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RAFAEL FERNÁNDEZ CASADO

2015





Relations between crossed modules

of different algebras

by

RAFAEL FERNÁNDEZ CASADO
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en la

UNIVERSIDAD DE SANTIAGO DE COMPOSTELA

Santiago de Compostela, 2015





Relations between crossed modules

of different algebras

Fdo.: Rafael Fernández Casado

Memoria para optar al grado de Doctor realizada en el Departamento de Álgebra
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Resumen de la Tesis Doctoral:

Relaciones entre módulos cruzados de diferentes
álgebras

Resumen abreviado:

En el presente trabajo extendemos a módulos cruzados la adjunción entre el funtor

liezación LieAs : As → Lie y el funtor álgebra envolvente universal U : Lie → As. Además,

probamos que existe un isomorfismo entre las categoŕıas de módulos por la izquierda sobre un

módulo cruzado de álgebras de Lie y módulos por la izquierda sobre su módulo cruzado en-

volvente universal. Asimismo, construimos una generalización a dimensión 2 de la adjunción

entre el funtor Lb : Dias → Lb y el funtor diálgebra envolvente universal Ud : Lb → Dias.

Debido a que esta última generalización involucra a los módulos cruzados de diálgebras,

damos una definición adecuada de los mismos, basada en la definición general de módulos

cruzados en categoŕıas de interés. Además, definimos el concepto de 2-diálgebra estricta, por

analoǵıa con la noción de 2-álgebra asociativa estricta. Asimismo, probamos que las cate-

goŕıas de módulos cruzados de diálgebras y 2-diálgebras estrictas son equivalentes. También

construimos la diálgebra de los tetramultiplicadores, que resultará ser el actor en la categoŕıa

de diálgebras bajo ciertas condiciones. Además, a partir de un módulo cruzado de álgebras

de Leibniz, construimos un actor general para el mismo, que resultará ser el actor en ciertos

casos particulares.

El concepto de módulo cruzado de grupos fue formulado por primera vez por
Whitehead a finales de la década de los 40 [83]. Poco después, Mac Lane y Whitehead
[70] probaron que los módulos cruzados pueden utilizarse como modelo algebraico para
los CW-espacios conexos cuyos grupos de homotoṕıa son triviales en dimensión mayor
que 2. Los módulos cruzados generalizan al mismo tiempo los conceptos de subgrupo
normal y módulo sobre un grupo. Desde su introducción han jugado un papel muy
importante en diversas áreas de las matemáticas, en particular en teoŕıa de homotoṕıa.
Por ejemplo, aparecen en varios problemas de clasificación de tipos homotópicos en
dimensión baja y en las generalizaciones del Teorema de van Kampen.

Más allá de su valor como herramienta para la teoŕıa de homotoṕıa, los módulos
cruzados han sido estudiados como objetos algebraicos de propio derecho. Por ejem-
plo, Norrie extendió a módulos cruzados algunos conceptos y estructuras propias de
la teoŕıa de grupos en su tesis doctoral [72]. En particular, construyó el actor de un
módulo cruzado de grupos e introdujo la noción de centro de un módulo cruzado, aśı
como los conceptos de módulo cruzado completo y perfecto.
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Los módulos cruzados de otras estructuras, no sólo de grupos, también han sido
estudiados. Por ejemplo, en [60] Kassel y Loday usan módulos cruzados de álgebras
de Lie como herramienta computacional para dar una interpretación de la tercera co-
homoloǵıa relativa de Chevalley-Eilenberg de álgebras de Lie. Guin [51] desarrolló la
cohomoloǵıa no abeliana en dimensiones bajas de álgebras de Lie con coeficientes en
módulos cruzados de álgebras de Lie, la cual fue extendida posteriormente a dimen-
siones superiores [57]. La homoloǵıa interna (cotriple) y la homoloǵıa de Chevalley-
Eilenberg de módulos cruzados de álgebras de Lie son objeto de investigación en
[23, 35]. Además, los módulos cruzados de álgebras de Lie también aparecen en el
problema de “categorificación” de la teoŕıa de álgebras de Lie [4] como una formu-
lación equivalente de las 2-álgebras de Lie estrictas.

Los módulos cruzados de álgebras asociativas no han sido estudiados con tanta
profundidad como sus análogos para grupos y álgebras de Lie. Sin embargo, en
los trabajos de Dedecker y Lue [33, 67] tienen un papel relevante como coeficientes
para la cohomoloǵıa no abeliana en dimensiones bajas. Además, en la tesis doctoral
de Shammu [80] se estudia su estructura algebraica y categórica. Baues y Minian
[6] hicieron uso de ellos para representar la cohomoloǵıa de Hochschild de álgebras
asociativas y, en el reciente art́ıculo [34], se estudia la homoloǵıa de Hochschild y la
homoloǵıa ćıclica (cotriple) de los módulos cruzados de álgebras asociativas.

En lo que respecta a módulos cruzados de álgebras de Leibniz, una generalización
no antisimétrica de las álgebras de Lie, introducida por Bloh en [8], estos fueron
usados por primera vez por Loday y Pirashvili [66] para estudiar la cohomoloǵıa de
las álgebras de Leibniz. En una situación no conmutativa, en la que las álgebras de
Lie son substituidas por las álgebras de Leibniz, el papel de las álgebras asociativas
es jugado por las álgebras diasociativas (o simplemente diálgebras), introducidas y
estudiadas por Loday [65]. Hasta la presentación de este trabajo, los módulos cruzados
de diálgebras no hab́ıan sido estudiados.

Brown y Spencer demostraron en [13] que las categoŕıas internas en la categoŕıa de
grupos son equivalentes a los módulos cruzados de grupos. En su art́ıculo se menciona
que este hecho ya era conocido por Verdier en 1965 y fue utilizado por Duskin en [36].
El trabajo de Brown y Spencer sirvió a Porter de inspiración para investigar para qué
otras categoŕıas la equivalencia entre módulos cruzados y categoŕıas internas sigue
siendo cierta, aunque el trabajo resultante no fue publicado. Pocos años después,
Loday definió en [63] el concepto de catn-grupo, que es equivalente a la noción de
categoŕıa interna de orden n en grupos. Loday dio también la definición de cuadrado
cruzado, la generalización a dimensión 2 de un módulo cruzado. En 1984, [37] extendió
a dimensión arbitraria los resultados no publicados de Porter y demostró que, dada
una categoŕıa de Ω-grupos C, las siguientes estructuras son equivalentes:

(i) Categoŕıas internas de orden n en C,

(ii) catn-objetos en C,

(iii) n-cubos cruzados en C,
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(iv) n-objetos simpliciales en C cuyos complejos normales tengan longitud 1,

(v) Módulos cruzados de orden n en C.

Los principales resultados presentados en esta tesis tienen a los módulos cruzados
sobre las categoŕıas de grupos, de álgebras de Lie, de álgebras asociativas, de álgebras
de Leibinz y de diálgebras como principales protagonistas. Estas cinco categoŕıas son
categoŕıas de interés (puede consultarse, por ejemplo, en [71]), las cuales son a su
vez un caso particular de categoŕıas de Ω-grupos. Por este motivo, comenzamos el
primer caṕıtulo recordando la equivalencia entre los módulos cruzados y las categoŕıas
internas en una categoŕıa de Ω-grupos (Sección 1.1).

Los cat1-objetos juegan un papel fundamental en las demostraciones de algunos de
nuestros principales resultados. Por ello, en la Sección 1.2 recordamos la equivalencia
entre módulos cruzados y cat1-objetos para cada una de las cinco categoŕıas parti-
culares consideradas en esta tesis, es decir, grupos Gr, álgebras de Lie Lie, álgebras
asociativas As, álgebras de Leibniz Lb y diálgebras Dias. Además, en las cinco sub-
secciones presentes en esta sección hacemos un breve repaso de las caracteŕısticas
fundamentales de los módulos cruzados en dichas categoŕıas. Las correspondientes
categoŕıas de módulos cruzados son denotadas por XGr, XLie, XAs, XLb y XDias
respectivamente.

Aunque la equivalencia entre módulos cruzados de diálgebras y cat1-diálgebras
es consecuencia de la misma equivalencia para categoŕıas de Ω-grupos, la descripción
expĺıcita no hab́ıa sido hecha con anterioridad a esta tesis, pues el concepto de módulo
cruzado de diálgebras no hab́ıa sido siquiera considerado.

Recordamos aqúı la definición de diálgebra asociativa, dada por primera vez por
Loday [65].

Definición 1.2.47. Una diálgebra asociativa (o simplemente diálgebra), es un K-
módulo D equipado con dos aplicaciones K-lineales

a, ` : D ⊗D → D,

llamadas producto por la izquierda y por la derecha respectivamente, que satisfacen
los siguientes axiomas:

(x a y) a z = x a (y ` z),
(x a y) a z = x a (y a z),
(x ` y) a z = x ` (y a z),
(x a y) ` z = x ` (y ` z),
(x ` y) ` z = x ` (y ` z),

para todo x, y, z ∈ D. Un morfismo de diálgebras es una aplicación K-lineal que
conserva el producto por la izquierda y por la derecha.
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Teniendo en cuenta las definiciones de módulo cruzado y cat1-objeto en las cate-
goŕıas de grupos con operaciones, damos las siguientes definiciones de módulo cruzado
de diálgebras y cat1-diálgebra:

Definición 1.2.52. Un módulo cruzado de diálgebras (L,D, µ) es un morfismo de
diálgebras µ : L→ D junto con una acción de D sobre L tal que

µ(x ∗ a) = x ∗ µ(a) y µ(a ∗ x) = µ(a) ∗ x,
µ(a1) ∗ a2 = a1 ∗ a2 = a1 ∗ µ(a2).

para todo x ∈ D, a1, a2 ∈ L.

Nótese que en las identidades de la definición anterior, ∗ = a y ∗ = `.

Definición 1.2.59. Una cat1-diálgebra (D1, D0, σ, τ) es una diálgebra D1 junto con
una subdiálgebra D0 y dos morfismos de diálgebras σ, τ : D1 → D0 tales que

σ|D0
= τ |D0

= idD0
,

Kerσ ∗Ker τ = 0 = Ker τ ∗Kerσ.

Denotamos por C1Dias la categoŕıa de cat1-diálgebras. Por analoǵıa con la situación
general para categoŕıas de Ω-grupos, obtenemos el siguiente resultado:

Proposición 1.2.61. Las categoŕıas XDias y C1Dias son equivalentes.

Los módulos cruzados de grupos, álgebras de Lie y álgebras asociativas son equiva-
lentes a los 2-grupos estrictos, las 2-álgebras de Lie estrictas y las 2-álgebras asocia-
tivas estrictas, respectivamente. En la última sección del primer caṕıtulo damos las
siguientes definiciones de 2-álgebra de Leibniz estricta y 2-diálgebra estricta.

Definición 1.3.9. Una 2-álgebra de Leibniz estricta es un 2-módulo L, junto con un
funtor bilineal, el corchete [−,−] : L× L→ L, tal que

[[x, y]i, z]i = [x, [y, z]i]i + [[x, z]i, y]i.

para todo x, y, z ∈ Li, i = 0, 1. Un morfismo de 2-álgebras de Leibniz estrictas,
F : L→ L′, es un funtor lineal tal que

Fi([x, y]i) = [Fi(x), Fi(y)]′i.

para todo x, y ∈ Li, i = 0, 1.

Definición 1.3.10. Una 2-diálgebra estricta es un 2-módulo D, junto con dos fun-
tores bilineales, los productos por la izquierda y por la derecha − a − : D ×D → D y
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− ` − : D ×D → D, tales que

(x ai y) ai z = x ai (y `i z),
(x ai y) ai z = x ai (y ai z),
(x `i y) ai z = x `i (y ai z),
(x ai y) `i z = x `i (y `i z),
(x `i y) `i z = x `i (y `i z).

para todo x, y, z ∈ Di, i = 0, 1. Un morfismo de 2-diálgebras estrictas, F : D → D′,
es un funtor lineal tal que

Fi(x ai y) = Fi(x) a′i Fi(y) y Fi(x `i y) = Fi(x) `′i Fi(y)

para todo x, y ∈ Di, i = 0, 1.

La primera de las definiciones concuerda con la que aparece en [81], donde las
2-álgebras de Leibniz estrictas se definen como un caso particular de las 2-álgebras de
Leibinz semiestrictas. La segunda definición es original y está construida por analoǵıa
con la definición de las 2-álgebras asociativas estrictas, dada por Khmaladze en [61].
A partir de ambas definiciones conseguimos el siguiente resultado y su corolario, con
los que cerramos el primer caṕıtulo.

Teorema 1.3.11. Las categoŕıas IDias (respectivamente ILb) y S2Dias (respectiva-
mente S2Lb) son isomorfas.

Corolario 1.3.12. Las categoŕıas XDias (respectivamente XLb) y S2Dias (respecti-
vamente S2Lb) son equivalentes.

Es un hecho conocido que el actor de un grupo está dado por su grupo de au-
tomorfismos. En el caso de las álgebras de Lie, el papel de actor está desempeñado
por el álgebra de Lie de las derivaciones. Para álgebras asociativas y álgebras de
Leibniz, el actor no siempre existe, como se demuestra en [19, 20]. Sin embargo, bajo
ciertas condiciones, está dado por el álgebra de los bimultiplicadores y el álgebra de
Leibniz de las biderivaciones, respectivamente. Teniendo en cuenta lo anterior, en la
Subsección 2.1.1, damos la siguiente definición:

Definición 2.1.9. Sea L una diálgebra. Denotamos por Tetra(L) el conjunto de los
tetramultiplicadores de L, cuyos elementos son cuartetos t = (l, r, l̃, r̃) de aplicaciones
K-lineales de L en L tales que

(1) l(a ` b) = l(a) a b,

(2) l(a a b) = l(a) a b,

(3) l̃(a a b) = l̃(a) a b,

(4) l̃(a ` b) = l(a) ` b,

(5) l̃(a ` b) = l̃(a) ` b,
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(6) r(a) a b = a a l̃(b),

(7) r(a) a b = a a l(b),

(8) r̃(a) a b = a ` l(b),

(9) r(a) ` b = a ` l̃(b),

(10) r̃(a) ` b = a ` l̃(b),

(11) r(a a b) = a a r̃(b),

(12) r(a a b) = a a r(b),

(13) r(a ` b) = a ` r(b),

(14) r̃(a a b) = a ` r̃(b),

(15) r̃(a ` b) = a ` r̃(b),

para todo a, b ∈ L.

Demostramos que Tetra(L) es en general no vaćıo y lo dotamos de una estructura
de diálgebra:

Proposición 2.1.11. Sea L una diálgebra. Entonces Tetra(L) es una diálgebra con
los productos por la izquierda y la derecha dados por

t1 a t2 = (l1 l̃2, r2r1, l̃1 l̃2, r2r̃1),

t1 ` t2 = (l̃1l2, r2r1, l̃1 l̃2, r̃2r1)

para todo t1 = (l1, r1, l̃1, r̃1), t2 = (l2, r2, l̃2, r̃2) ∈ Tetra(L).

Además, demostramos que Tetra(L) es un actor general para la categoŕıa de
diálgebras, el cual, bajo ciertas condiciones, se convierte en el actor de dicha categoŕıa.

Teorema 2.1.13. Tetra(L) es un actor general de la diálgebra L.

Proposición 2.1.14. Sea L una diálgebra tal que Ann(L) = 0 o L a L = L = L ` L.
Entonces Tetra(D) es el actor de L.

El objeto actor ha sido extendido a módulos cruzados para los casos particulares
de grupos [73] y álgebras de Lie [27]. En las Subsecciones 2.2.1 y 2.2.2 recordamos los
pasos fundamentales de dichas construcciones. La relativa facilidad de estas dos ex-
tensiones y sus buenas propiedades nos hicieron plantearnos la posibilidad de extender
a módulos cruzados el álgebra de Leibniz de las biderivaciones. Es importante tener
en cuenta que dicha álgebra de Leibniz es el actor sólo bajo determinadas hipótesis,
aśı que lo esperable es que su generalización a módulos cruzados tenga un compor-
tamiento parecido. De esta forma, en la Subsección 2.2.3, dado un módulo cruzado
de álgebras de Leibniz (n, q, µ), damos la definición del conjunto de las biderivaciones
de q en n, denotado por Bider(q, n), y del conjunto de las biderivaciones del módulo
cruzado (n, q, µ), denotado por Bider(n, q, µ). Además, dotamos a ambos conjuntos
de una estructura de álgebra de Leibniz y construimos entre ellos un morfismo de
álgebras de Leibniz:

Proposición 2.2.15. La aplicación K-lineal ∆: Bider(q, n) → Bider(n, q, µ) dada
por ∆(d,D) = ((dµ,Dµ), (µd, µD)), es un morfismo de álgebras de Leibniz.
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Lo siguiente que hacemos es definir una acción de Bider(n, q, µ) sobre Bider(q, n),
la cual aparece descrita en el siguiente resultado.

Teorema 2.2.16. Existe una acción de Leibniz de Bider(n, q, µ) sobre Bider(q, n)
dada por:

[((σ1, θ1), (σ2, θ2)), (d,D)] = (σ1d− dσ2, θ1d− dθ2),

[(d,D), ((σ1, θ1), (σ2, θ2))] = (dσ2 − σ1d,Dσ2 − σ1D),

para todo ((σ1, θ1), (σ2, θ2)) ∈ Bider(n, q, µ), (d,D) ∈ Bider(q, n). El morfismo ∆ de
la proposición anterior junto con esta acción es un módulo cruzado de álgebras de
Leibniz.

Una vez conseguido el objeto (Bider(q, n),Bider(n, q, µ),∆) en la categoŕıa de
módulos cruzados de álgebras de Leibniz, el cual denotamos por Act(n, q, µ), nuestro
siguiente paso fue dar una caracterización en términos de ecuaciones de la existencia
de un morfismo de módulos cruzados de álgebras de Leibniz entre un módulo cruzado
(m, p, η) y (Bider(q, n),Bider(n, q, µ),∆). Para ello fue necesario demostrar primero
el siguiente lema:

Lema 2.2.17.

(i) Sea q un álgebra de Leibniz y (σ, θ), (σ′, θ′) ∈ Bider(q). Si Ann(q) = 0 o [q, q] =
q, entonces

θσ′(q) = θθ′(q)

para todo q ∈ q.

(ii) Sea (n, q, µ) un módulo cruzado de álgebras de Leibniz, ((σ1, θ1), (σ2, θ2)) ∈
Bider(n, q, µ) y (d,D) ∈ Bider(q, n). Si Ann(n) = 0 o [q, q] = q, entonces

Dσ2(q) = Dθ2(q),

θ1d(q) = θ1D(q),

para todo q ∈ q.

Apoyados en este lema, conseguimos el siguiente resultado:

Teorema 2.2.18. Sean (m, p, η) y (n, q, µ) módulos cruzados de álgebras de Leibniz.
Si las siguientes condiciones se cumplen, entonces existe un morfismo de módulos
cruzados de (m, p, η) en (Bider(q, n),Bider(n, q, µ),∆).

(i) Existen acciones del álgebra de Leibniz p (y por tanto de m) sobre las álgebras
de Leibniz n y q. El morfismo µ es p-equivariante, es decir,

µ([p, n]) = [p, µ(n)],

µ([n, p]) = [µ(n), p],
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y las acciones de p y q sobre n son compatibles, es decir,

[n, [p, q]] = [[n, p], q]− [[n, q], p],

[p, [n, q]] = [[p, n], q]− [[p, q], n],

[p, [q, n]] = [[p, q], n]− [[p, n], q],

[n, [q, p]] = [[n, q], p]− [[n, p], q],

[q, [n, p]] = [[q, n], p]− [[q, p], n],

[q, [p, n]] = [[q, p], n]− [[q, n], p],

para todo n ∈ n, p ∈ p y q ∈ q.

(ii) Existen dos aplicaciones K-bilineales ξ1 : m× q→ n y ξ2 : q×m→ n tales que

µξ2(q,m) = [q,m],

µξ1(m, q) = [m, q],

ξ2(µ(n),m) = [n,m],

ξ1(m,µ(n)) = [m,n],

ξ2(q, [p,m]) = ξ2([q, p],m)− [ξ2(q,m), p],

ξ1([p,m], q) = ξ2([p, q],m)− [p, ξ2(q,m)],

ξ2(q, [m, p]) = [ξ2(q,m), p]− ξ2([q, p],m),

ξ1([m, p], q) = [ξ1(m, q), p]− ξ1(m, [q, p]),

ξ2(q, [m,m′]) = [ξ2(q,m),m′]− [ξ2(q,m′),m],

ξ1([m,m′], q) = [ξ1(m, q),m′]− [m, ξ2(q,m′)],

ξ2([q, q′],m) = [ξ2(q,m), q′] + [q, ξ2(q′,m)],

ξ1(m, [q, q′]) = [ξ1(m, q), q′]− [ξ1(m, q′), q],

[q, ξ1(m, q′)] = −[q, ξ2(q′,m)],

ξ1(m, [p, q]) = −ξ1(m, [q, p]),

[p, ξ1(m, q)] = −[p, ξ2(q,m)],

para todo m,m′ ∈ m, n ∈ n, p ∈ p, q, q′ ∈ q.

Además, si al menos una de las siguientes condiciones se cumple, el enunciado
rećıproco también es cierto.

Ann(n) = 0 = Ann(q),

Ann(n) = 0 y [q, q] = q,

[n, n] = n y [q, q] = q.

Para poder confirmar que la colección de ecuaciones del teorema anterior define
un conjunto de acciones derivadas de un módulo cruzado de álgebras de Leibniz sobre
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otro, tenemos que comprobar que a partir de dichas ecuaciones podemos definir el
producto semidirecto de los dos módulos cruzados correspondientes.

Dados (m, p, η) y (n, q, µ) dos módulos cruzados de álgebras de Leibniz tales que
las condiciones (i) y (ii) del Teorema 2.2.18 se cumplen, al existir acciones de m sobre n
y de p sobre q, es posible considerar los productos semidirectos de álgebras de Leibniz
nom y qo p. Además, tenemos el siguiente resultado.

Teorema 2.2.21. Existe una acción del álgebra de Leibniz qo p sobre el álgebra de
Leibniz nom, dada por

[(q, p), (n,m)] = ([q, n] + [p, n] + ξ2(q,m), [p,m]),

[(n,m), (q, p)] = ([n, q] + [n, p] + ξ1(m, q), [m, p]),

para todo (q, p) ∈ q o p, (n,m) ∈ n o m, con ξ1 y ξ2 definidas como en el Teo-
rema 2.2.18. Además, el morfismo de álgebras de Leibniz (µ, η) : nom→ qo p, dado
por

(µ, η)(n,m) = (µ(n), η(m)),

para todo (n,m) ∈ n o m es un módulo cruzado de álgebras de Leibniz junto con la
acción anterior.

Este último resultado nos permite definir el producto semidirecto de módulos
cruzados de álgebras de Leibniz (n, q, µ) y (m, p, η) como el módulo cruzado (n o
m, qo p, (µ, η)). Además, estamos en condiciones de escribir la siguiente definición:

Definición 2.2.23. Si (m, p, η) y (n, q, µ) son dos módulos cruzados de álgebras de
Leibniz y se verifica al menos una de las siguientes condiciones,

1. Ann(n) = 0 = Ann(q),

2. Ann(n) = 0 y [q, q] = q,

3. [n, n] = n y [q, q] = q,

entonces una acción del módulo cruzado (m, p, η) sobre (n, q, µ) es un morfismo de
módulos cruzados de álgebras de Leibniz de (m, p, η) en Act(n, q, µ). En otras palabras,
bajo una de esas tres condiciones, Act(n, q, µ) es el actor de (n, q, µ).

Los pasos en la construcción de (Bider(q, n),Bider(n, q, µ),∆) sugieren candidatos
claros para la extensión a módulos cruzados del álgebra de los bimultiplicadores y de
la diálgebra de los tetramultiplicadores. Estas generalizaciones serán consideradas en
futuros trabajos.

Cerramos el segundo caṕıtulo con las definiciones de módulos por la izquierda
sobre un módulo cruzado de álgebras de Lie y de álgebras asociativas, ya que una de
las consecuencias de uno de nuestros resultados principales, que aparece en el último
caṕıtulo, será el isomorfismo entre las categoŕıas de módulos por la izquierda sobre
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un módulo cruzado de álgebras de Lie y módulos por la izquierda sobre su módulo
cruzado envolvente universal.

En el reciente art́ıculo [22], los autores construyen un par de funtores adjuntos entre
las categoŕıas de módulos cruzados de grupos y álgebras asociativas unitarias. Estos
funtores son una generalización natural de la adjunción clásica entre el funtor grupo de
las unidades y el funtor álgebra de grupo. Esta última adjunción tiene un análogo para
las categoŕıas de álgebras de Lie y álgebras asociativas, dado por la adjunción entre
el funtor liezación, que le da a cada álgebra A estructura de álgebra de Lie mediante
el corchete [a, b] = ab− ba, a, b ∈ A, y el funtor que asigna a cada álgebra de Lie p su
álgebra envolvente universal U(p). Además, existe una adjunción entre el funtor que
asigna a cada diálgebra D el corchete de Leibniz dado por [x, y] = x a y− y ` x para
todo x, y ∈ D, y el funtor diálgebra envolvente universal (ver [65]).

Comenzamos el último caṕıtulo recordando la construcción de la extensión a
módulos cruzados de la adjunción entre el funtor grupo de las unidades y el funtor
álgebra de grupo. Además, en la Subsección 3.1.2, demostramos que la generalización
a módulos cruzados del segundo de esos funtores no tiene un comportamiento natural
con su versión en dimensión 1, en el sentido de que el siguiente diagrama de categoŕıas
y funtores, donde E1(G) = (G,G, idG) y E′1(A) = (A,A, idA),

Gr XGr

As1 XAs1 .

E1

K XK

E′1

no es conmutativo, ni siquiera salvo isomorfismo.
En las Secciones 3.2 y 3.3 presentamos la generalización a módulos cruzados de las

adjunciones entre las categoŕıas Lie vs As y Lb vs Dias mencionadas anteriormente,
cumpliendo aśı uno de los objetivos principales de este trabajo. En ambos casos,
primero construimos las correspondientes extensiones a módulos cruzados y después
comprobamos el buen comportamiento de las mismas a través de los siguientes resul-
tados. Es importante tener en cuenta que en la generalización de los funtores álgebra
envolvente universal y diálgebra envolvente universal, los cat1-objetos juegan un papel
fundamental.

Para XLie vs XAs:

Teorema 3.2.5. El funtor XU es adjunto por la izquierda del funtor XLieAs.
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Teorema 3.2.6. Los cuadrados interiores y exteriores de los siguientes diagramas
son conmutativos o conmutan salvo isomorfismo para i = 0, 1.

As Lie As Lie

XAs XLie XAs XLie

⊥
LieAs

I′ia

U

Ii `

⊥
LieAs

I′i a

U

Ii`

>
XLieAs

Φ′i

XU

Φi

>
XLieAs

Φ′i+1

XU

Φi+1

Además, tenemos el siguiente resultado:

Teorema 3.2.8. Sea (m,p, ν) un módulo cruzado de álgebras de Lie. Entonces, las
categoŕıas de (m,p, ν)-módulos por la izquierda y XU(m,p, ν)-módulos por la izquierda
son isomorfas.

Para XLb vs XDias:

Teorema 3.3.4. El funtor XUd es adjunto por la izquierda del funtor XLb.

Teorema 3.3.5. Los cuadrados interiores y exteriores de los siguientes diagramas
son conmutativos o conmutan salvo isomorfismo para i = 0, 1.

Dias Lb Dias Lb

XDias XLb XDias XLb

⊥
Lb

J′ia

Ud

Ji `

⊥
Lb

J′i a

Ud

Ji`

>
XLb

Ψ′i

XUd

Ψi

>
XLb

Ψ′i+1

XUd

Ψi+1

Finalmente, en la última sección del último caṕıtulo, completamos los siguientes
diagramas, formados por cuadrados interiores y exteriores conmutativos (o que con-
mutan salvo isomorfismo) para i = 0, 1:

As Dias As Dias

XAs XDias XAs XDias

⊥
⊂

I′ia

As

J′i `

⊥
⊂

I′i a

As

J′i`

>
⊂

Φ′i

XAs

Ψ′i

>
⊂

Φ′i+1

XAs

Ψ′i+1
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Lie Lb Lie Lb

XLie XLb XLie XLb

⊥
⊂

Iia

LieLb

Ji `

⊥
⊂

Ii a

LieLb

Ji`

>
⊂

Φi

XLieLb

Ψi

>
⊂

Φi+1

XLieLb

Ψi+1

XAs XLie

XDias XLb

⊥
XLieAs

⊂a

XU

⊂ `

>
XLb

XAs

XUd

XLieLb

Estos diagramas, junto al ya conocido

As Lie

Dias Lb

⊥
LieAs

⊂a

U

⊂ `

>
Lb

As

Ud

LieLb

nos permiten construir los cuatro paraleleṕıpedos protagonistas del teorema que cierra
la tesis:
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Teorema 3.4.3. En los siguientes paraleleṕıpedos de categoŕıas y funtores

As Lie

Dias Lb

XAs XLie

XDias XLb

⊥
LieAs

I′ia

⊂`

U

`Ii`

⊂

Lb

>

J′ia

As

Ud

Ji `

Li
e L

b
Φ′i

⊥
XLieAs

⊂`

Φi

XU

`

⊂

Ψ′i

XLb

>

XA
s

Ψi

XUd

XL
ie

Lb

As Lie

Dias Lb

XAs XLie

XDias XLb

⊥
LieAs

I′i a

⊂`

U

` Ii`

⊂

Lb

>

J′i a

As

Ud

Ji`

Li
e L

b

Φ′i+1

⊥
XLieAs

⊂`

Φi+1

XU

`

⊂

Ψ′i+1

XLb

>

XA
s

Ψi+1

XUd

XL
ie

Lb

todos los cuadrados interiores y exteriores de funtores adjuntos son conmutativos o
conmutan salvo isomorfismo para i = 0, 1. Es importante tener en cuenta que en
cada una de las caras de los paraleleṕıpedos, los adjuntos por la izquierda forman los
cuadrados exteriores y los adjuntos por la derecha los cuadrados interiores.
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Introduction

Aims and background

The concept of crossed module of groups was formulated for the first time by White-
head in the late 1940s [83]. Soon after, Mac Lane and Whitehead [70] proved that
crossed modules work as an algebraic model for path-connected CW-spaces whose
homotopy groups are trivial in dimensions greater than 2. They are algebraic objects
with a rich structure and provide a generalization of both the concepts of normal
subgroup and module over a group. From the very beginning, crossed modules of
groups have played an important role in several areas of mathematics, particularly
in homotopy theory. For example, they appear in various classification problems for
low-dimensional homotopy types and the derivation of van Kampen theorem gener-
alizations (see the survey by Brown [12]).

Beyond their value as a tool for homotopy theory, crossed modules have been
studied as algebraic objects in their own right. For instance, Norrie generalized some
group theoretic concepts and structures to crossed modules in her PhD thesis [72]. In
particular, she defined the actor of a crossed module, as well as the notions of centre
of a crossed module, complete and perfect crossed modules.

The study of (co)homological properties of crossed modules of groups has been the
subject of several papers. We point out two (co)homology theories of crossed modules
of groups, one introduced and investigated in the works of Baues [5] and Ellis [39]
via classifying spaces, and the other defined by Carrasco, Cegarra and R.-Grandjeán
[15] as cotriple (co)homology. Later, R.-Grandjeán, Ladra and Pirashvili [49] found
a relation between these two homology theories.

Crossed modules of different algebraic objects, not only groups, have also been
studied. For instance, in [60] Kassel and Loday used Lie crossed modules as computa-
tional tools in order to give an interpretation of the third relative Chevalley-Eilenberg
cohomology of Lie algebras. Internal (cotriple) homology and Chevalley-Eilenberg
homology theories of Lie crossed modules were investigated in [23, 35]. Lie crossed
modules also occur in the “categorification” problem of the theory of Lie algebras [4]
as an equivalent formulation of strict Lie 2-algebras.

From the 1960s, many authors have attempted to answer the question of what

xxv



we should mean by non-abelian (co)homology, that is (co)homology with non-abelian
coefficients, of various algebraic structures (see [30, 32, 33, 67, 79]). A convincing
answer for groups and Lie algebras was given by Guin in [50, 51], where coefficients
are taken to be crossed modules of groups and Lie algebras. Guin’s results were later
extended to higher dimensions in [54, 55] for groups and in [56, 57] for Lie algebras.
The new non-abelian (co)homology theory differs from that by Serre [79] and from
the setting of various papers on non-abelian (co)homology of groups [14, 28, 32].

Crossed modules of associative algebras have not been so deeply studied as their
Lie and group analogues. However, in the works of Dedecker and Lue [33, 67] they
play a central role as coefficients for low-dimensional non-abelian cohomology. Be-
sides, in Shammu’s PhD thesis [80] the algebraic and categorical structure of crossed
modules of algebras was studied. Baues and Minian [6] used them to represent the
Hochschild cohomology of associative algebras and, in the recent article [34], the
Hochschild and (cotriple) cyclic homologies of crossed modules of associative algebras
were constructed and investigated.

Regarding Leibniz algebras, a non-antisymmetric generalization of Lie algebras
introduced by Bloh [8] and Loday [64], their crossed modules were used for the
first time by Loday and Pirashvili [66] to study the cohomology of Leibniz algebras.
Crossed modules of Leibniz algebras were also used as coefficients for non-abelian
(co)homology of Leibniz algebras in [25, 47].

Brown and Spencer proved in [13] that internal categories within the category of
groups are equivalent to crossed modules of groups. They mention in their article that
this fact was already known by Verdier in 1965 and used by Duskin in [36]. Porter
used this work as an inspiration to investigate for which categories the equivalence
between crossed modules of the appropriate type and internal categories still holds,
although the resulting work was never published. A few years later, Loday introduced
in [63] the concept of catn-groups, which are equivalent to internal n-fold categories in
groups (see also [38]). Besides, he gave the notion of crossed square, the 2-dimensional
version of a crossed module. In 1984, Ellis [37] extended to arbitrary dimension the
unpublished results achieved by Porter and proved that, given a category of Ω-groups
C, the following structures are equivalent:

(i) n-fold internal categories in C,

(ii) catn-objects in C,

(iii) Crossed n-cubes in C,

(iv) n-simplicial objects in C whose normal complexes are of length 1,

(v) n-fold crossed modules in C.

The main results presented in this work are done for crossed modules of groups,
Lie algebras, Leibniz algebras, associative algebras and associative dialgebras, all of
which constitute categories of interest (see [71], for instance). Categories of interest
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are a particular case of categories of groups with operations, which are themselves
a particular case of the more general notion of variety of universal algebra, whose
definition can be found in [69].

Another equivalent description of crossed modules of groups is that of strict 2-
groups, which are defined by Baez [3] as strict monoidal categories for which every
morphism is invertible and every object has an inverse. Baez himself introduced
the notion of strict Lie 2-algebra [4], while Khmaladze gave a definition of strict
associative 2-algebras in [61], both equivalent to their corresponding crossed modules.
In the present work we recall the concept of Leibniz strict 2-algebra (see [81]) and
define strict associative 2-dialgebras. Additionally, we prove that they are equivalent
to their corresponding crossed modules.

Recently, in [22], the authors constructed a pair of adjoint functors between the
categories of crossed modules of groups and associative unital algebras. This ad-
junction is a natural generalization of the classical adjunction between the unit group
functor and the group algebra functor. Furthermore, they established an isomorphism
between the categories of modules over a crossed module of groups and its respective
crossed module of associative algebras.

It is also a classical fact that associative algebras and Lie algebras are related
by a pair of well-known adjoint functors: the Liezation functor, which makes every
associative algebra A into a Lie algebra via the bracket [a, b] = ab − ba, a, b ∈ A, is
right adjoint to the functor that assigns to every Lie algebra p its universal enveloping
algebra U(p).

In the non-commutative framework, when Lie algebras are replaced by Leibniz
algebras, the analogous objects to associative algebras are diassociative algebras (or
dialgebras, for short), introduced and studied by Loday [65]. In the same article,
Loday proves that there is an adjunction between the functor that assigns to every
dialgebra D the Leibniz bracket given by [x, y] = x a y − y ` x for all x, y ∈ D, and
the universal enveloping dialgebra functor. The previous adjunctions are part of the
following diagram

As Lie

Dias Lb

⊥
LieAs

⊂a

U

⊂ `

>
Lb

As

Ud

LieLb

where the inner square is commutative and the outer square commutes up to iso-
morphism. In the present work we give an explicit definition of crossed modules of
dialgebras and explore some of their basic properties in order to extend the previous
diagram to crossed modules. Then we use the resulting diagrams to construct four
parallelepipeds of categories and functors in which, for every face, the inner and the
outer squares are commutative or commute up to isomorphism.
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Additionally, we establish an isomorphism between the categories of modules over
a Lie crossed module and its universal enveloping crossed module, for which the actor
of a Lie crossed module, introduced by Casas and Ladra [27] plays and essential role.

It is well-known that the actor of a group is given by its group of automorphisms.
In the case of Lie algebras, the role of actor is played by the Lie algebra of derivations.
For associative and Leibniz algebras the actors do not always exist (see [19, 20]).
Nevertheless, under certain conditions, they are given by the algebra of bimultipliers
and the Leibniz algebra of biderivations, respectively. On account of these facts, we
give a construction of the dialgebra of tetramultipliers of a given dialgebra, which
works as its actor under certain conditions.

As we have previously stated, the actor has been extended to crossed modules for
the particular cases of groups (see [73]) and Lie algebras (see [27]). The ease of those
generalizations led us to construct a general actor crossed module of a Leibniz crossed
module which becomes the actor in some cases.

Structure, methodology and main results

Every chapter begins with a brief description of what is contained in it, but here we
present the basic structure of the work and the main results.

Since one of the objectives was to make this work as self-contained as possible, in
the first chapter we gather some essential definitions and results. We begin by recalling
the notions of internal category and crossed module in categories of Ω-groups, together
with the equivalence between them as proved by Porter [78].

Crossed modules in categories of groups with operations can alternatively be de-
scribed as cat1-objects, which play an essential role in our main results in Chapter 3.
That is the reason for us to include a detailed description of the equivalence between
crossed modules and cat1-objects for the cases of groups, Lie, Leibniz and associative
algebras and associative dialgebras. A meticulous reader might find the subsections
contained in Section 1.2 a bit repetitive, considering that the core of the different
proofs is very similar independently of the base category. However we decided to
leave the details in the final version to facilitate the reading, since although most of
the steps follow by analogy, there are slight differences.

In the last section of Chapter 1 we recall the notion of strict Leibniz 2-algebra and
describe analogously the concept of strict associative 2-dialgebra. Besides we prove
that they are equivalent to their corresponding crossed modules.

Chapter 2 is divided in three parts. Firstly, we remind the reader of the notion
of actor in a category of interest and recall the actor for groups and for Lie algebras,
that is the group of automorphisms and the Lie algebra of derivations, respectively.
On account of that and the fact that the algebra of bimultipliers plays the role of
actor of an associative algebra under certain conditions, we construct the dialgebra of
tetramultipliers and prove that it works as the actor under some particular circum-
stances.
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In the next subsection we briefly describe the actor crossed module of groups and
Lie algebras, as presented in [73] and [27] respectively. Bearing that in mind, we give,
for any given Leibniz crossed module (n, q, µ), a construction of the Leibniz crossed
module (Bider(q, n),Bider(n, q, µ),∆) and prove that it is the actor under certain
conditions. Although the 2-dimensional generalizations of the algebra of bimultipliers
and the dialgebra of tetramultipliers are not achieved, the steps in the construction
in the Leibniz case suggest a possible candidate for each situation.

The final section in Chapter 2 is dedicated to defining modules over crossed mod-
ules of groups, Lie algebras and associative algebras. These definitions together with
one of the main results from the last chapter allow us to establish an isomorphism of
categories of modules over a Lie crossed module and its universal enveloping crossed
module.

Chapter 3 begins with the construction of the extension to crossed modules of the
adjunction between the unit group functor and the group algebra functor by Casas,
Inassaridze, Khmaladze and Ladra [22]. It is appropriate to include it for two reasons:
On one hand, it was a catalyst for us to construct the 2-dimensional generalizations of
the corresponding adjunctions for Lie vs As and Lb vs Dias, presented in Sections 3.2
and 3.3 respectively. On the other hand, we prove that the functor XK that assigns
to any crossed module of groups (H,G, ∂) the crossed module of unital algebras
(Ker K(s), K(G), K(t)|Ker K(s)) does not commute with the group algebra functor K and
one of the two obvious ways of regarding a group and an associative algebra as a
crossed module of groups and associative algebras, respectively. This is an interesting
result, since the analogous diagram for Lie and associative algebras (respectively
Leibniz algebras and dialgebras) does commute.

In the last section of Chapter 3 we assemble all the commutative squares of cate-
gories and functors into four parallelepipeds containing the original adjunctions and
their natural generalizations. For every face in those parallelepipeds the inner and
outer squares are commutative or commute up to isomorphism.

Finally, in Chapter 4 we survey the accomplished results and sketch some possible
further directions in which our research could continue. Some of the results of this
thesis are presented in [17] and [18].

Notation

Notation has been thoroughly selected with the purpose of facilitating the reading
and making it clear what algebraic structures are considered in the different parts of
the work.

We denote by K a commutative ring with unit. The category of groups is denoted
by Gr. Lie and Leibniz algebras are considered over K and their categories are denoted
by Lie and Lb respectively. Algebras are (not necessarily unital) associative algebras
over K and their category is denoted by As. The subcategory of associative unital
algebras is denoted by As1. Regarding the category of dialgebras, it is denoted by
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Dias.
The corresponding categories of crossed modules are denoted by adding the prefix

X to the base category, that is XGr, XLie, XLb, XAs (or XAs1 when necessary) and
XDias. Additionally, we have tried to use an specific notation in order to relate every
object to its corresponding category. In this way, crossed modules are denoted by
(H,G, ∂), (m,p, ν), (B,A, ρ), (m, p, η) and (D,L, µ) for groups, Lie algebras, associa-
tive algebras, Leibniz algebras and dialgebras, respectively.

Particular labels are used to make reference to equivariance and the Peiffer identity.
Namely, (XGr1) and (XGr2), (XLie1) and (XLie2), and so on, depending on the base
category. However, in Chapter 2, due to the amount of labelled equations in use, we
chose to call them by their name, independently of the category.

We have tried to respect the existing notation and terminology for the known
concepts. Regarding the new ones, we have named them by analogy to the notions
that inspired them.

The group operation is denoted additively in Section 1.1 out of respect for the
notation used by Orzech [74] and Porter [78]. However, we use multiplicative notation
for groups with no other operation in the rest of the work to avoid confusions with the
commutative group operation of the underlying K-module of a Lie algebra, associative
algebra, Leibniz algebra or dialgebra. Concerning actions, they are denoted with the
same symbol used for the corresponding operations, except for groups, in order to
avoid confusions with equivariance and the Peiffer identity.
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Chapter 1

Crossed modules and
equivalent structures

In Section 1.1 we recall the well-known equivalence between crossed modules and
internal categories in a category of groups with operations. We gather some indis-
pensable notions stated by Orzech [74] and the equivalence itself, proved by Porter
[78].

In Section 1.2 we sketch the well-known equivalence between cat1-objects and
internal categories in a category of groups with operations. In the five contained
subsections we give some basic definitions and explore essential properties of crossed
modules in the five particular categories considered in this thesis. Furthermore we give
an explicit description of the equivalence between crossed modules and cat1-objects
for the five different situations, since the aforementioned equivalence is essential for a
proper comprehension of the proofs in Chapter 3. All the results were known prior to
this thesis, although crossed modules of dialgebras had not been explicitly described
so far.

Finally, in Section 1.3 we introduce the notion of strict 2-dialgebra by analogy to
the concept of strict associative 2-algebra by Khmaladze [61] and the one of strict
Lie 2-algebra by Baez [4]. Additionally, we prove that strict 2-dialgebras and strict
Leibniz 2-algebras are equivalent to crossed modules of dialgebras and Leibniz algebras
respectively.

1.1 Crossed modules and internal categories

1.1.1 Crossed modules of Ω-groups

The next definition can be found in [19, 20, 71, 74, 78] (for additive notation) and
[76] (for multiplicative notation). It is based on the more general notion of category

1



2 1 Crossed modules and equivalent structures

of groups with multiple operators introduced by Higgins [52].

Definition 1.1.1. A category of groups with operations (or Ω-groups) is a category
C whose objects are groups with a set of operations Ω and with a set of identities E,
such that E includes the group laws and the following conditions hold. If Ωi is the set
of i-ary operations in Ω, then:

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2.

(b) The group operations (written using additive notation: 0,−,+) are elements of
Ω0, Ω1 and Ω2 respectively. Let Ω′1 = Ω1 \ {−} and Ω′2 = Ω2 \ {+}. If ∗ ∈ Ω′2,
then ∗◦ ∈ Ω′2, with x1 ∗◦ x2 = x2 ∗ x1. Besides, Ω0 = {0}.

(c) For any ∗ ∈ Ω′2, E contains the identity x1 ∗ (x2 + x3) = (x1 ∗ x2) + (x1 ∗ x3).

(d) For any ω ∈ Ω′1 and ∗ ∈ Ω′2, E contains the identities:

ω(x1 + x2) = ω(x1) + ω(x2),

ω(x1 ∗ x2) = ω(x1) ∗ x2.

A morphism of Ω-groups is a set map which preserves all the operations.

Remark 1.1.2. It is important to note that the group operation is not necessarily
commutative, hence −(x1 + x2) = −x2 − x1 for all x1, x2 ∈ C, with C an object in
category of groups with operations, in contrast to the first identity from (d). Besides,
the fact that ∗◦ ∈ Ω′2 for any ∗ ∈ Ω′2 will allow us to disregard the right sided version
of many identities involving operations in Ω′2, as they will follow immediately from
the left sided version.

The following lemma is an immediate consequence of the group structure and the
axiom (c) from Definition 1.1.1.

Lemma 1.1.3. Let C be a category of groups with operations and C an object in C.
Then,

(i) x ∗ 0 = 0,

(ii) −(x1 ∗ x2) = −x1 ∗ x2,

(iii) x1 ∗ x2 + x3 ∗ x4 = x3 ∗ x4 + x1 ∗ x2,

for all x, x1, x2, x3, x4 ∈ C, ∗ ∈ Ω′2.

In [74], Orzech introduced the notion of category of interest, which is no more
than a category of groups with operations that verifies some extra conditions.

Definition 1.1.4. A category of interest is a category of groups with operations which
satisfies two additional axioms:
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(1) x1 + (x2 ∗ x3) = (x2 ∗ x3) + x1.

(2) For any ordered pair (∗, ∗̄) ∈ Ω′2 × Ω′2, there is a word W such that,

(x1 ∗ x2)∗̄x3 = W (x1(x2x3), x1(x3x2), (x2x3)x1, (x3x2)x1,

x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2),

where each juxtaposition represents an operation in Ω′2.

