined with the same
accuracy level.

We use the term “methods with researcher or user requirements” to refer to those
methods that use the test values and also external information set by the researcher to
compute the optimal threshold value. This external information often includes the dis-
ease prevalence, and/or the costs of wrong classifications or utilities of correct classifi-
cations. The methods included in this group will give the researcher options either to
penalize the wrong classifications (loss or cost), or weight the correct classifications (util-
ity or profit) preferentially toward those with or without the target condition. In essence,
utilities and costs are weights which will represent the researcher preferences toward
either sensitivity or specificity.

It should be noted that the validity of the cutpoints or decision thresholds generated
by some of the methods included in this group do not only depend on the sampling
strategy, but also on the veracity of the assumptions, that is, the values fixed by the
researcher. This can be seen as a disadvantage because it may happen that different
users set different values for the utilities and costs under the same setting that lead to
different thresholds. The minimum average cost method is the most frequently studied
in this group of methods.

We will review some of the optimal cutoff selection criteria that can be included in
this group of methods with researcher requirements. As you can see from the list below,
some of these methods have been additionally grouped in different subcategories: I. Cri-
teria based on sensitivity and specificity measures; II. Criteria based on predictive values;
III. Criteria based on diagnostic likelihood ratios; IV. Methodology based on cost-benefit
analysis of the diagnosis.

I. Criteria based on sensitivity and specificity measures

• 1. Required specificity (pre-established minimum value for specificity or maximum
sensitivity at fixed specificity)
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• 2. Required sensitivity (pre-established minimum value for sensitivity or maxi-
mum specificity at fixed sensitivity)

• 3. Required sensitivity and specificity (or pre-established minimum values for sen-
sitivity and specificity)

• 4. Range of pre-established minimum values for sensitivity

• 5. Range of pre-established minimum values for specificity

• 6. Pre-established value for specificity

• 7. Pre-established value for sensitivity

II. Criteria based on predictive values

• 8. Required negative predictive value (pre-established minimum value for negative
predictive value or maximum positive predictive value at fixed negative predictive
value)

• 9. Required positive predictive value (pre-established minimum value for positive
predictive value or maximum negative predictive value at fixed positive predictive
value)

• 10. Required negative and positive predictive values (or pre-established minimum
values for negative predictive value and positive predictive value)

• 11. Set an arbitrary positive predictive value

• 12. Set an arbitrary negative predictive value

• 13. Posterior probabilities

• 14. Information theory (or mutual information)

III. Criteria based on diagnostic likelihood ratios

• 15. Set an arbitrary diagnostic negative likelihood ratio

• 16. Set an arbitrary diagnostic positive likelihood ratio

IV. Methodology based on cost-benefit analysis of the diagnosis

• 17. Cost-benefit ratio (minimum average cost or slope of isoutility) criterion

• 18. Particular cases of the cost-benefit ratio criterion

• 19. Maximization of expected utility (highest net utility or indifference curve ap-
proach)

• 20. Criterion based on the relative utility (RU) curve

• 21. F -measure (or F approach) criterion
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I. Criteria based on sensitivity and specificity measures

1. Required specificity

This criterion for selecting the optimal value is adequate when it is desirable to have
a higher probability of detecting a true negative result (specificity) than a true positive
one (sensitivity). So, in this case, the optimal cutpoint is the test value which increases
the accuracy of detecting a true negative result. This can be treated in two different ways:

a) A minimum value is chosen above which the specificity must be, that is, specificity
is larger than or equal to the minimum value set and the sensitivity must be as high
as possible (Vermont et al., 1991; Gallop et al., 2003; Hadzi-Pavlovic, 2008; Bartlett
et al., 2012)

b) A desired specificity Sp is set and the upper limit of a confidence interval for the
true unknown Sp percentile of the distribution of the diagnostic test in the healthy
population is selected as the optimal cutpoint (Clopper and Pearson, 1934; Green-
house and Mantel, 1950; David, 1970; Tietz, 1986; Linnet, 1987; Schäfer, 1989).

The advantage of this criterion is that it is a simple method, not influenced by the
disease prevalence. However, the main disadvantage is that the error of misclassifying
those without the condition is controlled at the expense of completely disregarding the
rate of misclassifying those with the condition. Besides, the optimal cutpoint obtained
with this method may vary substantially as different preferred values for Sp are set (Free-
man and Moisen, 2008).

2. Required sensitivity

Analogously to the previous situation, sometimes the interest is the selection of a
cutoff to increase the accuracy of detecting a true positive result (sensitivity). For this,
one possibility is that the sensitivity is higher than or equal to a predetermined mini-
mum value x (Tietz, 1986; Schäfer, 1989; Vermont et al., 1991; Gallop et al., 2003; Hadzi-
Pavlovic, 2008; Bartlett et al., 2012), that is, the optimal cutpoint c is the value that maxi-
mizes Sp(c) while Se(c) ≥ x.

Similarly to the previous method, this method enjoys the same advantages: it is a
simple method and it is not influenced by the disease prevalence. However, its main
disadvantage now is that the error of misclassification of those with the condition is con-
trolled at the expense of completely disregarding the rate of misclassifying those without
the condition.

In both procedures (required specificity and required sensitivity) the preselected min-
imum level is usually fairly high. Since the objective is to maximize the probability of a
correct decisions (either TN or TP), a possible choice that makes sense is to consider the
set of values traditionally used for the power levels in hypothesis testing, such as 80%,
90% or 95%. For example, when the required specificity level is 80%, you seek for a prob-
ability of at least 80% for the correct classification of a negative result.
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3. Required sensitivity and specificity

Selecting an optimal cutpoint usually involves a balance between sensitivity and
specificity. It may be the case that rather than a clear preference to a high sensitivity
or a high specificity, minimum values are desired for both measures. This approach can
be solved in two different ways:

a) A minimum value is set above which the specificity must be and also a minimum
value is set above which the sensitivity must be.

b) A desired specificity (Sp) and a desired sensitivity (Se) are fixed, and a weighted
average of the corresponding estimated Sp and Se percentiles in the healthy and
diseased populations, respectively, is selected as the optimal cutpoint (Schäfer,
1989).

In a similar way to the previous strategies, analogous criteria can be defined, in which
the end-user, rather than setting a single minimum value for either or both measures, sets
a range of values between those you want to place the measure Se or Sp, or a single tar-
get value for either the sensitivity or the specificity measures (Navarro et al., 1998; Rutter
and Miglioretti, 2003).

4. Range of pre-established minimum values for sensitivity

Some diagnostic tests as for instance, screening tests pursue to detect a high percent-
age of patients with the disease (high sensitivity). Therefore, in these cases, it is usual to
compute the optimal cutpoint by setting the sensitivity between certain limits and maxi-
mizing the specificity. For example, Navarro et al. (1998) studied the diagnostic accuracy
of the “Child Behavior Checklist” (CBCL) questionnaire as a screening test for detecting
the presence of phenomena of child psychopathology, and they computed the optimal
cutoff by two criteria: a) Set the sensitivity between 0.75 and 0.85, and maximize the
specificity, and b) set the sensitivity between 0.85 and 0.95 and maximize the specificity.

5. Range of pre-established minimum values for specificity

Sometimes the use of a specific diagnostic test needs to detect a high percentage of
cases without the disease (high specificity). In this situation, a possible option is to chose
the optimal cutoff by the criterion that sets a range of values for the specificity and max-
imizes the sensitivity subject to that condition on the specificity.

6. Pre-established value for specificity

Estimating optimal cutoff points requires the specification of optimal characteristics
for the resulting binary test. Sometimes, the interest is to select a cutpoint that provides a
binary test with a specific TPF or specificity. For example, Rutter and Miglioretti (2003)
for estimating the accuracy of screening psychological tests, computed optimal cutpoints
based on a specificity value of 80%.
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7. Pre-established value for sensitivity

Similarly to the previous criterion, the optimal cutpoint in this case is computed based
on a binary test that has a certain sensitivity. For instance, a sensitivity of 80% (Rutter
and Miglioretti, 2003). Analogously to the criteria on which a minimum value was fixed
for the sensitivity, specificity or both accuracy measures, the pre-established value is also
usually a high value, based on the concept of statistical power in a hypothesis testing
context.

The previous criteria have been established in terms of the specificity and/or the sen-
sitivity. But they could be reformulated in terms of their complementaries, the FPF and
FNF. For example, to set a false positive fraction (or rate) of 20% maximum is the same
as to set a specificity of 80% minimum.

II. Criteria based on predictive values

As we pointed before in previous chapter, sometimes it is more interesting for a clini-
cian to know what is the probability that an individual who has tested positive is actually
diseased, and vice-versa, i.e., the probability that an individual who has tested negative
is actually disease-free. There are indeed several strategies to select optimal cutpoints
based on the positive and negative predicitive values, PPV and NPV (Vermont et al.,
1991), similar to those previously discussed based on the sensitivity (Se) and specificity
(Sp) indexes .

8. Required negative predictive value

This criterion for selecting the optimal value is adequate in diagnostic situations
where it is desirable to have a higher probability of predicting a true negative result
(negative predictive value) than a true positive one (positive predictive value). For this,
a minimum value is set for the negative predictive value (Vermont et al., 1991) and the
cutpoint c that maximizes the positive predictive value PPV (c), subject to that restric-
tion on the negative predictive value, NPV (c) ≥ x, is defined as the optimal cutpoint,
where x represents the pre-established minimum value for NPV.

9. Required positive predictive value

Similarly to the previous criterion, when it is desirable to have a higher probability of
predicting a true positive result (positive predictive value) than a true negative one (neg-
ative predictive value), the optimal cutpoint must meet this objective and so a minimum
value is set for the positive predictive value (Vermont et al., 1991) and the cutpoint c de-
fined as optimal in this setting is that which maximizes NPV (c) subject to the restriction
that PPV (c) ≥ x, where x represent the pre-established minimum value for PPV.
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10. Required negative and positive predictive values

In some clinical scenarios, there may not be a clear preference to a high negative pre-
dictive value or a high positive predictive value, and that minimum values are desired for
both measures, having thus an equilibrium between both predictive values. Under this
situation, the optimal cutpoint is the value c that satisfies both restrictions NPV (c) ≥ x
and PPV (c) ≥ y, where x and y are the pre-established minimum values for each of the
predictive values, NPV and PPV, respectively.

11. Set an arbitrary negative predictive value

In this criterion, a specific value is set for the negative predictive value, and the cut-
point c satisfying the condition NPV (c) = x is selected as the optimal cutpoint (Hadzi-
Pavlovic, 2008; Caraguel et al., 2011; Bartlett et al., 2012), where x is the target value
previously set for the negative predictive value.

12. Set an arbitrary positive predictive value

Analogously to the previous criterion, in this case the optimal cutpoint is selected as
the value c verifying that PPV (c) = x, where x is the target value previously set for the
positive predictive value (Hadzi-Pavlovic, 2008; Caraguel et al., 2011; Bartlett et al., 2012).

Other strategies that also involve the predictive values are the following:

13. Posterior probabilities

This criterion defines the optimal cutpoint as the value c for which the maximum of
the values of each of the two posterior to prior probability ratios is greater than one, that
is, the quotient between the positive predictive value and the disease prevalence has to
satisfy the restriction PPV/p > 1 and, similarly, the ratio between the negative predic-
tive value and the prior probability of absence of disease has to satisfy the restriction
NPV/(1− p) > 1 (Schuchard and Massof, 1990).

A probability ratio value of one indicates that there is no gain by performing the test,
that is, the probability of having or not having the disease is the same with or without
the test results.

14. Information theory (or mutual information)

If we consider the situation of transmitting a message (in this case the diagnostic in-
formation) through an imperfect communication channel (here the diagnostic test), since
the communication chanel is imperfect (the diagnostic test is not error-free), the received
information may (or not) be the same as the transmitted information. Thus, for a given
clinical decision making process, the unique two possible received messages correspond
to the diagnostic test decisions about the presence or absence of disease and the two
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possible transmitted messages correspond to the actual status of the patient with two
possible states (diseased or healthy). Therefore, the average information content of a di-
agnostic test can be found by evaluating the average reduction in uncertainty about the
transmitted signal that is provided by the received signal (Schuchard and Massof, 1990),
that is, it is the difference between “average uncertainty about the disease before performing
the test” and “average uncertainty about the disease after receiving the diagnostic information”.

Therefore, the average information content (expressed as the fraction of information
per patient in the case of diagnostic tests) can be expressed as (Metz et al., 1973):

Iave = pSe log2

PPV

p
+ (1− p)(1− Sp) log2

1−NPV
1− p

(3.1)

+p(1− Se) log2

1− PPV
p

+ (1− p)Sp log2

NPV

1− p

Note that because the probabilistic events are binary, the base 2 logarithm is used in (3.1).
Under this setting, the value c that maximizes Iave is selected as the optimal value

to discriminate between diseased and healthy individuals (Schuchard and Massof, 1990;
Zou et al., 2013). Note that if the information was perfectly transmitted by the diagnostic
test, the average information content would be 1 (the maximum value).

We remind here that although the ROC curve also allows the graphical representation
of the optimal cutpoints associated with these strategies based on the predictive values
and these strategies are considered indeed within the ROC methodology, there is a more
adequate curve in this case, the predictive ROC curve (PROC) (Vermont et al., 1991; Gal-
lop et al., 2003) computed from the predictive values.

III. Criteria based on diagnostic likelihood ratios

Where the aim of the diagnostic test is predictive, cutpoints based on the diagnostic
likelihood ratio (DLR) may be more useful (Boyko, 1994). So, optimal-cutpoint selection
criteria based on pre-established values of these measures have been also proposed, sim-
ilarly to those previously described for Se, Sp, PPV and NPV (Rutter and Miglioretti,
2003).

15. Set an arbitrary diagnostic negative likelihood ratio

In this criterion, a target value is set for the negative diagnostic likelihood ratio, that
is, the cutpoint c that satisfies the condition DLR− (c) = x is selected as the optimal cut-
point (Boyko, 1994; Rutter and Miglioretti, 2003; Hadzi-Pavlovic, 2008; Caraguel et al.,
2011), where x is the prefixed value set for the diagnostic negative likelihood ratio.

16. Set an arbitrary diagnostic positive likelihood ratio

Analogously to the previous criterion, in this case the optimal cutpoint is selected as
the value c that verifies the condition DLR + (c) = x, where x is the target value set for
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the diagnostic positive likelihood ratio (Boyko, 1994; Rutter and Miglioretti, 2003; Hadzi-
Pavlovic, 2008; Caraguel et al., 2011).

IV. Methodology based on cost-benefit analysis of the diagnosis

17. Cost-benefit ratio (minimum average cost or slope of isoutility) criterion

When undertaking a diagnostic procedure, a price is paid (in terms of money and/or
risk of possible complications) to “gain” information that may be beneficial for the subse-
quent treatment and care of the patient. According to ROC methodology, this extra infor-
mation on the patient can be measured and described in a statistical sense, by attempting
to answer the following questions: 1) How can the benefits obtained from correct diag-
nostic decisions be balanced (offset) against the costs of incorrect decisions?; and 2) How
can we judge where the additional information is worth the price “paid”?

Although a ROC curve describes the different balances that can be obtained between
the relative frequencies of true positives, false negatives, true negatives and false posi-
tives, the particular compromise that turns to be more effective in practice depends on
the disease prevalence and the “utilities” (benefits and costs) of the four different deci-
sions that can be taken based on a diagnostic test. So, this optimal compromise between
the relative frequencies of the different decisions can be studied in terms of the expected
net benefit of the diagnostic system when such a system is applied to a population of
patients (McNeill et al., 1975; Metz et al., 1975; Metz, 1978; Swets and Swets, 1979).

Therefore, from the combination of ROC analysis and statistical decision theory, we can
study how to compute the mean cost of the consequences of performing a diagnostic
test. In this case, the benefits and costs of each type of decision are combined with the
disease prevalence to find the operating point on the ROC curve, that is, the coordinate
point (1−Sp(c), Se(c)), that wild yield the minimum mean overall cost (maximum mean
overall benefit) (McNeill et al., 1975; Metz et al., 1975; Metz, 1978; Swets and Swets, 1979),
where the term “cost” can be construed as a combination of various aspects (for exam-
ple, adverse health risks) and not exclusively as a monetary term (Edwards et al., 1975).
This is the so called cost-benefit ratio criterion or minimum average cost criterion (Zweig and
Campbell, 1993; Cantor et al., 1999; Zhou et al., 2002; Obuchowski, 2005; Hadzi-Pavlovic,
2008; Kaivanto, 2008). Note that “benefits” can be expressed as negative costs. However,
in the following exposition of the cost-benefit ratio criterion discussion, we will express
the consequences of all the decisions (either correct or incorrect) in terms of costs.

The expected net benefit or mean overall cost of the consequences of conducting a
diagnostic test should include, firstly, the price that must be paid for performing the test
(“overhead cost”, C0, that in general summarizes the direct costs and effects of testing),
and the costs of the medical consequences derived from each type of diagnostic decision,
weighted by its corresponding probability of occurrence. Hence, for a situation where
there are two possible alternative decisions (though it may easily be extended to situa-
tions with a larger number of decisions), the expected cost C of the use of the diagnostic
test can be expressed in terms of the threshold value c as follows:

C(c) = C0 + CTP Pr(TP (c)) + CTN Pr(TN(c)) + CFP Pr(FP (c)) + CFN Pr(FN(c)),

where CTP , CTN , CFP , and CFN represent the mean costs of the medical consequences
derived from each type of diagnostic decision (true positive, true negative, false positive
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and false negative, respectively). So, CTP and CTN denote the classification costs when
classifying correctly either a diseased or a healthy individual, whereas CFP and CFN are
the costs when classifying incorrectly either a healthy or diseased individual. These costs
weigh each diagnostic decision with respect to its clinical relevance.

It should be noted that, for example, the consequences of a FP decision generally
represent a responsibility, although almost always a lower responsibility than the re-
sponsibility of a FN decision. The cost of a false positive decision CFP represents often
an inappropriate (over)treatment; and the cost of a false negative result CFN is typically
the worst outcome of missed case. CTN , the cost of a true negative result, is typically the
best outcome of not having the disease; and CTP , the cost of a true positive misclassifica-
tion, represents in general an appropriate treatment. Computing the probabilities of the
four possible decisions, the expression of the expected cost C(c) above, can be rewritten
as follows:

C(c) = C0 + CTP Pr(D = 1) Pr(Y + |D = 1) + CTN Pr(D = 0) Pr(Y − |D = 0)

+CFPP (D = 0) Pr(Y + |D = 0) + CFN Pr(D = 1) Pr(Y − |D = 1).

Therefore:

C(c) = C0 + CTP pSe(c) + CTN (1− p)Sp(c) (3.2)
+CFP (1− p)(1− Sp(c)) + CFNp(1− Se(c))

= C0 + CTP pSe(c) + CTN (1− p)(1− (1− Sp(c))
+CFP (1− p)(1− Sp(c)) + CFNp(1− Se(c)),

where p is the disease prevalence. Rearranging terms, it follows that:

C(c) = −(CFN − CTP )pSe(c) + (CFP − CTN )(1− p)(1− Sp(c))
+C0 + CTN (1− p) + CFNp.

Hence the above expression is of the form:

C(c) = K1Se(c) +K2(1− Sp(c)) +K3, (3.3)

where K1, K2, K3 are real constants that do not depend on the selected cutpoint c,

K1 = −(CFN − CTP )p,

K2 = (CFP − CTN )(1− p)
K3 = C0 + CTN (1− p) + CFNp.

So, the cost-benefit ratio criterion selects the optimal cutpoint as the value that minimizes
(3.3). We prove below that the solution of this minimization problem defines the optimal
point where the slope of the ROC curve (“slope of isoutility”) is given by (Lusted, 1968;
Metz, 1978; Weinstein and Fineberg, 1980; England, 1988; Schuchard and Massof, 1990;
John, 1992; Dwyer, 1996; Halpern et al., 1996; Martı́n-Andrés and Luna del Castillo, 2004):

S =
1− p
p

CFP − CTN
CFN − CTP

=
1− p
p

C

B
(3.4)
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Taking the first derivative of C(c) with respect to 1− Sp(c) = Pr(Y + |D = 0) gives:

dC(c)

d(1− Sp(c))
= K1

dSe(c)

d(1− Sp(c))
+K2 = (CTP −CFN )p

dSe(c)

d(1− Sp(c))
+(CFP −CTN )(1−p).

Equating to zero and solving the resulting equation gives:

(CTP − CFN )p
dSe(c)

d(1− Sp(c))
+ (CFP − CTN )(1− p) = 0,

that is,
dSe(c)

d(1− Sp(c))
=
CTN − CFP
CTP − CFN

1− p
p

=
CFP − CTN
CFN − CTP

1− p
p

,

which proves equation (3.4).

So, other possible equivalent forms to compute the optimal value that minimizes the
cost of diagnosis is to select the value where the slope of the ROC curve is equal to S.
Besides, some authors instead of minimizing the expression of the mean cost given above
in (3.3), they maximize the following expression:

Se(c)− 1− p
p

CFP − CTN
CFN − CTP

(1− Sp(c)),

which is equivalent. Based on these different perspectives, this optimal cutpoint is known
in the literature as the minimum average cost; slope of isoutility; or cost-benefit optimal crite-
rion (Lusted, 1968; Metz, 1978; England, 1988; Schuchard and Massof, 1990; John, 1992;
Dwyer, 1996; Halpern et al., 1996; Zhou et al., 2002; Gallop et al., 2003; Pepe, 2004; Brown
and Davis, 2006).

It is interesting to mention here that the S slope given in (3.4) (also called the Metz
equation) actually weighs the decisions about non-diseased subjects versus diseased
ones, highlighting their relative importance. This enables the benefits of correct diag-
nostic decisions to be balanced against the costs of incorrect decisions (Metz, 1978). The
S term has to be a positive number in order to find a solution, and thus it is required
that the costs corresponding to wrong decisions are greater than those corresponding to
correct decisions, an assumption which is also supported by common sense. S could
also be positive if the costs of the two correct decisions were higher than the costs of the
corresponding wrong decisions, but when looking for a solution, this would result in
a negative second derivative for the cost function, that is, in a maximum rather than a
minimum of the cost function (Skaltsa et al., 2010). Therefore, the three key conditions
for diagnosis to be cost-effective are that:

1. CTP must be lower than CFN ,

2. CTN must be lower than CFP ,

3. C0 must not make the equation positive.
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The first two conditions must be met because if we were indifferent as to the treatment of
the disease-negative subgroup (that is the false positives, FP), we would simply classify
everyone as positive, and vice versa.

The first term of the S slope given in equation (3.4), ((1 − p)/p)), is known as the
“a priori” non-disease odds and it is the inverse of the “a priori” disease odds, generally
denoted by Ω,Ω = p/(1−p). Thus, the prior probability of disease can be computed from
the “a priori” disease odds by the following relationship: p = Ω/(1 + Ω) (Lusted, 1968).
For diseases of low prevalence, that is, rare diseases (which typically result in more false
positives than true positives) and for situations in which a false positive would result in
painful or dangerous testing or treatment, the analyst should select a cutpoint that yields
fewer false positives. Such a cutpoint should be chosen from the segment of the ROC
curve in the lower-left quadrant of the ROC plot (Cantor et al., 1999). Conversely, for
highly prevalent diseases and for conditions in which the number of false negative test
results should be minimized, the user should select a cutpoint that limits the number of
false negatives. Such a point should be chosen from the segment of the ROC curve in the
upper-right quadrant of the ROC plot.

The second term of the S slope consists of the cost-benefit ratio C/B, which allows
the cost ratio to be tuned to the non-disease odds as desired. Thus, S can be seen as
a cost-benefit ratio modified by the ratio of “a priori” probabilities and, furthermore, is
closely related to the sensitivity and specificity indexes, in the way that S = 1 implies that
the minimum cost threshold gives the same relevance or weight to sensitivity and speci-
ficity; and conversely, values of S higher (lower) than 1 turn out on cutpoints that give
higher (lower) specificity and lower (higher) sensitivity than the cutpoint corresponding
to S = 1 (Skaltsa et al., 2010).

Assuming a binormal model for the diagnostic test, an explicit formula for the op-
timal cutpoint defined by the cost-benefit ratio criterion is given by (Jund et al., 2005;
Skaltsa et al., 2010):

c =
2σ2 logS − (µ2

D̄
− µ2

D)

2(µ2
D − µ2

D̄
)

,

where µ2
D is the diseased population mean, µ2

D̄
is the non-diseased population mean, and

σ is the common variance in both populations. When considering, however, unequal
variances, a more realistic clinical setting (Hanley, 1988, 1996), the optimal cutpoint is
the root of a second-degree univariate equation given by:

c =
σ2
DµD̄ − σ2

D̄
µD + σD̄σD

√
(µD − µD̄)2 + 2 log(SσD/σD̄)(σ2

D − σ2
D̄

)

σ2
D − σ2

D̄

.

In the literature, this is called the parametric minimum cost threshold with p, Se and Sp
weights (binormal with unequal variance); or parametric maximum utility or expected value on
the decision analysis criterion (Jund et al., 2005; Skaltsa et al., 2010).

If the probability functions in both populations are unknown, an alternative is to use
an empirical estimator, that is, for each possible cutpoint c (any of the observed values
of Y ), the empirical true and false positive fractions are computed and based on them
an empirical cost function is obtained. Thus, the empirical cutpoint c will correspond to
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the observed value of Y that provides a minimum of the empirical cost function. This
cutpoint is known in the literature as the empirical minimum cost threshold.
Another alternative when distributions of the populations are unknown, it to base the
estimation on the slope of isoutility S. For this, it is important to take into account the
relationship between the ROC curve and the likelihood ratio (LR) (Greiner et al., 2000).
The slope of the ROC curve takes values between 0 (at the right upper corner) and∞ (at
the lower left corner) and it is equivalent to the theoretical likelihood ratio (LR) function

LR(y) =
Pr(Y = y|D = 1)

Pr(Y = y|D = 0)
, y ∈ <,

defined as the ratio of the probability of observing a test result y in the diseased individ-
uals, Pr(Y = y|D = 1), and the probability of observing the same result in the healthy
patients, Pr(Y = y|D = 0). So, a solution would be to compute the optimal cutpoint as
the value for which the likelihood ratio is equal or closer to the S value. More specifi-
cally, Choi (1998) proved that the slope between two operating points on the ROC curve
coincides with the likelihood ratio for a specific test value bounded by the test values
associated to those operating points. Another possibility is to consider an appropriate
statistical model for the LR function, for instance, the logistic regression model given by

logit Pr(D = 1|Y = y) = a+ by + ε, (3.5)

where a and b are the estimated coefficients, ε is the error term and Pr(D = 1|Y = y)
denotes the “a posteriori” disease probability given the test value y. Under this model,
the coefficient a depends on the sample prevalence p̃. Besides, if we consider the notation
ỹ to refer to the value of the test Y that does not change the “a priori” disease probability,
that is, ỹ = (logit(p̃) − a)/b, then the LR function for the diagnostic test Y derived from
model (3.5) is given by (Simel et al., 1993):

LR(y) = exp{b(y − ỹ)}.

Therefore, based on the slope term S given in (3.4), the cost-benefit optimal criterion can
be obtained as the root of the equation in y that sets LR(y) = S, that is,

exp{b(y − ỹ)} =
1− p
p

C/B,

where C/B denotes the ratio of the net cost of treating the healthy individuals (C =
CFP −CTN ) to the net benefit of treating the diseased individuals (B = CFN −CTP ). The
root of this equation is given by (Anderson, 1982):

c =
logit(p̃)− logit(p) + ln(C/B)− a

b
.

Coming back to the expression given in (3.4) for the “slope of isoutility” S, it requires
that the users quantify in principle the consequences of each possible test result in order
to allocate costs to the four different classification results, which is generally complex in
practice. This allocation can be expressed in terms of financial or health costs and it can
be seen from the perspective of patients, insurers, . . . Besides, some judgment should be
made about the relative costs of the different decisions. Cantor et al. (1999) reviewed
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the medical literature on the use of cost ratio in ROC analysis, that is, how researchers
assigned or determined a C/B ratio in the management of clinical problems in order to
determine an optimal cutpoint to be used in practice, providing a rough guide on how
to choose the corresponding weights/costs. These authors noted that most of the arti-
cles reviewed did not take into account either costs (the risks and benefits of over (and
under) treatment) or disease prevalence, and even in some cases the threshold was cho-
sen arbitrarily, without some justification or explanation given. In fact, of the 48 articles
they reviewed, only 13 articles included a C/B ratio as part of the analysis based on the
ROC curve for computing the optimal cutpoint. In these studies, the smallest C/B ra-
tio found was 1/400 = 0.0025 for tuberculosis screening (Lusted, 1971), because in this
clinical setting, the consequences of a missed case are really serious (that may potentially
result in death) and consequently, the costs of giving an overtreatment to a non-diseased
patient are small relative to the benefits obtained after treating true disease patients; and
the largest C/B ratio found was 260/96 = 2.7 for teeth restoration necessitated by carious
lesions (Kay and Knill-Jones, 1992).

However, the allocation of costs may not be as difficult as it may seems at first since
the value of the ratio [(CFP − CTN )/(CFN − CTP )] can often be determined without
knowing the absolute values of the four costs involved. In fact, in only 2 of the studies
reviewed (DeBaun and Sox, 1991; Hagen, 1995), the four costs of the four diagnostic out-
comes (true positives, true negatives, false positives and false negatives) were identified.
In the other 11 studies that considered a C/B ratio, in general, few details were provided
in reference to how the C/B ratio was determined. As the number CFP − CTN repre-
sents the loss that is incurred when a false positive decision is made rather than a true
negative decision, and similarly, CFN − CTP represents the loss involved when making
a false negative decision rather than a true positive, it would only be necessary to esti-
mate the ratio of these two losses, that is, their relative values with respect to each other.
In the majority of these studies, the authors pointed out that “the costs of treatment of
non-diseased patients were x times as great as the net benefits of treatment of diseased
patients” and so in these cases, the C/B ratio was simple to calculate. For instance, in the
study of Bergus (1993), the author states that the net benefits of treatment were 1.5 times
as great as the net costs based on a holistic estimate, and therefore the C/B ratio was
calculated as 1/1.5 = 0.667. Moreover, in many of the reviewed studies (Hdez-Armas
et al., 1982; England, 1988; Fombonne, 1991; Fujiyama et al., 1992), the authors pointed
out that the net costs of treatment were equivalent to the net benefits and thus the C/B
ratio was simply 1. In fact, without better information, the general tendency is to assume
that the prevalence of disease is p = 0.5, CFP = CFN , and CTP = CTN (or equivalently,
CFP − CTN = CFN − CTP ) and therefore a cutoff point is selected such that S = 1, that
is, the cutpoint defined by the Youden index. However, it is important to stress that log-
ically this cutpoint may not be optimal for other prevalence values and cost ratios and
that the costs may change considerably between different clinical scenarios.

Lastly, it is also interesting to mention that the decision theory (misclassification loss) cri-
terion (Kristjansson et al., 1996), defined for settings with two or more classes of interest,
can be seen as a generalization of the cost-benefit ratio criterion. For the two-group case,
the optimal cutpoint defined by the decision theory (misclassification loss) criterion is
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given by

c = arg min
c
{(1− p)Sp(c)(CTN −CFP ) + p(1−Se(c))(CFN −CTP ) + (1− p)CFP + pCTP },

or, equivalently, by

c = arg min
c
{CFP (1−p)(1−Sp(c))+CFNp(1−Se(c))+CTP p(1−1+Se(c))+CTN (1−p)Sp(c)}.

So, it is clearly seen that it coincides with the solution given by the cost-benefit ratio crite-
rion.

18. Particular cases of the cost-benefit ratio criterion

In the following we will show particular cases of the cost-benefit ratio criterion which
are based on considering specific values for the costs and/or for the prevalence.

Minimization of misclassification cost term (MCT )
Minimum cost (Anderson’s proposal)

Minimum loss function

Some authors (McNeill et al., 1975; Zweig and Campbell, 1993; Burgueño et al., 1995)
only mention the ratio of a false positive against a false negative, because the costs of the
correct decisions are assumed null and thus the slope of isoutility S can be simplified as
follows:

S =
1− p
p

CFP
CFN

.

The minimization of misclassification cost term (MCT ), or minimum cost (Anderson’s pro-
posal) (Berkson, 1947; Vizard et al., 1990; Smith, 1991; Greiner, 1995, 1996; Wang and
Geisser, 2005; Caraguel et al., 2011), that defines the optimal cutpoint c as that which
minimizes the MCT given by

MCT (c) =
CFN
CFP

p(1− Se(c)) + (1− p)(1− Sp(c))

can be seen as a particular case of the previous cost-benefit criterion, that considers that
the costs of the correct classifications are null. Besides, the MCT term that measures the
cost of the misclassifications coincides with the expected loss function for classifying a
patient (Geisser, 1998; Greiner et al., 2000; Schisterman et al., 2005):

(1− p)(1− Sp(c)) + ap(1− Se(c)), (3.6)

where a = CFN/CFP . So, the MCT based criterion can be also called the minimum loss
function criterion.
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Maximization of the Skill Plot

The previous particular cases of the cost-benefit ratio criterion are also equivalent to
the criterion based on the Skill Plot Kθ(x) (Briggs and Zaretzki, 2008) defined by

Kθ(x) =


p(1− θ)− C(x)

p(1− θ)
= 1− C(x)

p(1− θ)
, if p < θ,

θ(1− p)− C(x)

θ(1− p)
= 1− C(x)

θ(1− p)
, if p ≥ θ,

which is simply a scaled version of the expected cost

C(c) = p(1− Se(c))(1− θ) + (1− p)(1− Sp(c))θ.

Note that when the parameter θ represents the relative cost or loss of a false positive
decision, that is,

θ =
CFP

CFP + CFN
,

and 1− θ represents the relative loss of a false negative, that is,

1− θ =
CFN

CFP + CFN
,

it follows that Kθ(x) can be rewritten as follows

Kθ(x) =


p(1− θ)Se− (1− p)θ(1− Sp)

p(1− θ)
= Se− 1− p

p

θ

1− θ
(1− Sp), if p < θ,

θ(1− p)Sp− (1− θ)p(1− Se)
θ(1− p)

= Sp− p

1− p
1− θ
θ

(1− Se), if p ≥ θ,

Taking into account that the following optimization problems are equivalent:

min{p(1− θ)Se− (1− p)θ(1− Sp)},

min{p(1− θ)(1− Se) + (1− p)θ(1− Sp)},

max{θ(1− p)Sp− (1− θ)p(1− Se)},

max{(1− p)θSp+ p(1− θ)Se− (1− p)θ},

min{p(1− θ)(1− Se) + (1− p)θ(1− Sp)},

it is easy to check that in both cases (whether p < θ or p ≥ θ), the Skill Plot defines the
same cutpoint as the MCT method. Additionally, from the alternative expression

Kθ(x) =
p(1− θ)Se− (1− p)θ(1− Sp)

p(1− θ)
Ip +

θ(1− p)Sp− (1− θ)p(1− Se)
θ(1− p)

(1− Ip),

where Ip = I(p < θ), it is also obvious that maximizing the Skill Plot is exactly the opti-
mal Bayes classification boundary.

The advantage of this method is that it provides an easy-to-interpret alternative to the
ROC curve. Besides, the Skill Plot allows the analyst to immediately judge the quality
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of a diagnostic test or forecast based on a particular cutoff value and to assess the range
of useful cutoffs. However, when compared to the ROC curve, the disadvantages are: 1)
the inability to compare multiple testing rules based on different diagnostic tests on the
same graph (as each diagnostic test would have different x-axis units), and 2) the lack of
an AUC-like overall measure.

Generalized Youden index

It is easy to see that minimizing the expected loss function over all possible cutoffs
(3.6) is equivalent to maximize:

Se(c) + rSp(c)− 1

with r = (1−p)/(ap) = ((1−p)CFP )/(pCFN ),which is the optimization problem defined
by the Generalized Youden index (Geisser, 1998; Greiner et al., 2000; Schisterman et al., 2005;
McClish, 2012; Zou et al., 2013). Besides, for the particular case that r = 1, it coincides
with the traditional Youden index. As we saw in the previous section, the traditional
Youden index is one of the best known and used criterion in clinical practice for selecting
the optimal cutpoint. However, an important limitation is that assigns the same weight
to sensitivity and specificity, and sometimes different weights (based maybe on the cost
of the different types of classification errors and the prevalence of disease) are adequate.

