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Notation

List of symbols most used throughout the work.

ℕ Set of natural numbers, that is, {1, 2, … }.

ℤ Set of integer numbers.

ℝ Set of real numbers.

ℝ+ Set of positive real numbers.

ℂ Set of complex numbers.

BV(𝐼) Functions of bounded variation defined on the interval 𝐼, that is,
{𝑓 ∶ 𝐼 → ℝ | 𝑉(𝑓 ) < +∞} where 𝑉(𝑓 ) = sup

u�∈u�u�

∑u�u�−1
u�=0 |𝑓 (𝑥u�+1) −

𝑓 (𝑥u�)|, 𝑃 = {𝑥0, … , 𝑥u�u�
} and u�u� is the set of partitions of 𝐼.

u�(𝐼) Space of continuous real functions defined on 𝐼.

u�u�(𝐼) Space of compactly supported continuous real functions defined on

𝐼.

u�u�(𝐼), 𝑘 ∈ ℕ Space of 𝑘-times differentiable real functions defined on 𝐼 such that

the 𝑗-th derivative is continuous for 𝑗 = 0, … , 𝑘.

u�∞(𝐼) Space of infinitely differentiable real functions defined on 𝐼.

𝐷 Derivative operator, in any broad sense.

𝑓u� Even part of a real function 𝑓 .

𝑓u� Odd part of a real function 𝑓 .

𝖧 Hilbert Transform, that is, 𝖧𝑓 (𝑡) ∶= 1
u� lim

u�→+∞
∫u�

−u�
u� (u�)
u�−u� d 𝑠.

ℑ Imaginary part.

Id Identity function or operator.

u� Set of compact subsets of ℝ.

Lp(𝐼), 𝑝 ≥ 1 Riesz-Lebesgue 𝑝 space on the set 𝐼, that is,
Lp(𝐼) = {𝑢 ∶ 𝐼 → ℝ | 𝑢 Lebesgue measurable , ∫u� |𝑢|u� < +∞}.

L∞(𝐼) The space of essentially bounded functions.

𝐴𝐶(𝐼) Absolutely continuous functions, that is, 𝐴𝐶(𝐼) =
{𝑢 ∈ u�(𝐼) | ∃ 𝑓 ∈ L1(𝐼), 𝑢(𝑡) = 𝑢(𝑎) + ∫u�

u� 𝑓 (𝑠) d 𝑠, 𝑡, 𝑎 ∈ 𝐼}.



𝑅[𝑋] Ring of polynomials with coefficients in 𝑅 and variable 𝑋 .

ℜ Real part.

Sloc(I) Local version of a function space. If 𝑆 is a function space which can

be defined on any compact set and 𝐼 ⊂ ℝ,

Sloc(I) ∶= {𝑢 ∶ 𝐼 → ℝ such that 𝑢|u� ∈ 𝑆(𝐾), 𝐾 ∈ u�}.

𝑆′ The dual of a topological vector space 𝑆.

𝑊u�,u�(𝐼), 𝑘, 𝑝 ∈ ℕ Sobolev space 𝑘 − 𝑝 on the set 𝐼, that is,
{𝑢 ∈ 𝐿u�(𝐼) | 𝑢(u�) ∈ 𝐿u�(𝐼), 𝛼 = 1, … , 𝑘}.

𝜒u� Characteristic function on the set 𝐴 ⊂ ℝ, that is, 𝜒u�(𝑡) = 1, 𝑡 ∈ 𝐴,

𝜒u�(𝑡) = 0, 𝑡 ∈ ℝ\𝐴.



Preface

The present Thesis contains most of the work undertaken by the author in the last years. It is

indeed a research adventure in the field of solutions of differential equations, therefrom the

title «Existence and multiplicity of solutions of functional differential equations». But, how to

tackle the study of such broad area? In what solutions are to differential equations, we can

take a rather simple approach: there are but two possibilities, either there exist or there exist

not, and, in the first case, there can be one or many.

Whether wewant to prove if there is one –uniqueness of solution– or many –multiplicity of

solution– determines the method to be used. Existence has been traditionally derived in two

ways: either through the direct construction of the solution or through topological methods,

the later, in most cases, involving global contractions like the Banach contraction theorem. In

the first part of the report we will deal with uniqueness in the first of the ways using what is

known as the Green’s function. Ever since thework of George Green on the subject, it has been

clear that one of the most fruitful ways of constructing solutions of different kinds of problems

is through the so called Green’s function, that is, the obtaining of a solution to a problem of

the kind 𝐿𝑢 = ℎ, 𝑢 ∈ 𝐻, where 𝐻 is a space of functions, 𝐿 is a linear operator on 𝐻 and

ℎ ∈ 𝐿(𝐻) by expressing it, if possible, in the form

𝑢(𝑡) = ∫ 𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠,

with some appropriate boundaries for the integral. It is then understood that this expression

provides the so-called maximum and anti-maximum principles, which in lay words convey the

simple idea that, if 𝐺 is positive and ℎ is positive then 𝑢 is positive (anti-maximum principle)

and if 𝐺 is negative and ℎ is positive then 𝑢 is negative (maximum principle).

This is just one of the many remarkable properties of Green’s functions, but as it usually

happens with useful structures, they are hard to obtain. In the case of functional equations

this is no exception and throughout the first seven chapters of this Thesis we will explore the

construction of these functions and their various applications. We will center our attention

in the case of equations with involutions, a particular field of functional differential equations

where we can reduce –in a specific sense wewill detail later– the problem studied to a problem

with ordinary differential equations. Wewill even write a computer program that will allow the

automatic calculation of Green’s functions in the case of constant coefficients and two-point

boundary conditions.

The strength of the Green’s functionsmethod relies on them being the kernel of the inverse

operator that gives us the unique solution for our problem but, of course, this is not the path

to take when we are expecting several solutions. In the second part of this work we explore a

particular kind of topological methods which will allow us to prove the multiplicity of solutions

and further localize those solutions within a carefully defined cone. The problems to which

we will apply this scheme will contain a nonlinearity, that is, a nontrivial, functional, relation

between the derivatives of the solution and the solution itself. The key point of this technique

relies on a refining of the classical Guo-Krasnosel’skiĭ theorem of cone contraction-expansion.

The nonlinearity, which takes real values, will oscillate in somemanner, going above and below



certain values depending on the variables and these ripples will cause, precisely, the existence

ofmany solutions. This situation is similar towhat happens to a bucket of water whenwe shake

it. If wemark a line a little bit above the water level and rock the bucket, ripples start to appear

and, when they get high enough, they reach the line we have marked. The more ripples there

are, the more times that level is reached.

Simple as itmay sound, the conditions that have to be satisfied in order to apply thismethod

can, aswewill see, get really convolutedwith the increasing generality of the problems studied.

All these discoveries appear in several publications the author haswritten during the prepa-

ration of the Thesis. The reader may consult [34, 35, 39–44,96,165,166].



Part I

Green’s functions
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Involutions have been an interesting subject of research at least since Rothe first computed

the number of different involutions onfinite sets in 1800 [152]. After that, Babbage published in

1815 [7] the foundational paper in which functional equations are first considered, in particular

those of the form 𝑓 (𝑓 (𝑡)) = 𝑡 which are called involutions†.

Despite of the progresses on the theory of functional equations, we have to wait for Silber-

steinwho, in 1940 [156], solved the first functional differential equationwith an involution. The

interest on differential equations with involutions is retaken by Wiener in 1969 [186]. Wiener,

together with Watkins, will lead the discoveries in this direction in the following decades [1,

155, 173, 174, 186–189]. Quite a lot of work has been done ever since by several authors. We

will make a brief review on this in Chapter 2. In 2013 the first Green’s function for a differential

equation with an involution was computed [39] and the field rapidly expanded [40,41,43,44].

This first part goes through those discoveries related to Green’s functions. In order to do

that, first we recall some general results concerning involutions which will help us understand

their remarkable analytic and algebraic properties. Chapter 1 will deal about this subject while

Chapter 2will give a brief overviewondifferential equationswith involutions to set the reader in

the appropriate research framework. We recommend the reader to go through themonograph

[187] which has a whole chapter on the subject and, although it was written more than twenty

years ago, it contains most of what is worth knowing on the matter.

In Chapter 3 we start working on the theory of Green’s functions for functional differential

equations with involutions in the most simple cases: order one problems with constant coeffi-

cients and reflection. Here we solve the problem with different boundary conditions, studying

the specific characteristics which appear when considering periodic, anti-periodic, initial or ar-

bitrary linear boundary conditions. We also apply some very well known techniques (lower

and upper solutions method or Krasnosel’skiĭ’s Fixed Point Theorem, for instance) in order to

further derive results.

Computing explicitly the Green’s function for a problem with nonconstant coefficients is

not simple, not even in the case of ordinary differential equations. We face these obstacles in

Chapter 4, where we reduce a new, more general problem containing nonconstant coefficients

and arbitrary differentiable involutions, to the one studied in Chapter 3. In order to do this we

use a double trick. First, we reduce the case of a general involution to the case of the reflection

using someof the knowledge gathered in Chapter 1 and thenweuse a special changeof variable

(only valid in some cases) that allows the obtaining of the Green’s function of problems with

nonconstant coefficients from the Green’s functions of constant-coefficient analogs.

To end this part of the work, we have Chapter 5, in which we deepen in the algebraic na-

ture of reflections and extrapolate these properties to other algebras. In this way, we do not

only generalize the results of Chapter 3 to the case of 𝑛-th order problems and general two-

point boundary conditions, but also solve functional differential problems in which the Hilbert

transform or other adequate operators are involved.

The last chapters of this part are about applying the results we have proved so far to some

related problems. First, in Chapter 6, setting again the spotlight on some interesting relation be-

†Babbage, in the preface to his work [7], described very well the importance of involutions: «Many of the

calculations with which we are familiar, consist of two parts, a direct, and an inverse; thus, when we consider an

exponent of a quantity: to raise any number to a given power, is the direct operation: to extract a given root of

any number, is the inverse method […] In all these cases the inverse method is by far de most difficult, and it might

perhaps be added, the most useful».
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tween an equation with reflection and an equation with a 𝜑-Laplacian, we obtain some results

concerning the periodicity of solutions of that first problem with reflection. Chapter 7 moves

to a more practical setting. It is of the greatest interest to have adequate computer programs

in order to derive the Green’s functions obtained in Chapter 5 for, in general, the computations

involved are very convoluted. Being so, we present in this chapter such an algorithm, imple-

mented inMathematica. We also add some considerations which could lead to simplifying the

computations and therefore the time necessary to run the program. The reader can find in the

appendix the exact code of the program.



1. Involutions and differential equations

1.1 The straight line problem

Before moving to the study of involutions, we will motivate it with a simple problem derived

from some considerations on the straight line.

Let us assume that 𝑥(𝑡) = 𝑎 𝑡 + 𝑏, where 𝑎, 𝑏 ∈ ℝ, is a straight line on the real plane.

Then, using the formula of the slope between two points (−𝑡, 𝑥(−𝑡)) and (𝑡, 𝑥(𝑡)) we have

that

𝑥′(𝑡) = 𝑥(𝑡) − 𝑥(−𝑡)
2𝑡 . (1.1.1)

Every straight line satisfies this equation. Nevertheless, observe that we are not asking for the

slope to be constant and therefore we may ask the following questions in a natural way: Are

all of the solutions of equation (1.1.1) straight lines? (see here the spirit of Babbage’s words

concerning inverse problems), How can we solve differential equations of this kind? How can

we guarantee the existence of solution?, How do the solutions of the equation depend on the

fact that 𝑥′ varies depending on both 𝑡 as well as of the image of 𝑡 by a symmetry (in this case

the reflection), or, more generally of an involution?

In order to answer the first question, we will study the even and odd functions – each one

with a different symmetry property– and how does the derivative operator act on them. We

do this study in its most basic form, on groups, and then apply it to the real case (a group with

the sum).

Definition 1.1.1. Let 𝐺 and 𝐻 be groups, 𝐴 ⊂ 𝐺 and define 𝐴−1 ∶= {𝑥−1 | 𝑥 ∈ 𝐺}. As-

sume that 𝐴−1 ⊂ 𝐴. We will say that 𝑓 ∶ 𝐴 → 𝐻 is a symmetric or even function if 𝑓 (𝑥−1) =
𝑓 (𝑥) ∀𝑥 ∈ 𝐴. Wewill say that 𝑓 is anantisymmetric orodd function if 𝑓 (𝑥−1) = 𝑓 (𝑥)−1 ∀𝑥 ∈
𝐴.

Remark 1.1.2. If 𝑓 is a homomorphism, 𝑓 is odd. That is because, first if 𝑓 is an homeo-

morphism, 𝐴 is a subgroup of 𝐺 and 𝑓 (𝐴) a subgroup of 𝐻. Now if 𝑒 represents the iden-

tity element of 𝐺, 𝑒′ that of 𝐻, and 𝑥 ∈ 𝐴, 𝑒′ = 𝑓 (𝑒) = 𝑓 (𝑥𝑥−1) = 𝑓 (𝑥)𝑓 (𝑥−1), so
𝑓 (𝑥−1) = 𝑓 (𝑥)−1. On the other hand, if 𝑓 is an even homomorphism, all of the elements

of 𝑓 (𝐴) satisfy 𝑦2 = 𝑒′ for every 𝑦 ∈ 𝑓 (𝐴). For this reason, the only even and odd function

with real values, that is, with values in the abelian group (ℝ, +), is the 0 function.

Remark 1.1.3. The set of even – respectively odd– functions of a subset 𝐴 ⊂ 𝐺 to a commu-

tative group 𝐻 is a group with the point-wise operation induced by the operation of 𝐻, that is,

(𝑓 𝑔)(𝑥) ∶= 𝑓 (𝑥)𝑔(𝑥) for every 𝑥 ∈ 𝐴, 𝑓 , 𝑔 ∶ 𝐴 → 𝐻 both even or odd.

Proposition 1.1.4. Let 𝐺 be a group, 𝐴 ⊂ 𝐺 such that 𝐴−1 ⊂ 𝐴, 𝑉 is a vector space on a field

𝔽 of characteristic not equal to 2†. Then there exist two maps 𝑓u� ∶ 𝐴 → (𝑉, +) and 𝑓u� ∶ 𝐴 →
(𝑉, +), even and odd respectively, such that 𝑓 = 𝑓u� + 𝑓u�. Furthermore, this decomposition is

unique.

†This condition is taken in order to be allowed to divide by 2 in the vector space 𝑉 .
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Proof. It is enough to define

𝑓u�(𝑥) ∶= 𝑓 (𝑥) + 𝑓 (𝑥−1)
2 , 𝑓u�(𝑥) ∶= 𝑓 (𝑥) − 𝑓 (𝑥−1)

2 .

It is clear that 𝑓u� and 𝑓u� are even and odd respectively and that 𝑓 = 𝑓u� + 𝑓u�.

Assume know that there exist two such decompositions: 𝑓 = 𝑓u� + 𝑓u� = ̃𝑓u� + ̃𝑓u�. Then,

𝑓u� − ̃𝑓u� = ̃𝑓u� − 𝑓u�, but 𝑓u� − ̃𝑓u� is even and ̃𝑓u� − 𝑓u� odd, hence 𝑓u� − ̃𝑓u� = ̃𝑓u� − 𝑓u� = 0 and the

decomposition is unique. �

From now on, given a function 𝑓 ∶ 𝐴 → 𝑉 , 𝑓u� will stand for its even part and 𝑓u� for its odd

part.

Corollary 1.1.5. In the conditions of Proposition 1.1.4, the vector space ℱ(𝐺, 𝑉) ∶= {𝑓 ∶ 𝐺 →
𝑉} can be decomposed in the direct sum of vector spaces ℱu�(𝐺, 𝑉) ∶= {𝑓 ∶ 𝐺 → 𝑉 | 𝑓 even }
and ℱu�(𝐺, 𝑉) ∶= {𝑓 ∶ 𝐺 → 𝑉 | 𝑓 odd }, that is, ℱ(𝐺, 𝑉) = ℱu�(𝐺, 𝑉) ⊕ ℱu�(𝐺, 𝑉).

For rest of the section, let 𝐴 ⊂ ℝ be such that −𝐴 ⊂ 𝐴. Given the expression of 𝑓u� and 𝑓u�
in the decomposition we can claim that u�(𝐴, ℝ) = u�u�(𝐴, ℝ) ⊕ u�u�(𝐴, ℝ) where u�(𝐴, ℝ)
are the differentiable functions from 𝐴 to ℝ and u�u�(𝐴, ℝ) and u�u�(𝐴, ℝ) the sets of those

functions which are, respectively, even differentiable and odd differentiable functions.

The following Proposition is an elemental result in differential calculus.

Proposition 1.1.6. The derivative operator acts in the following way:

u�u�(𝐴, ℝ) ⊕ u�u�(𝐴, ℝ) u�u�(𝐴, ℝ) ⊕ u�u�(𝐴, ℝ)

( 𝑔 , ℎ ) ( 0 u�
u� 0 ) ( u�

ℎ ) = (ℎ′, 𝑔′)

u�

Corollary 1.1.7. For every 𝑓 ∈ u�(𝐴, ℝ) we have that

(1) (𝑓 ′)u� = 𝑓 ′ ⟺ 𝑓 = 𝑓u� + 𝑐, 𝑐 ∈ ℝ,

(2) (𝑓 ′)u� = 𝑓 ′ ⟺ 𝑓 = 𝑓u�.

Nowwe can solve the “straight line problem” as follows: equation (1.1.1) can be written as

𝑥′(𝑡) = 𝑥(𝑡) − 𝑥(−𝑡)
2𝑡 =

𝑥u�(𝑡)
𝑡 ,

and since
u�u�(u�)

u� is symmetric, taking into account Proposition 1.1.6, we arrive at the equivalent

system of differential equations

(𝑥u�)′(𝑡) = 0,

(𝑥u�)′(𝑡) =
𝑥u�(𝑡)

𝑡 .

Hence, 𝑥u�(𝑡) = 𝑐, 𝑥u�(𝑡) = 𝑘 𝑡 with 𝑐, 𝑘 ∈ ℝ, that is, 𝑥 is the straight line 𝑥(𝑡) = 𝑘 𝑡+𝑐, which
answers the first question we posed.
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Further on we will use this decomposition method in order to obtain solutions of more

complex differential equations with reflection.

Involutions, as we will see, have very special properties. This is due to their double nature,

analytic and algebraic. This chapter is therefore divided in two sections that will explore the

two kinds of properties, arriving at last to some parallelism between involutions and complex

numbers for its capability to decompose certain polynomials (see Remark 1.3.6). In this chapter

we recall results from [39,41,46,132,187,189,196].

1.2 Involutions and their properties

1.2.1 The concept of involution

The concept of involution is fundamental for the theory of groups and algebras, but, at the same

time, being an object inmathematical analysis, their analytical properties allow the obtaining of

further information concerning this object. In order to be clear in this respect, let us definewhat

we understand by involution in this analytical context. We follow the definitions of [187,189].