The reason for us to include the previous definition is that our principal results
establish relations between crossed modules in categories that satisfy the foregoing
axioms. Categories of groups Gr, Lie algebras Lie, associative algebras As, Leibniz
algebras Lb and associative dialgebras Dias can be found among the examples of cat-
egories of interest provided in [71], along with the counterexample of Jordan algebras,
for which axiom (2) fails.

Let C be a category of groups with operations. It is possible to define the notions
of action and semidirect product in such a category.

Definition 1.1.5 ([74]). Let A and B be objects in C. An extension of B by A is a
sequence

0 A C B 0ι σ

in which σ is surjective and ι is the kernel of σ. We say that an extension is split
if there is a morphism ε : B → C such that σε = idB. A split extension of B by A
is called B-structure on A. An extension is singular if A is singular, that is, if A is
abelian as a group and a1 ∗ a2 = 0 for all a1, a2 ∈ A, ∗ ∈ Ω′2.

Given a B-structure on A, there is an induced set of actions of B on A, one for
each operation in Ω2. If we assume A ⊂ C, with ι the inclusion, the definition of
those actions is as follows:

ba = ε(b) + a− ε(b),
b ∗ a = ε(b) ∗ a,

for all a ∈ A, b ∈ B. Actions arising from split extensions are called derived actions
in [74], where Orzech proves the following result:

Theorem 1.1.6 ([74]). Let A and B be objects in C. Given a set of actions of B
on A (one for each operation in Ω2), the semidirect product AoB, which consists of
A×B as a set, with the operations:

ω(a, b) = (ω(a), ω(b)), (1.1.1)

(a, b) + (a′, b′) = (a+ ba′, b+ b′), (1.1.2)

(a, b) ∗ (a′, b′) = (a ∗ a′ + b ∗ a′ + b′ ∗◦ a, b ∗ b′), (1.1.3)

for all a, a′ ∈ A, b, b′ ∈ B, ω ∈ Ω′1, ∗ ∈ Ω′2, is an object in C if and only if the set of
actions of B on A is a set of derived actions.
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Remark 1.1.7. Observe that −(a, b) = (−b(−a),−b), immediately from the definition
of the addition in A o B together with the identities (1), (2) and (3) from the next
lemma.

In the categories of groups, Lie algebras, associative algebras, Leibniz algebras
and associative dialgebras, derived actions will be called simply actions. However, in
Chapter 2 we will use again the adjective “derived” whenever we need to stress that
a set of actions is indeed induced by a split extension. In any case, the context will
always make the difference clear.

Due to the way a set of derived actions is defined, one can easily check that the
identities in the following lemma hold.

Lemma 1.1.8. Let A and B be objects in C, together with a B-structure on A. Then:

(1) 0a = a,

(2) b(a1 + a2) = ba1 + ba2,

(3) (b1+b2)a = b1(b2a),

(4) b ∗ (a1 + a2) = b ∗ a1 + b ∗ a2,

(5) (b1 + b2) ∗ a = b1 ∗ a+ b2 ∗ a,

(6) (b1∗b2)(a1 ∗ a2) = a1 ∗ a2,

(7) (b1∗b2)(b ∗ a) = b ∗ a,

(8) a1 ∗ (ba2) = a1 ∗ a2,

(9) b1 ∗ (b2a) = b1 ∗ a,

(10) ω(ba) = ω(b)ω(a),

(11) ω(b ∗ a) = ω(b) ∗ a = b ∗ ω(a),

(12) x1 ∗ x2 + x3 ∗ x4 = x3 ∗ x4 + x1 ∗ x2,

for all a, a1, a2 ∈ A, b, b1, b2 ∈ B, x1, x2, x3, x4 ∈ A ∪B, ω ∈ Ω′1, ∗ ∈ Ω′2.

Proof. All the equalities can be easily proved by using the definition of the derived
actions along with axioms (b), (c), (d) from Definition 1.1.1, Lemma 1.1.3 (ii) and
the fact that ε (as in the definition of a B-structure) is a morphism.

Remark 1.1.9. In [31], the previous equalities are proved to be not only necessary
conditions but also sufficient to define a set of derived actions in a category of Ω-
groups. That is the reason why we include all the equalities, although we will only make
use of a few of them. Nevertheless, in the next section, for every specific category, we
will define derived actions in terms of equations by using the description given in [20,
p. 91] for the particular case of categories of interest, in which conditions (6) and (7)
are replaced by

b(a1 ∗ a2) = a1 ∗ a2,
b1(b2 ∗ a) = b2 ∗ a,

(b1∗b2)a = a,
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and condition (12) is replaced by a1 + (b ∗ a2) = (b ∗ a2) + a1 (as in axiom (1)
from Definition 1.1.4) for all a, a1, a2 ∈ A, b, b1, b2 ∈ B, ∗ ∈ Ω′2. Besides, an ad-
ditional condition is required, described as axiom (2) from Definition 1.1.4, but with
x1, x2, x3 ∈ A ∪B.

Now we can define crossed modules in terms of actions and operations.

Definition 1.1.10. A crossed module in a category of groups with operations C is a
triple (A,B, µ), where µ is a morphism between the objects A and B, together with a
B-structure on A, such that for all a, a1, a2 ∈ A, b ∈ B, ∗ ∈ Ω′2,

µ( ba) = b+ µ(a)− b,
µ(b ∗ a) = b ∗ µ(a),

(CM1)

µ(a1)a2 = a1 + a2 − a1,

µ(a1) ∗ a2 = a1 ∗ a2.
(CM2)

Note that Porter [78] includes the identities µ(a ∗ b) = µ(a) ∗ b in (CM1) and
a1∗µ(a2) = a1∗a2 in (CM2), but those follow from µ(b∗a) = b∗µ(a) and µ(a1)∗a2 =
a1 ∗ a2 respectively, due to condition (b) in Definition 1.1.1 along with the way of
defining a set of derived actions from a B-structure.

Remark 1.1.11. The second axiom is usually called Peiffer identity, while the first
one is sometimes referred to as equivariance. Both (CM1) and (CM2) will have
specific descriptions and tags for the five particular categories considered (see Subsec-
tions 1.2.1–1.2.5). However, we will sometimes write simply equivariance or Peiffer
identity since the context itself will clarify the category in use. A precrossed module is
a triple (A,B, µ), together with a B-structure on A, that only satisfies the equivariance
condition.

Definition 1.1.12. Given two crossed modules (A,B, µ) and (A′, B′, µ′), a morphism
of crossed modules is a pair (ϕ,ψ) of morphisms in C, ϕ : A → A′ and ψ : B → B′,
such that µ′ϕ = ψµ and:

ϕ(ba) = ψ(b)ϕ(a), (1.1.4)

ϕ(b ∗ a) = ψ(b) ∗ ϕ(a), (1.1.5)

for all a ∈ A, b ∈ B.

Composition of morphisms of crossed modules is defined component-wise and the
identity morphism is given by (idA, idB) for any crossed module (A,B, µ). We will de-
note by XMod(C) the category of crossed modules and morphisms of crossed modules
in C. However, in Section 1.2 we will present specific notation for the five particu-
lar categories considered in this thesis, together with several examples and essential
properties.
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1.1.2 Internal categories

Internal categories were introduced by Ehresmann [40, 41] although a more accessible
description can be found in [3, 4, 9, 44, 76]. Categories within a category can be
defined in a more general context than that of Ω-groups, so let us assume for the rest
of this subsection that C is simply a category with pullbacks.

Definition 1.1.13. An internal category C in C consists of an object of objects, C0,
an object of arrows, C1, and the diagram:

C1 ×C0
C1 C1 C0

κ

t

s

e

where s, t are the source and target maps, e is the identity-assigning map, κ is the
composition map, C1 ×C0

C1 is the pullback:

C1 ×C0 C1 C1

C1 C0

π1

π2

s

t

(1.1.6)

and the following diagrams commute, expressing the usual category laws:

C0 C1 C0 C1

C0 C0

idC0

e

s
idC0

e

t (1.1.7)

C1 ×C0
C1 C1 C1 ×C0

C1 C1

C1 C0 C1 C0

π1

κ s

π2

κ t

s t

(1.1.8)

C1 ×C0
C1 ×C0

C1 C1 ×C0
C1

C1 ×C0 C1 C1

κ×C0
idC1

idC1
×C0

κ κ

κ

(1.1.9)

C0 ×C0 C1 C1 ×C0 C1 C1 ×C0 C0

C1

e×C0
idC1

π2

κ

idC1
×C0

e

π1

(1.1.10)
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Note that C0 ×C0
C1 and C1 ×C0

C0 are respectively the pullbacks

C0 ×C0 C1 C1

C0 C0

π1

π2

s

idC0

and

C1 ×C0
C0 C0

C1 C0.

π1

π2

idC0

t

Whenever we want to consider an internal category, we will simply write a sextuple
C = (C1, C0, s, t, e, κ). Furthermore, since objects have elements in the categories we
will use, those in C1 will be denoted by letters typically used for morphisms in order
to establish a complete analogy with the classical notion of category. Note that if one
thinks of the elements in C1 as maps, the disposition of π1 and π2 in diagrams (1.1.8)
implies that κ(f, g) = g ◦ f in standard notation.

Definition 1.1.14. Let C = (C1, C0, s, t, e, κ) and C ′ = (C ′1, C
′
0, s
′, t′, e′, κ′) be two

internal categories. An internal functor F : C → C ′ consists of a pair (F1, F0) of
morphisms in C, F1 : C1 → C ′1, F0 : C0 → C ′0, such that the following diagrams
commute:

C1 C0 C1 C0 C1 C0

C ′1 C ′0 C ′1 C ′0 C ′1 C ′0

s

F1 F0

t

F1 F0 F1

e

F0

s′ t′ e′

(1.1.11)

C1 ×C0
C1 C ′1 ×C′0 C

′
1

C1 C1

F1×F0
F1

κ κ′

F1

(1.1.12)

where F1 ×F0
F1 is given by:

C1 ×C0
C1 C1

C ′1 ×C′0 C
′
1 C ′1

C1 C ′1 C ′0.

π2

π1

F1×F0
F1 F1

π′2

π′1 s′

F1 t′

(1.1.13)
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Composition of internal functors is defined in the obvious way. We will denote by
ICat(C) the category of internal categories and internal functors in C. It is possible to
introduce the notion of internal natural transformation between two internal functors
in C and prove that internal categories, functors and natural transformations form a
2-category (see [4, Section 2]).

1.1.3 Equivalence between crossed modules and internal cat-
egories

The equivalence between ICat(C) and XMod(C) was proved by Porter in [78] for C
a category of groups with operations. Note that this equivalence has been recently
extended to the more general situation of semiabelian categories (see [58, 59]). Nev-
ertheless, for the purposes of the present work, we will recall Porter’s construction.
Let us assume for rest of this subsection that C is a category of Ω-groups.

Lemma 1.1.15. Let C = (C1, C0, s, t, e, κ) be an internal category in C. Then,
C1 ×C0 C1 = {(f, g) | f, g ∈ C1, t(f) = s(g)}, with the operations given by:

ω(f, g) = (ω(f), ω(g)),

(f, g) ∗ (f ′, g′) = (f ∗ f ′, g ∗ g′),

for all (f, g), (f ′, g′) ∈ C1 ×C0
C1, ω ∈ Ω1, ∗ ∈ Ω2. Besides,

κ((f ∗ f ′), (g ∗ g′)) = κ(f, g) ∗ κ(f ′, g′),

for all (f, g), (f ′, g′) ∈ C1 ×C0
C1, ∗ ∈ Ω2. These last identities are called the inter-

change laws.

Proof. It is straightforward to check that {(f, g) | f, g ∈ C1, t(f) = s(g)} is an object in
C. Besides, it is immediate to prove that it is the pullback (1.1.6) with the projections
π1 and π2 defined in the obvious way.

On the other hand, κ : C1 ×C0 C1 → C1 is a morphism in C. Therefore, given
(f, g), (f ′, g′) ∈ C1 ×C0 C1, ∗ ∈ Ω2,

κ(f ∗ f ′, g ∗ g′) = κ((f, g) ∗ (f ′, g′)) = κ(f, g) ∗ κ(f ′, g′).

We will say that the elements in C1 ×C0 C1 are pairs of “composable arrows”.
Furthermore, internal categories in a category of groups with operations “have all
their arrows invertible” in the following sense:

Definition 1.1.16. An internal groupoid is an internal category C = (C1, C0, s, t, e, κ)
for which, given any f ∈ C1, there is f ′ ∈ C1 such that κ(f, f ′) = es(f) and
κ(f ′, f) = et(f).
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Theorem 1.1.17. Every internal category in a category of Ω-groups is an internal
groupoid.

Proof. Given f ∈ C1, we define f−1 = et(f) − f + es(f). It is clear that (f, f−1) ∈
C1 ×C0 C1, since s(f−1) = s(et(f)− f + es(f)) = t(f)− s(f) + s(f) = t(f), directly
from the fact that s is a morphism and the commutativity of the first diagram in
(1.1.7). Analogously, by using the fact that t is a morphism and the commutativity
of the second diagram in (1.1.7), we get that (f−1, f) ∈ C1 ×C0

C1.
It is evident that (f, et(f)), (es(f), f), (es(f), es(f)) ∈ C1×C0

C1, so we can write
the following:

κ(f, f−1) = κ(f − es(f) + es(f), et(f)− f + es(f)) = κ(f, et(f))− κ(es(f), f)

+ κ(es(f), es(f)) = f − f + es(f) = es(f),

due to the interchange laws and the commutativity of diagram (1.1.10). One can
similarly prove that κ(f−1, f) = et(f).

Directly from the interchange laws, we get the following lemma:

Lemma 1.1.18. Let C = (C1, C0, s, t, e, κ) be an internal category in C. Then:

(i) κ(f, g) = f − es(g) + g = g − es(g) + f for all (f, g) ∈ C1 ×C0 C1,

(ii) f + g = g + f for all f, g ∈ C1 such that t(f) = 0 = s(g),

(iii) f ∗ g = 0 for all f, g ∈ C1 such that t(f) = 0 = s(g), ∗ ∈ Ω′2.

Proof. Let (f, g) ∈ C1 ×C0
C1, that is t(f) = s(g). It is clear that (f, es(g)),

(et(f), es(g)), (et(f), g) are pairs of composable arrows. Then we can write the fol-
lowing:

κ(f, g) = κ(f − et(f) + et(f), es(g)− es(g) + g)

= κ(f, es(g))− κ(et(f), es(g)) + κ(et(f), g)

= f − es(g) + g,

as a consequence of the interchange laws (see Lemma 1.1.15) and the commutativity
of diagram (1.1.10). Similarly, we can write:

κ(f, g) = κ(et(f)− et(f) + f, g − es(g) + es(g))

= κ(et(f), g)− κ(et(f), es(g)) + κ(f, es(g))

= g − es(g) + f,

so (i) holds.
Let us show that (ii) follows immediately from (i). If t(f) = 0 = s(g), it is clear

that (f, g) ∈ C1 ×C0 C1 and es(g) = 0. Due to (i), κ(f, g) = f − es(g) + g = f + g,
but also κ(f, g) = g − es(g) + f = g + f . Hence, f + g = g + f .
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We can use a similar technique in order to prove (iii):

0 = κ(0, 0) = κ(f ∗ e(0), e(0) ∗ g) = κ(f, e(0)) ∗ κ(e(0), g) = f ∗ g.

Note that we made use of Lemma 1.1.3 (i) as well as the interchange laws and the
commutativity of diagram (1.1.10).

Remark 1.1.19. Observe that the identity g ∗ f = 0 for all f, g ∈ C1 such that
t(f) = 0 = s(g), ∗ ∈ Ω′2, follows immediately from Lemma 1.1.18 (iii) and axiom (b)
from Definition 1.1.1.

Theorem 1.1.20 ([78]). Given a category of groups with operations C, the categories
ICat(C) and XMod(C) are equivalent.

Proof. Below we define two functors, Icat : XMod(C)→ ICat(C) and Xmod : ICat(C)→
XMod(C), and prove that Xmod ◦ Icat ∼= 1XMod(C) and Icat ◦ Xmod ∼= 1ICat(C).

Let us begin with the definition of Icat on objects. Let (A,B, µ) be a crossed
module in C. By definition, there is a B-structure on A, so A o B is an object in C
(see Theorem 1.1.6). Consider the following diagram:

(AoB)×B (AoB) AoB Bκ

t

s

e

with s(a, b) = b, t(a, b) = µ(a)+b, e(b) = (0, b) and κ((a, b), (a′, µ(a)+b)) = (a′+a, b)
for all a, a′ ∈ A, b ∈ B. Note that if ((a, b), (a′, b′)) ∈ (A o B) ×B (A o B), b′ =
s(a′, b′) = t(a, b) = µ(a) + b, so the definition of κ makes sense. It is necessary to
prove that s, t, e and κ are morphisms in C, that is, they preserve all the operations in
Ω. Since 0 is clearly preserved by all of them and it is obvious that s and e preserve the
rest of the operations, we will focus on sketching how to prove that t and κ preserve
the operations in Ω1 and Ω2. Calculations are quite long, so we will not include them,
although we will point out the crucial ideas required to complete them. Observe that
the operations in AoB are described in (1.1.1), (1.1.2), (1.1.3).

Regarding t, it preserves all the operations in Ω1 directly from the fact that µ
preserves them and the first identity in axiom (d) from Definition 1.1.1. Furthermore,
(CM1) and the fact that µ is a morphism are the key to prove that t preserves all the
operations in Ω2.

Concerning κ, note that the elements in (A o B) ×B (A o B) are of the form
((a, b), (a′, µ(a) + b)), with a, a′ ∈ A, b ∈ B. Proving that κ preserves every operation
in Ω1 is as simple as proving it for t. Immediately below we show the calculations
required to prove that κ preserves + as an example. Let ((ai, bi), (a

′
i, µ(ai) + bi)) ∈



1.1.3 Equivalence between crossed modules and internal categories 11

(AoB)×B (AoB) for i = 1, 2. On one hand we have that

κ(((a1, b1), (a′1, µ(a1) + b1)) + ((a2, b2), (a′2, µ(a2) + b2)))

= κ((a1, b1) + (a2, b2), (a′1, µ(a1) + b1) + (a′2, µ(a2) + b2))

= κ((a1 + b1a2, b1 + b2), (a′1 + (µ(a1)+b1)a′2, µ(a1) + b1 + µ(a2) + b2))

= (a′1 + (µ(a1)+b1)a′2 + a1 + b1a2, b1 + b2)

= (a′1 + µ(a1)(b1a′2) + a1 + b1a2, b1 + b2)

= (a′1 + a1 + b1a′2 − a1 + a1 + b1a2, b1 + b2)

= (a′1 + a1 + b1a′2 + b1a2, b1 + b2),

by making use of the definition of + in (AoB)×B (AoB) and AoB, the definition of
κ, Lemma 1.1.8 (3) and the first identity in (CM2). Note that µ(a1 + b1a2)+b1 +b2 =
µ(a1) + b1 +µ(a2)− b1 + b1 + b2 = µ(a1) + b1 +µ(a2) + b2, due to the first identity in
(CM1), so the third line in the previous calculations makes sense. On the other hand,

κ((a1, b1), (a′1, µ(a1) + b1)) + κ((a2, b2), (a′2, µ(a2) + b2))

= (a′1 + a1, b1) + (a′2 + a2, b2) = (a′1 + a1 + b1(a′2 + a2), b1 + b2)

= (a′1 + a1 + b1a′2 + b1a2, b1 + b2),

by making use of the definition of κ, the addition in AoB and Lemma 1.1.8 (2). Hence,
κ preserves +. Calculations for ∗ ∈ Ω′2 are similar, but involving Lemma 1.1.8 (4),
(5) and (12), axiom (c) from Definition 1.1.1 and the second identity in (CM2).

Commutativity of the diagrams in (1.1.7) and (1.1.8) follows directly from the
definitions of s, t, e and κ and the fact that µ is a morphism. Commutativity of
(1.1.9) and (1.1.10) is easy to prove bearing in mind that the elements in (AoB)×B
(AoB)×B (AoB) are of the form ((a, b), (a′, µ(a) + b), (a′′, µ(a′) + µ(a) + b)), with
a, a′, a′′ ∈ A, b ∈ B, while those in B ×B (AoB) and (AoB)×B B are of the form
(b, (a, b)) and ((a, b), µ(a) + b) respectively.

Defining Icat on morphisms is quite obvious. Given a morphism of crossed modules
(ϕ,ψ) between (A,B, µ) and (A′, B′, µ′), its corresponding internal functor is given
by (ϕ,ψ) : A o B → A′ o B′ and ψ : B → B′, where (ϕ,ψ)(a, b) = (ϕ(a), ψ(b)). The
map (ϕ,ψ) preserves the operations in Ω2 due to (1.1.4) and (1.1.5), while it obviously
preserves 0 and operations in Ω1. Hence, (ϕ,ψ) is a morphism. Commutativity of
the diagrams in (1.1.11) and (1.1.12) follows from the definitions of s, s′, t, t′, e, e′,
κ and κ′, along with the equality ψµ = µ′ϕ.

Icat is clearly a functor with the previous assignments for objects and morphisms.
Now let us define the functor Xmod. Let C = (C1, C0, s, t, e, κ) be an internal category
in C. Consider Ker s and the morphism t|Ker s : Ker s→ C0. We will write t in order
to ease notation. The sequence

0 Ker s C1 C0 0s

e
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defines a C0-structure on Ker s due to the commutativity of the first diagram in
(1.1.7). It only remains to prove that (Ker s, C0, t|Ker s) satisfies (CM1) and (CM2).
Given x ∈ C0 and f ∈ Ker s,

t(xf) = t(e(x) + f − e(x)) = te(x) + t(f)− te(x) = x+ t(f)− x,
t(x ∗ f) = t(e(x) ∗ f) = te(x) ∗ t(f) = x ∗ t(f),

so (CM1) holds. Note that we made use of the definition of the set of derived ac-
tions induced by the C0-structure on Ker s, the fact that f is a morphism and the
commutativity of the second diagram in (1.1.7).

Regarding (CM2), let f1, f2 ∈ Ker s. We know that t(−et(f1) + f1) = −t(f1) +
t(f1) = 0, due to the commutativity of the second diagram in (1.1.7). Therefore we
can apply Lemma 1.1.18 (ii) to −et(f1) + f1 and f2, that is

f2 − et(f1) + f1 = −et(f1) + f1 + f2.

Hence,
t(f1)f2 = et(f1) + f2 − et(f1) = f1 + f2 − f1.

Furthermore, if we apply Lemma 1.1.18 (iii) to et(f1)− f1 and f2, we get that

0 = (et(f1)− f1) ∗ f2 = et(f1) ∗ f2 − f1 ∗ f2.

Thus,
t(f1) ∗ f2 = et(f1) ∗ f2 = f1 ∗ f2.

Therefore, (CM2) holds.
Defining Xmod on morphisms is also quite obvious. Let C = (C1, C0, s, t, e, κ)

and C ′ = (C ′1, C
′
0, s
′, t′, e′, κ′) be two internal categories in C and F : C → C ′ an

internal functor, with F1 : C1 → C ′1 and F0 : C0 → C ′0. Its corresponding morphism
of crossed modules is given by (F1|Ker s, F0). The identity t′F1|Ker s = F0t follows
from the commutativity of the second diagram in (1.1.11). Moreover, given x ∈ C0

and f ∈ Ker s,

F1(xf) = F1(e(x) + f − e(x)) = F1e(x) + F1(f)− F1e(x)

= e′F0(x) + F1(f)− e′F0(x) = F0(x)F1(f)

and

F1(x ∗ f) = F1(e(x) ∗ f) = F1e(x) ∗ F1(f) = e′F0(x) ∗ F1(f) = F0(x) ∗ F1(f),

due to the fact that F1 is a morphism and the commutativity of the third diagram in
(1.1.11). It is immediate to check that, with the previous assignments, Xmod is indeed
a functor.

Icat and Xmod establish an equivalence between the categories XMod(C) and ICat(C)
with the natural isomorphisms α : 1XMod(C) → Xmod ◦ Icat and β : 1ICat(C) → Icat ◦ Xmod,
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given respectively, for a fixed crossed module (A,B, µ) and a fixed internal category
C = (C1, C0, s, t, e, κ), by:

A B

Ao {0} B

αA

µ

idB

µ

and

C1 C0

Ker so C0 C0

βC1

t

s

e

idC0

t̃

s̃

ẽ

respectively, where αA(a) = (a, 0) for every a ∈ A, βC1
(f) = (f − es(f), s(f)) for

every f ∈ C1. Observe that Xmod(Icat(A,B, µ)) = (A o {0}, µ,B). It is clear that
(αA, idB) is an isomorphism of crossed modules and naturality of α is obvious.

Regarding βC1
, note that Icat(Xmod(C)) = (Ker soC0, C0, s̃, t̃, ẽ, κ̃), with s̃(f, x) =

x, t̃(f, x) = t(f) + x, ẽ(x) = (0, x) and κ̃((f, x), (f ′, t(f) + x)) = (f ′ + f, x) for all
f, f ′ ∈ Ker s, x ∈ C0. Calculations in order to prove that βC1

is a morphism in C
can be easily completed by using the definition of the operations in Ker s o C0 (see
Theorem 1.1.6), the definition of the actions of C0 on Ker s and Lemma 1.1.8 (2), (4)
and (12).

In order to prove that (βC1
, idC0

) is an internal functor, it is necessary to check
the commutativity of the following diagrams:

C1 C0 C1 C0 C1 C0

Ker so C0 C0 Ker so C0 C0 Ker so C0 C0

s

βC1
idC0

t

βC1
idC0

βC1

e

idC0

s̃ t̃ ẽ

C1 ×C0
C1 (Ker so C0)×C0

(Ker so C0)

C1 Ker so C0.

(βC1
,βC1

)

κ κ̃

βC1

For the first three diagrams it follows directly from the definitions of βC1
, s̃, t̃, ẽ and

the commutativity of the diagrams in (1.1.7) corresponding to the internal category
C. As for the fourth diagram, let (f, g) ∈ C1 ×C0 C1. We have that

κ̃((f − es(f), s(f)), (g − es(g), s(g))) = (g − es(g) + f − es(f), s(f)).

Note that t̃(f − es(f), s(f)) = t(f − es(f)) + s(f) = t(f)− s(f) + s(f) = t(f) = s(g),
so the previous composition makes sense. On the other hand,

βC1
(κ(f, g)) = (κ(f, g)− es(κ(f, g)), s(κ(f, g)))

= (κ(f, g)− es(f), s(f)) = (g − es(g) + f − es(f), s(f)),
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due to the commutativity of the first diagram in (1.1.8) and Lemma 1.1.18 (i)

The inverse of βC1 is given by β−1
C1

(f, x) = f + e(x), for all (f, x) ∈ Ker s o
C0. Naturality of β is a matter of simple calculations which follow easily from the
commutativity of the first and the third diagrams in (1.1.11) for any internal functor
F between two internal categories C and C ′.

1.2 Crossed modules and cat1-objects

Let C be a category of groups with operations. Bearing in mind Lemma (1.1.18) (i),
the following question arises naturally: Given the diagram

C1 C0
t

s

e

with objects and morphisms in C, such that se = idC0
= te (see (1.1.7)), is the

previous data, together with the composition given by κ(f, g) = f − es(g) + g for all
(f, g) ∈ C1 ×C0 C1, an internal category in C?

Firstly, we should check if κ is a morphism in C. Let (f, g) ∈ C1 ×C0
C1, that is

t(f) = s(g). It is obvious that κ preserves 0 ∈ Ω0. Let us now consider ω ∈ Ω′1.

κ(ω(f, g)) = κ(ω(f), ω(g)) = ω(f)− es(ω(g)) + ω(g)

= ω(f − es(g) + g) = ω(κ(f, g)),

due to axiom (d) from Definition 1.1.1 and the fact that e and s are morphisms.
Concerning the other operation in Ω1, preserving − would follow immediately from
preserving +, so we can move forward to Ω2. Let (f1, g1), (f2, g2) ∈ C1×C0 C1. Then

κ(f1 + f2, g1 + g2) = f1 + f2 − es(g1 + g2) + g1 + g2

= f1 + f2 − es(g2)− es(g1) + g1 + g2.

On the other hand,

κ(f1, g1) + κ(f2, g2) = f1 − es(g1) + g1 + f2 − es(g2) + g2.

Observe that−es(g1)+g1 ∈ Ker s and f2−es(g2) ∈ Ker t, so if we add Lemma 1.1.18 (ii)
as a condition for our data, that is, [Ker s,Ker t] = 0, with [Ker s,Ker t] the commu-
tator of Ker s and Ker t, then κ preserves the group operation. Recall that, given an
internal category, composition is not only determined by the group operation, but
there is also some kind of commutativity in its definition (see Lemma 1.1.18 (i)). Let
us show that if we ask for the commutator of Ker s and Ker t to be zero, we get the
same result. Given (f, g) ∈ C1×C0

C1, we can write g−f = g−es(g)+es(g)−f , with
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g − es(g) ∈ Ker s, es(g)− f ∈ Ker t. Therefore, rearranging the previous identity, we
get

g − f = es(g)− f + g − es(g)

−es(g) + g − f = −f + g − es(g)

f − es(g) + g − f = g − es(g)

f − es(g) + g = g − es(g) + f.

It remains to check the behaviour of κ with the rest of the operations in Ω2. Let
(f1, g1), (f2, g2) ∈ C1 ×C0

C1 and ∗ ∈ Ω′2. Then

κ(f1 ∗ f2, g1 ∗ g2) = f1 ∗ f2 − es(g1) ∗ es(g2) + g1 ∗ g2. (1.2.1)

Observe that we made use of Lemma 1.1.3 (ii) and the fact that e and s are morphisms
in C. On the other hand,

κ(f1, g1) ∗ κ(f2, g2) = (f1 − es(g1) + g1) ∗ (f2 − es(g2) + g2). (1.2.2)

We would get 9 addends from (1.2.2), none of which would cancel. Since using
Lemma 1.1.18 (ii) as a condition solved the problem with addition, it seems natu-
ral to request that (C1, C0, s, t, e) satisfies Lemma 1.1.18 (iii) in order to solve the
problem with the operations in Ω′2. Therefore, let us assume that Ker s ∗ Ker t = 0
for any ∗ ∈ Ω′2. Under this hypothesis we can rearrange (1.2.2), considering that
−es(g1) + g1 ∈ Ker s and f2 − es(g2) ∈ Ker t:

(1.2.2) = f1 ∗ (f2 − es(g2)) + f1 ∗ g2 + (−es(g1) + g1) ∗ g2

= f1 ∗ f2 − f1 ∗ es(g2) + f1 ∗ g2 − es(g1) ∗ g2 + g1 ∗ g2

= f1 ∗ f2 − f1 ∗ es(g2) + f1 ∗ g2 − es(g1) ∗ g2

+ es(g1) ∗ es(g2)− es(g1) ∗ es(g2) + g1 ∗ g2

= f1 ∗ f2 + (f1 − es(g1)) ∗ (g2 − es(g2))− es(g1) ∗ es(g2) + g1 ∗ g2

= f1 ∗ f2 − es(g1) ∗ es(g2) + g1 ∗ g2.

Note that we made use of Lemma 1.1.3 (ii) and (iii) as well as the fact that f1−es(g1) ∈
Ker t, g2 − es(g2) ∈ Ker s. Hence (1.2.1) = (1.2.2) and κ preserves ∗.

As a result of using Lemma (1.1.18) (ii) and (iii) as hypotheses, κ is guaranteed to
be a morphism in C. Besides, commutativity of the diagrams (1.1.8)–(1.1.10) follows
easily from the definition of κ and the commutativity of (1.1.7). On account of all
the previous verifications, we can write the following result:

Theorem 1.2.1. Let C be a category of groups with operations. Consider the diagram
in C

C1 C0
t

s

e
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such that

se = idC0
= te,

[Ker s,Ker t] = 0,

Ker s ∗Ker t = 0,

for all ∗ ∈ Ω′2, where [Ker s,Ker t] is the commutator of Ker s and Ker t. Then
C = (C1, C0, s, t, e, κ) is an internal category in C, with κ given by

κ(f, g) = f − es(g) + g

for all (f, g) ∈ C1 ×C0
C1.

A diagram satisfying the hypotheses of the previous theorem is usually called
cat1-object in C, alternatively described in the same way but with C0 a subobject
of C1. One can easily derive from this result and Lemma (1.1.18) the well-known
equivalence between ICat(C) and the category of cat1-objects in C. Observe that we
have not given a definition for morphisms of cat1-objects, but it is fairly obvious.

The cat1-object structure will be essential in the proofs of the main results in
Chapter 3. Hence, although the equivalence with crossed modules holds in general
for any category of groups with operations, we will show the equivalence for the five
particular cases considered in this thesis.

Although we will not mention it for every particular case, all the definitions in the
subsequent subsections agree with their corresponding general version for categories
of groups with operations. Observe that it is not our intention to present a thorough
review on crossed modules, but to introduce basic notions and tools required for the
main results in this thesis.

1.2.1 The case of groups

Crossed modules of groups were first described by Whitehead [83] in the late 1940s, as
algebraic models for path-connected CW-spaces whose homotopy groups are trivial
in dimensions > 2. Since their first appearance, crossed modules have become an
important tool in different areas of mathematics such as homotopy theory, group
(co)homology [16] or K-theory.

Observe that we will use multiplicative notation for the group operation, in con-
trast to the notation used in Section 1.1.

Let us first recall what an action of a group on another group means in terms of
equations.

Definition 1.2.2. An action of a group G on a group H is a map G × H → H
(g, h) 7→ gh, such that:

(1) 1h = h,
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(2) g′(gh) = (g′g)h,

(3) g(hh′) = ghgh′,

for all g, g′ ∈ G, h, h′ ∈ H.

Given an action of a G on H it is possible to define the semidirect product H oG
as the underlying set of H ×G equipped with the operation given by:

(h, g) (h′, g′) = (hgh′, gg′)

for every (h, g), (h′, g′) ∈ H × G. The identity element is (1, 1) and for any (h, g) ∈
H oG, its inverse is given by ((g−1)(h−1), g−1).

Definition 1.2.3. A crossed module of groups (H,G, ∂) is a group homomorphism
∂ : H → G together with an action of G on H such that

∂(gh) = g∂(h)g−1, (XGr1)

∂(h)h′ = hh′h−1. (XGr2)

for all h, h′ ∈ H, g ∈ G. The first axiom is sometimes called equivariance, while the
second one is usually known as Peiffer identity. If (H,G, ∂) satisfies (XGr1) but not
necessarily (XGr2), it is called precrossed module.

Directly from the definition, we get the following well-known result:

Lemma 1.2.4. Given a crossed module (H,G, ∂),

(i) Ker ∂ is a normal subgroup of H and Im ∂ is a normal subgroup of G.

(ii) Ker ∂ ⊂ Z(H), where Z(H) is the centre of H.

Proof. (i) The kernel of a group homomorphism is always a normal subgroup. Re-
garding Im ∂, let g′ ∈ Im ∂ and g ∈ G. There is h ∈ H such that ∂(h) = g′. As a
consequence of equivariance, gg′g−1 = g∂(h)g−1 = ∂(gh) ∈ Im ∂.

(ii) Let h ∈ Ker ∂ and h′ ∈ H. Then, due to the Peiffer identity, h′ = 1h′ =
∂(h)h′ = hh′h−1. Therefore h′h = hh′ and Ker ∂ ⊂ Z(H).

Example 1.2.5. We recall some generic examples, which can be found, for instance,
in [45, 72]. Let G be a group.
(i) G acts on any normal subgroup NCG by conjugation and the inclusion i : N ↪→ G
together with that action is a crossed module. {1} and G are normal subgroups of G,
so any group G can be regarded as a crossed module in two obvious ways: ({1}, G, 1),
where 1 is the trivial map, or (G,G, idG).
(ii) (G, {1}, 1) with the trivial action is a precrossed module. It satisfies the Peiffer
identity if and only if G is an abelian group.
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(iii) Given a G-module M , that is an abelian group M together with an action of G
on M , (M,G, 1) is a crossed module.

(iv) If 1 → N → H
∂−→ G → 1 is a central extension, that is a short exact sequence

with N ⊂ Z(H), then (H,G, ∂) is a crossed module, with the action of G on H given
by gh = hghh

−1
g for all g ∈ G, h ∈ H, where hg is an element in H such that

∂(hg) = g, .

The next one is a specially interesting example:

Example 1.2.6. Let H be a group. The morphism α : H → Aut(H), where α(h)(h′) =
hh′h−1, is a crossed module, together with the action of Aut(H) on H defined by
ϕh = ϕ(h) for all ϕ ∈ Aut(H), h ∈ H.

The interesting idea behind Aut(H) is not just (H,Aut(H), α) being a crossed
module, but also the fact that for every action of a group G on H there is a unique
group homomorphism β : G → Aut(H) with gh = β(g)h. Therefore it would be
possible to define a group action of G on H as a group homomorphism from G to
Aut(H). The search for an analogous object in the categories of Lie algebras, Leibniz
algebras and associative algebras led to the idea of actor in a category of interest
[19, 20]. See Section 2.1 for more details.

Definition 1.2.7. A morphism of crossed modules of groups (ϕ,ψ) : (H,G, ∂) →
(H ′, G′, ∂′) is a pair of group homomorphisms, ϕ : H → H ′ and ψ : G → G′, such
that

ψ∂ = ∂′ϕ, (1.2.3)

ϕ(gh) = ψ(g)ϕ(h), (1.2.4)

for all g ∈ G, h ∈ H.

Example 1.2.8. Let (H,G, ∂) be a crossed module of groups and N a group:

(i) Given a morphism of groups ψ : G → N such that ψ∂ = 0, (1, ψ) : (H,G, ∂) →
({1}, N, 1) is a morphism of crossed modules.

(ii) Given a morphism of groups ψ : N → G, (1, ψ) : ({1}, N, 1) → (H,G, ∂) is a
morphism of crossed modules.

(iii) Given a morphism of groups ψ : G → N , (ψ∂, ψ) : (H,G, ∂) → (N,N, idN ) is a
morphism of crossed modules. In particular, (∂, idG) : (H,G, ∂) → (G,G, idG) is a
morphism of crossed modules.

(iv) Given a morphism of groups ϕ : N → H, (ϕ, ∂ϕ) : (N,N, idN ) → (H,G, ∂) is a
morphism of crossed modules. In particular, (idH , ∂) : (H,H, idH) → (H,G, ∂) is a
morphism of crossed modules.

(v) Considering (G,Aut(G), α) as in Example 1.2.6, (∂, α) : (H,G, ∂)→ (G,Aut(G), α)
is a morphism of crossed modules.
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Composition of morphisms of crossed modules is defined component-wise and the
identity morphism is given by (idH , idG) for any crossed module (H,G, ∂). We will
denote by XGr the category of crossed modules of groups and morphisms of crossed
modules.

Bearing in mind Example 1.2.5 (i), it is possible to define the full embeddings
E0 : Gr→ XGr and E1 : Gr→ XGr, where E0(G) = ({1}, G, 1) and E1(G) = (G,G, idG)
for all G ∈ Gr. Given a morphism of groups α : G → G′, E0(α) = (1, α) and
E1(α) = (α, α).

Additionally, let us define the functors Υ0, Υ1 and Υ2, from XGr to Gr, given
by Υ0(H,G, ∂) = G/∂(H), Υ1(H,G, ∂) = G and Υ2(H,G, ∂) = H, for any crossed
module of groups (H,G, ∂). Given a morphism of crossed modules (ϕ,ψ) : (H,G, ∂)→
(H ′, G′, ∂′), Υ0(ϕ,ψ) = ψ, Υ1(ϕ,ψ) = ψ and Υ2(ϕ,ψ) = ϕ, where ψ is the morphism
from G/∂(H) to G′/∂′(H ′) induced by ψ. Note that ψ is well defined, since given
g1, g2 ∈ G such that g1 = g2 in G/∂(H), g1g

−1
2 ∈ ∂(H), so there is h ∈ H for which

∂(h) = g1g
−1
2 . Due to (1.2.3), ψ(g1g

−1
2 ) = ψ(∂(h)) = ∂′ϕ(h) ∈ ∂′(H ′).

Proposition 1.2.9. Υ0 is left adjoint to E0, E0 is left adjoint to Υ1, Υ1 is left adjoint
to E1 and E1 is left adjoint to Υ2.

Proof. It is fairly easy to construct the corresponding natural bijections in order to
prove each of the adjunctions. Actually, there are explicit descriptions of them in
Example 1.2.8 (i)–(iv). For instance, for the fist adjunction:

Let (H,G, ∂) be a crossed module and N a group. Given α ∈ HomGr(G/∂(H), N),
we can define the morphism of crossed modules

H G

{1} N

∂

1 απ

1

where π is the projection from G to G/∂(H). Note that (1, απ) is a particular case
of Example 1.2.8 (i). Conversely, given (1, ψ) ∈ HomXGr((H,G, ∂), ({1}, N, 1)), due
to (1.2.3), ψ∂ = 1. Hence, ψ̃ : G/∂(H) → N , given by ψ̃(g) = ψ(g) is well defined.
Naturality is obvious.

The other three adjunctions can be proved similarly.

Definition 1.2.10. A cat1-group (G1, G0, s, t) consists of a group G1 together with
a subgroup G0 and structural the morphisms s, t : G1 → G0 such that

s|G0
= t|G0

= idG0
, (CGr1)

[Ker s,Ker t] = 1, (CGr2)

where [Ker s,Ker t] is the commutator of Ker s and Ker t.



20 1 Crossed modules and equivalent structures

Definition 1.2.11. A morphism of cat1-groups γ : (G1, G0, s, t) → (G′1, G
′
0, s
′, t′)

is a group homomorphism γ : G1 → G′1 such that γ(G0) ⊆ G′0 and s′γ = γ|G0
s,

t′γ = γ|G0t.

Composition of morphisms of cat1-groups is obvious. We will denote by C1Gr the
category of cat1-groups and morphisms of cat1-groups.

Proposition 1.2.12. The categories XGr and C1Gr are equivalent.

Proof. Given a crossed module of groups (H,G, ∂), the corresponding cat1-group is
(H o G,G, s, t), where s(h, g) = g and t(h, g) = ∂(h)g for all (h, g) ∈ H o G. It is
clear that s is a group homomorphism, directly from the group operation in H o G
and the definition of s. Regarding t, given (h1, g1), (h2, g2) ∈ H oG,

t((h1, g1)(h2, g2)) = t(h1
g1h2, g1g2) = ∂(h1

g1h2)g1g2 = ∂(h1)g1∂(h2)g−1
1 g1g2

= ∂(h1)g1∂(h2)g2 = t(h1, g1)t(h2, g2),

due to (XGr1). Note that G can be regarded as a subgroup of HoG via the monomor-
phism g 7→ (1, g). It is clear that s|G = t|G = idG. Besides, Ker s = {(h, 1) | h ∈ H}
and Ker t = {(h, ∂(h−1)) | h ∈ H}. Let h1, h2 ∈ H. Directly from (XGr2), we have

that h1
∂(h−1

1 )h2 = h2h1. Therefore,

(h2, 1)(h1, ∂(h−1
1 )) = (h2h1, ∂(h−1

1 )) = (h1
∂(h−1

1 )h2, ∂(h−1
1 )) = (h1, ∂(h−1

1 ))(h2, 1),

Hence [Ker s,Ker t] = 1 and (H oG,G, s, t) is a cat1-group.
Additionally, given a morphism of crossed modules (ϕ,ψ) : (H,G, ∂)→ (H ′, G′, ∂′),

the corresponding morphism of cat1-groups is defined by fϕ,ψ(h, g) = (ϕ(h), ψ(g)) for
any (h, g) ∈ H o G. It is clear that fϕ,ψ is a group homomorphism, directly from
(1.2.4) and the fact that ϕ and ψ are group homomorphisms. On the other hand, it
is immediate that fϕ,ψ(G) ⊆ G′, and the squares

H oG G

H ′ oG′ G′

fϕ,ψ

s

fϕ,ψ|G

s′

and

H oG G

H ′ oG′ G′

fϕ,ψ

t

fϕ,ψ|G

t′

are commutative, the first one directly from the definition of the morphisms involved;
the second one due to (1.2.3). The previous assignments clearly define a functor from
XGr to C1Gr, which will be denoted by catGr.

Conversely, given a cat1-group (G1, G0, s, t), the corresponding crossed module is
t|Ker s : Ker s→ G0, with the action of G0 on Ker s given by conjugation. Sometimes
we will write simply t for ease of notation. The action is obviously well defined.
Regarding (XGr1), it follows immediately from (CGr1), specifically from the identity
t|G0 = idG0 :

t(yx) = t(yxy−1) = t(y)t(x)t(y−1) = yt(x)y−1
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for all y ∈ G0, x ∈ Ker s. Now, let x1, x2 ∈ Ker s. Since t|G0
= idG0

, it is clear that
t(x−1

1 )x1 ∈ Ker t. Then, by (CGr2), x2t(x
−1
1 )x1 = t(x−1

1 )x1x2. Therefore

t(x1)x2x1 = t(x1)x2t(x
−1
1 )x1 = t(x1)t(x−1

1 )x1x2 = x1x2,

hence
t(x1)x2 = x1x2x

−1
1 ,

so (XGr2) holds.
Moreover, given a morphism of cat1-groups γ : (G1, G0, s, t) → (G′1, G

′
0, s
′, t′), its

corresponding morphism of crossed modules is given by

Ker s G0

Ker s′ G′0.

γ|Ker s

t|Ker s

γ|G0

t′|Ker s′

Note that γ(Ker s) ⊂ Ker s′, directly from the identity s′γ = γ|G0
s. The commuta-

tivity of the previous diagram follows from the identity t′γ = γ|G0t. Besides, given
y ∈ G0, x ∈ Ker s, the identity γ|Ker s(

yx) = γ|G0
(y)γ(x) follows from the definition of

the action of G0 on Ker s and the fact that γ is a group homomorphism. The previous
assignments clearly define a functor from C1Gr to XGr, which will be denoted by XmGr.

catGr and XmGr establish an equivalence between the categories XGr and C1Gr,
with the natural isomorphisms α : 1XGr → XmGr ◦ catGr and β : 1C1Gr → catGr ◦ XmGr
given, for a fixed (H,G, ∂) in XGr and a fixed (G1, G0, s, t) in C1Gr, by:

H G

H o {1} G

αH

∂

idG

∂

and

G1 G0

Ker soG0 G0

βG1

t

s

idG0

t̃

s̃

respectively, where αH(h) = (h, 1) for every h ∈ H, βG1
(g) = (gs(g−1), s(g)) for

every g ∈ G1. It is clear that (αH , idG) is an isomorphism of crossed modules and the
naturality of α is obvious.