Maximization of Validity index (or efficiency)
Minimization of error rate

The Validity index (V I) or efficiency is defined as the proportion of individuals cor-
rectly classified (“Well Classified Frequency”, WCF, or “accuracy”). Feinstein, SH (1975)
demonstrated how this index depends, not only on measures of sensitivity and speci-
ficity, but also on the disease prevalence. Indeed it is given by:

V I(c) =
#of diseased individuals · Se(c) + #of healthy individuals · Sp(c)

n
= pSe(c) + (1− p)Sp(c) = p(Se(c)− Sp(c)) + Sp(c).

The geometric interpretation of this index is that it represents the equation of a straight
line with intercept the specificity and slope equal to the difference between sensitivity
and specificity.

The optimal cutpoint that maximizes the Validity index (Galen, 1986; Vermont et al.,
1991; Greiner et al., 1995; Björk et al., 1996; Jung et al., 1996; Toubert et al., 1996; Wood-
ward, 1999; Hoffman et al., 2000; Liu et al., 2005; McLaughlin et al., 2005; Chen et al.,
2006; Smits et al., 2007; Freeman and Moisen, 2008; Caraguel et al., 2011; Bartlett et al.,
2012; Zou et al., 2013), it is equivalent to the cost-benefit ratio criterion but considering
the cost-benefit ratio equal to C/B = 1.
When C/B = 1, it follows that CFP −CTN = CFN−CTP , and the following optimization
problems are equivalent:

max{pSe+ (1− p)Sp}
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max{Se+ (1− p)/pSp}

max{Se+
1− p
p

CFP − CTN
CFN − CTP

Sp− 1}

max{Se− 1− p
p

CFP − CTN
CFN − CTP

(1− Sp)}.

Therefore, the slope of the ROC curve at the optimal cutpoint obtained by this criterion

is equal to S =
1− p
p

. Benowitz et al. (2009) and Sabatine et al. (2009) used this criterion

for selecting the optimal cutpoint and since there is no a closed expression for computing
the standard error of the optimal cutpoint, they used the bootstrap technique to validate
the cutpoint and to generate 95% confidence intervals for both the cutpoint and its cor-
responding sensitivity and specificity indexes for several demographic groups (Rust and
Rao, 1996).

The main disadvantage of this criterion is the fact that Se and Sp are weighted only
by the disease prevalence and that the two incorrect decisions are considered equally
hazardous. These assumptions are often inappropriate in practical applications (Brown
and Davis, 2006).

It should be noted that maximizing the Validity index is also equivalent to minimize
the proportion of incorrect diagnostic classifications (error rate):

ER(c) =
#of diseased individuals · (1− Se(c))

n

+
#of healthy individuals · (1− Sp(c))

n
= p(1− Se(c)) + (1− p)(1− Sp(c))
= p[(1− Se(c))− (1− Sp(c))] + (1− Sp(c)),

that is, the so called minimum error rate criterion (Cummings and Richard, 1988). So, the
method that maximizes efficiency or accuracy provides the same optimal cutpoint as the
method that minimizes the classification error rate (Metz, 1978). Additionally, this crite-
rion yields the same cutpoint as the Youden index if the disease prevalence is equal to 0.5.

19. Maximization of expected utility

In the following, we will present an approach based on the expected utility that is
equivalent to the minimum average cost criterion, previously discussed in 17, the maximiza-
tion of expected utility criterion, where utility is a measure of the strength of preference for
an specific outcome (Cantor et al., 1999). In the literature, there exist two perspectives
for evaluating the ratio of net costs to net benefits, depending on whether one wants
to view outcomes as either “costs” (in a negative frame) or as “utilities” (in a positive
frame). Based on the first perspective, we have seen so far that “cost” is a negative out-
come measure, referring to the negative effects in terms of, for instance, monetary cost,
adverse health risks, or a combination of both. From the second perspective, outcomes
are seen in terms of utilities that refer, for example, to monetary savings, health benefits,
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or a combination of the two. In essence, utility is a measure of the importance of the state
of health for a given individual, such as life expectancy or quality of life. The paradigm
of using utilities for evaluating the ratio of net costs to net benefits was developed by
Krieg et al. (1986); Sox et al. (1988) and DeNeef and Kent (1993).

The expected utility of a classification threshold c, E(U(c)), for a randomly selected
person is equal to the sum of the values of the four possible diagnostic decisions (true
positive, false negative, false positive and true negative) weighted (that is, multiplied)
each by its corresponding probability of occurrence (Krieg et al., 1986; Smits et al., 2007;
Baker, 2009; Irwin and Irwin, 2011), that is,

E(U(c)) = Pr(D = 1) Pr(Y ≥ c|D = 1)UTP + Pr(D = 0) Pr(Y ≥ c|D = 0)UFP (3.7)
+ Pr(D = 1) Pr(Y < c|D = 1)UFN + Pr(D = 0) Pr(Y < c|D = 0)UTN

+Utest,

where UTP , UTN , UFP , UFN represent the mean utilities owing from each type of diag-
nostic decision to assess the state of health of a diseased-treated one, a healthy untreated
one, a healthy subject mistakenly treated, and a disease-untreated one, respectively; and
Utest is the utility (monetary cost or harm) from a test (it is often considered null). Sim-
ilarly to costs, these utilities weigh each diagnostic decision with respect to its clinical
relevance. Specifically, UTP , the utility of a true positive result, represents in general an
appropriate treatment (disease is present or will develop); and UTN , the utility of a true
negative misclassification, is typically the best outcome of not having disease. The util-
ity of a false positive decision UFP represents often an inappropriate treatment (because
disease is absent or will not develop), and the utility of a false negative result UFN is
typically the worst outcome of missed case (no treatment is given but disease is present
or will develop). So, in the majority of cases, these utilities are ordered in this way:
UFN < UTP < UFP < UTN (Jund et al., 2005).

Obviously, the optimal cutpoint defined by the maximization of expected utility approach
is given by the threshold value c that has the highest expected utility.

The expected utility given in (3.7) can be also expressed in terms of the ROC method
(Metz, 1978; Kraemer, 1992), rewriting the above conditional probabilities in terms of the
sensitivity and specificity measures, as follows:

E(U(c)) = Se(c)pUTP + (1− Sp)(c)(1− p)UFP (3.8)
+(1− Se)(c)pUFN + Sp(c)(1− p)UTN + Utest.

Note that the expression given in (3.8) for the expected utility is similar to that de-
rived for the total cost given in (3.2), replacing here the costs of the different diagnostic
classifications by the corresponding utilities (or profits). Due to the equivalence, but in
an opposite direction, of these two perspectives to measure either cost or utility, there is
a direct relationship between the values of the costs and utilities as follows:

CFP = −UFP , CFN = −UFN , CTP = −UTP , CTN = −UTN .

Consequently, the following optimization problems are equivalent:

max{Se(c)pUTP + (1− Sp)(c)(1− p)UFP + (1− Se)(c)pUFN + Sp(c)(1− p)UTN},
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min{CTPSe(c)p+ CFP (1− Sp)(c)(1− p) + CFN (1− Se)(c)p+ CTNSp(c)(1− p)}.
And thus, both approaches, the maximization of expected utility approach and the minimum
average cost criterion, define the same classification threshold.

When considering, for instance, UFP = UFN = 0 and UTP = UTN = 1, (that is, the util-
ities of the incorrect decisions are null and the utilities of the correct decisions are equal
to 1), maximizing (3.8) would be equivalent to maximizing efficiency or accuracy, which
we had already treated as a particular case of the criterion that minimizes the cost.

We include here an illustrative example taken from the literature to clarify the mean-
ing of utilities and their relationship with the costs. It should be noted that utilities can
be negative if they are detrimental (Baker, 2009). For instance, in the context of a ques-
tionnaire to estimate the risk of colorectal cancer, Gail and Pfeiffer (2005) considered the
following values for the utilities : UFN = -100 for the possibility/risk of death and mor-
bidity due to failing to detect colorectal cancer, that is, the cost of missing cancer cases is
set equal to CFN = 100 and it is a high cost because cancer is a very serious disease; UFP
= -1 for the risk of bleeding or perforation of the colon, because a non-diseased patient
is suffering an unnecessary risk since treatment always has a risk and therefore it has a
cost CFP = 1, but anyway this cost of giving treatment to a non-diseased patient is much
lower than the cost of a false negative decision (not detecting a patient with cancer); UTP
= -11 for the risk of bleeding or perforation of the colon and the lowered chance of death
or morbidity from colorectal cancer due to early detection, that is, because a diseased
patient also suffer the risk of treatment but this is better than a false negative because
in this case the death could be avoided and so CTP = 11 is lower than CFN but greater
than CFP because the patient has the disease; and UTN = 0 as a reference value because a
healthy patient does not suffer any risk and therefore the corresponding cost CTN is null.

The expected utility given in (3.7)-(3.8) can be also expressed in terms of predictive
values (Greenland, 2008; Baker, 2009), that is,

E(U(c)) = Pr(Y ≥ c)PPV (c)UTP + Pr(Y ≥ c)(1−NPV (c))UFP

+(1− Pr(Y ≥ c))(1− PPV (c))UFN + (1− Pr(Y ≥ c))NPV (c)UTN

+Utest,

which is obtained from (3.8) by taking into account that:

Se(c)p = Pr(Y ≥ c)PPV (c),

(1− Sp(c))(1− p) = Pr(Y ≥ c)(1−NPV (c)),

(1− Se(c))p = (1− Pr(Y ≥ c))(1− PPV (c)),

Sp(c)(1− p) = (1− Pr(Y ≥ c))NPV (c).

It is interesting to mention that the same expression for the expected utility given in
(3.8) has been considered by several authors, for instance, Krieg et al. (1986); Smits et al.
(2007); Baker (2009); Irwin and Irwin (2011) and Martı́nez-Camblor (2011), although such
a expression has been developed in different, although equivalents, ways by the different
authors. Besides, Smits et al. (2007) rearranged terms in (3.8) as follows:

E[U(c)] = (1− p)UFP + pUFN + (1− p)Sp(c)(UTN − UFP ) + pSe(c)(UTP − UFN ),
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where the first two terms are fixed for all cutoff points c, UTN − UFP reflects how much
difference there is in utility whether healthy persons are correctly classified or not, and
UTP − UFN how much difference there is whether diseased persons are correctly clas-
sified or not. In the terminology used by Baker (2009), L = UTN − UFP is the loss for
a positive prediction among those without disease and P = UTP − UFN is the profit for
a positive prediction among those with disease. This terminology, however, had been
previously introduced by Peirce (1884), who defined the profit P as the difference in
utilities from making a positive prediction instead of a negative prediction (of disease)
among patients with disease, and, in a similar way, the loss L was defined as the nega-
tive of the difference in utilities from making a positive prediction instead of a negative
one but in patients without disease (Baker, 2009). According to DeNeef and Kent (1993),
the net benefit P of treating a diseased individual depends on the treatment efficacy, the
net cost L of treating a healthy individual depends on the treatment adverse effects, and
the ratio of P over L may be considered as the number of healthy individuals a physi-
cian would accept to treat mistakenly to not have a diseased individual without treat-
ment. Again, this is equivalent to the C/B term previously discussed for the cost-benefit
ratio criterion. Considering the aforementioned biomedical example of Gail and Pfeif-
fer (2005), previously introduced to clarify the relationship between utilities and costs,
the profit P is P = −11 − (−100) = 89, the loss is L = 0 − (−1) = 1 and the ratio
P/L = C/B = 89/1 = 89.

Similarly to the cost-benefit ratio criterion, it is easy to prove that the maximum expected
utility criterion defines as optimal cutpoint the operating point on the ROC curve where
the slope of the ROC curve (equivalently, the likelihood ratio function) is given by (Mc-
Neill et al., 1975)

LR(c) =
(1− p)(UTN − UFP )

p(UTP − UFN )
, (3.9)

which is indeed the fundamental formula of Peterson et al. (1954).

Considering the terminology introduced by all these authors, the maximum expected
utility criterion is also known in the literature as the highest net utility approach (Krieg et al.,
1986; Irwin and Irwin, 2011), or the indifference curve approach. This last terminology is
closely related to the expression given above in (3.9) for the slope of the ROC curve at
the maximum utility threshold. In fact, indifference curves are straight lines which are
tangent to the ROC curves and their slopes equal the slope of the ROC curve at the point
that yields the maximum utility.

20. Criterion based on the relative utility (RU) curve

Baker (2009) considered a new function of expected utilities, the so called relative
utility (RU ), which is basically defined as the maximum fraction of the expected utility
achieved by risk prediction as compared with perfect prediction.

On one hand, the expected utility of perfect prediction is given by

Uperfect = pP + pUFN + (1− p)UTN .
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This expression is simply obtained by considering that Se(c) = 1, 1 − Sp(c) = 0 and
Utest = 0 into the expression for the expected utility given in (3.8). Similarly, we can
also define the expected utility of treating none (that is, all individuals are classified as
negative),

Unone = pUFN + (1− p)UTN ,

and the expected utility of treating all individuals (that is, all are classified as positive),

Uall = pUTP + (1− p)UFP .

From these, the expected utility of not prediction is equal to the maximum of Unone and
Uall. In the absence of prediction if treatment is given then Uall > Unone, and if not then
Uall ≤ Unone.

On the other hand, let R be the so called risk threshold, a summary measure of harms
and benefits, defined in terms of the loss L and the profit P :

R =
L

L+ P
=

1

1 + P/L
,

where P/L can be understood as the number of false positives that a person would trade
for each true positive. In terms of this risk threshold, when Uall > Unone, the relevant
region is given by R < p and the slope of the ROC curve is lower than 1, that is, LR < 1.
Conversely, when Uall ≤ Unone, the relevant region is R ≥ p and the slope of the ROC
curve is higher than or equal to 1, that is, LR ≥ 1. Based on these relevant regions, the
relative utility RU is defined as the ratio of the maximum utility of prediction (versus no
prediction) to the utility of perfect prediction (versus no prediction), that is:

RU(R) =


Uc(R) − Uall
Uperfect − Uall

, if R < p,

Uc(R) − Uall
Uperfect − Uall

, if R ≥ p,

where c(R) is the smallest value c such that the probability of disease at the cutpoint c is
R = Pr(D = 1|Y ≥ c), that is,

c(R) = inf {c : R = Pr(D = 1|Y ≥ c)} ,

and Uc(R) denotes the expected utility associated to the risk prediction based on classify-
ing as disease an individual with test value Y larger than or equal to c(R) and as healthy
otherwise. Equivalently, RU(R) can be rewritten as follows

RU(R) =



Sp− 1−R
R

p

1− p
(1− Se)− 1−R

R
− C

1− p
= Sp− UTP − UFN

UTN − UFP
p

1− p
(1− Se)− 1−R

R
− C

1− p
, if R < p,

Sp− 1−R
R

p

1− p
(1− Se)− 1−R

R
− C

1− p
= Sp− UTP − UFN

UTN − UFP
p

1− p
(1− Se)− 1−R

R
− C

1− p
, if R ≥ p,
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where C = −Utest/P is the cost of the test per unit profit. Besides, similarly to the ex-
pected utility, RU can also be expressed using the predictive values, see Baker (2009).

Therefore, the criterion based on the relative utility curve defines as optimal the threshold
value c(R) that maximizes the relative utility RU(R). Relative utility curves can be seen
as an improvement of the decision curves (Vickers and Elkin, 2006) because there is no
need to set any utility equal to a reference value. A relative utility curve is simply a plot
of the relative utilityRU(R) versus the risk thresholdR and it shows information on how
much “the risk prediction” contributes to clinical utility relative to “perfect prediction”
(Baker, 2009).

It is easy to prove that either if R ≥ p or R < p, the maximization of RU(R) yields the
same solution as the maximum expected utility criterion and, consequently, also the same as
the cost-benefit ratio criterion. Besides, it should be noted that maximizing the relative util-
ity curve is equivalent to the maximization of the Skill Plot when considering the utilities
of correct classifications null.

21. F -measure (or F approach) criterion

The optimal cutpoint c defined by this criterion maximizes the F -measure (Liu et al.,
2005), given by

Fα =
1

α

PPV (c)
+

1− α
Se(c)

=
TP (c)

TP (c) + (1− α)FN(c) + αFP (c)
,

that is,

c = arg max
c


1

α

PPV (c)
+

1− α
Se(c)

 = arg max
c

{
TP (c)

TP (c) + (1− α)FN(c) + αFP (c)

}
,

with 0 ≤ α ≤ 1, a user defined parameter to penalize the two types of errors (false neg-
atives and false positives). Note that the F -measure combines both recall (true positive
rate or sensitivity) and precision (positive predictive value) into a single utility function.

3.4 Practical considerations

We reviewed here numerous techniques or methods for selecting optimal cutoff points
for quantitative diagnostic tests. From a practical point of view, it is not always clear
when one should use this method or the other. Each has its own benefits. Besides, the
superiority or equivalence of these approaches depends on the specific clinical scenario
(Wheeler et al., 2007).

As we have previously mentioned, the selection of the appropriate optimal criterion
should depend on the ultimate goal of the diagnostic test, taking into account mainly the
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prevalence of the disease and the severity of false positives and false negatives misclas-
sifications. In Table 3.1 we present the criteria that would be more appropriate in terms
of these two aspects and the main characteristic of the corresponding optimal cutpoint.

Table 3.1: Most appropriate criteria in practice.

Severity of Criteria Cutoff
Prevalence misclassifications recommended resulting

High
FN > FP Maximizing Sp for a fixed Se Very lowMaximizing efficiency (or accuracy)
FN ≈ FP Maximizing efficiency (or accuracy) Low
FN < FP Maximizing Se for a fixed Sp Medium-high

Intermediate

FN > FP Maximizing Sp for a fixed Se LowMaximizing efficiency (or accuracy)

FN ≈ FP A weighted combination of Se and Sp IntermediateMaximizing efficiency (or accuracy)

FN < FP Maximizing Se for a fixed Sp HighMaximizing efficiency (or accuracy)

Low

FN > FP Maximizing Sp for a fixed Se Low-medium
FN ≈ FP Maximizing efficiency (or accuracy) High

FN < FP Maximizing Se for a fixed Sp Very highMaximizing efficiency (or accuracy)

When a value for the specificity is specified in advance, we pursue to ensure a higher
confidence in the prediction of a negative result (that is, the absence of disease). Simi-
larly, when a sensitivity value is set a priori, we pursue to guarantee a higher confidence
in the prediction of a positive result (that is, presence of disease). When the consequences
of an incorrect classification in either direction are approximately equal, it is appropriate
to maximize efficiency, especially in the case of a disease with an intermediate preva-
lence (neither too high nor too low), or to simultaneous maximize both sensitivity and
specificity (that is, the Symmetry point).

In situations where the false negative decisions are more serious than the false posi-
tive ones, maximizing specificity for a fixed high sensitivity is a recommended method
for selecting the optimal threshold. This occurs when not diagnosing the disease can be
fatal for the diseased individuals, such as for serious but treatable diseases, as tubercu-
losis or lymphoma, or diseases in which a false positive does not cause serious psycho-
logical or economic problems for the patient (for example, performing a mammography
in breast cancer). Moreover, in the case of high or intermediate prevalence, it is also con-
venient to maximize the efficiency (or validity index). If instead the consequences of a
false positive are more serious than the consequences of a false negative result, for ex-
ample, in some diseases which are incurable or rapidly lethal, you can select the optimal
cutoff based on maximizing the sensitivity for a fixed value of the specificity, and in the
event that the prevalence of the disease under study is intermediate or low, the method
of maximum efficiency or proportion of correctly classified is also an appropriate choice.
Briefly, we can say that a higher accuracy or efficiency is desirable when the disease is
important but treatable, and both false positives and false negatives involve trauma and
entail serious consequences.

The method based on costs and benefits incorporates the costs and prevalence into
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the estimation of each of the above methods. The main issue is, therefore, thinking about
the implications for a false positive diagnosis and a false negative diagnosis. If the im-
pacts are similar, the method of maximum efficiency or simultaneously maximization of
sensitivity and specificity (Symmetry point) should be used. When estimates of the cost
ratio and the prevalence are known, which is not always easy in practice, the method
based on costs (and benefits) should be used.

For instance, in the case of coronary artery disease (CAD), if one wished to use leuko-
cyte elastase determination as a screening test prior to performing a coronary angiogra-
phy for detecting CAD, one would seek high sensitivity so as to be able to identify all
the diseased patients. Thus, using the criterion that sets a minimum value for sensitivity
with Se ≥ 0.95, the cutpoint obtained would be 22 µgl−1, and so coronary angiography
would be performed on any patient having a leukocyte elastase level ≥ 22 µgl−1. Using
this optimal cutpoint, 96% of CAD patients would be correctly classified, whereas only
38% of patients without CAD would be correctly identified (28 false positive classifica-
tions). If, however, one were seeking an equilibrium between sensitivity and specificity,
an optimal cutpoint of 38 would be obtained by using the Symmetry point, and 68% of
the patients with CAD and 67% of the patients without CAD would be correctly detected.
This value is very close to that obtained using the Youden index, which would afford a
value of 37, similarly yielding an equilibrium between the two measures of sensitivity
and specificity (Se = 0.69 and Sp = 0.67). However, if we select the highest possible value
of specificity, for instance, Sp ≥ 0.95, a value of 54 would be obtained, a value that, as
will be readily appreciated, is very much higher than the previous ones. In our example,
however, this approach would not be appropriate, in view of the fact that angioplasty,
with or without a stent, is usually a successful treatment in CAD.

Greiner et al. (2000) suggested that the method based on minimizing the misclassi-
fication term (MCT ) and the logistic regression model based on the likelihood ratio are
useful methods for selecting the cutoff point. Nevertheless, further studies are required
to investigate the behavior of both criteria under different distributional assumptions of
the diagnostic test.

Coming back to the CAD example, if one assumed that, despite being a severe dis-
ease, coronary stenosis is usually treated successfully with minimal risk for the patient,
clinically speaking it would make more sense to consider that the false negative results
have higher “cost” than the false positive results. If the case that a FN had three times
the cost of a FP , the MCT method with a ratio of CFN/CFP = 3 could be used. One
would thus obtain an optimal value of 21, so that patients with elastase higher than or
equal to 21 would be classified as patients with CAD, so minimizing the false negative
classifications.

If we consider, instead, criteria based on predictive values, from an applied point of
view, it is usual to seek elevated positive predictive values in any case where treating
false positives may have serious consequences, be these psychological, physical or eco-
nomic (for example, chemotherapy in cancer or AIDS). Taking the CAD example, in view
of the fact that 1) coronary disease is potentially curable (there is a treatment), 2) a false
positive does not produce serious disorders for the patient, and 3) coronary angiography
enjoys good results with low risk, one would seek elevated negative predictive values.
This is related to the ability to rule out the disease with a greater degree of certainty.
For the purpose, one could, for instance, use the method which sets a minimum value
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for negative predictive value. Thus, for a NPV ≥ 0.95, the cutpoint obtained would be
13, with a PPV = 0.72 and an NPV = 1 (the maximum value). This means that all pa-
tients with elastase below 13 are identified as patients without CAD and can be correctly
classified as healthy (i.e., there are no false negative results).
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Symmetry is what we see at a glance;
based on the fact that there is no reason
for any difference . . .

- Blaise Pascal

Chapter 4

The Symmetry point and its
cost-based generalization

In Chapter 3 we have presented several methods previously proposed in the literature for
identifying optimal cutpoints in continuous diagnostic tests, in the sense of a specific op-
timality criterion such as the North-West corner (Metz, 1978; Vermont et al., 1991; Perkins
and Schisterman, 2006), the Youden index (Youden, 1950; Aoki et al., 1997; Greiner et al.,
2000), the Concordance probability (Liu, 2012; Lewis et al., 2008) and the Symmetry point
(Greiner, 1995; Defreitas et al., 2004; Adlhoch et al., 2011), among others. Under the as-
sumption that the marker in healthy and diseased populations Y0 and Y1 are normally
distributed with the same standard deviation, these criteria yield the same operating
point, (1− p(c), q(c)), on the ROC curve, that is, the same pair of specificity (p) and sensi-
tivity (q) indexes, and consequently the same threshold value on the marker scale. How-
ever, this is not the case in general, as can be seen in Figure 4.1, where we have plotted
the four different operating points obtained with the above-mentioned optimal criteria
using a specific binormal example in which the marker Y follows a normal distribution
with mean µ0 = 6.5 and standard deviation σ0 = 0.3 in the healthy population and with
mean µ1 = 7.25 and standard deviation σ1 = 0.5 in the diseased population (this is the
binormal model a) with AUC = 0.90 which will be considered in the simulation study
shown in the next Subsection 4.4, see Table 4.1). Anyway, it is interesting to have in mind
that any of the different threshold values derived from these optimal criteria can be in-
terpreted similarly in the sense that they can be seen as two specific quantiles, the p(c)-th
quantile of the healthy population and the (1− q(c))-th quantile of the diseased popula-
tion. In this chapter we will focus on the Symmetry point and a generalization of it that
takes into account the misclassification costs.

The Symmetry point, also known in the literature as the point of equivalence, see
Greiner et al. (1995); Defreitas et al. (2004); Adlhoch et al. (2011), is the point cS where
p(cS) = q(cS), that is, where the ROC curve and the line y = 1− x (the perpendicular to
the positive diagonal line) intersect. The Symmetry point can also be seen as the point
that maximizes simultaneously both types of correct classifications (Riddle and Stratford,
1999; Gallop et al., 2003), that is, it balances the two types of correct classifications and
therefore it corresponds to the probability of correctly classifying any subject, whether
it is healthy or diseased (Jiménez-Valverde, 2012, 2014). As Riddle and Stratford (1999)
mention, from a clinical perspective, there may be situations where it is more appro-
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priate to maximize simultaneously both types of correct classifications rather than the
sum or the product of them, and consequently the Symmetry point should be preferred
to the Youden index and the Concordance probability criteria. Recently, the Symmetry
point has been recognized as an useful discrimination measure to select between sev-
eral species distribution models (Jiménez-Valverde, 2012, 2014). In addition, the lower
and upper half-AUCs, recently defined as alternative summary indexes to the classical
AUC, see Bradley (2014), are given in terms of the Symmetry point. However, up to
our knowledge, there are no theoretical studies concerning the inference of the Symme-
try point. Based on these facts, this chapter will be devoted to propose several inference
procedures for this specific optimal cutpoint, the Symmetry point, and its cost-based gen-
eralization that we call the Generalized Symmetry point.
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Figure 4.1: ROC curve associated to the binormal model a) with AUC = 0.90, and operat-
ing points, (1− p(c), q(c)), corresponding to the Symmetry point (S) (0.1743, 0.8257) (red),
the North-West corner (NW) (0.1431, 0.8052) (orange), the Concordance probability (CP)
(0.1177, 0.7847) (blue), and the Youden index (J) (0.1041, 0.7718) (green).

In the following, we first prove that the Symmetry point can be interpreted from a
Bayesian decision theory perspective, and we introduce a generalization of it, the Gener-
alized Symmetry point, that takes into account the misclassification costs. We then con-
struct confidence intervals for the Generalized Symmetry point, cGS , and its associated
accuracy measures p(cGS) and q(cGS) using two approaches: the first one based on the
Generalized Pivotal Quantity (GPQ) and the second one on Empirical Likelihood (EL).
These two methods have been recently applied for constructing confidence intervals for
the Youden index and its corresponding optimal threshold. For instance, in Lai et al.
(2012), the GPQ method has been considered under the normality assumption, and in
Molanes-López and Letón (2011), the nonparametric EL method has been used instead.
Finally, we check the performance of the two methods through an extensive simulation
study, and we analyze three real biomedical examples to illustrate the methodology pre-
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viously discussed.

4.1 The Symmetry point

First of all, it is interesting to mention that the Symmetry point can be interpreted from a
Bayesian decision theory perspective. Specifically, we will prove below that it coincides
with the solution given by the minimax rule (Webb, 2002) that aims to minimize the max-
imum of the misclassification error probability when the classification or decision regions
are specified in terms of a single cut-off point as it is usual in classical ROC analysis.

Proposition 4.1. The Symmetry point satisfies the following minimax condition

cS = argmin
c
{max

π
{e(π, c)}}, (4.1)

where e(π, c) denotes the misclassification error probability given by

e(π, c) = (1− π)(1− F0(c)) + πF1(c) = (1− p(c)) + π · ((1− q(c))− (1− p(c))),

π denotes the disease prevalence and Fi is the cumulative distribution function (cdf) of
the marker in the i-th population, for i = 0, 1.

Proof. On one hand, the Bayes decision rule for the minimum error (Webb, 2002) mini-
mizes the misclassification error probability (also called the Bayes minimum error) given
by:

Pr(error) = (1− π)

∫
Ω1

f0(y)dy + π

∫
Ω0

f1(y)dy,

where Ω0 = {y : f0(y)(1 − π) > f1(y)π} and Ω1 = {y : f0(y)(1 − π) ≤ f1(y)π} represent
the classification regions based on which each individuals is assigned either to group 0
or group 1, respectively, and fi denotes the density function of the marker in the i-th
population, for i = 0, 1. This rule can lead to disjoint regions. However, in classical ROC
analysis, the decision regions are given by Ω0 = {y : y < c} and Ω1 = {y : y ≥ c},
that is, defined in terms of a single cut-off point. So, introducing this restriction on the
classification regions, Pr(error) can be rewritten as follows:

Pr(error) = (1− π)(1− F0(c)) + πF1(c)

= (1− π)(1− p(c)) + π(1− q(c))
= (1− p(c)) + π · ((1− q(c))− (1− p(c))). (4.2)

From here on, to emphasize that Pr(error) depends on both parameters π and c, we will
use the notation e(π, c) = Pr(error).

On the other hand, the minimax rule that aims to minimize the maximum of the mis-
classification error probability given in (4.2) solves the following optimization problem:

min
c
{max

π
{e(π, c)}} = min

c
{max{1− p(c), 1− q(c)}} (4.3)

where we have considered the fact that for a fixed c, the misclassification error probabil-
ity, e(π, c), is linear in the prevalence π, and therefore its maximum value is attained at
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π = 0 or π = 1, depending on the slope sign. Consequently, the minimax solution of (4.3)
is obtained by solving the following equation:

1− p(c) = 1− q(c)⇔ p(c) = q(c)

which coincides with the Symmetry point, cS . �

It is important to emphasize here that when c is not fixed, the dependence of e(π, c)
in the prevalence π is not necessarily monotone because c also depends on π, and it is
actually a more complex relationship (Webb, 2002). In fact, the Symmetry point yields
the minimum error solution with respect to the least favourable prior distribution or, in
other words, it maximizes the minimum error curve.
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Figure 4.2: Binormal model a) with AUC = 0.90. Top left panel: the two population
densities and the location of cS = 6.7816. Top right panel: the corresponding ROC curve
with the operating point associated to cS , (1 − p(cS), q(cS)) = (0.1743, 0.8257). Bottom
left panel: the minimum error versus the prevalence π and the location of its maximum
(the least favourable prior distribution πS = 0.6246) for which the minimax error is
e(πS , cS) = 0.1743. Bottom right panel: the minimum error threshold versus the preva-
lence and the location of (πS , cS).
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In order to illustrate this fact, we have considered the same binormal example used
previously for Figure 4.1. Figure 4.2 clearly illustrates that by plotting the minimum er-
ror probability as a function of the prevalence π, the maximum of this error provides
the minimax solution. In the top left panel, the two population densities are shown and
also a vertical line indicating the location of the Symmetry point or minimax cutpoint
in the marker scale. In the top right panel, the corresponding ROC curve is shown, and
also the operating point associated to the minimax cutpoint (that is, the operating point
(1 − p(c), q(c)) where p(c) = q(c)). In the bottom left panel, the minimum error proba-
bility versus the prevalence is plotted and also a vertical line highlighting the location
of its maximum (which provides the least favourable prior distribution π). Finally, in
the bottom right panel, we show the minimum error threshold curve in terms of π, a
horizontal line indicating the minimax cutpoint and a vertical line indicating the corre-
sponding least favourable prior distribution. For this binormal example, we obtain in
particular that the least favourable prior distribution is π = 0.6246, the Symmetry point
or minimax cutpoint is cS = 6.7816, the maximum of the minimum error curve or min-
imax error is e(π, cS) = 0.1743, and the associated sensitivity and specificity indexes are
p(cS) = q(cS) = 0.8257.

4.2 The Generalized Symmetry point

When selecting the optimal threshold, an important issue in order to assess the clinical
effectiveness of a marker is to take into account the costs associated with the decisions
taken (see, for instance, Remaley et al. (1999); Rutter and Miglioretti (2003)). For exam-
ple, in a medical diagnosis problem in which a patient has back pain, it is far worse to
classify a patient with severe abnormality as healthy than the other way around. In this
case, when it is more important not to miss a diagnosis than misclassifying a healthy
individual, a diagnostic test with high sensitivity is preferred over one with high speci-
ficity. Consequently, the cost associated to a false negative should be higher than the cost
associated to a false positive. As we already mentioned in previous chapter, it may be
very difficult to assign costs in practice. Specially, when the costs are a combination of
several different factors measured in different units, such as money, time, and quality of
life. In these situations, it may be crucial the subjective opinion of an expert.

Despite this practical difficulty, an interesting generalization of the Symmetry point
(4.1) that incorporates the costs associated to false positives (cF+), false negatives (cF−),
true positives (cT+) and true negatives (cT−) could be considered. In the following we
prove that such a generalization is given by the minimax rule (Webb, 2002) that aims to
minimize the maximum overall expected cost, loss or risk, when the classification or de-
cision regions are specified in terms of a single cut-off point as it is usual in classical ROC
analysis.

Proposition 4.2. The threshold value that solves the following minimax condition

min
c
{max

π
{risk(π, c)}}, (4.4)
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where risk(π, c) denotes the overall expected cost given by

risk(π, c) = cT− + (cF+ − cT−)(1− p(c)) (4.5)
+π · ((cT+ − cT−) + (cT− − cF+)(1− p(c)) + (cF− − cT+)(1− q(c))),

yields a cost-based generalization of the Symmetry point, cGS , that takes into account the
misclassification costs.

Proof. First, we give below the specific details to obtain the formula of the overall ex-
pected cost given in (4.5). On one hand, the conditional cost, loss or risk of assigning an
individual y to group 0 is defined as:

l0(y) = cT− Pr(H|y) + cF− Pr(D|y),

and consequently, the average cost over region Ω0 is:

r0 =

∫
Ω0

l0(y)f(y)dy

Using Bayes’s theorem, it is straightforward to prove that

r0 =

∫
Ω0

(cT−f0(y)(1− π) + cF−f1(y)π)dy

On the other hand, the conditional cost of assigning an individual y to group 1 is defined
as:

l1(y) = cT+ Pr(D|y) + cF+ Pr(H|y),

and consequently, the average cost over region Ω1 is:

r1 =

∫
Ω1

l1(y)f(y)dy

Analogously, using Bayes’s theorem, it is straightforward to prove that

r1 =

∫
Ω1

(cT+f1(y)π + cF+f0(y)(1− π))dy

Therefore, the overall expected cost is given by:

risk(π, c) = r0 + r1

=

∫
Ω0

(cT−f0(y)(1− π) + cF−f1(y)π)dy +

∫
Ω1

(cT+f1(y)π + cF+f0(y)(1− π))dy

The Bayes decision rule for the minimum risk (Webb, 2002) minimizes this overall ex-
pected cost.
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Under the restriction that Ω0 = {y : y < c} and Ω1 = {y : y ≥ c}, the overall expected
cost is given by:

risk(π, c) = cT−p(c)(1− π) + cF−(1− q(c))π
+cT+q(c)π + cF+(1− p(c))(1− π)

= cT−(1− 1 + p(c))(1− π) + cF−(1− q(c))π
+cT+(1− 1 + q(c))π + cF+(1− p(c))(1− π)

= cT− − cT−π − cT−(1− p(c)) + cT−(1− p(c))π + cF−(1− q(c))π
+cT+π − cT+(1− q(c))π + cF+(1− p(c))− cF+(1− p(c))π

= cT− + (cF+ − cT−)(1− p(c))
+π · (cT+ − cT− + (cT− − cF+)(1− p(c)) + (cF− − cT+)(1− q(c)))

Therefore, the minimax solution of (4.4) is obtained by solving the following equation:

risk(0, c) = risk(1, c)

m
cT− + (cF+ − cT−)(1− p(c)) = cT+ + (cF− − cT+)(1− q(c))

From here on, we will refer to this risk-based minimax solution as the Generalized Sym-
metry point and, without loss of generality, we will assume that cT+ = cT− = 0, that is,
cGS will be defined as the point that satisfies the following equation (López-Ratón et al.,
2015a)

ρ(1− p(cGS)) = (1− q(cGS)), (4.6)

where ρ =
cF+

cF−
is the relative cost or loss of a false-positive classification as compared

with a false-negative classification. �

Similarly to the Symmetry point, now cGS in (4.6) is graphically obtained by inter-
secting the ROC curve and the line y = 1 − ρx. As ρ decreases, that is, as cF+ is smaller
than cF−, the operating point on the ROC curve associated to the Generalized Symmetry
point cGS moves from the bottom left side to the top right side, increasing the sensitivity
at the cost of decreasing the specificity (equivalently, decreasing the false negative rate
at the cost of increasing the false positive rate). When ρ = 1, the Generalized Symmetry
point given in (4.6) yields the traditional Symmetry point, a particular case where the
costs are not taken into account and consequently they are assumed to be equal, which
may be far from reality in clinical practice.