Definition 1.2.1. Let 𝐴 ⊂ ℝ be a set containing more that one point and 𝑓 ∶ 𝐴 → 𝐴 a function

such that 𝑓 is not the identity Id. Then 𝑓 is an involution if

𝑓 2 ≡ 𝑓 ∘ 𝑓 = Id

or, equivalently, if

𝑓 = 𝑓 −1.
If 𝐴 = ℝ, we say that 𝑓 is a strong involution [187]. Involutions are also known as Carleman

functions in the literature [46,148].

Example 1.2.2. The following involutions are the most common examples:

(1) 𝑓 ∶ ℝ → ℝ, 𝑓 (𝑥) = −𝑥 is an involution known as reflection.

(2) 𝑓 ∶ ℝ\{0} → ℝ\{0}, 𝑓 (𝑥) = 1
u� known as inversion.

(3) Let 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑐 𝑏 + 𝑎2 ≠ 0, 𝑐 ≠ 0,

𝑓 ∶ ℝ \{𝑎
𝑐 } → ℝ \{𝑎

𝑐 } , 𝑓 (𝑥) = 𝑎𝑥 + 𝑏
𝑐𝑥 − 𝑎

is a family of functions known as bilinear involutions. If 𝑎2 + 𝑏 𝑐 > 0, the involution is

said hyperbolic and has two fixed points in its domain.

The definition of involution can be extended in a natural way to arbitrary sets (not neces-

sarily of real numbers) or, in the following way, to order 𝑛 involutions.

Definition 1.2.3. Let 𝐴 ⊂ ℝ, 𝑓 ∶ 𝐴 → 𝐴, 𝑛 ∈ ℕ, 𝑛 ≥ 2. We say that 𝑓 is an order 𝑛 involution

if

(1) 𝑓 u� ≡ 𝑓 ∘
u�⌣⋯ ∘𝑓 = Id,
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(2) 𝑓 u� ≠ Id ∀𝑘 = 1, … , 𝑛 − 1.

Example 1.2.4. The following is an example of an involution defined on a set which is not a

subset of ℝ:

𝑓 ∶ ℂ → ℂ, 𝑓 (𝑧) = 𝑒
2u�
u� u�

is an order 𝑛 involution on the complex plane.

Example 1.2.5.

𝑓 (𝑥) =
⎧{{
⎨{{⎩

𝑥, 𝑥 ∈ (−∞, 0) ∪ (𝑛, +∞),
𝑥 + 1, 𝑥 ∈ (0, 1) ∪ (1, 2) ∪ ⋯ ∪ (𝑛 − 2, 𝑛 − 1),
𝑥 − (𝑛 − 1), 𝑥 ∈ (𝑛 − 1, 𝑛)

is an order 𝑛 involution in ℝ\{0, 1, … , 𝑛}.
Observe that 𝑓 is not defined on a connected set of ℝ, neither admits a continuous exten-

sion to a connected set. This fact is related to the statement of Theorem 1.2.9.

1.2.2 Properties of involutions

Now we will establish a series of results useful when it comes to study involutions.

Proposition 1.2.6. Let 𝐴 ⊂ ℝ, 𝑓 ∶ 𝐴 → 𝐴 be an order 𝑛 involution, then 𝑓 is invertible.

Proof. If ℎ ∘ 𝑔 is bijective, then ℎ is surjective, since (ℎ ∘ 𝑔)(𝐴) ⊂ ℎ(𝐴), and 𝑔 injective, since

𝑔(𝑥) = 𝑔(𝑦) implies (ℎ ∘ 𝑔)(𝑥) = (ℎ ∘ 𝑔)(𝑦). Hence, since 𝑓 ∘ 𝑓 u�−1 = 𝑓 u�−1 ∘ 𝑓 = Id, 𝑓 is

bijective (invertible). �

The following proposition [189] is a classical result regarding involutions. Here we present

it for connected subsets of ℝ.

Proposition 1.2.7. Let𝐴 ⊂ ℝ be connected and 𝑓 ∶ 𝐴 → 𝐴 an order two continuous involution.

Then,

(1) 𝑓 is strictly decreasing, and

(2) 𝑓 has a unique fixed point.

Proof. (1). Since 𝑓 is invertible, it is strictly monotone. 𝑓 ≠ Id, so there exists 𝑥0 ∈ 𝐴
such that 𝑓 (𝑥0) ≠ 𝑥0. Let us assume that 𝑓 is increasing. If 𝑥0 < 𝑓 (𝑥0), since 𝐴 is connected,

𝑓 (𝑥0) < 𝑓 2(𝑥0) = 𝑥0 (contradiction) and the sameoccurs if 𝑓 (𝑥0) < 𝑥0. Thus, 𝑓 is decreasing.
(2). Since𝐴 is connected,𝐴 is an interval. Let𝑎 ∈ 𝐴, then 𝑓 (𝑎) ∈ 𝐴. Let us assume, with-

out lost of generality, that 𝑓 (𝑎) > 𝑎. Then, [𝑎, 𝑓 (𝑎)] ⊂ 𝐴 and 𝑓 ([𝑎, 𝑓 (𝑎)]) = [𝑎, 𝑓 (𝑎)].
Let𝑔 = 𝑓 −Id, 𝑔 is continuous and 𝑔(𝑎) = 𝑓 (𝑎)−𝑎 > 0, 𝑔(𝑓 (𝑎)) = 𝑎−𝑓 (𝑎) < 0, therefore,
by Bolzano’s Theorem, there exists 𝛼 ∈ (𝑎, 𝑓 (𝑎)) such that 𝑔(𝛼) = 0, i.e. 𝑓 (𝛼) = 𝛼.

Since 𝑓 is strictly decreasing, such point is unique. �

Remark 1.2.8. If 𝐴 is not connected, point (2) of Proposition 1.2.7 may not be satisfied. For

instance, bilinear involutions have 0 or 2 fixed points.
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Nowwe will prove a theorem that illustrates the importance of order two involutions. Sim-

ilar proofs can be found in [39,132,148].

Theorem 1.2.9. The only continuous involutions defined in connected sets of ℝ are of order 2.

Proof. Let 𝐴 be a connected subset of ℝ and 𝑓 ∶ 𝐴 → 𝐴 a continuous involution of order 𝑛.
Let us prove in several steps that 𝑛 = 2.

(a) 𝑛 is even. Wewill prove first that 𝑓 is decreasing. Since 𝑓 ≠ Id, there exists 𝑥0 ∈ 𝐴 such

that 𝑓 (𝑥0) ≠ 𝑥0. Let us assume that 𝑓 is increasing. If 𝑥0 < 𝑓 (𝑥0), using that 𝐴 is connected,

𝑥0 < 𝑓 (𝑥0) < 𝑓 2(𝑥0) < ⋯ < 𝑓 u�−1(𝑥0) < 𝑓 u�(𝑥0) = 𝑥0,

which is a contradiction. The same happens if 𝑓 (𝑥0) < 𝑥0. Therefore 𝑓 is decreasing.

The composition of two functions, both increasing or decreasing is increasing. If one is

increasing and the other decreasing, then the composition is a decreasing function. Therefore,

if 𝑛 is odd and 𝑓 is decreasing, 𝑓 u� is decreasing, which is absurd since 𝑓 u� = Id.
(b) 𝑛 = 2𝑚 with 𝑚 odd. Otherwise, 𝑛 = 4 𝑘 for some 𝑘 ∈ ℕ. Then, if 𝑔 = 𝑓 2u�, 𝑔 ≠ Id

and 𝑔2 = Id and, using Proposition 1.2.7, 𝑔 is decreasing, but this is a contradiction since 2𝑘
is even.

(c) 𝑛 = 2. If 𝑛 = 2𝑚 with 𝑚 odd, 𝑚 ≥ 3, take 𝑔 = 𝑓 2. Then 𝑔 ≠ Id and 𝑔u� = Id, so
𝑔 is an involution of order 𝑘 ≤ 𝑚. But, by part (𝑎), this implies that 𝑔 is decreasing, which is

impossible since 𝑔 = 𝑓 2. �

From now on, if we do not specify the order of the involution, we will assume it is of order

two.

The proof of Proposition 1.2.7 suggests a way of constructing an iterative method conver-

gent to the fixed point of the involution. This is illustrated in the following theorem.

Theorem 1.2.10. Let 𝐴 ⊂ ℝ be a connected set, 𝑓 ∶ 𝐴 → 𝐴 a continuous involution, 𝛼 is the

unique fixed point of 𝑓 and 𝑓 of class two in a neighborhood of 𝛼. Then, the iterative method

{
𝑥0 ∈ 𝐴,
𝑥u�+1 = 𝑔(𝑥u�), 𝑘 = 0, 1, … ,

where 𝑔 ∶= u� +Id
2 , is globally convergent to 𝛼 and of order at least 2.

Proof. Let us consider the closed interval of extremal points 𝑥u� and 𝑓 (𝑥u�) that we will denote

in this proof by [𝑥u�, 𝑓 (𝑥u�)]. Since 𝑥u�+1 is the middle point of the interval [𝑥u�, 𝑓 (𝑥u�)], 𝑥u�+1 ∈
[𝑥u�, 𝑓 (𝑥u�)] and, furthermore, since 𝑓 ([𝑥u�, 𝑓 (𝑥u�)]) = [𝑥u�, 𝑓 (𝑥u�)], we have that 𝑓 (𝑥u�+1) ∈
[𝑥u�, 𝑓 (𝑥u�)]. Therefore,

|𝑓 (𝑥u�+1) − 𝑥u�+1| ≤ 1
2|𝑓 (𝑥u�) − 𝑥u�| ≤ ⋯ ≤ 1

2u�+1 |𝑓 (𝑥0) − 𝑥0|.

Hence,

|𝑥u�+1 − 𝑥u�| = ∣
𝑓 (𝑥u�) + 𝑥u�

2 − 𝑥u�∣ = 1
2|𝑓 (𝑥u�) − 𝑥u�| ≤ 1

2u� |𝑓 (𝑥0) − 𝑥0|.



26 1.2. Involutions and their properties

Thus,

|𝑥u�+u� − 𝑥u�| ≤ |𝑥u�+u� − 𝑥u�+u�−1| + ⋯ + |𝑥u�+1 − 𝑥u�| ≤
u�−1

∑
u�=0

1
2u�+u� |𝑓 (𝑥0) − 𝑥0|

= 1
2u�−1 (1 − 1

2u� ) |𝑓 (𝑥0) − 𝑥0| ≤ 1
2u�−1 |𝑓 (𝑥0) − 𝑥0|.

As a consequence, (𝑥u�)u�∈ℕ is a Cauchy sequence in [𝑥0, 𝑓 (𝑥0)] and therefore convergent.

This proves that the method is globally convergent in 𝐴.

On the other hand, 𝑓 (𝑓 (𝑥)) = 𝑥 for every 𝑥 ∈ 𝐴, hence 𝑓 ′(𝑓 (𝑥))𝑓 ′(𝑥) = 1 so

1 = 𝑓 ′(𝑓 (𝛼))𝑓 ′(𝛼) = (𝑓 ′(𝛼))2.

Since 𝑓 is decreasing by Proposition 1.2.7, 𝑓 ′(𝑎) = −1. Therefore, 𝑔′(𝛼) = 0 and thus, taking

the order 2 Taylor polynomial of 𝑔 at 𝛼, we have that

𝑔(𝑥) = 𝛼 + 𝑔′(𝛼)(𝑥 − 𝛼) +
𝑔″(𝜉u�)

2 (𝑥 − 𝛼)2 = 𝛼 +
𝑔″(𝜉u�)

2 (𝑥 − 𝛼)2

where 𝜉u� is a point of the interval [𝛼, 𝑥].
Hence, if 𝑐 is an upper bound of 𝑔″ in a neighborhood of 𝛼,

|𝑥u�+1 − 𝛼| = |𝑔(𝑥u�) − 𝛼| =
∣∣∣∣
𝛼 +

𝑔″(𝜉u�u�+1
)

2 (𝑥u� − 𝛼)2 − 𝛼
∣∣∣∣
≤ 𝑐

2|𝑥u� − 𝛼|2,

for 𝑘 sufficiently big, which proves the method is of order at least 2. �

1.2.3 Characterization of involutions

Involutions can be characterized in a variety of ways. This kind of properties are helpful when

it comes to prove some results.

Proposition 1.2.11 ([148, 189]). Every continuous involution 𝜑 ∶ ℝ → ℝ with a fixed point

𝑝 ∈ ℝ is of the form 𝜑(𝑡) = 𝜑0(𝑡 − 𝑝) + 𝑝 where

𝜑0(𝑡) =
⎧{
⎨{⎩

𝑔(𝑡), 𝑡 ≥ 0,
𝑔−1(𝑡), 𝑡 < 0,

and 𝑔 ∶ ℝ → ℝ is a continuous strictly decreasing function such that 𝑔(0) = 0.
Conversely, every function 𝜑 defined in such way is a continuous involution.

Proposition 1.2.12 ([196, Theorem 2.1] ). Let 𝐼, 𝐽 be intervals of ℝ, 𝐼 symmetric. Every con-

tinuous involution 𝜑 ∶ 𝐽 → 𝐽 is of the form 𝜑(𝑡) = 𝑡 − ℎ(𝑡) where ℎ = 𝑔−1, 𝑔 ∶ 𝐼 → 𝐽,

𝑔(𝑡) = (𝑓 (𝑡) + 𝑡)/2 and 𝑓 ∶ 𝐼 → ℝ is a symmetric even function such that 𝑓 (0) = 0.
Conversely, every function 𝜑 defined in such way is a continuous involution.
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Proposition 1.2.13 ([148, Corollary 1.2, p. 182]). Let 𝐽 be an open interval of ℝ. Every con-

tinuous involution 𝜑 ∶ 𝐽 → 𝐽 is of the form 𝜑(𝑡) = ℎ−1(−ℎ(𝑡)), where ℎ = ℎ1 ∘ ℎ2 ∘ ℎ3,

ℎ3 ∶ 𝐽 → ℝ is a homeomorphism, ℎ2(𝑠) = 𝑠 − 𝑎 where 𝑎 is the fixed point of the function

ℎ3 ∘ 𝜑 ∘ ℎ, and ℎ1 ∶ ℝ → ℝ is a homeomorphism such that ℎ(0) = 0.
Conversely, every function 𝜑 defined in such way is a continuous involution.

Finally, the following Lemma, similar to the previous result, is specially useful when dealing

with differential equations (cf. [41, Corollary 2.2]).

Lemma1.2.14 (CORRESPONDENCE OF INVOLUTIONS, [41, Lemma2.1]). Let𝜑 and𝜓 be two differ-

entiable involutions† on the compact intervals 𝐽1 and 𝐽2 respectively. Let 𝑡0 and 𝑠0 be the

unique fixed points of 𝜑 and 𝜓 respectively. Then, there exists an increasing diffeomorphism

𝑓 ∶ 𝐽2 → 𝐽1 such that 𝜓 = 𝑓 −1 ∘ 𝜑 ∘ 𝑓 .
Conversely, every function 𝜑 defined in such way is a differentiable involution.

Proof. Let 𝑔 ∶ [inf 𝐽2, 𝑠0] → [inf 𝐽1, 𝑡0] be an increasing diffeomorphism, that is, 𝑔(𝑠0) =
𝑡0. Let us define

𝑓 (𝑠) ∶=
⎧{
⎨{⎩

𝑔(𝑠) if 𝑠 ∈ [inf 𝐽2, 𝑠0],
(𝜑 ∘ 𝑔 ∘ 𝜓)(𝑠) if 𝑠 ∈ (𝑠0, sup 𝐽2].

Clearly, 𝑓 (𝜓(𝑠)) = 𝜑(𝑓 (𝑠)) ∀𝑠 ∈ 𝐽2. Since 𝑠0 is a fixed point for 𝜓, 𝑓 is continuous.

Furthermore, because𝜑 and𝜓 are involutions, 𝜑′(𝑡0) = 𝜓′(𝑠0) = −1, so 𝑓 is differentiable

on 𝐽2. 𝑓 is invertible with inverse

𝑓 −1(𝑡) ∶=
⎧{
⎨{⎩

𝑔−1(𝑡) if 𝑡 ∈ [inf 𝐽1, 𝑡0],
(𝜓 ∘ 𝑔−1 ∘ 𝜑)(𝑡) if 𝑡 ∈ (𝑡0, sup 𝐽1].

𝑓 −1 is also differentiable for the same reasons. �

We can prove in the same way a continuous version of Lemma 1.2.14.

Corollary 1.2.15. Let 𝜑 and 𝜓 be two continuous involutions on the intervals 𝐽1 and 𝐽2 re-

spectively. Let 𝑡0 and 𝑠0 be the unique fixed points of 𝜑 and 𝜓 respectively. Then, there exists

an orientation preserving homeomorphism 𝑓 ∶ 𝐽2 → 𝐽1 such that 𝜓 = 𝑓 −1 ∘ 𝜑 ∘ 𝑓 .
Conversely, every function 𝜑 defined in such way is a continuous involution.

Remark 1.2.16. A similar argument could be done in the case of involutions defined on open,

possibly not bounded, intervals.

Remark 1.2.17. It is easy to check that if 𝜑 is an involution defined on ℝ with fixed point 𝑡0
then 𝜓(𝑡) ∶= 𝜑(𝑡 + 𝑡0 − 𝑠0) − 𝑡0 + 𝑠0 is an involution defined on ℝ with fixed point 𝑠0
(cf. [189, Property 2]). For this particular choice of 𝜑 and 𝜓, we can take 𝑔(𝑠) = 𝑠 − 𝑠0 + 𝑡0
in Lemma 1.2.14 and, in such a case, 𝑓 (𝑠) = 𝑠 − 𝑠0 + 𝑡0 for all 𝑠 ∈ ℝ.

Remark 1.2.18. Observe that, if 𝜑 and 𝜓 are continuous involutions and 𝜓 = 𝑓 −1 ∘ 𝜑 ∘ 𝑓 ,
then 𝑓 sends the fixed point of 𝜓 to the fixed point of 𝜑.

†Every differentiable involution is a diffeomorphism.
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The following Lemma establishes that the involution is defined if we know its behavior up

to it’s fixed point.

Lemma 1.2.19. Let 𝜑, 𝜓 be two continuous involutions defined in a compact interval 𝐽 with

a common fixed point 𝑝 ∈ 𝐽. If 𝜑|[inf u�,u�] = 𝜓|[inf u�,u�] or 𝜑|[u�,sup u�] = 𝜓|[u�,sup u�], then

𝜑 = 𝜓.

Proof. Let 𝑡 ∈ [𝑝, sup 𝐽]. 𝜓(𝑡) ∈ [inf 𝐽, 𝑝], so 𝜑(𝜓(𝑡)) = 𝜓(𝜓(𝑡)) = 𝑡. Hence,

𝜓(𝑡) = 𝜑(𝑡). The proof for the interval [𝑝, sup 𝐽] is analogous. �

The previous results highlight a simple way of obtaining involutions from a given one, just

considering the family of homeomorphisms acting on the set of involutions as follows.