Concerning βG1
, observe that catGr(XmGr(G1, G0, s, t)) = (Ker s o G0, G0, s̃, t̃),

with s̃(x, y) = y and t̃(x, y) = t(x)y for all x ∈ Ker s, y ∈ G0. It is easy to check that
βG1

is a group homomorphism just by using the definition of the group operation in
Ker s o G0 and the action of G0 on Ker s. Besides, given y ∈ G0, βG1(y) = (1, y),
since s|G0 = idG0 . Calculations in order to check the identities s̃βG1 = s and t̃βG1 = t
are obvious. The inverse of βG1

is given by β−1
G1

(x, y) = xy, for all (x, y) ∈ Ker soG0.
Naturality of β can be readily checked by using the identity s′γ = γ|G0

s for any
morphism γ between two given cat1-groups (G1, G0, s, t) and (G′1, G

′
0, s
′, t′).
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1.2.2 The case of Lie algebras

Lie crossed modules have been investigated by various authors. Namely, in [60] Kas-
sel and Loday use Lie crossed modules as computational tools in order to give an
interpretation of the third relative Chevalley-Eilenberg cohomology of Lie algebras.
Guin [51] developed the low-dimensional non-abelian cohomology of Lie algebras with
coefficients in Lie crossed modules, which later was extended to higher dimensions in
[57]. Internal (cotriple) homology and Chevalley-Eilenberg homology theories of Lie
crossed modules were investigated in [23, 35]. Lie crossed modules also occur in the
“categorification” problem of the theory of Lie algebras [4] as an equivalent formula-
tion of strict Lie 2-algebras (see Section 1.3).

Recall that a Lie algebra p overK is a K-module together with a bilinear operation
[ , ] : p× p→ p, called the Lie bracket, such that

[p, p] = 0,

[p1, [p2, p3]] + [p2, [p3, p1]] + [p3, [p1, p2]] = 0,

for all p, p1, p2, p3 ∈ p. The second equality is usually called the Jacobi identity.
A morphism of Lie algebras is a K-linear map that preserves the bracket. We will
denote by Lie the category of Lie algebras and morphisms of Lie algebras.

Definition 1.2.13. Let m and p be two Lie algebras. An action of p on m is a
bilinear map p× m→ m, (p,m) 7→ [p,m] such that

(1) [[p1, p2] ,m] = [p1, [p2,m]]− [p2, [p1,m]],

(2) [p, [m1,m2]] = [[p,m1] ,m2] + [m1, [p,m2]],

for all m,m1,m2 ∈ m and p, p1, p2 ∈ p.

We will say that p acts trivially on m if [p,m] = 0 for all m ∈ m, p ∈ p. Observe
that we denote the action by the same symbol used for the multiplication in m and
p, by analogy to the notation used for Ω-groups. This means no ambiguity, since the
arguments of the bracket will always determine the only possible choice. Note that
the two identities in the definition of a Lie action can be obtained from the Jacobi
identity by taking two elements in p and one in m (first identity), and two elements
in m and one in p (second identity).

Given a Lie action of p on m we can form the semidirect product Lie algebra,
mo p, with the underlying K-module m⊕ p and the Lie bracket given by

[(m1, p1), (m2, p2)] = ([m1,m2] + [p1,m2]− [p2,m1], [p1, p2]),

for all (m1, p1), (m2, p2) ∈ m⊕ p.



1.2.2 The case of Lie algebras 23

Definition 1.2.14. A crossed module of Lie algebras (or Lie crossed module) (m,p, ν)
is a Lie homomorphism ν : m→ p together with an action of p on m such that

ν([p,m]) = [p, ν(m)], (XLie1)

[ν(m1),m2] = [m1,m2]. (XLie2)

for all m,m1,m2 ∈ m and p ∈ p.

For the sake of coherence, (XLie1) will be called equivariance and (XLie2) Peiffer
identity. If (m,p, ν) satisfies (XLie1) but not necessarily (XLie2), it is called precrossed
module. Moreover, we have the following result:

Lemma 1.2.15. Given a Lie crossed module (m,p, ν),

(i) Ker ν is an ideal of m and Im ν is an ideal of p.

(ii) Ker ν ⊂ Ann(m), where Ann(m) is the annihilator of m.

Proof. Ker ν is an ideal for any Lie homomorphism ν. The calculations for the other
two statements can be easily completed by using (XLie1) and (XLie2) respectively.

Example 1.2.16. Let p be a Lie algebra.
(i) The Lie bracket in p yields an action of p on any ideal q of p. The inclusion
i : q ↪→ p together with that action is a Lie crossed module. {0} and p are ideals of
p, so any Lie algebra p can be regarded as a crossed module in two obvious ways:
({0},p, 0), where 0 is the trivial map, or (p,p, idp).
(ii) (p, {0}, 0) with the trivial action is a precrossed module. It satisfies the Peiffer
identity if and only if p is abelian, that is, if the bracket is trivial.
(iii) If 0→ q→ m

ν−→ p→ 0 is a short exact sequence with q ⊂ Ann(m), then (m,p, ν)
is a Lie crossed module, with the action of p on m given by [p,m] = [mp,m] for all
p ∈ p, m ∈ m, where mp is an element in m such that ν(mp) = p.

The role played by Aut(H) for any group H (see Example 1.2.6) is played by
Der(m), the Lie algebra of derivations, for any Lie algebra m. Note that an element d ∈
Der(m) is aK-linear map from m to m such that d[m1,m2] = [d(m1),m2]+[m1, d(m2)].
The Lie structure in Der(m) is given by [d1, d2] = d1d2 − d2d1 for all d1, d2 ∈ Der(m).

Example 1.2.17. The Lie homomorphism α : m → Der(m), where α(m)(m′) =
[m,m′], together with the action of Der(m) on m defined by [ϕ,m] = ϕ(m) for all
ϕ ∈ Der(m), m ∈ m, is a Lie crossed module.

Every action of a Lie algebra p on a Lie algebra m yields a unique morphism of
Lie algebras β : p→ Der(m), such that [β(p),m] = [p,m]. Hence, it would be possible
to define a Lie action of p on m as a Lie homomorphism from p to Der(m). See
Section 2.1 for more details.
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Definition 1.2.18. A morphism of Lie crossed modules (ϕ,ψ) : (m,p, ν)→ (m′,p′, ν′)
is a pair of Lie homomorphisms, ϕ : m→ m′ and ψ : p→ p′, such that

ψν = ν′ϕ, (1.2.5)

ϕ([p,m]) = [ψ(p), ϕ(m)], (1.2.6)

for all m ∈ m, p ∈ p.

Example 1.2.19. Let (m,p, ν) be a Lie crossed module and q a Lie algebra.
(i) Given a Lie homomorphism ψ : p → q such that ψν = 0, (0, ψ) : (m,p, ν) →
({0}, q, 0) is a morphism of Lie crossed modules.
(ii) Given a Lie homomorphism ψ : q → p, (0, ψ) : ({0}, q, 0) → (m,p, ν) is a mor-
phism of Lie crossed modules.
(iii) Given a Lie homomorphism ψ : p → q, (ψν, ψ) : (m,p, ν) → (q, q, idq) is a mor-
phism of Lie crossed modules. In particular, (ν, idp) : (m,p, ν) → (p,p, idp) is a
morphism of Lie crossed modules.
(iv) Given a Lie homomorphism ϕ : q → m, (ϕ, νϕ) : (q, q, idq) → (m,p, ν) is a mor-
phism of Lie crossed modules. In particular, (idm, ν) : (m,m, idm) → (m,p, ν) is a
morphism of Lie crossed modules.
(v) (ν, α) : (m,p, ν) → (p,Der(p), α) is a morphism of Lie crossed modules, with
(p,Der(p), α) as in Example 1.2.17.

Composition of morphisms of Lie crossed modules is defined component-wise and
the identity morphism is given by (idm, idp) for any crossed module (m,p, ν). We will
denote by XLie the category of Lie crossed modules and morphisms of Lie crossed
modules.

Just like in the case of crossed modules of groups, it is possible to define the
full embeddings I0 : Lie → XLie and I1 : Lie → XLie, with I0(p) = ({0},p, 0) and
I1(p) = (p,p, idp) for any Lie algebra p. Given a morphism of Lie algebras α : p→ p′,
I0(α) = (0, α) and I1(α) = (α, α).

Continuing with the analogy, let us define the functors Φ0, Φ1 and Φ2, from XLie
to Lie, given by Φ0(m,p, ν) = p/ν(m), Φ1(m,p, ν) = p and Φ2(m,p, ν) = m for any Lie
crossed module (m,p, ν). Given a morphism of Lie crossed modules (ϕ,ψ) : (m,p, ν)→
(m′,p′, ν′), Φ0(ϕ,ψ) = ψ, Φ1(ϕ,ψ) = ψ and Φ2(ϕ,ψ) = ϕ, where ψ is the morphism
from p/ν(m) to p′/ν′(m′) induced by ψ.

Proposition 1.2.20. Φ0 is left adjoint to I0, I0 is left adjoint to Φ1, Φ1 is left adjoint
to I1 and I1 is left adjoint to Φ2.

Proof. The corresponding natural bijections can be readily described by using Exam-
ple 1.2.19 (i)–(iv).

Definition 1.2.21. A cat1-Lie algebra (p1,p0, s, t) consists of a Lie algebra p1 to-
gether with a Lie subalgebra p0 and the structural morphisms s, t : p1 → p0 such
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that

s|p0
= t|p0

= idp0
, (CLie1)

[Ker s,Ker t] = 0. (CLie2)

Definition 1.2.22. A morphism of cat1-Lie algebras γ : (p1,p0, s, t)→ (p′1,p
′
0, s
′, t′)

is a Lie homomorphism γ : p1 → p′1 such that γ(p0) ⊆ p′0 and s′γ = γ|p0s, t
′γ =

γ|p0t.

Composition of morphisms of cat1-Lie algebras is obvious. We will denote by
C1Lie the category of cat1-Lie algebras and morphisms of cat1-Lie algebras.

Proposition 1.2.23. The categories XLie and C1Lie are equivalent.

Proof. Given a crossed module of Lie algebras (m,p, ν), the corresponding cat1-Lie
algebra is (mop,p, s, t), with s(m, p) = p and t(m, p) = ν(m)+p for all (m, p) ∈ mop.
It is evident that s is a Lie homomorphism, while t preserves the bracket due to
(XLie1), the fact that ν is a Lie homomorphism and the bilinearity and antisymmetry
of the bracket in p. Note that p can be regarded as a Lie subalgebra of mop via the
morphism p 7→ (0, p). It is obvious that s|p = t|p = idp. Directly from the definition
of s and t, we get that Ker s = {(m, 0) | m ∈ m} and Ker t = {(m,−ν(m)) | m ∈ m}.
Given m1,m2 ∈ m, due to (XLie2) and the antisymmetry of the bracket in m, we
know that −[m1,m2] = [m2,m1] = [ν(m2),m1]. Hence,

[(m1, 0), (m2,−ν(m2))] = ([m1,m2] + [ν(m2),m1] , 0) = (0, 0).

Therefore, [Ker s,Ker t] = 0 and (mo p,p, s, t) is a cat1-Lie algebra.
Additionally, given a morphism of Lie crossed modules (ϕ,ψ) from (m,p, ν) to

(m′,p′, ν′), the corresponding morphism of cat1-Lie algebras is defined by fϕ,ψ(m, p) =
(ϕ(m), ψ(p)) for all (m, p) ∈ mop. One can easily check that fϕ,ψ is a Lie homomor-
phism by making use of (1.2.6) and the fact that ϕ and ψ are Lie homomorphisms. It
is clear that fϕ,ψ(p) ⊆ p′. Besides, the identity s′γ = γ|p0s follows from the definition
of the morphisms involved, while t′γ = γ|p0t is an immediate consequence of (1.2.5).
The previous assignments clearly define a functor from XLie to C1Lie, which will be
denoted by catLie.

Conversely, given a cat1-Lie algebra (p1,p0, s, t), the corresponding Lie crossed
module is t|Ker s : Ker s→ p0, with the action of p0 on Ker s induced by the bracket
in p1. We will write simply t instead of t |Ker s. (XLie1) follows directly from the fact
that t is a Lie homomorphism and (CLie1), specifically from the identity t|p = idp.

Now, let x1, x2 ∈ Ker s. It is clear that t(x1) − x1 ∈ Ker t, since t is linear and
t|p0

= idp0
. Therefore, due to (CLie2) and the bilinearity of the bracket in p1, we

have that
0 = [t(x1)− x1, x2] = [t(x1), x2]− [x1, x2] .

Hence, (Ker s,p0, t|Ker s) satisfies (XLie2) and it is a Lie crossed module.
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Moreover, given a morphism of cat1-Lie algebras γ : (p1,p0, s, t)→ (p′1,p
′
0, s
′, t′),

its corresponding morphism of Lie crossed modules is given by

Ker s p0

Ker s′ p′0.

γ|Ker s

t|Ker s

γ|p0

t′|Ker s′

Note that γ(Ker s) ⊂ Ker s′, directly from the identity s′γ = γ|p0s. Furthermore,
the identity t′γ = γ|p0t implies the commutativity of the previous diagram. Besides,
(1.2.6) follows from the definition of the action of p0 on Ker s and the fact that γ is
a Lie homomorphism. The previous assignments clearly define a functor from C1Lie
to XLie, which will be denoted by XmLie.

catLie and XmLie establish an equivalence between the categories XLie and C1Lie,
with the natural isomorphisms α : 1XLie → XmLie ◦ catLie and β : 1C1Lie → catLie ◦ XmLie
given, for a fixed (m,p, ν) in XLie and a fixed (p1,p0, s, t) in C1Lie, by:

m p

mo {0} p

αm

ν

idp

ν

and

p1 p0

Ker so p0 p0

βp1

t

s

idp0

t̃

s̃

respectively, where αm(m) = (m, 0) for every m ∈ m, βp1(p) = (p − s(p), s(p)) for
every p ∈ p1. It is clear that (αm, idp) is an isomorphism of Lie crossed modules and
the naturality of α is obvious.

Concerning βp1
, observe that catLie(XmLie(p1,p0, s, t)) = (Ker s o p0,p0, s̃, t̃),

where s̃(x, y) = y and t̃(x, y) = t(x) + y for all x ∈ Ker s, y ∈ p0. It is easy to check
that βp1 is a Lie homomorphism simply by using the definition of the Lie bracket in
Ker sop0 and the action of p0 on Ker s. Besides, given y ∈ p0, βp1(y) = (0, y), since
s|p0

= idp0
. Calculations in order to check the identities s̃βp1

= s and t̃βp1
= t are

obvious. The inverse of βp1
is given by β−1

p1
(x, y) = x+ y, for all (x, y) ∈ Ker so p0.

Naturality of β can be readily checked by using the identity s′γ = γ|p0
s for any

morphism γ between two given cat1-Lie algebras (p1,p0, s, t) and (p′1,p
′
0, s
′, t′).

1.2.3 The case of associative algebras

Crossed modules of associative algebras have not been so deeply studied as their Lie
and group analogues. However, in the works of Dedecker and Lue [33, 67], crossed
modules of associative algebras play a central role as coefficients for low-dimensional
non-abelian cohomology. Besides, in Shammu’s PhD thesis [80] the author investigates
the algebraic and categorical structure of crossed modules of algebras. Baues and
Minian [6] used them to represent the Hochschild cohomology of associative algebras
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and, in the recent article [34], the Hochschild and (cotriple) cyclic homologies of
crossed modules of associative algebras were constructed and investigated.

Recall that an associative algebra (or simply algebra) A over K is a K-module
together with an associative bilinear map A×A→ A, (a1, a2) 7→ a1 ·a2. A morphism
of algebras is a K-linear map that preserves the product. We will denote by As the
category of algebras over K and morphisms of algebras.

Definition 1.2.24. An algebra A acts on another algebra B if there are two bilinear
maps, A×B → B, (a, b) 7→ a · b and B ×A→ B, (b, a) 7→ b · a such that

(1) a · (b1 · b2) = (a · b1) · b2,

(2) (b1 · a) · b2 = b1 · (a · b2),

(3) (b1 · b2) · a = b1 · (b2 · a),

(4) b · (a1 · a2) = (b · a1) · a2,

(5) (a1 · b) · a2 = a1 · (b · a2),

(6) (a1 · a2) · b = a1 · (a2 · b),

for all a, a1, a2 ∈ A, b, b1, b2 ∈ B.

For instance, if A is a subalgebra of an algebra B and I is an ideal in B, multi-
plication in B yields an action of A on I. Observe that we denote the action by the
same symbol used for the multiplication in A and B, by analogy to the notation used
for Ω-groups.

Remark 1.2.25. From now on, in many occasions we will omit the symbol · when
we refer to the multiplication of an associative algebra or an algebra action. However,
it will appear whenever it is considered to facilitate the text comprehension.

Given an action of A on B, it is possible to consider the semidirect product al-
gebra B o A, which consists of the underlying K-module B ⊕ A endowed with the
multiplication given by

(b1, a1)(b2, a2) = (b1b2 + a1b2 + b1a2, a1a2)

for all (b1, a1), (b2, a2) ∈ B ⊕A.

Definition 1.2.26. A crossed module of algebras (B,A, ρ) is an algebra homomor-
phism ρ : B → A together with an action of A on B such that

ρ(ab) = aρ(b) and ρ(ba) = ρ(b)a, (XAs1)

ρ(b1)b2 = b1b2 = b1ρ(b2), (XAs2)

for all a ∈ A, b1, b2 ∈ B.

For the sake of coherence, (XAs1) will be called equivariance and (XAs2) Peiffer
identity. If (B,A, ρ) satisfies (XAs1) but not necessarily (XAs2), it is called precrossed
module. Moreover, we have the following result:
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Lemma 1.2.27. Given a crossed module of algebras (B,A, ρ),

(i) Ker ρ is an ideal of B and Im ρ is an ideal of A.

(ii) Ker ρ ⊂ Ann(B), where Ann(B) is the two-sided annihilator of B.

The concept of crossed module of algebras generalizes simultaneously the concepts
of ideal and bimodule.

Example 1.2.28. Let A be an algebra.
(i) Given an ideal I of A, the inclusion i : I ↪→ A together with action of A on I
induced by the product in A is a crossed module of algebras. {0} and A are ideals
of A, so any algebra A can be regarded as a crossed module in two obvious ways:
({0}, A, 0), where 0 is the trivial map, or (A,A, idA).
(ii) (A, {0}, 0) with the trivial action is a precrossed module. It satisfies the Peiffer
identity if and only if the product in A is trivial.
(iii) Any surjective morphism of algebras B � A with its kernel in the two-sided
annihilator of B is a crossed module, with the action of A on B given by ab = b̃b and
ba = bb̃ for any a ∈ A, b ∈ B, where b̃ is any element in the preimage of a.

(iv) A DG-algebra concentrated in degrees 0 and 1, A = {A1
d−→ A0}, with A0 acting

on A1 by multiplication in A, is a crossed module.

The analogue to (H,Aut(H), α) in Gr and (m,Der(m), α) in Lie (see Examples 1.2.6
and 1.2.17) does not always exist in As. We will give more details about this con-
struction in Section 2.1.

Definition 1.2.29. A morphism of crossed modules of algebras (ϕ,ψ) : (B,A, ρ) →
(B′, A′, ρ′) is a pair of algebra homomorphisms, ϕ : B → B′ and ψ : A → A′, such
that

ψρ = ρ′ϕ, (1.2.7)

ϕ(ba) = ϕ(b)ψ(a) and ϕ(ab) = ψ(a)ϕ(b), (1.2.8)

for all b ∈ B, a ∈ A.

Example 1.2.30. Let (B,A, ρ) be a crossed module of algebras and C an algebra.
(i) Given a morphism of algebras ψ : A → C such that ψρ = 0, (0, ψ) : (B,A, ρ) →
({0}, C, 0) is a morphism of crossed modules.
(ii) Given a morphism of algebras ψ : C → A, (0, ψ) : ({0}, C, 0) → (B,A, ρ) is a
morphism of crossed modules.
(iii) Given a morphism of algebras ψ : A → C, (ψρ, ψ) : (B,A, ρ) → (C,C, idC) is
a morphism of crossed modules. In particular, (ρ, idA) : (B,A, ρ) → (A,A, idA) is a
morphism of crossed modules.
(iv) Given a morphism of algebras ϕ : C → B, (ϕ, ρϕ) : (C,C, idC) → (B,A, ρ) is a
morphism of crossed modules. In particular, (idB , ρ) : (B,B, idB) → (B,A, ρ) is a
morphism of crossed modules.
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Composition of morphisms of crossed modules is defined component-wise and the
identity morphism is given by (idB , idA) for any crossed module (B,A, ρ). We will
denote by XAs the category of crossed modules of algebras and morphisms of crossed
modules. Furthermore, XAs1 will denote the subcategory of XAs of crossed modules
of unital algebras, whose objects are crossed modules (B,A, ρ) with A a unital algebra
such that 1 · b = b = b · 1 for all b ∈ B, and whose morphisms are crossed module
homomorphisms (ϕ,ψ) with ψ a morphism of unital algebras.

Just like in the case of crossed modules of groups, it is possible to define the
full embeddings I′0 : As → XAs and I′1 : As → XAs, with I′0(A) = ({0}, A, 0) and
I′1(A) = (A,A, idA) for any algebra A. Given a morphism of algebras α : A → A′,
I′0(α) = (0, α) and I′1(α) = (α, α).

Furthermore, let us define the functors Φ′0, Φ′1 and Φ′2, from XAs to As, given
by Φ′0(B,A, ρ) = A/ρ(B), Φ′1(B,A, ρ) = A and Φ2(B,A, ρ) = B for any crossed
module of algebras (B,A, ρ). Given a morphism of crossed modules of algebras
(ϕ,ψ) : (B,A, ρ) → (B′, A′, ρ′), Φ′0(ϕ,ψ) = ψ, Φ′1(ϕ,ψ) = ψ and Φ′2(ϕ,ψ) = ϕ, where
ψ : A/ρ(B)→ A′/ρ′(B′) is the morphism induced by ψ.

Proposition 1.2.31. Φ′0 is left adjoint to I′0, I′0 is left adjoint to Φ′1, Φ′1 is left adjoint
to I′1 and I′1 is left adjoint to Φ′2.

Proof. The corresponding natural bijections can be readily described by using Exam-
ple 1.2.30 (i)–(iv).

Definition 1.2.32. A cat1-algebra (A1, A0, σ, τ) consists of an algebra A1 together
with a subalgebra A0 and the structural morphisms σ, τ : A1 → A0 such that

σ|A0 = τ |A0 = idA0 , (CAs1)

KerσKer τ = 0 = Ker τ Kerσ. (CAs2)

Definition 1.2.33. A morphism of cat1-algebras γ : (A1, A0, σ, τ) → (A′1, A
′
0, σ
′, τ ′)

is an algebra homomorphism γ : A1 → A′1 such that γ(A0) ⊆ A′0 and σ′γ = γ|A0
σ,

τ ′γ = γ|A0τ .

Composition of morphisms of cat1-algebras is obvious. We will denote by C1As
the category of cat1-algebras and morphisms of cat1-algebras.

Proposition 1.2.34. The categories XAs and C1As are equivalent.

Proof. Given a crossed module of algebras (B,A, ρ), the corresponding cat1-algebra
is (B o A,A, σ, τ), where σ(b, a) = a, τ(b, a) = ρ(b) + a for all (b, a) ∈ B o A. It is
clear that σ is an algebra homomorphism. As for τ , it is an algebra homomorphism
due to (XAs1), the fact that ρ is an algebra homomorphism and the bilinearity of the
product in A. Note that A can be regarded as a subalgebra of BoA via the morphism
a 7→ (0, a). It is clear that σ|A = τ |A = idA. Besides, one can easily derive from the
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definition of σ and τ that Kerσ = {(b, 0) | b ∈ B} and Ker τ = {(b,−ρ(b)) | b ∈ B}.
Let (b1, 0) ∈ Kerσ and (b2,−ρ(b2)) ∈ Ker τ . Then

(b1, 0)(b2,−ρ(b2)) = (b1b2 − b1ρ(b2), 0) = (0, 0),

(b2,−ρ(b2))(b1, 0) = (b2b1 − ρ(b2)b1, 0) = (0, 0),

due to (XAs2). Therefore, KerσKer τ = 0 = Ker τ Kerσ and (B o A,A, σ, τ) is a
cat1-algebra.

Additionally, given a morphism of crossed modules of algebras (ϕ,ψ) from (B,A, ρ)
to (B′, A′, ρ′), the corresponding morphism of cat1-algebras is defined by fϕ,ψ(b, a) =
(ϕ(b), ψ(a)) for all (b, a) ∈ B o A. One can easily check that fϕ,ψ is an algebra
homomorphism by making use of (1.2.8) and the fact that ϕ and ψ are morphisms
as well. It is obvious that fϕ,ψ(A) ⊆ A′. The identity σ′γ = γ|A0

σ follows from the
definition of the morphisms involved and τ ′γ = γ|A0

τ is an immediate consequence of
(1.2.7). The previous assignments clearly define a functor from XAs to C1As, which
will be denoted by catAs.

Conversely, given a cat1-algebra (A1, A0, σ, τ), the corresponding crossed module
is τ |Kerσ : Kerσ → A0, with the action of A0 on Kerσ induced by the product in A1.
We will write simply τ instead of τ |Kerσ. (XAs1) follows from the fact that τ is an
algebra homomorphism and (CAs1), more precisely from the identity τ |A0

= idA0
.

Now, let x1, x2 ∈ Kerσ. It is clear that τ(x1) − x1 ∈ Ker τ , since τ is linear and
τ |A0 = idA0 . Therefore, due to (CAs2) and the bilinearity of the product in A1, we
have that

0 = (τ(x1)− x1)x2 = τ(x1)x2 − x1x2,

0 = x2(τ(x1)− x1) = x2τ(x1)− x2x1.

Hence, (Kerσ,A0, τ |Kerσ) verifies (XAs2) and it is a crossed module of algebras.
Moreover, given a morphism of cat1-algebras γ : (A1, A0, σ, τ) → (A′1, A

′
0, σ
′, τ ′),

its corresponding morphism of crossed modules of algebras is given by

Kerσ A0

Kerσ′ A′0.

γ|Ker σ

τ |Ker σ

γ|A0

τ ′|Ker σ′

Note that γ(Kerσ) ⊂ Kerσ′, directly from the identity σ′γ = γ|A0σ. The commuta-
tivity of the previous diagram follows from the identity τ ′γ = γ|A0

τ . Besides, (1.2.8)
follows from the definition of the action of A0 on Kerσ and the fact that γ is an al-
gebra homomorphism. The previous assignments clearly define a functor from C1As
to XAs, which will be denoted by XmAs.

catAs and XmAs establish an equivalence between the categories XAs and C1As,
with the natural isomorphisms α : 1XAs → XmAs ◦ catAs and β : 1C1As → catAs ◦ XmAs
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given, for a fixed (B,A, ρ) in XAs and a fixed (A1, A0, σ, τ) in C1As, by:

B A

B o {0} A

αB

ρ

idA

ρ

and

A1 A0

Kerσ oA0 A0

βA1

τ

σ

idA0

τ̃

σ̃

respectively, where αB(b) = (b, 0) for every b ∈ B, βA1(a) = (a−σ(a), σ(a)) for every
a ∈ A1. It is clear that (αB , idA) is an isomorphism of crossed modules of algebras
and the naturality of α is obvious.

Regarding βA1
, observe that catAs(XmAs(A1, A0, σ, τ)) = (Kerσ o A0, A0, σ̃, τ̃),

with σ̃(x, y) = y and τ̃(x, y) = τ(x) + y for all x ∈ Kerσ, y ∈ A0. It is easy to check
that βA1 is an algebra homomorphism just by using the definition of the product in
KerσoA0 and the action of A0 on Kerσ. Besides, given y ∈ A0, βA1(y) = (0, y), since
σ|A0

= idA0
. Calculations in order to check the identities σ̃βA1

= σ and τ̃βA1
= τ are

obvious. The inverse of βA1
is given by β−1

A1
(x, y) = x+ y, for all (x, y) ∈ KerσoA0.

Naturality of β can be readily checked by using the identity σ′γ = γ|A0
σ for any

morphism γ between two given cat1-algebras (A1, A0, σ, τ) and (A′1, A
′
0, σ
′, τ ′).

1.2.4 The case of Leibniz algebras

A non-commutative, or more precisely non-antisymmetric, generalization of Lie alge-
bras was first considered by Bloh [8], but it was not until almost thirty years later
that Loday made Leibniz algebras popular [64]. Their crossed modules were defined
for the first time in [66] in order to study the cohomology of Leibniz algebras. Later,
they were extended to n-Leibniz algebras in [24].

Definition 1.2.35. A Leibniz algebra p over K is a K-module together with a bilinear
operation [ , ] : p×p→ p, called the Leibniz bracket, which satisfies the Leibniz identity:

[[p1, p2], p3] = [p1, [p2, p3]] + [[p1, p3], p2],

for all p1, p2, p3 ∈ p. A morphism of Leibniz algebras is a K-linear map that preserves
the bracket.

Remark 1.2.36. Directly from the Leibniz identity, one easily derives that

[p1, [p2, p3]] + [p1, [p3, p2]] = 0,

for all p1, p2, p3 ∈ p. Furthermore, as remarked in [65], this is in fact a right Leibniz
algebra. For the opposite structure, that is, [p1, p2]′ = [p2, p1], the left Leibniz identity
is

[p1, [p2, p3]′]′ = [[p1, p2]′, p3]′ + [p2, [p1, p3]′]′,

for all p1, p2, p3 ∈ p.
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If the bracket of a Leibniz algebra p happens to be anticommutative, the p is a
Lie algebra. Furthermore, every Lie algebra is a Leibniz algebra. We will denote by
Lb the category of Leibniz algebras and morphisms of Leibniz algebras.

Definition 1.2.37. Let p and m be two Leibniz algebras. An action of p on m consists
of a pair of bilinear maps, p×m→ m, (p,m) 7→ [p,m] and m×p→ m, (m, p) 7→ [m, p],
such that

(1) [p, [m1,m2]] = [[p,m1],m2]− [[p,m2],m1],

(2) [m1, [p,m2]] = [[m1, p],m2]− [[m1,m2], p],

(3) [m1, [m2, p]] = [[m1,m2], p]− [[m1, p],m2],

(4) [m, [p1, p2]] = [[m, p1], p2]− [[m, p2], p1],

(5) [p1, [m, p2]] = [[p1,m], p2]− [[p1, p2],m],

(6) [p1, [p2,m]] = [[p1, p2],m]− [[p1,m], p2],

for all m,m1,m2 ∈ m and p, p1, p2 ∈ p.

Note that, as an immediate consequence of (2) and (3),

[m1, [p,m2]] + [m1, [m2, p]] = 0

for all m1,m2 ∈ m and p ∈ p. On the other hand, from (5) and (6),

[p1, [m, p2]] + [p1, [p2,m]] = 0

for all m ∈ m and p1, p2 ∈ p.
We will say that p acts trivially on m if [p,m] = 0 = [m, p] for all m ∈ m, p ∈ p.

Observe that we denote the action by the same symbol used for the multiplication in
m and p, by analogy to the notation used for Ω-groups. Note that the six identities in
the definition of a Leibniz action can be obtained from the Leibniz identity by taking
two elements in p and one in m (three identities), and two elements in m and one in
p (the other three identities).

For example, if p is a Leibniz subalgebra of some Leibniz algebra q, and if m is an
ideal in q, then the Leibniz bracket in q yields an action of p on m.

Given a Leibniz action of p on m we can consider the semidirect product Leibniz
algebra mop, which consists of the K-module m⊕p together with the Leibniz bracket
given by

[(m1, p1), (m2, p2)] = ([m1,m2] + [p1,m2] + [m1, p2], [p1, p2])

for all (m1, p1), (m2, p2) ∈ m⊕ p.
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Definition 1.2.38. A crossed module of Leibniz algebras (or Leibniz crossed module)
(m, p, η) is a morphism of Leibniz algebras η : m→ p together with an action of p on
m such that

η([p,m]) = [p, η(m)] and η([m, p]) = [η(m), p], (XLb1)

[η(m1),m2] = [m1,m2] = [m1, η(m2)]. (XLb2)

for all m,m1,m2 ∈ m, p ∈ p.

For the sake of coherence, (XLb1) will be called equivariance and (XLb2) Peiffer
identity. If (m, p, η) satisfies (XLb1) but not necessarily (XLb2), it is called precrossed
module. Moreover, we have the following result:

Lemma 1.2.39. Given a Leibniz crossed module (m, p, η),

(i) Ker η is an ideal of m and Im η is an ideal of p.

(ii) Ker η ⊂ Ann(m), where Ann(m) is the annihilator of m.

Example 1.2.40. Let p be a Leibniz algebra.
(i) The Leibniz bracket in p yields an action of p on any ideal q of p. The inclusion
i : q ↪→ p together with that action is a Leibniz crossed module. {0} and p are ideals of
p, so any Leibniz algebra p can be regarded as a crossed module in two obvious ways:
({0}, p, 0), where 0 is the trivial map, or (p, p, idp).
(ii) (p, {0}, 0) with the trivial action is a precrossed module. It satisfies the Peiffer
identity if and only if the bracket in p is trivial.

(iii) If 0→ q→ m
η−→ p→ 0 is a short exact sequence with q ⊂ Ann(m), then (m, p, η)

is a Leibniz crossed module, with the action of p on m given by [p,m] = [mp,m] for
all m ∈ m, p ∈ p, where mp is an element in m such that η(mp) = p.

The analogue to (H,Aut(H), α) in Gr and (m,Der(m), α) in Lie (see Examples 1.2.6
and 1.2.17) does not always exist in Lb. We will give more details about this con-
struction in Section 2.1.

Definition 1.2.41. A morphism of Leibniz crossed modules (ϕ,ψ) from (m, p, η) to
(m′, p′, η′) is a pair of Leibniz homomorphisms, ϕ : m→ m′ and ψ : p→ p′, such that

ψη = η′ϕ, (1.2.9)

ϕ([p,m]) = [ψ(p), ϕ(m)] and ϕ([m, p]) = [ϕ(m), ψ(p)] (1.2.10)

for all m ∈ m, p ∈ p.

Example 1.2.42. Let (m, p, η) be a Leibniz crossed module and q a Leibniz algebra.
(i) Given a Leibniz homomorphism ψ : p → q such that ψη = 0, (0, ψ) : (m, p, η) →
({0}, q, 0) is a morphism of Leibniz crossed modules.



34 1 Crossed modules and equivalent structures

(ii) Given a Leibniz homomorphism ψ : q → p, (0, ψ) : ({0}, q, 0) → (m, p, η) is a
morphism of Leibniz crossed modules.
(iii) Given a Leibniz homomorphism ψ : p → q, (ψη, ψ) : (m, p, η) → (q, q, idq) is a
morphism of Leibniz crossed modules. In particular, (η, idp) : (m, p, η)→ (p, p, idp) is
a morphism of Leibniz crossed modules.
(iv) Given a Leibniz homomorphism ϕ : q → m, (ϕ, ηϕ) : (q, q, idq) → (m, p, η) is a
morphism of Leibniz crossed modules. In particular, (idm, η) : (m,m, idm)→ (m, p, η)
is a morphism of Leibniz crossed modules.

Composition of morphisms of Leibniz crossed modules is defined component-wise
and the identity morphism is given by (idm, idp) for any Leibniz crossed module
(m, p, η). We will denote by XLb the category of Leibniz crossed modules and mor-
phisms of Leibniz crossed modules.

Just like in the case of crossed modules of groups, it is possible to define the
full embeddings J0 : Lb → XLb and J1 : Lb → XLb, with J0(p) = ({0}, p, 0) and
J1(p) = (p, p, idp) for any Leibniz algebra p. Given a morphism of Leibniz algebras
α : p→ p′, J0(α) = (0, α) and J1(α) = (α, α).

Besides, let us define the functors Ψ0, Ψ1 and Ψ2, from XLb to Lb, given by
Ψ0(m, p, η) = p/η(m), Ψ1(m, p, η) = p and Ψ2(m, p, η) = m for any Leibniz crossed
module (m, p, η). Given a morphism of Leibniz crossed modules (ϕ,ψ) : (m, p, η) →
(m′, p′, η′), Ψ0(ϕ,ψ) = ψ, Ψ1(ϕ,ψ) = ψ and Ψ2(ϕ,ψ) = ϕ, where ψ is the morphism
from p/η(m) to p′/η′(m′) induced by ψ.

Proposition 1.2.43. Ψ0 is left adjoint to J0, J0 is left adjoint to Ψ1, Ψ1 is left adjoint
to J1 and J1 is left adjoint to Ψ2.

Proof. The corresponding natural bijections can be readily described by using Exam-
ple 1.2.42 (i)–(iv).

Definition 1.2.44. A cat1-Leibniz algebra (p1, p0, s, t) consists of a Leibniz algebra
p1 together with a Leibniz subalgebra p0 and the structural morphisms s, t : p1 → p0

such that

s|p0
= t|p0

= idp0
, (CLb1)

[Ker s,Ker t] = 0 = [Ker t,Ker s] (CLb2)

Definition 1.2.45. A homomorphism of cat1-Leibniz algebras γ from (p1, p0, s, t)
to (p′1, p

′
0, s
′, t′) is a Leibniz homomorphism γ : p1 → p′1 such that γ(p0) ⊆ p′0 and

s′γ = γ|p0
s, t′γ = γ|p0

t.

Composition of morphisms of cat1-Lie algebras is obvious. We will denote by C1Lb
the category of cat1-Leibniz algebras and morphisms of cat1-Leibniz algebras.

Proposition 1.2.46. The categories XLb and C1Lb are equivalent.
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Proof. Given a crossed module of Leibniz algebras (m, p, η), the corresponding cat1-
Leibniz algebra is (m o p, p, s, t), where s(m, p) = p and t(m, p) = η(m) + p for all
(m, p) ∈ m o p. It is evident that s is a Leibniz homomorphism, while t is a Leibniz
homomorphism due to (XLb1), the fact that η is a Leibniz homomorphism and the
bilinearity of the bracket in p. Note that p can be regarded as a Lie subalgebra of
mo p via the morphism p 7→ (0, p). It is clear that s|p = t|p = idp. Directly from the
definition of s and t, we get that Ker s = {(m, 0) | m ∈ m} and Ker t = {(m,−η(m)) |
m ∈ m}. Let (m1, 0) ∈ Ker s and (m2,−η(m2)) ∈ Ker t:

[(m1, 0), (m2,−η(m2))] = ([m1,m2]− [m1, η(m2)] , 0) = (0, 0),

due to (XLb2). Analogously [(m2,−η(m2)), (m1, 0)] = (0, 0), so [Ker s,Ker t] = 0 =
[Ker t,Ker s] and (mo p, p, s, t) is a cat1-Leibniz algebra.

Additionally, given a morphism of Leibniz crossed modules (ϕ,ψ) from (m, p, η)
to (m′, p′, η′), the corresponding morphism of cat1-Leibniz algebras is defined by
fϕ,ψ(m, p) = (ϕ(m), ψ(p)), for all (m, p) ∈ m o p. One can easily check that fϕ,ψ
is a Leibniz homomorphism by making use of (1.2.10) and the fact that ϕ and ψ
are Leibniz homomorphisms. It is clear that fϕ,ψ(p) ⊆ p′. The identity s′γ = γ|p0

s
follows from the definition of the morphisms involved and t′γ = γ|p0

t is an immediate
consequence of (1.2.9). The previous assignments clearly define a functor from XLb
to C1Lb, which will be denoted by catLb.

Conversely, given a cat1-Leibniz algebra (p1, p0, s, t), the corresponding Leibniz
crossed module is t|Ker s : Ker s → p0, with the action of p0 on Ker s induced by the
bracket in p1. (XLb1) follows from the fact that t is a Leibniz homomorphism and
(CLb1), specifically from the identity t|p0 = id p.

Now, let x1, x2 ∈ Ker s. It is clear that t(x1) − x1 ∈ Ker t, since t is linear and
t|p0

= idp0
. Therefore, due to (CLb2) and the bilinearity of the bracket in p1, we

have that
0 = [t(x1)− x1, x2] = [t(x1), x2]− [x1, x2] .

Analogously, [x1, t(x2)] = [x1, x2]. Thus, (Ker s, p0, t|Ker s) is a crossed module of
Leibniz algebras.

Given a morphism of cat1-Leibniz algebras γ : (p1, p0, s, t) → (p′1, p
′
0, s
′, t′), its

corresponding morphism of Leibniz crossed modules is given by

Ker s p0

Ker s′ p′0.

γ|Ker s

t|Ker s

γ|p0

t′|Ker s′

Note that γ(Ker s) ⊂ Ker s′, directly from the identity s′γ = γ|p0
s. The commuta-

tivity of the previous diagram follows from the identity t′γ = γ|p0t. Besides, (1.2.10)
follows from the definition of the action of p0 on Ker s and the fact that γ is a Leibniz
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homomorphism. The previous assignments clearly define a functor from C1Lb to XLb,
which will be denoted by XmLb.

catLb and XmLb establish an equivalence between the categories XLb and C1Lb,
with the natural isomorphisms α : 1XLb → XmLb ◦ catLb and β : 1C1Lb → catLb ◦ XmLb
given, for a fixed (m, p, η) in XLb and a fixed (p1, p0, s, t) in C1Lb, by:

m p

mo {0} p

αm

η

idp

η

and

p1 p0

Ker so p0 p0

βp1

t

s

idp0

t̃

s̃

respectively, where αm(m) = (m, 0) for every m ∈ m, βp1
(p) = (p − s(p), s(p)) for

every p ∈ p1. It is clear that (αm, idp) is an isomorphism of Leibniz crossed modules
and the naturality of α is obvious.

Concerning βp1 , observe that catLb(XmLb(p1, p0, s, t)) = (Ker s o p0, p0, s̃, t̃), with
s̃(x, y) = y and t̃(x, y) = t(x)+y for all x ∈ Ker s, y ∈ p0. It is easy to check that βp1

is
a Leibniz homomorphism just by using the definition of the Leibniz bracket in Ker so
p0 and the action of p0 on Ker s. Besides, given y ∈ p0, βp1

(y) = (0, y), since s|p0
=

idp0
. Calculations in order to check the identities s̃βp1

= s and t̃βp1
= t are obvious.

The inverse of βp1 is given by β−1
p1

(x, y) = x+y, for all (x, y) ∈ Ker sop0. Naturality
of β can be readily checked by using the identity s′γ = γ|p0s for any morphism γ
between two given cat1-Leibniz algebras (p1, p0, s, t) and (p′1, p

′
0, s
′, t′).

1.2.5 The case of dialgebras

Associative dialgebras (or simply dialgebras), also known as diassociative algebras,
were introduced by Loday [65] as an algebraic structure with a role with respect to
Leibniz algebras analogous to the one that associative algebras play with respect to
Lie algebras. Let us recall some basic definitions and elemental properties from [65].

Definition 1.2.47 ([65]). An associative dialgebra (or simply dialgebra), is a K-
module D equipped with two K-linear maps

a, ` : D ⊗D → D,

called the left product and the right product respectively, satisfying the following axioms

(x a y) a z = x a (y ` z), (Di1)

(x a y) a z = x a (y a z), (Di2)

(x ` y) a z = x ` (y a z), (Di3)

(x a y) ` z = x ` (y ` z), (Di4)

(x ` y) ` z = x ` (y ` z), (Di5)
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for all x, y, z ∈ D. A morphism of dialgebras is a K-linear map that preserves both
the left and the right products.

Observe that here we break the “rule” of denoting elements with lower case letters
after the name of the object (D in this particular case). This decision was made
in order to prevent confusions with derivations. Likewise, whenever we consider a
dialgebra L, its elements will not be denoted by l, since that symbol will be used for
a specific type of maps in Subsection 2.1.1.

We will denote by Dias the category of dialgebras and morphisms of dialgebras.

Remark 1.2.48. In some identities we may use ∗ to denote both ` and a, meaning
that the corresponding equality is satisfied for ∗ = ` and ∗ = a.

A bar-unit in a dialgebra D is an element e ∈ D such that

x a e = x = e ` x

for all x ∈ D. A bar-unit is not necessarily unique. The set of all bar-units is called
halo. A unital dialgebra is a dialgebra with a specific bar-unit e. A morphism of
dialgebras is said to be unital if the image of any bar-unit is a bar-unit.

Observe that if a dialgebra has a unit ε, i.e. an element such that ε a x = x for
all x ∈ D, from (Di1) we have (ε a y) a z = ε a (y ` z), that is y a z = y ` z for
y, z ∈ D. Hence a = ` and D is merely an associative algebra with unit.

A dialgebra D is called abelian if both the left and the right products are trivial,
that is x a y = x ` y = 0 for all x, y ∈ D. Note that any K-module can be regarded
as an abelian dialgebra. A submodule I of a dialgebra D is called an ideal of D if
x a y, x ` y, y a x, y ` x ∈ I for any x ∈ I and y ∈ D. The annihilator of a dialgebra
D is given by:

Ann(D) = {x ∈ D | x a y = y a x = x ` y = y ` x = 0, for all y ∈ D}.

It is immediate to check that Ann(D) is indeed an ideal of D.

Example 1.2.49 ([65]).
(i) Any algebra A with a a b = a · b = a ` b for all a, b ∈ A is a dialgebra.
(ii) Let (A, d) be a non-graded differential associative algebra. By hypothesis, d(a·b) =
d(a) · b + a · d(b) and d2 = 0. A is a dialgebra with the left and the right products
given, for any a, b ∈ A, by

a a b = a · d(b) and a ` b = d(a) · b

(iii) Let A be an associative algebra and M be an A-bimodule. Let f : M → A be an
A-bimodule map. M together with

m a n = m · f(n) and m ` n = f(m) · n
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for all m,n ∈M , is a dialgebra.
(iv) Let A be an associative algebra and put D = A⊕A. The products

a1 ⊕ b1 a a2 ⊕ b2 = a1 ⊕ b1 · a2 · b2 and a1 ⊕ b1 ` a2 ⊕ b2 = a1 · b1 · a2 ⊕ b2,

extended by linearity to A⊕A, endow it with a dialgebra structure.

Another interesting dialgebra is studied by Lin and Zhang in [62]. Let F [x, y] be
the polynomial algebra over a field F of characteristic zero. Then F [x, y] is a dialgebra
with the products

f(x, y) a g(x, y) = f(x, y) · g(y, y) and f(x, y) ` g(x, y) = f(x, x) · g(x, y),

for all f(x, y), g(x, y) ∈ F [x, y]. It is not mentioned in [62], but this structure can
be extended to the polynomial algebra with n variables F [x1, . . . , xn] by defining the
products as

f(x1, . . . , xn) a g(x1, . . . , xn) = f(x1, . . . , xn) · g(xn, . . . , xn),

f(x1, . . . , xn) ` g(x1, . . . , xn) = f(x1, . . . , x1) · g(x1, . . . , xn).