In Figures 4.3 and 4.4, we illustrate the fact that the Generalized Symmetry point
cGS maximizes the Bayes minimum risk curve when Ω0 = {y : y < c}, and Ω1 = {y :
y ≥ c}, considering the same binormal example previously used for illustrating that
the Symmetry point maximizes the Bayes minimum error curve (that is, the binormal
model a) with AUC = 0.90 which will be used later on in the simulation study, see Table
4.1). Additionally, we have considered two different values of ρ, when the cost of a FP
decision is four times higher than the cost of a FN (ρ=4) and the opposite, when the cost
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associated to a FN misclassification is four times than the cost associated to a FP (that is,
ρ=0.25). By graphing the Bayes minimum risk (that is, the overall expected cost risk(π, c)
corresponding to the threshold value c given by the Bayes rule for the minimum risk) as
a function of the prevalence π, the maximum of this risk provides the minimax solution
(see Figures 4.3 and 4.4).
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Figure 4.3: Binormal model a) with AUC = 0.90. Top left panel: the two population den-
sities and the location of cGS = 6.9471 for ρ = 4. Top right panel: the corresponding ROC
curve with the operating point associated to cGS , (1 − p(cGS), q(cGS)) = (0.0681, 0.7277)
for ρ = 4. Bottom left panel: the minimum risk versus the prevalence π and the loca-
tion of its maximum (the least favourable prior distribution πGS = 0.7251 for ρ = 4) for
which the minimax risk is risk(πGS , cGS) = 0.2723. Bottom right panel: the minimum risk
threshold versus the prevalence and the location of (πGS , cGS).

In the top left panel of the Figures, the two healthy and diseased population densities are
shown and also two vertical lines indicating the location of the Generalized Symmetry
point or minimax cutpoint in the marker scale for the two values of ρ considered, respec-
tively. We can see when increasing ρ the Generalized Symmetry point moves to the left.
In the top right panel, the corresponding ROC curve is shown, and also the operating
point (1 − p(cGS), q(cGS)) corresponding to the minimax cutpoint when ρ = 4 and ρ =
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0.25, respectively. In the bottom left panel, the Bayes minimum risk versus the preva-
lence π is plotted for both values of ρ and also for each plot, a vertical line highlighting
the location of its maximum (which provides the least favourable prior distribution π).
Finally, in the bottom right panel, we show the Bayes rule for the minimum risk for ρ=
4 and for ρ=0.25, and also for each graph, a horizontal line indicating the minimax cut-
point and a vertical line indicating the corresponding least favourable prior distribution.
In this case, for ρ= 4 the least favourable prior distribution is π = 0.7251, the maximum
of the Bayes minimum risk or minimax risk is risk(π, cGS) = 0.2723, and the General-
ized Symmetry point or minimax cutpoint cGS = 6.9471, with their associated accuracy
measures p(cGS) = 0.9319, and q(cGS) = 0.7277. If we consider, instead, a value ρ= 0.25
we obtain a lower minimax cutpoint cGS = 6.5933, with a lower prevalence π = 0.4847,
and a higher minimax risk risk(π, cGS) = 0.3780.
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Figure 4.4: Binormal model a) with AUC = 0.90. Top left panel: the two population densi-
ties and the location of cGS = 6.5933 for ρ = 0.25. Top right panel: the corresponding ROC
curve with the operating point associated to cGS , (1 − p(cGS), q(cGS)) = (0.3780, 0.9055)
for ρ = 0.25. Bottom left panel: the minimum risk versus the prevalence π and the location
of its maximum (the least favourable prior distribution πGS = 0.4847 for ρ = 0.25) for
which the minimax risk is risk(πGS , cGS) = 0.3780 for ρ = 0.25. Bottom right panel: the
minimum risk threshold versus the prevalence and the location of (πGS , cGS).
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In Figure 4.5 we have plotted the ROC curve in a 3-dimensional space that includes an
extra axis with the relative cost values, and we have plotted the operating points associ-
ated to the North-West corner, the Youden index, the Concordance probability, the Sym-
metry point, the Generalized Youden index and the Generalized Symmetry point. This
graph is useful to illustrate two aspects when selecting the optimal cutoff point: how the
Generalized Symmetry point is affected by varying the relative cost value and how the
Generalized Youden index is affected by varying both the relative cost and prevalence.
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Figure 4.5: ROC curve for the binormal model a) with AUC=0.90, represented in a 3-
dimensional space that includes the relative cost axis, and operating points associated
to the North-West corner (blue solid line), the Youden index (aquamarine solid line), the
Concordance probability (orange solid line), the Symmetry point (red solid line), the Gen-
eralized Youden index (aquamarine dashed, dotted-dashed and dotted lines for several values
of π, π = 0.5, 0.0909, 9.9× 10−3, 9.9× 10−4) and the Generalized Symmetry point (dotted
red line).

4.3 Two inference methods for the Generalized Symmetry point

As we said in the introduction of this chapter, for estimating the Generalized Symme-
try point and their associated specificity and sensitivity measures, we have considered
two approaches: one based on the Generalized Pivotal Quantity (GPQ) (Weerahandi,
1993, 1995) and the other based on Empirical Likelihood (EL) (Thomas and Grunke-
meier, 1975). These two methods have been recently applied for computing confidence
intervals for the Youden index and its corresponding optimal value, see, for instance,
Lai et al. (2012), where the GPQ method has been considered under the normality as-
sumption, and Molanes-López and Letón (2011), where the nonparametric EL method
has been used instead.
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In this section, we describe how to obtain percentile confidence intervals for cGS and
its accuracy measures p(cGS) and q(cGS), using both the GPQ and EL methods. Before
we explain the two methods in detail, to make inference on these parameters of inter-
est: the Generalized Symmetry point cGS and its specificity p(cGS) and sensitivity q(cGS)
accuracy measures, we consider two independent samples of i.i.d. (independently and
identically distributed) observations, {Y0k0}

n0
k0=1 and {Y1k1}

n1
k1=1, taken from the healthy

and diseased populations, Y0 and Y1, respectively, with sample sizes n0 and n1. Con-
sequently, this means that for each group all the individuals follow the same parametric
model but it does not mean that the same parametric model has to be considered for both
groups.

4.3.1 Generalized pivotal quantity

The methodology of generalized confidence intervals was first introduced by Weera-
handi (1993, 1995) and it is a parametric method based on the normality assumption
which was proved to have correct asymptotic frequentist coverage under mild condi-
tions (Hanning et al., 2006). Recently, it has been applied in the context of diagnostic
studies to the Youden index by Lai et al. (2012) and Zhou and Qin (2013). In this case,
we have applied this same methodology to compute generalized confidence intervals for
the Generalized Symmetry point cGS and the corresponding pair of its sensitivity and
specificity accuracy measures (q(cGS) and p(cGS)). But unlike Lai et al. (2012) we also
consider that a monotone transformation of Box-Cox type follows a normal distribution.
Assuming that the diagnostic test in healthy and diseased populations Yi follows a nor-
mal distribution with mean µi and standard deviation σi, for i = 0, 1, it follows that the
ROC curve has an explicit expression:

ROC(x) = Φ(a+ bΦ−1(x)), (4.7)

where a = µ1−µ0
σ1

, b = σ0
σ1

, x = 1− p(cGS) and Φ denotes the standard normal cdf.

So, under the normality assumption, using if necessary a monotone transformation
of Box-Cox type to achieve normality, the Generalized Symmetry point cGS can be esti-
mated from the following equation

Φ(a+ bΦ−1(x)) = 1− ρx ⇔ Φ

(
Φ−1(1− ρx)− a

b

)
− x = 0, (4.8)

where now a and b are replaced by their sample versions, that is, ã = m1−m0
s1

and b̃ = s0
s1

withmi and si denoting the sample mean and sample standard deviation of each popula-
tion, for i = 0, 1. Once the root of (4.8) is obtained, x̃, then the parametric point estimates
of cGS , p(cGS) and q(cGS) are given by c̃GS = m0 + s0Φ−1(1 − x̃), p̃(cGS) = 1 − x̃ and
q̃(cGS) = 1− ρx̃, respectively.

For computing the GPQ-based confidence intervals for cGS , p(cGS), and q(cGS), we
follow the same reasoning as in Lai et al. (2012), based on considering their correspond-
ing generalized pivotal quantities. For instance, if RcGS denotes the generalized pivotal
quantity for estimating cGS , and RcGS ,α denotes the αth quantile of the distribution of
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RcGS , then the 100(1 − α)% CI for cGS based on RcGS is given by the percentile method,
that is, by (RcGS ,α/2, RcGS ,1−α/2). Therefore, we propose the following four-step Monte
Carlo algorithm to approximate by simulation the distribution of the generalized pivotal
quantities of interest, RcGS , Rp(cGS) and Rq(cGS). More specifically, we repeat I times the
Steps 1–3 below, for k = 1, . . . , I, in order to obtain I repetitions of each of the generalized
pivotal quantities involved.

• Step 1. Generate V (k)
i ∼ χ2

ni−1 and t(k)
i ∼ tni−1, for i = 0, 1.

• Step 2. Compute the generalized pivotal values of a and b:

R(k)
a =

R
(k)
µ1 −R

(k)
µ0

R
(k)
σ1

, R
(k)
b =

R
(k)
σ0

R
(k)
σ1

,

where R(k)
µi and R

(k)
σi , for i = 0, 1, denote, respectively, the generalized pivotal val-

ues of µi and σi, for i = 0, 1, that is,

R(k)
µi = mi − t(k)

i

si√
ni
, R(k)

σi =

√
(ni − 1)s2

i

V
(k)
i

.

• Step 3. Obtain the root of equation (4.8) using R
(k)
a and R

(k)
b instead of a and b,

that is, obtain the generalized pivotal quantity of x. Let R(k)
x be this root and set the

generalized pivotal quantities of interest for estimating cGS , p(cGS) and q(cGS) by,
respectively,

R
(k)
c̃GS

= R(k)
µ0 +R(k)

σ0 Φ−1(1−R(k)
x ), p̃(cGS) = 1−R(k)

x , q̃(cGS) = 1− ρR(k)
x .

• Step 4. Finally, with the I repetitions of RcGS , Rp(cGS) and Rq(cGS), we obtain the
corresponding GPQ-based confidence intervals for cGS , p(cGS), and q(cGS) by the
percentile method.

In the following we prove that RcGS = Rµ0 +Rσ0Φ−1(1−Rx), Rp(cGS) = 1−Rx, and
Rq(cGS) = 1 − ρRx are the generalized pivotal quantities for estimating cGS , p(cGS), or
q(cGS), respectively, according to the definition given by Weerahandi (1993).

Proposition 4.3. According to the definition given by Weerahandi (1993), RcGS , Rp(cGS),
and Rq(cGS) are the generalized pivotal quantities for estimating cGS , p(cGS), and q(cGS),
respectively.

Proof. From Lai et al. (2012), we know that the generalized pivotal quantity for estimating
µi, with i = 0, 1, is given by

Rµi = yi − ti
si√
ni
,
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where

ti =
Zi√

Vi/(ni − 1)
∼ tni−1,

Vi =
(ni − 1)S2

i

σ2
i

∼ χ2
ni−1,

Zi =
Y i − µi
σi/
√
ni
,

and the generalized pivotal quantity for estimating σi, with i = 0, 1, is given by

Rσi =

√
(ni − 1)s2

i

Vi
.

Consequently, since RcGS , Rp(cGS), and Rq(cGS) have been defined from the expressions
of cGS , p(cGS), and q(cGS) by substituting the parameters µi and σi by their generalized
pivotal quantities previously detailed, it follows that RcGS , Rp(cGS), and Rq(cGS)satisfy
the two necessary conditions for them to be generalized pivotal quantities for estimat-
ing cGS , p(cGS), and q(cGS), respectively, that is, the distribution of each one is free of
any unknown parameter and it coincides with the parameter of interest, cGS , p(cGS), and
q(cGS), respectively, when evaluated at Yi = yi and Si = si, with i = 0, 1. �

For ρ = 1, that is, for the Symmetry point cS , there is an explicit solution to the equa-
tion (4.8). We give the proof in the following proposition.

Proposition 4.4. Under the binormal model with ROC curve given by (4.7), the root of
the equation (4.8) when ρ = 1, is given by

x = 1− Φ

(
a

1 + b

)
= Φ

(
− a

1 + b

)
. (4.9)

and the Symmetry point cS is given by

cS = µ0 + σ0
a

1 + b
=
σ1µ0 + σ0µ1

σ0 + σ1
. (4.10)

Proof. First, taking into account that the standard normal density is symmetric about
zero, it follows that Φ−1(x) = −Φ−1(1− x).

On one hand, from (4.8) and the fact that Φ−1(x) = −Φ−1(1− x), it follows that

a+ bΦ−1(x) = Φ−1(1− x),

a− bΦ−1(1− x) = −Φ−1(x),

−a+ bΦ−1(1− x) = Φ−1(x),

x = Φ(−a+ bΦ−1(1− x)).
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On the other hand, from (4.8) it follows that

a+ bΦ−1(x) = Φ−1(1− x),

Φ−1(x) =
Φ−1(1− x)− a

b
,

x = Φ

(
Φ−1(1− x)− a

b

)
.

Consequently,

Φ

(
Φ−1(1− x)− a

b

)
= x = Φ(−a+ bΦ−1(1− x))

and then, it is straightforward to obtain (4.9) because it follows that

Φ−1(1− x)− a
b

= −a+ bΦ−1(1− x)

Φ−1(1− x)(1− b2) = a(1− b)

−Φ−1(x) = Φ−1(1− x) =
a

1 + b

x = Φ

(
− a

1 + b

)
= 1− Φ

(
a

1 + b

)
.

Now, taking into account that

Φ

(
a

1 + b

)
= 1− x = p(cS) = F0(cS) = Pr

(
Y0 − µ0

σ0
≤ cS − µ0

σ0

)
= Φ

(
cS − µ0

σ0

)
,

it is easy to prove (4.10) because it follows that

a

1 + b
=
cS − µ0

σ0
⇒ cS = µ0 + σ0

a

1 + b
= µ0 + σ0

(µ1 − µ0)/σ1

1 + σ0/σ1
=
σ1µ0 + σ0µ1

σ0 + σ1
.

�

Similarly to the Generalized Symmetry point, replacing a and b by their sample ver-

sions, ã =
m1 −m0

s1
and b̃ =

s0

s1
where mi and si denote the sample mean and sample

standard deviation of each population, for i = 0, 1, we propose to parametrically esti-

mate cS and p(cS) = q(cS) by c̃S =
s1m0 + s0m1

s0 + s1
and p̃(cS) = q̃(cS) = 1− x̃, respectively,

where x̃ = Φ(− ã

1 + b̃
).

In this case, for computing the generalized confidence intervals for cS and p(cS) =
q(cS), we use almost the same four-step Monte Carlo algorithm previously introduced
for the Generalized Symmetry point, to approximate by simulation the distribution of
the generalized pivotal quantities of interest, RcS and Rp(cS) = Rq(cS). We simply replace
ρ, and cGS , by ρ = 1, and cS , respectively and reformulate Step 3 as follows:
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• Step 3. Obtain the root of equation (4.8) using R(k)
a and R

(k)
b instead of a and b in

equation (4.9), that is, obtain the generalized pivotal quantity of x,

R(k)
x = Φ

(
− R

(k)
a

1 +R
(k)
b

)
,

and set the generalized pivotal quantities of interest for estimating cS and p(cS) =
q(cS) by, respectively,

R(k)
cS

=
R

(k)
σ1 R

(k)
µ0 +R

(k)
σ0 R

(k)
µ1

R
(k)
σ0 +R

(k)
σ1

, R
(k)
p(cS) = R

(k)
q(cS) = 1−R(k)

x .

4.3.2 Empirical likelihood

The origins of the Empirical likelihood (EL) methodology go back to 1975 with the con-
struction of EL-based confidence intervals for the Kaplan-Meier estimator (Thomas and
Grunkemeier, 1975). Nowadays, this methodology is an active area of research in several
fields due to the good properties presented by the EL-based confidence intervals and
confidence regions, see for example, Molanes-López et al. (2009), among others. Tak-
ing into account the fact that the optimal threshold defined by the Youden index can
be seen as two specific quantiles on the healthy and diseased populations, a bootstrap-
based EL approach was recently proposed to make inference on the Youden index and
its associated optimal threshold (Molanes-López and Letón, 2011). Specifically, the EL
methodology for estimating a population quantile (Zhou and Jing, 2003) was extended
to the two-sample case. In this subsection, we apply these same ideas to the General-
ized Symmetry point with the purpose of obtaining confidence intervals for cGS and its
accuracy measures p(cGS) and q(cGS). This approach has the advantages of easy imple-
mentation and not requiring any particular parametric assumption.

Let (x, s) be an arbitrary operating point on the ROC curve and let c be the corre-
sponding threshold value on the marker scale, that is, satisfying that x = 1 − p(c) =
1− F0(c) and s = q(c) = 1− F1(c). If we consider that x is known in advance and that s
plays the role of a nuisance parameter, it follows from Molanes-López and Letón (2011)
that the adjusted empirical log-likelihood ratio function to estimate c is given by

`(c, s) = −2 log(R(c, s)) (4.11)

= 2n0F̂0,g0(c) log

(
F̂0,g0(c)

1− x

)
+2n0(1− F̂0,g0(c)) log

(
1− F̂0,g0(c)

x

)

+2n1F̂1,g1(c) log

(
F̂1,g1(c)

1− s

)
+2n1(1− F̂1,g1(c)) log

(
1− F̂1,g1(c)

s

)
,

where R(c, s) refers to the EL ratio function for the parameter of interest c, and F̂i,gi is a
kernel-type estimate of the cdf Fi, for i = 0, 1, that is,

F̂i,gi(y) =
1

ni

ni∑
ki=1

K
(
y − Yiki
gi

)
, (4.12)
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where gi refers to the smoothing parameter, for i = 0, 1, K(y) =
∫ y
−∞K(z)dz and K de-

notes a kernel function.

In the following proposition we will give a more detailed derivation of (4.11).

Proposition 4.5. The adjusted empirical log-likelihood function to estimate c is given by
(4.11).

Proof. Under the setting considered in Subsection 4.3.2, the parameter of interest, c ∈ <,
can be seen as two specific quantiles, the (1−x)-th quantile of the healthy population and
the (1 − s)-th quantile of the diseased population. Therefore, it follows from Molanes-
López and Letón (2011) that the EL ratio function for estimating c can be formulated
by

R(c, s) = sup
p0k0 ,p1k1

∏n0
k0=1 p0k0

∏n1
k1=1 p1k1

n−n0
0 n−n1

1

,

subject to the following restrictions,

p0k0 ≥ 0, k0 = 1, . . . , n0, p1k1 ≥ 0, k1 = 1, . . . , n1,
n0∑
k0=1

p0k0 = 1,

n1∑
k1=1

p1k1 = 1,

n0∑
k0=1

p0k0δ0 (Y0k0 − c) = 0,

n1∑
k1=1

p1k1δ1 (Y1k1 − c) = 0,

where

δ0(z) =

{
−1, if z ≤ 0
1−x
x , otherwise,

and

δ1(z) =

{
−1, if z ≤ 0
1−s
s , otherwise.

By the Lagrange multiplier method, it is easy to prove that the maximization ofR(c, s)
occurs with

p0k0 =
1

n0

1

1 + λ0(c, s)δ0(Y0k0 − c)
, for k0 = 1, . . . , n0,

p1k1 =
1

n1

1

1 + λ1(c, s)δ1(Y1k1 − c)
, for k1 = 1, . . . , n1,

where λ0(c, s) and λ1(c, s) satisfy the equations below

1

n0

n0∑
k0=1

δ0(Y0k0 − c)
1 + λ0(c, s)δ0(Y0k0 − c)

= 0, (4.13)

1

n1

n1∑
k1=1

δ1(Y1k1 − c)
1 + λ1(c, s)δ1(Y1k1 − c)

= 0. (4.14)
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When c ∈ [Y0[1], Y0[n0]] and c ∈ [Y1[1], Y1[n1]] simultaneously, with Yi[k] denoting the kth
ordered statistic of {Yi1, . . . , Yini}, for i = 0, 1, then the solutions to the equations (4.13)
and (4.14), λ0(c, s) and λ1(c, s), are given by, respectively,

λ0(c, s) =
1− x− F0n0(c)

1− x
, λ1(c, s) =

1− s− F1n1(c)

1− s
,

where Fini stands for the empirical cdf of Yi, with i = 0, 1.

Consequently, the adjusted log-likelihood ratio can be rewritten as given in (4.11):

`(c, s) = −2 log(R(c, s))

= 2n0F̂0,g0(c) log

(
F̂0,g0(c)

1− x

)
+2n0(1− F̂0,g0(c)) log

(
1− F̂0,g0(c)

x

)

+2n1F̂1,g1(c) log

(
F̂1,g1(c)

1− s

)
+2n1(1− F̂1,g1(c)) log

(
1− F̂1,g1(c)

s

)
,

where we have replaced F0n0 and F1n1 appearing in λ0(c, s) and λ1(c, s), respectively,
by the kernel-type estimates given in (4.12), following the recommendation of Zhou and
Jing (2003). �

Since the Generalized Symmetry point defines an operating point on the ROC curve
satisfying x = 1 − p(cGS) and s = 1 − ρ(1 − p(cGS)) = 1 − ρx, the adjusted empirical
log-likelihood ratio function given above in (4.11), `(c, s), is reduced to:

`(c) = 2n0F̂0,g0(c) log

(
F̂0,g0(c)

1− x

)
+ 2n0(1− F̂0,g0(c)) log

(
1− F̂0,g0(c)

x

)
(4.15)

+2n1F̂1,g1(c) log

(
F̂1,g1(c)

ρx

)
+ 2n1(1− F̂1,g1(c)) log

(
1− F̂1,g1(c)

1− ρx

)
,

where the nuisance parameter s has vanished.

Therefore, assuming that x is known in advance, a point estimate of the correspond-
ing Generalized Symmetry point could be found by minimizing `(c), given in (4.15), over
c, and a confidence interval for it could be obtained based on the usual χ2 limiting dis-
tribution of `(c). However, this is not possible here because x is not known in advance.
So, since x is unknown we propose the procedure detailed below in Steps 1–2 to obtain
nonparametric point estimates of cGS , p(cGS) and q(cGS), and the bootstrap-based strat-
egy specified in Steps 3–4 to construct EL-based CIs. The complete four-step procedure
is as follows:

• Step 1. We first estimate the ROC curve from the original pair of samples by the
kernel type estimator given by

R̂OC(x) = 1− 1

n1

n1∑
k1=1

K

(
1− x− F̂0,g0(Y1k1)

h0

)
,
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where h0 is a smoothing parameter. A point estimate of the FPR x, denoted by
x̂, is obtained by intersecting R̂OC(x) with the line y = 1 − ρx, and consequently,
the corresponding specificity and sensitivity can be estimated by p̂1 = 1 − x̂ and
q̂1 = 1− ρx̂, respectively.

We now interchange the axes of the ROC curve and estimate the corresponding
graph, that is, we reflect the ROC curve about the positive diagonal line, and get
the inverse graph of the ROC curve that we denote byROC−1. This graph is formed
by representing the points (q(c), 1−p(c)), with−∞ < c <∞, which, analogously to
the ROC curve, can be reparameterized in the interval (0, 1) as followsROC−1(s) =
1−F0(F−1

1 (1−s)),where s = q(c) = 1−F1(c) = TPR(c) ∈ (0, 1). Then, we estimate
ROC−1(s) using the following kernel type estimator

R̂OC−1(s) = 1− 1

n0

n0∑
k1=1

K

(
1− s− F̂1,g1(Y0k0)

h1

)
,

where h1 is a smoothing parameter. A point estimate of the TPR s, denoted by
ŝ, is obtained by intersecting R̂OC−1(s) with the line y = 1

ρ(1 − s), and conse-
quently, the corresponding specificity and sensitivity can be alternatively estimated
by p̂2 = 1− 1

ρ(1− ŝ) and q̂2 = ŝ, respectively.

Finally, we propose to nonparametrically estimate the specificity p(cGS) by aver-
aging the two point estimates previously obtained, that is, p̂(cGS) = 1

2(p̂1 + p̂2).
Analogously, the sensitivity is estimated by averaging q̂1 and q̂2, that is, q̂(cGS) =
1
2(q̂1 + q̂2).

• Step 2. With the previous point estimate of p(cGS), we then minimize in c the log-
likelihood ratio `(c) given above in (4.15) and propose the minimizer found, ĉGS ,
as the nonparametric point estimate of cGS .

• Step 3. In order to obtain confidence intervals for cGS , p(cGS), and q(cGS), we re-
sample independently from the original pair of samples a large number of times,
let’s say B, and repeat Steps 1–2 given above for each pair of bootstrapped resam-
ples.

• Step 4. Finally, the bootstrap EL-based confidence intervals for the Generalized
Symmetry point and its corresponding specificity and sensitivity indexes are con-
structed by the percentile method using the B bootstrap estimates of cGS , p(cGS)
and q(cGS) previously obtained in Step 3.

4.4 Simulation study

In this section, we carry out a simulation study in R (R Core Team, 2013) to compare
the performance of the two approaches previously introduced in the former section. In
this simulation study, we focus on the mean squared error (MSE), bias (Bias) and stan-
dardized bias (SBias) of the point estimators previously proposed for cGS , p(cGS) and
q(cGS), and on the coverage probability (cover) and average width or expected length
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(width) of the GPQ-based and EL-based confidence intervals previously proposed for
these parameters of interest. For instance, for the parametric point estimator c̃GS speci-
fied in Subsection 4.3.1, we have approximated by Monte Carlo (using here 2000 trials)
the following performance measures:

MSE(c̃GS) = E
[
(c̃GS − cGS)2

]
= Var[c̃GS ] +Bias2(c̃GS),

Bias(c̃GS) = E [c̃GS ]− cGS ,

SBias(c̃GS) =
Bias(c̃GS)√
Var[c̃GS ]

.

An interesting interpretation of SBias2 is that it gives the increase of MSE over Var due

to Bias2. Besides, the proportion of MSE due to Bias2 is just
Bias2

MSE
=

1

1 + (SBias−2)
.

Regarding the GPQ-based CI for cGS , (RcGS ,α/2, RcGS ,1−α/2), specified in Subsection
4.3.1, we have approximated by Monte Carlo (using 2000 trials) the following perfor-
mance measures:

cover((RcGS ,α/2, RcGS ,1−α/2)) = Pr(cGS ∈ (RcGS ,α/2, RcGS ,1−α/2)),

width((RcGS ,α/2, RcGS ,1−α/2)) = E[RcGS ,1−α/2 −RcGS ,α/2].

In terms of cover, good performance means that this value is as close as possible to its
nominal value. In terms of width, MSE or Bias, the lower their value, the better. How-
ever, for a confidence interval it is more important to have good performance in terms of
cover albeit its width is wider.

In the following subsections, we first describe the scenarios considered in our simu-
lation study and then we discuss the results obtained.

4.4.1 Scenarios

Inspired in Fluss et al. (2005), we specify below and in Table 4.1 the parameters of the six
models considered in our simulation study:

a) Y0 ∼ Normal(µ0 = 6.5, σ2
0 = 0.09) and Y1 ∼ Normal(µ1, σ

2
1 = 0.25).

b) Y −1/3
0 ∼ Normal(µ0 = 3.5, σ2

0 = 0.09) and Y −1/3
1 ∼ Normal(µ1, σ

2
1 = 0.25).

c) ln(Y0) ∼ Normal(µ0 = 2.5, σ2
0 = 0.09) and ln(Y1) ∼ Normal(µ1, σ

2
1 = 0.25).

d) Y0 ∼ Gamma(α0 = 2, β0 = 2) and Y1 ∼ Gamma(α1 = 2, β1).

e) Y0 ∼ 0.50Normal(µ0,1 = 10, σ2
0,1 = 1) + 0.50Normal(µ0,2 = 13, σ2

0,2 = 1) and
Y1 ∼ 0.50Normal(µ1,1, σ

2
1,1 = 1) + 0.50Normal(µ1,2, σ

2
1,2 = 5).

f) Y0 ∼ 0.75Beta(α0,1 = 1, β0,1 = 3) + 0.25Beta(α0,2 = 5, β0,2 = 1.75) and Y1 ∼
0.75Beta(α1,1, β1,1 = 2) + 0.25Beta(α1,2, β1,2 = 4.5).
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Table 4.1: Parameters of the scenarios considered in the simulation study of Section 4.4.

a) µ0 σ2
0 σ2

1 AUC µ1 ρ cGS p(cGS) q(cGS)
6.5 0.09 0.25 0.70 6.81 0.1 6.136 0.11 0.91

0.25 6.343 0.30 0.83
0.5 6.487 0.48 0.74
1 6.615 0.65 0.65
2 6.732 0.78 0.56
4 6.837 0.87 0.48
10 6.962 0.94 0.38

0.80 6.99 0.1 6.278 0.23 0.92
0.25 6.452 0.44 0.86
0.5 6.573 0.60 0.80
1 6.684 0.73 0.73
2 6.786 0.83 0.66
4 6.879 0.90 0.59
10 6.993 0.95 0.50

0.90 7.25 0.1 6.454 0.44 0.94
0.25 6.592 0.62 0.91
0.5 6.689 0.74 0.87
1 6.782 0.83 0.83
2 6.866 0.89 0.78
4 6.947 0.93 0.73
10 7.046 0.97 0.66

b) µ0 σ2
0 σ2

1 AUC µ1 ρ cGS p(cGS) q(cGS)
3.5 0.09 0.25 0.70 3.19 0.1 0.017 0.11 0.91

0.25 0.020 0.30 0.82
0.5 0.023 0.48 0.74
1 0.026 0.65 0.65
2 0.029 0.78 0.56
4 0.032 0.87 0.48
10 0.036 0.94 0.38

0.80 3.01 0.1 0.019 0.23 0.92
0.25 0.022 0.44 0.86
0.5 0.025 0.60 0.80
1 0.027 0.73 0.73
2 0.030 0.83 0.66
4 0.033 0.90 0.59
10 0.037 0.95 0.50

0.90 2.75 0.1 0.022 0.44 0.94
0.25 0.025 0.62 0.91
0.5 0.028 0.74 0.87
1 0.030 0.83 0.83
2 0.032 0.89 0.78
4 0.035 0.93 0.73
10 0.039 0.97 0.66
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Table 4.1: Continued.

c) µ0 σ2
0 σ2

1 AUC µ1 ρ cGS p(cGS) q(cGS)
2.5 0.09 0.25 0.70 2.81 0.1 8.436 0.11 0.91

0.25 10.383 0.30 0.82
0.5 11.997 0.48 0.74
1 13.664 0.65 0.65
2 13.353 0.78 0.56
4 17.055 0.87 0.48

10 19.318 0.94 0.38
0.80 2.99 0.1 9.760 0.23 0.92

0.25 11.617 0.44 0.86
0.5 13.109 0.60 0.80
1 14.645 0.73 0.73
2 16.213 0.83 0.66
4 17.805 0.90 0.59

10 19.945 0.95 0.50
0.90 3.25 0.1 11.633 0.44 0.94

0.25 13.359 0.62 0.91
0.5 14.723 0.74 0.87
1 16.127 0.83 0.83
2 17.567 0.89 0.78
4 19.040 0.93 0.73

10 21.035 0.97 0.66

d) β0 α0 α1 AUC β1 ρ cGS p(cGS) q(cGS)
2 2 2 0.70 3.51 0.1 1.635 0.20 0.92

0.25 2.505 0.36 0.84
0.5 3.364 0.50 0.75
1 4.388 0.64 0.64
2 5.554 0.76 0.53
4 6.832 0.85 0.42

10 8.646 0.93 0.29
0.80 4.97 0.1 2.153 0.29 0.93

0.25 3.149 0.47 0.87
0.5 4.070 0.60 0.80
1 5.117 0.73 0.73
2 6.269 0.82 0.64
4 7.505 0.89 0.55

10 9.236 0.94 0.45
0.90 8.23 0.1 3.072 0.45 0.95

0.25 4.221 0.62 0.91
0.5 5.212 0.73 0.87
1 6.289 0.82 0.82
2 7.437 0.89 0.77
4 8.641 0.93 0.72

10 10.303 0.96 0.64
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Table 4.1: Continued.

e) (µ0,1, µ0,2) (σ2
0,1, σ

2
0,2) (σ2

1,1, σ
2
1,2) AUC (µ1,1, µ1,2) ρ cGS p(cGS) q(cGS)

(10.00,13.00) (1.00,1.00) (1.00,5.00) 0.70 (11.43,15.43) 0.1 10.288 0.31 0.93
0.25 10.834 0.41 0.85
0.5 11.378 0.48 0.74
1 12.123 0.59 0.59
2 12.924 0.73 0.47
4 13.538 0.85 0.41
10 14.137 0.94 0.36

0.80 (12.39,16.39) 0.1 11.114 0.45 0.94
0.25 11.633 0.52 0.88
0.5 12.105 0.58 0.79
1 12.639 0.68 0.68
2 13.178 0.78 0.57
4 13.666 0.87 0.49
10 14.210 0.94 0.43

0.90 (13.51,17.51) 0.1 12.079 0.58 0.96
0.25 12.515 0.65 0.91
0.5 12.864 0.72 0.86
1 13.220 0.79 0.79
2 13.575 0.86 0.72
4 13.921 0.91 0.64
10 14.353 0.96 0.56

f) α0 β0 β1 AUC α1 ρ cGS p(cGS) q(cGS)
(1.00,5.00) (3.00,1.75) (2.00,4.50) 0.70 (3.70,2.00) 0.1 0.175 0.33 0.93

0.25 0.268 0.46 0.86
0.5 0.361 0.56 0.78
1 0.472 0.66 0.66
2 0.595 0.75 0.49
4 0.713 0.83 0.31
10 0.832 0.91 0.13

0.80 (7.25,3.00) 0.1 0.258 0.44 0.94
0.25 0.360 0.56 0.89
0.5 0.462 0.65 0.82
1 0.577 0.73 0.73
2 0.681 0.81 0.61
4 0.766 0.87 0.46
10 0.851 0.93 0.27

0.90 (16.50,7.00) 0.1 0.455 0.64 0.96
0.25 0.535 0.70 0.93
0.5 0.609 0.76 0.88
1 0.692 0.81 0.81
2 0.768 0.87 0.74
4 0.827 0.91 0.64
10 0.882 0.95 0.47

For those parameters whose values have been left unspecified, see Table 4.1, where
we collect the three possible values considered for them (with the corresponding values
of cGS , p(cGS) and q(cGS) within parentheses) in order to get three different values of
AUC = 0.70, 0.80, 0.90, and consequently three different discriminating abilities.
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The first three scenarios a)–c) correspond to the binormal model, that is, either Y0 and
Y1 or a Box-Cox transformation of them follow normal distributions (see, for example,
Fluss et al. (2005) and Molodianovitch et al. (2006)). Under these binormal scenarios, it
should be noted that there are closed form expressions for the Symmetry point (that is,
only in the case ρ = 1), which could be expressed as a function of the corresponding
means and standard deviations:

a) cS =
σ1µ0 + σ0µ1

σ0 + σ1
, for model a),

b) cS =

(
σ1µ0 + σ0µ1

σ0 + σ1

)−3

, for model b),

c) cS = e

σ1µ0 + σ0µ1

σ0 + σ1 , for model c).

In the following we will present the mathematical relationship between AUC and
cGS for the binormal model.