Definition 1.2.20. Let

u� ∶= {[𝑎, 𝑏] ⊂ ℝ | 𝑎, 𝑏 ∈ ℝ, 𝑎 < 𝑏},
ℋu� ∶= {𝑔 ∶ 𝐽 → 𝐽 | 𝑔 is a homeomorphism}, for a fixed 𝐽 ∈ u�,
InvC

u� ∶= {𝜑 ∶ 𝐽 → 𝐽 | 𝜑 is an involution}, for a fixed 𝐽 ∈ u�.
For a fixed 𝐽 ∈ u�, 𝐻u� is a group with the composition and acts transitively on InvC

u�:

ℋu� × InvC
u� InvC

u�

(𝑓 , 𝜑) 𝑓 −1 ∘ 𝜑 ∘ 𝑓

1.3 Differential Operators with Involutions

1.3.1 Algebraic Theory

Let 𝐴 ⊂ ℝ be a set without isolated points (just so the derivative can be considered in all of

𝐴). Let us consider some linear operators in the space of continuous functions u�∞(𝐴, ℝ).
To start with, the differential operator

u�∞(𝐴, ℝ) u�∞(𝐴, ℝ)

𝑓 𝑓 ′

u�

which maps each function to its derivative. Defined in such a way, the linear operator 𝐷 is

surjective.

Let 𝜑 ∈ u�∞(𝐴, 𝐴). Then we can consider the pullback operator by 𝜑

u�∞(𝐴, ℝ) u�∞(𝐴, ℝ)

𝑓 𝑓 ∘ 𝜑

u�∗
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Let 𝑎 ∈ u�∞(𝐴, ℝ). We have also the pointwisemultiplication operator by 𝑎,

u�∞(𝐴, ℝ) u�∞(𝐴, ℝ)

𝑓 𝑎 ⋅ 𝑓

u�

Also, if we have a constant 𝑎 ∈ 𝐴 we will define 𝑎∗ as the operator that acts on u�∞(𝐴, ℝ)
as 𝑎∗𝑓 (𝑡) = 𝑓 (𝑎) for all 𝑡 ∈ 𝐴 (that is, 𝑎∗ is the Dirac delta function at 𝑎.

These operators are well defined and present the associative property of the composition,

but in general do not commute. To be precise, we have the following equalities:

𝐷𝑎 = 𝑎′ + 𝑎𝐷, (1.3.1)

𝜑∗𝑎 = 𝜑∗(𝑎)𝜑∗, (1.3.2)

𝐷𝜑∗ = 𝜑′𝜑∗𝐷, (1.3.3)

for each 𝑎 ∈ u�∞(𝐴, ℝ), 𝜑 ∈ u�∞(𝐴, 𝐴).
From these we derive the following:

𝐷𝑎𝐷 = 𝑎′𝐷 + 𝑎𝐷2, (1.3.4)

𝐷𝑎𝜑∗ = 𝑎′𝜑∗ + 𝑎𝜑′𝜑∗𝐷, (1.3.5)

𝜑∗𝑎𝐷 = 𝜑∗(𝑎)𝜑∗𝐷, (1.3.6)

𝜑∗𝑎𝜑∗ = 𝜑∗(𝑎)(𝜑∗)2. (1.3.7)

These equalities allow to express any composition of such operators (multiplication, pull-

back and differential operators) as a composition in a predefined order. In other words, if we

fix 𝜑 ∈ u�∞(𝐴, 𝐴) such that 𝜑u� ≠ Id ∀𝑘 ∈ ℕ and consider u�u� as the u�∞(𝐴, ℝ)-free
module generated by {(𝜑∗)u�𝐷u�}u�,u�≥0 (the 0 power is the identity), this is a unitary associative

ℝ-algebra with the composition.

Let us assume now that 𝜑 is an involution. In this case, the algebra u�u� is generated by

{(𝜑∗)u�𝐷u�}u�=0,1
u�≥0

.

1.3.2 Differential equations with involutions

We will describe now a method inspired in the annihilator method that will allow us to solve

differential equations with involutions. It is in our interest to think of a way of transforming

(somehow) expressions in u�u� to expressions in the ring of polynomials u�∞(𝐴)[𝐷], since the
equations of the form 𝐿𝑥 = 0 are known for 𝐿 ∈ u�∞(𝐴)[𝐷] (i.e. 𝐿 is an ordinary differential

operator). In otherwords, Is there for every𝐿 ∈ u�u� an𝑅 ∈ u�u� such that𝑅𝐿 ∈ u�∞(𝐴)[𝐷]?
Furthermore, it would be convenient that such 𝑅 is “minimal” in the sense we will detail latter.

This is due to the fact that if the difference between the kernel of 𝐿 and that of 𝑅𝐿 is minimal,

we can obtain the solutions of 𝐿𝑥 = 0 from those of 𝑅𝐿𝑥 = 0. The ideal case would be the

one in which both kernels coincide.
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Definition 1.3.1. If ℝ[𝐷] is the ring of polynomials on the usual differential operator 𝐷 and

u� is any operator algebra containing ℝ[𝐷], then an equation 𝐿𝑥 = 0, where 𝐿 ∈ u�, is said

to be a reducible differential equation if there exits 𝑅 ∈ u� such that 𝑅𝐿 ∈ ℝ[𝐷]. A similar

definition could be done for nonconstant or complex coefficients.

Proposition 1.3.2. Let 𝜑 ∈ u�∞(𝐴, 𝐴) be an involution and 𝐷 + 𝑐𝜑∗ + 𝑑 ∈ u�u�, 𝑐(𝑡) ≠
0 ∀𝑡 ∈ 𝐴. Then, there exist 𝑎, 𝑏, 𝛼, 𝛽 ∈ u�∞(𝐴, ℝ) such that

(𝐷 + 𝑎𝜑∗ + 𝑏)(𝐷 + 𝑐𝜑∗ + 𝑑) = 𝐷2 + 𝛼𝐷 + 𝛽 ∈ u�∞(𝐴)[𝐷],

and are defined by

⎧{{{{{{
⎨{{{{{{⎩

𝑎 = −𝑐𝜑′,

𝑏 = 𝜑′𝜑∗(𝑑) − 𝑐′

𝑐 ,

𝛼 = 𝑑 + 𝜑′𝜑∗(𝑑) − 𝑐′

𝑐 ,

𝛽 = 𝑑 (𝜑′𝜑∗(𝑑) − 𝑐′

𝑐 ) + 𝑑′ − 𝑐𝜑′𝜑∗(𝑐).

Proof. Using the identities (1.3.1) – (1.3.7), we have that

(𝐷 + 𝑎𝜑∗ + 𝑏)(𝐷 + 𝑐𝜑∗ + 𝑑) = 𝐷2 + (𝑏 + 𝑑)𝐷 + 𝑏 𝑑 + 𝑑′ + 𝑎𝜑∗(𝑐) + (𝑎 + 𝑐𝜑′)𝜑∗𝐷
+ (𝑐′ + 𝑏 𝑐 + 𝑎𝜑∗(𝑑))𝜑∗

Therefore, we have to solve the linear system of four equations and four unknowns

⎧{{{
⎨{{{⎩

𝑏 + 𝑑 = 𝛼,
𝑏 𝑑 + 𝑑′ + 𝑎𝜑∗(𝑐) = 𝛽,

𝑎 + 𝑐𝜑′ = 0,
𝑐′ + 𝑏 𝑐 + 𝑎𝜑∗(𝑑) = 0,

which has as unique solution

⎧{{{{{{
⎨{{{{{{⎩

𝑎 = −𝑐𝜑′,

𝑏 = 𝜑′𝜑∗(𝑑) − 𝑐′

𝑐 ,

𝛼 = 𝑑 + 𝜑′𝜑∗(𝑑) − 𝑐′

𝑐 ,

𝛽 = 𝑑 (𝜑′𝜑∗(𝑑) − 𝑐′

𝑐 ) + 𝑑′ − 𝑐𝜑′𝜑∗(𝑐).

�

Remark 1.3.3. The previous Proposition can be modified for the case of considering all func-

tions to be just differentiable.

Remark 1.3.4. The condition that 𝜑 is an involution is necessary for, otherwise, the term

𝑎𝜑∗(𝑐)(𝜑∗)2 would appear and the equation 𝑐′ + 𝑏 𝑐 + 𝑎𝜑∗(𝑑) = 0 would split in two:

𝑐′ + 𝑏 𝑐 = 0 and 𝑎𝜑∗(𝑑) = 0, forcing 𝑎 = 0, which is incompatible with 𝑎 = −𝑐𝜑′.
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Corollary 1.3.5. Under the conditions of Proposition 1.3.2, if 𝑑 = 0, we have that

(𝐷 − 𝜑′𝑐𝜑∗ − 𝑐′

𝑐 ) (𝐷 + 𝑐𝜑∗) = 𝐷2 − 𝑐′

𝑐 𝐷 − 𝜑′𝜑∗(𝑐)𝑐.

Remark 1.3.6. In this corollary, if 𝑐 is constant and 𝜑 is the reflection we have that

(𝐷 + 𝑐𝜑∗) (𝐷 + 𝑐𝜑∗) = 𝐷2 + 𝑐2.

Observe the parallelism between this expression and

(𝐷 + 𝑖𝑐) (𝐷 − 𝑖𝑐) = 𝐷2 + 𝑐2.

where 𝑖 denotes the imaginary unity. We will deepen in this relation in Chapter 5.

Definition 1.3.7. Let 𝜑 ∈ u�∞(𝐴), 𝐿 ∶= ∑u�,u�
u�,u�=0 𝛼u�u�(𝜑∗)u�𝐷u� ∈ u�u� such that 𝛼u�u�, 𝛼u�u� ≠ 0

for some 𝑘 ∈ {0, … , 𝑛} and some 𝑙 ∈ {0, … , 𝑚}. We call degree of 𝐿 to 𝜕𝐿 = (𝑚, 𝑛).

Assume now that 𝜑 is an involution of order 𝑝. Let 𝑅 ∈ u�u�. We want to find 𝐿 ∈ u�u�
and 𝑆 ∈ u�∞(𝐴)[𝐷] such that 𝐿𝑅 = 𝑆. Hence, if 𝜕𝑅 = (𝑚1, 𝑛1), 𝜕𝐿 = (𝑚2, 𝑛2) and

𝜕(𝑆) = (0, 𝑛3), we have that 0 ≤ 𝑚1, 𝑚2 ≤ 𝑝 − 1 and 𝑛1 + 𝑛2 = 𝑛3, which means that, in

order to find the coefficients of 𝐿, we have to solve the linear system 𝐿𝑅 = 𝑆, which consists

of (1 + 𝑛1 + 𝑛2) min{𝑝, 𝑚1 + 𝑚2 + 1} equations with (𝑚2 + 1)(𝑛2 + 1) + 𝑛3 unknowns.

Assuming 𝑚1 = 𝑚2 = 𝑝 − 1, we have (1 + 𝑛1 + 𝑛2)𝑝 equations and 𝑝(𝑛2 + 1) + 𝑛1 +
𝑛2 unknowns. Thus, if we pretend to obtain a “minimal” operator as said before, we will try

to make the number of equations equal to the number of unknowns, in such a way that the

solution of the consequent linear system 𝐿𝑅 = 𝑆, if it exists, is unique, which only happens if

and only if 𝑛2 = 𝑛1(𝑝 − 1).
In the case where 𝜑 is an involution, 𝑝 = 2 and hence our condition is 𝑛2 = 𝑛1. The

case 𝑛1 = 𝑛2 = 1 is illustrated by Proposition 1.3.2. Needless to say, the complexity of the

equations and its solving increases with the degree of 𝑅.

We will use now Proposition 1.3.2 in order to latter study an example.

Example 1.3.8. Sea 𝑇 ∈ ℝ+, 𝐼 = [𝜑(𝑇), 𝑇] ⊂ ℝ where 𝜑 is a differentiable involution on

𝐼, 𝑚, ℎ ∈ u�1(𝐼), 𝑚(𝑇) = 𝑚(𝜑(𝑇)) and 𝑚(𝑡) ≠ 0 ∀𝑡 ∈ 𝐼. Let us consider the operator

𝐿 = 𝐷 + 𝑚𝜑∗ and the boundary value problem

𝐿𝑥(𝑡) = ℎ(𝑡) ∀𝑡 ∈ 𝐼, 𝑥(𝜑(𝑇)) = 𝑥(𝑇). (1.3.8)

Observe that the boundary condition can be expressed, with our notation, as

(𝑇∗ − (𝜑(𝑇))∗)𝑥 = 0,

and that𝐿𝑥(𝑡) = 𝑥′(𝑡)+𝑚(𝑡)𝑥(𝜑(𝑡)). Following Proposition 1.3.2, if𝑅 = 𝐷−𝑚𝜑′𝜑∗− u�′

u� ,

then we have that

𝑅𝐿 = 𝐷2 − 𝑚′

𝑚 𝐷 − 𝜑′𝜑∗(𝑚)𝑚.

Remember that 𝜑(𝜑(𝑇)) = 𝑇. Therefore, it is satisfied that

𝑥′(𝑇) − 𝑥′(𝜑(𝑇)) = (𝑇∗ − (𝜑(𝑇))∗)𝐷𝑥 = (𝑇∗ − (𝜑(𝑇))∗)(𝐿 − 𝑚𝜑∗)𝑥
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= (𝑇∗ − (𝜑(𝑇))∗)𝐿𝑥 − (𝑇∗ − (𝜑(𝑇))∗)𝑚𝜑∗𝑥
= ℎ(𝑇) − ℎ(𝜑(𝑇)) − 𝑚(𝑇)𝑥(𝜑(𝑇)) + 𝑚(𝜑(𝑇))𝑥(𝜑(𝜑(𝑇)))
= ℎ(𝑇) − ℎ(𝜑(𝑇)) − 𝑚(𝑇)𝑥(𝜑(𝑇)) + 𝑚(𝑇)𝑥(𝑇)
= ℎ(𝑇) − ℎ(𝜑(𝑇)).

Hence, any solution of problem (1.3.8) is a solution of problem

𝑅𝐿𝑥 = 𝑅ℎ,
𝑥(𝜑(𝑇)) = 𝑥(𝑇),

𝑥′(𝑇) − 𝑥′(𝜑(𝑇)) = ℎ(𝑇) − ℎ(𝜑(𝑇)).

Rewriting this expression,

𝑥″(𝑡) − 𝑚′(𝑡)
𝑚(𝑡) 𝑥′(𝑡) − 𝜑′(𝑡)𝑚(𝜑(𝑡))𝑚(𝑡)𝑥(𝑡)

=ℎ′(𝑡) − 𝑚(𝑡)𝜑′(𝑡)ℎ(𝜑(𝑡)) − 𝑚′(𝑡)
𝑚(𝑡) ℎ(𝑡),

𝑥(𝜑(𝑇)) =𝑥(𝑇), 𝑥′(𝑇) − 𝑥′(𝜑(𝑇)) = ℎ(𝑇) − ℎ(𝜑(𝑇)),

which is a system of ordinary differential equations with nonhomogeneous boundary condi-

tions.

The reverse problem, determiningwhether the solutionof this system is a solutionof (1.3.8),

ismore difficult and it is not always the case. Wewill deepen in this fact further on and compute

the Green’s function in those cases there is a unique solution.



2. General results for differential equations

with involutions

Asmentioned in the Introduction, this chapter is devoted to those results related to differential

equations with involution not directly associated with Green’s functions. The proofs of the

results can be found in the bibliography cited for each case. We will not deepen into these

results, but we summarize their nature for the convenience of the reader. The reader may

consult as well the book by Wiener [187] as a good starting point for general results in this

direction.

It is interesting to observe the progression and different kinds of results collected in this

Chapter with those related to Green’s functions that we will show latter on.

2.1 The bases of the study

As was pointed out in the introduction, the study of differential equations with reflection starts

with the solving of the Siberstein equation in 1940 [156].

Theorem 2.1.1. The equation

𝑥′(𝑡) = 𝑥 (1
𝑡 ) , 𝑡 ∈ ℝ+,

has exactly the following solutions:

𝑥(𝑡) = 𝑐√𝑡 cos (
√3
2 ln 𝑡 − 𝜋

6 ) , 𝑐 ∈ ℝ.

In Silberstein’s article it was written
u�
3 instead of

u�
6 , which appears corrected in [186,187].

Wiener provides a more general result in this line.

Theorem 2.1.2 ( [187]). Let 𝑛 ∈ ℝ. The equation

𝑡u�𝑥′(𝑡) = 𝑥 (1
𝑡 ) , 𝑡 ∈ ℝ+

has exactly the following solutions:

𝑥(𝑡) =

⎧{{{{{
⎨{{{{{⎩

𝑐 𝑡, 𝑛 = −1,
𝑐 𝑡(1 − 2 ln 𝑡), 𝑛 = 3,
𝑐(𝑡u�1 + 𝜆1𝑡u�2), 𝑛 < −1 or 𝑛 > 3,

𝑐 𝑡
1−u�

2 ⎡⎢
⎣

cos (𝛼 ln 𝑡) + √𝑛 + 1
3 − 𝑛 sin (𝛼 ln 𝑡)⎤⎥

⎦
, 𝑛 ∈ (−1, 3),
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where 𝑐 ∈ ℝ, 𝜆1 and 𝜆2 are the roots of the polynomial 𝜆2 + (𝑛 − 1)𝜆 + 1 and

𝛼 =
√(𝑛 + 1)(3 − 𝑛)

2 .

It is also Wiener [186,187] who formalizes the concept of differential equation with involu-

tions.

Definition 2.1.3 ([186]). An expression of the form

𝑓 (𝑡, 𝑥(𝜑1(𝑡), … , 𝑥(𝜑u�(𝑡)), … , 𝑥u�)(𝜑1(𝑡)), … , 𝑥u�)(𝜑u�(𝑡))) = 0, 𝑡 ∈ ℝ

where 𝜑1, … , 𝜑u� are involutions and 𝑓 is a real function of 𝑛 𝑘 + 1 real variables is called

differential equation with involutions.

The first objective in the research concerning this kind of equations was to find a way of

reducing them to ordinary differential equations of systems of ordinary differential equations.

In this sense, we have the following reduction results for the existence of solutions [186,187].

Theorem 2.1.4. Consider the equation

𝑥′(𝑡) = 𝑓 (𝑡, 𝑥(𝑡), 𝑥(𝜑(𝑡))), 𝑡 ∈ ℝ (2.1.1)

and assume the following hypotheses are satisfied:

• The function 𝜑 is a continuously differentiable strong involution with fixed point 𝑡0.

• The function 𝑓 (𝑡, 𝑦, 𝑧) is defined and is continuously differentiable in the space where its

arguments take values.

• The equation (2.1.1) is uniquely solvable with respect to 𝑥(𝜑(𝑡)), i.e. there exists a

unique function 𝑔(𝑡, 𝑥(𝑡), 𝑥′(𝑡)) such that

𝑥(𝜑(𝑡)) = 𝑔(𝑡, 𝑥(𝑡), 𝑥′(𝑡)).

Then, the solution of the ordinary differential equation

𝑥″(𝑡) =

[𝜕𝑓
𝜕𝑡

+ 𝑥′(𝑡)𝜕𝑓
𝜕𝑦

+ 𝜑′(𝑡)𝑓 (𝜑(𝑡), 𝑔(𝑡, 𝑥(𝑡), 𝑥′(𝑡)), 𝑥(𝑡))𝜕𝑓
𝜕𝑧

] (𝑡, 𝑥(𝑡), 𝑔(𝑡, 𝑥(𝑡), 𝑥′(𝑡))),

with initial conditions

𝑥(𝑡0) = 𝑥0, 𝑥′(𝑡0) = 𝑓 (𝑡0, 𝑥0, 𝑥0),

is a solution of the equation (2.1.1) with initial conditions 𝑥(𝑡0) = 𝑥0.