Definition 1.2.50. Let D and L be dialgebras. An action of D on L consists of four
linear maps, two of them denoted by the symbol a and the other two by `,

a : D ⊗ L→ L, a : L⊗D → L,

` : D ⊗ L→ L, ` : L⊗D → L

such that the following 30 equalities hold:

(1) (x a a) a b = x a (a ` b),

(2) (x a a) a b = x a (a a b),

(3) (x ` a) a b = x ` (a a b),

(4) (x a a) ` b = x ` (a ` b),

(5) (x ` a) ` b = x ` (a ` b),

(6) (a a x) a b = a a (x ` b),

(7) (a a x) a b = a a (x a b),

(8) (a ` x) a b = a ` (x a b),

(9) (a a x) ` b = a ` (x ` b),

(10) (a ` x) ` b = a ` (x ` b),

(11) (a a b) a x = a a (b ` x),

(12) (a a b) a x = a a (b a x),

(13) (a ` b) a x = a ` (b a x),

(14) (a a b) ` x = a ` (b ` x),

(15) (a ` b) ` x = a ` (b ` x),

(16) (a a x) a y = a a (x ` y),

(17) (a a x) a y = a a (x a y),

(18) (a ` x) a y = a ` (x a y),

(19) (a a x) ` y = a ` (x ` y),

(20) (a ` x) ` y = a ` (x ` y),
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(21) (x a a) a y = x a (a ` y),

(22) (x a a) a y = x a (a a y),

(23) (x ` a) a y = x ` (a a y),

(24) (x a a) ` y = x ` (a ` y),

(25) (x ` a) ` y = x ` (a ` y),

(26) (x a y) a a = x a (y ` a),

(27) (x a y) a a = x a (y a a),

(28) (x ` y) a a = x ` (y a a),

(29) (x a y) ` a = x ` (y ` a),

(30) (x ` y) ` a = x ` (y ` a),

for all x, y ∈ D; a, b ∈ L. The action is called trivial if these four maps are trivial.

Note that the previous identities are obtained from the axioms (Di1)–(Di5) by
taking one variable in D and two variables in L (15 equalities), and one variable in
L and two variables in D (15 equalities). Observe that we denote the action by the
same symbol used for the left and the right products in D and L, by analogy to the
notation used for Ω-groups.

Let us show some examples of actions. Note that Dias is a category of interest
and the first example agrees with the definition of a set of derived actions from a
D-structure.

Examples 1.2.51. (i) If 0 → L
ι→ E

σ→ D → 0 is a split short exact sequence
of dialgebras, i.e. there exists a homomorphism of dialgebras ϕ : D → E such that
σϕ = idD, then there is an action of the dialgebra D on L defined in the standard
way by taking the left and the right products in the dialgebra E:

x ∗ a = ϕ(x) ∗ ι(a) and a ∗ x = ι(a) ∗ ϕ(x)

for any x ∈ D, a ∈ L.
(ii) If D is a subdialgebra of a dialgebra E (maybe D = E) and I is an ideal in E,
then the left and the right products in E yield an action of D on I.

(iii) Any morphism of dialgebras D → L induces an action of D on L in the standard
way by taking images of elements of D and the left and the right products in L.

(iv) If µ : L→ D is an surjective morphism of dialgebras with Kerµ in the annihilator
of L, then there is an action of D on L defined in the standard way by taking pre-
images of the elements of D and the left and the right products in L.

(v) If L is a bimodule over a dialgebra D (for the definition see [65, Subsection 2.3]),
thought as an abelian dialgebra, then the bimodule structure defines an action of D
on the (abelian) dialgebra L.

Note that if a dialgebra D acts on a dialgebra L, then L, as a K-module, has a
structure of bimodule over the dialgebra D .

Given an action of a dialgebra D on a dialgebra L we define the semidirect product
dialgebra, L o D, with the underlying K-module L ⊕ D endowed with the left and
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the right products given by

(a1, x1) ∗ (a2, x2) = (a1 ∗ a2 + x1 ∗ a2 + a1 ∗ x2, x1 ∗ x2).

for all x1, x2 ∈ D, a1, a2 ∈ L.

Definition 1.2.52. A crossed module of dialgebras (L,D, µ) is a morphism of dial-
gebras µ : L→ D together with an action of D on L such that

µ(x ∗ a) = x ∗ µ(a) and µ(a ∗ x) = µ(a) ∗ x, (XDi1)

µ(a1) ∗ a2 = a1 ∗ a2 = a1 ∗ µ(a2). (XDi2)

for all x ∈ D, a1, a2 ∈ L.

For the sake of coherence, (XDi1) will be called equivariance and (XDi2) Peiffer
identity. If (L,D, µ) satisfies (XDi1) but not necessarily (XDi2), it is called precrossed
module. Moreover, we have the following result:

Lemma 1.2.53. Given a crossed module of dialgebras (L,D, µ),

(i) Kerµ is an ideal of L and Imµ is an ideal of D.

(ii) Kerµ ⊂ Ann(L).

The first two examples immediately below show that the concept of crossed module
of dialgebras generalizes both the concepts of ideal and bimodule of dialgebras.

Example 1.2.54. Let D be a dialgebra.
(i) The inclusion L ↪→ D of an ideal L of D is a crossed module, with the action of
D on L is given by the left and the right products in D, as in Example 1.2.51 (ii).
Conversely, if µ : L→ D is a crossed module of dialgebras which is injective, then by
Lemma 1.2.53 (i), L is isomorphic to an ideal of D. {0} and D are ideals of D, so
any dialgebra D can be regarded as a crossed module in two obvious ways: ({0}, D, 0),
where 0 is the trivial map, or (D,D, idD).

(ii) For any bimodule L over a dialgebra D the trivial map 0 : L→ D is a crossed mod-
ule with the action of D on the (abelian) dialgebra L described in Example 1.2.51 (v).
Conversely, if 0 : L → D is a crossed module of dialgebras, then L is necessarily an
abelian dialgebra and the action of D on L determines on L a bimodule structure over
D.

(iii) Any morphism of dialgebras µ : L→ D with L abelian and Imµ ⊂ Ann(D) is a
crossed module together with the trivial action of D on L.

(iv) Any surjective morphism of dialgebras µ : L → D with Kerµ ⊂ Ann(L) and the
action of D on L described in Example 1.2.51 (iv) is a crossed module of dialgebras.

The analogue to (H,Aut(H), α) in Gr and (m,Der(m), α) in Lie (see Examples 1.2.6
and 1.2.17) does not always exist in Dias. We will give more details about this
construction in Section 2.1.
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Definition 1.2.55. A morphism of crossed modules of dialgebras (ϕ,ψ) : (L,D, µ)→
(L′, D′, µ′) is a pair of dialgebra homomorphisms, ϕ : L → L′ and ψ : D → D′, such
that

ψµ = µ′ϕ, (1.2.11)

ϕ(x ∗ a) = ψ(x) ∗ ϕ(a) and ϕ(a ∗ x) = ϕ(a) ∗ ψ(x), (1.2.12)

for all x ∈ D, a ∈ L.

Example 1.2.56. Let (L,D, µ) be a crossed module of algebras and E a dialgebra.
(i) Given a morphism of dialgebras ψ : D → E such that ψµ = 0, (0, ψ) : (L,D, µ)→
({0}, E, 0) is a morphism of crossed modules.
(ii) Given a morphism of dialgebras ψ : E → D, (0, ψ) : ({0}, E, 0) → (L,D, µ) is a
morphism of crossed modules.
(iii) Given a morphism of dialgebras ψ : D → E, (ψµ, ψ) : (L,D, µ) → (E,E, idE) is
a morphism of crossed modules. In particular, (µ, idD) : (L,D, µ)→ (D,D, idD) is a
morphism of crossed modules.
(iv) Given a morphism of dialgebras ϕ : E → L, (ϕ, µϕ) : (E,E, idE) → (L,D, µ) is
a morphism of crossed modules. In particular, (idL, µ) : (L,L, idL) → (L,D, µ) is a
morphism of crossed modules.

Composition of morphisms of crossed modules of dialgebras is defined component-
wise and the identity morphism is given by (idL, idD) for any crossed module (L,D, µ).
We will denote by XDias the category of crossed modules of dialgebras and morphisms
of crossed modules.

Just like for groups, it is possible to define the full embeddings J′0 : Dias→ XDias
and J′1 : Dias → XDias, with J′0(D) = ({0}, D, 0) and J′1(D) = (D,D, idD) for any
dialgebra D. Given a morphism of dialgebras α : D → D′, J′0(α) = (0, α) and J′1(α) =
(α, α).

Besides, let us define the functors Ψ′0, Ψ′1 and Ψ′2, from XDias to Dias, given
by Ψ′0(L,D, µ) = D/µ(L), Ψ′1(L,D, µ) = D and Ψ′2(L,D, µ) = L for any crossed
module of dialgebras (L,D, µ). Given a morphism of crossed modules of dialgebras
(ϕ,ψ) : (L,D, µ) → (L′, D′, µ′), Ψ′0(ϕ,ψ) = ψ, Ψ′1(ϕ,ψ) = ψ and Ψ′2(ϕ,ψ) = ϕ, where
ψ is the morphism from D/µ(L) to D′/µ′(L′) induced by ψ.

Proposition 1.2.57. Ψ′0 is left adjoint to J′0, J′0 is left adjoint to Ψ′1, Ψ′1 is left adjoint
to J′1 and J′1 is left adjoint to Ψ′2.

Proof. The corresponding natural bijections can be readily described by using Exam-
ple 1.2.56 (i)–(iv).
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Proposition 1.2.58. Let D and L be dialgebras such that D acts on L.

(i) A morphism of dialgebras µ : L→ D is a crossed module if and only if the maps

(µ, idD) : LoD → D oD (1.2.13)

and
(idL, µ) : Lo L→ LoD (1.2.14)

are morphisms of dialgebras.

(ii) If µ : L→ D is a crossed module of dialgebras, then

LoD → LoD, (a, x) 7→ (−a, µ(a) + x) (1.2.15)

is a morphism of dialgebras.

Proof. (1.2.13) (resp. (1.2.14) ) is a morphism if and only if the condition (XDi1)
(resp. (XDi2)) holds. On the other hand, (1.2.15) is a morphism due to the conditions
(XDi1) and (XDi2).

Definition 1.2.59. A cat1-dialgebra (D1, D0, σ, τ) consists of a dialgebra D1 together
with a subdialgebra D0 and two morphisms of dialgebras σ, τ : D1 → D0 such that

σ|D0
= τ |D0

= idD0
, (CDi1)

Kerσ ∗Ker τ = 0 = Ker τ ∗Kerσ. (CDi2)

Definition 1.2.60. A morphism of cat1-dialgebras γ : (D1, D0, σ, τ)→ (D′1, D
′
0, σ
′, τ ′)

is a morphism of dialgebras γ : D1 → D′1 such that γ(D0) ⊆ D′0 and σ′γ = γ|D0
σ,

τ ′γ = γ|D0
τ .

Composition of morphisms of cat1-dialgebras is obvious. We will denote by C1Dias
the category of cat1-dialgebras and morphisms of cat1-dialgebras.

Proposition 1.2.61. The categories XDias and C1Dias are equivalent.

Proof. Given a crossed module of dialgebras (L,D, µ), its corresponding cat1-dialgebra
is (L o D,D, σ, τ), where σ(a, x) = x, τ(a, x) = µ(a) + x, for all (a, x) ∈ L o D. It
is clear that σ is a dialgebra homomorphism. Concerning τ , it is a dialgebra ho-
momorphism due to (XDi1), the fact that µ is a morphism of dialgebras and the
bilinearity of the products in D. Note that D can be regarded as a subdialgebra of
LoD via the dialgebra homomorphism x 7→ (0, x). It is clear that σ|D = τ |D = idD.
Directly from the definition of σ and τ , we get that Kerσ = {(a, 0) | a ∈ L} and
Ker τ = {(a,−µ(a)) | a ∈ L}. Let (a1, 0) ∈ Kerσ and (a2,−µ(a2)) ∈ Ker τ . Then

(a1, 0) ∗ (a2,−µ(a2)) = (a1 ∗ a2 − a1 ∗ µ(a2), 0) = (0, 0),

(a2,−µ(a2)) ∗ (a1, 0) = (a2 ∗ a1 − µ(a2) ∗ a1, 0) = (0, 0),
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due to (XDi2). Therefore, Kerσ ∗Ker τ = 0 = Ker τ ∗Kerσ and (LoD,D, σ, τ) is a
cat1-dialgebra.

Besides, given a morphism of crossed modules of dialgebras (ϕ,ψ) : (L,D, µ) →
(L′, D′, µ′), the corresponding morphism of cat1-dialgebras is defined by fϕ,ψ(a, x) =
(ϕ(a), ψ(x)) for all (a, x) ∈ L o D. One can easily check that fϕ,ψ is a dialgebra
homomorphism by making use of (1.2.12) and the fact that ϕ and ψ are morphisms
as well. It is clear that fϕ,ψ(D) ⊆ D′. The identity σ′γ = γ|D0

σ follows from the
definition of the morphisms involved and τ ′γ = γ|D0

τ is an immediate consequence
of (1.2.11). The previous assignments clearly define a functor from XDias to C1Dias,
which will be denoted by catDias.

Conversely, given a cat1-dialgebra (D1, D0, σ, τ), the corresponding crossed mod-
ule of dialgebras is τ |Kerσ : Kerσ → D0, with the action of D0 on Kerσ induced
by the left and the right products in D1. We will write simply τ instead of τ |Kerσ.
(XDi1) follows from the fact that τ is a morphism of dialgebras and (CDi1), more
precisely from the identity τ |D0

= idD0
.

Now, let x1, x2 ∈ Kerσ. It is clear that τ(x1) − x1 ∈ Ker τ , since τ is linear and
τ |D0

= idD0
. Therefore, due to (CDi2) and the bilinearity of the products in D1, we

have that

0 = (τ(x1)− x1) ∗ x2 = τ(x1) ∗ x2 − x1 ∗ x2,

0 = x2 ∗ (τ(x1)− x1) = x2 ∗ τ(x1)− x2 ∗ x1.

Hence, (Kerσ,D0, τ |Kerσ) verifies (XDi2) and it is a crossed module of dialgebras.

Moreover, given a morphism of cat1-dialgebras γ : (D1, D0, σ, τ)→ (D′1, D
′
0, σ
′, τ ′),

its corresponding morphism of crossed modules of dialgebras is given by

Kerσ D0

Kerσ′ D′0.

γ|Ker σ

τ |Ker σ

γ|D0

τ ′|Ker σ′

Note that γ(Kerσ) ⊂ Kerσ′, directly from the identity σ′γ = γ|D0σ. The commuta-
tivity of the previous diagram follows from the identity τ ′γ = γ|D0

τ . Besides, (1.2.12)
follows from the definition of the action of D0 on Kerσ and the fact that γ is a dialge-
bra homomorphism. The previous assignments clearly define a functor from C1Dias
to XDias, which will be denoted by XmDias.

catDias and XmDias establish an equivalence between the categories XDias and
C1Dias, with the natural isomorphisms α : 1XDias → XmDias ◦ catDias and β : 1C1Dias →
catDias ◦ XmDias given, for a fixed (L,D, µ) in XDias and a fixed (D1, D0, σ, τ) in
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C1Dias, by:

L D

Lo {0} D

αL

µ

idD

µ

and

D1 D0

Kerσ oD0 D0

βD1

τ

σ

idD0

τ̃

σ̃

respectively, where αL(a) = (a, 0) for every a ∈ L, βD1
(x) = (x−σ(x), σ(x)) for every

x ∈ D1. It is clear that (αL, idD) is an isomorphism of crossed modules of dialgebras
and the naturality of α is obvious.

Regarding βD1
, observe that catDias(XmDias(D1, D0, σ, τ)) = (KerσoD0, D0, σ̃, τ̃),

with σ̃(x, y) = y and τ̃(x, y) = τ(x) + y for all x ∈ Kerσ, y ∈ D0. It is easy to check
that βD1 is a dialgebra homomorphism just by using the definition of the products in
KerσoD0 and the action ofD0 on Kerσ. Besides, given y ∈ D0, βD1

(y) = (0, y), since
σ|D0

= idD0
. Calculations in order to check the identities σ̃βD1

= σ and τ̃βD1
= τ are

obvious. The inverse of βD1
is given by β−1

D1
(x, y) = x+ y, for all (x, y) ∈ KerσoD0.

Naturality of β can be readily checked by using the identity σ′γ = γ|D0
σ for any

morphism γ between two given cat1-algebras (D1, D0, σ, τ) and (D′1, D
′
0, σ
′, τ ′).

1.3 Categorification of algebraic structures and
crossed modules

In Ellis’s PhD thesis [37] it is proved that, given a category of Ω-groups C, crossed n-
cubes, catn-objects, n-fold internal categories, n-fold crossed modules and n-simplicial
objects in C whose normal complexes are of length 1 are equivalent structures. For
the category of groups and n = 1, it is possible to consider one additional description:
strict 2-groups. In [3], they are defined as strict monoidal categories where every
morphism is invertible and every object has an inverse. Alternatively, it is possible
to define a strict 2-group as a group object in Cat, where Cat denotes the category
of all small categories (cf. [2]). Brown and Spencer [13] proved that the categories
of crossed modules of groups and strict 2-groups are equivalent. See [44] for another
proof via internal categories.

Baez’s definition of strict 2-groups has been extended to Lie algebras (cf. [48]),
associative algebras and Leibniz algebras. Furthermore, the analogous equivalence
has been proved for crossed modules of Lie algebras and strict Lie 2-algebras (see [4]),
and crossed modules of associative algebras and strict associative 2-algebras (see [61]).
In this section we recall the definition of strict Leibniz 2-algebras [81] and define strict
2-dialgebras by analogy to the notion of strict associative 2-algebra by Khmaladze.
Additionally, we prove that those structures are equivalent to Leibniz crossed modules
and crossed modules of dialgebras, respectively.

The reader might have noticed that Baez’s definition is beyond our requirements
if our intention is to limit ourselves to the strict case. In fact, some authors define
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strict 2-groups and strict Lie 2-algebras directly as internal categories in Gr and Lie,
respectively (see for instance [46, Definitions 7 and 13] and [77, Subsection 1.2]),
instead of taking a detour through 2-vector spaces. The major benefit of Baez’s
definition is that it allows to consider the more general notion of semistrict Leibniz
2-algebra (see [81]) and semistrict 2-dialgebra (still not described as far as we know).

Note that we work over a commutative ring with unit instead of a field, so we
have to consider 2-modules instead of 2-vector spaces, but the idea behind them is
essentially the same. In order to explore the semistrict generalization it would be
necessary to endow 2-modules with a 2-category structure by introducing internal
natural transformations. However, we do not give the definition, since it is not a
requirement for the work developed in this thesis. See [4, 9] for further insight.

Definition 1.3.1. A 2-module is an internal category in Mod, the category of K-
modules. A linear functor is an internal functor in Mod.

Therefore, a 2-module M consists of a K-module of objects M0, a K-module of
arrows M1 and four K-linear maps, namely the source and target maps, the identity-
assigning map and the composition map,

M1 ×M0
M1 M1 M0

κ

t

s

e

such that the diagrams (1.1.7)–(1.1.10) commute. A linear functor F between the
2-modules M and M ′ is a pair (F1, F0) of K-linear homomorphisms, F1 : M1 → M ′1,
F0 : M0 → M ′0, such that (1.1.11) and (1.1.12) commute. We will denote by 2Mod
the category of 2-modules and linear functors.

In [4], Baez proves that one can omit all mention to composition in the definition
of a 2-vector space (it would work also for 2-modules), by describing it in terms of
what he calls the arrow part of an element in M1:

Definition 1.3.2. Let M be a 2-module. Given f ∈ M1, the arrow part of f is
#–

f = f − es(f).

AK-module is a commutative group with no other binary operation. The following
propositions are particular cases of Lemma 1.1.18 and Theorem 1.2.1 respectively.

Proposition 1.3.3. Let (M1,M0, s, t, e, κ) be a 2-module. Then κ(f, g) = f−es(g)+
g = f + #–g for all (f, g) ∈M1 ×M0 M1.

Remark 1.3.4. Statements in Lemma 1.1.18 (ii) and (iii) are omitted because the
group operation is commutative and Ω′2 = ∅ for this particular case. Besides, note
that our composition formula for 2-modules agrees with the one by Baez for 2-vector
spaces, but it is presented differently. He writes κ(f, g) = (x,

#–

f + #–g ), where x is the
source of f . Nevertheless, we can rearrange our formula in order to look very similar,
that is in terms of

#–

f , #–g and the source of f :

κ(f, g) = f + #–g =
#–

f + #–g + es(f).
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Proposition 1.3.5. Given two K-modules M1 and M0 and three morphisms of K-
modules

M1 M0
t

s

e

such that se = idM0
= te, that is (1.1.7) holds, (M1,M0, s, t, e, κ) is a 2-module, with

κ given by κ(f, g) = f + #–g for all (f, g) ∈M1 ×M0
M1.

It is possible to prove that 2Mod is equivalent to 2Term, the category of 2-term
chain complexes of K-modules and chain maps. Furthermore, it is possible to define
linear natural transformations between linear functors and chain homotopies between
chain maps in order to consider 2Mod and 2Term as 2-categories (see [4, Proposition 8
and Theorem 12]). Nevertheless, a 2-category structure is not necessary if we limit
ourselves to the strict case. On the contrary, we do need to consider the direct sum
of 2-modules.

Proposition 1.3.6. Given a pair of 2-modules, M = (M1,M0, s, t, e, κ) and M ′ =
(M ′1,M

′
0, s
′, t′, e′, κ′), there is a 2-module M ⊕M ′, with

(i) M1 ⊕M ′1 as object of arrows,

(ii) M0 ⊕M ′0 as object of objects,

(iii) s⊕ s′ as source map,

(iv) t⊕ t′ as target map,

(v) e⊕ e′ as identity-assigning map,

(vi) κ⊕ κ′ as composition map.

Proof. It is straightforward to check that M = (M1⊕M ′1,M0⊕M ′0, s⊕s′, t⊕t′, e⊕e′)
satisfies (1.1.7). Hence, by Proposition 1.3.5, M = (M1 ⊕M ′1,M0 ⊕M ′0, s ⊕ s′, t ⊕
t′, e⊕ e′, κ̃) is a 2-module, with κ̃ given by

κ̃((f, f ′), (g, g′)) = (f, f ′) + (g, g′)− (es(g), e′s′(g′)) = (f + #–g , f ′ +
#–

g′),

for all ((f, f ′), (g, g′)) ∈ (M1 ⊕M ′1) ×M0⊕M ′0 (M1 ⊕M ′1). Note that t(f) = s(g) and
t′(f ′) = s′(g′). On the other hand, κ⊕ κ′ is given by

(κ⊕ κ′)((f, g), (f ′, g′)) = (f + #–g , f ′ +
#–

g′),

for all ((f, g), (f ′, g′)) ∈ (M1×M0
M1)⊕ (M ′1×M ′0 M

′
1). Observe that t(f) = s(g) and

t′(f ′) = s′(g′). It is evident that (M1⊕M ′1)×M0⊕M ′0 (M1⊕M ′1) and (M1×M0
M1)⊕

(M ′1 ×M ′0 M
′
1) are isomorphic. Therefore, M = (M1 ⊕M ′1,M0 ⊕M ′0, s⊕ s′, t⊕ t′, e⊕

e′, κ⊕ κ′) is a 2-module.



1.3 Categorification of algebraic structures and crossed modules 47

The next proposition shows that M ⊕M ′ is correctly defined.

Proposition 1.3.7. Given a pair of 2-modules M and M ′, M ⊕ M ′ is both the
product and the coproduct of M and M ′. Projections are given by the linear functors
π : M ⊕M ′ → M and π′ : M ⊕M ′ → M ′, with πi(x, y) = x and π′i(x, y) = y for all
(x, y) ∈Mi⊕M ′i , i = 0, 1. Injections are given by the linear functors ι : M →M⊕M ′
and ι′ : M ′ →M ⊕M ′, with ιi(x) = (x, 0) and ι′i(y) = (0, y) for all x ∈Mi, y ∈M ′i ,
i = 0, 1.

Proof. It is straightforward to check that π, π′, ι and ι′ are linear functors. Now, given
a 2-module N and two linear functors P : N →M and P ′ : N →M ′, we can define the
linear functor H : N →M ⊕M ′, with Hi(x) = (Pi(x), P ′i (x)) for all x ∈ Ni, i = 0, 1,
such that P = πH and P ′ = π′H. Correctness and uniqueness of H can be readily
checked. The universal property of the coproduct can be proved analogously.

It is also possible to give a definition of the tensor product of a pair of 2-modules
similar to the definition of the direct sum (see [4, Proposition 14]). Furthermore, we
can categorify the ground ring K and the left and right multiplications by scalars,
but those constructions are not essential in order to define strict Leibniz 2-algebras
and strict 2-dialgebras.

On the contrary, it is indeed necessary to define what a bilinear functor is so we
can endow 2-modules with a Leibniz (respectively dialgebra) structure, since we need
to define a Leibniz bracket (respectively left and right products). Besides, due to the
preceding proposition, we can write M ×M ′ instead of M ⊕M ′.

Definition 1.3.8. Let M , M ′ and N be 2-modules. A bilinear functor F : M×M ′ →
N consists of a pair (F1, F0) of bilinear maps, F1 : M1 → M ′1 and F0 : M0 → M ′0,
such that the diagrams (1.1.11) and (1.1.12) commute.

Now we meet all the requirements in order to define what strict Leibniz 2-algebras
and strict 2-dialgebras are.

Definition 1.3.9. A strict Leibniz 2-algebra is a 2-module L, together with a bilinear
functor, the bracket [−,−] : L× L→ L, such that

[[x, y]i, z]i = [x, [y, z]i]i + [[x, z]i, y]i. (1.3.1)

for all x, y, z ∈ Li, i = 0, 1. A morphism of strict Leibniz 2-algebras, F : L → L′, is
a linear functor such that

Fi([x, y]i) = [Fi(x), Fi(y)]′i. (1.3.2)

for all x, y ∈ Li, i = 0, 1.

We will denote by S2Lb the category of strict Leibniz 2-algebras and the corre-
sponding homomorphisms. Our definition agrees with the one in [81], where strict
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Leibniz 2-algebras are defined as a particular case of semistrict Leibniz 2-algebras.
In order to define this more flexible structure, it is necessary to endow 2Mod with a
2-category structure, i.e. it is mandatory to consider internal natural transformations.
By doing so, it is possible to define a trilinear natural isomorphism, the Jacobiator,
along with the Jacobiator identity, which relates the two ways the Jacobiator can be
used in order to rebracket [[[x, y], z], w] for x, y, z, w ∈ L0. The Jacobiator weakens
the Leibniz condition (1.3.1), making it into a natural isomorphism instead of an iden-
tity. Moreover, in the semistrict framework, the identities 1.3.2 in the definition of a
Leibniz 2-algebra homomorphism are replaced by a bilinear natural transformation.

Definition 1.3.10. A strict 2-dialgebra is a 2-module D, together with two bilinear
functors, the left and the right products − a − : D×D → D and − ` − : D×D → D,
such that

(x ai y) ai z = x ai (y `i z), (1.3.3)

(x ai y) ai z = x ai (y ai z), (1.3.4)

(x `i y) ai z = x `i (y ai z), (1.3.5)

(x ai y) `i z = x `i (y `i z), (1.3.6)

(x `i y) `i z = x `i (y `i z). (1.3.7)

for all x, y, z ∈ Di, i = 0, 1. A morphism of strict 2-dialgebras, F : D → D′, is a
linear functor such that

Fi(x ai y) = Fi(x) a′i Fi(y) and Fi(x `i y) = Fi(x) `′i Fi(y) (1.3.8)

for all x, y ∈ Di, i = 0, 1.

We will denote by S2Dias the category of strict 2-dialgebras and the corresponding
homomorphisms. The notion of semistrict 2-dialgebra has not been explored as far
as we now. The construction followed in the case of semistrict Leibniz 2-algebras
suggests that it would be necessary to weaken (1.3.3)–(1.3.7) by introducing five
trilinear natural isomorphisms, the associators, and the corresponding coherence laws
in order to relate all the possible ways of using the associators to rebracket all the
possible combinations involving four elements in D0 and the bilinear functors ` and a.
However, this approach is just a thought and it has not yet been proved to be valid.
It is our intention to consider semistrict 2-dialgebras as a possible aim for further
research.

Observe that the difference between the previous definitions and the corresponding
internal categories is merely semantic. Let us show it for the dialgebra case. In
the definition of an internal category D = (D1, D0, s, e, t, κ) in Dias, the dialgebra
structure of Di is precisely given by two bilinear maps, − ai − : Di ×Di → Di and
− `i − : Di × Di → Di, such that (1.3.3)–(1.3.7) are satisfied, for i = 0, 1. On the
other hand, the fact that s, t, e and κ preserve the dialgebra structure is equivalent
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to the commutativity of the diagrams

D1 ⊕D1 D0 ⊕D0 D1 ⊕D1 D0 ⊕D0 D1 ⊕D1 D0 ⊕D0

D1 D0 D1 D0 D1 D0

s⊕s

a1 a0

t⊕t

a1 a0 a1

e⊕e

a0

s t e

(D1 ⊕D1)×D0⊕D0
(D1 ⊕D1) D1 ×D0

D1

D1 ⊕D1 D1

(a1,a1)

κ⊕κ κ

a1

along with the analogous versions involving `0 and `1.
As for morphisms, in the definition of an internal functor F between two internal

categories in Dias, it is obvious that condition (1.3.8) is equivalent to F0 and F1 being
morphisms of dialgebras. This situation is completely analogous in the Leibniz case.
Hence, we have the following theorem:

Theorem 1.3.11. The categories IDias (respectively ILb) and S2Dias (respectively
S2Lb) are isomorphic.

Bearing in mind Theorem 1.1.20 we have:

Corollary 1.3.12. The categories XDias (respectively XLb) and S2Dias (respectively
S2Lb) are equivalent.
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Chapter 2

Actors and modules over
crossed modules

In Section 2.1 we recall the construction of the algebra of bimultipliers and the Leib-
niz algebra of biderivations, which are, under certain conditions, the actor in the
categories As and Lb respectively. Additionally we construct the dialgebra of tetra-
multipliers and prove that it is the actor in Dias under certain similar conditions.

In Section 2.2 we recall the construction of the actor crossed module in XGr and
XLie and give the description of a general actor in XLb that becomes the actor under
certain conditions.

In Section 2.3 we define the notion of left module over crossed modules of Lie
algebras and recall the definitions of left modules over crossed modules of associative
algebras and groups.

2.1 Actors in categories of interest

Given a group H, we denote by Aut(H) the group of automorphisms of H. The
morphism α : H → Aut(H), where α(h)(h′) = hh′h−1, together with the action of
Aut(H) on H defined by ϕh = ϕ(h) for all ϕ ∈ Aut(H), h ∈ H is a crossed module.
Furthermore, for every action of a group G on H there is a unique group homomor-
phism β : G → Aut(H) with gh = β(g)h. Conversely, every group homomorphism
from G to Aut(H) induces an action of G on H. Therefore it would be possible to
define a group action of G on H as a group homomorphism from G to Aut(H).

The analogue to automorphisms of groups for a Lie algebra m is Der(m), the Lie
algebra of derivations of m. Recall that an element in Der(m) is a K-linear map d from
m to m such that d([m1,m2]) = [d(m1),m2]+ [m1, d(m2)] for all m1,m2 ∈ m. The Lie
structure is given by the bracket [d1, d2] = d1d2 − d2d1 for all d1, d2 ∈ Der(m). The
Lie homomorphism α : m → Der(m), where α(m)(m′) = [m,m′], is a crossed module
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together with the action of Der(m) on m defined by [ϕ,m] = ϕ(m) for all ϕ ∈ Der(m),
m ∈ m. Just like for groups, given an action of a Lie algebra p on a Lie algebra m there
is a unique morphism of Lie algebras β : p→ Der(m), such that [p,m] = [β(p),m].

Bearing this in mind, Casas, Datuashvili and Ladra give the following definition
in [19] (see also [11]).

Definition 2.1.1 ([19]). Let C be a category of interest. For any object A in C, an
actor of A is a crossed module (A,Act(A), α) such that for any object C ∈ C and
an action of C on A, there is a unique morphism β : C → Act(A) with ca = β(c)a,
c ∗ a = β(c) ∗ a for any a ∈ A, c ∈ C, ∗ ∈ Ω′2.

It follows immediately from the previous definition that, given an object A in C,
an actor Act(A) is a unique object up to isomorphism.

In [19, Definition 3.9] and the later paper [20, Proposition and Definition 3.1],
Casas, Datuashvili and Ladra give an equivalent definition of the actor, in which the
condition of the existence of a crossed module (A,Act(A), α) is changed by simply
asking for Act(A) to have a set of derived actions on A. In fact, given an object A
in C, there is always a set of derived actions of A on itself, given by conjugation for
the group operation and simply by the operations themselves for Ω′2. If the actor
exists, there is a unique morphism β : A → Act(A), which is a crossed module in
C [20, Proposition 3.5 (a)]. This “upgraded” definition is equivalent to that of split
extension classifier from [10].

It is also proved in [19, 20] that the actor in the case of associative algebras and
Leibniz algebras does not exist unless some extra conditions are considered. Let us
briefly recall the distinctive features of those particular cases.

The following definition is closely related to the notion of multiplication of a ring
by Hochschild [53], called bimultiplication by Mac Lane [68].

Definition 2.1.2. Let B be an associative algebra. A bimultiplier of B is a pair (l, r)
of K-linear maps l, r : B → B such that

l(b · b′) = l(b) · b′,
r(b · b′) = b · r(b′),
b · l(b′) = r(b) · b′.

for all b, b′ ∈ B.

We will denote by Bim(B) the set of bimultipliers of B. Observe that these
three conditions are a perfect match with the identities (1), (2) and (3) from Defini-
tion 1.2.24.

It is clear that, given an element b ∈ B, the pair (lb, rb), with lb(b
′) = b · b′ and

rb(b
′) = b′ · b for all b′ ∈ B, is a bimultiplier. The K-module structure of Bim(B) is

obvious and its algebra structure is given by:

(l1, r1) · (l2, r2) = (l1l2, r2r1)
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for all (l1, r1), (l2, r2) ∈ Bim(B).
It is immediate to check that the map α : B → Bim(B), b 7→ α(b) = (lb, rb), with

lb and rb as defined previously, is a morphism of algebras. The problem is that the set
of actions of Bim(B) on B does not satisfy all the axioms of what we call an action
of an algebra, i.e. it is not a set of derived actions. That set of actions is given by

(l, r) · b = l(b),

b · (l, r) = r(b),

for all (l, r) ∈ Bim(B), b ∈ B. All the axioms from Definition 1.2.24 are satisfied,
except number (5). Let (l1, r1), (l2, r2) ∈ Bim(B) and b ∈ B. Then

((l1, r1) · b) · (l2, r2) = l1(b) · (l2, r2) = r2(l1(b)), (2.1.1)

but
(l1, r1) · (b · (l2, r2)) = (l1, r1) · r2(b) = l1(r2(b)). (2.1.2)

In general r2l1(b) and l1r2(b) are not necessarily equal.
Recall that a category of interest is a category of groups with operations with two

additional axioms (see Definition 1.1.4). In [19, 20], given a category of interest C
with the set of identities E, it is denoted by EG the subset of E that includes all the
identities except those from the additional axioms satisfied by a category of interest.
The category with the same set of operations and EG as the set of identities is denoted
by CG. It is immediate that there is a full inclusion functor C ↪→ CG.

The set of actions of Bim(B) on B is indeed a set of derived actions in AsG, since
it satisfies the conditions from Lemma 1.1.8, that is bilinearity, since the group action
is trivial due to the commutativity of the addition. Moreover, (B,Bim(B), α) is a
crossed module in AsG and given an action of an algebra A on B, there is a morphism
of algebras β : A→ Bim(B) such that a · b = β(a) · b, for any a ∈ A, b ∈ B. In other
words, Bim(B) is what Casas, Datuashvili and Ladra call a general actor of B:

Definition 2.1.3 ([19, 20]). Let C be a category of interest and A an object in C. A
general actor object GAct(A) of A is an object in CG that has a set of actions on A,
which is a set of derived actions in CG, such that for any object C in C with a set of
derived actions on A in C, there exist a unique morphism in CG, β : C → GAct(A),
with ca = β(c)a, c ∗ a = β(c) ∗ a for all c ∈ C, a ∈ A, ∗ ∈ Ω′2.

Observe that, unlike the actor, a general actor is not necessarily unique. In fact,
in [19], for an object A in a category of interest C, it is constructed a general actor,
denoted B(A) such that B(A) ↪→ Bim(A) when C = As. In order to construct B(A),
Casas, Datuashvili and Ladra consider all the split extensions of A in C, that is all
the objects B in C with a set of derived actions on A in C. Then, for any element b
in any of those objects B they consider the maps from A to A which take an element
a in A to the result of b acting on a, one for every action in the set of actions of B.
Afterwards, they define a set of operations for all those action maps and denote by
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B(A) the set of all those maps and the new maps obtained as a result of operating
the initial ones.

In [20], due to a recommendation by Z. Janelidze, the authors included the notions
of strict action [20, Definition 3.2] and strict general actor (which is a general actor
whose action on the corresponding object is strict), along with a condition on a
general actor [20, Condition A, p. 100] in order to define the universal strict general
actor. Note that Bim(B) (and Bider(m), which is described below) is not necessarily
a universal strict general actor, although it is a strict general actor.

B(A) as constructed in [19] is in fact a universal strict general actor [20, The-
orem 4.3], which is unique up to isomorphism if it is appropriate (in the sense of
the equalities in Condition A) to the given presentation of the category of interest.
Additionally, if an object A has an actor, then Act(A) = B(A) [20, Proposition 4.7].

Back to the particular situation of associative algebras, the major weakness of
Bim(B) is that, in general, for any algebra A there are morphisms from A to Bim(B)
that do not induce a set of derived actions of A on B. Nevertheless, in [19, 20] the
authors give a particular case of associative algebras for which the actor is indeed the
algebra of bimultipliers, which follows directly from the following result.

Lemma 2.1.4. Let B be an associative algebra such that Ann(B) = 0 or B2 = B.
Then, given (l1, r1), (l2, r2) ∈ Bim(B),

r2l1(b) = l1r2(b).

for any b ∈ B.

Proof. Let us first assume that Ann(B) = 0. Let b, b′ ∈ B. Then

(l1r2(b)− r2l1(b)) · b′ = l1r2(b) · b′ − r2l1(b) · b′ = l1(r2(b) · b′)− l1(b) · l2(b′)

= l1(b · l2(b′))− l1(b) · l2(b′) = l1(b) · l2(b′)− l1(b) · l2(b′) = 0,

just by using the properties of the bimultipliers. By similar calculations, one can
easily prove that b′ · (l1r2(b)− r2l1(b)) = 0. Hence, l1r2(b)− r2l1(b) is an element of
the annihilator and l1r2(b) = r2l1(b).

If we consider B2 = B as the hypothesis, it would be sufficient to prove that
l1r2(b · b′) = r2l1(b · b′) for any pair of elements b, b′ ∈ B, but that identity follows
almost immediately from the properties of the bimultipliers.

Observe that the only impediment for Bim(B) to be the actor of B was that in
general (2.1.1) and (2.1.2) are not equal. Hence, directly from the previous lemma,
we have the following result.

Proposition 2.1.5 ([19, 20]). Let B be an associative algebra such that Ann(B) = 0
or B2 = B. Then Act(B) = Bim(B).



2.1 Actors in categories of interest 55

Concerning Leibniz algebras, the situation is quite similar. Given a Leibniz algebra
m, the role of general actor is played by the Leibniz algebra of biderivations Bider(m),
described for the first time by Loday [64].

Definition 2.1.6. Let m be a Leibniz algebra. A biderivation of m is a pair (d,D) of
K-linear maps d,D : m→ m such that

d([m,m′]) = [d(m),m′] + [m, d(m′)], (2.1.3)

D([m,m′]) = [D(m),m′]− [D(m′),m], (2.1.4)

[m, d(m′)] = [m,D(m′)], (2.1.5)

for all m,m′ ∈ m.

In other words, d is a derivation (first identity) and D is an anti-derivation (second
identity), which additionally satisfy the third condition.

It is not difficult to check that, given an element m ∈ m, the pair (ad(m),Ad(m)),
with ad(m)(m′) = −[m′,m] and Ad(m)(m′) = [m,m′] for allm′ ∈ m, is a biderivation.
Loday calls (ad(m),Ad(m)) the inner biderivation of m. The K-module structure of
Bider(m) is obvious and its Leibniz structure is given by

[(d1, D1), (d2, D2)] = (d1d2 − d2d1, D1d2 − d2D1) (2.1.6)

for all (d1, D1), (d2, D2) ∈ Bider(m). Checking that [(d1, D1), (d2, D2)] is indeed a
biderivation of m is fairly simple, although the identity (2.1.5) is not completely
straightforward. Nevertheless, it can be easily derived from the following result.

Lemma 2.1.7. Let m be a Leibniz algebra and (d1, D1), (d2, D2) ∈ Bider(m). Then

[D1d2(m),m′] = [D1D2(m),m′],

[m,D1d2(m′)] = [m,D1D2(m′)],

for all m,m′ ∈ m.

Proof. Let m,m′ ∈ m and (d1, D1), (d2, D2) ∈ Bider(m). According to the identity
(2.1.5) for (d2, D2), [m′, d2(m)] = [m′, D2(m)], so D1([m′, d2(m)]) = D1([m′, D2(m)]).
Simply by using the fact that D1 is an anti-derivation we get that

[D1(m′), d2(m)]− [D1d2(m),m′] = [D1(m′), D2(m)]− [D1D2(m),m′].

Therefore [D1d2(m),m′] = [D1D2(m),m′], since [D1(m′), d2(m)] = [D1(m′), D2(m)]
due to (2.1.5) for (d2, D2). Analogously, d1([m, d2(m′)]) = d1([m,D2(m′)]). If we use
the fact that d1 is a derivation,

[d1(m), d2(m′)] + [m, d1d2(m′)] = [d1(m), D2(m′)] + [m, d1D2(m′)].

Since [d1(m), d2(m′)] = [d1(m), D2(m′)], we have that [m, d1d2(m′)] = [m, d1D2(m′)].
Hence, [m,D1d2(m′)] = [m,D1D2(m′)] due to the identity (2.1.5) for (d1, D1).
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It is easy to check that the map α : m→ Bider(m), m 7→ α(m) = (ad(m),Ad(m))
is a morphism of Leibniz algebras, but, analogously to what happens with the algebra
of bimultipliers, there is a problem with the set of actions of Bider(m) on m (cf. [29]).
That set of actions is given by

[(d,D),m] = D(m),

[m, (d,D)] = −d(m),

for all (d,D) ∈ Bider(m), m ∈ m. All the axioms from Definition 1.2.37 are satisfied,
except number (6). Let (d1, D1), (d2, D2) ∈ Bider(m) and m ∈ m. Then

[(d1, D1), [(d2, D2),m]] = [(d1, D1), D2(m)] = D1(D2(m)),

but

[[(d1, D1), (d2, D2)],m]− [[(d1, D1),m], (d2, D2)] = [(d1d2 − d2d1, D1d2 − d2D1),m]

− [D1(m), (d2, D2)] = D1(d2(m))− d2(D1(m)) + d2(D1(m)) = D1(d2(m)).

In general D1D2(m) and D1d2(m) are not necessarily equal.
Similarly to the situation for associative algebras, there is a sufficient condition

in order to guarantee that Bider(m) is the actor of m, which follows directly from
Lemma 2.1.7.

Proposition 2.1.8 ([19, 20]). Let m be a Leibniz algebra such that Ann(m) = 0 or
[m,m] = m. Then Act(m) = Bider(m).

Proof. Let m ∈ m and (d1, D1), (d2, D2) ∈ Bider(m). Recall that the issue that
prevents Bider(m) from being the actor of m is that D1D2(m) and D1d2(m) are not
equal in general. Due to Lemma 2.1.7, D1d2(m)−D1D2(m) ∈ Ann(m). Hence, if we
assume that Ann(m) = 0, D1d2(m) = D1D2(m).

Let us now work under the hypothesis [m,m] = m. In this situation it is enough
to prove that D1d2([m,m′]) = D1D2([m,m′]) for any pair of elements m,m′ ∈ m. By
applying (2.1.3) and (2.1.4) we get that

D1D2([m,m′]) = [D1D2(m),m′]− [D1(m′), D2(m)]

− [D1D2(m′),m] + [D1(m), D2(m′)],

D1d2([m,m′]) = [D1d2(m),m′]− [D1(m′), d2(m)]

+ [D1(m), d2(m′)]− [D1d2(m′),m],

so D1d2([m,m′]) = D1D2([m,m′]), due to Lemma 2.1.7 and the identity (2.1.5) for
(d2, D2).

In the next subsection we construct an object in Dias analogous to the algebra of
bimultipliers in As and the Leibniz algebra of biderivations in Lie.
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2.1.1 The actor in the category of dialgebras

In [19, 20] there is a description of a method to construct a general actor of an object
in a category of interest. However, the dialgebra presented here is constructed by
analogy to the algebra of bimultipliers.

Definition 2.1.9. Let L be a dialgebra. We denote by Tetra(L) the set of tetramul-
tipliers of L, whose elements are quadruples t = (l, r, l̃, r̃) of K-linear maps from L to
L such that

(1) l(a ` b) = l(a) a b,

(2) l(a a b) = l(a) a b,

(3) l̃(a a b) = l̃(a) a b,

(4) l̃(a ` b) = l(a) ` b,

(5) l̃(a ` b) = l̃(a) ` b,

(6) r(a) a b = a a l̃(b),

(7) r(a) a b = a a l(b),

(8) r̃(a) a b = a ` l(b),

(9) r(a) ` b = a ` l̃(b),

(10) r̃(a) ` b = a ` l̃(b),

(11) r(a a b) = a a r̃(b),

(12) r(a a b) = a a r(b),

(13) r(a ` b) = a ` r(b),

(14) r̃(a a b) = a ` r̃(b),

(15) r̃(a ` b) = a ` r̃(b),

for all a, b ∈ L.

Note that the aim is to construct an object which can be used to describe every
action on L. Therefore it makes sense to consider elements that respect the axioms
of a dialgebra action (see conditions (1)–(15)) from Definition 1.2.50.

Lemma 2.1.10. Let L be a dialgebra. Given a ∈ L, the quadruple (la, ra, l̃a, r̃a), with

la(a′) = a a a′, ra(a′) = a′ a a,
l̃a(a′) = a ` a′, r̃a(a′) = a′ ` a,

for all a′ ∈ L, is an element in Tetra(L).

Proof. Given a ∈ L, (la, ra, l̃a, r̃a) verifies conditions (1)–(15) from Definition 2.1.9
directly from the five di-associativity axioms in L (see Definition 1.2.47).