Proposition 4.6. Under the binormal model it follows that

AUC = Φρ1
2 (

a√
1 + b2

,Φ−1(1− p(cGS)))

+Φρ2
2 (

a√
1 + b2

,Φ−1(1− p(cGS)))

+p(cGS)(1− ρ(1− p(cGS))),

where Φ−1 denotes the quantile function of the standard normal random variable, Φρi
2 ,

for i = 1, 2, refers to the cdf of a bivariate normal random vector with marginal means
equal to zero, marginal variances equal to one and correlation coefficient ρi given by

ρ1 = − b√
1 + b2

, ρ2 = − 1√
1 + b2

.

Proof. From Hillis and Metz (2012), we know that the partial AUC corresponding to the
area under the binormal ROC curve over the interval of FPF ’s given by (0, 1 − p(cGS))
is equal to

pAUC(0, 1− p(cGS)) = Φρ1
2 (

a√
1 + b2

,Φ−1(1− p(cGS))),

and that the partial AUC corresponding to the area to the right of the binormal ROC
curve in the interval of TPF ’s given by (q(cGS), 1) is equal to

pAUC(q(cGS), 1) = Φρ2
2 (

a√
1 + b2

,Φ−1(1− q(cGS))).

Besides, taking into account that

AUC = pAUC(0, 1− p(cGS)) + pAUC(q(cGS), 1) + p(cGS)q(cGS),
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with ρ(1− p(cGS)) = 1− q(cGS), we can conclude that

AUC = Φρ1
2 (

a√
1 + b2

,Φ−1(1− p(cGS)))

+Φρ2
2 (

a√
1 + b2

,Φ−1(1− p(cGS)))

+p(cGS)(1− ρ(1− p(cGS)))

under the binormal model. �

For the Symmetry point cS (a particular case of cGS with ρ=1), the mathematical rela-
tionship between AUC and cS for the binormal model is reduced to:

AUC = Φρ1
2 (

a√
1 + b2

,Φ−1(1− p(cS))) + Φρ2
2 (

a√
1 + b2

,Φ−1(1− p(cS))) + p(cS)2.

The last three scenarios d)–f) are outside the Box-Cox transformation family and have
been included to study the robustness of the GPQ approach. Note that when we con-
sider/apply the GPQ method, we will always transform the data by a transformation of
Box-Cox type. Under these scenarios Y0 and Y1 are either gamma distributed or follow
mixtures of two normal random variables or mixtures of two beta random variables. In
Figure 4.6, the two gamma densities are plotted in the left panel and the associated ROC
curve in the right panel. Since for these scenarios there are no closed form expressions
for the Generalized Symmetry point, we have used the R function uniroot from the Stats
package to numerically approximate the value of this parameter. The same for the three
binormal scenarios a)–c) for the Generalized Symmetry point when ρ 6= 1. It is worth
mentioning that the scenarios e)–f) give rise to very different parametric shapes between
groups as can be seen in Figure 4.7.
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Figure 4.6: Left panel: gamma density with parameters α0 = 2 and β0 = 2, and gamma
density with parameters α1 = 2 and β1 = 8.23. Right panel: associated ROC curve (thick
black solid line) and lines given by equations y = 1 − ρt with ρ = 4, 2, 1, 0.5, 0.25 (dotted,
dashed-dotted, dashed, solid and dotted black lines, respectively). The corresponding Gener-
alized Symmetry points are given by 8.641, 7.437, 6.289, 5.212, and 4.221, respectively.
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For every scenario we have considered three possible values ofAUC = 0.70, 0.80, 0.90
(as we pointed out before) and seven different values of ρ = 0.1, 0.25, 0.5, 1, 2, 4, 10. In
Figure 4.7, we have plotted the two density functions associated to the six scenarios pre-
viously described in the simulation study a)–f) with ρ = 1 and AUC = 0.90.
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Figure 4.7: Density functions, f0 (dotted lines) and f1 (solid lines), of the six models con-
sidered in Table 4.1 when AUC = 0.90.

For every model and AUC value specified in Table 4.1, 2000 trials were considered.
For each trial, a sample of n0 i.i.d. observations, {Y01, . . . , Y0n0}, and a sample of n1 i.i.d.
observations, {Y11, . . . , Y1n1}, were independently drawn from Y0 and Y1, respectively.
Specifically we have considered the following pairs of sample sizes (considering bal-
anced and unbalanced designs): (n0, n1) = (30, 30), (30, 50), (50, 50), (100, 50), (100, 100).
These sample sizes and the three values previously considered forAUC mimic real situa-
tions that are frequently seen in clinical practice (see, for instance, the biomedical datasets
considered in Section 4.5).

For the GPQ approach, since it is based on the normality assumption, before con-
structing the GPQ-based CIs for cGS , p(cGS) and q(cGS), we have previously transformed
the data in order to make them as normally distributed as possible by using a mono-
tone Box-Cox transformation estimated by maximum likelihood. Besides, we have run
I = 2500 times the Steps 1-3 previously presented in Subsection 4.3.1.

For the EL method, the Gaussian kernel, K, was considered in the required kernel
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type estimates. For these kernel type estimates, we considered the following bandwidths
as recommended by Wand and Jones (1995) and Zhou and Jing (2003),

gi = 0.25 std(Yi1, . . . , Yini)n
γ
i , for i = 0, 1, (4.16)

h0 = 0.25 std(F̂0,g0(Y11), . . . , F̂0,g0(Y1n1))nδ1, (4.17)
h1 = 0.25 std(F̂1,g1(Y01), . . . , F̂1,g1(Y0n0))nδ0, (4.18)

with std referring to the sample standard deviation. Specifically, we have considered
γ = −1/3 to estimate F0 and δ = −1/3 in Step 1, γ = −1/2 to estimate F0 and F1 in
the adjusted empirical log-likelihood ratio function in Step 2, and γ = −1/5 to draw the
bootstrap resamples in Step 3. From each pair of samples, we generated B = 499 boot-
strapped resamples to obtain 95%-confidence intervals for cGS and its accuracy measures
p(cGS) and q(cGS) through the percentile method. When Steps 1–2 are carried out with
the bootstrap resamples, then the original samples Yi1, . . . , Yini , for i = 0, 1 appearing in
(4.16)–(4.18) are replaced by their bootstrap analogues Y ∗,bi1 , . . . , Y ∗,bini

, for i = 0, 1, with
b = 1, . . . , B.

4.4.2 Results

For every model, we collect in the same table the results obtained for the Generalized
Symmetry point, cGS , and the associated specificity p(cGS) and sensitivity q(cGS) mea-
sures. Specifically, in Tables 4.2–4.19 (see pages 115–169) we collect the results obtained
for models a)–f) considering the five pair of sample sizes (n0, n1), the seven different val-
ues of ρ and the three possible values of AUC, previously specified. It should be noted
that depending on the marker scale the CIs for cGS may turn out wider or narrower, and
consequently we have used different scientific notation (×100, ×10−1, ×10−2, etc.) in
these tables to better represent significant figures. For instance, the width of the CIs for
cGS is expressed in ×10−1 for model a) but in ×10−3 for model b).

From Tables 4.2–4.13, we observe the following: In terms of interval coverage, both
methods have a good behaviour when estimating the Generalized Symmetry point, and
the corresponding specificity and sensitivity indexes. With respect to average width, the
EL approach gives slightly wider confidence intervals than the GPQ approach. This was
expected since the EL approach is a nonparametric method and the GPQ approach is a
parametric one. Besides, for both methods the interval width decreases as the sample
sizes increase. For a fixed pair of sample sizes when ρ = 1, the interval width increases
for cGS as the AUC increases but it decreases for the corresponding p(cGS) and q(cGS).
Regarding the point estimators, the MSE decreases as the sample sizes increase for both
methods. However, the nonparametric EL approach always produces slightly higher val-
ues for the MSE than the parametric GPQ approach. Besides, for a fixed pair of sample
sizes when ρ = 1, theMSE increases for cGS as theAUC increases but it decreases for the
corresponding p(cGS) and q(cGS). In terms of Bias, the nonparametric point estimators
proposed for p(cGS) and q(cGS) behave in most of the cases better than the parametric
proposal. However, there is not a clear winner between the two point estimators of cGS
in terms of Bias.
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From Tables 4.14–4.16, we observe that the EL method has a good behaviour in terms
of both interval coverage and width when estimating cGS , p(cGS) and q(cGS). However,
the GPQ method presents in some cases overcoverage or undercoverage when estimating
cGS , and for ρ = 0.5, 1, 2, 4 it presents most of the times a very pronounced undercover-
age when estimating p(cGS) and q(cGS). This undercoverage gets worse as the sample
sizes increase. From Tables 4.17–4.19, we observe that the EL method has a good be-
haviour in terms of both interval coverage and width when estimating cGS , p(cGS) and
q(cGS). However, the GPQ method shows most of the times a pronounced undercover-
age when estimating cGS for ρ = 0.1, 0.25, 0.5, 1, 2, 4, and sometimes it shows undercov-
erage when estimating p(cGS) and q(cGS) that gets worse as the AUC and the sample
sizes increase, specially for small values of ρ. However, for large values of ρ, the GPQ
method presents sometimes overcoverage when estimating p(cGS) and q(cGS). Besides,
from Tables 4.14–4.19, we observe that in terms of Bias, the nonparametric point esti-
mators proposed for cGS , p(cGS) and q(cGS) behave much better than their parametric
counterparts.

Therefore, although the parametric point estimators and the GPQ-based CIs turned
out to perform well under the Box-Cox family models and the bigamma model, this
was not the case for the mixtures scenarios where the distribution models differ between
healthy and diseased populations (see plots e)–f) in Figure 4.7). So, we strongly recom-
mend the use of the nonparametric point estimators and the EL-based CIs when the data
do not follow the Box-Cox family.

4.5 Biomedical applications

In this section, we consider three real biomedical datasets on melanoma, prostate can-
cer, and coronary artery disease to illustrate the methodology previously discussed. See
Section 1.3 of Chapter 1 for more details on these datasets and their basic descriptive
statistics (mean, median, variance, standard deviation, minimum and maximum). In
the analysis shown below, the Shapiro-Wilk normality test has been used to assess if the
markers or a Box-Cox transformation of them can be assumed normally distributed at a
5% significance level.

4.5.1 Melanoma dataset

The empirical ROC curve corresponding to these data is displayed in the right panel of
Figure 4.8. The AUC estimated for this dataset is equal to 0.906 (95% CI 0.833-0.979),
which indicates a very good discrimination accuracy of CSS for differenciating between
melanoma and non-melanoma pigmented lesions.

In the left panel of Figure 4.8 we show smooth density estimates of the clinical scor-
ing scheme without dermoscope (CSS) in the two groups of interest (non-melanoma and
melanoma groups). It seems that the non-melanoma group shows a slight bimodality
while the melanoma group shows a more symmetric distribution. However, according
to the Shapiro-Wilk normality test, both groups can be considered normally distributed
(p-value = 0.4719 for the non-melanoma group and p-value = 0.9084 for the melanoma
group). Therefore, since we can assume normality for the CSS in both groups and do not
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need to previously transform the data by a monotone Box-Cox transformation, we show
below (see Table 4.20) the parametric point estimates and 95%-confidence intervals for
the Generalized Symmetry point of the CSS and its associated specificity and sensitivity
indexes obtained with the GPQ approach. In principle, a FN decision will be more ex-
pensive than a FP one, because in a skin lesion leads to excision and then you will do the
biopsy. Therefore, we will consider the following different values for the relative loss of
a false positive misclassification compared with a false negative one: ρ = 0.5, 0.25, 0.10,
which means that a false negative result is 2, 4 or even 10 times more serious than a false
positive result, respectively. However, there may be some cases where it would be the
contrary. For example, when it happens that there is a successful treatment but very ag-
gressive or that can lead to an erroneous removal of something important. In this case,
for example, the values of ρ = 2, 4, 10 (that is, a FP misclassification would be 2,4 or
even 10 times more serious than a FN misclassification) would be more adequate. For
the sake of illustration, we also consider here the value ρ = 1, that is, corresponding to the
Symmetry point, where we assume the same cost for both FP and FN misclassifications.
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Figure 4.8: Left panel: Density estimates of the clinical scoring scheme without dermo-
scope (CSS) in melanoma (solid line) and non-melanoma (dashed line) groups. Right panel:
ROC curve of CSS marker.

Firstly, if we do not take into account costs for the different misclassifications and
therefore we assume the same cost for a false positive decision and for a false negative
one, in this case, a Symmetry point of -0.827 is obtained, so that a pigmented lesion on
the skin with a CSS value bigger than or equal to -0.827 is classified as a melanoma. With
this optimal value, 81.8% of the patients with melanoma and 81.8% of the patients with-
out melanoma are correctly classified. The sampling variability of the Symmetry point
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is accounted by the corresponding 95% confidence interval given by (−1.325;−0.298). If
we consider, however, that we would assume the cost to perform 10 biopsies to patients
without skin melanoma for avoiding to miss a patient with skin melanoma (that is, as-
suming a relative cost of ρ = 0.1), the Generalized Symmetry point obtained is -2.075
with a sensitivity of 0.958 and a specificity of 0.579. Finally, if we consider a ρ value of 2,
the optimal value will be -0.434, with a sensitivity of 0.742 and a specificity of 0.871.

Table 4.20: Melanoma dataset: Parametric point estimates and GPQ-based 95% CI’s for
cGS , p(cGS) and q(cGS) of CSS marker.

Methods GPQ
Parameter ρ Parametric point estimate 95% CI(cGS)

cGS 10 0.496 (-0.002,1.095)
4 -0.035 (-0.496,0.490)
2 -0.434 (-0.905,0.075)
1 -0.827 (-1.325,-0.298)

0.5 -1.213 (-1.793,-0.628)
0.25 -1.591 (-2.286,-0.941)
0.1 -2.075 (-2.966,-1.322)

p(cGS) 10 0.952 (0.932,0.967)
4 0.913 (0.872,0.943)
2 0.871 (0.809,0.918)
1 0.818 (0.727,0.887)

0.5 0.755 (0.625,0.849)
0.25 0.683 (0.515,0.805)
0.1 0.579 (0.358,0.742)

q(cGS) 10 0.516 (0.317,0.672)
4 0.651 (0.489,0.773)
2 0.742 (0.617,0.836)
1 0.818 (0.727,0.887)

0.5 0.877 (0.812,0.924)
0.25 0.921 (0.879,0.951)
0.1 0.958 (0.936,0.974)

Since the EL method is a nonparametric method that does not require any parametric
assumptions which has been proved appropriate under all the scenarios considered in
the simulation study, we show below in Table 4.21 the nonparametric point estimates and
the EL-based 95% CIs for the Generalized Symmetry point of the CSS and its associated
specificity and sensitivity indexes.

As expected, the confidence intervals obtained with the EL approach turn out to be
wider than those obtained with the GPQ approach. Additionally, it is worthwhile to
mention here that the parametric (nonparametric) point estimates are included in the
corresponding EL-based (GPQ-based) confidence intervals.

Therefore, taking into account the results obtained, we observe that the value of the

171



optimal cutpoint and its corresponding sensitivity and specificity indexes can be very
different depending on the value of the relative cost assumed for the two types of mis-
classifications. Therefore, it is very important to know beforehand the specific clinical
setting, the consequences of the different incorrect decisions and to incorporate the ade-
quate costs for the different diagnostic decisions when computing the optimal cutpoint
if we do not want to draw erroneous conclusions in clinical practice.

Table 4.21: Melanoma dataset: Nonparametric point estimates and EL-based 95% CI’s
for cGS , p(cGS) and q(cGS) of CSS marker.

Methods EL
Parameter ρ Nonparametric point estimate 95% CI(cGS)

cGS 10 0.794 (-0.108,1.495)
4 0.122 (-0.871,0.933)
2 -0.345 (-1.207,0.331)
1 -1.025 (-1.520,-0.055)

0.5 -1.238 (-1.840,-0.457)
0.25 -1.616 (-2.567,-0.927)
0.1 -2.226 (-2.943,-1.096)

p(cGS) 10 0.945 (0.927,0.971)
4 0.905 (0.861,0.949)
2 0.861 (0.799,0.931)
1 0.833 (0.729,0.906)

0.5 0.790 (0.633,0.897)
0.25 0.725 (0.446,0.873)
0.1 0.533 (0.342,0.848)

q(cGS) 10 0.451 (0.270,0.706)
4 0.621 (0.445,0.797 )
2 0.723 (0.598,0.862)
1 0.833 (0.729,0.906)

0.5 0.895 (0.816,0.949)
0.25 0.931 (0.861,0.968 )
0.1 0.953 (0.934,0.985)

4.5.2 Prostate cancer dataset

The empirical ROC curve corresponding to these data is shown in the right panel of
Figure 4.9. From the analysis carried out by Le (2006), he found an estimated AUC value
equal to 0.726, indicating a moderate-good classification performance, and, for practical
use, obtained an optimal cutpoint of 0.75 based on the well-known optimality criterion
given by the Youden index, with an associated specificity of 0.791 and an associated
sensitivity of 0.554, which indicates that APBS has some good screening value but may
be not good enough to be used alone for the prediction of nodal involvement.

In the left panel of Figure 4.9 we can observe that both distributions are non symmet-
ric, in the way that the healthy group shows a slight bimodality and the diseased group
presents a multimodality distribution. Indeed, according to the Shapiro-Wilk normal-
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ity test, both groups can not be considered normally distributed (p-value < 0.0001 for
healthy group and p-value = 0.0232 for diseased group). However, after transforming
the data using the Box-Cox tranformation estimate given by λ̂ = −1.2494, the Shapiro-
Wilk normality test indicates that both groups can be considered normally distributed
(p-value = 0.3641 for group 0 and p-value = 0.2118 for group 1). Therefore, we show
below the parametric point estimates and 95%-confidence intervals for the Generalized
Symmetry point of APBS (considering firstly ρ = 1, that is, the Symmetry point) and its
associated specificity and sensitivity indexes obtained with the GPQ approach.
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Figure 4.9: Left panel: Density estimates of the level of acid phosphatase in blood serum
(APBS)×100 for individuals with (solid line) and without nodal involvement (dashed line).
Right panel: ROC curve of APBS×100 marker.

Based on the GPQ method, the results obtained for the Symmetry point are:

c̃S = 64.664, 95% CI(cS) = (60.105, 70.261),

p̃(cS) = q̃(cS) = 0.659, 95% CI(p(cS)) = 95% CI(q(cS)) = (0.549, 0.760).

Then, an individual suffering from prostate cancer would be classified as a patient
with nodal involvement if his/her APBS value is bigger than or equal to the Symmetry
point given by 64.664. The corresponding 95% confidence interval (60.105, 70.261) mea-
sures the uncertainty associated with the point estimate of the Symmetry point. With
this classification rule, it turns out that 65.9% of the patients with nodal involvement and
65.9% of the patients without nodal involvement are correctly classified.
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Table 4.22: Prostate cancer dataset: Parametric point estimates and GPQ-based 95% CI’s
for cGS , p(cGS) and q(cGS) of APBS marker.

Methods GPQ
Parameter ρ Parametric point estimate 95% CI(cGS)

cGS 10 92.554 (80.006,118.783)
4 78.527 (71.024,90.155)
2 70.737 (65.271,78.041)
1 64.664 (60.105,70.261)

0.5 59.862 (55.438,64.995)
0.25 56.001 (51.197,61.004)
0.1 51.952 (46.635,57.127)

p(cGS) 10 0.920 (0.905,0.939)
4 0.842 (0.798,0.885)
2 0.759 (0.683,0.829)
1 0.659 (0.549,0.760)

0.5 0.552 (0.408,0.684)
0.25 0.447 (0.277,0.609)
0.1 0.323 (0.141,0.514)

q(cGS) 10 0.202 (0.052,0.395)
4 0.370 (0.192,0.541)
2 0.518 (0.367,0.657)
1 0.659 (0.549,0.760)

0.5 0.776 (0.704,0.842)
0.25 0.862 (0.819,0.902)
0.1 0.932 (0.914,0.951)

However, to find a cutpoint based on criteria that do not consider misclassification
costs such as the Youden index or the Symmetry point may not be satisfactory in prac-
tice. In fact, in this biomedical example, a false negative result is much more harmful than
a false positive result and therefore the incorporation of different costs associated to both
types of decisions is essential in this clinical setting. For this reason, in the following, we
analyze this dataset using our new approach for estimating the Generalized Symmetry
point. In Table 4.22, we collect the point estimates and confidence intervals of the Gen-
eralized Symmetry point and associated specificity and sensitivity indexes for different
values of ρ. Since a cutpoint with high sensitivity would be a good choice for the clinical
use of APBS, we consider the following different values for the relative loss of a false-
positive classification as compared with a false-negative classification: ρ = 0.5, 0.25, 0.10.
These values mean that a false negative result is 2, 4 or even 10 times more serious than a
false positive result, respectively. In addition, for the sake of illustration and comparison
of the results obtained, the values ρ = 1 (the same cost for both missclassifications, that
is, the Symmetry point already computed above), ρ = 2 (the cost associated to a false
positive is double than the one associated to a false negative), ρ = 4 (the cost associated
to a false positive is 4 times more than the one associated to a false negative), and even
ρ = 10 (the cost associated to a false positive is 10 times more than the one associated to
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a false negative) were also considered. Due to the fact that these data follow the Box-Cox
family, we show firstly the 95%-confidence intervals obtained with the GPQ approach.
For instance, for a ρ value of 0.1, (that is, the clinician would be willing to perform 10
laparoscopics to patients without nodal involvement in order to avoid missing a patient
with nodal involvement), the point estimate of the Generalized Symmetry point is 51.952
with an associated sensitivity of 0.932 and an associated specificity of 0.323. The sam-
pling variability of this optimal cutpoint is accounted for by the 95% confidence interval
given by (46.635, 57.127). Note that for ρ = 2, the optimal threshold value given by the
Generalized Symmetry point is 70.737 with an associated sensitivity of 0.518 and an as-
sociated specificity of 0.759, and is the most similar value to that obtained in Le (2006)
based on Youden index. However, this case yields a cutpoint with specificity greater than
sensitivity, and this is exactly the opposite to what is aimed here. Therefore, we underline
the importance of considering the misclassification costs in the selection of the optimal
threshold value to avoid erroneous conclusions when using APBS in clinical practice.

Analogously to the previous analysis done on the melanoma dataset, we show below
in Table 4.23 the nonparametric point estimates and the EL-based 95% CIs for the Gen-
eralized Symmetry point of APBS and its associated specificity and sensitivity accuracy
indexes.

Table 4.23: Prostate cancer dataset: Nonparametric point estimates and EL-based 95%
CI’s for cGS , p(cGS) and q(cGS) of APBS marker.

Methods EL
Parameter ρ Nonparametric point estimate 95% CI(cGS)

cGS 10 97.152 (76.861,136.724)
4 80.292 (70.782,95.212)
2 72.598 (65.170,80.705)
1 67.120 (59.136, 73.649)

0.5 61.544 (52.659,68.235 )
0.25 52.167 (48.730,64.791)
0.1 49.225 (45.406,59.975 )

p(cGS) 10 0.914 (0.901,0.945)
4 0.844 (0.783,0.899)
2 0.761 (0.679,0.860)
1 0.717 (0.580,0.803)

0.5 0.600 (0.385,0.748)
0.25 0.421 (0.219,0.689)
0.1 0.245 (0.093,0.538)

q(cGS) 10 0.141 (0.013,0.446 )
4 0.378 (0.134,0.596)
2 0.521 (0.358,0.719 )
1 0.717 (0.580, 0.803)

0.5 0.800 (0.692,0.874 )
0.25 0.855 (0.805,0.922)
0.1 0.925 (0.909,0.954)
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4.5.3 Coronary artery disease dataset

The ROC curve corresponding to this dataset is shown in the right panel of Figure 4.10
and the estimated AUC is equal to 0.744 (95% CI 0.659, 0.828), which means that the
elastase concentration has a moderate-good discrimination accuracy for discriminating
between coronary and non-stenotic coronaries groups. Amaro et al. (1995) selected the
optimal cutpoint as the value that maximized the correct classification rate (77.4%) which
was achieved with a threshold of 20 µgl−1 with a sensitivity of 95.8% and a specificity
of 37.8%. So, blood leukocyte elastase concentration seems to be a sensitive diagnostic
marker of CAD. In fact, if we used the elastase determination as a screening test previ-
ous to performing the coronary angiography for detecting CAD, we would search for a
high sensitivity in order to be able to identify all the diseased patients.
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Figure 4.10: Left panel: Density estimates of peripheral blood leukocyte elastase concen-
tration in coronary lesions group (solid line) and in non-stenotic coronaries group (dashed
line). Right panel: ROC curve of elastase concentration marker.

In the following, we analyze this dataset using our approach. In Table 4.24, we collect
the point estimates and 95%-confidence intervals of the Generalized Symmetry point of
the elastase concentration and its associated specificity and sensitivity indexes for differ-
ent values of ρ. According to the Shapiro-Wilk normality test, only the healthy group can
be considered normally distributed (p-value = 0.0746 for group 0 and p-value < 0.0001
for group 1, that is, for patients with coronary lesions). After transforming the data using
the Box-Cox transformation estimate given by λ̂ = 0.1136, the Shapiro-Wilk normality
test indicates that only the diseased group can be considered normally distributed (p-
value = 0.0091 for group 0 and p-value = 0.0793 for group 1). Therefore, we present
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below the results obtained with the EL approach (that is, the nonparametric point es-
timates and the EL-based 95% CIs for the Generalized Symmetry point of the elastase
concentration and its associated specificity and sensitivity indexes), which does not re-
quire the assumption of normality, because these data do not follow the Box-Cox family.
Given that searching for a high sensitivity is equivalent to searching for a low number of
false negatives, the same values as in the previous prostate cancer dataset were consid-
ered for ρ: ρ = 0.5, 0.25, 0.10 (a false negative result is regarded as more serious than a
false positive one). For the sake of illustration, the values ρ = 1, 2, 4, 10 were also consid-
ered. Assuming, for example, ρ = 0.1 (that is, the clinician would be willing to perform
10 coronary angiographies to patients without CAD in order to avoid missing a patient
with CAD), the point estimate of the Generalized Symmetry point is 23.136 with an as-
sociated sensitivity of 0.937 and an associated specificity of 0.374. Note that the optimal
threshold value obtained in Amaro et al. (1995), despite having been selected by a dif-
ferent optimality criterion, is very close to the cutpoint obtained here considering ρ = 0.1.

Table 4.24: Coronary artery disease dataset: Nonparametric point estimates and EL-
based 95% CI’s for cGS , p(cGS) and q(cGS) of elastase marker.

Methods EL
Parameter ρ Nonparametric point estimate 95% CI(cGS)

cGS 10 51.960 (45.503,55.688)
4 46.158 (41.386,51.235)
2 41.383 (38.053,45.032)
1 37.733 (33.692,40.291)

0.5 31.597 (27.494,35.532)
0.25 26.558 (23.991,29.672)
0.1 23.136 (17.366,25.552)

p(cGS) 10 0.933 (0.924,0.948)
4 0.858 (0.829,0.893)
2 0.763 (0.718,0.823)
1 0.666 (0.573, 0.733)

0.5 0.515 (0.415,0.636)
0.25 0.416 (0.302,0.569)
0.1 0.374 (0.218,0.511)

q(cGS) 10 0.334 (0.243,0.481)
4 0.433 (0.316,0.573)
2 0.525 (0.435,0.646)
1 0.666 (0.573, 0.733)

0.5 0.757 (0.707,0.818)
0.25 0.854 (0.825,0.892)
0.1 0.937 (0.922,0.951)

If we erroneously assumed that a false negative misclassification has the same cost as
a false positive one, we would obtain an optimal elastase value of ĉS = 37.733 and there-
fore in this case those patients with an elastase value bigger than or equal to the Symme-
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try point given by 37.733 are identified as having CAD. The sampling variability of this
Symmetry point is represented by the corresponding 95%CI(cS) = (33.692, 40.291). It
should be noted that this optimal cutpoint is quite different to the previous one, with both
sensitivity and specificity equal to p̂(cS) = q̂(cS) = 0.666 (CI95%(p(c)) = CI95%(q(c)) =
(0.573, 0.733)). So, 66.6% of the patients with CAD and 66.6% of the individuals without
CAD are correctly identified.

For the sake of illustration, we show below (see Table 4.25) the results obtained with
the GPQ approach. However, since the data do not satisfy the assumption of normality
(even after applying a Box-Cox transformation estimated by maximum likelihood), the
following results have to be considered with caution because there is no guarantee that
the coverage of these GPQ-based CIs is close to the nominal value of 95% (as we have
seen in the simulation results).

Table 4.25: Coronary artery disease dataset: Parametric point estimates and GPQ-based
95% CI’s for cGS , p(cGS) and q(cGS) of elastase marker.

Methods GPQ
Parameter ρ Parametric point estimate 95% CI(cGS)

cGS 10 59.394 (50.451,72.798)
4 48.135 (42.236,55.896)
2 40.894 (36.567,46.072 )
1 34.716 (31.346,38.424)

0.5 29.513 (26.671,32.530)
0.25 26.558 (23.991,29.672)
0.1 20.521 (17.935,23.339)

p(cGS) 10 0.928 (0.914,0.941 )
4 0.860 (0.828,0.888 )
2 0.785 (0.736,0.831)
1 0.693 (0.625, 0.759)

0.5 0.590 (0.502,0.675)
0.25 0.416 (0.302,0.569 )
0.1 0.354 (0.236,0.473)

q(cGS) 10 0.277 (0.139,0.411 )
4 0.438 (0.312,0.553)
2 0.570 (0.471,0.662 )
1 0.693 (0.625, 0.759)

0.5 0.795 (0.751,0.838)
0.25 0.854 (0.825,0.892 )
0.1 0.935 (0.924,0.947)
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Free software is software that respects your freedom
and the social solidarity of your community.
So it’s free as in freedom.

- Richard Stallman

Chapter 5

Software development: R packages

In Chapters 3 and 4 we have described several criteria existing in the literature for select-
ing optimal cutpoints in continuous diagnostic tests. To facilitate this task of selecting
optimal values in clinical practice, it is essential to have software that implements those
optimal criteria in an environment that biomedical researchers find user-friendly and
easily understandable. Important contributions to this issue have been made by the fol-
lowing R (R Core Team, 2013) packages: DiagnosisMed (Brasil, 2010), pROC (Robin et al.,
2011) and Epi (Carstensen et al., 2013). The DiagnosisMed package includes the imple-
mentation of 10 different criteria for estimating optimal cutpoints such as, for instance,
the criterion that selects the cutoff at which sensitivity and specificity are equal, that is,
the Symmetry point (Amaro et al., 1995; Greiner, 1995; Hosmer and Lemeshow, 2000),
or that based on maximizing the diagnostic odds ratio (Kraemer, 1992; Böhning et al.,
2011). Moreover, in this package there is a function that draws the ROC curve and com-
putes the test accuracy measures for each threshold. Even though their main objective is
not the selection of an optimal cutpoint, the pROC and Epi packages also include some
specific functions for selecting the optimal value using only one or two criteria. Specif-
ically, the pROC package provides the cut-off point associated to the North-West corner
criterion, that is, the optimal point on the ROC curve (Metz, 1978; Swets and Swets,
1979; Swets and Pickett, 1982) that is closest to the point (0,1) (Metz, 1978; Vermont et al.,
1991), and the cut-off point associated to the Youden index (Youden, 1950), allowing the
costs of the different diagnostic decisions to be incorporated into both criteria. The Epi
package computes the threshold value that maximizes the sum of sensitivity plus speci-
ficity indexes, which is equivalent to the cut-off point given by the Youden index. There
are other R packages that provide methods for obtaining classification rules for specific
models or contexts other than medical settings. For instance, the PresenceAbsence pack-
age which includes 12 different criteria, and has two graphical functions to construct the
ROC curve and plot accuracy measures, e.g., the sensitivity or specificity as a function
of the threshold (Freeman, 2007; Freeman and Moisen, 2008); and the SDMTools package
with 8 criteria implemented (VanDerWal et al., 2012).

However, all these packages have some limitations. Firstly, as pointed out above,
some of them include very few selection criteria. Secondly, none of the packages include
criteria based on predictive values and/or likelihoods ratios, i.e., they only consider
optimal-cutpoint selection criteria based on sensitivity and specificity measures. This
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entails an important limitation from the standpoint of clinical applicability: although
sensitivity and specificity are considered the fundamental operating characteristics of a
diagnostic test, there are nevertheless times when such measures may not be so useful in
clinical practice, since clinical staff do not have prior information about the patient’s true
disease status. Indeed, the problem tends to be just the opposite, and involves the need
to ascertain the probability of the patient being healthy (or diseased) in a case where the
test result is negative (or positive). Hence, strategies for selecting the optimal cutpoint
based on predictive values can be more useful in certain situations (see Vermont et al.,
1991; Itoh et al., 1996; Gallop et al., 2003, among others).

To address some of the limitations or remaining gaps in the previous packages, we
have implemented an R package called OptimalCutpoints (López-Ratón and Rodrı́guez-
Álvarez, 2014; López-Ratón et al., 2014), specifically designed for selecting optimal cut-
points in continuous diagnostic tests. It is freely available from the Comprehensive
R Archive Network (CRAN) at the URL http://CRAN.R-project.org/package=
OptimalCutpoints. This package enables end-users to choose from among a consid-
erable number of strategies (34) commonly used in clinical practice for optimal-cutpoint
selection (see Table 5.2 in Section 5.1). OptimalCutpoints includes all the methods con-
sidered in the above mentioned packages plus others that have been proposed in the
literature for selection of optimal values in diagnostic tests, such as criteria based on pre-
dictive values or likelihood ratios. Moreover, it incorporates several criteria that take
into account the costs of the different diagnostic decisions as well as the prevalence of
the disease under study.

All these packages cited above only consider the classical non-parametric empirical
method for estimating the optimal cutpoint and accuracy measures, that is, none of these
packages take into account recent methodology introduced in ROC curves (Molanes-
López and Letón, 2011; Lai et al., 2012). So, in addition, we created the R package Gsym-
Point (López-Ratón et al., 2015b) for estimating the Generalized Symmetry point that
includes two more efficient statistical methods than the empirical one, specifically it in-
cludes the two estimating methods previously presented in Chapter 4 for estimating the
Generalized Symmetry point and its accuracy measures, a parametric method based on
the Generalized Pivotal Quantity that assumes normality (Weerahandi, 1993, 1995; Lai
et al., 2012) and a nonparametric method based on the Empirical Likelihood methodol-
ogy (Thomas and Grunkemeier, 1975; Molanes-López and Letón, 2011). Therefore, we
take into account in the estimation process if the assumption of normality is tenable, and
we consider a cost-based generalization of one of the most widely used criteria for se-
lecting the optimal cutpoint in clinical practice, the criterion where sensitivity and speci-
ficity accuracy measures are the same, taking into account the misclassification costs, a
very important issue when selecting the optimal value in a specific clinical setting. The
GsymPoint package is freely available at http://CRAN.R-project.org/package=
GsymPoint.

In this chapter we explain in detail our two new R packages: OptimalCutpoints and
GsymPoint.
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5.1 The OptimalCutpoints Package

This section introduces OptimalCutpoints, an R package in which most of the optimal
criteria for selecting the threshold value previously presented in Chapter 3 have been
incorporated in a way designed to be clear and user-friendly for the end-user. Optimal-
Cutpoints provides numerical and graphical results. The numerical results include the
optimal cutpoint according to the selected criterion, and the associated accuracy mea-
sures with their confidence intervals. The program’s graphical output shows the ROC
and PROC curves of the diagnostic test analyzed and, where possible, the plot of the per-
tinent criterion according to the different diagnostic marker values (candidates for the
optimal cutpoint). In addition, OptimalCutpoints provides the option to automatically
calculate the optimal thresholds according to the levels of certain (categorical) covariates
and this will be illustrated in the next section with a biomedical example. This is of great
interest because a diagnostic marker’s discriminatory capacity can often depend on spe-
cific characteristics, such as a patient’s age or gender, or the severity of the disease (Pepe,
2004). Moreover, no restriction has been imposed with respect to the range of values
of the diagnostic test, i.e., it can take some values in a continuous range or a risk score
obtained from a predictive diagnostic model (values from 0 to 1). Finally, insofar as com-
putation is concerned, for all methods in this package, the optimal cut value obtained is
always one of the observed diagnostic marker values, and the ROC and PROC curves
and accuracy measures are empirically estimated.

In R language, programming is based on objects, and computations are basically func-
tions that are specialized in performing specific calculations. Table 5.1 provides a sum-
mary of the main functions in the package.