Corollary 2.1.5 ( [186]). Let us assume that in the equation

𝑥′(𝑡) = 𝑓 (𝑥(𝜑(𝑡))) (2.1.2)
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the function 𝜑 is a continuously differentiable function with a fixed point 𝑡0 and the function 𝑓
is monotone and continuously differentiable in ℝ. Then, the solution of the equations

𝑥″(𝑡) = 𝑓 ′(𝑓 −1(𝑥′(𝑡)))𝑓 (𝑥(𝑡))𝜑′(𝑡),
𝑥(𝜑(𝑡)) = 𝑓 −1(𝑥′(𝑡)),

with initial conditions

𝑥(𝑡0) = 𝑥0, 𝑥′(𝑡0) = 𝑓 (𝑥0),

is a solution of the equation (2.1.2) with initial condition 𝑥(𝑡0) = 𝑥0.

In Lemma 3.1.1 (page 39) we prove a result more general than Corollary 2.1.5. There we

show the equivalence of 𝑥′(𝑡) = 𝑓 (𝑥(𝜑(𝑡))) and

𝑥″(𝑡) = 𝑓 ′(𝑓 −1(𝑥′(𝑡)))𝑓 (𝑥(𝑡))𝜑′(𝑡).

Lucĭć has extended these results to more general ones which include higher order deriva-

tives or different involutions. We refer the reader to [128,129,187].

On the other hand, Šarkovskiĭ [169] studies the equation 𝑥′(𝑡) = 𝑓 (𝑥(𝑡), 𝑥(−𝑡)) and,

noting 𝑦(𝑡) ∶= 𝑥(−𝑡), arrives to the conclusion that the solutions of such equation are solu-

tions of the system

𝑥′(𝑡) = 𝑓 (𝑥, 𝑦),
𝑦′(𝑡) = −𝑓 (𝑦, 𝑥),

with the condition 𝑥(0) = 𝑦(0). Then he applies this expression to the stability of differential-
difference equations. Wewill arrive to this expression by other means in Proposition 3.1.7 (see

page 43).

The traditional study of differential equations with involutions has been done for the case

of connected domains. Watkins [173] extends these results (in particular Theorem 2.1.4) to

the case of nonconnected domains, as it is the case of the inversion 1/𝑡 in ℝ\{0}.
The asymptotic behavior of equations with involutions has also been studied.

Theorem 2.1.6 ([174]). Let 𝑎 > 0. Assume 𝜑 ∶ [0, +∞) → [0, +∞) is a continuously differ-

entiable involution such that

𝜑(𝑥) − 𝜑(𝑏) < 1
𝑥 − 1

𝑏, for all 𝑥, 𝑏 ∈ (𝑎, +∞), 𝑥 > 𝑏.

Then the equation 𝑦′(𝑡) = 𝑦(𝜑(𝑡)) has an oscillatory solution.

We will deepen in the fact that such a type of equations oscillate and compute the period

later on (see page 124).

Related to this oscillatory behavior is the fact, pointed out by Zampieri [196], that involu-

tions are related to a potential of some second order differential equations.

Definition 2.1.7. An equilibriumpoint of a planar vector field is called a (local) center if all orbits

in a neighborhood are periodic and enclose it. The center is called isochronous if all periodic

orbits have the same period in a neighborhood of the center.
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Theorem 2.1.8 ([196]). Let 𝜑 ∈ u�1(𝐽) be an involution, 𝜔 > 0, and define

𝑉(𝑥) = 𝜔2

8 (𝑥 − 𝜑(𝑥))2, 𝑥 ∈ 𝐽.

Then the origin is an isochronous center for 𝑥″(𝑡) = −𝑉 ′(𝑥(𝑡)). Namely, all orbits which

intersect 𝐽 and the interval of the 𝑥-axis in the 𝑥, 𝑥′-plane, are periodic and have the same

period 2𝜋/𝜔.

On the other hand, if 𝑔 is a continuous function defined on a neighborhood of 0 ∈ ℝ, such

that 𝑔(0) = 0, there exists 𝑔′(0) > 0 and the origin is an isochronous center for 𝑥″(𝑡) =
𝑔(𝑥(𝑡)), then there exist an open interval 𝐽, 0 ∈ 𝐽, which is a subset of the domain of 𝑔, and
an involution 𝜑 ∶ 𝐽 → 𝐽 such that

∫u�
0

𝑔(𝑦) d 𝑦 = 𝜔2

8 (𝑥 − 𝜑(𝑥))2, 𝑥 ∈ 𝐽,

where 𝜔 = √𝑔′(0).

2.2 Differential equations with reflection

The particular field of differential equations with reflection has been subject to much study

motivated by the simplicity of this particular involution and its good algebraic properties.

O’Regan [136] studies the existence of solutions for problems of the form

𝑦(u�)(𝑡) = 𝑓 (𝑡, 𝑦(𝑡), 𝑦(−𝑡), … , 𝑦(u�−1)(𝑡), 𝑦(u�−1)(−𝑡)), −𝑇 ≤ 𝑡 ≤ 𝑇, 𝑦 ∈ ℬ,

where ℬ represents some initial or boundary value conditions, using a nonlinear alternative

result.

On the same line, existence and uniqueness results are proven by Hai [84] for problems of

the kind

𝑥″(𝑡) + 𝑐 𝑥′(𝑡) + 𝑔(𝑡, 𝑥(𝑡), 𝑥(−𝑡)) = ℎ(𝑡), 𝑡 ∈ [−1, 1],

𝑥(−1) = 𝑎 𝑥′(−1), 𝑥(1) = −𝑏 𝑥′(1),

with 𝑐 ∈ ℝ, 𝑎, 𝑏 ≥ 0.
Wiener and Watkins study in [189] the solution of the equation 𝑥′(𝑡) − 𝑎 𝑥(−𝑡) = 0

with initial conditions. Equation 𝑥′(𝑡) + 𝑎 𝑥(𝑡) + 𝑏 𝑥(−𝑡) = 𝑔(𝑡) has been treated by Piao

in [141,142]. For the equation

𝑥′(𝑡) + 𝑎𝑥(𝑡) + 𝑏𝑥(−𝑡) = 𝑓 (𝑡, 𝑥(𝑡), 𝑥(−𝑡)), 𝑏 ≠ 0, 𝑡 ∈ ℝ,

Piao [141] obtains existence results concerning periodic and almost periodic solutions using

topological degree techniques (in particular Leray-Schauder Theorem). In [122, 155, 173, 187,

189] some results are introduced to transform this kind of problems with involutions and initial

conditions into second order ordinary differential equations with initial conditions or first order

two dimensional systems, granting that the solution of the last will be a solution to the first.
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Beyond existence, in all its particular forms, the spectral properties of equations with re-

flection have also been studied. In [117], the focus is set on the eigenvalue problem

𝑢′(−𝑡) + 𝛼 𝑢(𝑡) = 𝜆 𝑢(𝑡), 𝑡 ∈ [−1, 1], 𝑢(−1) = 𝛾 𝑢(1).

If 𝛼2 ∈ (−1, 1) and 𝛾 ≠ 𝛼 ± √1 − 𝛼2, the eigenvalues are given by

𝜆u� = √1 − 𝛼2 ⎡⎢
⎣

𝑘𝜋 + arctan ⎛⎜
⎝

1 − 𝛾
1 + 𝛾

√1 + 𝛼
1 − 𝛼

⎞⎟
⎠

⎤⎥
⎦

, 𝑘 ∈ ℤ,

and the related eigenfunctions by

𝑢u�(𝑡) ∶=√1 + 𝛼 cos ⎡⎢
⎣

𝑘𝜋 + arctan ⎛⎜
⎝

1 − 𝛾
1 + 𝛾

√1 + 𝛼
1 − 𝛼

⎞⎟
⎠

⎤⎥
⎦

𝑡

+ √1 − 𝛼 sin ⎡⎢
⎣

𝑘𝜋 + arctan ⎛⎜
⎝

1 − 𝛾
1 + 𝛾

√1 + 𝛼
1 − 𝛼

⎞⎟
⎠

⎤⎥
⎦

𝑡, 𝑘 ∈ ℤ.

The study of equations with reflection extends also to partial differential equations. See for

instance [23,187].

Furthermore, asymptotic properties and boundedness of the solutions of initial first order

problems are studied in [174] and [1] respectively. Second order boundary value problems

have been considered in [82, 83, 137, 187] for Dirichlet and Sturm-Liouville boundary value

conditions, higher order equations has been studied in [136]. Other techniques applied to

problems with reflection of the argument can be found in [5, 131,188].





3. Order one problems with constant

coefficients

In this chapter we recall some results in [39,40,43]. We start studying the first order operator

𝑥′(𝑡) + 𝑚 𝑥(−𝑡) coupled with periodic boundary value conditions. We describe the eigenval-

ues of the operator and obtain the expression of its related Green’s function in the nonresonant

case. We also obtain the range of the values of the real parameter 𝑚 for which the integral

kernel, which provides the unique solution, has constant sign. In this way, we automatically

establish maximum and anti-maximum principles for the equation.

In the last part of the chapter we generalize these results to the case of antiperiodic and

general conditions and study the different maximum and anti-maximum principles derived il-

lustrating them with some examples. Also, we put special attention in the case of initial condi-

tions, in which we obtain the Green’s function in a particular way and undertake a study of its

sign in different circumstances.

3.1 Reduction of differential equations with involutions

Let us consider the problems

𝑥′(𝑡) = 𝑓 (𝑥(𝜑(𝑡))), 𝑥(𝑐) = 𝑥u� (3.1.1)

and

𝑥″(𝑡) = 𝑓 ′(𝑓 −1(𝑥′(𝑡)))𝑓 (𝑥(𝑡))𝜑′(𝑡), 𝑥(𝑐) = 𝑥u�, 𝑥′(𝑐) = 𝑓 (𝑥u�). (3.1.2)

Then we have the following Lemma:

Lemma 3.1.1. Let (𝑎, 𝑏) ⊂ ℝ and let 𝑓 ∶ ℝ → ℝ be a diffeomorphism. Let 𝜑 ∈ u�1((𝑎, 𝑏))
be an involution. Let 𝑐 be a fixed point of 𝜑. Then 𝑥 is a solution of the first order differen-

tial equation with involution (3.1.1) if and only if 𝑥 is a solution of the second order ordinary

differential equation (3.1.2).

We note that this lemma improves Corollary 2.1.5.

Remark 3.1.2. This result is still valid for 𝑓 ∶ 𝐽1 → 𝐽2, being 𝐽1, 𝐽2 two real intervals as long

as the values of the solution 𝑥 stay in 𝐽2. We will detail more on this subject in Chapter 6.

Proof. That those solutions of (3.1.1) are solutions of (3.1.2) is almost trivial. The boundary

conditions are justified by the fact that 𝜑(𝑐) = 𝑐. Differentiating (3.1.1) we get

𝑥″(𝑡) = 𝑓 ′(𝑥(𝜑(𝑡))) 𝑥′(𝜑(𝑡)) 𝜑′(𝑡)

and, taking into account that 𝑥′(𝜑(𝑡)) = 𝑓 (𝑥(𝑡)) by (3.1.1), we obtain (3.1.2).
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Conversely, let 𝑥 be a solution of (3.1.2). The equation implies that

(𝑓 −1)′(𝑥′(𝑡))𝑥″(𝑡) = 𝑓 (𝑥(𝑡))𝜑′(𝑡). (3.1.3)

Integrating from 𝑐 to 𝑡 in (3.1.3),

𝑓 −1(𝑥′(𝑡)) − 𝑥u� = 𝑓 −1(𝑥′(𝑡)) − 𝑓 −1(𝑥′(𝑐)) = ∫u�
u�

𝑓 (𝑥(𝑠))𝜑′(𝑠) d 𝑠 (3.1.4)

and thus, defining 𝑔(𝑠) ∶= 𝑓 (𝑥(𝜑(𝑠))) − 𝑥′(𝑠), we conclude from (3.1.4) that

𝑥′(𝑡) = 𝑓 (𝑥u� + ∫u�
u�

𝑓 (𝑥(𝑠))𝜑′(𝑠) d 𝑠)

= 𝑓 (𝑥(𝜑(𝑡)) + ∫u�
u�
(𝑓 (𝑥(𝑠)) − 𝑥′(𝜑(𝑠)))𝜑′(𝑠) d 𝑠)

= 𝑓 (𝑥(𝜑(𝑡)) + ∫u�(u�)
u�

(𝑓 (𝑥(𝜑(𝑠))) − 𝑥′(𝑠)) d 𝑠)

= 𝑓 (𝑥(𝜑(𝑡)) + ∫u�(u�)
u�

𝑔(𝑠) d 𝑠) .

Let us fix 𝑡 > 𝑐 where 𝑥(𝑡) is defined. We will prove that (3.1.1) is satisfied in [𝑐, 𝑡] (the

proof is done analogously for 𝑡 < 𝑐). Recall that 𝜑 has to be decreasing, so 𝜑(𝑡) < 𝑐. Also,
since 𝑓 is a diffeomorphism, the derivative of 𝑓 is bounded on [𝑐, 𝑡], so 𝑓 is Lipschitz on [𝑐, 𝑡].
Since 𝑓 , 𝑥, 𝑥′ and 𝜑′ are continuous, we can define

𝐾1 ∶= inf {𝛼 ∈ ℝ+ ∶ ∣𝑓 (𝑥(𝜑(𝑟)) + ∫u�(u�)
u�

𝑔(𝑠) d 𝑠) − 𝑓 (𝑥(𝜑(𝑟)))∣

≤ 𝛼 ∣∫u�(u�)
u�

𝑔(𝑠) d 𝑠∣ ∀𝑟 ∈ [𝑐, 𝑡]} ,

and

𝐾2 ∶= inf {𝛼 ∈ ℝ+ ∶ ∣𝑓 (𝑥(𝑟) + ∫u�
u�

𝑔(𝑠) d 𝑠) − 𝑓 (𝑥(𝑟))∣

≤ 𝛼 ∣∫u�
u�

𝑔(𝑠) d 𝑠∣ ∀𝑟 ∈ [𝑐, 𝑡]} .

Let 𝐾 = max{𝐾1, 𝐾2}. Now,

|𝑔(𝑡)| = ∣𝑓 (𝑥(𝜑(𝑡)) + ∫u�(u�)
u�

𝑔(𝑠) d 𝑠) − 𝑓 (𝑥(𝜑(𝑡)))∣ ≤ 𝐾 ∣∫u�(u�)
u�

𝑔(𝑠) d 𝑠∣

≤ −𝐾 ∫u�(u�)
u�

|𝑔(𝑠)| d 𝑠 = −𝐾 ∫u�
u�

|𝑔(𝜑(𝑠))|𝜑′(𝑠) d 𝑠.

Applying this inequality at 𝑟 = 𝜑(𝑠) inside the integral we deduce that

|𝑔(𝑡)| ≤ −𝐾 ∫u�
u�

𝐾 ∣∫u�
u�

𝑔(𝑟) d 𝑟∣ 𝜑′(𝑠) d 𝑠 ≤ −𝐾2 ∫u�
u�

∫u�
u�

|𝑔(𝑟)| d 𝑟 𝜑′(𝑠) d 𝑠

= 𝐾2|𝜑(𝑡) − 𝜑(𝑐)| ∫u�
u�

|𝑔(𝑟)| d 𝑟 ≤ 𝐾2(𝑐 − 𝑎) ∫u�
u�

|𝑔(𝑟)| d 𝑟.

Thus, by Grönwall’s Lemma, 𝑔(𝑡) = 0 and hence (3.1.1) is satisfied for all 𝑡 < 𝑏 where 𝑥 is

defined. �

Notice that, as an immediate consequence of this result, we have that the unique solution

of the equation

𝑥″(𝑡) = −√1 + (𝑥′(𝑡))2 sinh 𝑥(𝑡), 𝑥(0) = 𝑥0, 𝑥′(0) = sinh 𝑥0,



3. Reduction of differential equations with involutions 41

coincide with the unique solution of

𝑥′(𝑡) = sinh 𝑥(−𝑡), 𝑥(0) = 𝑥0.

Furthermore, Lemma 3.1.1 can be extended, with a very similar proof, to the case with

periodic boundary value conditions. Let us consider the equations

𝑥′(𝑡) = 𝑓 (𝑥(𝜑(𝑡))), 𝑥(𝑎) = 𝑥(𝑏) (3.1.5)

and

𝑥″(𝑡) = 𝑓 ′(𝑓 −1(𝑥′(𝑡)))𝑓 (𝑥(𝑡))𝜑′(𝑡), 𝑥(𝑎) = 𝑥(𝑏) = 𝑓 −1(𝑥′(𝑎)). (3.1.6)

Lemma 3.1.3. Let [𝑎, 𝑏] ⊂ ℝ and let 𝑓 ∶ ℝ → ℝ be a diffeomorphism. Let 𝜑 ∈ u�1([𝑎, 𝑏])
be an involution such that 𝜑([𝑎, 𝑏]) = [𝑎, 𝑏]. Then 𝑥 is a solution of the first order differ-

ential equation with involution (3.1.5) if and only if 𝑥 is a solution of the second order ordinary

differential equation (3.1.6).

Proof. Let 𝑥 be a solution of (3.1.5). Since 𝜑(𝑎) = 𝑏 we trivially get that 𝑥 is a solution of

(3.1.6).

Let 𝑥 be a solution of (3.1.6). As in the proof of the previous lemma, we have that

𝑥′(𝑡) = 𝑓 (𝑥(𝜑(𝑡)) + ∫u�(u�)
u�

𝑔(𝑠) d 𝑠) ,

where 𝑔(𝑠) ∶= 𝑓 (𝑥(𝜑(𝑠))) − 𝑥′(𝑠).
Let

𝐾1 ∶= inf {𝛼 ∈ ℝ+ ∶ ∣𝑓 (𝑥(𝜑(𝑟)) + ∫u�(u�)
u�

𝑔(𝑠) d 𝑠) − 𝑓 (𝑥(𝜑(𝑟)))∣

≤ 𝛼 ∣∫u�(u�)
u�

𝑔(𝑠) d 𝑠∣ ∀𝑟 ∈ [𝑎, 𝑏]} ,

𝐾2 ∶= inf {𝛼 ∈ ℝ+ ∶ ∣𝑓 (𝑥(𝑟) + ∫u�
u�

𝑔(𝑠) d 𝑠) − 𝑓 (𝑥(𝑟))∣

≤ 𝛼 ∣∫u�
u�

𝑔(𝑠) d 𝑠∣ ∀𝑟 ∈ [𝑎, 𝑏]} .