Let us now define left and right products in Tetra(L).
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Proposition 2.1.11. Let L be a dialgebra. Then Tetra(L) is a dialgebra with the left
and the right products defined by

t1 a t2 = (l1 l̃2, r2r1, l̃1 l̃2, r2r̃1),

t1 ` t2 = (l̃1l2, r2r1, l̃1 l̃2, r̃2r1)

for all t1 = (l1, r1, l̃1, r̃1), t2 = (l2, r2, l̃2, r̃2) ∈ Tetra(L).

Proof. TheK-module structure of Tetra(D) is obvious and follows from the bilinearity
of the left and the right products in L.

The 30 identities that we have to check in order to prove that t1 a t2 and t1 ` t2
are elements in Tetra(L) follow easily from the 15 identities satisfied by t1 and t2.
For instance, identity (1) for t1 a t2 follows from (5) for t2 and (1) for t1:

l1 l̃2(a ` b) (5)
= l1(l̃2(a) ` b) (1)

= l1 l̃2(a) a b.

The rest of the identities can be proved similarly.
Proving that a and ` satisfy the five di-associativity axioms is also a matter of

routine calculations. Let t1, t2, t3 ∈ Tetra(L). Then

(t1 a t2) a t3 = (l1 l̃2, r2r1, l̃1 l̃2, r2r̃1) a t3 = (l1 l̃2 l̃3, r3r2r1, l̃1 l̃2 l̃3, r3r2r̃1)

and

t1 a (t2 ` t3) = t1 a (l̃2l3, r3r2, l̃2 l̃3, r̃3r2) = (l1 l̃2 l̃3, r3r2r1, l̃1 l̃2 l̃3, r3r2r̃1).

The four remaining identities are left to the reader.

Lemma 2.1.12. The map α : L→ Tetra(L), a 7→ α(a) = (la, ra, l̃a, r̃a) is a morphism
of dialgebras.

Proof. α is K-linear due to the bilinearity of the left and the right products in L. Let
us show that it also preserves a and `. Let a, b ∈ L. Then

α(a a b) = (laab, raab, l̃aab, r̃aab),

α(a) a α(b) = (la, ra, l̃a, r̃a) a (lb, rb, l̃b, r̃b) = (la l̃b, rbra, l̃a l̃b, rbr̃a).

Given c ∈ L,

laab(c) = (a a b) a c = a a (b ` c) = la(b ` c) = la l̃b(c),

raab(c) = c a (a a b) = (c a a) a b = rb(c a a) = rbra(c),

l̃aab(c) = (a a b) ` c = a ` (b ` c) = l̃a(b ` c) = l̃a l̃b(c),

r̃aab(c) = c ` (a a b) = (c ` a) a b = rb(c ` a) = rbr̃a(c),

due to the di-associativity axioms in L. Analogously, α(a ` b) = α(a) ` α(b).
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In general, the set of actions of Tetra(L) on L, given by:

(l, r, l̃, r̃) a a = l(a), a a (l, r, l̃, r̃) = r(a),

(l, r, l̃, r̃) ` a = l̃(a), a ` (l, r, l̃, r̃) = r̃(a),

for any (l, r, l̃, r̃) ∈ Tetra(L) and a ∈ L, is not a set of derived actions in Dias. In
other words, although the four maps are clearly bilinear, not all the identities from
Definition 1.2.50 hold. Specifically, identities (20)–(25) and (27) are the ones not
satisfied in general. Let a ∈ L and t1, t2 ∈ Tetra(L). Then

(a ` t1) ` t2 = r̃2r̃1(a) 6= r̃2r1(a) = x ` (t1 ` t2), (20)

(t1 a a) a t2 = r2l1(a) 6= l1r̃2(a) = t1 a (x ` t2), (21)

(t1 a a) a t2 = r2l1(a) 6= l1r2(a) = t1 a (x a t2), (22)

(t1 ` a) a t2 = r2 l̃1(a) 6= l̃1r2(a) = t1 ` (x a t2), (23)

(t1 a a) ` t2 = r̃2l1(a) 6= l̃1r̃2(a) = t1 ` (x ` t2), (24)

(t1 ` a) ` t2 = r̃2 l̃1(a) 6= l̃1r̃2(a) = t1 ` (x ` t2), (25)

(t1 a t2) a a = l1 l̃2(a) 6= l1l2(a) = t1 a (t2 a a). (27)

Observe that the set of actions of Tetra(L) on L is indeed a set of derived actions in
DiasG and the morphism described in Lemma 2.1.12 is a crossed module in DiasG.
Let t ∈ Tetra(L) and a ∈ L. Then α(t a a) = α(l(a)) = (ll(a), rl(a), l̃l(a), r̃l(a)), while

t a α(a) = (ll̃a, rar, l̃l̃a, rar̃). Given b ∈ L, directly from the conditions satisfied by t
(see Definition 2.1.9), we get that

ll(a)(b) = l(a) a b (1)
= l(a ` b) = ll̃a(b),

rl(a)(b) = b a l(a)
(7)
= r(b) a a = rar(b),

l̃l(a)(b) = l(a) ` b (4)
= l̃(a ` b) = l̃l̃a(b),

r̃l(a)(b) = b ` l(a)
(8)
= r̃(b) a a = rar̃(b).

Hence, α(t a a) = t a α(a). It can be proved analogously that α(t ` a) = t ` α(a),
α(a a t) = α(a) a t and α(a ` t) = α(a) ` t. Therefore (L,Tetra(L), α) satisfies the
equivariance condition. Concerning the Peiffer identity, it follows immediately from
the definition of α. Let a, b ∈ L. Then

α(a) a b = (la, ra, l̃a, r̃a) a b = la(b) = a a b,
α(a) ` b = (la, ra, l̃a, r̃a) ` b = l̃a(b) = a ` b,
a a α(b) = a a (lb, rb, l̃b, r̃b) = rb(a) = a a b,
a ` α(b) = a ` (lb, rb, l̃b, r̃b) = r̃b(a) = a ` b.
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Additionally, given a dialgebra D with a set of derived actions on L in Dias, that is
verifying all the identities from Definition 1.2.50, there exists a unique morphism of
dialgebras, β : D → Tetra(L), given by β(x) = (lx, rx, l̃x, r̃x), with

lx(a) = x a a, rx(a) = a a x,
l̃x(a) = x ` a, r̃x(a) = a ` x,

for all x ∈ D, a ∈ L, such that

x a a = β(x) a a, a a x = a a β(x),

x ` a = β(x) ` a, a ` x = a ` β(x).

Note that β is well defined, since the conditions (1)–(15) for (lx, rx, l̃x, r̃x) coincide
with conditions (1)–(15) from Definition 1.2.50. The linearity of β follows from the
bilinearity of the maps that define the action of D on L. Concerning the preservation
of a (respectively `), it follows from conditions (17), (18), (26) and (29) (respectively
(16), (19), (28) and (30)) from Definition 1.2.50. For instance, given x, y ∈ D, let us
show that β(x a y) = β(x) a β(y). By definition, β(x a y) = (lxay, rxay, l̃xay, r̃xay)

and β(x) a β(y) = (lx l̃y, ryrx, l̃x l̃y, ry r̃x). Let a ∈ L. Then,

lxay(a) = (x a y) a a (26)
= x a (y ` a) = lx l̃y(a),

rxay(a) = a a (x a y)
(17)
= (a a x) a y = ryrx(a),

l̃xay(a) = (x a y) ` a (29)
= x ` (y ` a) = l̃x l̃y(a),

r̃xay(a) = a ` (x a y)
(18)
= (a ` x) a y = ry r̃x(a).

Analogously β(x ` y) = β(x) ` β(y). Therefore, we can write the following result:

Theorem 2.1.13. Tetra(L) is a general actor of a dialgebra L.

Recall that B(L) ↪→ Tetra(L) for any dialgebra L, but in general, B(L) 6=
Tetra(L), with B(L) as described in [19].

Furthermore, we can give sufficient conditions on L in order to guarantee that
Tetra(L) is its actor:

Proposition 2.1.14. Let L be an associative dialgebra such that Ann(L) = 0 or
L a L = L = L ` L. Then Tetra(D) is the actor of L.

Proof. Let us assume that Ann(L) = 0. Since we know that Tetra(L) is a general
actor of L, it is only necessary to check that under this new hypothesis the failing
conditions (20)–(25) and (27) do not fail any longer. Given t1, t2 ∈ Tetra(L) and
a ∈ L, since Ann(L) = 0 it would be sufficient to prove that

r̃2r̃1(a)− r̃2r1(a), r2l1(a)− l1r̃2(a), r2l1(a)− l1r2(a), r2 l̃1(a)− l̃1r2(a),

r̃2l1(a)− l̃1r̃2(a), r̃2 l̃1(a)− l̃1r̃2(a) and l1 l̃2(a)− l1l2(a)
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are elements in Ann(L). Calculations, although long, follow easily from the conditions
satisfied by t1 and t2 (see Definition 2.1.9). As an example, we show here that
r2 l̃1(a)− l̃1r2(a) ∈ Ann(L) and leave the rest to the reader. Let b ∈ L. Then

r2 l̃1(a) a b− l̃1r2(a) a b
(7)
= l̃1(a) a l2(b)− l̃1r2(a) a b
(3)
= l̃1(a) a l2(b)− l̃1(r2(a) a b)
(7)
= l̃1(a) a l2(b)− l̃1(a a l2(b))

(3)
= l̃1(a) a l2(b)− l̃1(a) a l2(b) = 0,

r2 l̃1(a) ` b− l̃1r2(a) ` b
(9)
= l̃1(a) ` l̃2(b)− l̃1r2(a) ` b
(5)
= l̃1(a) ` l̃2(b)− l̃1(r2(a) ` b)
(9)
= l̃1(a) ` l̃2(b)− l̃1(a ` l̃2(b))

(5)
= l̃1(a) ` l̃2(b)− l̃1(a) ` l̃2(b) = 0,

b a r2 l̃1(a)− b a l̃1r2(a)

(6)
= b a r2 l̃1(a)− r1(b) a r2(a)

(12)
= r2(b a l̃1(a))− r1(b) a r2(a)

(6)
= r2(r1(b) a a)− r1(b) a r2(a)

(12)
= r1(b) a r2(a)− r1(b) a r2(a) = 0,

b ` r2 l̃1(a)− b ` l̃1r2(a)

(9)
= b ` r2 l̃1(a)− r1(b) ` r2(a)

(13)
= r2(b ` l̃1(a))− r1(b) ` r2(a)

(9)
= r2(r1(b) ` a)− r1(b) ` r2(a)

(13)
= r1(b) ` r2(a)− r1(b) ` r2(a) = 0.

On the other hand, if we assume that L a L = L = L ` L, any element a in L can be
expressed either as a linear combination of left products b a c or right products b ` c
in L. Bearing that in mind, it would be sufficient to show that the identities

r̃2r̃1(a) = r̃2r1(a), r2l1(a) = l1r̃2(a), r2l1(a) = l1r2(a), r2 l̃1(a) = l̃1r2(a),

r̃2l1(a) = l̃1r̃2(a), r̃2 l̃1(a) = l̃1r̃2(a) and l1 l̃2(a) = l1l2(a)

hold when a is either of the form b a c or b ` c, given t1, t2 ∈ Tetra(L). Actually,
straightforward calculations, using the conditions satisfied by t1 and t2, show that:

r̃2r̃1(b a c) = r̃2r1(b a c), r2l1(b ∗ c) = l1r̃2(b ∗ c), r2l1(b ∗ c) = l1r2(b ∗ c),
r2 l̃1(b ∗ c) = l̃1r2(b ∗ c), r̃2l1(b ∗ c) = l̃1r̃2(b ∗ c), r̃2 l̃1(b ∗ c) = l̃1r̃2(b ∗ c)
and l1 l̃2(b ` c) = l1l2(b ` c),

but in general r̃2r̃1(b ` c) 6= r̃2r1(b ` c) and l1 l̃2(b a c) = l1l2(b a c) , for all b, c ∈ L.
Therefore the result would not be necessarily true under the hypothesis L a L = L
or L ` L = L.

2.2 Actor crossed module

Since crossed modules of groups can be regarded as 2-dimensional groups, it makes
sense to generalize some results and constructions from Gr to XGr. As Norrie states
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in [73], where she constructs the actor crossed module of groups, the 2-dimensional
analogue to the group of automorphisms of groups, it is surprising the ease with which
the theory transcribes.

A similar construction of the actor crossed module of Lie algebras is given in [27].
This crossed module plays in XLie the role played by the Lie algebra of derivations
in Lie. See also [1] for the case of crossed modules of commutative algebras.

In this section we recall the basics of both generalizations and introduce the con-
struction of the actor crossed module of Leibniz algebras under certain conditions.
Note that we will make reference to the axioms satisfied by crossed modules of groups,
Lie and Leibniz algebras simply as equivariance and Peiffer identity, which of course
have different, although equivalent, meanings depending on the context. See Sec-
tion 1.2 for the corresponding definitions.

2.2.1 Actor crossed module of groups

The main ideas in this subsection are taken from [22, 73]. Let (M,P, µ) be a crossed
module of groups. Consider Der(P,M), the set of all derivations from P to M , whose
elements are maps d : P →M such that

d(pp′) = d(p)pd(p′) (2.2.1)

for all p, p′ ∈ P . Immediately from the definition, given d ∈ Der(P,M), d(1) = 1 and
d(p)−1 = pd(p−1). Whitehead [83] defined an operation ◦ in Der(P,M) given by

(d1 ◦ d2)(p) = d1µd2(p)d2(p)d1(p) (2.2.2)

for all d1, d2 ∈ Der(P,M), p ∈ P , which turns Der(P,M) into a monoid. Observe
that the Peiffer identity and the equivariance are necessary in order to prove that
d1 ◦ d2 ∈ Der(P,M). As for associativity, it can be proved by direct calculations,
using (2.2.1), the fact that µ is a group homomorphism and the Peiffer identity. The
identity element is given by the derivation that maps every element of P to the identity
element of M . The Whitehead group D(P,M) is the group of units of Der(P,M).

The other important group for the definition of the actor crossed module is Aut(µ)
(denoted by Aut(M,P, µ) in [73]), the group of automorphisms of (M,P, µ) in the
category XGr, i.e. its elements are morphisms of crossed modules (σ, θ), with σ and
θ automorphisms of M and P respectively. Therefore,

µσ = θσ and σ(pm) = θ(p)σ(m)

for all m ∈M , p ∈ P . The group operation in Aut(µ) is given by the usual composi-
tion of morphisms of crossed modules.

The next step in the construction is to define a morphism of groups ∆: D(P,M)→
Aut(µ), given by

∆(d) = (σd, θd)
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for all d ∈ D(P,M), where σd(m) = dµ(m)m and θd(p) = µd(p)p for all m ∈ M ,
p ∈ P . The Peiffer identity guarantees that σd and θd are endomorphisms of M and
P respectively, for any d ∈ Der(P,M). Besides, if d belongs to the Whitehead group,
the inverses of σd and θd are given by σd′ and θd′ respectively, where d′ is the inverse
of d in D(P,M). The identity θdµ = µσd follows directly from the definition of σd
and θd. Regarding the identity σd(

pm) = θd(p)σd(m) for all m ∈ M , p ∈ P , it can
be checked by routine calculations, making use, again, of the Peiffer identity, which
is also the key to prove that ∆ is a group homomorphism.

There is an action of Aut(µ) on D(P,M), defined by

(σ,θ)d = σdθ−1

for any (σ, θ) ∈ Aut(µ), d ∈ D(P,M). Given (σ, θ) ∈ Aut(µ) and d ∈ D(P,M),
σdθ−1 is a derivation due to the identity σ(pm) = θ(p)σ(m). The identity θµ = µσ is
necessary to prove that (σ,θ)d has an inverse in Der(P,M), which is given by σd′θ−1,
where d′ is the inverse of d. The two first axioms in the definition of a group action (see
Definition (1.2.2)) are obvious and the third one follows from the identity θµ = µσ.
Straightforward calculations show that ∆ together with this action is a crossed module
of groups, called the actor crossed module, which is denoted by Act(M,P, µ).

Definition 2.2.1 ([73]). An action of a crossed module (H,G, ∂) on another crossed
module (M,P, µ) is a morphism of crossed modules from (H,G, ∂) to Act(M,P, µ).

As a first example, Norrie proves that there is an action of a crossed module
(M,P, µ) on itself, given by the morphism of crossed modules (ϕ,ψ) : (M,P, µ) →
Act(M,P, µ), defined as follows. Given m ∈ M , ϕ(m)(p) = mpm−1 for all p ∈ P .
Furthermore, given p ∈ P , ψ(p) = (σp, θp), with σp(m) = pm and θp(p

′) = pp′p−1 for
all m ∈M , p′ ∈ P .

In [22] the authors give an equivalent description of actions of crossed modules of
groups in terms of equations (see also [82]).

Proposition 2.2.2 ([22]). Let (H,G, ∂) and (M,P, µ) be crossed modules of groups.
Then there is an action of (H,G, ∂) on (M,P, µ) if and only if the following conditions
hold:

(i) The group G (and so H) acts on M and P , µ is a G-equivariant homomorphism,
that is µ(gm) = gµ(m) and the action of P on M is a G-equivariant action,
that is g(pm) = (gp)(gm) for all g ∈ G, m ∈M , p ∈ P .

(ii) There is a map ξ : H × P →M such that

µξ(h, p) = ∂(h)pp−1, (GrM1)

ξ(h, µ(m)) = ∂(h)mm−1, (GrM2)
gξ(h, p) = ξ(gh, gp), (GrM3)

ξ(hh′, p) = ∂(h)ξ(h′, p) ξ(h, p), (GrM4)

ξ(h, pp′) = ξ(h, p) pξ(h, p′) (GrM5)
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for all h, h′ ∈ H, p, p′ ∈ P , m ∈M , g ∈ G.

Proof. Let us first suppose that (H,G, ∂) acts on (M,P, µ), that is there is a morphism
of crossed modules

H G

D(P,M) Aut(µ)

∂

ϕ ψ

∆

(2.2.3)

The previous diagram is commutative and ϕ(gh) = ψ(g)ϕ(h) for all h ∈ H, g ∈ G.
We will denote ψ(g) by (σg, θg) for any g ∈ G. There is an action of G on M
(respectively P ) given by gm = σg(m) (respectively gp = θg(p)) for all g ∈ G, m ∈M
(respectively p ∈ P ), which induces an action of H on M (respectively P ) via ∂.
The identities µ(gm) = gµ(m) and g(pm) = (gp)(gm) follow from µσg = θgµ and
σg(

pm) = θg(p)σg(m) respectively, for all g ∈ G, m ∈M , p ∈ P . Therefore (i) holds.

Regarding (ii), we can define ξ(h, p) = ϕ(h)(p) for any h ∈ H, p ∈ P . In this way,
(GrM1) and (GrM2) follow from the commutativity of (2.2.3). (GrM3) follows from
the identity ϕ(gh) = ψ(g)ϕ(h) for all h ∈ H, g ∈ G, and the definition of the action of
Aut(µ) on D(P,M). (GrM4) is an immediate consequence of ϕ being a morphism of
groups and the definition of ◦ in D(P,M). Finally, (GrM5) is easy to prove by using
that ϕ(h) is a derivation for all h ∈ H.

The converse statement is rather obvious. If we assume that (i) and (ii) hold, it is
possible to define a morphism of crossed modules (ϕ,ψ) from (H,G, ∂) to Act(M,P, µ)
as follows. Given h ∈ H, ϕ(h)(p) = ξ(h, p) for all p ∈ P . For any g ∈ G, ψ(g) =
(σg, θg), with σg(m) = gm and θg(p) = gp for all m ∈M , p ∈ P .

Given h ∈ H, (GrM5) guarantees that ϕ(h) is a derivation. Furthermore, ϕ(h−1)
is the inverse of ϕ(h) in D(P,M) and ϕ is a group homomorphism due to (GrM2)
and (GrM4). Concerning ψ, given g ∈ G, σg and θg are automorphisms as a direct
consequence of the three identities satisfied by the group actions of G on M and
P respectively. Additionally (σg, θg) is a morphism of crossed modules due to the
identities µ(gm) = gµ(m) and g(pm) = (gp)(gm) for all g ∈ G, m ∈M , p ∈ P .

The identity ∆ϕ = ψ∂ follows immediately from (GrM1) and (GrM2). Finally,
the fact that ϕ(gh) = ψ(g)ϕ(h) for all h ∈ H, g ∈ G is a consequence of (GrM3).

Let (H,G, ∂) be a crossed module of groups acting on the crossed module (M,P, µ).
By Proposition 2.2.2, G acts on P and H acts on M , so it makes sense to consider the
semidirect products of groups PoG and MoH. There is an action of PoG on MoH
given by (p,g)(m,h) = (p(gm)(ξ(gh, p−1)), gh) for all (p, g) ∈ P oG, (m,h) ∈M oH.
The morphism of groups (µ, ∂) : M oH → P oG, (m,h) 7→ (µ(m), ∂(h)) is a crossed
module together with that action.

(M o H,P o G, (µ, ∂)) is called the semidirect product of the crossed modules
(M,P, µ) and (H,G, ∂). Note that the semidirect product determines an obvious
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split extension of (H,G, ∂) by (M,P, µ)

(0, 0, 0) (M,P, µ) (M oH,P oG, (µ, ∂)) (H,G, ∂) (0, 0, 0)

Conversely, any split extension of (H,G, ∂) by (M,P, µ) is isomorphic to their semidi-
rect product, where the action of (H,G, ∂) on (M,P, µ) is induced by the splitting
morphism. Therefore, the definition of an action of a crossed module of groups on
another crossed module of groups agrees with the general notion of derived action in
a category of Ω-groups. Recall that XGr is indeed a category of interest (see [75]).

2.2.2 Actor crossed module of Lie algebras

It is possible to construct the actor of a Lie crossed module (see [27]), following a
similar procedure to the one described for groups. Let us recall that construction in
order to appreciate the slight differences. Note that in [27] K is considered a field,
but the procedure still works for K a commutative unital ring.

Let (n, q, µ) be a Lie crossed module. Consider Der(q,n), the K-module of all
derivations from q to n, that is all the K-linear maps d : q→ n such that

d([q, q′]) = [d(q), q′] + [q, d(q′)] (2.2.4)

for all q, q′ ∈ q. There is a Lie bracket in Der(q,n) given by

[d1, d2] = d1µd2 − d2µd1

for all d1, d2 ∈ Der(q,n). Just like for groups, the Peiffer identity and the equivariance
are essential ir order to prove that the result of this bracket lies within Der(q,n). The
antisymmetry and the Jacobi identity follow directly from the definition of the bracket.
If we consider the crossed module (q, q, idq), Der(q, q) is the Lie algebra of derivations
of q, denoted simply by Der(q).

The other Lie algebra required to define the actor crossed module is Der(n, q, µ),
the Lie algebra of derivations of the crossed module (n, q, µ), whose elements are all
pairs (σ, θ), with σ ∈ Der(n) and θ ∈ Der(q), such that

θµ = µσ and σ([q, n]) = [q, σ(n)] + [θ(q), n] (2.2.5)

for all n ∈ n, q ∈ q. The Lie structure of Der(n, q, µ) is given by

(σ1, θ1) + (σ2, θ2) = (σ1 + σ2, θ1 + θ2),

λ(σ, θ) = (λσ, λθ),

[(σ1, θ1), (σ2, θ2)] = ([σ1, σ2], [θ1, θ2]),

for all (σ1, θ1), (σ2, θ2), (σ, θ) ∈ Der(n, q, µ), λ ∈ K. Recall that the bracket in the Lie
algebra of derivations of a Lie algebra is described just before Example 1.2.17 and in
the last paragraph from page 51.
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There is a Lie homomorphism ∆: Der(q,n)→ Der(n, q, µ), given by

∆(d) = (dµ, µd) (2.2.6)

for all d ∈ Der(q,n). Observe that the Peiffer identity of (n, q, µ) guarantees that dµ
is a derivation of n, while µd is a derivation of q due to the equivariance. As for the
condition (2.2.5), the first identity is obvious and the second one:

dµ([q, n]) = d([q, µ(n)]) = [d(q), µ(n)] + [q, dµ(n)] = [µd(q), n] + [q, dµ(n)],

for all n ∈ n, q ∈ q, follows from the equivariance, (2.2.4) and the Peiffer identity.
Furthermore, there is a Lie action of Der(n, q, µ) on Der(q,n) defined by

[(σ, θ), d] = σd− dθ. (2.2.7)

for all (σ, θ) ∈ Der(n, q, µ), d ∈ Der(q,n). It is a matter of routine calculations to
check that σd− dθ is indeed a derivation from q to n and the identities

[[(σ1, θ1), (σ2, θ2)], d] = [(σ1, θ1), [(σ2, θ2), d]]− [(σ2, θ2), [(σ1, θ1), d]],

[(σ, θ), [d1, d2]] = [[(σ, θ), d1], d2] + [d1, [(σ, θ), d2]]

hold for all (σ, θ), (σ1, θ1), (σ2, θ2) ∈ Der(n, q, µ), d, d1, d2 ∈ Der(q,n). Moreover, we
have that

∆([(σ, θ), d]) = ∆(σd− dθ) = ((σd− dθ)µ, µ(σd− dθ))
= (σdµ− dθµ, µσd− µdθ) = (σdµ− dµσ, θµd− µdθ)
= [(σ, θ), (dµ, µd)] = [(σ, θ),∆(d)],

[∆(d1), d2] = [(d1µ, µd1), d2] = d1µd2 − d2µd1 = [d1, d2],

so (Der(q,n),Der(n, q, µ),∆) is a Lie crossed module, called the actor crossed module
of (n, q, µ) and denoted by Act(n, q, µ).

Definition 2.2.3 ([27]). An action of a Lie crossed module (m,p, ν) on another
Lie crossed module (n, q, µ) is a morphism of Lie crossed modules from (m,p, ν) to
Act(n, q, µ).

Example 2.2.4. There is an action of a Lie crossed module (m,p, ν) on itself given
by the morphism (ϕν , ψν) : (m,p, ν) → Act(m,p, ν), where ϕν(m)(p) = −[p,m] and
ψν(p) = (σp, θp) with σp(m) = [p,m] and θp(p

′) = [p, p′] for all m ∈ m, p, p′ ∈ p (see
[27] for more details).

By analogy to Proposition 2.2.2, we give an equivalent description of an action of
a Lie crossed module on another Lie crossed module in terms of equations.
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Proposition 2.2.5. Let (m,p, ν) and (n, q, µ) be Lie crossed modules. There is an
action of (m,p, ν) on (n, q, µ) if and only if the following conditions hold:

(i) There are actions of the Lie algebra p (and so m) on the Lie algebras n and q;
µ is a p-equivariant homomorphism, that is

µ([p, n]) = [p, µ(n)] (LieEQ)

and the actions of p and q on n are compatible, that is

[[p, q], n] = [p, [q, n]]− [q, [p, n]] (LieCOM)

for all p ∈ p, q ∈ q and n ∈ n.

(ii) There is a K-bilinear map ξ : m× q→ n such that

µξ(m, q) = [m, q], (LieM1)

ξ
(
m,µ(n)

)
= [m,n], (LieM2)

[p, ξ(m, q)] = ξ([p,m], q) + ξ(m, [p, q]), (LieM3)

ξ([m,m′], q) = [m, ξ(m′, q)]− [m′, ξ(m, q)], (LieM4)

ξ(m, [q, q′]) = [q, ξ(m, q′)]− [q′, ξ(m, q)], (LieM5)

for all m,m′ ∈ m, q, q′ ∈ q, n ∈ n, p ∈ p.

Proof. Let us first assume that (m,p, ν) acts on (n, q, µ), that is there is a morphism
of crossed modules

m p

Der(q,n) Der(n, q, µ)

ν

ϕ ψ

∆

(2.2.8)

Given p ∈ p, let us denote ψ(p) by (σp, θp), with σp ∈ Der(n), θp ∈ Der(q) such that

θpµ = µσp and σp([q, n]) = [q, σp(n)] + [θp(q), n]. (2.2.9)

Due to (2.2.6), the commutativity of (2.2.8) can be expressed by the identity

(ϕ(m)µ, µϕ(m)) = (σν(m), θν(m)), (2.2.10)

for all m ∈ m. There is an action of p on n (respectively q) given by [p, n] = σp(n)
(respectively [p, q] = θp(q)) for all p ∈ p, n ∈ n (respectively q ∈ q), which induces an
action of m on n (respectively q) via ν. (LieEQ) and (LieCOM) follow from the first
and the second identity in (2.2.9) respectively. Therefore (i) holds.
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Concerning (ii), we can define ξ(m, q) = ϕ(m)(q) for all m ∈ m, q ∈ q. Let us show
that (LieM1), (LieM2) and (LieM4) follow from (2.2.10). Given m,m′ ∈ m, q ∈ q and
n ∈ n,

µξ(m,n) = µ(ϕ(m)(q)) = θν(m)(q) = [ν(m), q] = [m, q],

ξ(m,µ(n)) = ϕ(m)(µ(n)) = σν(m)(n) = [ν(m), n] = [m,n],

ξ([m,m′], q) = ϕ([m,m′])(q) = [ϕ(m), ϕ(m′)](q) = (ϕ(m)µϕ(m′)− ϕ(m′)µϕ(m))(q)

= σν(m)(ϕ(m′)(q))− σν(m′)(ϕ(m)(q)) = [m, ξ(m′, q)]− [m′, ξ(m, q)].

Regarding (LieM3), since (ϕ,ψ) is a morphism of Lie crossed modules, we know that
ϕ([p,m]) = [(σp, θp), ϕ(m)]. Hence,

ξ([p,m], q) + ξ(m, [p, q]) = [(σp, θp), ϕ(m)](q) + ϕ(m)(θp(q))

= σpϕ(m)(q)− ϕ(m)θp(q) + ϕ(m)θp(q) = [p, ξ(m, q)],

for any m ∈ m, p ∈ p, q ∈ q. Finally, (LieM5) follows easily from the fact that ϕ(m)
is a derivation from q to n for any m ∈ m.

Now, let us prove the converse statement. From (i), p acts on n and q, that is
there are two bilinear maps p × n → n, (p, n) 7→ [p, n] and p × q → q, (p, q) 7→ [p, q]
such that

[[p, p′] , n] = [p, [p′, n]]− [p′, [p, n]] , (2.2.11)

[p, [n, n′]] = [[p, n] , n′] + [n, [p, n′]] , (2.2.12)

and

[[p, p′] , q] = [p, [p′, q]]− [p′, [p, q]] , (2.2.13)

[p, [q, q′]] = [[p, q] , q′] + [q, [p, q′]] , (2.2.14)

for all n, n′ ∈ n, p, p′ ∈ p, q, q′ ∈ q. It is possible to define a morphism of crossed
modules (ϕ,ψ) from (m,p, ν) to Act(n, q, µ) as follows. Given m ∈ m, ϕ(m)(q) =
ξ(m, q) for all q ∈ q. For any p ∈ p, ψ(p) = (σp, θp), with σp(n) = [p, n] and
θp(q) = [p, q] for all n ∈ n, q ∈ q.

It follows directly from (LieM5) that ϕ(m) is a derivation from q to n for all
m ∈ m. Moreover, given m,m′ ∈ m and q ∈ q,

[ϕ(m), ϕ(m′)](q) = ϕ(m)µϕ(m′)(q)− ϕ(m′)µϕ(m)(q)

= ξ(m,µξ(m′, q))− ξ(m′, µξ(m, q))
= [m, ξ(m′, q)]− [m′, ξ(m, q)]

= ξ([m,m′], q) = ϕ([m,m′])(q),
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due to (LieM2) and (LieM4). Hence, ϕ is a morphism of Lie algebras. As for ψ, given
p ∈ p, σp (respectively θp) is a derivation of n (respectively q) due to (2.2.12) (re-
spectively (2.2.14)). (LieEQ) and (LieCOM) guarantee that the pair (σp, θp) satisfies
the identities (2.2.9). Also, it can be readily checked that ψ is a Lie homomorphism
by using (2.2.11) and (2.2.13).

Recall that ∆ϕ(m) = (ϕ(m)µ, µϕ(m)) and ψν(m) = (σν(m), θν(m)) for any m ∈ m.
By making use of (LieM1), (LieM2) and the fact that m acts on n and q via ν,

ϕ(m)µ(n) = ξ(m,µ(n)) = [m,n] = [ν(m), n] = σν(m)(n),

µϕ(m)(q) = µξ(m, q) = [m, q] = [ν(m), q] = θν(m)(q),

for all n ∈ n, q ∈ q. Therefore, ∆ϕ = ψν. Furthermore, given m ∈ m and p ∈ p, due
to (2.2.7), [ψ(p), ϕ(m)] = [(σp, θp), ϕ(m)] = σpϕ(m) − ϕ(m)θp. On the other hand,
by using (LieM3), we get that

ϕ([p,m])(q) = ξ([p,m], q) = [p, ξ(m, q)]− ξ(m, [p, q]) = (σpϕ(m)− ϕ(m)θp)(q),

for any q ∈ q. Hence, ϕ([p,m]) = [ψ(p), ϕ(m)] for all m ∈ m, p ∈ p.

Let (m,p, ν) be a Lie crossed module acting on a Lie crossed module (n, q, µ). By
Proposition 2.2.5 there are Lie actions of m on n and of p on q, so it makes sense to
consider the semidirect products of Lie algebras n o m and q o p. Furthermore, we
have the following result.

Lemma 2.2.6. There is an action of the Lie algebra qop on the Lie algebra nom,
given by

[(q, p), (n,m)] = ([q, n] + [p, n]− ξ(m, q), [p,m]) (2.2.15)

for all (q, p) ∈ q o p, (n,m) ∈ n o m, with ξ as in Proposition 2.2.5. Moreover, the
Lie homomorphism (µ, ν) : no m→ qo p, given by

(µ, ν)(n,m) =
(
µ(n), ν(m)

)
for all (n,m) ∈ no m, is a Lie crossed module together with the previous action.

Proof. Firstly, it is necessary to prove that (2.2.15) describes a Lie action, that is the
identities

[[(q, p), (q′, p′)] , (n,m)] = [(q, p), [(q′, p′), (n,m)]]− [(q′, p′), [(q, p), (n,m)]] ,

[(q, p), [(n,m), (n′,m′)]] = [[(q, p), (n,m)] , (n′,m′)] + [(n,m), [(q, p), (n′,m′)]] ,

for all (q, p), (q′, p′) ∈ q o p, (n,m), (n′,m′) ∈ n o m. It is easy to check the first
identity by making use of (LieCOM), (LieM3), (LieM5) and the analogous identity
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for the actions of p on n and q on n. Regarding the second identity, straightforward
calculations give rise to

[(q, p), [(n,m), (n′,m′)]] = ([q, [n, n′]]︸ ︷︷ ︸
(1)

+[q, [m,n′]]︸ ︷︷ ︸
(2)

−[q, [m′, n]]︸ ︷︷ ︸
(3)

+[p, [n, n′]]︸ ︷︷ ︸
(4)

+[p, [m,n′]]︸ ︷︷ ︸
(5)

−[p, [m′, n]]︸ ︷︷ ︸
(6)

−ξ([m,m′], q)︸ ︷︷ ︸
(7)

, [p, [m,m′]]︸ ︷︷ ︸
(8)

),

[[(q, p), (n,m)], (n′,m′)] = ([[q, n], n′]︸ ︷︷ ︸
(1′)

−[ξ(m, q), n′]︸ ︷︷ ︸
(2′)

−[m′, [q, n]]︸ ︷︷ ︸
(3′)

+[[p, n], n′]︸ ︷︷ ︸
(4′)

+[[p,m], n′]︸ ︷︷ ︸
(5′)

−[m′, [p, n]]︸ ︷︷ ︸
(6′)

+[m′, ξ(m, q)]︸ ︷︷ ︸
(7′)

, [[p,m],m′]︸ ︷︷ ︸
(8′)

),

[(n,m), [(q, p), (n′,m′)]] = ([n, [q, n′]]︸ ︷︷ ︸
(1′′)

+[m, [q, n′]]︸ ︷︷ ︸
(2′′)

−[n, ξ(m′, q)]︸ ︷︷ ︸
(3′′)

+[n, [p, n′]]︸ ︷︷ ︸
(4′′)

+[m, [p, n′]]︸ ︷︷ ︸
(5′′)

−[[p,m′], n]︸ ︷︷ ︸
(6′′)

−[m, ξ(m′, q)]︸ ︷︷ ︸
(7′′)

, [m, [p,m′]]︸ ︷︷ ︸
(8′′)

).

It follows easily that (i) = (i′)+(i′′) for i = 1, 4, 8, due to the action of q on n and the
actions of p on n and m. For i = 7, the identity follows from (LieM4). For i = 2, 3 it
is important to note that

[q, [m,n′]] = [q, ξ(m,µ(n′))] = ξ(m, [q, µ(n′)]) + [µ(n′), ξ(m, q)]

= ξ(m,µ([q, n′])) + [n′, ξ(m, q)] = [m, [q, n′]]− [ξ(m, q), n′],

immediately from (LieM2), (LieM5), the antisymmetry of the bracket in n and the
equivariance and the Peiffer identity of (n, q, µ). Finally, for i = 5, 6, bearing in mind
that the action of m on n is induced by the action of p on n via ν, we have that

[p, [m,n′]] = [p, [ν(m), n′]] = [[p, ν(m)], n′] + [ν(m), [p, n′]]

= [ν([p,m]), n′] + [m, [p, n′]] = [[p,m], n′] + [m, [p, n′]],

directly from the equivariance of (m,p, ν). Checking that (µ, ν) is a Lie homomor-
phism that satisfies equivariance and the Peiffer identity is also a matter of routine
calculations.

The Lie crossed module
(
n o m, q o p, (µ, ν)

)
is called the semidirect product of

the Lie crossed modules (n, q, µ) and (m,p, ν). Note that the semidirect product
determines an obvious split extension of (m,p, ν) by (n, q, µ)

(0, 0, 0) (n, q, µ)
(
no m, qo p, (µ, ν)

)
(m,p, ν) (0, 0, 0)
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Conversely, any split extension of (m,p, ν) by (n, q, µ) is isomorphic to their semidirect
product, where the action of (m,p, ν) on (n, q, µ) is induced by the splitting morphism
(see [26]).

2.2.3 Actor crossed module of Leibniz algebras

In the previous two subsections we have seen that the actor in the categories of groups
and Lie algebras has its corresponding 2-dimensional analogue. Given a Leibniz alge-
bra m, Bider(m) is not necessarily the actor of m, since the set of actions of Bider(m)
on m is not a set of derived actions in general. In fact, the actor of a Leibniz alge-
bra does not always exist. Nevertheless, under certain conditions, Biderm is indeed
the actor of m. In this section we will show that under similar conditions, the actor
crossed module can also be constructed.

Let us assume for the rest of this subsection that (n, q, µ) is a Leibniz crossed
module.

Definition 2.2.7. The set of biderivations from q to n, denoted by Bider(q, n), con-
sists of all the pairs (d,D) of K-linear maps, d,D : q→ n, such that

d([q, q′]) = [d(q), q′] + [q, d(q′)], (2.2.16)

D([q, q′]) = [D(q), q′]− [D(q′), q], (2.2.17)

[q, d(q′)] = [q,D(q′)], (2.2.18)

for all q, q′ ∈ q.

Analogously to the Lie case, we translate the notion of a biderivation of a Leibniz
algebra into a biderivation between two Leibniz algebras via the action.

Given n ∈ n, the pair of K-linear maps (ad(n),Ad(n)), where ad(n)(q) = −[q, n]
and Ad(n)(q) = [n, q] for all q ∈ q, is clearly a biderivation from q to n, so Bider(q, n) is
not an empty set. Observe that if we consider the crossed module (q, q, idq), Bider(q, q)
is exactly the set of biderivations of q.

Directly from the definition and the fact that (n, q, µ) is a Leibniz crossed module,
we get the following result.

Lemma 2.2.8. Let (d,D) ∈ Bider(q, n). Then (dµ,Dµ) ∈ Bider(n) and (µd, µD) ∈
Bider(q).

Proof. Let us show that (dµ,Dµ) ∈ Bider(n). It is obvious that dµ and Dµ are
K-linear maps from n to n. Furthermore, given n, n′ ∈ n,

dµ([n, n′]) = d([µ(n), µ(n′)]) = [dµ(n), µ(n′)] + [µ(n), dµ(n′)]

= [dµ(n), n′] + [n, dµ(n′)],

Dµ([n, n′]) = D([µ(n), µ(n′)]) = [Dµ(n), µ(n′)]− [Dµ(n′), µ(n)]

= [Dµ(n), n′]− [Dµ(n′), n],

[n, dµ(n′)] = [µ(n), dµ(n′)] = [µ(n), Dµ(n′)] = [n,Dµ(n′)],
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as a straightforward consequence of the Peiffer identity, the properties of the bideriva-
tion (d,D) and the fact that µ is morphism of Leibniz algebras. In order to prove
that (µd, µD) ∈ Bider(q) it is necessary to make use of the equivariance of (n, q, µ)
instead of the Peiffer identity, but the procedure is quite similar.

Also from Definition 2.2.7 we get the following result.

Lemma 2.2.9. Let (d1, D1), (d2, D2) ∈ Bider(q, n). Then

[D1µd2(q), q′] = [D1µD2(q), q′],

[q,D1µd2(q′)] = [q,D1µD2(q′)],

for all q, q′ ∈ q.

Proof. Let q, q′ ∈ q and (d1, D1), (d2, D2) ∈ Bider(q, n). According to the identity
(2.2.18) for (d2, D2), [q′, d2(q)] = [q′, D2(q)], so D1µ([q′, d2(q)]) = D1µ([q′, D2(q)]).
Due to (2.2.17) and the equivariance of (q, n, µ), one can easily derive that

[D1(q′), µd2(q)]− [D1µd2(q), q′] = [D1(q′), µD2(q)]− [D1µD2(q), q′].

By the Peiffer identity and (2.2.18) for (d2, D2), [D1(q′), µd2(q)] = [D1(q′), µD2(q)].
Therefore [D1µd2(q), q′] = [D1µD2(q), q′].

Analogously, d1µ([q, d2(q′)]) = d1µ([q,D2(q′)]). By the equivariance and (2.2.16)
we get that

[d1(q), µd2(q′)] + [q, d1µd2(q′)] = [d1(q), µD2(q′)] + [q, d1µD2(q′)].

Due to the Peiffer identity and (2.2.18) for (d2, D2), [d1(q), µd2(q′)] = [d1(q), µD2(q′)],
so [q, d1µd2(q′)] = [q, d1µD2(q′)] and using (2.2.18) again, this time for (d1, D1), we
get that [q,D1µd2(q′)] = [q,D1µD2(q′)].

Observe that Lemma 2.1.7 follows directly from the previous lemma for the par-
ticular case of the crossed module (m,m, idm).

Bider(q, n) has an obvious K-module structure. Regarding its Leibniz structure,
it is described in the next proposition.

Proposition 2.2.10. Bider(q, n) is a Leibniz algebra with the bracket given by

[(d1, D1), (d2, D2)] = (d1µd2 − d2µd1, D1µd2 − d2µD1) (2.2.19)

for all (d1, D1), (d2, D2) ∈ Bider(q, n).

Proof. Let (d1, D1), (d2, D2) ∈ Bider(q, n). In the first place, we have to confirm that
[(d1, D1), (d2, D2)] is a biderivation from q to n. Linearity is obvious. The identi-
ties (2.2.16) and (2.2.17) for [(d1, D1), (d2, D2)] follow easily from the same identi-
ties for (d1, D1) and (d2, D2) along with the equivariance and the Peiffer identity of
(n, q, µ). Concerning (2.2.18), it is an immediate consequence of the second identity
in Lemma 2.2.9 together with (2.2.18) for both (d1, D1) and (d2, D2). Checking the
Leibniz identity is just a matter of routine calculations.
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As an analogue to the Lie algebra of derivations of a crossed module, we state the
following definition.

Definition 2.2.11. The set of biderivations of the Leibniz crossed module (n, q, µ),
denoted by Bider(n, q, µ), consists of all the quadruples ((σ1, θ1), (σ2, θ2)) such that

(σ1, θ1) ∈ Bider(n) and (σ2, θ2) ∈ Bider(q), (2.2.20)

µσ1 = σ2µ and µθ1 = θ2µ, (2.2.21)

σ1([q, n]) = [σ2(q), n] + [q, σ1(n)], (2.2.22)

σ1([n, q]) = [σ1(n), q] + [n, σ2(q)], (2.2.23)

θ1([q, n]) = [θ2(q), n]− [θ1(n), q], (2.2.24)

θ1([n, q]) = [θ1(n), q]− [θ2(q), n], (2.2.25)

[q, σ1(n)] = [q, θ1(n)], (2.2.26)

[n, σ2(q)] = [n, θ2(q)], (2.2.27)

for all n ∈ n, q ∈ q.

Note that (2.2.22)–(2.2.27) are very similar to (2.2.16)–(2.2.18), but here the two
maps that define the action of q on n have to be considered, which is the reason why
the identities appear duplicated.

Given q ∈ q, it can be readily checked that ((σq1, θ
q
1), (σq2, θ

q
2)), where

σq1(n) = −[n, q], θq1(n) = [q, n],

σq2(q′) = −[q′, q], θq2(q′) = [q, q′],

is a biderivation of the crossed module (n, q, µ).
The following result is similar to Lemmas 2.1.7 and 2.2.9, but it combines elements

in Bider(q, n) and Bider(n, q, µ).

Lemma 2.2.12. Let ((σ1, θ1), (σ2, θ2)), ((σ′1, θ
′
1), (σ′2, θ

′
2)) ∈ Bider(n, q, µ) and (d,D) ∈

Bider(q, n). Then

[Dσ2(q), q′] = [Dθ2(q), q′],

[q,Dσ2(q′)] = [q,Dθ2(q′)],

[θ1d(q), q′] = [θ1D(q), q′],

[q, θ1d(q′)] = [q, θ1D(q′)],

[Dσ2(q), n] = [Dθ2(q), n],

[n,Dσ2(q)] = [n,Dθ2(q)],

[θ1d(q), n] = [θ1D(q), n],

[n, θ1d(q)] = [n, θ1D(q)],

[θ1σ
′
1(n), q] = [θ1θ

′
1(n), q],

[q, θ1σ
′
1(n)] = [q, θ1θ

′
1(n)],

[θ2σ
′
2(q), n] = [θ2θ

′
2(q), n],

[n, θ2σ
′
2(q)] = [n, θ2θ

′
2(q)],

for all n ∈ n, q, q′ ∈ q.

Proof. Let us begin with the first column. Let q, q′ ∈ q, (d,D) ∈ Bider(q, n) and
((σ1, θ1), (σ2, θ2)) ∈ Bider(n, q, µ). Since (σ2, θ2) is a biderivation of q, we have
that [q′, σ2(q)] = [q′, θ2(q)]. Therefore D([q′, σ2(q)]) = D([q′, θ2(q)]). Directly from
(2.2.17), we get that

[D(q′), σ2(q)]− [Dσ2(q), q′] = [D(q′), θ2(q)]− [Dθ2(q), q′].
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Recall that D(q′) ∈ n. Therefore, due to (2.2.27), [D(q′), σ2(q)] = [D(q′), θ2(q)].
Hence, [Dσ2(q), q′] = [Dθ2(q), q′].