5.1.1 optimal.cutpoints() function

The main function of the package is the optimal.cutpoints function, which uses
the selected method(s) to compute the optimal cutpoint with its accuracy measures, and
creates an object of class optimal.cutpoints. Usage is as follows:

optimal.cutpoints(X, status, tag.healthy, methods, data,
direction = c("<",">"), categorical.cov = NULL, pop.prev = NULL,
control = control.cutpoints(), ci.fit = FALSE, conf.level = 0.95,
trace = FALSE, ...)

The X argument is either a character string with the name of the diagnostic test vari-
able or a formula. When X is a formula, it must be an object of class formula. The
right side of ∼ must contain the name of the variable that distinguishes healthy from
diseased individuals, and the left side of ∼ must contain the name of the diagnostic test
variable. The status argument only applies when the X argument contains the name
of the diagnostic test variable, and is a character string with the name of the variable
that distinguishes healthy from diseased individuals. The tag.healthy argument is
the value codifying healthy individuals in the status variable.
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Function Description

optimal.cutpoints Computes the optimal cutpoint with its accuracy
measures and, optionally, the pertinent confidence
intervals for such measures.

control.cutpoints Function used to set several parameters that con-
trol the optimal-cutpoint computing process.

print Print method for objects fitted with
optimal.cutpoints.

summary Produces a summary of an optimal.cutpoints
object.

plot Plot method for objects fitted with
optimal.cutpoints. Includes the plots of
the ROC and PROC curves, indicating the optimal
cutpoint on these plots.

Table 5.1: Summary of functions in the OptimalCutpoints package.

The methods argument is a character vector specifying which method/s is/are used
for selecting optimal cutpoints. A total of 34 methods have been implemented in Opti-
malCutpoints (see Table 5.2). Various optimal-cutpoint selection methods can be selected
simultaneously.

The data argument is a data frame which must, at minimum, contain the following
variables: the variable that indicates the diagnostic marker; the true disease status (dis-
eased/healthy); and whether adjustment is to be made for any (categorical) covariate of
interest, a variable that indicates the levels of this covariate. A standard-type data input
structure is used, with each row of the database indicating a patient/case and each col-
umn referring to a variable.

The direction argument is a character string specifying the direction in which the
ROC curve must be computed. By default, individuals with a test value lower than the
cutoff are classified as healthy (negative test), whereas patients with a test value greater
than (or equal to) the cutoff are classified as diseased (positive test). If this is not the case,
however, and the high values are related to health, this argument should be established
at “>”.

The categorical.cov argument is an optional argument, a character string with
the name of the categorical covariate according to which optimal cutpoints are to be cal-
culated. By default it is NULL, i.e., no categorical covariate is considered in the analysis.
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Criterion name Description

Criteria based on sensitivity and specificity measures
ValueSe A value set for sensitivity (Rutter and Miglioretti, 2003): the

cutpoint c fulfilling the condition Se(c) = valueSe.

ValueSp A value set for specificity (Rutter and Miglioretti, 2003): the
cutpoint c fulfilling the condition Sp(c) = valueSp.

SpEqualSe Sensitivity = specificity: the cutpoint c minimizing {|Sp(c) −
Se(c)|} (Amaro et al., 1995; Greiner, 1995; Hosmer and
Lemeshow, 2000).

MaxSe Maximizes sensitivity: the cutpoint cmaximizing Se(c) (Filella
et al., 1995; Hoffman et al., 2000; Álvarez Garcı́a et al., 2003).

MaxSp Maximizes specificity: the cutpoint c maximizing Sp(c)
(Bortheiry et al., 1994; Hoffman et al., 2000).

MaxSpSe Maximizes sensitivity and specificity simultaneously: the cut-
point c maximizing {min{Sp(c), Se(c)}} (Riddle and Strat-
ford, 1999; Gallop et al., 2003).

Youden Youden index: the cutpoint c maximizing Y I(c) = Se(c) +
Sp(c) − 1 (Youden, 1950; Aoki et al., 1997; Greiner et al.,
2000) or generalized Youden index: the cutpoint c maximizing

GY I(c) = Se(c) +
1− p
p

CFN
CFP

Sp(c)− 1 (Geisser, 1998; Greiner

et al., 2000).

MaxProdSpSe Maximizes the product of sensitivity and specificity: the cut-
point c maximizing {Sp(c)Se(c)} (Lewis et al., 2008).

Minimax Minimizes the most frequent error (Hand, 1987): the cutpoint
c minimizing {max{p(1− Se(c)), (1− p)(1− Sp(c))}}.

MinValueSe A minimum value set for sensitivity: the cutpoint c fulfilling
the condition Se(c) ≥ minValueSe (Schäfer, 1989; Vermont
et al., 1991; Gallop et al., 2003).

MinValueSp A minimum value set for specificity: the cutpoint c fulfilling
the condition Sp(c) ≥ minValueSp (Schäfer, 1989; Vermont
et al., 1991; Gallop et al., 2003).

MinValueSpSe A minimum value set for specificity and sensitivity (Schäfer,
1989): the cutpoint c fulfilling the condition Sp(c) ≥
minValueSp and Se(c) ≥ minValueSe.
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Criterion name Description

ROC01 Minimizes distance between ROC plot and point (0,1): the cut-
point c minimizing {(Sp(c) − 1)2 + (Se(c) − 1)2} (Metz, 1978;
Vermont et al., 1991).

MaxDOR Maximizes Diagnostic Odds Ratio: the cutpoint c maximizing

DOR(c) =
Se(c)

1− Se(c)
Sp(c)

1− Sp(c)
(Kraemer, 1992; Böhning et al.,

2011).

MaxEfficiency Maximizes efficiency or accuracy: the cutpoint c maximizing
Ef(c) = pSe(c)+(1−p)Sp(c) (Feinstein, SH, 1975; Galen, 1986;
Greiner, 1995, 1996).

MaxKappa Maximizes Kappa index (Cohen, 1960; Greiner et al., 2000) or
Weighted Kappa index (Kraemer, 1992; Kraemer et al., 2002).

Criteria based on predictive values
ValueNPV A value set for negative predictive value: the cutpoint c fulfill-

ing the condition NPV (c) = valueNPV.

ValuePPV A value set for positive predictive value: the cutpoint c fulfill-
ing the condition PPV (c) = valuePPV.

NPVEqualPPV Negative predictive value = positive predictive value (Ver-
mont et al., 1991): the cutpoint c minimizing |NPV (c) −
PPV (c)|.

MaxNPVPPV Maximizes negative predictive value and positive predic-
tive value simultaneously: the cutpoint c maximizing
{min{NPV (c), PPV (c)}}.

MaxSumNPVPPV Maximizes the sum of negative predictive value and posi-
tive predictive value: the cutpoint c maximizing {NPV (c) +
PPV (c)}.

MaxProdNPVPPV Maximizes the product of negative predictive value and
positive predictive value: the cutpoint c maximizing
{NPV (c)PPV (c)}.

MinValueNPV A minimum value set for negative predictive value (Vermont
et al., 1991): the cutpoint c fulfilling the condition NPV (c) ≥
minValueNPV.

MinValuePPV A minimum value set for positive predictive value (Vermont
et al., 1991): the cutpoint c fulfilling the condition PPV (c) ≥
minValuePPV.
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Criterion name Description

MinValueNPVPPV A minimum value set for predictive values (Vermont et al.,
1991): the cutpoint c fulfilling the condition NPV (c) ≥
minValueNPV and PPV (c) ≥ minValuePPV.

PROC01 Minimizes distance between PROC plot and point (0,1) (Ver-
mont et al., 1991; Gallop et al., 2003): the cutpoint c minimiz-
ing {(NPV (c)− 1)2 + (PPV (c)− 1)2}.

Criteria based on diagnostic likelihood ratios
ValueDLR.Negative A value set for negative diagnostic likelihood ratio:

the cutpoint c fulfilling the condition DLR−(c) =
valueDLR.Negative (Boyko, 1994; Rutter and Miglioretti,
2003).

ValueDLR.Positive A value set for positive diagnostic likelihood ratio:
the cutpoint c fulfilling the condition DLR+(c) =
valueDLR.Positive (Boyko, 1994; Rutter and Miglioretti,
2003).

Criteria based on cost-benefit analysis of the diagnosis
CB Cost-benefit method, computing slope of ROC curve at opti-

mal cutpoint, as S =
1− p
p

CFP − CTN
CFN − CTP

(McNeill et al., 1975;

Metz et al., 1975; Metz, 1978).

MCT Minimizes Misclassification Cost Term: the cutpoint c min-

imizing MCT (c) =
CFN
CFP

p(1 − Se(c)) + (1 − p)(1 − Sp(c))

(Smith, 1991; Greiner, 1995, 1996).

Maximum Chi-squared or minimum p value criterion
MinPvalue Minimizes p value associated with the statistical χ2 test

which measures the association between the marker and the
binary result obtained on using the cutpoint (Miller and Sieg-
mund, 1982; Altman et al., 1994).

Prevalence-based methods
MeanPrev The closest value to the mean of the diagnostic test values.

This criterion is usually used in cases where the diagnostic
test takes values in the interval (0,1), i.e., the mean proba-
bility of occurrence, e.g., based on the results of a statistical
model (Manel et al., 2001; Kelly et al., 2008).
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Criterion name Description

ObservedPrev The closest value to the observed prevalence: the cutpoint c
minimizing |c− p|, with p being prevalence estimated from
the sample. This criterion is thus indicated/valid in cases
where the diagnostic test takes values in the interval (0,1)
(Manel et al., 2001).

PrevalenceMatching The value for which predicted prevalence is practically
equal to observed prevalence: the cutpoint c minimizing
{|p(1−Se(c))−(1−p)(1−Sp(c))|}. This criterion is usually
used in cases where the diagnostic test takes values in the
interval (0,1), i.e., the predicted probability, e.g., based on a
statistical model (Manel et al., 2001; Kelly et al., 2008).

Table 5.2: Available methods in the OptimalCutpoints package.

The pop.prev argument is the value of the disease’s prevalence. By default it is
NULL, and in such a case, when no value is introduced, prevalence is estimated on the
basis of sample prevalence, taking into account the number of patients in the sample
(cross-sectional study). However, the end-user can also specify a given value for preva-
lence, as, say, in other types of studies (case-control study) where it cannot be estimated
on the basis of the sample. Where the categorical.cov is not NULL, the prevalence
value can be specified by a single value if the same prevalence is assumed for the differ-
ent levels of the covariate, or by a vector having as many components as levels if different
values are assumed.

The control argument indicates the output of the control.cutpoints function,
which controls the whole optimal-cutpoint calculation process. This function will be ex-
plained in detail in the following subsection.

The ci.fit argument is a logical value, and if it is TRUE then inference is per-
formed on the accuracy measures at the optimal cutpoint (by default it is FALSE). Finally,
conf.level is the value of the confidence level (1-α), and by default is equal to 0.95.

Summarizing, the X, status, tag.healthy, methods and data arguments of the
optimal.cutpoints function are essential arguments, and if one or more is not intro-
duced, this will lead to error. The remaining arguments (direction, categorical.cov,
pop.prev, control, ci.fit, conf.level and trace) are optional and, in the event
of having no value, will operate with the values established by default.
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5.1.2 control.cutpoints() function

It should be noted that there are arguments that are specific to each method. We de-
cided to include all of these in the control argument; control is a list of control
values for the selection process designed to replace the default values yielded by the
control.cutpoints function. The arguments of the control.cutpoints function,
as well as the methods for which they apply, are shown in Table 5.3.

The values of the costs in general (necessary in criteria which make use of cost/benefit-
based methodology, i.e., ‘‘CB’’, ‘‘MCT’’, ‘‘Youden’’ and ‘‘MaxEfficiency’’),
and the costs ratio and costs of incorrect classifications in particular, must be indicated in
the costs.ratio, CFP and CFN arguments, respectively. By default, the value 1 is estab-
lished for all, a situation equivalent to classification costs not being considered. The val-
ues established by default for the accuracy measures (necessary in the ‘‘MinValueSp’’,
‘‘ValueSp’’, ‘‘MinValueSe’’, ‘‘ValueSe’’, ‘‘MinValueSpSe’’, ‘‘MinValue
NPV’’, ‘‘ValueNPV’’, ‘‘MinValuePPV’’, ‘‘ValuePPV’’, ‘‘MinValueNPVPPV’’,
‘‘ValueDLR.Positive’’ and ‘‘ValueDLR.Negative’’ methods) are indicated in
the valueSp, valueSe, valueNPV, valu ePPV, valueDLR.Positive and valueDLR.
Negative arguments, respectively. By default, a value of 0.85 appears for sensitivity,
specificity and predictive values measures, a value of 2 for the positive likelihood ratio,
and a value of 0.5 for the negative likelihood ratio. These values were set on the basis of
values usually indicated in the literature but end-users will have to set them in line with
their own goals.

The adjusted.pvalue argument of the control.cutpoints function should be
used in the ‘‘MinPvalue’’ method to indicate whether the Miller and Siegmund me-
thod (‘‘PADJMS’’ option) or Altman method (‘‘PALT5’’ and ‘‘PALT10’’ options)
is selected for adjusting the p value (Miller and Siegmund, 1982; Altman et al., 1994). The
default is ‘‘PADJMS’’. The first method uses the minimum p value (pmin) observed and
the proportion (ε) of sample data which is below the lowest (εlow) (or above the highest
εhigh) cutpoint considered:

pacor = φ(z)(z − 1

z
)log

(
εhigh(1− εlow)

(1− εhigh)εlow

)
+ 4

φ(z)

z
,

where z is the (1 − pmin/2) quantile of the standard normal distribution, and φ denotes
the density function of the standard normal. Altman et al. (1994) furnished the following
simplifications of the above formula that work well for low minimum p values (0.0001 <
pmin < 0, 1) and are easily applicable: For ε = εlow = εhigh = 5% : palt5 = −3.13pmin(1 +
1.65ln(pmin)) and for ε = εlow = εhigh = 10% : palt10 = −1.63pmin(1 + 2.35ln(pmin)).

Various approaches are considered in OptimalCutpoints for calculating the confidence
intervals of the accuracy measures. The ci.SeSp, ci.PV and ci.DLR arguments in the
control.cutpoints function indicate the methods selected for computing confidence
intervals for Se/Sp, PPV/NPV and DLR+/DLR−, respectively. They are meaningful
only when the argument ci.fit is TRUE.
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Argument Method Description

CFP MCT A numerical value specifying
Youden the cost of a false positive
MaxKappa decision CFP .

The default value is 1.

CFN MCT A numerical value specifying
Youden the cost of a false negative
MaxKappa decision CFN .

The default value is 1.

costs.ratio CB A numerical value specifying
the cost ratio

CR =
CFP − CTN
CFN − CTP

.

The default value is 1.

costs.benefits.Youden Youden A logical value. If TRUE,
the optimal cutpoint based
on cost-benefit methodology
is computed.
The default is FALSE.

costs.benefits.Efficiency MaxEfficiency A logical value. If TRUE,
the optimal cutpoint based
on cost-benefit methodology
is computed.
The default is FALSE.

generalized.Youden Youden A logical value. If TRUE,
the generalized Youden
index is computed.
The default is FALSE.

weighted.Kappa MaxKappa A logical value. If TRUE,
the Weighted Kappa index
is computed.
The default is FALSE.

valueSe MinValueSe A numerical value specifying
ValueSe the (minimum or specific)
MinValueSpSe value set for sensitivity.

The default value is 0.85.
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Argument Method Description

valueSp MinValueSp A numerical value specifying the
ValueSp (minimum or specific) value set for
MinValueSpSe specificity. The default value is

0.85.

valueNPV MinValueNPV A numerical value specifying the
ValueNPV minimum value set for
MinValueNPVPPV negative predictive value.

The default value is 0.85

valuePPV MinValuePPV A numerical value specifying the
ValuePPV minimum value set for
MinValueNPVPPV positive predictive value.

The default value is 0.85.

valueDLR.Positive ValueDLR.Positive A numerical value specifying the
value set for the positive diagnostic
likelihood ratio. The default value
is 2.

valueDLR.Negative ValueDLR.Negative A numerical value specifying the
value set for the negative diagnos-
tic likelihood ratio. The default
value is 0.5.

maxSp MinValueSpSe A logical value meaningful only in
a case where there is more than one
cutpoint fulfilling the conditions. If
TRUE, those of the cutpoints which
yield maximum specificity are com-
puted. Otherwise, the cutoff that
yields maximum sensitivity is com-
puted. The default is TRUE.

maxNPV MinValueNPVPPV A logical value meaningful only in
the case where there is more than
one cutpoint fulfilling the condi-
tions. If TRUE, those of the cut-
points which yield the maximum
negative predictive value are com-
puted. Otherwise, the cutoff that
yields the maximum positive pre-
dictive value is computed. The de-
fault is TRUE.
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Argument Method Description

ci.SeSp All methods A character string meaningful only
when the argument ci.fit of the
optimal.cutpoints function is TRUE. It
indicates the method for estimating the con-
fidence interval for sensitivity and specificity
measures. Options are ‘‘Exact’’ (Clopper
and Pearson, 1934), ‘‘Quadratic’’ (Fleiss,
1981), ‘‘Wald’’ (Wald and Wolfowitz, 1939),
‘‘AgrestiCoull’’ (Agresti and Coull,
1998) and ‘‘RubinSchenker’’ (Rubin and
Schenker, 1987). The default is ‘‘Exact’’.

ci.PV All methods A character string meaningful only
when the argument ci.fit of the
optimal.cutpoints() function is TRUE.
It indicates the method for estimating the
confidence interval for predictive values.
Options are ‘‘Exact’’ (Clopper and Pear-
son, 1934), ‘‘Quadratic’’ (Fleiss, 1981),
‘‘Wald’’ (Wald and Wolfowitz, 1939),
‘‘AgrestiCoull’’ (Agresti and Coull,
1998), ‘‘RubinSchenker’’ (Rubin and
Schenker, 1987), ‘‘Transformed’’ (Simel
et al., 1991), ‘‘NotTransformed’’ (Koop-
man, 1984) and ‘‘GartNam’’ (Gart and Nam,
1998). The default is ‘‘Exact’’.

ci.DLR All methods A character string meaningful only
when the argument ci.fit of the
optimal.cutpoints function is TRUE. It
indicates the method for estimating the confi-
dence interval for diagnostic likelihood ratios.
Options are ‘‘Transformed’’ (Simel et al.,
1991), ‘‘NotTransformed’’ (Koopman,
1984) and ‘‘GartNam’’ (Gart and Nam,
1998). The default is ‘‘Transformed’’.

adjusted.pvalueMinPvalue A character string specifying the method for
adjusting the p value, i.e., ‘‘PADJMS’’ for the
Miller and Siegmund method (Miller and Sieg-
mund, 1982), and ‘‘PALT5’’, ‘‘PALT10’’
for the Altman method (Altman et al., 1994).
The default is ‘‘PADJMS’’.
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Argument Method Description

standard.deviation.accuracy MaxEfficiency A logical value. If TRUE,
standard deviation associ-
ated with accuracy at the
optimal cutpoint is com-
puted. The default is FALSE.

Table 5.3: Summary of arguments of the control.cutpoints function.

In the ci.SeSp argument, the options are ‘‘Exact’’, ‘‘Quadratic’’, ‘‘Wald’’,
‘‘AgrestiCoull’’ and ‘‘RubinSchenker’’. ‘‘Exact’’ is the exact confidence
interval based on the exact distribution of a proportion (Clopper and Pearson, 1934). It
should be noted that this method cannot be applied for proportions where the numer-
ator or the difference between the denominator and the numerator is equal to zero. If
this occurs for any value of the corresponding accuracy measure, i.e., the sensitivity or
the specificity, the program shows a warning message and returns a NaN for the limit of
the confidence interval that could not be computed. It is worth noting, however, that
this problem only happens for values of sensitivity/specificity equal to zero or one, i.e.,
on values which are not of interest in clinical practice. ‘‘Quadratic’’ refers to Fleiss’
quadratic confidence interval (Fleiss, 1981), based on the asymptotic normality of the es-
timator of a proportion but adding a continuity correction, and this approach is valid
in a situation where both the numerator and the difference between the denominator
and the numerator of the proportion are greater than 5. ‘‘Wald’’ indicates Wald’s
confidence interval (Wald and Wolfowitz, 1939) with continuity correction, based on
maximum-likelihood estimation of a proportion, and adding a continuity correction; it
is valid where the numerator and the difference between the denominator and numera-
tor are greater than 20. Similarly to the ‘‘Exact’’ method, when ‘‘Quadratic’’ or
‘‘Wald’’ approaches are not valid for any value of the corresponding accuracy mea-
sure, the program shows a warning message. However, in these cases the confidence
intervals are computed. We therefore recommend the user to check the conditions un-
der which these methods are valid at the optimal cutpoint. The ‘‘AgrestiCoul l’’
option computes the confidence interval proposed by Agresti and Coull (1998), and is a
score confidence interval that does not use the standard calculation for the binomial pro-
portion. Finally, ‘‘‘RubinSchenker’’ means Rubin and Schenker’s logit confidence
interval (1987), and uses logit transformation and bayesian arguments with an a priori
Jeffreys distribution. The default is ‘‘Exact’’.

In the ci.DLR argument, ‘‘Transformed’’, ‘‘NotTransformed’’ and ‘‘Gart
Nam’’ are the available options. ‘‘Transformed’’ indicates the confidence interval
based on the logarithmic transformation of the diagnostic likelihood ratios (Simel et al.,
1991), ‘‘NotTransformed’’ is the confidence interval without transformation (Koop-
man, 1984), and ‘‘GartNam’’ is the confidence interval based on the calculation of the
interval for the ratio of two independent proportions (Gart and Nam, 1998). The default
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is ‘‘Transformed’’. Inference of the predictive values depends on the type of study,
i.e., whether cross-sectional (prevalence can be estimated on the basis of the sample) or
case-control. In the former case, the approaches for calculating the confidence intervals
of the predictive values are the same as for the sensitivity and specificity measures. Ac-
cordingly, in such a case, the possible options for the ci.PV argument are ‘‘Exact’’,
‘‘Quadratic’’, ‘‘Wald’’, ‘‘AgrestiCoull’’ and ‘‘RubinSchenker’’. In a
case-control study, however, the confidence intervals of the predictive values should
be based on the intervals of the likelihood ratios. Therefore, the available options are
‘‘Transformed’’, ‘‘NotTransformed’’ and ‘‘GartNam’’. The default value is
‘‘Exact’’.

For greater detail, the Help Manual of the optimal.cutpoints and control.cut
points functions can be consulted. In addition, the last subsection gives an illustration
of the use of these two functions, based on the real biomedical CAD example.

Numerical and graphical summaries of the created object can be obtained by using
the summary.optimal.cutpoints function or summary method, print.optimal.
cutpoints function or print method and plot.optimal.cutpoints function or
plot method.

5.1.3 summary.optimal.cutpoints() function

Numerical results are printed on the screen, and the output yielded by the summary.op
timal.cutpoints function or summary method always includes:

• The matched call to the main function optimal.cutpoints

• The AUC value with its confidence interval (Delong et al., 1988)

• Information relating to the optimal cutpoint:

– The method used for selecting the optimal value together with the number of
optimal cutpoints (in some cases there may be more than one value)

– The optimal cutoff(s) and its/their accuracy-measure estimates (Se, Sp, etc.).
Furthermore, accuracy measures will be accompanied by their confidence in-
tervals, if the se.fit argument is TRUE

– The number of false positive and false negative classifications; and, where
possible, the value of the optimal criterion.

All this information will be shown for each level of categorical covariate, if speci-
fied.

The call to the function is as follows:

R> summary(object, ...)

The object argument is of class optimal.cutpoints as produced by optimal.cut
points function.
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... indicates further arguments passed to or from other methods. None are used in this
method.

5.1.4 plot.optimal.cutpoints() function

The graphical output is yielded by the plot.optimal.cutpoints function or the
plot method. This function plots empirical ROC and PROC curves and, where possible,
the plot of the chosen optimal criterion versus all the different test values (candidates for
the optimal cutpoint). Usage is as follows:

R> plot(x, legend = TRUE, which = c(1,2), ...)

The x argument is an object of class optimal.cutpoint as produced by optimal.
cutpoints function.

The argument legend is a logical value for including the legend of optimal coordinates
with specific characteristics and by default is TRUE.

which is a numeric vector with the required plots and by default, both the ROC and the
PROC curves are plotted.

... indicates further arguments passed to method plot.default.

5.1.5 Technical features

In this subsection, certain specific characteristics of some methods and the behavior of
the package in such cases are briefly explained. The methods in which a minimum
value is set for sensitivity, specificity or the predictive values (the ‘‘MinValueSe’’,
‘‘MinValueSp’’, ‘‘MinValuePPV’’ and ‘‘MinValueNPV’’methods, respectively),
can take several or even zero values. In the latter case, an error message is shown and the
user can enter a new minimum value, if desired. In a case where there is more than one
cutpoint fulfilling the condition, that which maximizes the other measure is chosen as
the optimal cutpoint(s). For example, in the ‘‘MinValueSp’’ method, if there is more
than one cutpoint with Sp ≥ minValueSp, that which yields the maximum sensitivity is
chosen. So, the cutpoint(s) that achieves the highest sensitivity and specificity under the
condition Sp ≥ minValueSp are finally chosen.

The same behavior has been used for the methods that set minimum values for both
the sensitivity and specificity measures (‘‘MinValueSpSe’’ method) or for both pre-
dictive values (‘‘MinValueNPVPPV’’ method). The only difference is that if there is
more than one cutpoint fulfilling these conditions, those which yield maximum sensitiv-
ity or maximum specificity (in ‘‘MinValueSpSe’’) or maximum predictive positive
value or negative predictive value (in ‘‘MinValueNPVPPV’’) are chosen. The user
can select one of the two options by means of the maxSp and maxNPV arguments in
the control.cutpoints function, respectively (see Table 5.3). If TRUE (the default
value), the cutpoint/s yielding maximum specificity or maximum negative predictive
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value is/are computed as the optimal cutpoint(s).

Finally, it should be noted that, in the last version of the package, only criteria pro-
posed in the literature that provide different optimal values have been included. For in-
stance, the ‘‘Youden’’ method is identical (from an optimization point of view) to the
method that maximizes the sum of sensitivity and specificity (Albert and Harris, 1987;
Zweig and Campbell, 1993) and to the criterion that maximizes concordance, which is a
function of the AUC defined as Se+Sp−0.5 (Begg et al., 2000; Gönen and Sima, 2013). So,
these last two methods are not included in the package. Similarly, ‘‘MaxProdSpSe’’
is the same as the method which maximizes the accuracy area just defined as the product
of sensitivity and specificity (Lewis et al., 2008). Moreover, the method that maximizes
efficiency or accuracy (‘‘MaxEfficiency’’ method in OptimalCutpoints) provides the
same optimal cutpoint as the method that minimizes the classification error rate (Metz,
1978). Thus, the method based on the accuracy area and the method of minimum error
rate have not been incorporated in OptimalCutpoints.

5.1.6 Biomedical application

This subsection describes the application of the OptimalCutpoints R package. To illustrate
the use of this package, we shall consider the study that sought to investigate the clinical
usefulness of leukocyte elastase for diagnosis of coronary artery disease (CAD) (Amaro
et al., 1995) as example for illustrating the use of this package. Usefulness refers to the
practical value of information when it comes to managing patients. The main research
question here is to select optimal cutpoints for leukocyte elastase concentrations at the
date of diagnosing patients with CAD. Depending on a predetermined elastase concen-
tration cutpoint, subjects are chosen for coronary angiography. We remind here that 96
individuals had coronary lesions (diseased patients) and 45 had non-stenotic coronaries
(non-diseased patients). Since it is well established that elastase concentrations behave
differently according to gender, the analyses were performed here separately for male s
and females.

The first step for using the package consists of loading the OptimalCutpoints package
and the data set in R (in this case, the elas data is included in the package):

R> library("OptimalCutpoints")

R> data("elas")

If we want to view here summary statistics of the variables included in the data set:

R> summary(elas)

elas status gender
Min. : 5.00 Min. :0.0000 Female: 37
1st Qu.: 27.00 1st Qu.:0.0000 Male :104
Median : 39.00 Median :1.0000
Mean : 43.28 Mean :0.6809
3rd Qu.: 51.00 3rd Qu.:1.0000
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Max. :163.00 Max. :1.0000

To compute the optimal cutpoint using the elas data set, simply use the syntax shown
below:

R> cutpoint1 <- optimal.cutpoints(X = "elas", status = "status",
+ tag.healthy = 0, methods = c("Youden","SpEqualSe"), data = elas,
+ categorical.cov = "gender", pop.prev = NULL, control =
+ control.cutpoints(), ci.fit = TRUE)

In this case, by way of example, two methods are considered for calculating the
optimal cutpoint, namely, the method based on the Youden index, and the sensitivity-
specificity equality criterion, since these are two of the best-known and most widely used
methods in clinical practice (Youden, 1950; Greiner, 1995; Aoki et al., 1997; Shapiro, 1999;
Greiner et al., 2000). If no adjustment is made for any categorical covariate, one is left
with the default value of the categorical.cov argument: categorical.cov=NULL,
and so there is no need for it to be indicated. As the intention here, however, is to per-
form separate analyses for males and females, the categorical.cov = ‘‘gender’’
must be indicated. As this example involves a cross-sectional study, disease prevalence
is estimated on the basis of sample prevalence, and so the default value, pop.prev =
NULL. In another type of study, end-users could indicate a given value for the population
prevalence. Fin ally, as the argument ci.fit is TRUE, the confidence intervals for the
accuracy measures are computed. By default, the ‘‘Exact’’ method is used for the
sensitivity, the specificity and the predictive values. As pointed out before, this method
cannot be applied in those situations where the TP s, the FP s, the TNs or the FNs are
equal to zero. In these cases, the program produces a warning, and returns a NaN for
the limit of the confidence interval that could not be computed. Specifically, in this ex-
ample eight warning messages appear: four warnings for females (for the sensitivity, the
specificity, and the positive and negative predictive values), and four similar warnings
for males.

The cutpoint1 object is a list that consists of the following components:

R> names(cutpoint1)

[1] "Youden" "SpEqualSe" "methods" "levels.cat" "call" "data"

The component ‘‘methods’’ is a character vector with the value of the argument
methods used in the call; ‘‘levels.cat’’ is a character vector indicating the lev-
els of the categorical covariate; ‘‘call’’ is the matched call; and finally, ‘‘data’’
is the data frame used in the analysis. The first two components (‘‘Youden’’ and
‘‘SpEqualSe’’) contain the results associated with each of the methods selected for
computing the optimal cutpoint. In this case, each of these components is itself a two-
component list (for ‘‘Male’’ and ‘‘Female’’) containing:

R> names(cutpoint1$Youden$Male)

"measures.acc" "optimal.cutoff" "criterion" "optimal.criterion"
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Each of the previous components contains the following information:

(i) ‘‘measures.acc’’: a list with all cutoffs, their accuracy measures (Se, Sp, PPV ,
NPV ,DLR+ andDLR−), the AUC, and prevalence and sample size in healthy and
diseased populations:

R> names(cutpoint1$Youden$Male$measures.acc)

[1] "cutoffs" "Se" "Sp" "PPV" "NPV"
[6] "DLR.Positive" "DLR.Negative" "AUC" "pop.prev" "n"

(ii) ‘‘optimal.cutoff’’: a list with the optimal cutoff(s), its/their accuracy mea-
sures (Se, Sp, PPV , NPV , DLR+ and DLR−), and the number of false positive
and false negative decisions:

R> names(cutpoint1$Youden$Male$optimal.cutoff)

[1] "cutoff" "Se" "Sp" "PPV" "NPV"
[6] "DLR.Positive" "DLR.Negative" "FP" "FN"

(iii) ‘‘criterion’’: the numerical value of the method considered for selecting the
optimal cutpoint for each cutoff:

R> cutpoint1$Youden$Male$criterion

1 2 3 4 5 6 7
0.00000000 0.04347826 0.08695652 0.10574342 0.09339775 0.13687601 0.18035427

8 9 10 11 12 13 14
0.22383253 0.25496511 0.23027375 0.21792807 0.19323671 0.14385400 0.22490607

[...]

50 51 52 53 54 55 56
0.08641975 0.07407407 0.06172840 0.04938272 0.03703704 0.02469136 0.01234568

(iv) ‘‘optimal.criterion": the numerical value of the criterion at the optimal cut-
point:

R > cutpoint1$Youden$Male$optimal.criterion
[1] 0.3934514

Accordingly, end-users can easily access each of these components, e.g., to see the sensi-
tivity values for all cut values in males:

R> cutpoint1$Youden$Male$measures.acc$Se

or

R> cutpoint1$SpEqualSe$Male$measures.acc$Se
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Numerical results

A numerical summary of the results can be obtained by calling up the print.optimal.
cutpoints or summary.optimal.cutpoints functions, which can be abbreviated
by print and summary methods:

R> summary(cutpoint1)

Call:
optimal.cutpoints.default(X = "elas", status = "status",

tag.healthy = 0, methods = c("Youden", "SpEqualSe"),
data = elas, categorical.cov = "gender", pop.prev = NULL,
control = control.cutpoints(), ci.fit = TRUE)

***************************************************************
Female

***************************************************************

Area under the ROC curve (AUC): 0.818 (0.684, 0.952)

CRITERION: Youden
Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit
cutoff 46.0000000 - -
Se 0.6666667 0.3838037 0.8817589
Sp 0.8181818 0.5971542 0.9481327
PPV 0.7142857 0.4516107 0.9031160
NPV 0.7826087 0.5285570 0.9359958
DLR.Positive 3.6666667 1.4096667 9.5373214
DLR.Negative 0.4074074 0.1939348 0.8558589
FP 4.0000000 - -
FN 5.0000000 - -
Optimal criterion 0.4848485 - -

CRITERION: SpEqualSe
Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit
cutoff 41.00000000 - -
Se 0.73333333 0.4489968 0.9221285
Sp 0.68181818 0.4512756 0.8613535
PPV 0.61111111 0.3762084 0.8712446
NPV 0.78947368 0.5263331 0.9157684
DLR.Positive 2.30476190 1.1634481 4.5656764
DLR.Negative 0.39111111 0.1611869 0.9490094
FP 7.00000000 - -
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FN 4.00000000 - -
Optimal criterion 0.05151515 - -

*******************************************************************
Male

*******************************************************************

Area under the ROC curve (AUC): 0.722 (0.612, 0.831)

CRITERION: Youden
Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit
cutoff 38.0000000 - -
Se 0.6543210 0.5404147 0.7565737
Sp 0.7391304 0.5159480 0.8977139
PPV 0.8983051 0.7686835 0.9355009
NPV 0.3777778 0.2738718 0.6528595
DLR.Positive 2.5082305 1.2382379 5.0807845
DLR.Negative 0.4676834 0.3180320 0.6877538
FP 6.0000000 - -
FN 28.0000000 - -
Optimal criterion 0.3934514 - -

CRITERION: SpEqualSe
Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit
cutoff 36.00000000 - -
Se 0.66666667 0.5531734 0.7675667
Sp 0.60869565 0.3854190 0.8029236
PPV 0.85714286 0.7075091 0.9083152
NPV 0.34146341 0.2429772 0.5759222
DLR.Positive 1.70370370 1.0003372 2.9016279
DLR.Negative 0.54761905 0.3492857 0.8585711
FP 9.00000000 - -
FN 27.00000000 - -
Optimal criterion 0.05797101 - -

In this case, the summary.optimal.cutpoints function or the summary method
displays the information relating to the optimal cutpoint, i.e., the methods used for se-
lecting the optimal value here were ‘‘Youden’’ and ‘‘SpEqualSe’’, and the optimal
cutpoints as well as their accuracy measures are shown for both methods and for males
and females. Optimal criteria refer to the Youden index (i.e., the value Se + Sp − 1 at
optimal cutpoint) and the Se− Sp difference at optimal cutoff. It must be borne in mind
that, as the choice of the cutpoint is made on the basis of the empirical ROC curve, it is
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not always possible to obtain the value c of the sample for which Se(c)=Sp(c); here the
cutpoint c/minc{|Ŝe(c)− Ŝp(c)|} is obtained.