𝐾 ′
1 ∶= inf {𝛼 ∈ ℝ+ ∶ ∣𝑓 (𝑥(𝜑(𝑟)) + ∫u�(u�)

u�
𝑔(𝑠) d 𝑠) − 𝑓 (𝑥(𝜑(𝑟)))∣

≤ 𝛼 ∣∫u�(u�)
u�

𝑔(𝑠) d 𝑠∣ ∀𝑟 ∈ [𝑎, 𝑏]} ,

𝐾 ′
2 ∶= inf {𝛼 ∈ ℝ+ ∶ ∣𝑓 (𝑥(𝑟) + ∫u�

u�
𝑔(𝑠) d 𝑠) − 𝑓 (𝑥(𝑟))∣

≤ 𝛼 ∣∫u�
u�

𝑔(𝑠) d 𝑠∣ ∀𝑟 ∈ [𝑎, 𝑏]}

𝐾1, 𝐾2 be as in the proof of Lemma 3.1.1 but changing 𝑐 by 𝑎 and [𝑐, 𝑡] by [𝑎, 𝑏]. Let 𝐾 ′
1,

𝐾 ′
2 be as 𝐾1, 𝐾2 but changing 𝑐 by 𝑏. Let 𝐾 = max{𝐾1, 𝐾2, 𝐾 ′

1, 𝐾 ′
2}. Then, for 𝑡 in [𝑎, 𝑏],

|𝑔(𝑡)| ≤ 𝐾 ∣∫u�(u�)
u�

𝑔(𝑠) d 𝑠∣ ≤ −𝐾 ∫u�
u�

|𝑔(𝜑(𝑠))|𝜑′(𝑠) d 𝑠
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≤ −𝐾 ∫u�
u�

𝐾 ∣∫u�
u�

𝑔(𝑟) d 𝑟∣ 𝜑′(𝑠) d 𝑠 ≤ 𝐾2|𝜑(𝑡) − 𝜑(𝑎)| ∫u�
u�

|𝑔(𝑟)| d 𝑟

≤ 𝐾2(𝑏 − 𝑎) ∫u�
u�

|𝑔(𝑟)| d 𝑟,

and we conclude analogously to the other proof. �

Remark 3.1.4. Condition 𝑥(𝑎) = 𝑥(𝑏) = 𝑓 −1(𝑥′(𝑎)) in Lemma 3.1.3 can be replaced by

𝑥(𝑎) = 𝑥(𝑏) = 𝑓 −1(𝑥′(𝑏)). The proof in this case is analogous.

Remark 3.1.5. It is important to notice that the proofs of Lemmas 3.1.1 and 3.1.3 are still valid

if we weaken the regularity hypothesis on 𝑓 and 𝑓 −1 to 𝑓 and 𝑓 −1 absolutely continuous and 𝑓
locally Lipschitz. It is enough to check that we have sufficient regularity for using the chain rule

(cf. [37, Lemma 1 and Remark 3]).

Let 𝐼 ∶= [−𝑇, 𝑇] ⊂ ℝ and consider a problem of the kind

𝑥′(𝑡) = 𝑓 (𝑡, 𝑥(−𝑡), 𝑥(𝑡)), 𝑥(−𝑇) = 𝑥(𝑇). (3.1.7)

If we consider now the endomorphism 𝜉 ∶ ℝ3 → ℝ3 defined as

𝜉(𝑡, 𝑧, 𝑤) = (𝑡, 𝑧 − 𝑤, 𝑧 + 𝑤) ∀𝑧, 𝑤 ∈ ℝ,

with inverse

𝜉−1(𝑡, 𝑦, 𝑥) = (𝑡, 𝑥 + 𝑦
2 , 𝑥 − 𝑦

2 ) ∀ 𝑥, 𝑦 ∈ ℝ.

It is clear that

𝑓 (𝑡, 𝑥(−𝑡), 𝑥(𝑡)) = (𝑓 ∘ 𝜉)(𝑡, 𝑥u�(𝑡), 𝑥u�(𝑡)),

and

𝑓 (−𝑡, 𝑥(𝑡), 𝑥(−𝑡)) = (𝑓 ∘ 𝜉)(−𝑡, 𝑥u�(𝑡), −𝑥u�(𝑡)).

where 𝑥u� and 𝑥u� denote the even and odd parts of 𝑥 respectively.

On the other hand, we define

𝑔u�(𝑡) ∶= 𝑓u�(𝑡, 𝑥(−𝑡), 𝑥(𝑡)) = 𝑓 (𝑡, 𝑥(−𝑡), 𝑥(𝑡)) + 𝑓 (−𝑡, 𝑥(𝑡), 𝑥(−𝑡))
2

=
(𝑓 ∘ 𝜉)(𝑡, 𝑥u�(𝑡), 𝑥u�(𝑡)) + (𝑓 ∘ 𝜉)(−𝑡, 𝑥u�(𝑡), −𝑥u�(𝑡))

2

and

𝑔u�(𝑡) ∶= 𝑓u�(𝑡, 𝑥(−𝑡), 𝑥(𝑡)) =
(𝑓 ∘ 𝜉)(𝑡, 𝑥u�(𝑡), 𝑥u�(𝑡)) − (𝑓 ∘ 𝜉)(−𝑡, 𝑥u�(𝑡), −𝑥u�(𝑡))

2 ,

which are an even and an odd function respectively. Furthermore, since 𝑥u� is even, 𝑥u�(−𝑇) =
𝑥u�(𝑇) and since 𝑥u� is odd, 𝑥u�(−𝑇) = −𝑥u�(𝑇). Taking into account Proposition 1.1.6, we can

state the following theorem.
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Theorem 3.1.6. If 𝑥 is a solution of problem (3.1.7) and 𝑦(𝑡) = 𝑥(−𝑡), then (𝑧, 𝑤) ∶ 𝐼 →
ℝ2 satisfying (𝑡, 𝑧, 𝑤) = 𝜉−1(𝑡, 𝑦, 𝑥) is a solution of the system of boundary value ordinary

differential equations

𝑧′(𝑡) =
(𝑓 ∘ 𝜉)(𝑡, 𝑧(𝑡), 𝑤(𝑡)) − (𝑓 ∘ 𝜉)(−𝑡, 𝑧(𝑡), −𝑤(𝑡))

2 , 𝑡 ∈ 𝐼,

𝑤′(𝑡) =
(𝑓 ∘ 𝜉)(𝑡, 𝑧(𝑡), 𝑤(𝑡)) + (𝑓 ∘ 𝜉)(−𝑡, 𝑧(𝑡), −𝑤(𝑡))

2 , 𝑡 ∈ 𝐼,

(𝑧, 𝑤)(−𝑇) = (𝑧, −𝑤)(𝑇).

(3.1.8)

We can take this one step further trying to “undo” what we did:

𝑥′(𝑡) = (𝑧 + 𝑤)′(𝑡) = (𝑓 ∘ 𝜉)(𝑡, 𝑧(𝑡), 𝑤(𝑡)) = 𝑓 (𝑡, 𝑦(𝑡), 𝑥(𝑡)),
𝑦′(𝑡) = (𝑧 − 𝑤)′(𝑡) = −(𝑓 ∘ 𝜉)(−𝑡, 𝑧(𝑡), −𝑤(𝑡)) = −𝑓 (−𝑡, 𝑥(𝑡), 𝑦(𝑡)),

(𝑦, 𝑥)(−𝑇) = ((𝑧 − 𝑤)(−𝑇), (𝑧 + 𝑤)(−𝑇)) = ((𝑧 + 𝑤)(𝑇), (𝑧 − 𝑤)(𝑇)) = (𝑥, 𝑦)(𝑇).

We get then the following result.

Proposition3.1.7. (𝑧, 𝑤) is a solutionof problem (3.1.8) if and only if (𝑦, 𝑥) such that𝜉(𝑡, 𝑧, 𝑤)
= (𝑡, 𝑦, 𝑥) is a solution of the system of boundary value ordinary differential equations

𝑥′(𝑡) = 𝑓 (𝑡, 𝑦(𝑡), 𝑥(𝑡)),
𝑦′(𝑡) = −𝑓 (−𝑡, 𝑥(𝑡), 𝑦(𝑡)),

(𝑦, 𝑥)(−𝑇) = (𝑥, 𝑦)(𝑇).
(3.1.9)

The next corollary can also be obtained in a straightforwardwaywithout going trough prob-

lem (3.1.8).

Corollary 3.1.8. If 𝑥 is a solution of problem (3.1.7) and 𝑦(𝑡) = 𝑥(−𝑡), then (𝑦, 𝑥) ∶ 𝐼 → ℝ2

is a solution of the problem (3.1.9).

Solving problems (3.1.8) or (3.1.9) we can check whether 𝑥, obtained from the relation

(𝑡, 𝑦, 𝑥) = 𝜉(𝑡, 𝑧, 𝑤) is a solution to problem (3.1.7). Unfortunately, not every solution of

(3.1.8) – or (3.1.9)– is a solution of (3.1.7), as we show in the following example.

Example 3.1.9. Consider the problem

𝑥′(𝑡) = 𝑥(𝑡) 𝑥(−𝑡), 𝑡 ∈ 𝐼; 𝑥(−𝑇) = 𝑥(𝑇). (3.1.10)

Using Proposition 3.1.7 and Theorem 3.1.6, we know that the solutions of problem (3.1.10)

are those of problem

𝑥′(𝑡) = 𝑥(𝑡) 𝑦(𝑡), 𝑡 ∈ 𝐼;
𝑦′(𝑡) = −𝑥(𝑡) 𝑦(𝑡), 𝑡 ∈ 𝐼;

(𝑦, 𝑥)(−𝑇) = (𝑥, 𝑦)(𝑇).
(3.1.11)

To solve the problem, observe that, adding the two equations, we get 𝑥′(𝑡) + 𝑦′(𝑡) = 0,
so 𝑦(𝑡) = 𝑐 − 𝑥(𝑡) for some constant 𝑐 ∈ ℝ. Substituting 𝑦 in the first equation we get
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𝑥′(𝑡) = 𝑥(𝑡)(𝑐 − 𝑥(𝑡)). It is easy to check that the only solutions of problem (3.1.11) defined

on 𝐼 are of the kind

(𝑥, 𝑦) = ( 𝑐 𝑘 𝑒u�u�

𝑘 𝑒u�u� + 1, 𝑐
𝑘 𝑒u� u� + 1) ,

with 𝑐, 𝑘 ∈ ℝ. However, in order to have 𝑥(𝑇) = 𝑥(−𝑇), a condition necessary for 𝑥 to be a

solution of problem (3.1.10), the only possibility is to have 𝑐𝑘 = 0, and so 𝑥(𝑡) = 0 is the only

solution of problem (3.1.11) which is a solution of problem (3.1.10). Hence, using Corollary

3.1.8, we conclude that 𝑥 ≡ 0 is the only solution of problem (3.1.10).

In a completely analogous way, we can study the initial value problem

𝑥′(𝑡) = 𝑓 (𝑡, 𝑥(−𝑡), 𝑥(𝑡)), 𝑥(0) = 𝑥0. (3.1.12)

In such a case we would have the following versions of the previous results.

Theorem 3.1.10. If 𝑥 ∶ (−𝜖, 𝜖) → ℝ is a solution of problem (3.1.12) and 𝑦(𝑡) = 𝑥(−𝑡),
then (𝑧, 𝑤) ∶ (−𝜖, 𝜖) → ℝ2 satisfying (𝑡, 𝑧, 𝑤) = 𝜉−1(𝑡, 𝑦, 𝑥) is a solution of the system of

boundary value ordinary differential equations

𝑧′(𝑡) =
(𝑓 ∘ 𝜉)(𝑡, 𝑧(𝑡), 𝑤(𝑡)) − (𝑓 ∘ 𝜉)(−𝑡, 𝑧(𝑡), −𝑤(𝑡))

2 , 𝑡 ∈ 𝐼,

𝑤′(𝑡) =
(𝑓 ∘ 𝜉)(𝑡, 𝑧(𝑡), 𝑤(𝑡)) + (𝑓 ∘ 𝜉)(−𝑡, 𝑧(𝑡), −𝑤(𝑡))

2 , 𝑡 ∈ 𝐼,

(𝑧, 𝑤)(0) = (𝑥0, 0).

(3.1.13)

Proposition 3.1.11. (𝑧, 𝑤) is a solution of problem (3.1.13) if and only if (𝑦, 𝑥), such that

𝜉(𝑡, 𝑧, 𝑤) = (𝑡, 𝑦, 𝑥), is a solution of the system of ordinary differential equations with ini-

tial conditions
𝑥′(𝑡) = 𝑓 (𝑡, 𝑦(𝑡), 𝑥(𝑡)),
𝑦′(𝑡) = −𝑓 (−𝑡, 𝑥(𝑡), 𝑦(𝑡)),

(𝑦, 𝑥)(0) = (𝑥0, 𝑥0).
(3.1.14)

Corollary 3.1.12. If 𝑥 ∶ (−𝜖, 𝜖) → ℝ is a solution of problem (3.1.12) and 𝑦(𝑡) = 𝑥(−𝑡), then
(𝑦, 𝑥) ∶ (−𝜖, 𝜖) → ℝ2 is a solution of problem (3.1.14).

Remark 3.1.13. The relation 𝑦(𝑡) = 𝑥(−𝑡) is used in [187] to study conditions under which

the problem

𝑥′(𝑡) = 𝑓 (𝑡, 𝑥(𝑡), 𝑥(−𝑡)), 𝑡 ∈ ℝ
has a unique bounded solution.

3.2 Solution of the equation 𝑥′(𝑡) + 𝑚 𝑥(−𝑡) = ℎ(𝑡)

In this section we will solve a first order linear equation with reflection coupled with periodic

boundary value conditions using its Green’s function. More concisely, we consider the following

differential functional equation:

𝑥′(𝑡) + 𝑚 𝑥(−𝑡) = ℎ(𝑡), 𝑡 ∈ 𝐼, (3.2.1a)
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𝑥(𝑇) − 𝑥(−𝑇) = 0, (3.2.1b)

where 𝑚 is a real nonzero constant, 𝑇 ∈ ℝ+ and ℎ ∈ L1(𝐼).
Applying the result obtained in Example 1.3.8 to this particular case arrive to a problem of

the kind
𝑥″(𝑡) + 𝑚2𝑥(𝑡) = 𝑓 (𝑡), 𝑡 ∈ 𝐼,
𝑥(𝑇) − 𝑥(−𝑇) = 0,

𝑥′(𝑇) − 𝑥′(−𝑇) = 0,
(3.2.2)

where 𝑓 ∈ L1(𝐼). Observe that there is some abuse in this reduction of the problem. First,

observe that 𝑓 , if taken as in Example 1.3.8, should be ℎ′(𝑡) + 𝑚 ℎ(−𝑡) but, here, ℎ ∈ L1(𝐼)
so we cannot guarantee it is differentiable. This paradox is solved by developing a density

argument. u�∞(𝐼) functions are dense inL1(𝐼) so, in general, wemay assume the independent

term ℎ is differentiable as necessary and then argue that, since u�∞(𝐼) is dense in L1(𝐼), the
expression of theGreen’s function obtained for the original problem should hold forℎ ∈ L1(𝐼)
as well (as will always be the case).

Also, the second boundary condition is, following Example 1.3.8,

𝑥′(𝑇) − 𝑥′(−𝑇) = ℎ(𝑇) − ℎ(−𝑇),

but, since ℎ ∈ L1(𝐼), we may as well assume that ℎ(𝑇) = ℎ(−𝑇). We will use this density

argument several times throughout the work, so the reader should pay careful attention when

it appears.

There is much literature on how to solve this problem and the properties of the solution

(see for instance [2, 30, 31]). It is very well known that for all 𝑚2 ≠ (𝑘𝜋/𝑇)2, 𝑘 = 0, 1, …,

problem (3.2.2) has a unique solution given by the expression

𝑢(𝑡) = ∫u�
−u�

𝐺(𝑡, 𝑠)𝑓 (𝑠) d 𝑠,

where 𝐺 is the so-called Green’s function.

This function is unique insofar as it satisfies the following properties [28]:

(𝐼) 𝐺 ∈ u�(𝐼2, ℝ),

(𝐼𝐼) u�u�
u�u� and

u�2u�
u�u�2 exist and are continuous in {(𝑡, 𝑠) ∈ 𝐼2 | 𝑠 ≠ 𝑡},

(𝐼𝐼𝐼) u�u�
u�u� (𝑡, 𝑡−) and

u�u�
u�u� (𝑡, 𝑡+) exist for all 𝑡 ∈ 𝐼 and satisfy

𝜕𝐺
𝜕𝑡

(𝑡, 𝑡−) − 𝜕𝐺
𝜕𝑡

(𝑡, 𝑡+) = 1 ∀𝑡 ∈ 𝐼,

(𝐼𝑉) u�2u�
u�u�2 + 𝑚2𝐺 = 0 in {(𝑡, 𝑠) ∈ 𝐼2 | 𝑠 ≠ 𝑡},

(𝑉) (𝑎) 𝐺(𝑇, 𝑠) = 𝐺(−𝑇, 𝑠) ∀𝑠 ∈ 𝐼,
(𝑏) u�u�

u�u� (𝑇, 𝑠) = u�u�
u�u� (−𝑇, 𝑠) ∀𝑠 ∈ (−𝑇, 𝑇).
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The solution to problem (3.2.2) is unique whenever 𝑇 ∈ ℝ+\{𝑘𝜋/|𝑚|}u�∈ℕ, so the solution to

(3.2.1) is unique in such a case. We will assume uniqueness conditions from now on.

The following proposition gives us somemore properties of the Green’s function for (3.2.2).

Proposition 3.2.1. For all 𝑡, 𝑠 ∈ 𝐼, the Green’s function associated to problem (3.2.2) satisfies

the following properties as well:

(𝑉𝐼) 𝐺(𝑡, 𝑠) = 𝐺(𝑠, 𝑡),

(𝑉𝐼𝐼) 𝐺(𝑡, 𝑠) = 𝐺(−𝑡, −𝑠),

(𝑉𝐼𝐼𝐼) u�u�
u�u� (𝑡, 𝑠) = u�u�

u�u� (𝑠, 𝑡),

(𝐼𝑋) u�u�
u�u� (𝑡, 𝑠) = −u�u�

u�u� (−𝑡, −𝑠),

(𝑋) u�u�
u�u� (𝑡, 𝑠) = −u�u�

u�u� (𝑡, 𝑠).

Proof. (𝑉𝐼). The differential operator 𝐿 = d2

d u�2 + 𝑚2 associated to equation (3.2.2) is self-

adjoint, so in an analogous way to [2, Chapter 33] or [28, Section 1.3], we deduce that function

𝐺 is symmetric.

(𝑉𝐼𝐼). Let 𝑢 be a solution to (3.2.2) and define 𝑣(𝑡) ∶= 𝑢(−𝑡), then 𝑣 is a solution of

problem (3.2.2) with 𝑓 (−𝑡) instead of 𝑓 (𝑡). This way

𝑣(𝑡) = ∫u�
−u�

𝐺(𝑡, 𝑠)𝑓 (−𝑠) d 𝑠 = ∫u�
−u�

𝐺(𝑡, −𝑠)𝑓 (𝑠) d 𝑠,

but we have also

𝑣(𝑡) = 𝑢(−𝑡) = ∫u�
−u�

𝐺(−𝑡, 𝑠)𝑓 (𝑠) d 𝑠,

therefore

∫u�
−u�

[𝐺(𝑡, −𝑠) − 𝐺(−𝑡, 𝑠)]𝑓 (𝑠) = 0

and, since continuous functions are dense in 𝐿2(𝐼), 𝐺(𝑡, −𝑠) = 𝐺(−𝑡, 𝑠) on 𝐼2, this is,

𝐺(𝑡, 𝑠) = 𝐺(−𝑡, −𝑠) ∀𝑡, 𝑠 ∈ 𝐼.