Similarly, d([q, σ2(q′)]) = d([q, θ2(q′)]). By applying (2.2.16), one can easily derive
that

[d(q), σ2(q′)] + [q, dσ2(q′)] = [d(q), θ2(q′)] + [q, dθ2(q′)].

Due to (2.2.27), [d(q), σ2(q′)] = [d(q), θ2(q′)]. Therefore [q, dσ2(q′)] = [q, dθ2(q′)], and
applying (2.2.18), we get that [q,Dσ2(q′)] = [q,Dθ2(q′)].

Regarding the third identity, [q′, d(q)] = [q′, D(q)] due to (2.2.18). Consequently
θ1([q′, d(q)]) = θ1([q′, D(q)]). By making use of (2.2.24), we get that

[θ2(q′), d(q)]− [θ1d(q), q′] = [θ2(q′), D(q)]− [θ1D(q), q′].

Due to (2.2.18), [θ2(q′), d(q)] = [θ2(q′), D(q)]. Therefore [θ1d(q), q′] = [θ1D(q), q′].
In order to check last identity in the first column, we have to apply σ1 in both

sides of the identity [q, d(q′)] = [q,D(q′)]. In this way, directly from (2.2.22) we get
that

[σ2(q), d(q′)] + [q, σ1d(q′)] = [σ2(q), D(q′)] + [q, σ1D(q′)],

but [σ2(q), d(q′)] = [σ2(q), D(q′)] due to (2.2.18), so [q, σ1d(q′)] = [q, σ1D(q′)]. Finally,
due to (2.2.26), [q, θ1d(q′)] = [q, θ1D(q′)].

The identities in the second column follow immediately from the ones in the first
column and the Peiffer identity. Regarding the third column, the procedure in order to
prove that those identities hold is very similar to the one used for the first column, but
involving only properties of the biderivations ((σ1, θ1), (σ2, θ2)) and ((σ′1, θ

′
1), (σ′2, θ

′
2)).

Remark 2.2.13. Observe that the identities in the right column of the previous lemma
involve the action of q on n. Of course, given ((σ1, θ1), (σ2, θ2)), ((σ′1, θ

′
1), (σ′2, θ

′
2)) ∈

Bider(n, q, µ), (σ1, θ1) and (σ′1, θ
′
1) (respectively (σ2, θ2) and (σ′2, θ

′
2)) also verify the

identities from Lemma 2.1.7, since they are biderivations of n (respectively q).

The K-module structure of Bider(n, q, µ) is evident, while its Leibniz structure is
described in the proposition immediately below.

Proposition 2.2.14. Bider(n, q, µ) is a Leibniz algebra with the bracket given by

[((σ1, θ1), (σ2, θ2)), ((σ′1, θ
′
1), (σ′2, θ

′
2))] = ([(σ1, θ1), (σ′1, θ

′
1)], [(σ2, θ2), (σ′2, θ

′
2)])

= ((σ1σ
′
1 − σ′1σ1, θ1σ

′
1 − σ′1θ1), (σ2σ

′
2 − σ′2σ2, θ2σ

′
2 − σ′2θ2)) (2.2.28)

for all ((σ1, θ1), (σ2, θ2)), ((σ′1, θ
′
1), (σ′2, θ

′
2)) ∈ Bider(n, q, µ).

Proof. Firstly, we need to verify that the bracket is well defined, that is (2.2.28) has
to satisfy (2.2.20)–(2.2.27) for all ((σ1, θ1), (σ2, θ2)), ((σ′1, θ

′
1), (σ′2, θ

′
2)) ∈ Bider(n, q, µ).

The identities in (2.2.21) are obvious, while (2.2.20) follows from the definition of the
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brackets in Bider(n) and Bider(q) (see (2.1.6)). The identities (2.2.22)–(2.2.25) are
fairly straightforward, so we leave them to the reader.

Regarding (2.2.26), given n ∈ n and q ∈ q, due to (2.2.26) for (σ1, θ1), we have
that [q, σ1σ

′
1(n)] = [q, θ1σ

′
1(n)]. Also, as a consequence of (2.2.26) for (σ′1, θ

′
1) and the

second identity in the third column from Lemma 2.2.12, [q, σ′1σ1(n)] = [q, σ′1θ1(n)].
Hence, [q, (σ1σ

′
1−σ′1σ1)(n)] = [q, (θ1σ

′
1−σ′1θ1)(n)]. (2.2.27) can be proved analogously.

The Leibniz identity follows immediately from the homonymous identity satisfied
by the brackets in Bider(n) and Bider(q).

The next step is to construct a Leibniz algebra homomorphism from Bider(q, n)
to Bider(n, q, µ).

Proposition 2.2.15. The K-linear map ∆: Bider(q, n) → Bider(n, q, µ), (d,D) 7→
((dµ,Dµ), (µd, µD)) is a morphism of Leibniz algebras.

Proof. Let (d,D) ∈ Bider(q, n). In the first place, it is necessary to prove that ∆(d,D)
is indeed a biderivation of the crossed module (n, q, µ), that is we need to check that
((dµ,Dµ), (µd, µD)) satisfies the conditions from Definition 2.2.11. Condition (2.2.20)
is an immediate consequence of Lemma 2.2.8, while (2.2.21) is obvious. Conditions
(2.2.22)–(2.2.25) can be easily checked by making use of the equivariance, the Peiffer
identity and the properties of (d,D). As an example, let us show how to prove (2.2.24).
Given n ∈ n and q ∈ q we have that

Dµ([q, n]) = D([q, µ(n)]) = [D(q), µ(n)]− [Dµ(n), q] = [µD(q), n]− [Dµ(n), q].

Regarding (2.2.26), it follows immediately from the fact that (d,D) is a biderivation
from q to n, while it is necessary to use once again the Peiffer identity in order to
prove that (2.2.27) holds. Namely:

[n, µd(q)] = [µ(n), d(q)] = [µ(n), D(q)] = [n, µD(q)],

for any n ∈ n, q ∈ q.
Checking that ∆([(d1, D1), (d2, D2)]) = [∆(d1, D1),∆(d2, D2)] only requires pa-

tience and a correct usage of both of the brackets in Bider(q, n) and Bider(n, q, µ).

Since we aspire to make ∆ into a Leibniz crossed module, we need to define an
action of Bider(n, q, µ) on Bider(q, n).

Theorem 2.2.16. There is a Leibniz action of Bider(n, q, µ) on Bider(q, n) given by:

[((σ1, θ1), (σ2, θ2)), (d,D)] = (σ1d− dσ2, θ1d− dθ2), (2.2.29)

[(d,D), ((σ1, θ1), (σ2, θ2))] = (dσ2 − σ1d,Dσ2 − σ1D), (2.2.30)

for all ((σ1, θ1), (σ2, θ2)) ∈ Bider(n, q, µ), (d,D) ∈ Bider(q, n). The Leibniz homomor-
phism ∆ (see Proposition 2.2.15) together with the above action is a Leibniz crossed
module.
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Proof. Firstly, it is necessary to prove that the definition of the action makes sense.
Let (d,D) ∈ Bider(q, n) and ((σ1, θ1), (σ2, θ2)) ∈ Bider(n, q, µ). Linearity is not a
problem, due to the nature of the maps involved. Checking that both (σ1d−dσ2, θ1d−
dθ2) and (dσ2 − σ1d,Dσ2 − σ1D) satisfy conditions (2.2.16) and (2.2.17) requires the
combined use of the properties satisfied by the elements in Bider(n, q, µ) and (d,D),
but calculations are fairly straightforward. As an example, we show how to prove
that (σ1d− dσ2, θ1d− dθ2) verifies (2.2.16). Let q, q′ ∈ q. Then

(σ1d− dσ2)([q, q′]) = σ1([d(q), q′] + [q, d(q′)])− d([σ2(q), q′] + [q, σ2(q′)])

= [σ1d(q), q′] + [d(q), σ2(q′)] + [σ2(q), d(q′)] + [q, σ1d(q′)]

− [dσ2(q), q′]− [σ2(q), d(q′)]− [d(q), σ2(q′)]− [q, dσ2(q′)]

= [(σ1d− dσ2)(q), q′] + [q, (σ1d− dσ2)(q′)].

As for condition (2.2.18), in the case of (σ1d−dσ2, θ1d−dθ2), it follows from (2.2.26),
the identity (2.2.18) for (d,D) and the second identity in the first column from
Lemma 2.2.12. Namely,

[q, (σ1d− dσ2)(q′)] = [q, σ1d(q′)]− [q, dσ2(q′)] = [q, θ1d(q′)]− [q,Dσ2(q′)]

= [q, θ1d(q′)]− [q,Dθ2(q′)] = [q, θ1d(q′)]− [q, dθ2(q′)],

for all q, q′ ∈ q. A similar procedure allows to prove that (dσ2 − σ1d,Dσ2 − σ1D)
satisfies condition (2.2.18) as well.

The next step is to check that these maps satisfy the axioms of a Leibniz ac-
tion (see Definition 1.2.37). Routine calculations show that all the identities follow
directly from (2.2.29) and (2.2.30) together with the definition of the brackets in
Bider(n, q, µ) and Bider(q, n). Additionally, for those identities involving one element
in Bider(n, q, µ) and two elements in Bider(q, n), that is (1), (2) and (3) from Defi-
nition 1.2.37, it is necessary to use (2.2.21) in order to cancel (identity (1)) or relate
(identities (2) and (3)) the corresponding addends.

It only remains to prove that ∆ satisfies the equivariance and the Peiffer identity.
It is immediate to check that

∆([((σ1, θ1), (σ2, θ2)), (d,D)]) = ((σ1dµ− dσ2µ, θ1dµ− dθ2µ),

(µσ1d− µdσ2, µθ1d− µdθ2)), (2.2.31)

while

[((σ1, θ1), (σ2, θ2)),∆(d,D)] = ((σ1dµ− dµσ1, θ1dµ− dµθ1),

(σ2µd− µdσ2, θ2µd− µdθ2)). (2.2.32)

Condition (2.2.21) guarantees that (2.2.31) = (2.2.32). Concerning the identity
∆([(d,D), ((σ1, θ1), (σ2, θ2))]) = [∆(d,D), ((σ1, θ1), (σ2, θ2))], it can be checked simi-
larly. The Peiffer identity follows immediately from (2.2.29) and (2.2.30) along the
definition of ∆ and the bracket in Bider(q, n).
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Bearing in mind the ease of the generalization of the actor in Gr (respectively
Lie) to XGr (respectively XLie), together with the role of Bider(m) in regard to
any Leibniz algebra m, it makes sense to consider (Bider(q, n),Bider(n, q, µ),∆) as
a candidate for general actor in XLb, or even actor under certain conditions (see
Proposition 2.1.8). However, it would be reckless to define an action of a Leibniz
crossed module (m, p, η) on (n, q, µ) as a morphism from (m, p, η) to the Leibniz crossed
module (Bider(q, n),Bider(n, q, µ),∆), since we cannot ensure that the mentioned
morphism induces a set of derived actions of (m, p, η) on (n, q, µ), in the sense of the
definition given by Orzech [74].

In [22, Proposition 2.1] the authors give an equivalent description of an action of
a crossed module of groups in terms of equations (it appears in Subsection 2.2.1 as
Proposition 2.2.2). Additionally, we give an analogous description of an action of a
Lie crossed module (see Proposition 2.2.5). Furthermore, a closer look at the proofs
of Propositions 2.2.2 and 2.2.5 reveals that the set of equations is no more than a
rearrangement of the conditions satisfied by all the elements involved in the definition
of a morphism from the corresponding crossed module to the corresponding actor.

The previous issues determined our approach to the problem. We considered a
morphism from a Leibniz crossed module (m, p, η) to (Bider(q, n),Bider(n, q, µ),∆),
which will be denoted by Act(n, q, µ) from now on, and unravelled all the properties
satisfied by the mentioned morphism, transforming them into a set of equations,
similar to those from Propositions 2.2.2 and 2.2.5. Then we checked that the existence
of that set of equations is equivalent to the existence of a morphism of Leibniz crossed
modules from (m, p, η) to Act(n, q, µ) only under certain conditions. Finally we proved
that those equations indeed describe a set of derived actions by constructing the
associated semidirect product, which is an object in XLb. We have tried to sum up
all that process with the rest of the results in this subsection.

Observe that the first part of the following lemma could have been included in
Section 2.1, but here we will make a better use of it.

Lemma 2.2.17.

(i) Let q be a Leibniz algebra and (σ, θ), (σ′, θ′) ∈ Bider(q). If Ann(q) = 0 or
[q, q] = q,

θσ′(q) = θθ′(q) (2.2.33)

for all q ∈ q.

(ii) Let (n, q, µ) be a Leibniz crossed module, ((σ1, θ1), (σ2, θ2)) ∈ Bider(n, q, µ) and
(d,D) ∈ Bider(q, n). If Ann(n) = 0 or [q, q] = q,

Dσ2(q) = Dθ2(q), (2.2.34)

θ1d(q) = θ1D(q), (2.2.35)

for all q ∈ q.
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Proof. Calculations in order to prove (i) can be found in the proof of Proposition 2.1.8.
Regarding (ii), Dσ2(q)−Dθ2(q) and θ1d(q)− θ1D(q) are elements in Ann(n), imme-
diately from the identities in the second column from Lemma 2.2.12. Therefore, if
Ann(n) = 0, it is clear that (2.2.34) and (2.2.35) hold.

Let us now assume that [q, q] = q. Given q, q′ ∈ q, directly from the fact that
(σ2, θ2) ∈ Bider(q) and (d,D) ∈ Bider(q, n), we get that

Dθ2([q, q′]) = [Dθ2(q), q′]− [D(q′), θ2(q)]− [Dθ2(q′), q] + [D(q), θ2(q′)],

Dσ2([q, q′]) = [Dσ2(q), q′]− [D(q′), σ2(q)] + [D(q), σ2(q′)]− [Dσ2(q′), q].

Therefore, due to (2.2.27) and the first identity in the first column from Lemma 2.2.12,
Dθ2([q, q′]) = Dσ2([q, q′]). By hypothesis, every element in q can be expressed as a
liner combination of elements of the form [q, q′]. This fact, together with the linearity
of D, σ2 and θ2, guarantees that Dθ2(q) = Dσ2(q) for all q ∈ q. (2.2.35) can be
checked similarly by making use of (2.2.24), (2.2.25), (2.2.18) and the third identity
in the first column from Lemma 2.2.12.

The following theorem is the analogue to Propositions 2.2.2 and 2.2.5.

Theorem 2.2.18. Let (m, p, η) and (n, q, µ) be Leibniz crossed modules. If the fol-
lowing conditions hold, there exist a morphism of crossed modules from (m, p, η) to
(Bider(q, n),Bider(n, q, µ),∆).

(i) There are actions of the Leibniz algebra p (and so m) on the Leibniz algebras n
and q. The homomorphism µ is p-equivariant, that is

µ([p, n]) = [p, µ(n)], (LbEQ1)

µ([n, p]) = [µ(n), p], (LbEQ2)

and the actions of p and q on n are compatible, that is

[n, [p, q]] = [[n, p], q]− [[n, q], p], (LbCOM1)

[p, [n, q]] = [[p, n], q]− [[p, q], n], (LbCOM2)

[p, [q, n]] = [[p, q], n]− [[p, n], q], (LbCOM3)

[n, [q, p]] = [[n, q], p]− [[n, p], q], (LbCOM4)

[q, [n, p]] = [[q, n], p]− [[q, p], n], (LbCOM5)

[q, [p, n]] = [[q, p], n]− [[q, n], p], (LbCOM6)

for all n ∈ n, p ∈ p and q ∈ q.
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(ii) There are two K-bilinear maps ξ1 : m× q→ n and ξ2 : q×m→ n such that

µξ2(q,m) = [q,m], (LbM1a)

µξ1(m, q) = [m, q], (LbM1b)

ξ2(µ(n),m) = [n,m], (LbM2a)

ξ1(m,µ(n)) = [m,n], (LbM2b)

ξ2(q, [p,m]) = ξ2([q, p],m)− [ξ2(q,m), p], (LbM3a)

ξ1([p,m], q) = ξ2([p, q],m)− [p, ξ2(q,m)], (LbM3b)

ξ2(q, [m, p]) = [ξ2(q,m), p]− ξ2([q, p],m), (LbM3c)

ξ1([m, p], q) = [ξ1(m, q), p]− ξ1(m, [q, p]), (LbM3d)

ξ2(q, [m,m′]) = [ξ2(q,m),m′]− [ξ2(q,m′),m], (LbM4a)

ξ1([m,m′], q) = [ξ1(m, q),m′]− [m, ξ2(q,m′)], (LbM4b)

ξ2([q, q′],m) = [ξ2(q,m), q′] + [q, ξ2(q′,m)], (LbM5a)

ξ1(m, [q, q′]) = [ξ1(m, q), q′]− [ξ1(m, q′), q], (LbM5b)

[q, ξ1(m, q′)] = −[q, ξ2(q′,m)], (LbM5c)

ξ1(m, [p, q]) = −ξ1(m, [q, p]), (LbM6a)

[p, ξ1(m, q)] = −[p, ξ2(q,m)], (LbM6b)

for all m,m′ ∈ m, n ∈ n, p ∈ p, q, q′ ∈ q.

Additionally, if one of the following conditions holds the converse statement is also
true.

Ann(n) = 0 = Ann(q), (CON1)

Ann(n) = 0 and [q, q] = q, (CON2)

[n, n] = n and [q, q] = q. (CON3)

Proof. Let us suppose that (i) and (ii) hold. Therefore p acts on n and q, that is there
are four bilinear maps p×n→ n, (p, n) 7→ [p, n]; n× p→ n, (n, p) 7→ [n, p]; p× q→ q,
(p, q) 7→ [p, q] and q× p→ q, (q, p) 7→ [q, p] such that

[p, [n, n′]] = [[p, n], n′]− [[p, n′], n], (2.2.36)

[n, [p, n′]] = [[n, p], n′]− [[n, n′], p], (2.2.37)

[n, [n′, p]] = [[n, n′], p]− [[n, p], n′], (2.2.38)

[n, [p, p′]] = [[n, p], p′]− [[n, p′], p], (2.2.39)

[p, [n, p′]] = [[p, n], p′]− [[p, p′], n], (2.2.40)

[p, [p′, n]] = [[p, p′], n]− [[p, n], p′], (2.2.41)
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and

[p, [q, q′]] = [[p, q], q′]− [[p, q′], q], (2.2.42)

[q, [p, q′]] = [[q, p], q′]− [[q, q′], p], (2.2.43)

[q, [q′, p]] = [[q, q′], p]− [[q, p], q′], (2.2.44)

[q, [p, p′]] = [[q, p], p′]− [[q, p′], p], (2.2.45)

[p, [q, p′]] = [[p, q], p′]− [[p, p′], q], (2.2.46)

[p, [p′, q]] = [[p, p′], q]− [[p, q], p′], (2.2.47)

for all n, n′ ∈ n, p, p′ ∈ p, q, q′ ∈ q. Recall that directly from (2.2.37), (2.2.38),
(2.2.40) and (2.2.41),

[n, [p, n′]] = −[n, [n′, p]], (2.2.48)

[p, [n, p′]] = −[p, [p′, n]], (2.2.49)

for all n, n′ ∈ n, p, p′ ∈ p. Analogously,

[q, [p, q′]] = −[q, [q′, p]], (2.2.50)

[p, [q, p′]] = −[p, [p′, q]], (2.2.51)

for all q, q′ ∈ q, p, p′ ∈ p.
It is possible to define a morphism of crossed modules (ϕ,ψ) from (m, p, η) to

Act(n, q, µ) as follows. Given m ∈ m, ϕ(m) = (dm, Dm), with

dm(q) = −ξ2(q,m), Dm(q) = ξ1(m, q),

for all q ∈ q. On the other hand, for any p ∈ p, ψ(p) = ((σp1 , θ
p
1), (σp2 , θ

p
2)),

σp1(n) = −[n, p], θp1(n) = [p, n],

σp2(q) = −[q, p], θp2(q) = [p, q],

for all n ∈ n, q ∈ q. It follows directly from (LbM5a)–(LbM5c) that (dm, Dm) ∈
Bider(q, n) for all m ∈ m. Besides, ϕ is clearly K-linear and given m,m′ ∈ m,

[ϕ(m), ϕ(m′)] = [(dm, Dm), (dm′ , Dm′)] = [dmµdm′ − dm′µdm, Dmµdm′ − dm′µDm].

For any q ∈ q,

dmµdm′(q)− dm′µdm(q) = −ξ2(µdm′(q),m) + ξ2(µdm(q),m′)

= −[dm′(q),m] + [dm(q),m′]

= [ξ2(q,m′),m]− [ξ2(q,m),m′]

= −ξ2(q, [m,m′]) = d[m,m′](q),
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due to (LbM2a) and (LbM4a). Analogously, it can be easily checked the identity
(Dmµdm′ − dm′µDm)(q) = D[m,m′](q) by making use of (LbM2a), (LbM2b) and
(LbM4b). Hence, ϕ is a morphism of Leibniz algebras.

As for ψ, it is necessary to prove that ((σp1 , θ
p
1), (σp2 , θ

p
2)) satisfies all the axioms

from Definition 2.2.11 for any p ∈ p. The fact that (σp1 , θ
p
1) (respectively (σp2 , θ

p
2)) is a

biderivation of n (respectively q) follows directly from (2.2.36), (2.2.38) and (2.2.48)
(respectively (2.2.42), (2.2.44) and (2.2.50)). The identities µθp1 = θp2µ and µσp1 = σp2µ
are an immediate consequence of (LbEQ1) and (LbEQ2) respectively.

Observe that the combinations of the identities (LbCOM1) and (LbCOM4) and
the identities (LbCOM5) and (LbCOM6) yield the equalities

−[n, [q, p]] = [n, [p, q]] and − [q, [n, p]] = [q, [p, n]].

These together with (LbCOM2)–(LbCOM5) allow to prove that ((σp1 , θ
p
1), (σp2 , θ

p
2))

does satisfy conditions (2.2.22)–(2.2.27) from Definition 2.2.11. Therefore, ψ is well
defined, while it is obviously K-linear.

Concerning the preservation of the Leibniz bracket by ψ, due to (2.2.28) we know
that

[ψ(p), ψ(p′)] = ((σp1σ
p′

1 − σ
p′

1 σ
p
1 , θ

p
1σ

p′

1 − σ
p′

1 θ
p
1), (σp2σ

p′

2 − σ
p′

2 σ
p
2 , θ

p
2σ

p′

2 − σ
p′

2 θ
p
2)),

and by definition

ψ([p, p′]) = ((σ
[p,p′]
1 , θ

[p,p′]
1 ), (σ

[p,p′]
2 , θ

[p,p′]
2 )).

One can easily check that the corresponding components are equal by making use of
(2.2.39), (2.2.40), (2.2.45) and (2.2.46). Hence, ψ is a morphism of Leibniz algebras.

Recall that

∆ϕ(m) = ((dmµ,Dmµ), (µdm, µDm)),

ψη(m) = ((σ
η(m)
1 , θ

η(m)
1 ), (σ

η(m)
2 , θ

η(m)
2 )),

for any m ∈ m, but

dmµ(n) = −ξ2(µ(n),m) = −[n,m] = −[n, η(m)] = σ
η(m)
1 (n),

Dmµ(n) = ξ1(m,µ(n)) = [m,n] = [η(m), n] = θ
η(m)
1 (n),

µdm(q) = −µξ2(q,m) = −[q,m] = −[q, η(m)] = σ
η(m)
2 (q),

µDm(q) = µξ1(m, q) = [m, q] = [η(m), q] = θ
η(m)
2 (q),

for all n ∈ n, q ∈ q, due to (LbM1a), (LbM1b), (LbM2a), (LbM2b) and the definition
of the action of m on n and q via η. Therefore, ∆ϕ = ψη.
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It only remains to check the behaviour of (ϕ,ψ) regarding the action of p on m.
Let m ∈ m and p ∈ p. Due to (2.2.29) and (2.2.30),

[ψ(p), ϕ(m)] = (σp1dm − dmσ
p
2 , θ

p
1dm − dmθ

p
2),

[ϕ(m), ψ(p)] = (dmσ
p
2 − σ

p
1dm, Dmσ

p
2 − σ

p
1Dm).

On the other hand, by definition, we know that

ϕ([p,m]) = (d[p,m], D[p,m]),

ϕ([m, p]) = (d[m,p], D[m,p]).

Directly from (LbM3a), (LbM3b), (LbM3c) and (LbM3d) one can easily confirm that
the required identities between components hold. Let us write, as an example, the
calculations in order to prove that the second component of [ϕ(m), ψ(p)] equals the
second component of ϕ([m, p]). For any q ∈ q,

(Dmσ
p
2 − σ

p
1Dm)(q) = −Dm([q, p])− σp1(ξ1(m, q))

= −ξ1(m, [q, p]) + [ξ1(m, q), p],

but according to (LbM3d), −ξ1(m, [q, p]) + [ξ1(m, q), p] = ξ1([m, p], q) = D[m,p](q).
Hence, we can finally ensure that (ϕ,ψ) is a morphism of Leibniz crossed modules.

Now let us show that it is necessary that at least one of the conditions (CON1)–
(CON3) holds in order to prove the converse statement. Let us suppose that there is
a morphism of crossed modules

m p

Bider(q, n) Bider(n, q, µ)

η

ϕ ψ

∆

(2.2.52)

Givenm ∈ m and p ∈ p, let us denote ϕ(m) by (dm, Dm) and ψ(p) by ((σp1 , θ
p
1), (σp2 , θ

p
2)),

which satisfy conditions (2.2.16)–(2.2.18) from Definition 2.2.7 and conditions (2.2.20)–
(2.2.27) from Definition 2.2.11 respectively. Also, due to the definition of ∆ (see
Proposition 2.2.15), the commutativity of (2.2.52) can be expressed by the identity

((dmµ,Dmµ), (µdm, µDm)) = ((σ
η(m)
1 , θ

η(m)
1 ), (σ

η(m)
2 , θ

η(m)
2 )) (2.2.53)

for all m ∈ m. It is possible to define four bilinear maps, all of them denoted by
[−,−], from p× n to n, n× p to n, p× q to q and q× p to q, given by

[p, n] = θp1(n), [n, p] = −σp1(n),

[p, q] = θp2(q), [q, p] = −σp2(q),



2.2.3 Actor crossed module of Leibniz algebras 83

for all n ∈ n, p ∈ p, q ∈ q. In order to prove that those maps define Leibniz
actions of p on n and q, it is necessary to check that conditions (2.2.36)–(2.2.41) and
(2.2.42)–(2.2.47) are satisfied by the corresponding maps. Conditions (2.2.36)–(2.2.38)
(respectively (2.2.42)–(2.2.44)) follow easily from the fact that (σp1 , θ

p
1) (respectively

(σp2 , θ
p
2)) is a biderivation of n (respectively q).

Since ψ is a Leibniz homomorphism, we know that, given p, p′ ∈ p, ψ([p, p′]) =
[ψ(p), ψ(p′)], that is

((σ
[p,p′]
1 , θ

[p,p′]
1 ), (σ

[p,p′]
2 , θ

[p,p′]
2 )) = ((σp1σ

p′

1 − σ
p′

1 σ
p
1 , θ

p
1σ

p′

1 − σ
p′

1 θ
p
1),

(σp2σ
p′

2 − σ
p′

2 σ
p
2 , θ

p
2σ

p′

2 − σ
p′

2 θ
p
2)).

The identities between the first and the second (respectively the third and the fourth)
components in those quadruples allow to confirm that (2.2.39) and (2.2.40) (respec-
tively (2.2.45) and (2.2.46)) hold.

As for conditions (2.2.41) and (2.2.47), it is fairly straightforward to check that

[[p, p′], n]− [[p, n], p′] = θp1σ
p′

1 (n),

[[p, p′], q]− [[p, q], p′] = θp2σ
p′

2 (q),

while

[p, [p′, n]] = θp1θ
p′

1 (n),

[p, [p′, q]] = θp2θ
p′

2 (q),

for all n ∈ n, p, p′ ∈ p, q ∈ q. However, if at least one of the conditions (CON1)–

(CON3) holds, due to Lemma 2.2.17 (i), θp1σ
p′

1 (n) = θp1θ
p′

1 (n) and θp2σ
p′

2 (q) = θp2θ
p′

2 (q).
Therefore, we can ensure that there are Leibniz actions of p on both n and q, which
induce actions of m on n and q via η.

The reader might have noticed that a fourth possible condition on (n, q, µ) could
have been considered in order to guarantee the existence of the actions of p on n and
q from the existence of the morphism of Leibniz crossed modules (ϕ,ψ). In fact, if
[n, n] = n and Ann(q) = 0, the problem with conditions (2.2.41) and (2.2.47) could
have been solved the same way. Nevertheless, this fourth condition does not guarantee
that (ii) holds, as we will prove immediately below.

Regarding (LbEQ1) and (LbEQ2), they follow directly from (2.2.21) (observe that,
by hypothesis, ((σp1 , θ

p
1), (σp2 , θ

p
2)) is a biderivation of (n, q, µ) for any p ∈ p). Similarly,

(LbCOM1)–(LbCOM6) follow almost immediately from (2.2.22)–(2.2.27). Hence, (i)
holds.

Concerning (ii), we can define ξ1(m, q) = Dm(q) and ξ2(q,m) = −dm(q) for any
m ∈ m, q ∈ q. In this way, ξ1 and ξ2 are clearly bilinear. (LbM1a), (LbM1b),
(LbM2a) and (LbM2b) follow immediately from the identity (2.2.53) and the fact
that the actions of m on n and q are induced by the actions of p via η.
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Identities (LbM5a), (LbM5b) and (LbM5c) are a direct consequence of (2.2.16)–
(2.2.18) (recall that, by hypothesis, (dm, Dm) is a biderivation from q to n for any
m ∈ m).

Note that ϕ is a Leibniz homomorphism, so ϕ([m,m′]) = [ϕ(m), ϕ(m′)] form,m′ ∈
m, that is

(d[m,m′], D[m,m′]) = (dmµdm′ − dm′µdm, Dmµdm′ − dm′µDm).

This identity, together with (LbM2a) and (LbM2b), allows to easily prove that
(LbM4a) and (LbM4b) hold.

Note that, since (ϕ,ψ) is a morphism of Leibniz crossed modules, ϕ([p,m]) =
[ψ(p), ϕ(m)] and ϕ([m, p]) = [ϕ(m), ψ(p)] for all m ∈ m, p ∈ p. Due to the definition
of the action of Bider(n, q, µ) on Bider(q, n) (see Theorem 2.2.16), we can write

(d[p,m], D[p,m]) = (σp1dm − dmσ
p
2 , θ

p
1dm − dmθ

p
2),

(d[m,p], D[m,p]) = (dmσ
p
2 − σ

p
1dm, Dmσ

p
2 − σ

p
1Dm).

(LbM3a), (LbM3b), (LbM3c) and (LbM3d) follow immediately from the previous
identities.

Regarding (LbM6a) and (LbM6b), directly from the definition of ξ1, ξ2 and the
actions of p on n and q, we have that

ξ1(m, [p, q]) = Dmθ
p
2(q), [p, ξ1(m, q)] = θp1Dm(q),

−ξ1(m, [q, p]) = Dmσ
p
2(q), −[p, ξ2(q,m)] = θp1dm(q),

for all m ∈ m, p ∈ p, q ∈ q. Nevertheless, if at least one of the conditions (CON1)–
(CON3) holds, due to Lemma 2.2.17 (ii), Dmθ

p
2(q) = Dmσ

p
2(q) and θp1Dm(q) =

θp1dm(q). Hence, (ii) holds.

Remark 2.2.19. A closer look at the proof of the previous theorem shows that neither
conditions (LbM6a) and (LbM6b), nor the identities (2.2.41) and (2.2.47) (which
correspond to the sixth axiom satisfied by the actions of p on n and q respectively)
are necessary in order to prove the existence of a morphism of crossed modules (ϕ,ψ)
from (m, p, η) to Act(n, q, µ), under the hypothesis that (i) and (ii) hold. Actually, if
we remove those conditions from (i) and (ii), the converse statement would be true for
any Leibniz crossed module (n, q, µ), even if it does not satisfy any of the conditions
(CON1)–(CON3). An early version of Theorem 2.2.18 did not include conditions
(LbM6a) and (LbM6b), although (2.2.41) and (2.2.47) were considered from the very
beginning, since it does not seem natural to ask for p to “almost” act on n and q.
The problem is that (LbM6a), (LbM6b), (2.2.41) and (2.2.47) are essential in order
to prove that (i) and (ii) as in Theorem 2.2.18 describe a set of derived actions of
(m, p, η) on (n, q, µ), as we will show immediately below. This agrees with the idea
of Act(n, q, µ) not being “good enough” to be the actor of (n, q, µ) in general, just as
Bider(m) is not always the actor of a Leibniz algebra m.
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Example 2.2.20. Given a Leibniz crossed module (m, p, η), there is a morphism
(ϕ,ψ) : (m, p, η)→ Act(m, p, η), with ϕ(m) = (dm, Dm) and ψ(p) = ((σp1 , θ

p
1), (σp2 , θ

p
2)),

where

dm(p) = −[p,m], Dm(p) = [m, p],

and

σp1(m) = −[m, p], θp1(m) = [p,m],

σp2(p′) = −[p′, p], θp2(p′) = [p, p′],

for all m ∈ m, p, p′ ∈ p. Calculations in order to prove that (ϕ,ψ) is indeed a
morphism of Leibniz crossed modules are fairly straightforward only by making use
of the axioms satisfied by the actions of p on m together with the equivariance and
the Peiffer identity. Of course, this morphism does not necessarily define a set of
derived actions. Theorem 2.2.18, along with the result immediately bellow, shows that
if (m, p, η) satisfies at least one of the conditions (CON1)–(CON3), then the previous
morphism does define a set of derived actions of (m, p, η) on itself.

Let (m, p, η) and (n, q, µ) be Leibniz crossed modules such that (i) and (ii) from
Theorem 2.2.18 hold. Therefore, there are Leibniz actions of m on n and of p on q,
so it makes sense to consider the semidirect products of Leibniz algebras n o m and
qo p. Furthermore, we have the following result.

Theorem 2.2.21. There is an action of the Leibniz algebra q o p on the Leibniz
algebra nom, given by

[(q, p), (n,m)] = ([q, n] + [p, n] + ξ2(q,m), [p,m]), (2.2.54)

[(n,m), (q, p)] = ([n, q] + [n, p] + ξ1(m, q), [m, p]), (2.2.55)

for all (q, p) ∈ qo p, (n,m) ∈ nom, with ξ1 and ξ2 as in Theorem 2.2.18. Moreover,
the Leibniz homomorphism (µ, η) : nom→ qo p, given by

(µ, η)(n,m) = (µ(n), η(m)),

for all (n,m) ∈ nom is a Leibniz crossed module together with the previous action.

Proof. In order to prove that (2.2.54) and (2.2.55) define an action of qop on nom it is
necessary to confirm that the following identities hold for any (n,m), (n′,m′) ∈ nom,
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(q, p), (q′, p′) ∈ qo p.

[(q, p), [(n,m), (n′,m′)]] = [[(q, p), (n,m)], (n′,m′)]− [[(q, p), (n′,m′)], (n,m)],
(2.2.56)

[(n,m), [(q, p), (n′,m′)]] = [[(n,m), (q, p)], (n′,m′)]− [[(n,m), (n′,m′)], (q, p)],
(2.2.57)

[(n,m), [(n′,m′), (q, p)]] = [[(n,m), (n′,m′)], (q, p)]− [[(n,m), (q, p)], (n′,m′)],
(2.2.58)

[(n,m), [(q, p), (q′, p′)]] = [[(n,m), (q, p)], (q′, p′)]− [[(n,m), (q′, p′)], (q, p)], (2.2.59)

[(q, p), [(n,m), (q′, p′)]] = [[(q, p), (n,m)], (q′, p′)]− [[(q, p), (q′, p′)], (n,m)], (2.2.60)

[(q, p), [(q′, p′), (n,m)]] = [[(q, p), (q′, p′)], (n,m)]− [[(q, p), (n,m)], (q′, p′)]. (2.2.61)

Recall that the brackets in nom and qo p are given respectively by

[(n,m), (n′,m′)] = ([n, n′] + [m,n′] + [n,m′], [m,m′])

and

[(q, p), (q′, p′)] = ([q, q′] + [p, q′] + [q, p′], [p, p′])

for all (n,m), (n′,m′) ∈ nom, (q, p), (q′, p′) ∈ qo p. The procedure in order to check
each of the identities is not complicated if one bears in mind the conditions satisfied
by (m, p, η) and (n, q, µ) (see Theorem 2.2.18). Nevertheless, as an example, we show
how to prove (2.2.58). Calculations for the rest of the identities are similar. Let
(n,m), (n′,m′) ∈ nom and (q, p) ∈ qo p. By routine calculations we get that

[(n,m), [(n′,m′), (q, p)]] = ([n, [n′, q]]︸ ︷︷ ︸
(1)

+[n, [n′, p]]︸ ︷︷ ︸
(2)

+[n, ξ1(m′, q)]︸ ︷︷ ︸
(3)

+[m, [n′, q]]︸ ︷︷ ︸
(4)

+[m, [n′, p]]︸ ︷︷ ︸
(5)

+[m, ξ1(m′, q)]︸ ︷︷ ︸
(6)

+[n, [m′, p]]︸ ︷︷ ︸
(7)

, [m, [m′, p]]︸ ︷︷ ︸
(8)

),

[[(n,m), (n′,m′)], (q, p)] = ([[n, n′], q]︸ ︷︷ ︸
(1′)

+[[n, n′], p]︸ ︷︷ ︸
(2′)

+[[n,m′], q]︸ ︷︷ ︸
(3′)

+[[m,n′], q]︸ ︷︷ ︸
(4′)

+[[m,n′], p]︸ ︷︷ ︸
(5′)

+ξ1([m,m′], q)︸ ︷︷ ︸
(6′)

+[[n,m′], p]︸ ︷︷ ︸
(7′)

, [[m,m′], p]︸ ︷︷ ︸
(8′)

),

[[(n,m), (q, p)], (n′,m′)] = ([[n, q], n′]︸ ︷︷ ︸
(1′′)

+[[n, p], n′]︸ ︷︷ ︸
(2′′)

+[[n, q],m′]︸ ︷︷ ︸
(3′′)

+[ξ1(m, q), n′]︸ ︷︷ ︸
(4′′)

+[[m, p], n′]︸ ︷︷ ︸
(5′′)

+[ξ1(m, q),m′]︸ ︷︷ ︸
(6′′)

+[[n, p],m′]︸ ︷︷ ︸
(7′′)

, [[m, p],m′]︸ ︷︷ ︸
(8′′)

).

Let us show that (i) = (i′)− (i′′) for i = 1, . . . , 8. It is immediate for i = 1, 2, 8 due to
the action of q on n and the actions of p on n and m. For i = 5, the identity follows
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from the fact that the action m on n is defined via η together with the equivariance
of η. Namely,

[m, [n′, p]] = [η(m), [n′, p]] = [[η(m), n′], p]− [[η(m), p], n′]

= [[m,n′], p]− [η([m, p]), n′] = [[m,n′], p]− [[m, p], n′].

The procedure is similar for i = 7. For i = 3, it is necessary to make use of the
Peiffer identity of µ, (LbM1b), the definition of the action of m on n and q via η and
(LbCOM1):

[n, ξ1(m′, q)] = [n, µξ1(m′, q)] = [n, [m′, q]] = [n, [η(m′), q]]

= [[n, η(m′)], q]− [[n, q], η(m′)] = [[n,m′], q]− [[n, q],m′].

The conditions required in order to prove the identity for i = 4 are the same used for
i = 3 except (LbCOM1), which is replace by (LbCOM2).

Finally, for i = 6, due to (LbM4b) and the definition of the action of m on n via
η, we know that

ξ1([m,m′], q) = [ξ1(m, q),m′]− [m, ξ2(q,m′)] = [ξ1(m, q),m′]− [η(m), ξ2(q,m′)],

but applying (LbM6b), we get

ξ1([m,m′], q) = [ξ1(m, q),m′] + [η(m), ξ1(m′, q)] = [ξ1(m, q),m′] + [m, ξ1(m′, q)],

so (6) = (6′)−(6′′) and (2.2.58) holds. Note that (LbM6a) and (LbM6b) are necessary
in order to check (2.2.59) and (2.2.60) respectively.

Checking that (µ, η) is indeed a Leibniz homomorphism follows directly from the
definition of the action of m on n via η together with the conditions (LbEQ1) and
(LbEQ2). Regarding the equivariance of (µ, η), given (n,m) ∈ nom and (q, p) ∈ qop,

(µ, η)([(q, p), (n,m)]) = (µ, η)([q, n] + [p, n] + ξ2(q,m), [p,m])

= (µ([q, n]) + µ([p, n]) + µξ2(q,m), η([p,m]))

= ([q, µ(n)] + [p, µ(n)] + [q,m], [p, η(m)])

= ([q, µ(n)] + [p, µ(n)] + [q, η(m)], [p, η(m)])

= [(q, p), (µ(n), η(m))],

due to the equivariance of µ and η, (LbEQ1), (LbM1a) and the definition of the action
of m on q via η. Similarly, but using (LbEQ2) and (LbM1b) instead of (LbEQ1) and
(LbM1a), it can be proved that (µ, η)([(n,m), (q, p)]) = [(µ(n), η(m)), (q, p)].

The Peiffer identity of (µ, η) follows easily from the homonymous property of µ
and η, the definition of the action of m on n via η and the conditions (LbM2a) and
(LbM2b).

Definition 2.2.22. The Leibniz crossed module (n o m, q o p, (µ, η)) is called the
semidirect product of the Leibniz crossed modules (n, q, µ) and (m, p, η).
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Note that the semidirect product determines an obvious split extension of (m, p, η)
by (n, q, µ)

(0, 0, 0) (n, q, µ) (nom, qo p, (µ, η)) (m, p, η) (0, 0, 0)

Conversely, any split extension of (m, p, η) by (n, q, µ) is isomorphic to their semidirect
product, where the action of (m, p, η) on (n, q, µ) is induced by the splitting morphism.

Now we are in a position to write the following definition.

Definition 2.2.23. If (m, p, η) and (n, q, µ) are Leibniz crossed modules and at least
one of the following conditions holds,

1. Ann(n) = 0 = Ann(q),

2. Ann(n) = 0 and [q, q] = q,

3. [n, n] = n and [q, q] = q,

an action of the crossed module (m, p, η) on (n, q, µ) is a morphism of Leibniz crossed
modules from (m, p, η) to Act(n, q, µ). In other words, under one of those conditions,
Act(n, q, µ) is the actor of (n, q, µ).

Example 2.2.24.
(i) Given a Leibniz algebra q, it can be regarded as a Leibniz crossed module in
two obvious ways, ({0}, q, 0) and (q, q, idq). It is easy to check that Act({0}, q, 0) ∼=
({0},Bider(q), 0) and Act(q, q, idq) ∼= (Bider(q),Bider(q), id).
(ii) Every Lie crossed module (n, q, µ) can be regarded as a Leibniz crossed module (see
Subsection 3.4.2). Note that in this situation, both the multiplication and the action
are antisymmetric. Therefore, given (d,D) ∈ Bider(q,n), both d and D are elements
in Der(q,n). Additionally, if we assume that at least one of the conditions from the
previous lemma holds, then either Ann(n) = 0 or [q, q] = q. In this situation, one can
easily derive from (2.2.18) that Bider(q,n) = {(d, d) | d ∈ Der(q,n)}. Besides, the
bracket in Bider(q,n) becomes antisymmetric and, as a Lie algebra, it is isomorphic
to Der(q,n). Similarly, Bider(n, q, µ) is a Lie algebra isomorphic to Der(n, q, µ) and
Act(n, q, µ) is a Lie crossed module isomorphic to Act(n, q, µ).

2.2.4 On the actor crossed module of associative algebras and
dialgebras

A closer look at the procedure followed in the previous subsection in order to construct
a general actor for a crossed module of Leibniz algebras, makes us wonder if a similar
approach could lead us to the construction of 2-dimensional analogues to the associa-
tive algebra of bimultipliers and the associative dialgebra of tetramultipliers. It does
not seem reckless to think that, given a crossed module of algebras (respectively dial-
gebras) (B,A, ρ) (respectively (L,D, µ)), (Bim(A,B),Bim(B,A, ρ),∆) (respectively
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(Tetra(D,L),Tetra(L,D, µ),∆′)) could be a good candidate for general actor, or even
actor under certain conditions. Of course it would be necessary to give a proper def-
inition of all the objects involved. Furthermore, the amount of equations involved
in the definition of an action of a crossed module of dialgebras would probably be
enormous, around five times what we have for Leibniz algebras.

2.3 Modules over crossed modules

It is a classical fact that the categories of (left or right) modules over a Lie algebra
and over its universal enveloping algebra are equivalent. Since we intend to establish
the analogous equivalence for the categories of modules over a Lie crossed module and
over its universal enveloping crossed module, notion that will be explored in the last
chapter, we need a proper definition of left modules over a crossed module of Lie and
associative algebras.

Recall that Beck [7] introduced a convenient notion of coefficient module to be used
in (co)homology theories. That concept makes sense in a broad context and recovers
the usual notions of modules in familiar settings: for groups, commutative algebras
and Lie algebras, these are left modules; for associative algebras, the appropriate
notion is that of bimodule.

By definition, given an object C of a category C, a Beck module over C is an abelian
group object in the slice category C/C. If C is a category of interest in the sense of
Orzech [74], then Beck modules are equivalent to split extensions with singular kernel
[74, Theorem 2.7]. This is the case for all the aforementioned familiar categories.
Moreover, the description of crossed modules of groups as cat1-groups makes XGr
into a category of interest (see for instance [75]). Nevertheless, the same assertion
fails in the case of Lie crossed modules. Concretely, the category XLie satisfies all
the axioms of a category of interest except one (axiom (d) from Definition 1.1.1),
which is replaced by a new axiom (see the details in [21] for precrossed modules of
Lie algebras). However, since that condition is not used in the proof of [74, Theorem
2.7], we can still apply this general result to XLie and identify a module over a Lie
crossed module (m,p, ν) with a split extension in XLie,

(0, 0, 0) (n, q, µ) (m′,p′, ν′) (m,p, ν) (0, 0, 0)

where the kernel (n, q, µ) is an abelian crossed module of Lie algebras, that is n, q are
abelian Lie algebras and the action of q on n is trivial. Bearing in mind the discussion
at the end of Subsection 2.2.2, it makes sense to consider the following definition.

Definition 2.3.1. Let (m,p, ν) be a Lie crossed module. A left (m,p, ν)-module is
an abelian Lie crossed module (n, q, µ) together with a morphism of crossed modules
(ϕ,ψ) from (m,p, ν) to Act(n, q, µ).
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In other words, a left (m,p, ν)-module is an abelian Lie crossed module endowed
with a (m,p, ν)-action.