As in the call to the function, ci.fit = TRUE, the accuracy measures -as pointed
out above- appear accompanied by their corresponding confidence intervals. By default,
confidence intervals for the AUC and accuracy measures are calculated for a confidence
level α of 0.95, though this value can be changed in the conf.level argument of the
main optimal.cutpoints function. Moreover, the exact confidence interval (Clopper
and Pearson, 1934) is being calculated by default for the sensitivity, specificity and pre-
dictive values measures (in this case the inference for these values is correct, since it is
a cross-sectional study; if it were a case-control study, however, the method of calculat-
ing the confidence interval for the predictive values would have to be changed), and for
the interval based on the transformation logarithm for the likelihood ratios (Simel et al.,
1991). These methods for calculating confidence intervals can be changed by means of the
ci.SeSp, ci.PV and ci.DLR arguments, which appear in the control.cutpoints
function. Hence, if one wanted to change the method of calculating the confidence in-
terval for the sensitivity and specificity measures, one would only have to indicate this
using the following syntax:

R> cutpoint2 <- optimal.cutpoints(X = "elas", status = "status",
+ tag.healthy = 0, methods = c("Youden","SpEqualSe"), data = elas,
+ pop.prev = NULL, categorical.cov = "gender", control =
+ control.cutpoints(ci.SeSp = "AgrestiCoull"), ci.fit = TRUE)

R> summary(cutpoint2)

In this case, the results would be as follows:

Call:
optimal.cutpoints.default(X = "elas", status = "status",

tag.healthy = 0, methods = c("Youden", "SpEqualSe"),
data = elas, categorical.cov = "gender", pop.prev = NULL,
control = control.cutpoints(ci.SeSp = "AgrestiCoull"),
ci.fit = TRUE)

*************************************************
Female

*************************************************
Area under the ROC curve (AUC): 0.818 (0.684, 0.952)

CRITERION: Youden
Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit
cutoff 46.0000000 - -
Se 0.6666667 0.4171355 0.8482368
Sp 0.8181818 0.6148339 0.9269312
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[...]

CRITERION: SpEqualSe
Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit
cutoff 41.00000000 - -
Se 0.73333333 0.4804957 0.8910255
Sp 0.68181818 0.4731860 0.8363941
[...]

*************************************************
Male

*************************************************
Area under the ROC curve (AUC): 0.722 (0.612, 0.831)

CRITERION: Youden
Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit
cutoff 38.0000000 - -
Se 0.6543210 0.5458938 0.7487735
Sp 0.7391304 0.5353000 0.8745138
[...]

CRITERION: SpEqualSe
Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit
cutoff 36.00000000 - -
Se 0.66666667 0.5585284 0.7597123
Sp 0.60869565 0.4078552 0.7784238
[...]

Note that the exploration of the usefulness of medical information involves many fac-
tors which, rather than being properties of the test system, are instead properties of the
circumstances of the clinical application. With respect to clinical interpretation, the fol-
lowing result was obtained: leukocyte elastase determination was shown to be a test that
displays good “diagnostic accuracy” or ability to discriminate between patients with and
without CAD, particularly in women (AUC=0.82 in women versus AUC=0.72 in men).
The cutpoint obtained using the criterion based on the Youden index for women was
46 µgl−1. Accordingly, women with an elastase value higher than or equal to 46 were
classified as patients with CAD. Using this cutpoint, 82% of women without CAD and
67% of women with CAD were correctly classified (4 false positive and 5 false negative
classifications). Furthermore, 78% of women who registered a negative test result (i.e., an
elastase value lower tha n 46) did not really present with CAD, while 71% of women with
a positive result did in fact present with the disease. The likelihood of a female having
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CAD increased by 3.67 in the case of a positive test result and, conversely, decreased by
0.41 in the case of a negative test result.

In the case of men, the cutpoint obtained using the criterion based on the Youden
index was 38 µgl−1, a value lower than that obtained for women. This means that men
with elastase values higher than or equal to 38 µgl−1 were classified as CAD patients.
On the basis of this value, 65% of the men who presented with the disease were correctly
classified by determination of elastase (positive value) and 74% of those who did not
present with CAD were likewise correctly classified (negative value, elastase lower than
38 µgl−1). Of the men who registered a positive elastase value, almost 90% really had
CAD but among those who registered a negative elastase value, only 37% did not really
have the disease. Moreover, the likelihood of a male having CAD was 2.5-fold if the test
result was positive (elastase ≥ 38 µgl−1) and 0.47-fold if the test result was negative.

If, instead of the Youden criterion, one applies the method that selects the cutoff at
which sensitivity is equal to specificity, one obtains optimal cutpoints lower than those
previously obtained (equal to 41 µgl−1 in women and 36 µgl−1 in men), and the same
conclusions can be drawn as in the previous case. The only difference is that, when the
optimal value falls, the measures of sensitivity (and thus the false positive decisions) and
negative predictive value increase, while the measures of specificity (and false negatives),
positive predictive value and likelihood ratios all decrease.

The Youden index can also be interpreted from a cost-benefit analysis perspective.
The slope of the ROC curve at the optimal cutpoint obtained using this index is equal to
1 (Perkins and Schisterman, 2006), which is equivalent to having a prevalence equal to
0.5 and a costs ratio equal to 1. If one wished to calculate the optimal value taking this
into account, one would have to specify that the costs.benefits.Youden argument
of the control.cutpoints function was set as TRUE:

R> cutpoint3 <- optimal.cutpoints(X = "elas", status = "status",
+ tag.healthy = 0, methods = c("Youden","SpEqualSe"), data = elas,
+ pop.prev = NULL, categorical.cov = "gender", control =
+ control.cutpoints(costs.benefits.Youden = TRUE), ci.fit = TRUE)

The Youden index gives equal weight to sensitivity and specificity. Sometimes, how-
ever, different weights are suitable (based on the cost of the different types of error
and the prevalence of the disease), and in such a case the generalized Youden index
can be used. This possibility was also implemented in the OptimalCutpoints package,
within the ‘‘Youden’’ method. For the purpose, this only has to be indicated in the
generalized.Youden argument of the control.cutpoints function.
If generalized.Youden = TRUE, the generalized Youden index is computed. In the
absence of a value being indicated for costs of incorrect diagnostic decisions or preva-
lence, CFP = CFN = 1 is considered by default (a situation equivalent to having no
costs), and prevalence is estimated on the basis of the sample, in this case p = 0.77885
in males, and p = 0.40541 in females. If the end-user wishes to specify any given costs,
these must be in dicated in the CFP and CFN arguments of the control.cutpoints
function, within the control argument in the main function, e.g.:
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R> cutpoint4 <- optimal.cutpoints(X = "elas", status = "status",
+ tag.healthy = 0, methods = c("Youden","SpEqualSe"), data = elas,
+ pop.prev = NULL, categorical.cov = "gender", control =
+ control.cutpoints(generalized.Youden = TRUE, CFP = 1, CFN = 3),
+ ci.fit = TRUE)

So, in this case, assuming that an FN result has triple the cost of an FP result, the
Youden index would yield some cutpoints that were lower than those obtained without
considering misclassification costs, (25 µgl−1 in women and 13 µg−1 in men). Hence,
with these optimal values, the presence of false negatives (zero false negative decisions)
is avoided, and some maximum values (equal to 1) are attained for sensitivity and also
the negative predictive value.

To change the value of the population prevalence, this only has to be directly indi-
cated in the pop.prev argument of the optimal.cutpoints function. For instance,
with a prevalence equal to 0.5 and costs equal to 1, the generalized Youden index is
equivalent to the Youden index (the results would be the same):

R> cutpoint5 <- optimal.cutpoints(X = "elas", status = "status",
+ tag.healthy = 0, methods = c("Youden","SpEqualSe"), data = elas,
+ pop.prev = 0.5, categorical.cov = "gender", control =
+ control.cutpoints(generalized.Youden = TRUE), ci.fit = TRUE)

It could also be indicated as follows, by using a two-component vector (number of
levels of the covariate) to specify the prevalence:

R> cutpoint5 <- optimal.cutpoints(X = "elas", status = "status",
+ tag.healthy = 0, methods = c("Youden","SpEqualSe"), data = elas,
+ pop.prev = c(0.5,0.5), categorical.cov = "gender", control =
+ control.cutpoints(generalized.Youden = TRUE), ci.fit = TRUE)

Graphical results

The graphical output of the results can be obtained by calling up the plot.optimal.
cutpoints function, which can be abbreviated by the plot method:

R> plot(cutpoint1)

By default, the plot method depicts the plots of the ROC and PROC curves (which
= c(1,2)). However, the plot of the values of the optimal criterion as a function of the
cutoffs can, where applicable, be obtained by specifying the argument which = 3:

R> plot(cutpoint1, which = 3, ylim = c(0,1))

Figures 5.1 and 5.2 show the figures that appear as a result of the above calls in
females and males, respectively. This is the default output but the end-user can add
specific graphic parameters, such as color, legend, etc.
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Figure 5.1: Graphical output in females. From left to right: ROC curve, PROC curve and
optimal criterion (according to cutpoints). From top to bottom: the Youden index and
sensitivity-specificity equality criteria.
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Figure 5.2: Graphical output in males. From left to right: ROC curve, PROC curve and
optimal criterion (according to cutpoints). From top to bottom: the Youden index and
sensitivity-specificity equality criteria.
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Furthermore, other figures are also possible, e.g., in the method in which sensitivity
and specificity are equal, the plot of these measures (jointly) according to the cutpoint
may be of interest. This graph can be created on the basis of the pertinent components
yielded with the optimal.cutpoints function. For instance, for males, the code is as
follows:

R> plot(cutpoint1$SpEqualSe$Male$measures.acc$cutoffs,
+ cutpoint1$SpEqualSe$Male$measures.acc$Se[,1],
+ xlab = "Cutpoint", ylab = "Sensitivity and Specificity",
+ type = "l", lty = 2, main = "Sensitivity and Specificity
+ Males")

R> lines(cutpoint1$SpEqualSe$Male$measures.acc$cutoffs,
+ cutpoint1$SpEqualSe$Male$measures.acc$Sp[,1], xlab ="Cutpoint",
+ ylab = "Sensitivity and Specificity", type = "l")

R> legend("topright", legend = c("Se","Sp"), lty = c(2,1),
+ bty = "n")

And similarly for females (see Figure 5.3).
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Figure 5.3: Sensitivity (dotted line) and specificity (solid line) plots according to cutpoints
for females (left panel) and males (right panel).
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5.2 The GsymPoint Package

In this section we present GsymPoint, a package written in R for estimating the Gener-
alized Symmetry point that is freely available from the Comprehensive R Archive Net-
work (CRAN) at http://CRAN.R-project.org/package=GsymPoint. This pack-
age enables end-users to obtain the point estimates and the (1−α)% confidence intervals
(with α the signification level) using the recent methodologies introduced in ROC curves
(Molanes-López and Letón, 2011; Lai et al., 2012) for the Generalized Symmetry point and
its corresponding sensitivity and specificity indexes, taking into account the misclassifi-
cation costs. Specifically, the two estimating methods presented in the previous chapter,
the Generalized Pivotal Quantity method (Weerahandi, 1993, 1995; Lai et al., 2012) and
the Empirical Likelihood method (Thomas and Grunkemeier, 1975; Molanes-López and
Letón, 2011) have been incorporated in a clear and user-friendly way for the end-user
Similarly to the OptimalCutpoints package (López-Ratón and Rodrı́guez-Álvarez, 2014;
López-Ratón et al., 2014), the estimation of the optimal value can be computed straight-
forwardly by the levels of given (categorical) covariates since the discrimination capacity
of a marker may depend on certain characteristics, such as the gender or age of the pa-
tient or the severity of disease (Pepe, 2004); and the GsymPoint package only requires
a data-entry file where each column indicates a variable and each row indicates a pa-
tient/case. This dataset must, at least, contain the variable that indicates the diagnostic
marker, the variable that indicates the true disease status (diseased/healthy) and if the
optimal value is computed according to a (categorical) covariate, a variable that indicates
the levels of such covariate. The numerical output of GsymPoint package includes the
Generalized Symmetry point and its corresponding sensitivity and specificity accuracy
measures with their associated (1 − α)% confidence intervals. In basis on the graphical
interpretation of the Generalized Symmetry point, the graphical output shows the inter-
section point between the ROC curve and the line y = 1- ρ x, that is, the operating point
in the ROC curve corresponding to the Generalized Symmetry point. Table 5.4 provides
a summary of the most important functions included in the package.

5.2.1 gsym.point() function

The main function of the package is the gsym.point function, which uses the selected
method(s) (GPQ and/or EL) to obtain (parametric and/or nonparametric) confidence
intervals and point estimates for the Generalized Symmetry point and its corresponding
sensitivity and specificity accuracy measures, and creates a class gsym.point object.

The code to use the gsym.point function is as follows:

gsym.point (methods, data, marker, status, tag.healthy,
categorical.cov = NULL, CFN = 1, CFP = 1, control =
control.gsym.point(), confidence.level = 0.95,
trace = FALSE, seed = FALSE, value.seed = 3)

The methods argument is a character vector selecting the method(s) to be used for
estimating the Generalized Symmetry point and its corresponding accuracy measures.
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Function Description

gsym.point Computes the Generalized Symmetry point and
its sensitivity and specificity accuracy measures
with their corresponding confidence intervals.

control.gsym.point Function used to set several parameters that con-
trol the optimal-cutpoint estimating process.

print Print method for objects fitted with gsym.point.

summary Produces a summary of a gsym.point object.

plot Plot method for objects fitted with gsym.point.
Includes the plot of the ROC and the line y=1-ρ x.
The intersection point between them is the operat-
ing point associated to the Generalized Symmetry
point.

Table 5.4: Summary of functions in the GsymPoint package.

The possible options are: "GPQ", "EL", c("GPQ","EL") or c("EL","GPQ").

The data argument is the data frame containing all the needed variables: the diag-
nostic marker, the true disease status and when it is neccesary, the categorical covariate;
marker and status arguments are character strings with the names of the diagnos-
tic test variable and the variable that distinguishes healthy from diseased individuals,
respectively. The value codifying healthy individuals in this last variable status is in-
dicated in the tag.healthy argument.

The categorical.cov argument is a character string with the name of the cate-
gorical covariate according to which the Generalized Symmetry point is automatically
computed for each of its levels. By default it is NULL, that is, no categorical covariate is
considered in the analysis.

The CFN and CFP arguments are the misclassification costs of false negative and false
positive classifications, respectively. The default value is 1 for both.

The control argument indicates the output of the control.gsym.point function,
which controls the whole optimal-cutpoint calculation process. This function will be ex-
plained in detail in the following subsection.

The confidence.level argument is the numerical value of the confidence level
1− α for the construction of the confidence intervals. By default it is equal to 0.95.
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The trace argument is a logical value that shows information on the progress if
TRUE. By default it is FALSE.

The seed argument is a logical value, such that if TRUE, a seed is fixed for generating
the trials when computing the confidence intervals. The default value is FALSE.

The value.seed argument is the numerical value for the fixed seed if seed is TRUE,
and the default value is equal to 3.

Some of these arguments, methods, data, marker, status and tag.healthy, are
essential and therefore they must be specified in the call to the gsym.point function.
The other arguments, categorical.cov, control, conf.level and trace, are op-
tional and therefore, if they are not specified, the default values will be considered.

5.2.2 control.gsym.point() function

It should be noted that there are some extra arguments, specific to each estimation method.
We considered to include all of them in the control argument, which is a list of control
values specified by calling to the control.gsym.point function, designed to replace
the default values yielded by the control.gsym.point function. The arguments of
the control.gsym.point function are presented in Table 5.5.

5.2.3 summary.gsym.point() function

Numerical results are printed on the screen, and the output yielded by the summary.gsym.
point function or the summary method always includes:

• The matched call to the main function gsym.point

• The area under the ROC curve (AUC) estimated value.

• Information relating to the Generalized Symmetry point as the optimal cutpoint:

– The method(s) used for estimating the optimal value (EL or GPQ method)

– The Generalized Symmetry point, that is, the optimal cutoff and its accuracy-
measure estimates Se and Sp, with their confidence intervals.

All this information will be shown for each level of categorical covariate, if speci-
fied.

The call to this function is as follows:

R> summary(object, ...)
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Argument Description

B The number of simulations in the Empirical Like-
lihood (“EL”) method. The default value is 499.

csampling The constant needed for resampling in the Empir-
ical Likelihood (“EL”) method. The default value
is 0.25.

cF The constant needed for estimating the distribu-
tion in the Empirical Likelihood (“EL”) method.
The default value is 0.25.

cELq The constant needed for estimating the empiri-
cal likelihood function in the Empirical Likelihood
(“EL”) method. The default value is 0.25.

cR The constant needed for estimating the ROC curve
in the Empirical Likelihood (“EL”) method. The
default value is 0.25.

I The number of replicates in the Generalized Piv-
otal Quantity (“GPQ”) method. The default value
is 2500.

Table 5.5: Summary of arguments of the control.gsym.point function.

The object argument is an object of class gsym.point as produced by gsym.point
function.

... indicates further arguments passed to or from other methods. None are used in this
method.

5.2.4 plot.gsym.point() function

The graphical output of the GsymPoint package is yielded by the plot.gsym.point
function or by the plot method. This function plots the ROC curve and the line y = 1-
ρx. Usage is as follows:

R> plot(x, legend = TRUE,...)

The x argument is an object of class gsym.point as produced by the gsym.point func-
tion.
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The argument legend is a logical value for including the legend of the AUC value with
its confidence interval when it is TRUE (value by default).

... indicates further arguments passed to the method plot.default.

5.2.5 Biomedical applications

This section illustrates the use of the R-based GsymPoint package by means of three
biomedical datasets on melanoma, prostate cancer, and coronary artery disease, which
have already been analyzed in previous chapters.

Melanoma dataset

We have analyzed in the previous chapter a dataset on 72 patients with suspicious lesions
of being a melanoma, considering the CSS as the diagnostic marker for discriminating if
a suspicious pigmented lesion on the skin is (or not) a melanoma (Venkatraman and
Begg, 1996). In this case, a biopsy detected 21 melanomas. So, the main objective here is
to illustrate the use of the GsymPoint package for estimating the Generalized Symmetry
point as the optimal cutpoint for CSS to diagnose melanoma lesions on the skin. The first
step consists on downloading the GsymPoint package and the melanoma dataset in R:

R> library(GsymPoint)

R> data(melanoma)

To view summary statistics of the variables included in the data set:

R> summary(melanoma)

X group
Min. :-5.88100 Min. :0.0000
1st Qu.:-3.22100 1st Qu.:0.0000
Median :-1.69550 Median :0.0000
Mean :-1.55642 Mean :0.2917
3rd Qu.: 0.00675 3rd Qu.:1.0000
Max. : 3.03200 Max. :1.0000

To estimate the Generalized Symmetry point using the melanoma dataset, we have
to use the commands shown below. For the misclassification costs we have considered
firstly CFN = 2 and CFP = 1, taking into account therefore that a false negative deci-
sion is 2 times more serious than a false positive decision. Since the CSS values can be
considered normally distributed in both melanoma and non-melanoma groups, accord-
ing to the Shapiro-Wilk normality test, as we pointed out in the previous chapter, the
GPQ method is the more adequate in this case for estimating the Generalized Symmetry
point.
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R> cutpoint1 <- gsym.point(methods = "GPQ", data = melanoma,
+ marker = "X", status = "group", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 2, CFP = 1, control =
+ control.gsym.point(),confidence.level = 0.95, trace = FALSE,
+ seed = TRUE, value.seed = 3)

The cutpoint1 object is a list that consists of the following components: "GPQ";
"methods"; "call"; and "data":

R> names(cutpoint1)

"GPQ" "methods" "call" "data"

The component "methods" is a character vector with the value of the argument
methods used in the call; "call" is the matched call; and finally, "data" is the data
frame used in the analysis (in this case the melanoma dataset). The first component
("GPQ") contains the results associated with the GPQ method for estimating the Gener-
alized Symmetry point:

R> names(cutpoint1$GPQ)
[1] "Global"

R> names(cutpoint1$GPQ$Global)
[1] "optimal.result" "AUC" "rho"
[4] "pvalue.healthy" "pvalue.diseased"

1) "optimal.result" is a list with the Generalized Symmetry point and its associated
sensitivity and specificity indexes with the corresponding (1−α)% confidence intervals,

2) "AUC": is a list with the numerical value of the area under the ROC curve;

3) "rho": is the numerical value of the costs ratio ρ = CFP
CFN

;

4)"pvalue.healthy": is the numerical value of the p-value obtained by the Shapiro-
Wilk normality test for checking the normality assumption of the marker in healthy pop-
ulation; and

5) "pvalue.diseased": is the numerical value of the p-value obtained by the Shapiro-
Wilk normality test for checking the normality assumption of the marker in diseased
population.

R>cutpoint1$GPQ

$Global
$Global$optimal.result
$Global$optimal.result$cutoff
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Value ll ul
1 -1.213237 -1.7929079 -0.6283236

$Global$optimal.result$Specificity
Value ll ul

1 0.75465 0.6249716 0.8485824

$Global$optimal.result$Sensitivity
Value ll ul

1 0.877325 0.8124858 0.9242912

$Global$AUC
$Global$AUC$AUC
[1] 0.9056956

$Global$rho
[1] 0.5

$Global$pvalue.healthy
[1] 0.4719117

$Global$pvalue.diseased
[1] 0.9084176

If we do not visualizate all this information, the end-user can directly access each of
these components, for example, to see only the value of the AUC:

R> cutpoint1$GPQ$Global$AUC

$AUC
[1] 0.9056956

A numerical summary of the results can be obtained by calling up the print.gsym.
point or summary.gsym.point functions, which can be abbreviated by the print
and summary methods, respectively:

R> summary(cutpoint1)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT

*************************************************

Call:
gsym.point(methods = "GPQ", data = melanoma, marker = "X",
status = "group", tag.healthy = 0, categorical.cov = NULL,
CFN = 2, CFP = 1, control = control.gsym.point(),
confidence.level = 0.95, trace = TRUE, seed = TRUE, value.seed = 3)
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According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.

Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.4719 0.9084

Area under the ROC curve (AUC): 0.906

METHOD: GPQ

Estimate 95% CI lower limit 95% CI upper limit
cutoff -1.213237 -1.7929079 -0.6283236
Specificity 0.754650 0.6249716 0.8485824
Sensitivity 0.877325 0.8124858 0.9242912

As the parameter seed in the above call is seed = TRUE, if the user needs to replicate
this example, he (or she) just need to run again the same call to obtain the same output,
that is, the same confidence intervals and point estimates previously obtained for the
Generalized Symmetry point and its corresponding sensitivity and specificity indexes.
In this case, the output provided by the summary.gsym.point function shows:

1) an informative message indicating that the marker can be considered normally dis-
tributed in both groups, according to the Shapiro-Wilk normality test,

2) the Shapiro-Wilk test p-values indicating normality in both groups,

3) the AUC value and information relating to the Generalized Symmetry point, that is,
the point estimates and the GPQ based (1 − α)%-confidence intervals for the General-
ized Symmetry point and its corresponding sensitivity and specificity indexes. By de-
fault, confidence intervals for the AUC and accuracy indexes are computed for a de-
fault confidence level, 1 − α, equal to 0.95, although this value can be changed in the
confidence.level argument of the main gsym.point function. Moreover, if the
user wants to change some of the specific parameters of each method, as for instance, the
number of replicates in the ”GPQ” method, this value can be changed by means of the
I argument, which appear in the control.gsym.point function. For example, if the
number of replicates has to be equal to 1500, the user would only have to indicate this
value using the following syntax:

R> cutpoint2 <- gsym.point(methods = "GPQ", data = melanoma,
+ marker = "X", status = "group", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 2, CFP = 1, control =
+ control.gsym.point(I = 1500), confidence.level = 0.95,
+ trace = FALSE, seed = TRUE, value.seed = 3)

R> summary(cutpoint2)
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In this case, the results would be as follows:

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT

*************************************************

Call:
gsym.point(methods = "GPQ", data = melanoma, marker = "X",

status = "group", tag.healthy = 0, categorical.cov = NULL,
CFN = 2, CFP = 1, control = control.gsym.point(I = 1500),
confidence.level = 0.95, trace = FALSE, seed = TRUE,

value.seed = 3)

According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.

Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.4719 0.9084

Area under the ROC curve (AUC): 0.906

METHOD: GPQ

Estimate 95% CI lower limit 95% CI upper limit
cutoff -1.213237 -1.7973143 -0.6206575
Specificity 0.754650 0.6263304 0.8504338
Sensitivity 0.877325 0.8131652 0.9252169

If we wanted to change the method for estimating the Generalized Symmetry point
and to consider the Empirical Likelihood method rather than the Generalized Pivotal
Quantity method, since the diagnostic marker in this case can be assumed normally dis-
tributed in both groups, the program would show an informative message indicating
that the Generalized Pivotal Quantity method is more adequate in this case:

R> cutpoint3 <- gsym.point(methods = "EL", data = melanoma,
+ marker = "X", status = "group", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 2, CFP = 1, control =
+ control.gsym.point(), confidence.level = 0.95, trace =
+ FALSE, seed = TRUE, value.seed = 3)

According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.
Therefore the GPQ method would be more suitable for this dataset.
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Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.4719 0.9084

In this case, the results would be the following:

R> summary(cutpoint3)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT

*************************************************

Call:
gsym.point(methods = "EL", data = melanoma, marker = "X",

status = "group", tag.healthy = 0, categorical.cov = NULL,
CFN = 2, CFP = 1, control = control.gsym.point(),
confidence.level = 0.95, trace = FALSE, seed = TRUE,

value.seed = 3)

According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.
Therefore the GPQ method would be more suitable for this dataset.

Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.4719 0.9084

Area under the ROC curve (AUC): 0.906

METHOD: EL

Estimate 95% CI lower limit 95% CI upper limit
cutoff -1.2382325 -1.8403497 -0.4565671
Specificity 0.7901833 0.6326184 0.8973174
Sensitivity 0.8950916 0.8163092 0.9486587

And the same behaviour if we consider both estimating methods GPQ and EL
simultaneously:

R> cutpoint4 <- gsym.point(methods = c("EL","GPQ"), data =
+ melanoma, marker = "X", status = "group", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 2, CFP = 1,
+ control = control.gsym.point(), confidence.level = 0.95,
+ trace = FALSE, seed = TRUE, value.seed = 3)
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According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.
Therefore, although the results of both methods will be shown,
the GPQ method would be more suitable for this dataset.

Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.4719 0.9084

R> summary(cutpoint4)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT

*************************************************

Call:
gsym.point(methods = c("EL", "GPQ"), data = melanoma, marker = "X",

status = "group", tag.healthy = 0, categorical.cov = NULL,
CFN = 2, CFP = 1, control = control.gsym.point(),
confidence.level = 0.95, trace = FALSE, seed = FALSE,

value.seed = 3)

According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.
Therefore, although the results of both methods will be shown,
the GPQ method would be more suitable for this dataset.

Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.4719 0.9084

Area under the ROC curve (AUC): 0.906

METHOD: EL

Estimate 95% CI lower limit 95% CI upper limit
cutoff -1.2382325 -1.8403497 -0.4565671
Specificity 0.7901833 0.6326184 0.8973174
Sensitivity 0.8950916 0.8163092 0.9486587

METHOD: GPQ

Estimate 95% CI lower limit 95% CI upper limit
cutoff -1.213237 -1.8118902 -0.6817740
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Specificity 0.754650 0.6302884 0.8484081
Sensitivity 0.877325 0.8151442 0.9242040

In case there is a successful treatment for treating the diseased individuals, other
misclassification costs would be more adequate. In fact, this situation would be the op-
posite to that shown previously, that is, a FP decision would be more serious than a FN
classification. If we assume, for instance, that the appropriate misclassification costs are
CFN = 1 and CFP = 2, we have to change these values directly in the call to the main
function gsym.point:

R> cutpoint5 <- gsym.point(methods = "GPQ", data = melanoma,
+ marker = "X", status = "group", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 1, CFP = 2, control =
+ control.gsym.point(), confidence.level = 0.95,
+ trace = FALSE, seed = TRUE, value.seed = 3)

R> summary(cutpoint5)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT

*************************************************

Call:
gsym.point(methods = "GPQ", data = melanoma, marker = "X",

status = "group", tag.healthy = 0, categorical.cov = NULL,
CFN = 1, CFP = 2, control = control.gsym.point(),
confidence.level = 0.95, trace = FALSE, seed = TRUE,

value.seed = 3)

According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.

Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.4719 0.9084

Area under the ROC curve (AUC): 0.906

METHOD: GPQ

Estimate 95% CI lower limit 95% CI upper limit
cutoff -0.4341588 -0.9050401 0.07453657
Specificity 0.8711315 0.8085293 0.91787228
Sensitivity 0.7422630 0.6170586 0.83574457
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The graphical output can be obtained by calling up the plot.gsym.point function,
which can be abbreviated by the plot method:

R> plot(cutpoint1)

The graphical output shows the plot of the Receiver Operating Characteristic (ROC)
curve and the line y = 1-ρ x, where the intersection between them indicates the operating
point corresponding to the Generalized Symmetry point of the CSS marker for discrim-
inating between patients with and without melanoma. Figure 5.4 shows the plot that
appears as a result of the above call. This is the default output but the end-user can add
specific graphic parameters, such as color, legend, etc.
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Figure 5.4: Graphical output of GsymPoint package for melanoma dataset

Prostate cancer dataset

We have considered here again the dataset on prostate cancer analyzed by Le (2006). We
remind that in this data, 20 patients (of the total of 55 patients) has nodal involvement,
and the level of acid phosphatase in blood serum (APBS) (×100) is considered as the
(continuous) diagnostic marker for predicting nodal involvement. We illustrate below
how to apply the GsymPoint package for estimating the Generalized Symmetry point
of the APBS marker that will be used for discriminating between individuals with and
without nodal involvement. To do so, we first have to download the package and the
corresponding prostate dataset in R:

R> library(GsymPoint)
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R> data(prostate)

To view summary statistics of the variables included in this data set:

R> summary(prostate)

marker status
Min. : 40.00 Min. :0.0000
1st Qu.: 50.00 1st Qu.:0.0000
Median : 65.00 Median :0.0000
Mean : 69.42 Mean :0.3774
3rd Qu.: 78.00 3rd Qu.:1.0000
Max. :187.00 Max. :1.0000

After loading the package and the prostate cancer data, for estimating the General-
ized Symmetry point of the APBS marker by means of the GsymPoint package, we will
use the following syntax:

R> cutpoint1 <- gsym.point (methods = "GPQ", data = prostate,
+ marker = "marker", status = "status", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 10, CFP = 1, control =
+ control.gsym.point(), confidence.level = 0.95, trace = FALSE,
+ seed = TRUE, value.seed = 3)

In this biomedical example, a FN result is much more harmful than a FP result and
therefore we have considered that specifically a false negative classification is exactly 10
times more serious than a false positive classification (CFN = 10, CFP = 1) because
cancer is a very serious disease which can cause death. Moreover, since the Shapiro-Wilk
normality test indicated that both groups could be assumed normally distributed (after
a Box-Cox transformation of the data), we have selected the GPQ method as the more
adequate for computing the point estimates and 95% confidence intervals for the Gener-
alized Symmetry point of APBS and its associated sensitivity and sepecificity indexes.

The numerical results will be obtained by means of the print.gsym.point or summary.
gsym.point functions, which can be abbreviated by print and summary methods, re-
spectively:

R> summary(cutpoint1)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT

*************************************************

Call:
gsym.point(methods = "GPQ", data = prostate, marker = "marker",

status = "status", tag.healthy = 0, categorical.cov = NULL,
CFN = 10, CFP = 1, control = control.gsym.point(),
confidence.level = 0.95, trace = FALSE, seed = TRUE,

value.seed = 3)
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According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
indicates that the transformed marker can be considered
normally distributed in both groups.

Box-Cox lambda estimate = -1.2494

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.0000 0.0232
Box-Cox transformed marker 0.3641 0.2118

Area under the ROC curve (AUC): 0.725

METHOD: GPQ

Estimate 95% CI lower limit 95% CI upper limit
cutoff 51.9522523 46.6348952 57.1269332
Specificity 0.3233012 0.1411610 0.5140256
Sensitivity 0.9323301 0.9141161 0.9514026

In this case, the numerical output obtained with the summary.gsym.point func-
tion shows:

1) an informative message indicating that the original data can not be assumed normally
distributed in both groups, but the Box-Cox transformed data can be considered nor-
mally distributed in both groups, according to the Shapiro-Wilk normality test;
2) the estimated value of the Box-Cox power lambda;
3) the estimated value of the area under the ROC curve (AUC), and
4) information corresponding to the Generalized Symmetry point: the point estimates
and the GPQ based (1 − α)% confidence intervals (where α is the signification level) for
the Generalized Symmetry point (the optimal value of APBS for discriminating patients
with prostate cancer) and its corresponding sensitivity and specificity measures. By de-
fault, confidence intervals for the AUC and accuracy measures are computed for a confi-
dence level 1−α of 0.95, although this value can be changed in the confidence.level
argument of the main gsym.point function.

The components of the cutpoint1 object (which is a list) are: "GPQ"; "methods";
"call"; and "data":

R> names(cutpoint1)
"GPQ" "methods" "call" "data"

The first component ("GPQ") contains the results associated with the GPQ method
for estimating the Generalized Symmetry point:
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R> names(cutpoint1$GPQ)
[1] "Global"

R> names(cutpoint1$GPQ$Global)

[1] "optimal.result" "AUC"
[3] "rho" "lambda"
[5] "normality.transformed" "pvalue.healthy"
[7] "pvalue.diseased" "pvalue.healthy.transformed"
[9] "pvalue.diseased.transformed"

1) "optimal.result" is a list with the Generalized Symmetry point and its sen-
sitivity and specificity accuracy measures with the corresponding (1 − α)% confidence
intervals:

R> cutpoint1$GPQ$Global$optimal.result

$cutoff
Value ll ul

1 51.95225 46.6349 57.12693

$Specificity
Value ll ul

1 0.3233012 0.141161 0.5140256

$Sensitivity
Value ll ul

1 0.9323301 0.9141161 0.9514026

2) "AUC": is a list with the numerical value of the area under the ROC curve:

R> cutpoint1$GPQ$Global$AUC

$AUC
[1] 0.725

3) "rho" is the numerical value of ρ = CFP /CFN (in this case ρ = 0.1):

R> cutpoint1$GPQ$Global$rho
[1] 0.1

4) "lambda": is the numerical value of the power used in the Box-Cox transforma-
tion of the GPQ method:

R> cutpoint1$GPQ$Global$lambda
[1] -1.249428
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5) "normality.transformed": is a character string indicating if the transformed
marker values by the Box-Cox transformation are normally distributed ("yes") or not
("no"):

R> cutpoint1$GPQ$Global$normality.transformed
[1] "yes"

6) "pvalue.healthy": is the numerical value of the p-value obtained by the Shapiro-
Wilk normality test for checking the normality assumption of the marker in the healthy
population:

R> cutpoint1$GPQ$Global$pvalue.healthy
[1] 3.276498e-07

7) "pvalue.diseased": is the numerical value of the p-value obtained by the Shapiro-
Wilk normality test for checking the normality assumption of the marker in the diseased
population:

R> cutpoint1$GPQ$Global$pvalue.diseased
[1] 0.02323895

8) "pvalue.healthy.transformed": is the numerical value of the p-value ob-
tained by the Shapiro-Wilk normality test for checking the normality assumption of the
Box-Cox transformed marker in the healthy population:

R> cutpoint1$GPQ$Global$pvalue.healthy.transformed
[1] 0.3640662

9) "pvalue.diseased.transformed": is the numerical value of the p-value ob-
tained by the Shapiro-Wilk normality test for checking the normality assumption of the
Box-Cox transformed marker in the diseased population:

R> cutpoint1$GPQ$Global$pvalue.diseased.transformed
[1] 0.2118137

The component "methods" is a character vector with the value of the argument
methods used in the call; "call" is the matched call; and finally, "data" is the data
frame used in the analysis (in this case the data set on prostate cancer):

R> cutpoint1$methods
[1] "GPQ"

R> cutpoint1$call
gsym.point(methods = "GPQ", data = prostate, marker = "marker",

status = "status", tag.healthy = 0, categorical.cov = NULL,
CFN = 10, CFP = 1, control = control.gsym.point(),
confidence.level = 0.95, trace = FALSE, seed = TRUE,

value.seed = 3)

R> cutpoint1$data
marker status
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1 40 0
2 40 0
3 46 0

[...]

51 99 1
52 126 1
53 136 1

We remind that in the above command for computing the value cutpoint1, the
number of the replicates used in the GPQ method was I = 2500 (the value established by
default). If we want to change such value and to select, for instance, a value of I equal to
2000, this can be changed in the control argument as follows:

R> cutpoint2 <- gsym.point (methods = "GPQ", data = prostate,
+ marker = "marker", status = "status", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 10, CFP = 1, control =
+ control.gsym.point(I = 2000), confidence.level = 0.95,
+ trace = FALSE, seed = TRUE, value.seed = 3)

So, if we use 2000 replicates for estimating the Generalized Symmetry point, the re-
sults would be the following:

R> summary(cutpoint2)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT

*************************************************

Call:
gsym.point(methods = "GPQ", data = prostate, marker = "marker",

status = "status", tag.healthy = 0, categorical.cov = NULL,
CFN = 10, CFP = 1, control = control.gsym.point(I = 2000),
confidence.level = 0.95, trace = FALSE, seed = TRUE,

value.seed = 3)

According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
indicates that the transformed marker can be considered
normally distributed in both groups.