To prove (𝑉𝐼𝐼𝐼) and (𝐼𝑋) it is enough to differentiate (𝑉𝐼) and (𝑉𝐼𝐼) with respect to 𝑡.
(𝑋) Assume 𝑓 is differentiable. Let 𝑢 be a solution to (3.2.2), then 𝑢 ∈ 𝐶1(𝐼) and 𝑣 ≡ 𝑢′

is a solution of

𝑥″(𝑡) + 𝑚2𝑥(𝑡) = 𝑓 ′(𝑡), 𝑡 ∈ 𝐼,
𝑥(𝑇) − 𝑥(−𝑇) = 0,

𝑥′(𝑇) − 𝑥′(−𝑇) = 𝑓 (𝑇) − 𝑓 (−𝑇).

Therefore,

𝑣(𝑡) = ∫u�
−u�

𝐺(𝑡, 𝑠)𝑓 ′(𝑠) d 𝑠 − 𝐺(𝑡, −𝑇)[𝑓 (𝑇) − 𝑓 (−𝑇)],
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where the second term in the right hand side stands for the nonhomogeneity of the boundary

conditions and properties (𝐼𝐼𝐼), (𝐼𝑉) and (𝑉) (𝑎).
Hence, from (𝑉)(𝑎) and (𝑉𝐼), we have that

𝑣(𝑡) = 𝐺(𝑡, 𝑠)𝑓 (𝑠)∣u�=u�
u�=−u� − ∫u�

−u�
𝜕𝐺
𝜕𝑠

(𝑡, 𝑠)𝑓 (𝑠) d 𝑠 − ∫u�
u�

𝜕𝐺
𝜕𝑠

(𝑡, 𝑠)𝑓 (𝑠) d 𝑠

−𝐺(𝑡, −𝑇)[𝑓 (𝑇) − 𝑓 (−𝑇)] = − ∫u�
−u�

𝜕𝐺
𝜕𝑠

(𝑡, 𝑠)𝑓 (𝑠) d 𝑠.

On the other hand,

𝑣(𝑡) = 𝑢′(𝑡) = d
d 𝑡 ∫u�

−u�
𝐺(𝑡, 𝑠)𝑓 (𝑠) d 𝑠 + d

d 𝑡 ∫u�
u�

𝐺(𝑡, 𝑠)𝑓 (𝑠) d 𝑠 = ∫u�
−u�

𝜕𝐺
𝜕𝑡

(𝑡, 𝑠)𝑓 (𝑠) d 𝑠.

Since differentiable functions are dense in 𝐿2(𝐼), we conclude that

𝜕𝐺
𝜕𝑡

(𝑡, 𝑠) = −𝜕𝐺
𝜕𝑠

(𝑡, 𝑠).

�

Now we are in a position to prove the main result of this section, in which we deduce the

expression of the Green’s function related to problem (3.2.1).

Proposition 3.2.2. Suppose that 𝑚 ≠ 𝑘 𝜋/𝑇, 𝑘 ∈ ℤ. Then problem (3.2.1) has a unique

solution given by the expression

𝑢(𝑡) ∶= ∫u�
−u�

𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠, (3.2.3)

where

𝐺(𝑡, 𝑠) ∶= 𝑚 𝐺(𝑡, −𝑠) − 𝜕𝐺
𝜕𝑠

(𝑡, 𝑠)

is called the Green’s function related to problem (3.2.1).

Proof. As we have previously remarked, problem (3.2.1) has at most one solution for all 𝑚 ≠
𝑘 𝜋/𝑇, 𝑘 ∈ ℤ. Let us see that function 𝑢 defined in (3.2.3) fulfills (3.2.1) (we assume 𝑡 > 0,
the other case is analogous):

𝑢′(𝑡) + 𝑚 𝑢(−𝑡)

= d
d 𝑡 ∫−u�

−u�
𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠 + d

d 𝑡 ∫u�
−u�

𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠

+ d
d 𝑡 ∫u�

u�
𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠 + 𝑚 ∫u�

−u�
𝐺(−𝑡, 𝑠)ℎ(𝑠) d 𝑠

= (𝐺(𝑡, 𝑡−) − 𝐺(𝑡, 𝑡+))ℎ(𝑡) + ∫u�
−u�

[𝑚𝜕𝐺
𝜕𝑡

(𝑡, −𝑠) − 𝜕2𝐺
𝜕𝑡𝜕𝑠

(𝑡, 𝑠)] ℎ(𝑠) d 𝑠

+𝑚 ∫u�
−u�

[𝑚𝐺(−𝑡, −𝑠) − 𝜕𝐺
𝜕𝑠

(−𝑡, 𝑠)] ℎ(𝑠) d 𝑠.
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Using (𝐼𝐼𝐼), we deduce that this last expression is equal to

ℎ(𝑡) + ∫u�
−u�

[𝑚𝜕𝐺
𝜕𝑡

(𝑡, −𝑠) − 𝜕2𝐺
𝜕𝑡𝜕𝑠

(𝑡, 𝑠) + 𝑚2𝐺(−𝑡, −𝑠) − 𝑚𝜕𝐺
𝜕𝑠

(−𝑡, 𝑠)] ℎ(𝑠) d 𝑠.

which is, by (𝐼𝑉), (𝑉𝐼𝐼), (𝐼𝑋) and (𝑋), equal to

ℎ(𝑡) + ∫u�
−u�

(𝑚 [𝜕𝐺
𝜕𝑡

(𝑡, −𝑠) − 𝜕𝐺
𝜕𝑠

(−𝑡, 𝑠)] + 𝜕2𝐺
𝜕𝑡2 (𝑡, 𝑠) + 𝑚2𝐺(𝑡, 𝑠)) ℎ(𝑠) d 𝑠 = ℎ(𝑡).

Therefore, (3.2.1a) is satisfied.

Condition (𝑉) allows us to verify the boundary condition:

𝑢(𝑇) − 𝑢(−𝑇)

= ∫u�
−u�

[𝑚𝐺(𝑇, −𝑠) − 𝜕𝐺
𝜕𝑠

(𝑇, 𝑠) − 𝑚𝐺(−𝑇, −𝑠) + 𝜕𝐺
𝜕𝑠

(−𝑇, 𝑠)] ℎ(𝑠) = 0.

�

As the original Green’s function, 𝐺 satisfies several properties.

Proposition 3.2.3. 𝐺 satisfies the following properties:

(𝐼′) u�u�
u�u� exists and is continuous in {(𝑡, 𝑠) ∈ 𝐼2 | 𝑠 ≠ 𝑡},

(𝐼𝐼′) 𝐺(𝑡, 𝑡−) and 𝐺(𝑡, 𝑡+) exist for all 𝑡 ∈ 𝐼 and satisfy

𝐺(𝑡, 𝑡−) − 𝐺(𝑡, 𝑡+) = 1 ∀𝑡 ∈ 𝐼,

(𝐼𝐼𝐼′) u�u�
u�u� (𝑡, 𝑠) + 𝑚𝐺(−𝑡, 𝑠) = 0 for a. e. 𝑡, 𝑠 ∈ 𝐼, 𝑠 ≠ 𝑡,

(𝐼𝑉 ′) 𝐺(𝑇, 𝑠) = 𝐺(−𝑇, 𝑠) ∀𝑠 ∈ (−𝑇, 𝑇),

(𝑉 ′) 𝐺(𝑡, 𝑠) = 𝐺(−𝑠, −𝑡) ∀𝑡, 𝑠 ∈ 𝐼.

Proof. Properties (𝐼′), (𝐼𝐼′) and (𝐼𝑉 ′) are straightforward from the analogous properties for

function 𝐺.

(𝐼𝐼𝐼′). In the proof of Proposition 3.2.2 we implicitely showed that function 𝑢 defined in

(3.2.3), and thus the unique solution of (3.2.1), satisfies

𝑢′(𝑡) = ℎ(𝑡) + ∫u�
−u�

𝜕𝐺
𝜕𝑡

(𝑡, 𝑠)ℎ(𝑠) d 𝑠.

Hence, since 𝑢′(𝑡) − ℎ(𝑡) + 𝑚 𝑢(−𝑡) = 0,

∫u�
−u�

𝜕𝐺
𝜕𝑡

(𝑡, 𝑠)ℎ(𝑠) d 𝑠 + 𝑚 ∫u�
−u�

𝐺(−𝑡, 𝑠)ℎ(𝑠) d 𝑠 = 0,
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this is,

∫u�
−u�

⎡⎢
⎣

𝜕𝐺
𝜕𝑡

(𝑡, 𝑠) + 𝑚𝐺(−𝑡, 𝑠)⎤⎥
⎦

ℎ(𝑠) d 𝑠 = 0 for all ℎ ∈ L1(𝐼),

and thus

𝜕𝐺
𝜕𝑡

(𝑡, 𝑠) + 𝑚𝐺(−𝑡, 𝑠) = 0 for a. e. 𝑡, 𝑠 ∈ 𝐼, 𝑠 ≠ 𝑡.

(𝑉 ′). This result is proven using properties (𝑉𝐼) − (𝑋):

𝐺(−𝑠, −𝑡) = 𝑚𝐺(−𝑠, 𝑡) − 𝜕𝐺
𝜕𝑠

(−𝑠, −𝑡) = 𝑚𝐺(𝑡, −𝑠) + 𝜕𝐺
𝜕𝑡

(−𝑠, −𝑡)

= 𝑚𝐺(𝑡, −𝑠) − 𝜕𝐺
𝜕𝑡

(𝑠, 𝑡) = 𝑚𝐺(𝑡, −𝑠) − 𝜕𝐺
𝜕𝑠

(𝑡, 𝑠) = 𝐺(𝑡, 𝑠).

�

Remark 3.2.4. Due to the expression of 𝐺 given in next section, properties (𝐼𝐼) and (𝐼′) can

be improved by adding that 𝐺 and 𝐺 are analytic on {(𝑡, 𝑠) ∈ 𝐼2 | 𝑠 ≠ 𝑡} and {(𝑡, 𝑠) ∈
𝐼2 | |𝑠| ≠ |𝑡|} respectively.

Using properties (𝐼𝐼′) − (𝑉 ′) we obtain the following corollary of Proposition 3.2.2.

Corollary 3.2.5. Suppose that 𝑚 ≠ 𝑘 𝜋/𝑇, 𝑘 ∈ ℤ. Then the problem

𝑥′(𝑡) + 𝑚 𝑥(−𝑡) = ℎ(𝑡), 𝑡 ∈ 𝐼 ∶= [−𝑇, 𝑇],
𝑥(−𝑇) − 𝑥(𝑇) = 𝜆,

with 𝜆 ∈ ℝ has a unique solution given by the expression

𝑢(𝑡) ∶= ∫u�
−u�

𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠 + 𝜆𝐺(𝑡, −𝑇).

3.2.1 Constant sign of function 𝐺

We will now give a result on the positivity or negativity of the Green’s function for problem

(3.2.1). In order to achieve this, we need a new lemma and the explicit expression of the func-

tion 𝐺.

Let 𝛼 ∶= 𝑚𝑇 and 𝐺u� be the Green’s function for problem (3.2.1) for a particular value of

the parameter 𝛼. Note that sign(𝛼) = sign(𝑚) because 𝑇 is always positive.

Lemma 3.2.6. 𝐺u�(𝑡, 𝑠) = −𝐺−u�(−𝑡, −𝑠) ∀𝑡, 𝑠 ∈ 𝐼.

Proof. Let 𝑢(𝑡) ∶= ∫u�
−u� 𝐺u�(𝑡, 𝑠)ℎ(𝑠) d 𝑠 be a solution to (3.2.1). Let 𝑣(𝑡) ∶= −𝑢(−𝑡). Then

𝑣′(𝑡) − 𝑚 𝑣(−𝑡) = 𝑢′(−𝑡) + 𝑚 𝑢(𝑡) = ℎ(−𝑡), and therefore

𝑣(𝑡) = ∫u�
−u�

𝐺−u�(𝑡, 𝑠)ℎ(−𝑠) d 𝑠.

On the other hand, by definition of 𝑣,

𝑣(𝑡) = − ∫u�
−u�

𝐺u�(−𝑡, 𝑠)ℎ(𝑠) d 𝑠 = − ∫u�
−u�

𝐺u�(−𝑡, −𝑠)ℎ(−𝑠) d 𝑠,

therefore we can conclude that 𝐺u�(𝑡, 𝑠) = −𝐺−u�(−𝑡, −𝑠) for all 𝑡, 𝑠 ∈ 𝐼. �
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Corollary 3.2.7. 𝐺u� is positive if and only if 𝐺−u� is negative on 𝐼2.

With this corollary, to make a complete study of the positivity and negativity of the Green’s

function, it is enough to find out for what values 𝛼 = 𝑚 𝑇 ∈ ℝ+ function 𝐺 is positive and

for which is not. This will be very useful to state maximum and anti-maximum principles for

(3.2.1) due to the way we express its solution as an integral operator with kernel 𝐺.

Using the algorithm described in [31] we can obtain the explicit expression of 𝐺:

2𝑚 sin(𝑚𝑇)𝐺(𝑡, 𝑠) =
⎧{
⎨{⎩

cos 𝑚(𝑇 + 𝑠 − 𝑡) if 𝑠 ≤ 𝑡,
cos 𝑚(𝑇 − 𝑠 + 𝑡) if 𝑠 > 𝑡.

Therefore,

2 sin(𝑚𝑇)𝐺(𝑡, 𝑠) =

⎧{{{
⎨{{{⎩

cos 𝑚(𝑇 − 𝑠 − 𝑡) + sin 𝑚(𝑇 + 𝑠 − 𝑡) if − 𝑡 ≤ 𝑠 < 𝑡,
cos 𝑚(𝑇 − 𝑠 − 𝑡) − sin 𝑚(𝑇 − 𝑠 + 𝑡) if − 𝑠 ≤ 𝑡 < 𝑠,
cos 𝑚(𝑇 + 𝑠 + 𝑡) + sin 𝑚(𝑇 + 𝑠 − 𝑡) if − |𝑡| > 𝑠,
cos 𝑚(𝑇 + 𝑠 + 𝑡) − sin 𝑚(𝑇 − 𝑠 + 𝑡) if 𝑡 < −|𝑠|.

Realize that 𝐺 is continuous in {(𝑡, 𝑠) ∈ 𝐼2 | 𝑡 ≠ 𝑠}. Making the change of variables 𝑡 = 𝑇𝑧,
𝑠 = 𝑇𝑦, we can simplify this expression to

2 sin(𝛼)𝐺(𝑧, 𝑦) =

⎧{{{
⎨{{{⎩

cos 𝛼(1 − 𝑦 − 𝑧) + sin 𝛼(1 + 𝑦 − 𝑧) if − 𝑧 ≤ 𝑦 < 𝑧,
cos 𝛼(1 − 𝑦 − 𝑧) − sin 𝛼(1 − 𝑦 + 𝑧) if − 𝑦 ≤ 𝑧 < 𝑦,
cos 𝛼(1 + 𝑦 + 𝑧) + sin 𝛼(1 + 𝑦 − 𝑧) if − |𝑧| > 𝑦,
cos 𝛼(1 + 𝑦 + 𝑧) − sin 𝛼(1 − 𝑦 + 𝑧) if 𝑧 < −|𝑦|.

Using the trigonometric identity

cos(𝑎 − 𝑏) ± sin(𝑎 + 𝑏) = (cos 𝑎 ± sin 𝑎)(cos 𝑏 ± sin 𝑏),

we can factorise this expression as follows:

2 sin(𝛼)𝐺(𝑧, 𝑦) =

⎧{{{
⎨{{{⎩

[cos 𝛼(1 − 𝑧) + sin 𝛼(1 − 𝑧)][sin 𝛼𝑦 + cos 𝛼𝑦] if − 𝑧 ≤ 𝑦 < 𝑧,
[cos 𝛼𝑧 − sin 𝛼𝑧][sin 𝛼(𝑦 − 1) + cos 𝛼(𝑦 − 1)] if − 𝑦 ≤ 𝑧 < 𝑦,
[cos 𝛼(1 + 𝑦) + sin 𝛼(1 + 𝑦)][cos 𝛼𝑧 − sin 𝛼𝑧] if − |𝑧| > 𝑦,
[cos 𝛼𝑦 + sin 𝛼𝑦][cos 𝛼(𝑧 + 1) − sin 𝛼(𝑧 + 1)] if 𝑧 < −|𝑦|.

(3.2.5)

Note that

cos 𝜉 + sin 𝜉 > 0 ∀𝜉 ∈ (2𝑘𝜋 − 𝜋
4 , 2𝑘𝜋 + 3𝜋

4 ) , 𝑘 ∈ ℤ

cos 𝜉 + sin 𝜉 < 0 ∀𝜉 ∈ (2𝑘𝜋 + 3𝜋
4 , 2𝑘𝜋 + 7𝜋

4 ) , 𝑘 ∈ ℤ

cos 𝜉 − sin 𝜉 > 0 ∀𝜉 ∈ (2𝑘𝜋 − 3𝜋
4 , 2𝑘𝜋 + 𝜋

4 ) , 𝑘 ∈ ℤ

cos 𝜉 − sin 𝜉 < 0 ∀𝜉 ∈ (2𝑘𝜋 + 𝜋
4 , 2𝑘𝜋 + 5𝜋

4 ) , 𝑘 ∈ ℤ

(3.2.6)
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Figure 3.2.1: Plot of the function 𝐺(𝑧, 𝑦) for 𝛼 = u�
4 .

As we have seen, the Green’s function 𝐺 is not defined on the diagonal of 𝐼2. For easier

manipulation, we will define it in the diagonal as follows:

𝐺(𝑡, 𝑡) =
⎧{
⎨{⎩

lim
u�→u�+

𝐺(𝑡, 𝑠) if 𝑚 > 0
lim
u�→u�−

𝐺(𝑡, 𝑠) if 𝑚 < 0
for 𝑡 ∈ (−𝑇, 𝑇);

𝐺(𝑇, 𝑇) = lim
u�→u�−

𝐺(𝑠, 𝑠), 𝐺(−𝑇, −𝑇) = lim
u�→−u�+

𝐺(𝑠, 𝑠)

Using expression (3.2.5) and formulae (3.2.6) we can prove the following theorem.

Theorem 3.2.8.

(1) If 𝛼 ∈ (0, u�
4 ) then 𝐺 is strictly positive on 𝐼2.

(2) If 𝛼 ∈ (−u�
4 , 0) then 𝐺 is strictly negative on 𝐼2.

(3) If 𝛼 = u�
4 then 𝐺 vanishes on 𝑃 ∶= {(−𝑇, −𝑇), (0, 0), (𝑇, 𝑇), (𝑇, −𝑇)} and is strictly

positive on (𝐼2)\𝑃.

(4) If 𝛼 = −u�
4 then 𝐺 vanishes on 𝑃 and is strictly negative on (𝐼2)\𝑃.