Let (n, q, µ) and (n′, q′, µ′) be left (m,p, ν)-modules with the corresponding mor-
phisms of Lie crossed modules (ϕ,ψ) : (m,p, ν)→ Act(n, q, µ) and (ϕ′, ψ′) : (m,p, ν)→
Act(n′, q′, µ′). Then a morphism from (n, q, µ) to (n′, q′, µ′) is a pair (fn, fq) of K-
module homomorphisms, fn : n→ n′ and fp : p→ p′, such that

fqµ = µ′fn, (2.3.1)

(fn, fq)ψ(p) = ψ′(p)(fn, fq), (2.3.2)

fnϕ(m) = ϕ′(m)fq, (2.3.3)

for all m ∈ m, p ∈ p. There is an obvious composition of such morphisms, which
allows us to consider the category of (m,p, ν)-modules.

In [75], Paoli also uses the notion of Beck module in order to define modules
over crossed modules of groups. In this situation a module over a crossed module of
groups (H,G, ∂) would be an abelian crossed module of groups (M,P, η), that is a
morphism of abelian groups, endowed with a (H,G, ∂)-action. Nevertheless, in [22],
the authors go further and consider a K-module structure for (M,P, η). Namely, they
consider η : M → P a morphism of K-modules. Moreover, they denote by AutK(η)
the subgroup of Aut(η) of all K-automorphisms, and by DK(P,M) the subgroup of
D(P,M) of all K-linear derivations whose inverse in D(P,M) is K-linear as well (see
Subsection 2.2.1 for the details about the construction of the actor in XGr).

It is easy to prove that the homomorphism

∆K = ∆|DK(P,M) : DK(P,M)→ AutK(η)

is a crossed module of groups, which will be denoted by ActK(M,P, η), where the
action of AutK(η) on DK(P,M) is induced by the action of Aut(η) on D(P,M).
They give the following definition.

Definition 2.3.2 ([22]). Let (H,G, ∂) be a crossed module of groups. A (H,G, ∂)-
module over K is a morphism of K-modules η : M → P together with a morphism of
crossed modules of groups (ϕ,ψ) : (H,G, ∂)→ ActK(M,P, η).

Let (M,P, η) and (M ′, P ′, η′) be a pair of (H,G, ∂)-modules over K with the
corresponding morphisms of crossed modules (ϕ,ψ) : (H,G, ∂)→ ActK(M,P, η) and
(ϕ′, ψ′) : (H,G, ∂) → ActK(M ′, P ′, η′). A morphism from (M,P, η) to (M ′, P ′, η′) is
a pair (fM , fP ) of K-module homomorphisms, fM : M → M ′ and fP : P → P ′ such
that

fP η = η′fM , (2.3.4)

(fM , fP )ψ(g) = ψ′(g)(fM , fP ), (2.3.5)

fMϕ(h) = ϕ′(h)fP , (2.3.6)
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for all h ∈ H, g ∈ G. Just like in the Lie case, there is an obvious composition of such
morphisms and it is possible to consider the category of (H,G, ∂)-modules over K.

In [22], the authors prove that the previous definition agrees with the represen-
tation theory of cat1-groups developed by Forrester-Barker [45], in the sense of the
following theorem.

Theorem 2.3.3 ([22]). Let (H,G, ∂) be a crossed module of groups. Then the category
of (H,G, ∂)-modules over K is equivalent to the category of linear representations of
the corresponding cat1-group (H oG,G, s, t).

Regarding the notion of a left module over a crossed module of associative algebras,
Beck’s approach is not useful in this situation. The problem is that a Beck module
over an algebra is a bimodule but not a left module over it.

Since we know that a left module over an algebra A is a K-module V together with
an algebra homomorphism from A to the endomorphism algebra EndK(V ) of V , we
were naturally led to search for an adequate construction of an “endomorphism crossed
module” such that a left module over a crossed module of algebras would be defined by
a morphism of crossed modules to the endomorphism crossed module. A good reason
why our construction is relevant is that the Liezation of the endomorphism crossed
module is nothing else but the actor crossed module of Lie algebras (see Lemma 3.2.7
at the end of Section 3.2.3). Note that Liezation of crossed modules of algebras is
explained in Subsection 3.2.1. At the same time, it is reasonable to expect a module
over a Lie crossed module and over its universal enveloping crossed module to be the
same.

For this, we take an abelian crossed module of algebras δ : V → W , that is V
and W are just K-modules considered as algebras with the trivial multiplication, the
action of W on V is trivial and δ is a morphism of K-modules. Then the K-module
HomK(W,V ) is an algebra with the multiplication given by

d1 · d2 = d1δd2 (2.3.7)

for all d1, d2 ∈ HomK(W,V ). Let us denote by End(V,W, δ) the algebra of all pairs
(α, β), with α ∈ EndK(V ) and β ∈ EndK(W ), such that βδ = δα. Observe that the
multiplication in End(V,W, δ) is given by component-wise composition. It is clear
that the map

Γ: HomK(W,V )→ End(V,W, δ), d 7→ (dδ, δd),

is a morphism of algebras. Moreover, we have the following result.

Lemma 2.3.4. There is an algebra action of End(V,W, δ) on HomK(W,V ) given by

(α, β) · d = αd and d · (α, β) = dβ (2.3.8)

for all d ∈ HomK(W,V ), (α, β) ∈ End(V,W, δ). Moreover, together with this action,
(HomK(W,V ),End(V,W, δ),Γ) is a crossed module of algebras.
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Proof. Let d ∈ HomK(W,V ) and (α, β) ∈ End(V,W, δ). It is obvious that αd and dβ
are elements in HomK(W,V ). Besides, it can be readily checked that the identities
from Definition 1.2.24 are satisfied simply by using (2.3.7) and (2.3.8). Regarding
the equivariance and the Peiffer identity, given (α, β) ∈ End(V,W, δ) and d, d′ ∈
HomK(W,V ),

Γ
(
(α, β) · d

)
= Γ(αd) = (αdδ, δαd) = (αdδ, βδd) = (α, β)(dδ, δd) = (α, β)Γ(d),

Γ
(
d · (α, β)

)
= Γ(dβ) = (dβδ, δdβ) = (dδα, δdβ) = (dδ, δd)(α, β) = Γ(d)(α, β),

Γ(d) · d′ = (dδ, δd) · d′ = (dδ)d′ = d · d′ = d(δd′) = d · (d′δ, δd′) = d · Γ(d′),

due to the identity βδ = δα along with the definition of the action and the multipli-
cations in End(V,W, δ) and HomK(W,V ).

Note that End(V,W, δ) is a unital algebra and (HomK(W,V ),End(V,W, δ),Γ) is
an object of XAs1, which is called endomorphism crossed module.

Definition 2.3.5. Let (B,A, ρ) be a crossed module of algebras. A left (B,A, ρ)-
module is an abelian crossed module of algebras (V,W, δ) together with a morphism of
crossed modules of algebras (ϕ,ψ) : (B,A, ρ)→ (HomK(W,V ),End(V,W, δ),Γ).

Let (V,W, δ) and (V ′,W ′, δ′) be left (B,A, ρ)-modules with the morphisms of
crossed modules of algebras (ϕ,ψ) : (B,A, ρ) → (HomK(W,V ),End(V,W, δ),Γ) and
(ϕ′, ψ′) : (B,A, ρ) → (HomK(W ′, V ′),End(V ′,W ′, δ′),Γ′). Then a morphism from
(V,W, δ) to (V ′,W ′, δ′) is a pair (fV , fW ) of morphisms of K-modules fV : V → V ′

and fW : W →W ′ such that

fW δ = δ′fV , (2.3.9)

(fV , fW )ψ(a) = ψ′(a)(fV , fW ), (2.3.10)

fV ϕ(b) = ϕ′(b)fW , (2.3.11)

for all b ∈ B, a ∈ A. Just like for groups and Lie algebras, there is an obvious
composition of such morphisms and it is possible to consider the category of (B,A, ρ)-
modules.

Since crossed modules of algebras and cat1-algebras are equivalent, and we have
a definition of left modules over a crossed module of algebras, this may also be con-
sidered as a definition of left modules over the corresponding cat1-algebra. However,
a direct definition of a left module over a cat1-algebra will also be useful so we give it
immediately below. First we recall from [45] that a cat1-module (V1, V0, s, t) consists
of a K-module V1, a K-submodule V0 of V1 and structural morphisms s, t : V1 → V0

such that s|V0
= t|V0

= idV0
.

Definition 2.3.6. A left module over a cat1-algebra (A1, A0, σ, τ) is a cat1-module
(V1, V0, s, t) together with a left action of A1 on V1 and a left action of A0 on V0
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such that the structural morphisms commute with the actions, that is s(a1 · v1) =
σ(a1) · s(v1), t(a1 · v1) = τ(a1) · t(v1) for all a1 ∈ A1, v1 ∈ V1, and the condition

Kerσ ·Ker t = 0 = Ker τ ·Ker s (2.3.12)

holds, i.e. a · v = 0 = a′ · v′ for all a ∈ Kerσ, v ∈ Ker s, a′ ∈ Ker τ , v′ ∈ Ker t.

Remark 2.3.7. Note that Forrester-Barker gave in [45] a definition of a left module
over a cat1-algebra, but omitted the important condition (2.3.12), which is essential
in order to prove that this notion is equivalent to that of a left module over the corre-
sponding crossed module of algebras.

By complete analogy to [4, Proposition 8] it is possible to prove that cat1-modules
are equivalent to 2-term chain complexes of K-modules. This equivalence is very
similar to the one between cat1-objects and crossed modules showed in Section 1.2
for the five main categories considered in this thesis. A 2-term chain complex of K-
modules is none other than a K-module homomorphism δ : V → W , which can be
considered as an abelian crossed module of algebras. The corresponding cat1-module
is (V ⊕W,W, s, t), where s(v, w) = w and t(v, w) = δ(v) + w for all v ∈ V , w ∈W .

Theorem 2.3.8. Let (B,A, ρ) be a crossed module of algebras. An abelian crossed
module of algebras (V,W, δ) is a left module over (B,A, ρ) if and only if the correspond-
ing cat1-module (V ⊕W,W, s, t) is a left module over the corresponding cat1-algebra
(B oA,A, σ, τ).

Proof. Let (V,W, δ) be a (B,A, ρ)-module. Then there is a morphism (ϕ,ψ) of crossed
modules of algebras

B A

HomK(W,V ) End(V,W, δ).

ρ

ϕ ψ

Γ

(2.3.13)

Let us assume that ψ(a) = (αa, βa), with αa ∈ EndK(V ) and βa ∈ EndK(W ) for all
a ∈ A. It is clear that A acts (to the left) on V and W via ψ, namely a · v = αa(v)
and a · w = βa(w) for all a ∈ A, v ∈ V , w ∈ W . Routine calculations show that the
equality

(b, a) · (v, w) = (ϕ(b)(w) + (ρ(b) + a) · v, a · w),

where (b, a) ∈ B o A, (v, w) ∈ V ⊕W , defines a left action of the algebra B o A on
the K-module V ⊕W and the structural morphisms commute with these actions. In
order to check the condition (2.3.12), note that Kerσ (respectively Ker τ , Ker s, Ker t)
consists of all elements of the form (b, 0) (respectively (b,−ρ(b)), (v, 0), (v,−δ(v))),
with b ∈ B, v ∈ V . Furthermore, we have that

(b,−ρ(b)) · (v, 0) = (ϕ(b)(0) + (ρ(b)− ρ(b)) · v, 0) = (0, 0),

(b, 0) · (v,−δ(v)) = (−ϕ(b)δ(v) + ρ(b) · v, 0) = (0, 0),
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since ϕ(b)δ(v) = ρ(b) · v by commutativity of the diagram (2.3.13).
Conversely, given a left (BoA,A, σ, τ)-module structure on the cat1-module (V ⊕

W,W, s, t), we can define the maps ϕ and ψ in the diagram (2.3.13) by the following
equalities:

(ϕ(b)(w), 0) = (b, 0) · (0, w),

(αa(v), 0) = (0, a) · (v, 0),

βa(w) = a · w,

for all b ∈ B, a ∈ A, v ∈ V and w ∈W , where ψ(a) = (αa, βa). The remaining details,
which can be checked by straightforward calculations, are left to the reader.



Chapter 3

Adjunctions between
categories of crossed modules

In Section 3.1 we recall the generalizations to crossed modules of the unit group
and the group algebra functors and the one-to-one correspondence between module
structures over a crossed module of groups and its respective crossed module of as-
sociative algebras [22]. Although those 2-dimensional extensions are still adjoint to
one another, in Subsection 3.1.2 we prove that the generalization of the group algebra
functor does not commute, not even up to isomorphism, with the full embeddings E1

and E′1; in contrast to what happens with the universal enveloping crossed module of
a Lie or a Leibniz crossed module, as explained in Subsections 3.2.2 and 3.3.2.

In Section 3.2 we construct a pair of adjoint functors between the categories of
crossed modules of Lie and associative algebras, which extends the classical one be-
tween the categories of Lie and associative algebras. This result is used to establish
an isomorphism between the categories of modules over a Lie crossed module and its
universal enveloping crossed module.

In Section 3.3 we extend the main results from Section 3.2 to the non-commutative
framework, that is we generalize the well-known adjunction between the categories
of Leibniz algebras and dialgebras to the categories of Leibniz crossed modules and
crossed modules of dialgebras.

Finally, in Section 3.4 we generalize the well-known relations between the cate-
gories of Lie, Leibniz, associative algebras and dialgebras to the respective categories
of crossed modules and assemble them into four commutative parallelepipeds of cat-
egories and functors.

95
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3.1 XGr vs XAs1

Given a unital algebra A its subset of all invertible elements Ug(A) forms a group
called the group of units of the algebra A. Besides, given a morphism of unital algebras
f : A→ B, it is possible to consider the group homomorphism Ug(f) : Ug(A)→ Ug(B),

where Ug(f) = f |Ug(A). These assignments define a functor Ug : As1 → Gr called the
unit group functor.

The left adjoint to Ug is the functor K : Gr → As1, which sends every group G to
its group algebra K(G), that is the free module over K on the underlying set of G
with the multiplication defined on the basis elements by the group operation in G.
Given a group homomorphism f : G → H, its corresponding morphism of algebras
is K(f) : K(G) → K(H), which is defined by extending f to the elements of K(G) by
linearity.

In this section we recall the construction of the natural generalization of these
functors,

XGr XAs1

XK

XUg

which can be found in [22].

3.1.1 The crossed module of units

Let us begin with the definition of XUg. Given a crossed module of unital algebras
(B,A, ρ), consider its corresponding cat1-algebra as described in the proof of Propo-
sition 1.2.34:

B oA A
σ

τ

with σ(b, a) = a and τ(b, a) = ρ(b) + a for all (b, a) ∈ B o A. Note that the unit of
B oA is (0, 1).

Lemma 3.1.1. Given an object (B,A, ρ) in XAs1 and its corresponding cat1-algebra
(B oA,A, σ, τ),

(i) Every element in Ker Ug(σ) is of the form (b, 1), with b ∈ B, and there is b′ ∈ B
such that

bb′ + b′ + b = 0 = b′b+ b+ b′. (3.1.1)

(ii) (Ug(B oA), Ug(A), Ug(σ), Ug(τ)) is a cat1-group.

Proof. (i) Given (b, a) ∈ Ker Ug(σ), 1 = Ug(σ)(b, a) = a. Therefore (b, a) = (b, 1). On
the other hand, (b, 1) ∈ Ug(BoA), so there is (b′, a′) ∈ BoA such that (b, 1)(b′, a′) =
(0, 1) = (b′, a′)(b, 1). Directly from the definition of the multiplication in B o A, we
get that a′ = 1 and bb′ + b′ + b = 0 = b′b+ b+ b′.

(ii) The identities Ug(σ)|Ug(A) = Ug(τ)|Ug(A) = idUg(A) follow immediately from
σ|A = τ |A = idA and the definition of the functor Ug.
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It only remains to prove that [Ker Ug(σ),Ker Ug(τ)] = 1. Let (b1, 1) ∈ Ker Ug(σ)
and (b2, a2) ∈ Ker Ug(τ). Note that 1 = Ug(τ)(b2, a2) = ρ(b2) + a2, so a2 = 1− ρ(b2).
Using the definition of the product in B oA and (XAs2), we get that:

(b1, 1)(b2, 1− ρ(b2)) = (b1b2 + b2 + b1 − b1ρ(b2), 1− ρ(b2))

= (b2 + b1, 1− ρ(b2))

= (b2b1 + b1 − ρ(b2)b1 + b2, 1− ρ(b2))

= (b2, 1− ρ(b2))(b1, 1).

Therefore [Ker Ug(σ),Ker Ug(τ)] = 1.

Now we can define XUg(B,A, ρ) = (Ker Ug(σ), Ug(A), Ug(τ)|Ker Ug(σ)) for any crossed
module of unital algebras (B,A, ρ), where (Ug(BoA), Ug(A), Ug(σ), Ug(τ)) is the result
of applying Ug to the cat1-algebra (B o A,A, σ, τ). Sometimes we will write Ug(τ)
instead of Ug(τ)|Ker Ug(σ) for ease of notation.

Remark 3.1.2. Note that Ug(A) can be regarded as a subgroup of Ug(B ×A) via the
inclusion a 7→ (0, a) and the action of Ug(A) on Ker Ug(σ) is defined in the proof of
Proposition 1.2.12 as conjugation. Namely, given a ∈ Ug(A) and (b, 1) ∈ Ker Ug(σ),

a(b, 1) = (0,a)(b, 1) = (0, a)(b, 1)(0, a−1) = (ab, a)(0, a−1) = (aba−1, 1).

For any morphism of crossed modules of algebras (ϕ,ψ) : (B,A, ρ)→ (B′, A′, ρ′),
the corresponding morphism of crossed modules of groups XUg(ϕ,ψ) is given by:

Ker Ug(σ) Ug(A)

Ker Ug(σ
′) Ug(A

′).

Ug(τ)

(ϕ,1) ψ

Ug(τ
′)

Recall that a group G (resp. a unital algebra A) can be regarded as a crossed module
of groups (resp. a crossed module of unital algebras) in two obvious ways: via the
trivial map 1: {1} → G (resp. 0 : {0} → A) or via the identity map idG : G → G
(resp. idA : A→ A) with the action of G (resp. of A) on itself defined by conjugation
(resp. by multiplication). See Example 1.2.5 (i) for groups and Example 1.2.28 (i)
for algebras. We have the functors:

E0, E1 : Gr XGr E′0, E
′
1 : As1 XAs1

where E0(G) = ({1}, G, 1), E1(G) = (G,G, idG), E′0(A) = ({0}, A, 0) and E′1(A) =
(A,A, idA), given any group G and any unital algebra A.
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It is easy to check that the following diagram is commutative.

As1 XAs1

Gr XGr .

E′0

Ug XUg

E0

Note that Ker Ug(σ) = {1} for Ug(σ) : Ug({0}oA)→ Ug(A), with Ug(σ)(0, a) = a, for
all a ∈ A. Concerning the embeddings E1 and E′1, we have the following result:

Proposition 3.1.3 ([22]). There is a natural isomorphism of functors

XUg ◦ E′1 ∼= E1 ◦ Ug .

Proof. Let A ∈ As1. We need to prove that XUg(A,A, idA) is naturally isomorphic
to (Ug(A), Ug(A), idUg(A)). According to the foregoing definition of XUg, we first need

to consider the cat1-algebra (A o A,A, σ, τ), with σ(a, a′) = a′ and τ(a, a′) = a + a′

for all (a, a′) ∈ A o A. Then we apply Ug to (A o A,A, σ, τ) and XUg(A,A, idA) =
(Ker Ug(σ), Ug(A), Ug(τ)). It is clear that (Ug(τ), idUg(A)) is a morphism of crossed mod-
ules of groups from XUg(A,A, idA) to (Ug(A), Ug(A), idUg(A)) (see Example 1.2.8 (iii)).
Note that every element in Ker Ug(σ) is of the form (a, 1), with a ∈ A (see Lemma
3.1.1 (i)) and Ug(τ)(a, 1) = a+1. It is easy to check that φ : A→ AoA, a 7→ (a−1, 1)
is a morphism of algebras. Therefore Ug(φ) = φ|Ug(A) is a group homomorphism from
Ug(A) to Ug(AoA). Furthermore, φ(Ug(A)) ⊂ Ker Ug(σ). The diagram

Ug(A) Ug(A)

Ker Ug(σ) Ug(A)

idUg(A)

φ idUg(A)

Ug(τ)

is clearly commutative. Additionally, given a1, a2 ∈ Ug(A),

φ(a1a2) = φ(a1a2a
−1
1 ) = (a1a2a

−1
1 − 1, 1) = (a1a2a

−1
1 − a1a

−1
1 , 1)

= (a1(a2 − 1)a−1
1 , 1) = a1(a2 − 1, 1) = a1φ(a2),

so (φ, idUg(A)) is a morphism of crossed modules of groups. It is easy to check that
(φ, idUg(A)) is the inverse of (Ug(τ), idUg(A)) and the naturality of (Ug(τ), idUg(A)) is
obvious.
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3.1.2 The group algebra crossed module

Let us now recall the construction of the left adjoint to XK. Let (H,G, ∂) be a
crossed module of groups and consider its corresponding cat1-group as in the proof
of Proposition 1.2.12, that is

H oG G
s

t

with s(h, g) = g and t(h, g) = ∂(h)g for all (h, g) ∈ H o G. If we apply K to the
previous diagram we get

K(H oG) K(G)
K(s)

K(t)

Although it is true that K(s)|K(G) = K(t)|K(G) = idK(G), in general, the second condition
for cat1-algebras (CAs2) is not satisfied. For instance, let us take h ∈ H \ {1} and
g ∈ G such that gh 6= h−1. It is clear that v = (h, g) − (1, g) ∈ Ker K(s) and
w = (h, g)− (1, ∂(h)g) ∈ Ker K(t). Besides,

vw = (hgh, gg)− (gh, gg)− (h, g∂(h)g) + (1, g∂(h)g),

is a linear combination of elements from the basis of K(HoG) with non-zero coefficients
due to the condition gh 6= h−1. Hence, Ker K(s) Ker K(t) 6= 0 in general.

Nevertheless, we can consider the quotient K(H o G) = K(H o G)/X, where
X = Ker K(s) Ker K(t) + Ker K(t) Ker K(s), together with the induced morphisms K(s)
and K(t). In this way, the diagram

K(H oG) K(G)
K(s)

K(t)

is clearly a cat1-algebra. Note that X ⊂ Ker K(t) and K(t)|K(G) = idK(G), since t|G =
idG. Given v, w ∈ K({1}oG) ' K(G), if v − w ∈ X, then 0 = K(t)(v − w) = v − w.
Therefore K(G) can be regarded as a subalgebra of K(H oG).

We can now define XK(H,G, ∂) as the crossed module of algebras corresponding
to the previous cat1-algebra, that is (Ker K(s), K(G), K(t)|Ker K(s)). Sometimes we will

write K(t) instead of K(t)|Ker K(s) to ease notation.
For any morphism of crossed modules (ϕ,ψ) : (H,G, ∂)→ (H ′, G′, ∂′), XK(ϕ,ψ) is

given by

Ker K(s) K(G)

Ker K(s′) K(G′)

K(t)

K(ϕ,ψ)|Ker K(s) K(ψ)

K(t′)
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where K(ϕ,ψ) is the algebra homomorphism induced by K(ϕ,ψ), which is itself the
K-linear extension of (ϕ,ψ) : H oG→ H ′ oG′, given by (ϕ,ψ)(h, g) = (ϕ(h), ψ(g))
for all (h, g) ∈ H oG.

The functor XK : XGr → XAs1 is a natural generalization of the functor K, in the
sense that the following diagram commutes,

Gr XGr

As1 XAs1 .

E0

K XK

E′0

In fact, given G a group, it is clear that E0(K(G)) = ({0}, K(G), 0). Now, let us follow
the steps in the construction of XK({1}, G, 1). First we consider the cat1-group

{1}oG G
s

t

with s(1, g) = t(1, g) = g. Then we apply the functor K,

K({1}oG) K(G).
K(s)

K(t)

It is clear that K(s) = K(t) is an isomorphism between the algebras K({1} o G) and
K(G). Hence Ker K(s) = Ker K(t) = {0} and (K({1} o G), K(G), K(s), K(t)) is a cat1-
algebra. Moreover XK({1}, G, 1) = (Ker K(t), K(G), K(t)|Ker K(t)) = ({0}, K(G), 0).

Nevertheless, for the functor XK there is no analogue to Proposition 3.1.3, that is
we claim that XK ◦ E1 � E′1 ◦ K. Let us first illustrate it with an example.

Let G = {e, x} be the group with two elements and K = R. E′1(K(G)) =
(K(G), K(G), idK(G)), where K(G) is a vector space over R of dimension 2, endowed
with the product resulting from extending by bilinearity the group operation in G. A
base of K(G) is {e, x}. We will denote e = (1, 0) and x = (0, 1).

Let us now construct XK(G,G, idG). First, we need to consider the cat1-group

GoG G,
s

t

with

s(e, e) = e, t(e, e) = e,

s(e, x) = x, t(e, x) = x,

s(x, e) = e, t(x, e) = x,

s(x, x) = x, t(x, x) = e.
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The next step is to apply K on that diagram. In this way, we get:

K(GoG) K(G),
K(s)

K(t)

with K(s) and K(t) as a result of extending by linearity s and t respectively. A basis
for K(GoG) is given by {(e, e), (e, x), (x, e), (x, x)}. We will denote

(e, e) = (1, 0, 0, 0),

(e, x) = (0, 1, 0, 0),

(x, e) = (0, 0, 1, 0),

(x, x) = (0, 0, 0, 1).

Bearing in mind the previous notation,

K(s)(1, 0, 0, 0) = (1, 0), K(t)(1, 0, 0, 0) = (1, 0),

K(s)(0, 1, 0, 0) = (0, 1), K(t)(0, 1, 0, 0) = (0, 1),

K(s)(0, 0, 1, 0) = (1, 0), K(t)(0, 0, 1, 0) = (0, 1),

K(s)(0, 0, 0, 1) = (0, 1), K(t)(0, 0, 0, 1) = (1, 0).

Hence,

K(s) =

(
1 0 1 0
0 1 0 1

)
and K(t) =

(
1 0 0 1
0 1 1 0

)
.

Now we can easily calculate Ker K(s) and Ker K(t):

Ker K(s) = {(a1, a2, a3, a4) | a1 = −a3, a2 = −a4, ai ∈ R, for i = 1, 2, 3, 4}
= {(a1, a2,−a1,−a2) | a1, a2 ∈ R}
= 〈(1, 0,−1, 0), (0, 1, 0,−1)〉 ,

Ker K(t) = {(a1, a2, a3, a4) | a1 = −a4, a2 = −a3, ai ∈ R, for i = 1, 2, 3, 4}
= {(a1, a2,−a2,−a1) | a1, a2 ∈ R}
= 〈(1, 0, 0,−1), (0, 1,−1, 0)〉 .

Note that Forrester-Barker gives in [45] an explicit description of one basis for Ker K(s)
and for Ker K(t). Those bases agree with the ones described above. Namely, according
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to Forrester-Barker,

Ker K(s) = 〈{(g, g′)− (e, g′) | g, g′ ∈ G, g 6= e}〉
= 〈{(x, e)− (e, e), (x, x)− (e, x)}〉
= 〈(0, 0, 1, 0)− (1, 0, 0, 0), (0, 0, 0, 1)− (0, 1, 0, 0)〉
= 〈(−1, 0, 1, 0), (0,−1, 0, 1)〉 ,

Ker K(t) = 〈{(g, g′)− (e, gg′) | g, g′ ∈ G, g 6= e}〉
= 〈{(x, e)− (e, x), (x, x)− (e, e)}〉
= 〈(0, 0, 1, 0)− (0, 1, 0, 0), (0, 0, 0, 1)− (1, 0, 0, 0)〉
= 〈(0,−1, 1, 0), (−1, 0, 0, 1)〉 .

Note that Ker K(s)+Ker K(t) has dimension 3 and Ker K(s)∩Ker K(t) = 〈(1, 1,−1,−1)〉.
Observe that the product in K(GoG) and the product in K(G) are both commuta-

tive, sinceG is an abelian group. ThereforeX = Ker K(s) Ker K(t)+Ker K(t) Ker K(s) =
Ker K(s) Ker K(t). Fairly straightforward calculations show that Ker K(s) Ker K(t) =
〈(1, 1,−1− 1)〉 which agrees with what we would get if we followed the description
given by Forrester-Barker.

In order to get a cat1-algebra, we need to consider the diagram

K(GoG)/X K(G),
K(s)

K(t)

with K(s) and K(t) induced by K(s) and K(t). Note that K(G o G)/X has dimension
3. We can consider the basis B = {(0, 1, 0, 0) +X, (0, 0, 1, 0) +X, (0, 0, 0, 1) +X}.

Let us give an explicit basis for Ker K(s):

Ker K(s) = {v +X ∈ K(GoG)/X | K(s)(v +X) = (0, 0)},

but X = Ker K(s) ∩Ker K(t) ⊂ Ker K(s), so

Ker K(s) = {v +X ∈ K(GoG)/X | K(s)(v) = (0, 0)} = Ker K(s)/X.

Moreover,

(−1, 0, 1, 0)+X = (0, a, b, c)+X ⇔ (−1,−a, 1−b,−c) ∈ X ⇔ a = 1, b = 0, c = −1,

(0,−1, 0, 1) +X = (0, a, b, c) +X ⇔ (0,−1− a,−b, 1− c) ∈ X
⇔ a = −1, b = 0, c = 1.

Hence, Ker K(s) = 〈(1, 0,−1)B〉 and it has dimension 1.
In the following diagram,
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Ker K(s) K(G)

K(G) K(G)

K(t)

K(t) idK(G)

idK(G)

Ker K(s) is a R-vector space of dimension 1, while K(G) has dimension 2. Therefore
XK(G,G, idG) � (K(G), K(G), idK(G)).

The problem shown in the previous example persists in a general situation. Let
us now assume that G is any group, not necessarily the one with to elements. The
first step in order to construct XK(G,G, idG) is to take the cat1-group

GoG G,
s

t

with s(g, g′) = g′ and t(g, g′) = gg′. Consider the morphism of groups ε : G→ GoG,
ε(g) = (g, 1). It is clear that s(ε(g)) = 1 and t(ε(g)) = g for every g ∈ G.

Now, if we use the functor K, we get:

K(G) K(GoG) K(G).
K(ε)

K(s)

K(t)

It is clear that K(t) K(ε) = idK(G), while K(s)(K(ε)(
∑
λg)) = K(sε)(

∑
λg) = K(1)(

∑
λg)

=
∑
λ1 for any formal linear combination of elements in G. Note that K(s) K(ε) is

not the trivial map unless K = {0}.
Now, if we consider X = Ker K(s) Ker K(t) + Ker K(s) Ker K(t), the diagram

K(GoG)/X K(G),
K(s)

K(t)

is a cat1-algebra, with K(s) and K(t) induced by K(s) and K(t) respectively. The crossed
module of algebras XK(G,G, idG) is defined as (Ker K(s), K(G), K(t)|Ker K(s)).

As we stated previously, in Forrester-Barker’s PhD thesis [45] there is and explicit
description of a basis for Ker K(s) ⊂ K(GoG), namely {(g, g′)− (1, g′) | g′ ∈ G, g ∈
G \ {1}}. He also proves that {(g, g′)− (1, g′) +X | g ∈ G \ {1}, g′ ∈ G} is a set of
generators of Ker K(s).

Let (g, g′)−(1, g′)+X ∈ Ker K(s). Then K(t)((g, g′)−(1, g′)+X) = gg′−g′. Now,
if we apply π K(ε) to gg′ − g′, with π the projection π : K(G o G) → K(G o G)/X,
we get π K(ε)(gg′ − g′) = (gg′, 1)− (g′, 1) +X, but (gg′, 1)− (g′, 1) ∼ (g, g′)− (1, g′).
Actually (gg′, 1) − (g′, 1) − (g, g′) + (1, g′) = ((g, 1) − (1, 1))((g′, 1) − (1, g′)), with
(g, 1) − (1, 1) ∈ Ker K(s) and (g′, 1) − (1, g′) ∈ Ker K(t). Hence (gg′, 1) − (g′, 1) −
(g, g′) + (1, g′) ∈ X = Ker K(s) Ker K(t) + Ker K(t) Ker K(s).
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The previous calculations show that π K(ε)K(t)|Ker K(s) = idKer K(s). Observe that

for K(t)|Ker K(s) to be an isomorphism between Ker K(s) and K(G), it should be a

surjective morphism. Therefore π K(ε) should take values in Ker K(s) for every element
in K(G). In that case, 0 = K(s)π K(ε) = K(s) K(ε), which is not true unless K = {0}.

Therefore XK ◦E1 � E′1 ◦ K.

3.1.3 Adjunction between XGr and XAs1

The following result is a natural generalization of the well-known classical adjunction
between the categories Gr and As1.

Theorem 3.1.4 ([22]). The functor XK is left adjoint to the functor XUg.

Proof. Given (H,G, ∂) in XGr and (B,A, ρ) in XAs1, we have to construct a natural
bijection

HomXGr

(
(H,G, ∂), XUg(B,A, ρ)

) ∼= HomXAs1
(
XK(H,G, ∂), (B,A, ρ)

)
.

Let (ϕ,ψ) ∈ HomXGr

(
(H,G, ∂), XUg(B,A, ρ)

)
, that is

H G

Ker Ug(σ) Ug(A)

∂

ϕ ψ

Ug(τ)

such that Ug(τ)ϕ = ψ∂ and ϕ(gh) = ψ(g)ϕ(h) for all h ∈ H, g ∈ G.

We can consider the corresponding morphism of cat1-groups by using the functor
catGr as defined in the proof of Proposition 1.2.12:

H oG G

Ker Ug(σ)o Ug(A) Ug(A)

Ug(B oA) Ug(A).

s

t

(ϕ,ψ)

ϕ′

ψ

s̃

t̃

' idUg(A)

Ug(σ)

Ug(τ)

Note that the isomorphism in the diagram above is explicitly described at the end of
the proof of Proposition 1.2.12, as well as s̃ and t̃.
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Since the functor K is left adjoint to the functor Ug, we have the induced commu-
tative diagrams of algebras

K(H oG) K(G)

B oA A

K(s)

ϕ′∗ ψ∗

σ

and

K(H oG) K(G)

B oA A.

K(t)

ϕ′∗ ψ∗

τ

Due to the identity KerσKer τ + Ker τ Kerσ = 0, we have a uniquely defined mor-
phism of cat1-algebras

K(H oG)/X K(G)

B oA A

K(s)

K(t)

ϕ′∗ ψ∗

σ

τ

where X = Ker K(s) Ker K(t) + Ker K(t) Ker K(s).

Finally, we can make use the functor XmAs, which is described in the proof of
Proposition 1.2.34, in order to get a uniquely defined homomorphism (ϕ∗∗, ψ∗) in
HomXAs1

(
XK(H,G, ∂), (B,A, ρ)

)
:

Ker K(s) K(G)

Kerσ A

B A.

K(t)

ϕ′∗

ϕ∗∗

ψ∗

τ

' idA

ρ

Note that in the diagram above ϕ′∗ = ϕ′∗|Ker K(s), Kerσ = Bo{0} and τ = τ |Kerσ = ρ.

Now, let (φ, χ) ∈ HomXAs1
(
XK(H,G, ∂), (B,A, ρ)

)
, that is

Ker K(s) K(G)

B A

K(t)

φ χ

ρ

such that ρφ = χK(t) and φ preserves the action of K(G) on Ker K(s) via χ.

We can consider the corresponding morphism of cat1-algebras by using the functor
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catAs as defined in the proof of Proposition 1.2.34.

K(H oG)/X K(G)

Ker K(s)o K(G) K(G)

B oA A.

K(s)

K(t)

'

φ′

idK(G)

σ̃

τ̃

(φ,χ) χ

σ

τ

Note that the isomorphism in the diagram above is explicitly described at the end of
the proof of Proposition 1.2.34, as well as σ̃ and τ̃ .

Let φ = φ′π, with π : K(H oG)→ K(H oG)/X the canonical projection. Hence,
we have the commutative diagrams of algebras

K(H oG) K(G)

B oA A

K(s)

φ χ

σ

and

K(H oG) K(G)

B oA A.

K(t)

φ χ

τ

Since the functor K is left adjoint to the functor Ug, we have the morphism of cat1-
groups

H oG G

Ug(B oA) Ug(A).

s

t

φ∗ χ∗

Ug(σ)

Ug(τ)

Finally, we can use the functor XmGr, described in the proof of Proposition 1.2.12,
to get a uniquely defined morphism (φ∗∗, χ∗) in HomXGr

(
(H,G, ∂), XUg(B,A, ρ)

)
:

H G

Ker s G

Ker Ug(σ) Ug(A).

∂

'
φ∗∗

idG

t

φ∗|Ker s χ∗

Ug(τ)

Note that Ker s = H o {1} and t = t|Ker s = ∂ in the diagram above.



3.2 XLie vs XAs 107

Recall that in Section 2.3 there is an explicit definition of left modules over crossed
modules of groups and crossed modules of algebras. In [22], the authors prove that
there is a one-to-one correspondence between left modules over a crossed module of
groups and its respective crossed module of associative algebras:

Theorem 3.1.5 ([22]). Let (H,G, ∂) be a crossed module of groups. Then the cate-
gory of (H,G, ∂)-modules over K is isomorphic to the category of (left) XK(H,G, ∂)-
modules.

At the end of Subsection 3.2.3 we will prove an analogue to the previous theo-
rem for modules over a Lie crossed module and its corresponding crossed module of
algebras.

3.2 XLie vs XAs

Any algebra A becomes a Lie algebra with the bracket [a, b] = ab − ba, a, b ∈ A.
Moreover, any algebra homomorphism f : A → B is a Lie algebra homomorphism
if we consider the bracket previously defined both in A and B. Those assignments
define a functor that will be denoted by LieAs.

Remark 3.2.1. The reason to denote the previous functor by LieAs instead of simply
Lie is that we will use another Liezation functor in the next section, and we want
them to be easily distinguishable, even though the context itself will probably make the
difference clear.

The functor LieAs has a left adjoint, U : Lie→ As, which sends a Lie algebra p to
its universal enveloping algebra U(p). We recall that U(p) = T(p)/J , with T(p) the
tensor algebra of p, that is

T(p) = K ⊕ p⊕ (p⊗ p)⊕ (p⊗ p⊗ p) · · ·

and J the ideal generated by p1 ⊗ p2 − p2 ⊗ p1 − [p1, p2], for all p1, p2 ∈ p. Given
a Lie homomorphism f : p → m, we can define U(f) : U(p) → U(m) by extending the
definition of f to the elements of U(p) by linearity.

In this section we generalize the functors LieAs and U to the categories XAs and
XLie in such a way that those generalizations are still adjoint to one another.

3.2.1 Liezation of crossed modules of algebras

Let us first show that the functor LieAs preserves the semidirect product.

Lemma 3.2.2. Given A and B two associative algebras together with an action of A
on B, there is an action of LieAs(A) on LieAs(B) given by

[a, b] = ab− ba

for all a ∈ A, b ∈ B.
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Proof. We have to prove that

[[a, a′], b] = [a, [a′, b]]− [a′, [a, b]],

[a, [b, b′]] = [[a, b], b′] + [b, [a, b′]],

for every a, a′ ∈ LieAs(A) and b, b′ ∈ LieAs(B). Both equalities can be proved by
straightforward calculations, the first one due to the equalities from Definition 1.2.24
involving two elements from A and one from B, and the second one due to the other
three equalities from the same definition.

Lemma 3.2.3. Let A and B be two associative algebras together with an action of A
on B. Then LieAs(B oA) = LieAs(B)o LieAs(A).

Proof. Bearing in mind the previous lemma, it makes sense to consider the semidi-
rect product LieAs(B) o LieAs(A), since LieAs(A) acts on LieAs(B). It is clear that
LieAs(B o A) and LieAs(B) o LieAs(A) are equal as K-modules, so we only need to
check that they share the same bracket. Let (b, a), (b′, a′) ∈ B × A. If we use the
bracket in LieAs(B)o LieAs(A), we get

[(b, a), (b′, a′)] = ([b, b′] + [a, b′]− [a′, b], [a, a′])

= (bb′ − b′b+ ab′ − b′a+ ba′ − a′b, aa′ − a′a).

On the other hand, if we use the bracket in LieAs(B oA), we get

[(b, a), (b′, a′)] = (b, a)(b′, a′)− (b′, a′)(b, a)

= (bb′ + ab′ + ba′, aa′)− (b′b+ a′b+ b′a− ab′, a′a),

so the brackets are equal.

As noted in [34], we can associate to a crossed module of algebras (B,A, ρ) the
Lie crossed module

(
LieAs(B), LieAs(A), LieAs(ρ)

)
with the action of LieAs(A) on

LieAs(B) described in Lemma 3.2.2. Note that LieAs(ρ) = ρ. Directly from (XAs1),
(XAs2) and the definition of the Lie action, we get that

(
LieAs(B), LieAs(A), LieAs(ρ)

)
satisfies (XLie1) and (XLie2).

Furthermore, any morphism of crossed modules of algebras (ϕ,ψ) : (B,A, ρ) →
(B′, A′, ρ′) is a morphism of Lie crossed modules from

(
LieAs(B), LieAs(A), ρ

)
to(

LieAs(B
′), LieAs(A

′), ρ′
)
, since

ϕ([a, b]) = ϕ(ab− ba) = ψ(a)ϕ(b)− ϕ(b)ψ(a) = [ψ(a), ϕ(b)],

for all a ∈ A, b ∈ B. The previous assignments define a functor XLieAs : XAs→ XLie,
which is a natural generalization of the functor LieAs : As→ Lie in the following sense.
Recall that there are full embeddings

I0, I1 : Lie XLie I′0, I
′
1 : As XAs
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where I0(p) = ({0},p, 0), I1(p) = (p,p, idp), I′0(A) = ({0}, A, 0) and I′1(A) =
(A,A, idA) for any Lie algebra p and any associative algebra A. It is immediate that
the following diagram is commutative for i = 0, 1.

As XAs

Lie XLie .

I′i

LieAs XLieAs

Ii

3.2.2 Universal enveloping crossed module of a Lie crossed
module

Let us now construct the left adjoint to the functor XU, which generalizes the universal
enveloping algebra functor U : Lie→ As to crossed modules.

Let (m,p, ν) be a Lie crossed module and consider its corresponding cat1-Lie
algebra as in the proof of Proposition 1.2.23, that is

mo p p
s

t

with s(m, p) = p and t(m, p) = ν(m) + p for all (m, p) ∈ mo p. If we apply U to the
previous diagram, we get

U(mo p) U(p).
U(s)

U(t)

Although it is true that U(s)|U(p) = U(t)|U(p) = idU(p), in general, the second condition
for cat1-algebras (CAs2) is not satisfied. For instance, if we take m ∈ m\{0}, it is clear
that (m, 0) ∈ Ker U(s) and (m,−ν(m)) ∈ Ker U(t). However (m, 0)⊗ (m,−ν(m)) 6= 0,
so Ker U(s) Ker U(t) 6= 0.

Nevertheless, we can consider the quotient U(m o p) = U(m o p)/X, where X =
Ker U(s) Ker U(t) + Ker U(t) Ker U(s), and the induced morphisms U(s) and U(t). In
this way, the diagram

U(mo p) U(p)
U(s)

U(t)

is clearly a cat1-algebra. Note thatX ⊂ Ker U(t) and U(t)|U(p) = idU(p), since t|p = idp.
Given v, w ∈ U({0}op) ' U(p), if v−w ∈ X, then 0 = U(t)(v−w) = v−w. Therefore
U(p) can be regarded as a subalgebra of U(mo p).

We can now define XU(m,p, ν) as the crossed module of associative algebras given
by (Ker U(s), U(p), U(t)|Ker U(s)). We will write U(t) instead of U(t)|Ker U(s) to ease no-
tation.
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For any morphism of Lie crossed modules (ϕ,ψ) : (m,p, ν)→ (m′,p′, ν′), XU(ϕ,ψ)
is given by

Ker U(s) U(p)

Ker U(s′) U(p′)

U(t)

U(ϕ,ψ)|Ker U(s) U(ψ)

U(t′)

where U(ϕ,ψ) is the algebra homomorphism induced by U(ϕ,ψ), which is itself the
linear extension of (ϕ,ψ) : mo p→ m′ o p′, given by (ϕ,ψ)(m, p) = (ϕ(m), ψ(p)) for
all (m, p) ∈ mo p.

The functor XU : XLie → XAs is a natural generalization of the functor U, in the
sense that it makes the following diagram commute,

Lie XLie

As XAs .

I0

U XU

I′0

Regarding the embeddings I1 and I′1, we have the following result.

Proposition 3.2.4. There is a natural isomorphism of functors

XU ◦ I1
∼= I′1 ◦ U .

Proof. Let p ∈ Lie. We need to show that XU(p,p, idp) is naturally isomorphic
to (U(p), U(p), idU(p)). In order to do so, we will prove that (U(t)|Ker U(s), idU(p)) is

an isomorphism of crossed modules of algebras from (Ker U(s), U(p), U(t)|Ker U(s)) to
(U(p), U(p), idU(p)).

Note that (U(t)|Ker U(s), idU(p)) is indeed a morphism of crossed modules (see Exam-
ple 1.2.30 (iii)). Recall that the first step in the construction of XU(p,p, idp) requires
us to consider the cat1-Lie algebra

po p p
s

t

with s(p, p′) = p′ and t(p, p′) = p + p′ for all p, p′ ∈ p. Let us define the Lie
homomorphism ε : p→ po p, ε(p) = (p, 0). It is clear that sε = 0 and tε = idp.

The next step is to apply the functor U on the previous cat1-Lie algebra and take
the quotient of U(p o p) by X = Ker U(s) Ker U(t) + Ker U(t) Ker U(s) in order to
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guarantee that we have a cat1-algebra. In the next diagram of algebras,

U(p) U(po p) U(p)

U(po p)/X

U(ε)

π

U(s)

U(t)

U(s
)

U(t
)

where π is the canonical projection, it is easy to see that U(s)π U(ε) = U(s) U(ε) =
U(sε) = 0 and U(t)π U(ε) = U(t) U(ε) = U(tε) = idU(p). Hence π U(ε) takes values in
Ker U(s) and it is a right inverse for U(t)|Ker U(s).