Box-Cox lambda estimate = -1.2494

Shapiro-Wilk test p-values
Group 0 Group 1
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Original marker 0.0000 0.0232
Box-Cox transformed marker 0.3641 0.2118

Area under the ROC curve (AUC): 0.725

METHOD: GPQ

Estimate 95% CI lower limit 95% CI upper limit
cutoff 51.9522523 46.8233675 57.2607208
Specificity 0.3233012 0.1411278 0.5190622
Sensitivity 0.9323301 0.9141128 0.9519062

If we consider the EL method instead of the GPQ method for estimating the Gener-
alized Symmetry point and its accuracy measures, an informative message is shown by
the package, advising the user that the GPQ method would be more suitable in this case,
due to the normality of the Box-Cox transformed marker in both groups:

R> cutpoint3 <- gsym.point (methods = "EL", data = prostate,
+ marker = "marker", status = "status", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 10, CFP = 1, control =
+ control.gsym.point(), confidence.level = 0.95, trace = FALSE,
+ seed = TRUE, value.seed = 3)

According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
indicates that the transformed marker can be considered
normally distributed in both groups.
Therefore the GPQ method would be more suitable for this dataset.

Box-Cox lambda estimate = -1.2494

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.0000 0.0232
Box-Cox transformed marker 0.3641 0.2118

The results for EL method would be the following, where the values of the optimal
cutpoint and specificity are lower than for GPQ method:

R> summary(cutpoint3)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT

*************************************************
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Call:
gsym.point(methods = "EL", data = prostate, marker = "marker",

status = "status", tag.healthy = 0, categorical.cov = NULL,
CFN = 10, CFP = 1, control = control.gsym.point(),
confidence.level = 0.95, trace = FALSE, seed = TRUE,

value.seed = 3)

According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
indicates that the transformed marker can be considered
normally distributed in both groups.
Therefore the GPQ method would be more suitable for this dataset.

Box-Cox lambda estimate = -1.2494

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.0000 0.0232
Box-Cox transformed marker 0.3641 0.2118

Area under the ROC curve (AUC): 0.725

METHOD: EL

Estimate 95% CI lower limit 95% CI upper limit
cutoff 49.2249839 45.4055971 59.9753792
Specificity 0.2451690 0.0927334 0.5376739
Sensitivity 0.9245169 0.9092733 0.9537674

And similarly if we consider both the GPQ and EL methods simultaneously. The
program shows a message indicating that the results will be computed and presented by
the two methods, although the GPQ method would be more adequate in this situation of
normality:

R> cutpoint4 <- gsym.point(methods = c("GPQ","EL"), data = prostate,
+ marker = "marker", status = "status", tag.healthy = 0,
+ CFN = 10, CFP = 1, control = control.gsym.point(),
+ confidence.level = 0.95, trace = FALSE, seed = TRUE, value.seed = 3)

According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
indicates that the transformed marker can be considered
normally distributed in both groups.
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Therefore, although the results of both methods will be shown,
the GPQ method would be more suitable for this dataset.

Box-Cox lambda estimate = -1.2494

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.0000 0.0232
Box-Cox transformed marker 0.3641 0.2118

R> summary(cutpoint4)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT

*************************************************

Call:
gsym.point(methods = c("GPQ", "EL"), data = prostate,

marker = "marker", status = "status", tag.healthy = 0,
CFN = 10, CFP = 1, control = control.gsym.point(),
confidence.level = 0.95, trace = FALSE, seed = TRUE,
value.seed = 3)

According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
indicates that the transformed marker can be considered
normally distributed in both groups.
Therefore, although the results of both methods will be shown,
the GPQ method would be more suitable for this dataset.

Box-Cox lambda estimate = -1.2494

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.0000 0.0232
Box-Cox transformed marker 0.3641 0.2118

Area under the ROC curve (AUC): 0.725

METHOD: GPQ

Estimate 95% CI lower limit 95% CI upper limit
cutoff 51.9522523 46.6348952 57.1269332
Specificity 0.3233012 0.1411610 0.5140256
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Sensitivity 0.9323301 0.9141161 0.9514026

METHOD: EL

Estimate 95% CI lower limit 95% CI upper limit
cutoff 49.2249839 45.38400377 57.6847668
Specificity 0.2451690 0.07525967 0.4999079
Sensitivity 0.9245169 0.90752597 0.9499908

The graphical results can be obtained by the plot.gsym.point function, which can
be abbreviated by the plot method:

R> plot(cutpoint1)

With the above command, the ROC curve and the line y = 1-ρ x are represented by
default, and the operating point associated to the Generalized Symmetry point of the
APBS marker for discriminating patients with prostate cancer is indicated by the inter-
section between the ROC curve and that line (see Figure 5.5). In addition, in this figure
the user can change several characteristics as legend, color, . . . , specifying/adding the
corresponding graphical arguments into the syntax below.
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Figure 5.5: Graphical output of GsymPoint package for prostate dataset

Coronary artery disease dataset

In this subsection we consider the galician study conducted on 141 patients (96 with
coronary lesions and 45 with non-stenotic coronaries) admitted to the Cardiology De-
partment of a Teaching Hospital in Galicia (northwest Spain) for evaluating chest pain or
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cardiovascular disease, where the leukocyte elastase determination was investigated as a
potential clinical marker for the diagnosis of coronary artery disease (Amaro et al., 1995).
Our proposal in this case is to illustrate the practical application of GsymPoint package to
these data, that is, to compute the optimal value (by means of the Generalized Symmetry
point) of elastase concentration to diagnose patients with coronary artery disease (CAD).
From here on, we will refer to this dataset as elastase.

First of all, we need to download the GsymPoint package and the corresponding elas-
tase dataset in R:

R> library(GsymPoint)

R> data(elastase)

We can see the nature (continuous or categorical) and summary statistics of the variables
of this dataset:

R> summary(elastase)
elas status gender

Min. : 5.00 Min. :0.0000 Female: 37
1st Qu.: 27.00 1st Qu.:0.0000 Male :104
Median : 39.00 Median :1.0000
Mean : 43.28 Mean :0.6809
3rd Qu.: 51.00 3rd Qu.:1.0000
Max. :163.00 Max. :1.0000

Then, to compute the Generalized Symmetry point in the elastase dataset, we simply
have to use the syntax indicated below. In this case we are interested in having a high
sensitivity (elastase as a screening test), and given that searching for a high sensitivity
is the same as searching for a low number of false negatives, the same values as in the
previous prostate cancer dataset are considered for the misclassification costs CFN = 10
and CFP = 1 (a false negative result is regarded as more serious than a false posi-
tive one). In addition, since these data do not follow the Box-Cox family in both CAD
and non-CAD groups according to the Shapiro-Wilk normality test, we use the Empiri-
cal Likelihood method, that does not require the normality assumption, rather than the
Generalized Pivotal Quantity method, for computing the Generalized Symmetry point
and its accuracy measures Se and Sp :

R> cutpoint1 <- gsym.point (methods = "EL", data = elastase,
+ marker = "elas", status = "status", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 10, CFP = 1, control =
+ control.gsym.point(), confidence.level = 0.95, trace =
+ FALSE, seed = TRUE, value.seed = 3)

The object obtained by means of the execution of the above command (cutpoint1
object) is a list with the following components:

R> names(cutpoint1)
[1] "EL" "methods" "call" "data"
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The component "methods" is a character vector with the value of the argument
methods used in the call; "call" is the matched call; "data" is the data frame used in
the analysis (in this case the elastase dataset). The first component ("EL") includes the
results associated with the EL method used to compute the Generalized Symmetry point
and it contains the following elements:

R> names(cutpoint1$EL)
[1] "Global"

R> names(cutpoint1$EL$Global)
[1] "optimal.result" "AUC"
[3] "rho" "lambda"
[5] "normality.transformed" "pvalue.healthy"
[7] "pvalue.diseased" "pvalue.healthy.transformed"
[9] "pvalue.diseased.transformed"

where

"optimal.result" is a list with the Generalized Symmetry point and its sensitivity
and specificity indexes with the corresponding (1-α)% confidence intervals for the elas-
tase concentration, the potential diagnostic marker of CAD:

R> cutpoint1$EL$Global$optimal.result

$cutoff
[,1] [,2] [,3]

[1,] 23.13564 17.36626 25.5516

$Specificity
[,1] [,2] [,3]

[1,] 0.3735075 0.2181514 0.5111823

$Sensitivity
[,1] [,2] [,3]

[1,] 0.9373507 0.9218151 0.9511182

"AUC" is a list with the numerical value of the area under the ROC curve

R> cutpoint1$EL$Global$AUC

$AUC
[1] 0.7436343

"rho" is the numerical value of the ratio ρ = CFP
CFN

,

R> cutpoint1$EL$Global$rho
[1] 0.1
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"lambda" is the estimated numerical value of the power in the Box-Cox transformation

R> cutpoint1$EL$Global$lambda
[1] 0.1136496

"normality.transformed" is a character string indicating if the transformed marker
values by the Box-Cox transformation are normally distributed ("yes") or not ("no"):

R> cutpoint1$EL$Global$normality.transformed
[1] "no"

"pvalue.healthy" is the numerical value of the p-value obtained by the Shapiro-Wilk
normality test for checking the normality assumption of the marker in the healthy popu-
lation:

R> cutpoint1$EL$Global$pvalue.healthy
[1] 0.07463537

"pvalue.diseased" is the numerical value of the p-value obtained by the Shapiro-
Wilk normality test for checking the normality assumption of the marker in the diseased
population:

R> cutpoint1$EL$Global$pvalue.diseased
[1] 2.192607e-09

"pvalue.healthy.transformed" is the numerical value of the p-value obtained by
the Shapiro-Wilk normality test for checking the normality assumption of the Box-Cox
transformed marker in the healthy population:

R> cutpoint1$EL$Global$pvalue.healthy.transformed
[1] 0.009062022

"pvalue.diseased.transformed" is the numerical value of the p-value obtained by
the Shapiro-Wilk normality test for checking the normality assumption of the Box-Cox
transformed marker in the diseased population:

R> cutpoint1$EL$Global$pvalue.diseased.transformed
[1] 0.07933026

A summary of the numerical results can be obtained by calling up the print.gsym.
point or summary.gsym.point functions, which can be abbreviated by print and
summary methods, respectively:

R> summary(cutpoint1)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT

*************************************************

Call:
gsym.point(methods = "EL", data = elastase, marker = "elas",
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status = "status", tag.healthy = 0, categorical.cov = NULL,
CFN = 10, CFP = 1, control = control.gsym.point(),
confidence.level = 0.95, trace = FALSE, seed = TRUE,

value.seed = 3)

Area under the ROC curve (AUC): 0.744

METHOD: EL

Estimate 95% CI lower limit 95% CI upper limit
cutoff 23.1356401 17.3662628 25.5516003
Specificity 0.3735075 0.2181514 0.5111823
Sensitivity 0.9373507 0.9218151 0.9511182

Similarly to previous biomedical examples, in this case, the output provided by the
summary.gsym.point function shows: firstly, the AUC value and, secondly, informa-
tion relating to the Generalized Symmetry point, that is, the point estimates and (1-α)%-
confidence intervals obtained by the EL method for the Generalized Symmetry point of
the elastase concentration and its corresponding sensitivity and specificity measures in
males and females. By default, confidence intervals for the AUC and accuracy measures
are computed for a confidence level 1-α of 0.95, but this value can be changed directly in
the confidence.level argument of the main gsym.point function. Moreover, if the
user wants to change some of the specific parameters of the EL method, as for instance,
the number of simulations executed in the Empirical Likelihood method, this value can
be changed by means of the control argument of the main function gsym.po int, in-
dicating the new value of B inside the control.gsym.point function. For example, if
the user wants to set the number of simulations equal to 999, this can be simply indicated
by using the following syntax:

R> cutpoint2 <- gsym.point(methods = "EL", data = elastase,
+ marker = "elas", status = "status", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 10, CFP = 1,
+ control = control.gsym.point(B = 999),
+ confidence.level = 0.95, trace = FALSE, seed = TRUE,
+ value.seed = 3)

R> summary(cutpoint2)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT

*************************************************

Call:
gsym.point(methods = "EL", data = elastase, marker = "elas",

status = "status", tag.healthy = 0, categorical.cov = NULL,
CFN = 10, CFP = 1, control = control.gsym.point(B = 999),
confidence.level = 0.95, trace = FALSE, seed = TRUE,
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value.seed = 3)

Area under the ROC curve (AUC): 0.744

METHOD: EL

Estimate 95% CI lower limit 95% CI upper limit
cutoff 23.1356401 17.4291826 25.7166528
Specificity 0.3735075 0.2234065 0.4887079
Sensitivity 0.9373507 0.9223407 0.9488708

For this dataset, if we select the GPQ method for computing the Generalized Symme-
try point and its accuracy measures, the GsymPoint package shows a message indicating
that in this case, since the data marker in both diseased and healthy populations are not
normally distributed, the only valid method or the two implemented in the package is
the EL method, which does not require the assumption of normality:

R> cutpoint3 <- gsym.point (methods = "GPQ", data = elastase,
+ marker = "elas", status = "status", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 10, CFP = 1, control =
+ control.gsym.point(), confidence.level = 0.95, trace = FALSE,
+ seed = TRUE, value.seed = 3)

According to the Shapiro-Wilk normality test, the original marker
can not be considered normally distributed in both groups.
After transforming the marker using the Box-Cox transformation
estimate the Shapiro-Wilk normality test indicates that the
transformed marker can not be considered normally distributed
in both groups.
Therefore, the results obtained with the GPQ method may not be
reliable. You must use the EL method instead.

Box-Cox lambda estimate = 0.1136

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.0746 0.0091
Box-Cox transformed marker 0.0000 0.0793

In a similar way, if we introduce both GPQ and EL methods simultaneously, the pro-
gram shows a message indicating that the GPQ method is not valid and that may yield
not reliable results in this case, and that consequently you must only use the results ob-
tained by the EL method:

R> cutpoint4 <- gsym.point (methods = c("EL","GPQ"), data =
+ elastase, marker = "elas", status = "status", tag.healthy = 0,
+ categorical.cov = NULL, CFN = 10, CFP = 1, control =
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+ control.gsym.point(), confidence.level = 0.95, trace = FALSE,
+ seed = TRUE, value.seed = 3)

According to the Shapiro-Wilk normality test, the original marker
can not be considered normally distributed in both groups.
After transforming the marker using the Box-Cox transformation
estimate the Shapiro-Wilk normality test indicates that the
transformed marker can not be considered normally distributed
in both groups.
Therefore, although the results of both methods will be shown,
the results obtained with the GPQ method may not be reliable.
You must use the EL method instead.

Box-Cox lambda estimate = 0.1136

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.0746 0.0091
Box-Cox transformed marker 0.0000 0.0793

As in the above biomedical applications, the graphical output of the results can be
obtained with the plot.gsym.point function or with the plot method.
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Figure 5.6: Graphical output of GsymPoint package for cardiology coronary dataset

In Figure 5.6 the ROC curve of the elastase concentrations, the potential marker of CAD,
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is represented, together with the line y=1-ρ x. The intersection point between them is
the operating point associated to the Generalized Symmetry point, that is, the optimal
cutpoint for discriminating patients with CAD. This is the graphical output that appears
by default as a result of the above call, but the end-user can change several graphical
parameters, as the legends, colors, etc.

In addition, we now consider the categorical covariate gender (male or female) for
evaluating if the optimal cutpoint is different between males and females. For comput-
ing the Generalized Symmetry point in the elastase data set taking into account this cat-
egorical covariate, we have to use the following syntax:

R> cutpoint1 <- gsym.point (methods = "GPQ", data = elas, marker =
+ "elas", status = "status", tag.healthy = 0, categorical.cov =
+ "gender", CFN = 10, CFP = 1, control = control.gsym.point(),
+ confidence.level = 0.95, trace = FALSE, seed = TRUE,
+ value.seed = 3)

Since these data in males and females follow the Box-Cox family in both CAD and
non-CAD groups according to the Shapiro-Wilk normality test, the GPQ method would
be more adequate under this situation of normality.

In this case, the cutpoint1 object would be a list with the following components:

R> names(cutpoint1)

[1] "GPQ" "methods" "levels.cat" "call"
[5] "data"

where the component "levels.cat" is a character vector indicating the levels of the
categorical covariate, that is, "Male" and "Female". The rest of the components were
already explained before, but in this case the first component "GPQ" is itself a two-
component list (for "Male" and "Female") containing:

R> names(cutpoint1$GPQ)
[1] "Female" "Male"

R> names(cutpoint1$GPQ$Male)

[1] "optimal.result" "AUC"
[3] "rho" "lambda"
[5] "normality.transformed" "pvalue.healthy"
[7] "pvalue.diseased" "pvalue.healthy.transformed"
[9] "pvalue.diseased.transformed"

where
"optimal.result" is a list with the Generalized Symmetry point and its sensitivity
and specificity indexes with the corresponding (1−α)% confidence intervals (for males):

R> cutpoint1$GPQ$Male$optimal.result
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$cutoff
Value ll ul

1 20.72776 17.95095 23.2821

$Specificity
Value ll ul

1 0.2739826 0.1320574 0.4206069

$Sensitivity
Value ll ul

1 0.9273983 0.9132057 0.9420607

"AUC" is a list with the numerical value of the area under the ROC curve (for males)

R> cutpoint1$GPQ$Male$AUC
$AUC
[1] 0.7216855

"rho" is the numerical value of the ratio ρ = CFP
CFN

,

R> cutpoint1$GPQ$Male$rho
[1] 0.1

"lambda" is the estimated numerical value of the power in the Box-Cox transformation
obtained by considering only the males individuals:

R> cutpoint1$GPQ$Male$lambda
[1] -0.04277911

"normality.transformed" is a character string indicating if the transformed marker
values by the Box-Cox transformation (for males) are normally distributed ("yes") or
not ("no"):

R> cutpoint1$GPQ$Male$normality.transformed
[1] "yes"

"pvalue.healthy" is the numerical value of the p-value obtained by the Shapiro-Wilk
normality test for checking the normality assumption of the marker in the healthy popu-
lation of males:

R> cutpoint1$GPQ$Male$pvalue.healthy
[1] 0.5866506

"pvalue.diseased" is the numerical value of the p-value obtained by the Shapiro-
Wilk normality test for checking the normality assumption of the marker in the diseased
population of males:

R> cutpoint1$GPQ$Male$pvalue.diseased
[1] 5.44323e-09
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"pvalue.healthy.transformed" is the numerical value of the p-value obtained by
the Shapiro-Wilk normality test for checking the normality assumption of the Box-Cox
transformed marker in the healthy population of males:

R> cutpoint1$GPQ$Male$pvalue.healthy.transformed
[1] 0.06656483

"pvalue.diseased.transformed" is the numerical value of the p-value obtained by
the Shapiro-Wilk normality test for checking the normality assumption of the Box-Cox
transformed marker in the diseased population of males:

R> cutpoint1$GPQ$Male$pvalue.diseased.transformed
[1] 0.2147409

The numerical results obtained by the summary.gsym.point function or the summary
method show the Generalized Symmetry point with its sensitivity and specificity indexes
for each level of the categorical covariate, in this case, for males and females:

R> summary(cutpoint1)

*************************************************
OPTIMAL CUTOFF: GENERALIZED SYMMETRY POINT

*************************************************

Call:
gsym.point(methods = "GPQ", data = elastase, marker = "elas",

status = "status", tag.healthy = 0, categorical.cov = "gender",
CFN = 10, CFP = 1, control = control.gsym.point(),
confidence.level = 0.95, trace = FALSE, seed = TRUE,
value.seed = 3)

*************************************************
Female

*************************************************
According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.

Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.0837 0.9077

Area under the ROC curve (AUC): 0.818

METHOD: GPQ

Estimate 95% CI lower limit 95% CI upper limit
cutoff 25.0929510 12.3370641 34.0526540
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Specificity 0.4246091 0.1460251 0.6618634
Sensitivity 0.9424609 0.9146025 0.9661863

*************************************************
Male

*************************************************
According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
indicates that the transformed marker can be considered
normally distributed in both groups.

Box-Cox lambda estimate = -0.0428

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.5867 0.0000
Box-Cox transformed marker 0.0666 0.2147

Area under the ROC curve (AUC): 0.722

METHOD: GPQ

Estimate 95% CI lower limit 95% CI upper limit
cutoff 20.7277556 17.9509453 23.2821020
Specificity 0.2739826 0.1320574 0.4206069
Sensitivity 0.9273983 0.9132057 0.9420607

If we use instead the EL method for computing the Generalized Symmetry point and
its accuracy measures, the GsymPoint package shows a message indicating that, since
the data marker in both diseased and healthy populations for males and females are
normally distributed according to the Shapiro-Wilk test, the GPQ method would be more
adequate in this case:

R> cutpoint2 <- gsym.point (methods = "EL", data = elastase,
+ marker = "elas", status = "status", tag.healthy = 0,
+ categorical.cov = "gender", CFN = 10, CFP = 1, control =
+ control.gsym.point(), confidence.level = 0.95, trace = FALSE,
+ seed = TRUE, value.seed = 3)

Female :
According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.
Therefore the GPQ method would be more suitable for this dataset.

Shapiro-Wilk test p-values
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Group 0 Group 1
Original marker 0.0837 0.9077

Male :
According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
indicates that the transformed marker can be considered
normally distributed in both groups.
Therefore the GPQ method would be more suitable for this dataset.

Box-Cox lambda estimate = -0.0428

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.5867 0.0000
Box-Cox transformed marker 0.0666 0.2147

Similarly, if we introduce both GPQ and EL methods simultaneously, the GsymPoint
package shows a message indicating that the results of the two methods will be shown,
although the GPQ method would be more adequate in this case because of the normality
assumption:

R> cutpoint3 <- gsym.point (methods = c("EL","GPQ"), data =
+ elastase, marker = "elas", status = "status", tag.healthy = 0,
+ categorical.cov = "gender", CFN = 10, CFP = 1, control =
+ control.gsym.point(), confidence.level = 0.95, trace = FALSE,
+ seed = TRUE, value.seed = 3)

Female :
According to the Shapiro-Wilk normality test, the marker can be
considered normally distributed in both groups.
Therefore, although the results of both methods will be shown,
the GPQ method would be more suitable for this dataset.

Shapiro-Wilk test p-values

Group 0 Group 1
Original marker 0.0837 0.9077

Male :
According to the Shapiro-Wilk normality test, the marker can not
be considered normally distributed in both groups.
However, after transforming the marker using the Box-Cox
transformation estimate, the Shapiro-Wilk normality test
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indicates that the transformed marker can be considered
normally distributed in both groups.
Therefore, although the results of both methods will be shown,
the GPQ method would be more suitable for this dataset.

Box-Cox lambda estimate = -0.0428

Shapiro-Wilk test p-values
Group 0 Group 1

Original marker 0.5867 0.0000
Box-Cox transformed marker 0.0666 0.2147

The graphical results are obtained by the plot.gsym.point function or with the
plot method.

R> plot(cutpoint1)

In Figure 5.7 the ROC curve of the elastase concentrations is represented separately for
males and females, together with the line y = 1−ρx. The intersection point between them
is the operating point associated to the Generalized Symmetry point separately obtained
in males and females for discriminating patients with CAD. As a result of the above call,
this is the graphical output that appears by default for males and females, respectively,
but as usual the end-user can change several graphical parameters, as the legends, colors,
etc.
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Figure 5.7: Graphical output of GsymPoint package for cardiology coronary dataset in
males (left panel) and females (right panel).
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Be gifted with wise flexibility.

- Angelica Hopes

Chapter 6

Improvement of the discriminatory
capacity via generalized additive
models

6.1 Introduction

In classical ROC analysis, marker levels above and below a given cut-off value result
in individuals being labeled as diseased or nondiseased, respectively. However, in cases
where the marker shows an irregular distribution, with a dominance of diseased subjects
in non-contiguous regions, classification by reference to a cut-off value is neither feasible
nor logical. Indeed, use of such an analysis would lead to erroneous conclusions, and a
modification of the classification rule is therefore necessary (Lustres-Pérez et al., 2010).
An intuitive solution to this problem would be to estimate for each individual the con-
ditional probability of belonging to one of the status (e.g., diseased) given the observed
value in the original scale of the marker, and consider these estimated probabilities as
the observed values of a new continuous marker (the transformed marker) that will be
used for classification purposes. In order to estimate such conditional probabilities we
propose to use generalized additive models (GAMs) for binary data. GAMs are modern
regression techniques that have the advantage of not assuming a parametric relationship
between status and marker, and eliminate the need for the researcher to impose func-
tional assumptions (Hastie and Tibshirani, 1990). As we have previously discussed, the
selection of an optimal cut-off value is an important clinical task that will be affected
by the classification rule adopted (Altman et al., 1994; Lausen and Schumacher, 1996;
Mazumdar and Glassman, 2000; Klotsche et al., 2009). Therefore, in this chapter, we
describe firstly a procedure for improving the discriminatory capacity of a continuous
marker that consists on transforming the original marker by using generalized additive
models for binary data, and by transforming back to the original scale the optimal cut-off
value obtained in the transformed scale (López-Ratón et al., 2015d). As it will be clear
soon, this procedure may yield more than one cut-off value in the original scale, and
more specifically, an interval of values. Then, we carry out a simulation study to check
the practical behaviour of this approach and finally, we illustrate its applicability using a
real dataset.
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6.2 Transformed marker through logistic GAM regression

Let Y be a continuous marker. According to Neyman and Pearson (1933) and McIntosh
and Pepe (2002), the best Y -based classifier with a single cut-off is that based on the
conditional probability of one of the status (e.g., diseased), given the values of Y . Let Ỹ
denote such a conditional probability function:

Ỹ ≡ f(Y ) = Pr(D|Y ) ⊂ (0, 1) (6.1)

In practice, however, the function f(.) of (6.1) is unknown, and it is required to esti-
mate it. In this study, f(.) is estimated by using the logistic GAM regression model given
by:

Ỹ ≡ f(Y ) = Pr(D|Y ) = g−1(α+ h(Y )) =
exp(α+ h(Y ))

1 + exp(α+ h(Y ))
(6.2)

where g(.) is the logit link function, and h(.) is an unknown smooth function.

To date, several approaches have been proposed in the statistical literature for esti-
mating (6.2), including methods based on penalized regression splines (Eilers and Marx,
1996; Wood, 2003) or Bayesian versions of them (Lang and Brezger, 2004). Alternatively,
the local scoring algorithm with kernel-type smoothers can also be used (McCullagh and
Nelder, 1989; Wand and Jones, 1995). In this study, we use penalized regression with
B(asic)-splines as smoothers (Eilers and Marx, 1996), for estimating the function h(.).
When estimating h(.), a crucial step is the selection of the smoothing parameter that
controls the smoothness of the resulting estimate. In this study, the optimal smoothing
parameter is chosen automatically by use of the Un-Biased Risk Estimator (UBRE) crite-
rion (Wood, 2004).

Once model (6.2) has been fitted, the estimated probabilities are used as the new
marker, and the corresponding ROC curve and AUC are obtained. It should be noted
that the logistic GAM regression model is a suitable tool for estimating the odds ratio
(OR) function, denoted by OR(y, yref ), which generalizes the concept of OR per unit
increase in the continuous marker in the sense that represents the ratio of the odds of
an event (in this case, presence of disease) occurring when the individual has Y = y to
the odds of that event occurring when the individual has Y = yref , where yref is a value
clinically accepted as reference value. Assuming model (6.2), the OR function, denoted
by OR(y, yref ), can be expressed as (Figueiras and Cadarso-Suárez, 2001; Zhao et al.,
2006):

OR(y, yref ) =
Pr(D|Y = y)/(1− Pr(D|Y = y))

Pr(D|Y = yref )/(1− Pr(D|Y = yref ))

=

exp(α+h(y))
1+exp(α+h(y))/

1
1+exp(α+h(y))

exp(α+h(yref ))
1+exp(α+h(yref ))/

1
1+exp(α+h(yref ))

=
exp(α+ h(y))

exp(α+ h(yref ))

= exp(h(y)− h(yref )),
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that is,
OR(y, yref ) = exp(h(y)− h(yref )). (6.3)

The simulation study and the real data application detailed in the following sections
have been carried out using R (R Core Team, 2015). The logistic GAM regression model
was fitted using the gam function of the mgcv package (Wood, 2006) and both the ROC
curve and AUC were empirically estimated.

6.3 Simulation study

In this section, we carry out a simulation study in R (R Core Team, 2015) to compare
the performance of the transformed marker previously introduced in the former section,
compared to the classical ROC analysis based on the original or crude marker. In this
simulation study, we focus on the mean, mean squared error (MSE), bias (Bias) and
standardized bias (SBias) of the nonparametric point estimators proposed in Chapter 4
for the Generalized Symmetry point cGS and its accuracy measures p(cGS) and q(cGS)
based on the EL methodology.

In the following subsections, we describe first the theoretical scenarios considered in
this simulation study and then we discuss the results obtained.

6.3.1 Scenarios

The proposed methodology, previously introduced in Section 6.2, has been applied to
several controlled scenarios. Specifically, we have analized three different models in
which the distribution of the marker Y among the healthy and diseased populations
was assumed to be known, and assessed the improvement in the classificatory capacity
of the transformed marker Ỹ = Pr(D|Y ) over that of the original marker. In all cases a
50% disease prevalence was assumed.

We give below the specific details of the three distributional models considered in this
simulation study:

Model a). Normal distributions with the same dispersion in healthy and diseased subjects:

Y |D̄ ∼ N(0, 0.5); Y |D ∼ N(0.5, 0.5) (see Figure 6.1).

Model b). Normal distributions with different dispersion in healthy and diseased subjects:

Y |D̄ ∼ N(0, 0.5); Y |D ∼ N(0.3, 0.9) (see Figure 6.2).

Model c). Normal distribution in healthy subjects and mixture of normal distributions in
diseased subjects:

Y |D̄ ∼ N(1.5, 0.8); Y |D ∼ 0.5 N(0, 0.7) + 0.5 N(3, 0.6) (see Figure 6.3).

Additionally, we collect in Table 6.1 the AUC values for Y and Ỹ , and for three dif-
ferent optimality criteria (the criterion that sets an FPF = 0.20, the Youden index, and
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the Symmetry point) we collect the corresponding optimal threshold values cOpt for each
scale (Y and Ỹ ). Besides, for the transformed scale Ỹ ,we also collect in Table 6.1 the value
of c or the interval of values (c1, c2) obtained after transforming back to the original scale
the corresponding optimal threshold value cOpt on the transformed scale.

Table 6.1: Parameters associated to the theoretical models studied in Subsection 6.3.1.

FPR = 0.2 Youden index Sym point
AUC cOpt c q(cOpt) cOpt c Y IOpt cOpt c q(cOpt)

a) Ỹ 0.76 0.58 0.42 0.56 0.50 0.25 0.39 0.50 0.25 0.69
Y 0.76 0.42 0.56 0.25 0.39 0.25 0.69

AUC cOpt (c1, c2) q(cOpt) cOpt (c1, c2) Y IOpt cOpt (c1, c2) q(cOpt)

b) Ỹ 0.70 0.49 (-0.80, 0.53) 0.51 0.50 (-0.84, 0.57) 0.32 0.41 (-0.61, 0.34) 0.64
Y 0.61 0.42 0.44 0.56 0.26 0.11 0.58

c) Ỹ 0.86 0.52 (0.46, 2.51) 0.77 0.50 (0.48, 2.49) 0.57 0.49 (0.50, 2.48) 0.78
Y 0.51 2.17 0.46 2.49 0.30 1.51 0.50
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Figure 6.1: Theoretical model a). Left panel: Density functions of Y among diseased (solid
red line) and healthy individuals (dashed black line). Central panel: Conditional probability
of being diseased given Y (Ỹ ≡ f(Y ) = Pr(D|Y )) and optimal cut-off points derived
from three different optimality criteria, FPR = 0.20 (horizontal dashed-dotted line), Youden
index (horizontal dashed line) and Symmetry point (horizontal solid line), based on the trans-
formed marker Ỹ . Vertical lines depict the corresponding cut-off points in the original
scale of Y . Right panel: ROC curves for Y (dashed red line) and Ỹ (solid black line), and
operating points, (1 − p(c), q(c)), associated to the optimal cut-off points given by FPR
= 0.20 (black), Youden index (green) and Symmetry point (blue).
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Figure 6.1 shows the situation corresponding to model a). As can be seen, there is no
interspersion in the marker’s distribution among healthy and diseased subjects, so that
the probability of being ill increases linearly with any increase in the value of Y . This
situation is consistent with a linear logistic regression model, and so the classic approach
is acceptable. In fact, both Y and Ỹ share the same ROC curve and consequently they
yield the same results in terms of AUC values (AUCY = AUCỸ = 0.76) and optimal
cut-off points. From the central panel of Figure corresponding to model a), it is observed
that for each of the three optimality criteria represented in the transformed scale of the
marker Y (the criterion that sets FPR = 0.20, the Youden index and the Symmetry point),
there is a single cut-off point in the original scale Y . Besides, the horizontal lines (equiv-
alently, the vertical lines) corresponding to the Youden index and the Symmetry point
concur because these two criteria yield the same optimal cut-off point when the marker
is normally distributed for both populations and both have the same standard deviation.
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Figure 6.2: Theoretical model b). Left panel: Density functions of Y among diseased (solid
red line) and healthy individuals (dashed black line). Central panel: Conditional probability
of being diseased given Y (Ỹ ≡ f(Y ) = Pr(D|Y )) and optimal cut-off points derived
from three different optimality criteria, FPR = 0.20 (horizontal dashed-dotted line), Youden
index (horizontal dashed line) and Symmetry point (horizontal solid line), based on the trans-
formed marker Ỹ . Vertical lines depict the corresponding cut-off points in the original
scale of Y . Right panel: ROC curves for Y (dashed red line) and transformed marker Ỹ
(solid black line), and operating points, (1 − p(c), q(c)), associated to the optimal cut-off
points given by FPR = 0.20 (black), Youden index (green) and Symmetry point (blue).

Under models b) and c), however, (see the left panel of Figures 6.2 and 6.3, respec-
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tively) there is interspersion in the marker’s distribution among healthy and diseased
subjects. Hence, the probability of being ill does not show a monotone increasing behav-
ior vis-á-vis the values of Y . This can be clearly seen in the central panel of Figures 6.2
and 6.3, where it is also observed that for any of the three optimality criteria represented
in the transformed scale of Y (the criterion that sets FPR = 0.20, the Youden index and
the Symmetry point), there are two cut-off points in the original scale of Y. Under these
two models, Ỹ performs better than Y in terms of higher classificatory capacity. This
can be seen in the right panel of Figures 6.2 and 6.3, which depict the ROC curves cor-
responding to Y and Ỹ under both models. The ROC curve of Ỹ is always above the
ROC curve of Y. In other words, regardless of the FPF value chosen, the corresponding
TPF is always higher (or the same) for the transformed marker. Lastly, whereas AUC
values for the original marker Y are AUCY = 0.61 and AUCY = 0.51 in models b) and
c), respectively, these values increase to AUCỸ = 0.70 and AUCỸ = 0.86 when using the
transformed marker Ỹ .
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Figure 6.3: Theoretical model c). Left panel: Density functions of Y among diseased (solid
red line) and healthy subjects (dashed black line). Central panel: Conditional probability
of being diseased given Y (Ỹ ≡ f(Y ) = Pr(D|Y )) and optimal cut-off points derived
from three different optimality criteria, FPR = 0.20 (horizontal dashed-dotted line), Youden
index (horizontal dashed line) and Symmetry point (horizontal solid line), based on the trans-
formed marker Ỹ . Vertical lines depict the corresponding cut-off points in the original
scale of Y . Right panel: ROC curves for Y (dashed red line) and Ỹ (solid black line), and
operating points, (1 − p(c), q(c)), associated to the optimal cut-off points given by FPR
= 0.20 (black), Youden index (green) and Symmetry point (blue).
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In general, the suitability or unsuitability of using the transformed marker for dis-
criminatory purposes is dictated by the form adopted by the function f(Y ) = Pr(D|Y ).
If this function is monotone (either monotone increasing as in model a) or monotone de-
creasing), then using the transformed marker yields no gain in terms of discrimination
capacity, since the ROC curve is invariant to this type of transformations (Swets et al.,
1961; Egan, 1975).