(5) If 𝛼 ∈ ℝ\[−u�
4 , u�

4 ] then 𝐺 is not positive nor negative on 𝐼2.

Proof. Lemma 3.2.6 allows us to restrict the proof to the positive values of 𝛼.
We study here the positive values of 𝐺(𝑧, 𝑦) in 𝐴 ∶= {(𝑧, 𝑦) ∈ [−1, 1]2 | 𝑧 ≥ |𝑦|}. The

rest of cases are done in an analogous fashion. Let

𝐵1 ∶= ⋃
u�1∈ℤ

(1 − 𝜋
𝛼 (2𝑘1 + 3

4) , 1 − 𝜋
𝛼 (2𝑘1 − 1

4)) ,



52 3.2. Solution of the equation 𝑥′(𝑡) + 𝑚 𝑥(−𝑡) = ℎ(𝑡)

𝐵2 ∶= ⋃
u�2∈ℤ

𝜋
𝛼 (2𝑘2 − 1

4, 2𝑘2 + 3
4) ,

𝐶1 ∶= ⋃
u�1∈ℤ

(1 − 𝜋
𝛼 (2𝑘1 + 7

4) , 1 − 𝜋
𝛼 (2𝑘1 + 3

4)) ,

𝐶2 ∶= ⋃
u�2∈ℤ

𝜋
𝛼 (2𝑘2 + 3

4, 2𝑘2 + 7
4) ,

𝐵 ∶= {(𝑧, 𝑦) ∈ 𝐵1 × 𝐵2 | 𝑧 > |𝑦|}, and 𝐶 ∶= {(𝑧, 𝑦) ∈ 𝐶1 × 𝐶2 | 𝑧 > |𝑦|}.

Realize that 𝐵 ∩ 𝐶 = ∅. Moreover, we have that 𝐺(𝑧, 𝑦) > 0 on 𝐴 if and only if 𝐴 ⊂ 𝐵 ∪ 𝐶.

To prove the case 𝐴 ⊂ 𝐵, it is a necessary and sufficient condition that [−1, 1] ⊂ 𝐵2 and

[0, 1] ⊂ 𝐵1.

[−1, 1] ⊂ 𝐵2 if and only if 𝑘2 ∈ 1
2( u�

u� − 3
4 , 1

4 − u�
u�) for some 𝑘2 ∈ ℤ, but, since 𝛼 > 0, this

only happens if 𝑘2 = 0. In such a case [−1, 1] ⊂ u�
4u�(−1, 3), which implies 𝛼 < u�

4 . Hence,
u�
u� > 4, so [0, 1] ⊂ (1− 3

4
u�
u� , 1+ 1

4
u�
u� ) = (1 − u�

u� (2𝑘1 + 3
4) , 1 − u�

u� (2𝑘1 − 1
4)) for 𝑘1 = 0.

Therefore 𝐴 ⊂ 𝐵.

We repeat this study for the case 𝐴 ⊂ 𝐶 and all the other subdivisions of the domain of 𝐺,

proving the statement. �

The following definitions [25] lead to a direct corollary of Theorem 3.2.8.

Definition 3.2.9. Let ℱu�(𝐼) be the set of real differentiable functions 𝑓 defined on 𝐼 such that

𝑓 (−𝑇) − 𝑓 (𝑇) = 𝜆. A linear operator 𝑅 ∶ ℱu�(𝐼) → L1(𝐼) is said to be

(1) strongly inverse positive on ℱu�(𝐼) if 𝑅𝑥 ≻ 0 on I ⇒ 𝑥 > 0 on I ∀𝑥 ∈ ℱu�(𝐼),

(2) strongly inverse negative on ℱu�(𝐼) if 𝑅𝑥 ≻ 0 on I ⇒ 𝑥 < 0 on I ∀𝑥 ∈ ℱu�(𝐼),

where 𝑥 ≻ 0 stands for 𝑥 ≥ 0 and ∫u�
−u� 𝑥(𝑡) d 𝑡 > 0. Respectively, 𝑥 ≺ 0 stand for stands for

𝑥 ≤ 0 and ∫u�
−u� 𝑥(𝑡) d 𝑡 < 0.

Corollary 3.2.10. The operator 𝑅u� ∶ ℱu�(𝐼) → L1(𝐼) defined as 𝑅u�(𝑥(𝑡)) = 𝑥′(𝑡) +
𝑚 𝑥(−𝑡), with 𝑚 ∈ ℝ\{0}, satisfies

(1) 𝑅u� is strongly inverse positive on ℱu�(𝐼) if and only if 𝑚 ∈ (0, u�
4u� ] and 𝜆 ≥ 0,

(2) 𝑅u� is strongly inverse negative on ℱu�(𝐼) if and only if 𝑚 ∈ [− u�
4u� , 0) and 𝜆 ≥ 0.

This last corollary establishes a maximum and anti-maximum principle (cf. [25, Lemma 2.5,

Remark 2.3]).

The function 𝐺 has a fairly convoluted expression which does not allow us to see in a

straightforward way its dependence on 𝑚 (see Figure 3.2.1). This dependency can be ana-

lyzed, without computing and evaluating the derivative with respect to 𝑚, just using the prop-

erties of equation (3.2.1a) in those regions where the operator 𝑅u� is inverse positive or in-

verse negative. A different method to the one used here but pursuing a similar purpose can be

found in [30, Lemma 2.8] for the Green’s function related to the second order Hill’s equation.

In [28, Section 1.8] the reader can find a weaker result for 𝑛-th order equations.
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Proposition 3.2.11. Let 𝐺u�u�
∶ 𝐼 → ℝ be the Green’s function and 𝑢u� the solution to the prob-

lem (3.2.1) with constant 𝑚 = 𝑚u�, 𝑖 = 1, 2 respectively. Then the following assertions hold.

(1) If0 < 𝑚1 < 𝑚2 ≤ u�
4u� then𝑢1 > 𝑢2 > 0 on 𝐼 for everyℎ ≻ 0 on 𝐼 and𝐺u�1

> 𝐺u�2
> 0

on 𝐼2.

(2) If − u�
4u� ≤ 𝑚1 < 𝑚2 < 0 then 0 > 𝑢1 > 𝑢2 > 0 on 𝐼 for every ℎ ≻ 0 on 𝐼 and

0 > 𝐺u�1
> 𝐺u�2

on 𝐼2.

Proof. (1). Let ℎ ≻ 0 in equation (3.2.1a). Then, by Corollary 3.2.10, 𝑢u� > 0 on 𝐼, 𝑖 = 1, 2.
We have that

𝑢′
u�(𝑡) + 𝑚u�𝑢u�(−𝑡) = ℎ(𝑡) 𝑖 = 1, 2.

Therefore, for a. e. 𝑡 ∈ 𝐼,

0 = (𝑢2 − 𝑢1)′(𝑡) + 𝑚2𝑢2(−𝑡) − 𝑚1𝑢1(−𝑡) > (𝑢2 − 𝑢1)′(𝑡) + 𝑚1(𝑢2 − 𝑢1)(−𝑡),

and 0 = (𝑢2 − 𝑢1)(𝑇) − (𝑢2 − 𝑢1)(−𝑇). Hence, from Corollary 3.2.10, 𝑢2 < 𝑢1 on 𝐼.
On the other hand, for all 𝑡 ∈ 𝐼, it is satisfied that

0 > (𝑢2 − 𝑢1)(𝑡) = ∫u�
−u�

(𝐺u�2
(𝑡, 𝑠) − 𝐺u�1

(𝑡, 𝑠))ℎ(𝑠) d 𝑠 ∀ℎ ≻ 0. (3.2.7)

This makes clear that 0 ≺ 𝐺u�2
≺ 𝐺u�1

a. e. on 𝐼2.

To prove that 𝐺u�2
< 𝐺u�1

on 𝐼2, let 𝑠 ∈ 𝐼 be fixed, and define 𝑣u� ∶ ℝ → ℝ as the 2 𝑇–

periodic extension to the whole real line of 𝐺u�u�
(⋅, 𝑠).

Using (𝐼′) – (𝐼𝑉 ′), we have that 𝑣2 − 𝑣1 is a continuosly differentiable function on 𝐼u� ≡
(𝑠, 𝑠 + 2 𝑇). Futhermore, it is clear that (𝑣2 − 𝑣1)′ is absolutely continuous on 𝐼u�. Using

(𝐼𝐼𝐼′), we have that

(𝑣2 − 𝑣1)′(𝑡) + 𝑚2𝑣2(−𝑡) − 𝑚1𝑣1(−𝑡) = 0 on 𝐼u�.

As consequence, 𝑣″
u� (𝑡) + 𝑚2

u� 𝑣u�(𝑡) = 0 a. e. on 𝐼u�. Moreover, using (𝐼𝐼′) and (𝐼𝑉 ′) we know

that

(𝑣2 − 𝑣1)(𝑠) = (𝑣2 − 𝑣1)(𝑠 + 2 𝑇), (𝑣2 − 𝑣1)′(𝑠) = (𝑣2 − 𝑣1)′(𝑠 + 2 𝑇).

Hence, for all 𝑡 ∈ 𝐼u�, we have that

0 = (𝑣2 − 𝑣1)″(𝑡) + 𝑚2
2 𝑣2(𝑡) − 𝑚2

1 𝑣1(𝑡) > (𝑣2 − 𝑣1)″(𝑡) + 𝑚2
1 (𝑣2 − 𝑣1)(𝑡).

The periodic boundary value conditions, together the fact that for this range of values of

𝑚1, operator 𝑣″ + 𝑚2
1 𝑣 is strongly inverse positive (see Corollary 3.2.10), we conclude that

𝑣2 < 𝑣1 on 𝐼u�, this is, 𝐺u�2
(𝑡, 𝑠) < 𝐺u�1

(𝑡, 𝑠) for all 𝑡, 𝑠 ∈ 𝐼.
(2). This is straightforward using part (1), Lemma 3.2.6 and Theorem 3.2.8:

𝐺u�2
(𝑡, 𝑠) = −𝐺−u�2

(−𝑡, −𝑠) < −𝐺−u�1
(−𝑡, −𝑠) = 𝐺u�1

(𝑡, 𝑠) < 0 ∀𝑡, 𝑠 ∈ 𝐼.

By equation (3.2.7), 𝑢2 < 𝑢1 on 𝐼.
�
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Remark 3.2.12. In (1) and (2) we could have added that 𝑢1 < 𝑢2 ∀ℎ ≺ 0. These are

straightforward consequences of the rest of the proposition.

The next subsection is devoted to point out some applications of the given results to the

existence of solutions of nonlinear periodic boundary value problems. Due to the fact that the

proofs follow similar steps to the ones given in some previous papers (see [25, 167]), we omit

them.

3.2.2 Lower and upper solutions method

Lower and upper solutions methods are a variety of widespread techniques that supply infor-

mation about the existence –and sometimes construction– of solutions of differential equa-

tions. Depending on the particular type of differential equation and the involved boundary

value conditions, it is subject to these techniques change but are in general suitable –with

proper modifications– to other cases.

For this application we will follow the steps in [25] and use Corollary 3.2.10 to establish

conditions under which the more general problem

𝑥′(𝑡) = 𝑓 (𝑡, 𝑥(−𝑡)) ∀𝑡 ∈ 𝐼, 𝑥(−𝑇) = 𝑥(𝑇), (3.2.8)

has a solution. Here 𝑓 ∶ 𝐼 × ℝ → ℝ is an Lp-Carathéodory function, that is, 𝑓 (⋅, 𝑥) is mea-

surable for all 𝑥 ∈ ℝ, 𝑓 (𝑡, ⋅) is continuous for a. e. 𝑡 ∈ 𝐼, and for every 𝑅 > 0, there exists

ℎu� ∈ Lp(𝐼) such that, if with |𝑥| < 𝑅 then

|𝑓 (𝑡, 𝑥)| ≤ ℎu�(𝑡) for a. e. 𝑡 ∈ 𝐼.

Definition 3.2.13. We say 𝑢 ∈ u�(𝐼) is an absolutely continuous function in 𝐼 if there exists

𝑓 ∈ L1(𝐼) such that for all 𝑎 ∈ 𝐼,

𝑢(𝑡) = 𝑢(𝑎) + ∫u�
u�

𝑓 (𝑠) d 𝑠, 𝑡 ∈ 𝐼.

We denote by 𝐴𝐶(𝐼) the set of absolutely continuous functions defined on 𝐼.

Definition 3.2.14. We say that 𝛼 ∈ 𝐴𝐶(𝐼) is a lower solution of (3.2.8) if 𝛼 satisfies

𝛼′(𝑡) ≥ 𝑓 (𝑡, 𝛼(−𝑡)) for a. e. 𝑡 ∈ 𝐼, 𝛼(−𝑇) − 𝛼(𝑇) ≥ 0.

Definition 3.2.15. We say that 𝛽 ∈ 𝐴𝐶(𝐼) is an upper solution of (3.2.8) if 𝛽 satisfies

𝛽′(𝑡) ≤ 𝑓 (𝑡, 𝛽(−𝑡)) for a. e. 𝑡 ∈ 𝐼, 𝛽(−𝑇) − 𝛽(𝑇) ≤ 0.

We establish now a theorem that proves the existence of solutions of (3.2.8) under some

conditions. The proof follows the same steps of [25, Theorem 3.1] and we omit it here.

Theorem 3.2.16. Let 𝑓 ∶ 𝐼 ×ℝ → ℝ be aL1-Carathéodory function. If there exist𝛼 ≥ 𝛽 lower

and upper solutions of (3.2.8) respectively and 𝑚 ∈ (0, u�
4u� ] such that

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦) ≥ −𝑚(𝑥 − 𝑦) for a. e. 𝑡 ∈ 𝐼 with 𝛽(𝑡) ≤ 𝑦 ≤ 𝑥 ≤ 𝛼(𝑡),
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then there exist twomonotone sequences (𝛼u�)u�∈ℕ, (𝛽u�)u�∈ℕ, nonincreasing and nondecreas-

ing respectively, with 𝛼0 = 𝛼, 𝛽0 = 𝛽, which converge uniformly to the extremal solutions in

[𝛽, 𝛼] of (3.2.8).

Furthermore, the estimate 𝑚 = u�
4u� is best possible in the sense that, for every fixed 𝑚 >

u�
4u� , there are problems with its unique solution outside of the interval [𝛽, 𝛼].

In an analogous way we can prove the following theorem.

Theorem 3.2.17. Let 𝑓 ∶ 𝐼 ×ℝ → ℝ be a𝐿1-Carathéodory function. If there exist𝛼 ≤ 𝛽 lower

and upper solutions of (3.2.8) respectively and 𝑚 ∈ [− u�
4u� , 0) such that

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦) ≤ −𝑚(𝑥 − 𝑦) for a. e. 𝑡 ∈ 𝐼 with 𝛼(𝑡) ≤ 𝑦 ≤ 𝑥 ≤ 𝛽(𝑡),

then there exist twomonotone sequences (𝛼u�)u�∈ℕ, (𝛽u�)u�∈ℕ, nonincreasing and nondecreas-

ing respectively, with 𝛼0 = 𝛼, 𝛽0 = 𝛽, which converge uniformly to the extremal solutions in

[𝛼, 𝛽] of (3.2.8).

Furthermore, the estimate 𝑚 = − u�
4u� is best possible in the sense that, for every fixed

𝑚 < − u�
4u� , there are problems with its unique solution outside of the interval [𝛼, 𝛽].

3.2.3 Existence of solutions via Krasnosel’skiĭ’s Fixed Point Theorem

In this sectionwe implement themethods used in [120] for the existence of solutions of second

order differential equations to prove new existence results for problem

𝑥′(𝑡) = 𝑓 (𝑡, 𝑥(−𝑡), 𝑥(𝑡)) ∀𝑡 ∈ 𝐼, 𝑥(−𝑇) = 𝑥(𝑇), (3.2.9)

where 𝑓 ∶ 𝐼 × ℝ × ℝ → ℝ is 2𝑇-periodic on 𝑡 and an L1-Carathéodory function, that is,

𝑓 (⋅, 𝑢, 𝑣) is measurable for each fixed𝑢 and 𝑣 and 𝑓 (𝑡, ⋅, ⋅) is continuous for a. e. 𝑡 ∈ [−𝑇, 𝑇],
and for each 𝑟 > 0, there exists 𝜑u� ∈ L1([−𝑇, 𝑇]) such that

𝑓 (𝑡, 𝑢, 𝑣) ≤ 𝜑u�(𝑡) for all (𝑢, 𝑣) ∈ [−𝑟, 𝑟] × [−𝑟, 𝑟], and a. e. 𝑡 ∈ [−𝑇, 𝑇].

.

Let us first establish the fixed point theorem we are going to use [120].

Definition 3.2.18. Let u� be a real topological vector space. A cone𝐾 in u� is closed set such that

is closed under the sum (that is, 𝑥+𝑦 ∈ 𝐾 for all 𝑥, 𝑦 ∈ 𝐾 ), closed under the multiplication by

nonnegative scalars (that is 𝜆𝑥 ∈ 𝐾 for all 𝜆 ∈ [0, +∞), 𝑥 ∈ 𝐾 ) and such that 𝐾 ∩(−𝐾) =
{0} (that is, if 𝑥, −𝑥 ∈ 𝐾 , then 𝑥 = 0).

Theorem 3.2.19 (Krasnosel’skiĭ). Let ℬ be a Banach space, and let u� ⊂ ℬ be a cone in ℬ.

AssumeΩ1, Ω2 are open subsets of ℬ with 0 ∈ Ω1, Ω1 ⊂ Ω2 and let𝐴 ∶ u� ∩(Ω2\Ω1) → u�
be a compact and continuous operator such that one of the following conditions is satisfied:

(1) ‖𝐴𝑢‖ ≤ ‖𝑢‖ if 𝑢 ∈ u� ∩ 𝜕Ω1 and ‖𝐴𝑢‖ ≥ ‖𝑢‖ if 𝑢 ∈ u� ∩ 𝜕Ω2,

(2) ‖𝐴𝑢‖ ≥ ‖𝑢‖ if 𝑢 ∈ u� ∩ 𝜕Ω1 and ‖𝐴𝑢‖ ≤ ‖𝑢‖ if 𝑢 ∈ u� ∩ 𝜕Ω2.
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Then, 𝐴 has at least one fixed point in u� ∩ (Ω2\Ω1).
In the following, let 𝑚 ∈ ℝ\{0} and 𝐺 be the Green function for problem

𝑥′(𝑡) + 𝑚 𝑥(−𝑡) = ℎ(𝑡), 𝑥(−𝑇) = 𝑥(𝑇).

Let 𝑀 = sup{𝐺(𝑡, 𝑠) ∶ 𝑡, 𝑠 ∈ 𝐼}, 𝐿 = inf{𝐺(𝑡, 𝑠) ∶ 𝑡, 𝑠 ∈ 𝐼}.

Theorem 3.2.20. Let 𝑚 ∈ (0, u�
4u� ). Assume there exist 𝑟, 𝑅 ∈ ℝ+, 𝑟 < 𝑅 such that

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≥ 0 ∀𝑥, 𝑦 ∈ [ 𝐿
𝑀 𝑟, 𝑀

𝐿 𝑅] , a. e. 𝑡 ∈ 𝐼.