Now we need to show that π U(ε)U(t) = idKer U(s). Note that X ⊂ Ker U(s), so

Ker U(s) = Ker U(s)/X and, as a K-module, Ker U(s) is generated by all the elements
of the form

(p1, p
′
1)⊗ · · · ⊗ (pi−1, p

′
i−1)⊗ (pi, 0)⊗ (pi+1, p

′
i+1)⊗ · · · ⊗ (pn, p

′
n), (3.2.1)

with n ∈ N, n ≥ 1, pi, p
′
i ∈ p, 1 ≤ i ≤ n. By the definition of U(t) and U(ε), the value

of U(ε) U(t) on (3.2.1) is

(p1 +p′1, 0)⊗· · ·⊗(pi−1 +p′i−1, 0)⊗(pi, 0)⊗(pi+1 +p′i+1, 0)⊗· · ·⊗(pn+p′n, 0). (3.2.2)

In Ker U(s)/X,

(p1 + p′1, 0)⊗ · · · ⊗ (pi−1 + p′i−1, 0)⊗ (pi, 0)⊗ (pi+1 + p′i+1, 0)⊗ · · · ⊗ (pn + p′n, 0)

= (p1, p
′
1)⊗ · · · ⊗ (pi−1 + p′i−1, 0)⊗ (pi, 0)⊗ (pi+1 + p′i+1, 0)⊗ · · · ⊗ (pn + p′n, 0),

since (p′1,−p′1)⊗· · ·⊗(pi−1 +p′i−1, 0)⊗(pi, 0)⊗(pi+1 +p′i+1, 0)⊗· · ·⊗(pn+p′n, 0) ∈ X.
By repeating this process we can easily derive that

(p1 + p′1, 0)⊗ · · · ⊗ (pi−1 + p′i−1, 0)⊗ (pi, 0)⊗ (pi+1 + p′i+1, 0)⊗ · · · ⊗ (pn + p′n, 0)

= (p1, p
′
1)⊗ · · · ⊗ (pi−1 + p′i−1, 0)⊗ (pi, 0)⊗ (pi+1 + p′i+1, 0)⊗ · · · ⊗ (pn + p′n, 0)

= · · ·
= (p1, p

′
1)⊗ · · · ⊗ (pi−1, p

′
i−1)⊗ (pi, 0)⊗ (pi+1, p

′
i+1)⊗ · · · ⊗ (pn, p

′
n).

Thus, the elements (3.2.1) and (3.2.2) are equal in Ker U(s)/X and it follows that

π U(ε)U(t)|Ker U(s) = idKer U(s) .

Therefore we have found an inverse for the morphism of crossed modules of algebras
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(U(t)|Ker U(s), idU(p)), which is given by

U(p) U(p)

Ker U(s) U(p).

idU(p)

π U(ε) idU(p)

U(t)

Note that we have already proved that the above diagram commutes. Besides, given
p, p′ ∈ p, if we consider them as elements in U(p), π U(ε)(p⊗p′) = (p, 0)⊗(p′, 0)+X =
(0, p)⊗ (p′, 0) +X = (p, 0)⊗ (0, p′) +X, so π U(ε) clearly preserves the action of U(p)
on itself via idU(p) when extended to all the elements in U(p).

Finally, (U(t)|Ker U(s), idU(p)) is natural, as shown in the diagram below, where

α : p→ p′ is a Lie homomorphism. Note that U(α, α) is actually U(α, α)|Ker U(s).

Ker U(s) U(p)

Ker U(s′) U(p′)

U(p) U(p)

U(p′) U(p′)

U(t)

U(t)
U(α
,α

)

idU(p)U(α
)

U(t′)

U(t′) idU(p′)

idU(p)

U(α
)

U(α
)

idU(p′)

3.2.3 Adjunction between XLie and XAs

The following result is a natural generalization of the well-known classical adjunction
between the categories Lie and As.

Theorem 3.2.5. The functor XU is left adjoint to the Liezation functor XLieAs.

Proof. Given (m,p, ν) in XLie and (B,A, ρ) in XAs, we have to construct a natural
bijection

HomXLie

(
(m,p, ν), XLieAs(B,A, ρ)

) ∼= HomXAs

(
XU(m,p, ν), (B,A, ρ)

)
.



3.2.3 Adjunction between XLie and XAs 113

Let (ϕ,ψ) ∈ HomXLie

(
(m,p, ν), XLieAs(B,A, ρ)

)
, that is

m p

LieAs(B) LieAs(A)

ν

ϕ ψ

ρ

such that ρϕ = ψν and ϕ preserves the action of p on m via ψ.
We can consider the following morphism of cat1-Lie algebras by using the functor

catLie as defined in the proof of Proposition 1.2.23, as well as Lemma 3.2.3:

mo p p

LieAs(B oA) LieAs(A)

s

t

ϕ′ ψ

σ

τ

where ϕ′(m, p) = (ϕ(m), ψ(p)) for all (m, p) ∈ m o p. Since the functor U is left
adjoint to the functor LieAs, we have the induced commutative diagrams of algebras

U(mo p) U(p)

B oA A

U(s)

ϕ′∗ ψ∗

σ

and

U(mo p) U(p)

B oA A.

U(t)

ϕ′∗ ψ∗

τ

Besides, we have a uniquely defined morphism of cat1-algebras:

U(mo p)/X U(p)

B oA A

U(s)

U(t)

ϕ′∗ ψ∗

σ

τ

where X = Ker U(s) Ker U(t) + Ker U(t) Ker U(s).
Finally, we can use the functor XmAs, described in the proof of Proposition 1.2.34,

to get a uniquely defined morphism (ϕ∗∗, ψ∗) in HomXAs

(
XU(m,p, ν), (B,A, ρ)

)
:

Ker U(s) U(p)

Kerσ A

B A.

U(t)

ϕ′∗

ϕ∗∗

ψ∗

τ

' idA

ρ
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Note that in the diagram above ϕ′∗ = ϕ′∗|Ker U(s), Kerσ = Bo{0} and τ = τ |Kerσ = ρ.

Now, let (φ, χ) ∈ HomXAs

(
XU(m,p, ν), (B,A, ρ)

)
, that is

Ker U(s) U(p)

B A

U(t)

φ χ

ρ

such that ρφ = χU(t) and φ preserves the action of U(p) on Ker U(s) via χ.

We can consider the corresponding morphism of cat1-algebras by using the functor
catAs as defined in the proof of Proposition 1.2.34.

U(mo p)/X U(p)

Ker U(s)o U(p) U(p)

B oA A.

U(s)

U(t)

'

φ′

idU(p)

σ̃

τ̃

(φ,χ) χ

σ

τ

Observe that the isomorphism in the diagram above is explicitly described at the end
of the proof of Proposition 1.2.34, as well as σ̃ and τ̃ .

Let φ = φ′π, with π : U(m o p) → U(m o p)/X the canonical projection. Hence,
we have the commutative diagrams of algebras

U(mo p) U(p)

B oA A

U(s)

φ χ

σ

and

U(mo p) U(p)

B oA A.

U(t)

φ χ

τ

Since the functor U is left adjoint to the functor LieAs, we have the morphism of
cat1-Lie algebras

mo p p

LieAs(B oA) LieAs(A).

s

t

φ∗ χ∗

σ

τ

Finally, we can use the functor XmLie, described in the proof of Proposition 1.2.23,
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to get a uniquely defined morphism (φ∗∗, χ∗) in HomXLie

(
(m,p, ν), XLieAs(B,A, ρ)

)
:

m p

Ker s p

Kerσ LieAs(A)

LieAs(B) LieAs(A).

ν

'

φ∗∗

idp

t

φ∗|Ker s χ∗

τ

' idLieAs(A)

ρ

Note that in the diagram above Ker s = mo {0}, t = t|Ker s = ν, Kerσ = LieAs(B)o
{0} and τ = τ |Kerσ = ρ.

Bearing in mind the previous theorem along with Propositions 1.2.20 and 1.2.31,
one can easily deduce the following result.

Theorem 3.2.6. The inner and outer squares in the following diagrams are commu-
tative or commute up to isomorphism for i = 0, 1.

As Lie As Lie

XAs XLie XAs XLie

⊥
LieAs

I′ia

U

Ii `

⊥
LieAs

I′i a

U

Ii`

>
XLieAs

Φ′i

XU

Φi

>
XLieAs

Φ′i+1

XU

Φi+1 (3.2.3)

Proof. Let us begin with the first diagram. Directly from the definition of the functors
involved, XLieAs ◦ I′i = Ii ◦ LieAs for i=0,1. Besides, from the adjunctions described
in the first diagram, we get that U ◦ Φi is left adjoint to Ii ◦ LieAs, while Φ′i ◦ XU is left
adjoint to XLieAs ◦ I′i, for i = 0, 1. Hence, U ◦ Φi ∼= Φ′i ◦ XU for i = 0, 1.

Regarding the second diagram, the commutativity of the outer square is obvious
for i = 0, while in Proposition 3.2.4 we proved that there is a natural isomorphism
XU ◦ I1

∼= I′1 ◦ U. Therefore, by a similar reasoning to the one used for the first diagram,
we get that LieAs ◦ Φ′i+1

∼= Φi+1 ◦ XLieAs for i = 0, 1.

Recall that in Section 2.3 we gave an explicit definition of left modules over crossed
modules of Lie and associative algebras.
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Lemma 3.2.7. Let δ : V →W be a K-module homomorphism, regarded as an abelian
crossed module of algebras (Lie algebras). Then, using the same notations as in
Lemma 2.3.4, the Lie crossed module XLieAs

(
HomK(W,V ),End(V,W, δ),Γ

)
coin-

cides with the actor crossed module Act(V,W, δ) =
(

Der(W,V ),Der(V,W, δ),∆
)
.

Proof. Since V and W are considered as abelian Lie algebras together with the trivial
action of W on V , it is clear that Der(W,V ) = Lie

(
HomK(W,V )

)
, Der(V,W, δ) =

LieAs
(
End(V,W, δ)

)
and ∆ = LieAs(Γ). Moreover, the Lie action of Der(V,W, δ) on

Der(W,V ) is induced by the algebra action of End(V,W, δ) on HomK(W,V ).

Theorem 3.2.8. Let (m,p, ν) be a Lie crossed module. Then the categories of left
(m,p, ν)-modules and left XU(m,p, ν)-modules are isomorphic.

Proof. By using Theorem 3.2.5 and Lemma 3.2.7, left (m,p, ν)-module structures on
a K-module homomorphism δ : V → W are in bijective correspondence with left
XU(m,p, ν)-module structures on it:

HomXLie

(
(m,p, ν),Act(V,W, δ)

)
= HomXLie

(
(m,p, ν), XLieAs

(
HomK(W,V ),End(V,W, δ),Γ

))
≈ HomXAs

(
XU(m,p, ν),

(
HomK(W,V ),End(V,W, δ),Γ

))
.

Due to the conditions satisfied by a morphism between modules over a crossed module
of Lie and associative algebras (see (2.3.1)–(2.3.3) and (2.3.9)–(2.3.11)), it is easy to
check that this correspondence is functorial.

Finally, let us remark that right modules (over crossed modules of Lie and as-
sociative algebras) could be defined similarly and could equally be used everywhere
instead of left modules.

3.3 XLb vs XDias

As explained by Loday in [65], a Leibniz algebra is a non-commutative version of a
Lie algebra. When we replace Lie algebras by Leibniz algebras, the role of associative
algebras is played by associative dialgebras.

Any dialgebra D becomes a Leibniz algebra with the bracket given by [x, y] = x a
y − y ` x for all x, y ∈ D. Moreover, any dialgebra homomorphism f : D → L is a
Leibniz algebra homomorphism if we consider the bracket previously defined both in
D and L. Thus we have a functor Lb : Dias→ Lb.

The functor Lb admits a left adjoint, Ud : Lb → Dias, which assigns to a Leibniz
algebra p its universal enveloping dialgebra Ud(p) (see [65]), which is defined as the
quotient T(p) ⊗ p ⊗ T(p)/J of the free dialgebra over the underlying K-module of p
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by the ideal J generated by p1 a p2 − p2 ` p1 − [p1, p2], for all p1, p2 ∈ p. Note that
the two products in T(p)⊗ p⊗ T(p) are induced by

(p−n · · · p−1 ⊗ p0 ⊗ p1 · · · pm) a (q−s · · · q−1 ⊗ q0 ⊗ q1 · · · qt)
= p−n · · · p−1 ⊗ p0 ⊗ p1 · · · pmq−s · · · qt,

(p−n · · · p−1 ⊗ p0 ⊗ p1 · · · pm) ` (q−s · · · q−1 ⊗ q0 ⊗ q1 · · · qt)
= p−n · · · pmq−s · · · q−1 ⊗ q0 ⊗ q1 · · · qt,

where pi, qi ∈ p. Note that central dots in the previous expressions represent tensor
products, but they are omitted in order to indicate clearly the middle entry, which is
p0 in the first case and q0 in the second one.

Given a Leibniz homomorphism f : p → m, we can define Ud(f) : Ud(p) → Ud(m)
by extending the definition of f to the elements of Ud(p) by linearity.

In this section we extend the functors Lb and Ud to the categories XDias and XLb
in such a way that those extensions are still adjoint to one another.

3.3.1 From XDias to XLb

Let us first show that the functor Lb preserves the semidirect product.

Lemma 3.3.1. Given D and L two associative dialgebras together with an action of
D on L, there is an action of Lb(D) on Lb(L) given by

[x, a] = x a a− a ` x,
[a, x] = a a x− x ` a,

for all x ∈ Lb(D), a ∈ Lb(L).

Proof. The six conditions from the Definition 1.2.37 can be checked by straightforward
calculations, using the 30 equalities from the Definition 1.2.50. We show here how to
check the first condition; the rest of them can be done analogously. Let a ∈ Lb(L),
x, x′ ∈ Lb(D). We will prove that [a, [x, x′]] = [[a, x], x′]− [[a, x′], x].

[a, [x, x′]] = [a, x a x′ − x′ ` x] = a a (x a x′ − x′ ` x)− (x a x′ − x′ ` x) ` a
= a a (x a x′)︸ ︷︷ ︸

(2)

−a a (x′ ` x)︸ ︷︷ ︸
(1)

−(x a x′) ` a︸ ︷︷ ︸
(4)

+(x′ ` x) ` a︸ ︷︷ ︸
(5)

,

[[a, x], x′] = [a a x− x ` a, x′] = (a a x− x ` a) a x′ − x′ ` (a a x− x ` a)

= (a a x) a x′︸ ︷︷ ︸
(2)

−(x ` a) a x′︸ ︷︷ ︸
(3)

−x′ ` (a a x)︸ ︷︷ ︸
(3′)

+x′ ` (x ` a)︸ ︷︷ ︸
(5)

,

−[[a, x′], x] = −(a a x′) a x︸ ︷︷ ︸
(1)

+(x′ ` a) a x︸ ︷︷ ︸
(3′)

+x ` (a a x′)︸ ︷︷ ︸
(3)

−x ` (x′ ` a)︸ ︷︷ ︸
(4)

.
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The addends labelled by (1) are equal because of the equality in Definition 1.2.50
constructed from (Di1), with the first element in L and the other two in D. The
same happens with the parts labelled by (2), (4) and (5), using the corresponding
equalities from (Di2), (Di4) and (Di5). The parts labelled by (3) cancel each other
due to the equality in Definition 1.2.50 constructed from (Di3) with the first and the
third elements in D and the second in L. The same applies to (3′).

Lemma 3.3.2. Let D and L be two associative dialgebras together with an action of
D on L. Then Lb(LoD) = Lb(L)o Lb(D).

Proof. Due to the previous lemma, Lb(D) acts on Lb(L), so it makes sense to consider
the semidirect product Leibniz algebra Lb(L)oLb(D). It is clear that Lb(LoD) and
Lb(L)o Lb(D) are equal as K-modules, so we only need to check that they share the
same bracket. Let (a, x), (a′, x′) ∈ L×D. If we use the bracket in Lb(L)o Lb(D), we
get:

[(a, x), (a′, x′)] = ([a, a′] + [x, a′] + [a, x′], [x, x′])

= (a a a′ − a′ ` a+ x a a′ − a′ ` x+ a a x′ − x′ ` a, x a x′ − x′ ` x).

On the other hand, if we use the bracket in LieAs(B oA), we get

[(a, x), (a′, x′)] = (a, x) a (a′, x′)− (a′, x′) ` (a, x)

= (a a a′ + x a a′ + a a x′, x a x′)− (a′ ` a+ x′ ` a+ a′ ` x, x′ ` x),

so the brackets are equal.

Given a crossed module of dialgebras (L,D, µ), we can now define XLb(L,D, µ) as
the Leibniz crossed module (Lb(L), Lb(D), Lb(µ)), with the action of Lb(D) on Lb(L)
described in Lemma 3.3.1. Note that Lb(µ) = µ. Directly from (XDi1), (XDi2) and
the definition of the Leibniz action, we get that (Lb(L), Lb(D), Lb(µ)) satisfies (XLb1)
and (XLb2).

Moreover, any morphism of crossed modules of dialgebras (ϕ,ψ) : (L,D, µ) →
(L′, D′, µ′) is morphism of crossed modules of Leibniz algebras from (Lb(L), Lb(D), µ)
to (Lb(L′), Lb(D′), µ′), since

ϕ([x, a]) = ϕ(x a a− a ` x) = ψ(x) a ϕ(a)− ϕ(a) ` ψ(x) = [ψ(x), ϕ(a)],

ϕ([a, x]) = ϕ(a a x− x ` a) = ϕ(a) a ψ(x)− ψ(x) ` ϕ(a) = [ϕ(a), ψ(x)],

for all x ∈ Lb(D), a ∈ Lb(L).
The previous assignments define a functor XLb : XDias→ XLb, which is a natural

generalization of the functor Lb : Dias → Lb in the following sense. Recall that we
have the full embeddings

J0, J1 : Lb XLb J′0, J
′
1 : Dias XDias
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where J0(p) = ({0}, p, 0), J1(p) = (p, p, idp), J′0(D) = ({0}, D, 0) and J′1(D) =
(D,D, idD). It is obvious that the following diagram is commutative for i = 0, 1.

Dias XDias

Lb XLb .

J′i

Lb XLb

Ji

3.3.2 Universal enveloping crossed module of a Leibniz crossed
module

Let us now construct the left adjoint to the functor XUd, which generalizes the universal
enveloping dialgebra functor Ud : Lb→ Dias to crossed modules.

Let (m, p, η) be a Leibniz crossed module and consider its corresponding cat1-
Leibniz algebra as in the proof of Proposition 1.2.46, that is

mo p p
s

t

with s(m, p) = p and t(m, p) = η(m) + p for all (m, p) ∈ mo p. Now, if we apply Ud
to the previous diagram, we get

Ud(mo p) Ud(p).
Ud(s)

Ud(t)

Although it is true that Ud(s)|Ud(p) = Ud(t)|Ud(p) = idUd(p), in general, the second
condition for cat1-dialgebras (CDi2) is not satisfied. For instance, if we take m ∈
m \ {0}, it is clear that (m, 0) ∈ Ker Ud(s) and (m,−η(m)) ∈ Ker Ud(t). However,
(m, 0)⊗ (m,−ν(m)) 6= 0, so Ker Ud(s) ∗Ker Ud(t) 6= 0 for ∗ =a and ∗ =`.

Nevertheless, we can consider the quotient Ud(m o p) = Ud(m o p)/X, where
X = Ker Ud(s) a Ker Ud(t)+Ker Ud(t) a Ker Ud(s)+Ker Ud(s) ` Ker Ud(t)+Ker Ud(t) `
Ker Ud(s), and the induced morphisms Ud(s) and Ud(t). In this way, the diagram

Ud(mo p) Ud(p)
Ud(s)

Ud(t)

is clearly a cat1-dialgebra. Note that X ⊂ Ker Ud(t) and Ud(t)|Ud(p) = idUd(p), since
t|p = idp. Given v, w ∈ Ud({0} o p) ' Ud(p), if v − w ∈ X, then 0 = Ud(t)(v − w) =
v − w. Therefore Ud(p) can be regarded as a subalgebra of Ud(mo p).

We can now define XUd(m, p, η) as the crossed module of dialgebras given by
(Ker Ud(s), Ud(p), Ud(t)|Ker Ud(s)

). Sometimes we will write Ud(t) instead of Ud(t)|Ker Ud(s)

to ease notation.



120 3 Adjunctions between categories of crossed modules

For any morphism of Leibniz crossed modules (ϕ,ψ) : (m, p, η) → (m′, p′, η′),
XUd(ϕ,ψ) is given by

Ker Ud(s) Ud(p)

Ker Ud(s
′) Ud(p

′)

Ud(t)

Ud(ϕ,ψ)|Ker Ud(s)
Ud(ψ)

Ud(t
′)

where Ud(ϕ,ψ) is the algebra homomorphism induced by Ud(ϕ,ψ), which is itself the
linear extension of (ϕ,ψ) : mo p→ m′ o p′, given by (ϕ,ψ)(m, p) = (ϕ(m), ψ(p)) for
all (m, p) ∈ mo p.

The functor XUd : XLb → XDias is a natural generalization of the functor Ud, in
the sense that it makes the following diagram commute,

Lb XLb

Dias XDias .

J0

Ud XUd

J′0

Regarding the embeddings J1 and J′1, we have the following result.

Proposition 3.3.3. There is a natural isomorphism of functors

XUd ◦ J1
∼= J′1 ◦ Ud .

Proof. Let p ∈ Lb. We need to show that XUd(p, p, idp) is naturally isomorphic to
(Ud(p), Ud(p), idUd(p)). In order to do so, we will prove that (Ud(t)|Ker Ud(s)

, idUd(p)) is an

isomorphism of crossed modules of dialgebras between (Ker Ud(s), Ud(p), Ud(t)|Ker Ud(s)
)

and (Ud(p), Ud(p), idUd(p)).
Note that (Ud(t)|Ker Ud(s)

, idUd(p)) is indeed a morphism of crossed modules of di-
algebras (see Example 1.2.56 (iii)). Recall that the first step in the construction of
XUd(p, p, idp) requires us to consider the cat1-Leibniz algebra

po p p
s

t

with s(p, p′) = p′ and t(p, p′) = p + p′ for all p, p′ ∈ p. Let us define the Leibniz
homomorphism ε : p→ po p, ε(p) = (p, 0). It is clear that sε = 0 and tε = idp.

The next step is to apply the functor Ud on the previous cat1-Leibniz algebra and
take the quotient of Ud(po p) by X = Ker Ud(s) a Ker Ud(t) + Ker Ud(t) a Ker Ud(s) +
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Ker Ud(s) ` Ker Ud(t) + Ker Ud(t) ` Ker Ud(s) in order to guarantee that we have a
cat1-dialgebra. In the next diagram of dialgebras,

Ud(p) Ud(po p) Ud(p)

Ud(po p)/X

Ud(ε)

π

Ud(s)

Ud(t)

Ud(
s)

Ud(
t)

where π is the canonical projection, it is easy to see that Ud(s)π U(ε) = Ud(s) Ud(ε) =
Ud(sε) = 0 and Ud(t)π Ud(ε) = Ud(t) Ud(ε) = Ud(tε) = idUd(p). Hence π Ud(ε) takes values
in Ker Ud(s) and it is a right inverse for Ud(t) |Ker Ud(s)

.

Now we need to show that π Ud(ε)Ud(t) = idKer Ud(s)
. Note that X ⊂ Ker Ud(s),

so Ker Ud(s) = Ker Ud(s)/X and, as a K-module, Ker Ud(s) is generated by all the
elements of the form

(p−n, p
′
−n)⊗ · · · ⊗ (pi, 0)⊗ · · · ⊗ (pm, p

′
m) (3.3.1)

with n,m ∈ N, pi, p
′
i ∈ p, −n ≤ i ≤ m. By the definition of Ud(t) and Ud(ε), the value

of Ud(ε) Ud(t) on (3.3.1) is

(p−n + p′−n, 0)⊗ · · · ⊗ (pi, 0)⊗ · · · ⊗ (pm + p′m, 0). (3.3.2)

Furthermore, one can easily derive the following equalities in Ker Ud(s)/X:

(p−n + p′−n, 0)⊗ · · · ⊗ (pi, 0)⊗ · · · ⊗ (pm + p′m, 0)

= (p−n, p
′
−n)⊗ · · · ⊗ (pi, 0)⊗ · · · ⊗ (pm + p′m, 0)

= · · ·
= (p−n, p

′
−n)⊗ · · · ⊗ (pi, 0)⊗ · · · ⊗ (pm, p

′
m).

Thus, the elements (3.3.1) and (3.3.2) are equal in Ker Ud(s)/X and it follows that

π Ud(ε)Ud(t)|Ker Ud(s)
= idKer Ud(s)

.

Therefore we have found an inverse for the morphism of crossed modules of dialgebras
(Ud(t)|Ker Ud(s)

, idUd(p)), which is given by

Ud(p) Ud(p)

Ker Ud(s) Ud(p).

idUd(p)

π Ud(ε) idUd(p)

Ud(t)
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Note that we have already proved that the above diagram commutes. Moreover, given
pi, p

′
i ∈ p for i = −1, 0, 1, let v = p−1 ⊗ p0 ⊗ p1 and w = p′−1 ⊗ p′0 ⊗ p′1. Then,

π Ud(ε)(v a w) = (p−1, 0)⊗ (p0, 0)⊗ (p1, 0)(p′−1, 0)(p′0, 0)(p′1, 0) +X

= (0, p−1)⊗ (0, p0)⊗ (0, p1)(p′−1, 0)(p′0, 0)(p′1, 0) +X

= v a π Ud(ε)(w).

π Ud(ε)(v a w) = (p−1, 0)⊗ (p0, 0)⊗ (p1, 0)(p′−1, 0)(p′0, 0)(p′1, 0) +X

= (p−1, 0)⊗ (p0, 0)⊗ (p1, 0)(0, p′−1)(0, p′0)(0, p′1) +X

= π Ud(ε)(v) a w.

Similarly, π Ud(ε)(v ` w) = v ` π Ud(ε)(w) = π Ud(ε)(v) ` w, so π Ud(ε) preserves the
action of Ud(p) on itself via idUd(p) when extended to all the elements in Ud(p).

Finally, (Ud(t)|Ker Ud(s)
, idUd(p)) is natural, as shown in the diagram below, where

α : p→ p′ is a Leibniz homomorphism. Note that Ud(α, α) is actually Ud(α, α)|Ker Ud(s)
.

Ker Ud(s) U(p)

Ker Ud(s
′) Ud(p

′)

Ud(p) Ud(p)

Ud(p
′) Ud(p

′)

Ud(t)

Ud(t)Ud
(α
,α

)

idUd(p)Ud
(α

)

Ud(t
′)

Ud(t
′) idUd(p

′)

idUd(p)

Ud
(α

)

Ud
(α

)

idUd(p
′)

3.3.3 Adjunction between XLb and XDias

The following result is a natural generalization of the well-known adjunction between
the categories Lb and Dias.

Theorem 3.3.4. The functor XUd is left adjoint to the functor XLb.

Proof. Given (m, p, η) in XLb and (L,D, µ) in XDias, we have to construct a natural
bijection

HomXLb

(
(m, p, η), XLb(L,D, µ)

) ∼= HomXDias

(
XUd(m, p, η), (L,D, µ)

)
,
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Let (ϕ,ψ) ∈ HomXLb

(
(m, p, η), XLb(L,D, µ)

)
, that is

m p

Lb(L) Lb(D)

η

ϕ ψ

µ

such that µϕ = ψη and ϕ preserves the action of p on m via ψ.

We can consider the following morphism of cat1-Leibniz algebras by using the
functor catLb as defined in the proof of Proposition 1.2.46, as well as Lemma 3.3.2.

mo p p

Lb(LoD) Lb(D)

s

t

ϕ′ ψ

σ

τ

where ϕ′(m, p) = (ϕ(m), ψ(p)) for all (m, p) ∈ m o p. Since the functor Ud is left
adjoint to the functor Lb, we have the induced commutative diagrams of dialgebras

Ud(mo p) Ud(p)

LoD D

Ud(s)

ϕ′∗ ψ∗

σ

and

Ud(mo p) Ud(p)

LoD D

Ud(t)

ϕ′∗ ψ∗

τ

Besides, we have a uniquely defined morphism of cat1-dialgebras:

Ud(mo p)/X Ud(p)

LoD D

Ud(s)

Ud(t)

ϕ′∗ ψ∗

σ

τ

where X = Ker Ud(s) a Ker Ud(t) + Ker Ud(t) a Ker Ud(s) + Ker Ud(s) ` Ker Ud(t) +
Ker Ud(t) ` Ker Ud(s).

Finally, we can make use of the functor XmDias, which is described in the proof
of Proposition 1.2.61, in order to get a uniquely defined morphism (ϕ∗∗, ψ∗) in
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HomXDias

(
XUd(m, p, η), (L,D, µ)

)
:

Ker Ud(s) Ud(p)

Kerσ D

L D.

Ud(t)

ϕ′∗

ϕ∗∗

ψ∗

τ

' idD

µ

Note that, in the diagram above, ϕ′∗ = ϕ′∗|Ker Ud(s)
, Kerσ = L o {0}, and τ =

τ |Kerσ = µ.
Now, let (φ, χ) ∈ HomXDias

(
XUd(m, p, η), (L,D, µ)

)
, that is

Ker Ud(s) Ud(p)

L D

Ud(t)

φ χ

µ

such that µφ = χUd(t) and φ preserves the action of Ud(p) on Ker Ud(s) via χ.
We can consider the corresponding morphism of cat1-dialgebras by using the func-

tor catDias as defined in the proof of Proposition 1.2.61.

Ud(mo p)/X Ud(p)

Ker Ud(s)o Ud(p) Ud(p)

LoD D.

Ud(s)

Ud(t)

'

φ′

idUd(p)

σ̃

τ̃

(φ,χ) χ

σ

τ

Observe that the isomorphism in the diagram above is explicitly described at the end
of the proof of Proposition 1.2.61, as well as σ̃ and τ̃ .

Let φ = φ′π, with π : Ud(mo p)→ Ud(mo p)/X the canonical projection. Hence,
we have the commutative diagrams of dialgebras

Ud(mo p) Ud(p)

LoD D

Ud(s)

φ χ

σ

and

Ud(mo p) Ud(p)

LoD D.

Ud(t)

φ χ

τ
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Since the functor Ud is left adjoint to the functor Lb, we have the morphism of cat1-
Leibniz algebras

mo p p

Lb(LoD) Lb(D).

s

t

φ∗ χ∗

σ

τ

Finally, we can use the functor XmLb, described in the proof of Proposition 1.2.46,
to get a uniquely defined morphism (φ∗∗, χ∗) in HomXLb

(
(m, p, η), XLb(L,D, µ)

)
:

m p

Ker s p

Kerσ Lb(D)

Lb(L) Lb(D).

η

'

φ∗∗

idp

t

φ∗|Ker s χ∗

τ

' idLb(D)

µ

Note that in the diagram above Ker s = mo {0}, t = t|Ker s = η, Kerσ = Lb(L)o {0}
and τ = τ |Kerσ = µ.

On account of the previous theorem along with Propositions 1.2.43 and 1.2.57,
one can easily deduce the following result.

Theorem 3.3.5. The inner and outer squares in the following diagrams are commu-
tative or commute up to isomorphism for i = 0, 1.

Dias Lb Dias Lb

XDias XLb XDias XLb

⊥
Lb

J′ia

Ud

Ji `

⊥
Lb

J′i a

Ud

Ji`

>
XLb

Ψ′i

XUd

Ψi

>
XLb

Ψ′i+1

XUd

Ψi+1 (3.3.3)

Proof. Let us begin with the first diagram. Directly from the definition of the functors
involved, XLb ◦ J′i = Ji ◦ Lb, for i=0,1. Besides, from the adjunctions described in the
first diagram, we get that Ud ◦ Ψi is left adjoint to Ji ◦ Lb, while Ψ′i ◦ XUd is left adjoint
to XLb ◦ J′i, for i = 0, 1. Hence Ud ◦ Ψi ∼= Ψ′i ◦ XUd for i = 0, 1.
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Regarding the second diagram, the commutativity of the outer square is obvious
for i = 0, while in Proposition 3.3.3 we proved that there is a natural isomorphism
XUd ◦ J1

∼= J′1 ◦ Ud. Therefore, by a similar reasoning to the one used for the first
diagram, we get that Lb ◦ Ψ′i+1

∼= Ψi+1 ◦ XLb for i = 0, 1.

3.4 Relations between crossed modules of Lie, Leib-
niz, associative algebras and dialgebras

Any associative algebra A can be regarded as a dialgebra with a1 a a2 = a1a2 =
a1 ` a2 for all a1, a2 ∈ A. Also, any morphism of algebras f : A → B is a morphism
of dialgebras when we consider the previous dialgebra structure both in A and B.

Therefore there is an inclusion functor As
⊂−→ Dias. In [65], it is described a left

adjoint As : Dias → As as follows. Given any dialgebra D, As(D) is the quotient of
D by the ideal generated by the elements x1 a x2 − x1 ` x2, with x1, x2 ∈ D. It
is clear that a = ` in As(D), so it is an associative algebra (not necessarily unital).
For any morphism of dialgebras g : D → L, we define As(g) = g : As(D) → As(L),
with g(x) = g(x), for all x ∈ As(D). It is obvious that g is well defined and it is a
morphism of algebras.

Additionally, every Lie algebra is a Leibniz algebra and every Lie homomorphism
can be regarded as a Leibniz homomorphism. There is a left adjoint LieLb : Lb→ Lie

to the inclusion functor Lie
⊂−→ Lb (see, for instance, [64]) defined as follows. Given

any Leibniz algebra p, LieLb(p) is the quotient of p by the ideal generated by the
elements [p, p], with p ∈ p. Analogously, given a Leibniz homomorphism g : m → p,
we will denote LieLb(g) by g.

We have the following diagram of adjunctions:

As Lie

Dias Lb

⊥
LieAs

⊂a

U

⊂ `

>
Lb

As

Ud

LieLb (3.4.1)

in which ⊂ ◦ LieAs = Lb ◦ ⊂. Regarding the outer square, since U is left adjoint to
LieAs and LieLb is left adjoint to ⊂, U ◦ LieLb is left adjoint to ⊂ ◦ LieAs. Likewise,
As ◦ Ud is left adjoint to Lb ◦ ⊂. Therefore U ◦ LieLb is naturally isomorphic to As ◦ Ud.

In the two previous sections we generalized the adjunctions U a LieAs and Ud a Lb.
Now we will do the same with As a ⊂ and LieLb a ⊂ in order to get a diagram for
crossed modules analogous to the one above.
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3.4.1 Adjunction between XAs and XDias

Let (B,A, ρ) be a crossed module of algebras. Both A and B can be regarded as
dialgebras and the identities a ∗ b = ab and b ∗ a = ba for all a ∈ A, b ∈ B, define an
action of dialgebras of A on B. Moreover, since a and ` are equal both as products
and actions, (XDi1) and (XDi2) follow from (XAs1) and (XAs2) respectively. Besides,
every morphism of crossed modules of algebras can be regarded as a morphism of
crossed modules of dialgebras.

Conversely, given a crossed module of dialgebras (L,D, µ), we define XAs(L,D, µ)
as the crossed module of algebras (As(L), As(D), µ), with As(L) the quotient of L by
the ideal generated by the elements a a a′ − a ` a′, x a a− x ` a, a a x− a ` x, for
all x ∈ D, a, a′ ∈ L. From the action of D on L we get an action of As(D) on As(L),
given by x a = x a a = x ` a and a x = a a x = a ` x for all x ∈ As(D), a ∈ As(L).
Since a and ` are equal as products in As(D) and As(L), and as an action of As(D)
on As(L), (XAs1) and (XAs2) follow from (XDi1) and (XDi2) respectively. Besides,
given a morphism of crossed modules of dialgebras (ϕ,ψ) : (L,D, µ) → (L′, D′, µ′),
(ϕ,ψ) : (As(L), As(D), µ) → (As(L′), As(D′), µ′) is a morphism of crossed modules of
algebras.

Proposition 3.4.1. The functor XAs : XDias→ XAs is left adjoint to the inclusion
functor XAs ↪→ XDias.

Proof. Let (L,D, µ) be a crossed module of dialgebras, (B,A, ρ) a crossed module of
algebras and (ϕ,ψ) : (L,D, µ) → (B,A, ρ) a morphism of crossed modules of dialge-
bras. Consider the quotient maps πL : L → As(L) and πD : D → As(D), which form
morphism of crossed modules of dialgebras. There is a unique morphism of crossed
modules of algebras (ϕ̃, ψ̃) : (As(L), As(D), µ) → (B,A, ρ), such that ϕ̃πL = ϕ and
ψ̃πD = ψ, where ϕ̃(a) = ϕ(a) and ψ̃(x) = ψ(x), for all a ∈ As(L), x ∈ As(D). Note
that ϕ̃ is well defined due to the fact that ϕ is a morphism of dialgebras together
with ϕ preserving the action of D on L via ψ and the identity a = ` in the dialgebra
structure of B, while the correctness of the definition of ψ̃ follows from ψ being a
morphism of dialgebras and the identity a = ` in A.

L D

As(L) As(D)

B A

µ

ϕ

πL

ψ

πD

µ

ϕ̃ ψ̃

ρ

Hence (πL, πD) : (L,D, µ) → (As(L), As(D), µ) is universal among the morphisms
from (L,D, µ) to (B,A, ρ), that is XAs a ⊂.
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The functor XAs : XDias → XAs is a natural generalization of As : Dias → As in
the sense that the following inner and outer diagrams are commutative or commute
up to isomorphism for i = 0, 1.

As Dias As Dias

XAs XDias XAs XDias

⊥
⊂

I′ia

As

J′i `

⊥
⊂

I′i a

As

J′i`

>
⊂

Φ′i

XAs

Ψ′i

>
⊂

Φ′i+1

XAs

Ψ′i+1
(3.4.2)

Note that I′1 ◦ As = XAs ◦ J′1 holds for any given dialgebra D, because As(D) = As(D)
for the crossed module (D,D, idD), since the action of D on itself is given by the left
and the right products in D.

3.4.2 Adjunction between XLie and XLb

Let (m,p, ν) be a Lie crossed module. Both m and p can be considered as Leibniz
algebras and the Lie action of p on m is itself a Leibniz action if we assume that
[m, p] = −[p,m] for all m ∈ m, p ∈ p. Moreover, due to the anti-commutativity of
the Lie brackets in p and m along with the anti-commutativity of the action, (XLb1)
and (XLb2) follow from (XLie1) and (XLie2) respectively. Besides, every morphism
of Lie crossed modules can be regarded as a morphism of Leibniz crossed modules.

Conversely, given a Leibniz crossed module (m, p, η), we define XLieLb(m, p, η) =
(LieLb(m), LieLb(p), η), with LieLb(m) the quotient of m by the ideal generated by
the elements [m,m] and [p,m] + [m, p] for all m ∈ m, p ∈ p. From the action of p
on m we get an induced action of LieLb(p) on LieLb(m). (XLie1) and (XLie2) follow
from (XLb1) and (XLb2). Besides, given a morphism of Leibniz crossed modules
(ϕ,ψ) : (m, p, η) → (m′, p′, η′), (ϕ,ψ) is a morphism of Lie crossed modules from
(LieLb(m), LieLb(p), η) to (LieLb(m

′), LieLb(p
′), η′).

Proposition 3.4.2. The functor XLieLb : XLb→ XLie is left adjoint to the inclusion
functor XLie ↪→ XLb.

Proof. Let (m, p, η) be a Leibniz crossed module, (m,p, ν) a Lie crossed module and
(ϕ,ψ) : (m, p, η) → (m,p, ν) a morphism of Leibniz crossed modules. Consider the
quotient maps πm : m → LieLb(m) and πp : p → LieLb(p), which form a morphism
of Leibniz crossed modules. There is a unique morphism of Lie crossed modules
(ϕ̃, ψ̃) : (LieLb(m), LieLb(p), η) → (m,p, ν), such that ϕ̃πm = ϕ and ψ̃πp = ψ, where

ϕ̃(m) = ϕ(m) and ψ̃(p) = ψ(p), for all m ∈ LieLb(m), p ∈ LieLb(p). Note that ϕ̃ is
well defined due to the fact that ϕ is a morphism of Leibniz algebras together with ϕ
preserving the action of p on m via ψ and the antisymmetry of the bracket in m, while
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the correctness of the definition of ψ̃ follows from ψ being a morphism of Leibniz
algebras and the antisymmetry of the bracket in p.

m p

LieLb(m) LieLb(p)

m p

η

ϕ

πm

ψ

πp

η

ϕ̃ ψ̃

ν

Hence (πm, πp) : (m, p, η)→ (LieLb(m), LieLb(p), η) is universal among the morphisms
from (m, p, η) to (m,p, ν), that is XLieLb a ⊂.

The functor XLieLb : XLb→ XLie is a natural generalization of LieLb : Lb→ Lie
in the sense that the following inner and outer diagrams are commutative or commute
up to isomorphism for i = 0, 1.

Lie Lb Lie Lb

XLie XLb XLie XLb

⊥
⊂

Iia

LieLb

Ji `

⊥
⊂

Ii a

LieLb

Ji`

>
⊂

Φi

XLieLb

Ψi

>
⊂

Φi+1

XLieLb

Ψi+1 (3.4.3)

Note that I1 ◦ LieLb = XLieLb ◦ J1 holds for any given Leibniz algebra p because
LieLb(p) = LieLb(p) for the crossed module (p, p, idp), since the action of p on itself
is given by the bracket in p.

3.4.3 Extended diagram for categories of crossed modules

We have the following diagram of adjunctions

XAs XLie

XDias XLb

⊥
XLieAs

⊂a

XU

⊂ `

>
XLb

XAs

XUd

XLieLb (3.4.4)
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in which ⊂ ◦ XLieAs = XLb ◦ ⊂. Regarding the outer square, since XU is left adjoint to
XLieAs and XLieLb is left adjoint to ⊂, XU ◦ XLieLb is left adjoint to ⊂ ◦ XLieAs. Like-
wise, XAs ◦ XUd is left adjoint to XLb ◦ ⊂. Therefore XU ◦ XLieLb is naturally isomorphic
to XAs ◦ XUd.

Finally, by assembling the commutative squares (3.2.3), (3.3.3), (3.4.1), (3.4.2),
(3.4.3) and (3.4.4), we get the following result.

Theorem 3.4.3. In the following parallelepipeds of categories and functors

As Lie

Dias Lb

XAs XLie

XDias XLb

⊥
LieAs

I′ia

⊂`
U

`Ii`

⊂

Lb

>

J′ia

As

Ud

Ji `

Li
e L

b
Φ′i

⊥
XLieAs

⊂`

Φi

XU

`

⊂

Ψ′i

XLb

>

XA
s

Ψi

XUd

XL
ie

Lb

As Lie

Dias Lb

XAs XLie

XDias XLb

⊥
LieAs

I′i a

⊂`

U

` Ii`

⊂

Lb

>

J′i a

As

Ud

Ji`

Li
e L

b

Φ′i+1

⊥
XLieAs

⊂`

Φi+1

XU

`
⊂

Ψ′i+1

XLb

>

XA
s

Ψi+1

XUd

XL
ie

Lb

all the inner and outer squares of adjoint functors are commutative or commute up to
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isomorphism for i = 0, 1. Note that, for each face in the diagrams above, left adjoints
form the outer square, while right adjoints form the inner square.
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Chapter 4

Conclusions and further
research

Our initial goal was to achieve a generalization to crossed modules of the adjunction
between the Liezation functor LieAs : As→ Lie and the universal enveloping algebra
functor U : Lie→ As, together with an isomorphism between the categories of modules
over a Lie crossed module and its universal enveloping crossed module. These results
can be found in Section 3.2 and [17].

The next logical step was to construct the corresponding 2-dimensional analogue
to the adjunction between the functors Lb : Dias→ Lb and Ud : Lb→ Dias. Addition-
ally, we assembled all the resulting commutative (or commutative up to isomorphism)
squares of categories and functors into four parallelepipeds. These constructions can
be found in Sections 3.3 and 3.4 as well as in [18].

As a consequence of the aforementioned results we noticed that the known gener-
alization to crossed modules of the group algebra functor does not behave as naturally
as one could expect, which is discussed in Subsection 3.1.2.

Some of our main results involve crossed modules of dialgebras, so it was manda-
tory to give a proper definition and study some of their basic properties (see Subsec-
tion 1.2.5). Furthermore, it seemed natural to give an equivalent description in terms
of strict 2-dialgebras, which is presented in Section 1.3.

It is a well-known fact that the group of automorphisms and the Lie algebra of
derivations are the actors in the categories of groups and Lie algebras, respectively.
Additionally, it is also known that the Leibniz algebra of biderivations and the algebra
of bimultipliers, under certain hypotheses, play the role of actor in the categories of
Leibniz algebras and associative algebras, respectively. Bearing these facts in mind,
we constructed the dialgebra of tetramultipliers, which is the actor of a given dialgebra
in some particular cases (see Subsection 2.1.1).

The actor in the category of groups was extended to crossed modules by Norrie

133
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[73], while the 2-dimensional analogue to the actor in the category of Lie algebras was
described by Casas and Ladra [27]. On account of those generalizations we considered
the possibility of extending the Leibniz algebra of biderivations to crossed modules,
what led us to the construction of a Leibniz crossed module that works as the actor
under certain conditions. Our approach and the subsequent results are presented in
Subsection 2.2.3.

In many occasions, research leads to a few answers and a lot of new questions
and our work is not an exception. In this way, several resulting problems remain
open for further investigations. We would like to mention here a few of them. For
instance, it would be interesting to give a proper definition of semistrict 2-dialgebras
by replacing the identities from the axioms in the definition of their strict version by
trilinear natural isomorphisms, along with their corresponding coherence diagrams.

Additionally, the steps in the construction of the (sometimes) actor of a Leibniz
crossed module suggest two candidates for the 2-dimensional analogues of the alge-
bra of bimultipliers and the dialgebra of tetramultipliers, which are, under certain
conditions, the actors in the categories of algebras and dialgebras, respectively.

It is a well-known fact that the group algebra K(G) of a group G and the universal
enveloping algebra U(p) of a Lie algebra p are Hopf algebras. Therefore, it might
be natural to consider the possibility of XK(H,G, ∂) and XU(m,p, ν) being crossed
modules of Hopf algebras. Nevertheless, we should first find an appropriate definition
of crossed module of Hopf algebras. One could consider the definition presented in
[43], although Faria Martins explored another option in the recent article [42].

The universal enveloping dialgebra functor Ud : Lb → Dias is left adjoint to
Lb : Dias → Lb (see [65]). However, in contrast to the Lie case, this functor is not
adequate to study representations. Loday and Pirashvili proved in [66] that, given a
Leibniz algebra p, the category of right (respectively left) UL(p)-modules is equivalent
to the category of p-representations (respectively p-co-representations), where UL(p)
is the universal enveloping algebra of p. It might be interesting to try to extend this
equivalence to crossed modules.
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actions 1, pp. 175–182. London Math. Soc. Lecture Note Ser., 242, Cambridge
Univ. Press, Cambridge, 1997.

[80] N. M. Shammu, Algebraic and categorical structure of categories of crossed
modules of algebras, Ph.D. Thesis, University of Bangor, 1992.

[81] Y. Sheng and Z. Liu, Leibniz 2-algebras and twisted Courant algebroids, Comm.
Algebra 41 (2013), 1929–1953.
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