Impact on selecting the optimal threshold

Situations in which the risk marker/disease relationship is not monotone increasing
(or decreasing) give rise to a new challenge linked to the choice of the “optimal” cut-off
point. In such cases, rather than proposing a single cut-off value as the classification
rule, it would seem more reasonable to use an optimal interval that will define individ-
uals with lower (higher) risk of presenting with the disease. Hence, unlike the classical
approach, which consists of identifying a single cut-off point, c, for the marker, the pro-
posed methodology enables a range of marker values to be obtained which are applicable
to a wider variety of risk situations.

Based on the theoretical scenarios considered here, we propose the use of the trans-
formed marker Ỹ for the choice of optimal cut-off point(s). Cut-off values are calculated
in two stages, as follows: 1) the optimality criterion is applied to the transformed marker
Ỹ = f(Y ) = Pr(D|Y ), thereby obtaining the “optimal” probability or risk cut-off: and, 2)
the original marker value/s that corresponds/correspond to this probability is/are then
computed. For this purpose, the inverse function of f is calculated, f−1(Ỹ ), for which an
explicit form does not always exist but which can be calculated by means of numerical
approximation techniques.

In the literature, as we pointed out in the previous chapters, there are numerous crite-
ria for selecting optimal cut-off values in continuous diagnostic tests. By way of illustra-
tion, we considered in this study three different criteria: 1) the criterion that sets an FPF
= 0.20, 2) the Youden index, and 3) the Symmetry point. We decided to select these meth-
ods because this choice 1) enables direct observation of the gain in sensitivity resulting
from the use of the transformed marker, 2) the gain in terms of the Youden index value
as a summary measure of the accuracy, and 3) the gain in both sensitivity and specificity
(see Table 6.1 where we collect the parameters associated to the above theoretical models
considered).

As can be seen from the central and right panels of Figure 6.1 and Table 6.1, for model
a) the choice of optimal cut-off points is independent of the use of Y or Ỹ , with a single
cut-off point cOpt being obtained in both cases, i.e., cOpt = 0.42, with a corresponding
TPF or q(cOpt) = 0.56, considering the criterion that sets an FPF = 0.2, and cOpt = 0.25,
with a corresponding sensitivity of q(cOpt) = 0.39, according to both the Youden index
and Symmetry point that under this model provide the same cut-off point.

Under models b) and c), in contrast, (see the central and right panels of Figures 6.2
and 6.3, and Table 6.1) the choice of cut-off points changes according to whether the
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decision is based on the original or transformed marker. In model b), the optimal cut-
off point obtained by the classic method using the method that sets FPF = 0.2, is 0.42,
which corresponds to a TPF = 0.44. When the choice of the cut-off point is based on
the values of the transformed marker, the optimal probability value is cOpt = 0.49 which
corresponds to a TPF = 0.51, i.e., the transformed marker yields a 7% sensitivity gain
over that obtained with the original marker. The optimal probability value corresponds
to an interval of original marker values ranging from c1 = -0.80 to c2 = 0.53. The classi-
fication rule derived from this optimal interval would lay down that individuals within
this interval are to be deemed healthy and the remainder, diseased. If we consider in-
stead the method based on Youden index, we obtain a higher optimal cutpoint cOpt =
0.56 for the original marker with a value of Youden index equal to 0.26, and an optimal
probability cOpt = 0.50 for the transformed marker which corresponds to a Y IOpt = 0.32,
obtaining thus a 6% gain in the Youden index when using the transformed marker com-
pared to the original marker. In this case, this optimal Ỹ value of 0.50 corresponds to an
interval of original marker values varying from c1 = -0.84 to c2 = 0.57. Finally, based on
the Symmetry point, the optimal cut point obtained by the classical approach is cOpt =
0.11, a lower value than the value obtained using previous criteria, with a true positive
fraction q(cOpt) = p(cOpt) = 0.58. However, based on the transformed marker, we obtain
an optimal value cOpt = 0.41 corresponding to a true positive fraction q(cOpt) = p(cOpt)
= 0.64, which means a 6% sensitivity gain and, equivalently, a 6% specificity gain. The
corresponding interval of original marker values associated to this optimal probability is
given by (c1, c2) = (-0.61,0.34).

Under model c), the phenomenon, albeit analogous, is more pronounced in terms of
sensitivity or Youden index gain. On one hand, if one were to base oneself on the origi-
nal marker and take the marker value showing an FPF = 0.20 as being optimal, a cut-off
point of 2.17 associated with a TPF = 0.46 would be obtained. On the other hand, if the
transformed marker point with an FPF = 0.20 were taken as optimal, a value of 0.52
would be obtained, which has a TPF = 0.77 and yields an interval of original marker
values given by (0.46,2.51). In other words, the latter case would result in a 31 % sensi-
tivity gain. Similar values of gain are obtained using the other optimal-cutpoint selection
criteria here considered, a 27% Youden index gain in the case of the Youden index and a
28 % sensitivity (equivalently, specificity) gain in the case of the Symmetry point.

In brief, in any case where the risk is not monotone (models b) and c)), applying the
optimal cut-off point selection criteria to the transformed marker ensures better results
in terms of either higher values of sensitivity or higher values of Youden index.

In the simulation study, for every model previously specified, 1000 trials were con-
sidered. For each trial, a sample of n0 i.i.d. observations, {Y01, . . . , Y0n0}, and a sam-
ple of n1 i.i.d. observations, {Y11, . . . , Y1n1}, were independently drawn from mark-
ers in both healthy and diseased populations Y0 and Y1, respectively. Specifically, we
have considered the following pairs of sample sizes that include both balanced and un-
balanced designs to mimic real situations that are frequently seen in clinical practice:
(n0, n1) = (30, 60), (45, 45), (60, 30), with a total sample size of n = n0 + n1 = 90, and
(n0, n1) = (50, 100), (75, 75), (100, 50), with a total sample size of n = n0 + n1 = 150.
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6.3.2 Results

For illustration, we present here the results obtained when the methodology proposed
in Section 6.2 was applied to the theoretical scenarios considered previously in Subsec-
tion 6.3.1, that is, the transformed marker values were estimated by the corresponding
logistic GAM regression model (6.2). For the sake of illustration, we have only consider
the optimality criterion based on the Symmetry point, because in terms of gain it is sim-
ilar to the criterion that sets an FPF = 0.20 and it is the optimal criterion on which we
have focused our attention more. In fact, we have considered the Empirical Likelihood
method (EL) previously explained in Chapter 4 to estimate the Symmetry point and its
corresponding pair of sensitivity and specificity indexes.

Table 6.2: Mean, MSE, Bias and SBias of the nonparametric point estimators of cS and
p(cS) = q(cS) for the estimated transformed marker based on the logistic GAM regression
model and for the original marker under model a).

Estimated transformed marker Ỹ
cS p(cS) = q(cS)
c

(n0, n1) Mean MSE Bias SBias Mean MSE Bias SBias
×10−2 ×10−3 ×10−2 ×10−3 ×10−3 ×10−1

(30,60) 0.4987 0.1538 0.1637 0.4173 0.6939 2.4344 3.2134 0.65230.2518 1.2844 4.6304 4.0870
(45,45) 0.4999 0.1321 1.3435 3.6977 0.6916 2.1521 0.9408 0.20270.2497 0.8917 2.5130 2.6608
(60,30) 0.5023 0.1406 3.7289 9.9900 0.6911 2.1513 0.4654 0.10030.2487 1.2526 1.5493 1.3837

(50,100) 0.5006 0.0887 1.9815 6.6643 0.6909 1.5772 0.2616 0.06580.2532 0.5431 5.9822 8.1402
(75,75) 0.4993 0.0797 0.7200 2.5505 0.6946 1.3160 3.9640 1.09880.2491 0.3828 1.9292 3.1180

(100,50) 0.5008 0.0878 2.1726 7.3462 0.6906 1.5065 -0.0345 -0.00890.2477 0.4542 0.4813 0.7139

Original marker Y
cS p(cS) = q(cS)

(n0, n1) Mean MSE Bias SBias Mean MSE Bias SBias
×10−2 ×10−3 ×10−2 ×10−3 ×10−3 ×10−1

(30,60) 0.2499 0.5317 2.4495 3.3593 0.6916 2.4879 0.8381 0.1680
(45,45) 0.2504 0.5140 2.9798 4.1576 0.6895 2.2631 -1.2879 -0.2707
(60,30) 0.2488 0.5192 1.3326 1.8487 0.6882 2.2391 -2.5825 -0.5463

(50,100) 0.2509 0.3495 3.4447 5.8341 0.6899 1.6048 -0.9032 -0.2254
(75,75) 0.2486 0.2887 1.1695 2.1762 0.6939 1.3333 3.0626 0.8413

(100,50) 0.2481 0.3031 0.7150 1.2983 0.6898 1.5101 -1.0560 -0.2717

For every model, we collect in the same table the results obtained for the Symmetry
point, cS , and the associated specificity and sensitivity indexes, p(cS) = q(cS) for both the
estimated transformed marker Ỹ and the original marker Y . Specifically, in Tables 6.2–6.4
we collect the results obtained for models a)–c) considering the six pairs of sample sizes
(n0, n1) previously specified. It should be noted that depending on the marker scale we
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have used different scientific notation (×100, ×10−1, ×10−2, etc.) in these tables to better
represent significant figures.

Table 6.3: Mean, MSE, Bias and SBias of the nonparametric point estimators of cS and
p(cS) = q(cS) for the estimated transformed marker based on the logistic GAM regression
model and for the original marker under model b).

Estimated transformed marker Ỹ
cS

p(cS) = q(cS)c1
c2

(n0, n1) Mean MSE Bias SBias Mean MSE Bias SBias
×10−2 ×10−2 ×10−1 ×10−3 ×10−2 ×10−1

(30,60) 0.4200 0.0964 0.8692 2.9148
0.6598 2.8167 2.1897 4.5271-0.5972 5.9172 0.9836 0.4045

0.3504 2.3865 1.1268 0.7310
(45,45) 0.4247 0.0972 1.3425 4.7699

0.6576 2.5163 1.9691 4.2658-0.5902 6.0822 1.6761 0.6808
0.3664 2.4416 2.7280 1.7722

(60,30) 0.4291 0.1311 1.7827 5.6549
0.6584 2.9252 2.0465 4.0859-0.5846 5.8338 2.2353 0.9289

0.3643 2.6710 2.5172 1.5581
(50,100) 0.4190 0.5921 0.7736 3.3513

0.6506 1.4804 1.2642 3.4771-0.6008 4.4907 0.6210 0.2930
0.3478 1.7084 0.8639 0.6620

(75,75) 0.4213 0.0625 1.0007 4.3656
0.6479 1.3232 1.0001 2.8581-0.6154 4.5392 -0.8367 -0.3928

0.3543 1.6128 1.5146 1.2006
(100,50) 0.4255 0.0867 1.4184 5.4951

0.6509 1.7497 1.2931 3.2489-0.6115 4.6127 -0.4466 -0.2079
0.3584 1.8503 1.9294 1.4322

Original marker Y
cS p(cS) = q(cS)

(n0, n1) Mean MSE Bias SBias Mean MSE Bias SBias
×10−2 ×10−2 ×10−1 ×10−3 ×10−2 ×10−1

(30,60) 0.1079 0.7902 0.0995 0.1118 0.5860 2.3976 0.1727 0.3527
(45,45) 0.1024 0.7437 -0.4503 -0.5226 0.5811 2.7954 -0.3168 -0.6000
(60,30) 0.1050 0.7472 -0.1925 -0.2227 0.5817 3.1191 -0.2572 -0.4608
(50,100) 0.1078 0.4773 0.0833 0.1205 0.5842 1.5467 -0.0017 -0.0042
(75,75) 0.1068 0.4320 -0.0142 -0.0215 0.5833 1.5938 -0.0924 -0.2314
(100,50) 0.1059 0.4998 -0.0982 -0.1389 0.5843 2.2918 0.0084 0.0175

Under model a) we observe from Table 6.2 that as the total sample size, n, increase the
MSE for all the estimators decreases for both balanced and unbalanced designs. How-
ever, for a fixed total sample size, the MSE is in general smaller when n0 = n1 and larger
when n1 > n0. Besides, there is a slight loss in accuracy when estimating the Symmetry
point of Y if we base the estimation on Ỹ (the values of MSE obtained for the estimates
of c using Ỹ are larger than those obtained for cS using Y ). However, this effect is the
opposite regardig the estimates of p(cS) = q(cS). Under model a), we can conclude that
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very similar results are obtained, either based on Y or Ỹ .

Table 6.4: Mean, MSE, Bias and SBias of the nonparametric point estimators of cS and
p(cS) = q(cS) for the estimated transformed marker based on the logistic GAM regression
model and for the original marker under model c).

Estimated transformed marker Ỹ
cS

p(cS) = q(cS)c1
c2

(n0, n1) Mean MSE Bias SBias Mean MSE Bias SBias
×10−2 ×10−2 ×10−1 ×10−3 ×10−2 ×10−1

(30,60) 0.4543 0.4122 -3.5859 -6.7298
0.7932 2.0824 1.0605 2.38830.4994 3.1799 -0.2931 -0.1643

2.4798 2.5871 0.3461 0.2151
(45,45) 0.4591 0.3554 -3.1056 -6.0995

0.7907 1.7589 0.8079 1.96210.5009 2.3856 -0.1504 -0.0973
2.4893 2.2689 1.2993 0.8654

(60,30) 0.4650 0.3925 -2.5175 -4.3861
0.7921 2.0600 0.9462 2.13050.4811 3.2622 -2.1273 -1.1855

2.5065 3.3432 3.0168 1.6720
(50,100) 0.4586 0.3200 -3.1545 -6.7141

0.7877 1.2246 0.5046 1.45640.5046 1.9442 0.2245 0.1610
2.4842 1.5209 0.7922 0.6434

(75,75) 0.4624 0.2756 -2.7797 -6.2384
0.7881 1.0549 0.5457 1.70360.4980 1.7721 -0.4350 -0.3268

2.4846 1.7218 0.8280 0.6319
(100,50) 0.4657 0.2838 -2.4519 -5.1816

0.7885 1.1884 0.5837 1.71720.4995 1.7937 -0.2839 -0.2119
2.4984 1.8853 2.2095 1.6296

Original marker Y
cS p(cS) = q(cS)

(n0, n1) Mean MSE Bias SBias Mean MSE Bias SBias
×10−2 ×10−2 ×10−1 ×10−3 ×10−2 ×10−1

(30,60) 1.5060 3.9372 -0.2012 -0.1014 0.5049 3.6768 0.0396 0.0653
(45,45) 1.5048 3.4118 -0.3258 -0.1763 0.5024 4.5835 -0.2104 -0.3107
(60,30) 1.5085 4.1851 0.0466 0.0228 0.5026 6.4486 -0.1896 -0.2361

(50,100) 1.5065 2.5132 -0.1488 -0.0938 0.5063 2.2535 0.1849 0.3897
(75,75) 1.5120 2.0443 0.3946 0.2760 0.5067 2.6557 0.2205 0.4280

(100,50) 1.5045 2.5184 -0.3485 -0.2196 0.5022 4.0704 -0.2319 -0.3635

From Tables 6.3–6.4, we observe that as the total sample size increases, the general
tendency is that the MSE for all the estimators decreases. However, unlike model a), now
there is no a so clear pattern in the sense that not always the smallest MSE is obtained
for the balanced design when the total sample size is fixed. Unlike model a), it does not
make sense to compare, for instance, the MSE obtained for estimating p(cS) using Y and
that obtained using Ỹ because the target pursued is different under models b) and c)
(that is, the specificities involved are not the same). Under models b)-c), it is clearly seen
that transformed marker estimated through the logistic GAM regression model yields a
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better performance in terms of higher specificity and sensitivity. Besides, it approximates
well the behaviour of the theoretical transformed marker.

As a general conclusion, we strongly recommend the use of the estimated trans-
formed marker when f(Y ) = Pr(D|Y ) function is not monotone. Besides, even in cases
where this relationship is monotone and therefore there is no gain in using the trans-
formed marker, its use yields similar results to those obtained using Y.

6.4 Biomedical application

The methodology introduced in Section 6.2 is applied here to the postoperative infection
dataset introduced in Section 1.3 of Chapter 1 in order to evaluate the discriminatory
capacity of the plasma glucose as a potential postoperative infection biomarker. Specifi-
cally, the following logistic GAM regression model was fitted:

Pr(POI = 1|Glucose) = g−1(α+ h(Glucose)) =
exp(α+ h(Glucose))

1 + exp(α+ h(Glucose))
, (6.4)

where Glucose is the continuous variable that represents the plasma glucose levels, that
is, the original marker, POI is the binary indicator variable of the presence (POI = 1) or
absence (POI = 0) of postoperative infection, g(.) is the logit link function, and h(.) is an
unknown smooth function.

To assess the classificatory capacity of the plasma glucose levels, the ROC curve and
AUC were calculated for both the original marker (Glucose) and the GAM transformed
marker obtained from the fit of model (6.4). Besides, glucose cut-off points were obtained
by the Symmetry point using the original marker and the transformed marker.

The left panel of Figure 6.4 shows smooth estimates of the marker density among
healthy and diseased subjects. It is observed that glucose distribution in healthy and
diseased subjects displays a certain level of interspersion, with characteristics similar to
those displayed under Scenario 2. Individuals with POI registered extreme glucose val-
ues (high and low) compared with those who failed to develop postoperative infection
(intermediate values).

In the central panel of Figure 6.4 we represent the probability of POI according to
the values of Glucose. Similarly to Scenario 2, such probability function is not monotone
increasing and this means that when using the transformed marker, the classificatory
capacity improves. The ROC curves for the original glucose marker and the GAM trans-
formed marker (see model (6.4)) are shown in the right panel of Figure 6.4. It is observed
that the estimated transformed marker G̃lucose yields an ROC curve which is always
above the ROC curve of Glucose. Based on the original marker, the AUC is 0.60 and its
corresponding 95% bootstrap confidence interval (CI) (Efron, 1979) is (0.49, 0.70). In the
light of this result, there would seem to be no evidence to indicate that glucose values
can be used for discerning the states of POI . However, this is not the case when looking
at the results obtained in the transformed scale: an AUC value of 0.69 and a CI equal to
(0.60, 0.78), with the value of 0.5 lying outside this interval. Therefore, these results allow
for plasma glucose to be regarded as a possible marker for POI .
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Figure 6.4: Analysis of Glucose as a potential POI marker. Left panel: Smooth density
estimates of Glucose in the presence (red solid line) and absence (black dashed line) of POI.
Central panel: Logistic GAM based estimation of the conditional probability of POI =

1 given Glucose (G̃lucose ≡ f(Glucose) = Pr(POI = 1|Glucose)), and optimal cut-
off point derived from the Symmetry point (horizontal solid line) based on the estimated
transformed marker G̃lucose. Vertical lines depict the two corresponding cut-off points
in the original scale of Glucose. Right panel: ROC curves for Glucose (dashed red line)
and for the estimated transformed marker G̃lucose (solid black line), and operating points,
(1 − p(c), q(c)), associated to the optimal cut-off points given by the Symmetry point
(blue). The estimated transformed marker G̃lucose yields an ROC curve which is always
above the ROC curve of Glucose.

With respect to the optimal cutpoints, when the optimality criterion was applied to
the original marker values, the resulting glucose cut-off value was 101.787 mg/dL (Se =
Sp = 0.598). When this same optimality condition was applied to the transformed glu-
cose marker, an optimal probability value of 0.435 (Se = Sp = 0.646) was obtained, which
corresponds to original glucose values in the interval between 86.324 mg/dL and 111.059
mg/dL. As in theoretical Scenarios 2 and 3, the choice of the optimal cut-off point varies
according to whether the optimality criterion is based on the glucose values or on the
risk associated with each such value. In this case, the transformed marker yields a 5%
gain in sensitivity, a similar value obtained under Scenario 2.
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Lastly, Figure 6.5 depicts the lnOR function for the reference value yref = 95 mg/dL,
that has been obtained as a byproduct from the fit of model (6.4), using the expression
given in (6.3). As can be seen, rather than being linear, the relationship between Glucose
and POI shows a “spoon” shape (Figueiras and Cadarso-Suárez, 2001; Sáez et al., 2003).
In other words, situations of hypo- and hyperglycaemia pose a higher risk of suffering
from POI than do intermediate values.
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Figure 6.5: Estimation of Ln OR(y; yref ), with yref = 95 mg/dL.
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In literature and in life we ultimately pursue,
not conclusions, but beginnings.

- Sam Tanenhaus

Chapter 7

Discussion and future research

In this chapter we present a summary of the main results presented in Chapters 3–6, to-
gether with some conclusions and interesting lines for future research.

7.1 Chapter 3: “Criteria to select the optimal cutoff point in di-
agnostic tests”

Several criteria have been proposed in the literature for selecting the optimal cutpoint
of a continuous diagnostic test or biomarker in order to classify the individuals in two
groups of interest. From the review that we have presented in Chapter 3, we have de-
tected that some of the existing dichotomization criteria are equivalent from a theoretical
perspective, that is, they define the same optimal cutpoint. However, it should be noted
that they may yield different cut-off values from a practical viewpoint, depending on the
estimation method or implementation process that is used. Therefore, an interesting new
research line would be to perform a simulation study to evaluate which method among
those that have been proposed to estimate equivalent optimal criteria is the most efficient
one in terms of bias, standardized bias and mean squared error .

Moreover, some methods, although different from a theoretical point of view, can
provide the same optimal cutpoint under specific situations. For example, under the
assumption that the marker in healthy and diseased populations follows a normal dis-
tribution with the same standard deviation, the North-West corner (Metz, 1978; Vermont
et al., 1991; Perkins and Schisterman, 2006), the Youden index (Youden, 1950; Aoki et al.,
1997; Greiner et al., 2000), the Concordance probability (Lewis et al., 2008; Liu, 2012)
and the Symmetry point (Greiner, 1995; Defreitas et al., 2004; Adlhoch et al., 2011) yield
the same optimal cutpoint. Consequently, a comparative study between all the different
(from a theoretical point of view) selection criteria is also an area for future research. In
fact, we are improving the simulation study that we have conducted in Alvarenga Amer-
icano do Brasil et al. (2015) to check similarities of optimal cutpoints obtained by the va-
riety of methods here studied, under different distributional scenarios taken from the lit-
erature (Fluss et al., 2005; Schisterman et al., 2008). Specifically, nine different population
shapes, with varying conditions of disease prevalence, π = 0.05, 0.1, 0.2, 0.3, 0.5, 0.75,
and test accuracy measured in terms of AUC, AUC = 0.6, 0.7, 0.8, 0.9, were simulated.
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Such populations cover the following distributional models: normal (with and without
equal variances in both healthy and diseased groups), lognormal, gamma, and several
normal mixtures (where either both groups follow a bimodal normal distribution or only
one of them does).

In this thesis, we have focused on the dichotomization methods to discriminate be-
tween two groups. However, there exist several extensions to the three group case:
the thrichotomization methods and the three-class methods. On one hand, in the thri-
chotomization methods, the objective is to split the scale of the marker into three groups
by means of two thresholds, even when there are only two groups of interest (healthy
and diseased). These methods create an extra third group of “uncertainty”, usually an
inconclusive, intermediate or indeterminate group, represented by a range of test values
where the test does not perform well to classify in any of the two groups of interest. On
the other hand, the three class problems are those aiming at discriminating among three
different groups such as: “condition A present”, “condition B present” and “neither con-
dition A nor B is present”, or ”without the condition”, “with moderate condition” and
“with severe condition”. These strategies require that the three classes of interest are
ordered, and thus suffer from the same limitations as most of the dichotomization meth-
ods do. Similarly to the dichotomization methods, the thrichotomization methods can
be also classified into completely data driven methods and methods with user requirements.
Some examples are the thrichotomization method based on the likelihood ratios gray
(inconclusive) zone (Coste and Pouchot, 2003; Coste et al., 2006), or the thrichotomiza-
tion with required sensitivity and specificity indexes (Greiner et al., 1995; Gallop et al.,
2003). Among the three-class methods, we can find the three class Youden index (Nakas
et al., 2010, 2013), the maximum expected decision utility (He and Frey, 2006) or methods
based on ordinal logistic regression (Boland and Lehmann, 2010) and MANOVA (multi-
variate analysis of variance) (Zelman et al., 2005; Li et al., 2007; Hirschfeld and Zernikow,
2013a,b).

7.2 Chapter 4: “The Symmetry point and its cost-based general-
ization”

In Chapter 4 we have introduced two methods aimed at calculating point estimates and
confidence intervals of the optimal cut-off value defined by the cost-based generalization
of the Symmetry point, the Generalized Symmetry point, cGS , that is, the cut-off value
that maximizes simultaneously the two types of correct classifications or, equivalently,
that satisfies the following condition, ρ(1 − p(cGS)) = (1 − q(cGS)), where ρ = cF+/cF−
is the relative cost (or loss) of a false-positive classification as compared with a false-
negative classification. The first method is a parametric approach based on the Gener-
alized Pivotal Quantity (GPQ) (Weerahandi, 1993, 1995) that requires the assumption of
binormality. The second method is a nonparametric approach based on the Empirical
Likelihood (EL) methodology (Thomas and Grunkemeier, 1975) and the bootstrap tech-
nique. As a general concluding remark derived from our simulation study, we have seen
that the EL approach is competitive with the GPQ approach when the data follow the
Box-Cox family and outperforms the GPQ approach when the data do not follow the
Box-Cox family and the healthy and diseased populations follow different parametric
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models. Therefore, although the implementation of the EL method is more time con-
suming than the GPQ method, we recommend the use of the EL method when the true
distributions of healthy and diseased populations are unknown.

Since the choice of the optimal cutpoint selection criterion should be based on the
researcher’s specific goal and the diagnostic properties sought, which will clearly de-
pend on the disease under study, it would be interesting to extend the GPQ and EL
methodologies to other optimal cutpoint selection criteria studied in Chapter 3, and to
the incorporation of covariates that can affect the discrimination ability of the biomarker
under study. Besides, since we have focused only on complete data cases, it would be
also interesting to generalize the GPQ and EL methodologies to be used in situations of
partial disease verification, that is, when only a portion of individuals have their true
disease status ultimately verified, see Alonzo (2014) and references therein. Regarding
this situation, it is interesting to mention here the advances carried out recently by Wang
and Qin, see Wang and Qin (2013), who proposed several bias-corrected joint empirical
likelihood confidence regions for the sensitivity and specificity indexes associated to a
given threshold value with partial disease verification data. It would be interesting as
well to generalize our approach to the case of a censored failure time outcome. In this
setting, Rota et al. (2015) have recently extended the optimal cutpoint selection criteria
given by the Youden index, the Concordance probability and the North-West corner by
means of non-parametric estimators of the sensitivity and specificity indexes that account
for censoring.

7.3 Chapter 5: “Software development: R packages”

Regarding the importance of having software implemented in a user-friendly environ-
ment that facilitates to professionals such as epidemiologists and clinicians, the process
of obtaining optimal cutpoints in practice, we have described in Chapter 5 the two R
packages that we have developed to estimate optimal cutpoints using most of the crite-
ria and methodologies outlined in Chapters 3 and 4 for continuous diagnostic tests.

Section 5.1 of Chapter 5 is devoted to describe and illustrate OptimalCutpoints
(López-Ratón and Rodrı́guez-Álvarez, 2014; López-Ratón et al., 2014), a user-friendly R
package that allows users to choose among several popular methods (see Chapter 3). Un-
like other packages (Freeman and Moisen, 2008; Brasil, 2010), OptimalCutpoints en-
ables optimal thresholds to be calculated according to each of the levels of given categori-
cal covariates. This is of great interest because the discriminatory capacity of a biomarker
may often be different depending on certain characteristics, such as a particular patient’s
age group, gender or severity of disease (Pepe, 2004), and so when it comes to selecting
the optimal cutpoint, this must be borne in mind in order to avoid drawing erroneous
conclusions. Moreover, some packages only allow for the diagnostic test to take values
from 0 to 1, since they are specifically designed for predictive diagnostic models, but
in OptimalCutpoints, no restriction has been imposed with respect to the range of
values of the diagnostic test. Thus, it can take values in a continuous range, including
the unit interval, in case of a risk score obtained from a predictive diagnostic model. In
addition, OptimalCutpoints includes criteria not included previously in other exist-
ing packages, such as criteria based on predictive values or likelihood ratios, and allows
the incorporation of costs and/or prevalence in some of these criteria. Moreover, with
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our package, users can easily obtain numerical (point and confidence interval estimates)
and graphical output for all the implemented methods with just one input command,
and make decisions accordingly. We trust that a program displaying these features will
prove useful to the biomedical community; a program which we are thinking of contin-
ually improve, by enabling, say, the incorporation of covariates of a continuous nature
and implementing new and more efficient methods for estimating the optimal cutpoints
defined by the criteria outlined. In the current version of the package only empirical es-
timators are implemented, and it would be interested to implement more sophisticated
methodologies for the available optimal criteria such as the GPQ and EL methodologies
studied in Chapter 4 for the Generalized Symmetry point. According to several future
research lines previously mentioned, it would be also interesting to include new func-
tions in OptimalCutpoints that implement optimal criteria suitable for situations of
partial disease verification, see Alonzo (2014) and references therein.

In Section 5.2 of Chapter 5, we have developed GsymPoint (López-Ratón et al.,
2015b), a user-friendly R package that allows users to estimate the Generalized Sym-
metry point and its sensitivity and specificity indexes using recent methodology intro-
duced in ROC analysis (Molanes-López and Letón, 2011; Lai et al., 2012), such as the
GPQ and EL techniques proposed in Chapter 4, which are more efficient than the empir-
ical approach. As in the case of OptimalCutpoints, the estimations can be obtained
straightforwardly by levels of certain categorical covariates in GsymPoint. Possible in-
teresting extensions of the GsymPoint package could be taken into account, so we are
contemplating the possibility of applying this same methodology to estimate the other
accuracy measures, such as the predictive values or the diagnostic likelihood ratios, the
possibility of incorporating more efficient methods for estimating the Generalized Sym-
metry point and its accuracy measures, and also the possibility of extending this new
methodology to estimations corrected for the measurement of error, to partial disease
verification (see Alonzo (2014) and references therein), to the case of a censored failure
time outcome (Rota et al., 2015) and to the incorporation of continuous covariates.

This study has been centered on the field of diagnostic tests, but the two R packages
developed in this framework, OptimalCutpoints and GsymPoint, may also be ap-
plied in any field where signal-to-noise analysis is performed, such as screening, radio-
diagnostic techniques or biology, among others.

The implementation of a new R package that incorporates the existing trichotomiza-
tion and three class methods may constitute another important issue to cover in the fu-
ture. Up to our knowledge, DiagTest3Grp is nowadays the only existing R package for
analyzing diagnostic tests with three ordinal groups that implements a generalization of
the Youden index to this situation (Luo and Xiong, 2012).

7.4 Chapter 6: “Improvement of the discriminatory capacity via
generalized additive models”

The study performed in Chapter 6 has shown firstly, how the use of the logistic GAM
regression model improves the classificatory capacity of a potential continuous marker,
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particularly in situations where there is a high level of interspersion in the marker’s dis-
tribution among the two populations of healthy and diseased subjects; and secondly,
how this type of modeling may modify the choice of suitable cut-off points.

Situations of nonlinearity in the marker/outcome relationship tend to arise relatively
frequently in the sphere of clinical and epidemiological research. For instance, it is fre-
quent for U- or J-shaped relationships to be found when analyzing the appearance of
cardiovascular events and plasma glucose (Cid-Álvarez et al., 2009) or hormone levels
(Bertone-Johnson et al., 2009). In the different theoretical models analyzed, as well as in
the real data application on postoperative infection risk, the classificatory capacity seems
to improve in terms of ROC and AUC when the transformed marker is used in situations
that reflect a nonlinear risk marker/disease relationship. An additional advantage of the
method proposed here is that it provides a tool for calculating more appropriate cut-off
points, because it takes the relationship between marker values and clinical outcomes
into account. Hence, in such U- or J-shaped relationships, two values will be selected to
delimit an optimal interval where there is a lower probability of being ill. Under these
situations, the classification rule consists on labeling an individual as healthy if its corre-
sponding value on the original marker scale lies in that optimal interval and as diseased
otherwise.

For the sake of illustration, we have considered three optimal criteria to select the cut-
off points (the criteria based on a designated FPF value of 0.2 to be set, the Youden index
and the Symmetry point). From a theoretical perspective, these criteria have allowed us
to evaluate the improvement obtained by using the transformed marker over the original
one in terms of the gain obtained in three different accuracy measures, sensitivity (given
a fixed value of specificity), Youden index (maximization of sensitivity plus specificity)
and simultaneous maximization of specificity and sensitivity. Similarly, other optimal
cut-off selection criteria could have been used. Since in practice the transformed marker
is unknown and has to be estimated, we have carried out a simulation study to evaluate
the behaviour of our estimated transformed marker based on the logistic GAM regression
model. However, rather than considering the three above-mentioned optimal criteria, we
have only considered the Symmetry point in both the simulation study and the real data
application because it has been the optimal criterion on which we have focused more
and, besides, similar gains are obtained using the other two optimal criteria. Similarly,
other optimal cut-off selection criteria could have been used. Using the Symmetry point,
we have obtained a plasma glucose interval of lower POI risk that ranges from 86 to
111 mg/dL. These cut-off points are in line with the results of published studies on the
relationship between infection risk and glucose values (Van den Berghe et al., 2001).

To our knowledge, this is the first time an optimal interval -as opposed to a single
point- has been proposed for enhancing the accuracy of a continuous marker. How-
ever, caution must be exercised when choosing the threshold or range of thresholds. The
threshold selection criterion should be based on the clinical context, and may involve
weighing the expected costs against the benefits associated with a high-risk designation.
Other clinical settings may involve an entirely different balance between disease severity,
treatment efficacy and side-effects, leading to different choices according to the impor-
tance of sensitivity versus specificity. One of the strengths of this proposal is that the
proposed methodology can be easily used by clinicians and epidemiologists. We used
spline smoothing methods to estimate the logistic GAM regression model and empirical
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estimates to approximate the ROC curves and their related accuracy measures but other
available tools, such as kernel or P-spline smoothing techniques (Du and Tang, 2009)
could be used similarly.

As a general conclusion, we can say that it is important to stress the need to ques-
tion linearity in marker-outcome relationships: firstly, because failure to do so may lead
to erroneous conclusions; and secondly, because the use of statistical tools that allow
for greater flexibility (e.g., GAMs) can optimize the classificatory capacity of a potential
marker from the standpoint of ROC analysis.

The results obtained in this study can be extended to other biomedical scenarios,
such as survival analysis. In this context, the outcome variable is deemed to be time de-
pendent, and the concepts of ROC curve and AUC have been adapted to this situation
(Heagerty et al., 2000; Heagerty and Zheng, 2005). The fitting of Cox regression models
(Cox, 1972) used for survival analysis and the modeling of hazard ratios may likewise
be performed by flexible methods analogous to those described for logistic regression
(Cid-Álvarez et al., 2009; Cadarso-Suárez et al., 2010), so that nonparametric modeling
can also be used to obtain more suitable markers in this context.

A further interesting task linked to the methodology presented here is its extension
to a multivariate context. ROC analysis can also be used in conjunction with logistic
GAM regression models in the context of using combined markers for diagnosis pur-
poses (Lado et al., 2006).
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Björk, T., Piironen, T., Pettersson, K., Lövgren, T., Stenman, U-H., Oesterling, JE., Abra-
hamsson, P-A., and Lilja, H. (1996). Comparison of analysis of the different prostate-
specific antigen forms in serum for detection of clinically localized prostate cancer.
Urology, 48:882–888.

Bland, M. (1987). An introduction to medical statistics. Oxford: Oxford University Press.
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López-Ratón, M., Cadarso-Suárez, C., and Lado, MJ. (2012a). Técnicas de estimación e
inferencia de las curvas ROC. Editorial Académica Española.

López-Ratón, M., Cadarso-Suárez, C., Molanes-López, EM., and Letón, E. (2015a). Confi-
dence intervals for the symmetry point: An optimal cutpoint in continuous diagnostic
tests. Submitted.
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(2014). OptimalCutpoints: An R package for selecting optimal cutpoints in diagnostic
tests. Journal of Statistical Software, 61(8):1–36.
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