Then, if one of the following conditions holds,

(1)

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≥ 𝑀
2𝑇𝐿2 𝑥 ∀𝑥, 𝑦 ∈ [ 𝐿

𝑀 𝑟, 𝑟] , a. e. 𝑡 ∈ 𝐼,

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≤ 1
2𝑇𝑀 𝑥 ∀𝑥, 𝑦 ∈ [𝑅, 𝑀

𝐿 𝑅] , a. e. 𝑡 ∈ 𝐼;

(2)

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≤ 1
2𝑇𝑀 𝑥 ∀𝑥, 𝑦 ∈ [ 𝐿

𝑀 𝑟, 𝑟] , a. e. 𝑡 ∈ 𝐼,

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≥ 𝑀
2𝑇𝐿2 𝑥 ∀𝑥, 𝑦 ∈ [𝑅, 𝑀

𝐿 𝑅] , a. e. 𝑡 ∈ 𝐼;

problem (3.2.9) has a positive solution.

If ℬ = (u�(𝐼), ‖ ⋅ ‖∞), by defining the absolutely continuous operator 𝐴 ∶ ℬ → ℬ such that

(𝐴 𝑥)(𝑡) ∶= ∫u�
−u�

𝐺(𝑡, 𝑠)[𝑓 (𝑠, 𝑥(−𝑠), 𝑥(𝑠)) + 𝑚 𝑥(−𝑠)], d 𝑠

we deduce the result following the same steps as in [167].

We present now two corollaries (analogous to the ones in [167]). The first one is obtained

by strengthening the hypothesis and making them easier to check.

Corollary 3.2.21. Let 𝑚 ∈ (0, u�
4u� ), 𝑓 (𝑡, 𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ ℝ+ and a. e. 𝑡 ∈ 𝐼. Then, if

one of the following condition holds:

(1)

lim
u�,u�→0+

𝑓 (𝑡, 𝑥, 𝑦)
𝑥 = +∞, lim

u�,u�→+∞

𝑓 (𝑡, 𝑥, 𝑦)
𝑥 = 0,

(2)

lim
u�,u�→0+

𝑓 (𝑡, 𝑥, 𝑦)
𝑥 = 0, lim

u�,u�→+∞

𝑓 (𝑡, 𝑥, 𝑦)
𝑥 = +∞

uniformly for a. e. 𝑡 ∈ 𝐼, then problem (3.2.9) has a positive solution.
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Corollary 3.2.22. Let 𝑚 ∈ (0, u�
4u� ). Assume there exist 𝑟, 𝑅 ∈ ℝ+, 𝑟 < 𝑅 such that

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≤ 0 ∀𝑥, 𝑦 ∈ [−𝑀
𝐿 𝑅, − 𝐿

𝑀 𝑟] , a. e. 𝑡 ∈ 𝐼.

Then, if one of the following conditions holds,

(1)

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≤ 𝑀
2𝑇𝐿2 𝑥 ∀𝑥, 𝑦 ∈ [−𝑟, − 𝐿

𝑀 𝑟] , a. e. 𝑡 ∈ 𝐼,

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≥ 1
2𝑇𝑀 𝑥 ∀𝑥, 𝑦 ∈ [−𝑀

𝐿 𝑅, −𝑅] , a. e. 𝑡 ∈ 𝐼;

(2)

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≥ 1
2𝑇𝑀 𝑥 ∀𝑥, 𝑦 ∈ [−𝑟, − 𝐿

𝑀 𝑟] , a. e. 𝑡 ∈ 𝐼,

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≤ 𝑀
2𝑇𝐿2 𝑥 ∀𝑥, 𝑦 ∈ [−𝑀

𝐿 𝑅, −𝑅] , a. e. 𝑡 ∈ 𝐼;

problem (3.2.9) has a negative solution.

Similar results to these –with analogous proofs– can be given when the Green’s function is

negative.

Theorem 3.2.23. Let 𝑚 ∈ (− u�
4u� , 0). Assume there exist 𝑟, 𝑅 ∈ ℝ+, 𝑟 < 𝑅 such that

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≤ 0 ∀𝑥, 𝑦 ∈ [𝑀
𝐿 𝑟, 𝐿

𝑀 𝑅] , a. e. 𝑡 ∈ 𝐼.

Then, if one of the following conditions holds,

(1)

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≤ 𝐿
2𝑇𝑀2 𝑥 ∀𝑥, 𝑦 ∈ [𝑀

𝐿 𝑟, 𝑟] , a. e. 𝑡 ∈ 𝐼,

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≥ 1
2𝑇𝐿𝑥 ∀𝑥, 𝑦 ∈ [𝑅, 𝐿

𝑀 𝑅] , a. e. 𝑡 ∈ 𝐼;

(2)

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≥ 1
2𝑇𝐿𝑥 ∀𝑥, 𝑦 ∈ [𝑀

𝐿 𝑟, 𝑟] , a. e. 𝑡 ∈ 𝐼,

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≤ 𝐿
2𝑇𝑀2 𝑥 ∀𝑥, 𝑦 ∈ [𝑅, 𝐿

𝑀 𝑅] , a. e. 𝑡 ∈ 𝐼;

problem (3.2.9) has a positive solution.

Corollary 3.2.24. Let 𝑚 ∈ (− u�
4u� , 0). Assume there exist 𝑟, 𝑅 ∈ ℝ+, 𝑟 < 𝑅 such that

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≥ 0 ∀𝑥, 𝑦 ∈ [− 𝐿
𝑀 𝑅, −𝑀

𝐿 𝑟] , a. e. 𝑡 ∈ 𝐼.

Then, if one of the following conditions holds,
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(1)

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≥ 𝐿
2𝑇𝑀2 𝑥 ∀𝑥, 𝑦 ∈ [−𝑟, −𝑀

𝐿 𝑟] , a. e. 𝑡 ∈ 𝐼,

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≤ 1
2𝑇𝐿𝑥 ∀𝑥, 𝑦 ∈ [− 𝐿

𝑀 𝑅, −𝑅] , a. e. 𝑡 ∈ 𝐼;

(2)

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≤ 1
2𝑇𝐿𝑥 ∀𝑥, 𝑦 ∈ [−𝑟, −𝑀

𝐿 𝑟] , a. e. 𝑡 ∈ 𝐼,

𝑓 (𝑡, 𝑥, 𝑦) + 𝑚 𝑥 ≥ 𝐿
2𝑇𝑀2 𝑥 ∀𝑥, 𝑦 ∈ [− 𝐿

𝑀 𝑅, −𝑅] , a. e. 𝑡 ∈ 𝐼;

problem (3.2.9) has a negative solution.

We could also state analogous corollaries to Corollary 3.2.21 for Theorem 3.2.23 and Corol-

laries 3.2.22 and 3.2.24.

3.2.4 Examples

We will now analyze two examples to which we can apply the previous results. Observe that

both examples do not lie under the hypothesis of the existence results for bounded solutions for

differential equations with reflection of the argument in [187] nor in those of the more general

results found in [1, 155,173,174,189] or any other existence results known to the authors.

Example 3.2.25. Consider the problem

𝑥′(𝑡) = 𝜆 sinh (𝑡 − 𝑥(−𝑡)), ∀ 𝑡 ∈ 𝐼, 𝑥(−𝑇) = 𝑥(𝑇). (3.2.10)

It is easy to check that 𝛼 ≡ 𝑇 and 𝛽 ≡ −𝑇 are lower and upper solutions for problem (3.2.10)

for all 𝜆 ≥ 0. Since 𝑓 (𝑡, 𝑦) ∶= 𝜆 sinh (𝑡 − 𝑦) satisfies that |u�u�
u�u�(𝑡, 𝑦)| ≤ 𝜆 cosh (2 𝑇), for all

(𝑡, 𝑦) ∈ 𝐼2, we know, from Theorem 3.2.16, that problem (3.2.10) has extremal solutions on

[−𝑇, 𝑇] for all

0 ≤ 𝜆 ≤ 𝜋
4 𝑇 cosh (2 𝑇).

Example 3.2.26. Consider the problem

𝑥′(𝑡) = 𝑡2 𝑥2(𝑡)[cos2(𝑥2(−𝑡)) + 1] ∀𝑡 ∈ 𝐼, 𝑥(−𝑇) = 𝑥(𝑇). (3.2.11)

By defining 𝑓 (𝑡, 𝑥, 𝑦) as the 2𝑇-periodic extension on 𝑡 of the function

𝑡2𝑥2[cos2(𝑦2) + 1],

wemay to apply Corollary 3.2.21 to deduce that problem (3.2.11) has a positive solution. Using

the analogous corollary for Corollary 3.2.24, we know that it also has a negative solution.
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3.3 The antiperiodic case

As we will see in this section, the antiperiodic case satisfies properties which are analogous to

the periodic one.

We consider the antiperiodic problem

𝑥′(𝑡) + 𝑚 𝑥(−𝑡) = ℎ(𝑡), 𝑥(−𝑇) + 𝑥(𝑇) = 0, (3.3.1)

we have that the reduced problem for ℎ ≡ 0 corresponds with the harmonic oscillator with

antiperiodic boundary value conditions

𝑥″(𝑡) + 𝑚2 𝑥(𝑡) = 0, 𝑥(−𝑇) + 𝑥(𝑇) = 0, 𝑥′(−𝑇) + 𝑥′(𝑇) = 0

of which the Green’s function, 𝐻, is given by the expression

2𝑚 cos(𝑚 𝑇)𝐻(𝑡, 𝑠) =
⎧{
⎨{⎩

sin 𝑚(𝑡 − 𝑠 − 𝑇) if − 𝑇 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇,
sin 𝑚(𝑠 − 𝑡 − 𝑇) if − 𝑇 ≤ 𝑡 < 𝑠 ≤ 𝑇.

It is straight forward to check that the following properties are fulfilled.

(𝐴1) 𝐻 ∈ u�(𝐼2, ℝ).

(𝐴2) u�u�
u�u� y

u�2u�
u�u�2 exist and are continuous on 𝐼2\𝐷 where 𝐷 ∶= {(𝑡, 𝑠) ∈ 𝐼2 ∶ 𝑡 = 𝑠}.

Also,

2𝑚 cos(𝑚 𝑇)𝜕𝐻
𝜕𝑡

(𝑡, 𝑠) =
⎧{
⎨{⎩

𝑚 cos 𝑚(𝑡 − 𝑠 − 𝑇) if − 𝑇 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇,
−𝑚 cos 𝑚(𝑠 − 𝑡 − 𝑇) if − 𝑇 ≤ 𝑡 < 𝑠 ≤ 𝑇,

lim
u�→u�−

2𝑚 cos(𝑚 𝑇)𝜕𝐻
𝜕𝑡

(𝑡, 𝑠) = 𝑚 cos 𝑚 𝑇,

lim
u�→u�+

2𝑚 cos(𝑚 𝑇)𝜕𝐻
𝜕𝑡

(𝑡, 𝑠) = −𝑚 cos 𝑚 𝑇,

hence

(𝐴3) u�u�
u�u� (𝑡, 𝑡−) − u�u�

u�u� (𝑡, 𝑡+) = 1 ∀𝑡 ∈ 𝐼.
Furthermore, we have the following

(𝐴4) u�2u�
u�u�2 (𝑡, 𝑠) + 𝑚2𝐻(𝑡, 𝑠) = 0 ∀(𝑡, 𝑠) ∈ 𝐼2\𝐷.

(𝐴5) 𝑎) 𝐻(𝑇, 𝑠) + 𝐻(−𝑇, 𝑠) = 0 ∀𝑠 ∈ 𝐼,

𝑏) u�u�
u�u� (𝑇, 𝑠) + u�u�

u�u� (−𝑇, 𝑠) = 0 ∀𝑠 ∈ 𝐼.
For every 𝑡, 𝑠 ∈ 𝐼, we have that
(𝐴6) 𝐻(𝑡, 𝑠) = 𝐻(𝑠, 𝑡).
(𝐴7) 𝐻(𝑡, 𝑠) = 𝐻(−𝑡, −𝑠).
(𝐴8) u�u�

u�u� (𝑡, 𝑠) = u�u�
u�u� (𝑠, 𝑡).

(𝐴9) u�u�
u�u� (𝑡, 𝑠) = −u�u�

u�u� (−𝑡, −𝑠).
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(𝐴10) u�u�
u�u� (𝑡, 𝑠) = −u�u�

u�u� (𝑡, 𝑠).
The properties (𝐴1) − (𝐴10) are equivalent to the properties (𝐼) − (𝑋) in the previous

section. This allows us to prove the following proposition in an analogous fashion to Proposition

3.2.2.

Proposition 3.3.1. Assume𝑚 ≠ (𝑘+ 1
2) u�

u� , 𝑘 ∈ ℤ. Then problem (3.3.1) has a unique solution

𝑢(𝑡) ∶= ∫u�
−u�

𝐻(𝑡, 𝑠)ℎ(𝑠) d 𝑠,

where

𝐻(𝑡, 𝑠) ∶= 𝑚 𝐻(𝑡, −𝑠) − 𝜕𝐻
𝜕𝑠

(𝑡, 𝑠)

is the Green’s function relative to problem (3.3.1).

The Green’s function 𝐻 has the following explicit expression:

2 cos(𝑚𝑇)𝐻(𝑡, 𝑠) =

⎧{{{
⎨{{{⎩

sin 𝑚(−𝑇 + 𝑠 + 𝑡) + cos 𝑚(−𝑇 − 𝑠 + 𝑡) si 𝑡 > |𝑠|,
sin 𝑚(−𝑇 + 𝑠 + 𝑡) − cos 𝑚(−𝑇 + 𝑠 − 𝑡) si |𝑡| < 𝑠,
sin 𝑚(−𝑇 − 𝑠 − 𝑡) + cos 𝑚(−𝑇 − 𝑠 + 𝑡) si − |𝑡| > 𝑠,
sin 𝑚(−𝑇 − 𝑠 − 𝑡) − cos 𝑚(−𝑇 + 𝑠 − 𝑡) si 𝑡 < −|𝑠|.

The following properties of𝐻 hold and are equivalent to properties (𝐼′)−(𝑉 ′) in the previous
section.

(𝐴′
1) u�u�

u�u� exists and is continuous on 𝐼2\𝐷,

(𝐴′
2) 𝐻(𝑡, 𝑡−) y 𝐻(𝑡, 𝑡+) exist for all 𝑡 ∈ 𝐼 and satisfy

𝐻(𝑡, 𝑡−) − 𝐻(𝑡, 𝑡+) = 1 ∀𝑡 ∈ 𝐼,

(𝐴′
3) u�u�

u�u� (𝑡, 𝑠) + 𝑚 𝐻(−𝑡, 𝑠) = 0 a. e. 𝑡, 𝑠 ∈ 𝐼, 𝑠 ≠ 𝑡,

(𝐴′
4) 𝐻(𝑇, 𝑠) + 𝐻(−𝑇, 𝑠) = 0 ∀𝑠 ∈ (−𝑇, 𝑇),

(𝐴′
5) 𝐻(𝑡, 𝑠) = 𝐻(−𝑠, −𝑡) ∀𝑡, 𝑠 ∈ 𝐼.

Despite the parallelism with the periodic problem, we cannot generalize the maximum and

anti-maximum results of [39] because property (𝐴′
4) guarantees that 𝐻(⋅, 𝑠) changes sign for

a. e. 𝑠 and, by property (𝐴′
5), that 𝐻(𝑡, ⋅) changes sign for a. e. 𝑡 fixed.

3.3.1 The general case

In this section we study equation 𝑥′(𝑡) + 𝑚 𝑥(𝑡) = ℎ(𝑡) under the conditions imposed by a

linear functional 𝐹, this is, we study the problem

𝑥′(𝑡) + 𝑚 𝑥(−𝑡) = ℎ(𝑡), 𝐹(𝑥) = 𝑐, (3.3.2)

where 𝑐 ∈ ℝ and 𝐹 ∈ 𝑊1,1(𝐼)′.
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Remember that that 𝑊1,1(𝐼) ∶= {𝑓 ∶ 𝐼 → ℝ ∶ 𝑓 ′ ∈ L1(𝐼)} and we denote by 𝑊1,1(𝐼)′

its dual. Also, we will denote by u�u�(𝐼) the space of compactly supported functions on 𝐼.
Recall that the solutions of equation 𝑥″(𝑡) + 𝑚2𝑥(𝑡) = 0 are parametrized by two real

numbers 𝑎 and 𝑏 in the following way: 𝑢(𝑡) = 𝑎 cos 𝑚 𝑡 + 𝑏 sin 𝑚 𝑡. Since every solution

of equation 𝑥′(𝑡) + 𝑚 𝑥(−𝑡) = 0 has to be of this form, if we impose the equation to be

satisfied, we obtain a relationship between the parameters: 𝑏 = −𝑎, and hence the solutions

of 𝑥′(𝑡) + 𝑚 𝑥(−𝑡) = 0 are given by 𝑢(𝑡) = 𝑎(cos 𝑚 𝑡 − sin 𝑚 𝑡), 𝑎 ∈ ℝ.

Observe that 2 sin(𝑚 𝑇) 𝐺(𝑡, −𝑇) = cos 𝑚 𝑡 − sin 𝑚 𝑡, and 𝐺(𝑡, −𝑇) is the unique

solution of the problem

𝑥′(𝑡) + 𝑚 𝑥(−𝑡) = 0, 𝑥(−𝑇) − 𝑥(𝑇) = 1.

Hence, if we look for a solution of the form

𝑥(𝑡) = ∫u�
−u�

𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠 + 𝜆𝐺(𝑡, −𝑇), (3.3.3)

and impose the condition 𝐹(𝑥) = 𝑐, we have that

𝑐 = 𝐹 (∫u�
−u�

𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠) + 𝜆𝐹(𝐺(𝑡, −𝑇))

and hence, for

𝜆 =
𝑐 − 𝐹 (∫u�

−u� 𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠)

𝐹(𝐺(𝑡, −𝑇))
,

expression (3.3.3) is a solution of problem (3.3.2) as long as 𝐹(𝐺(𝑡, −𝑇)) ≠ 0 or, which is the

same,

𝐹(cos 𝑚 𝑡) ≠ 𝐹(sin 𝑚 𝑡).

We summarize this argument in the following result.

Corollary 3.3.2. Assume 𝑚 ≠ 𝑘 𝜋/𝑇, 𝑘 ∈ ℤ, 𝐹 ∈ 𝑊1,1(𝐼)′ such that 𝐹(cos 𝑚 𝑡) ≠
𝐹(sin 𝑚 𝑡). Then problem (3.3.2) has a unique solution given by

𝑢(𝑡) ∶= ∫u�
−u�

𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠 +
𝑐 − 𝐹 (∫u�

−u� 𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠)

𝐹(𝐺(𝑡, −𝑇))
𝐺(𝑡, −𝑇), 𝑡 ∈ 𝐼. (3.3.4)

Remark 3.3.3. The condition 𝑚 ≠ 𝑘 𝜋/𝑇, 𝑘 ∈ ℤ together with the rest of the hypothesis

of the corollary is sufficient for the existence of a unique solution of problem (3.3.2) but is

not necessary, as it has been illustrated in Proposition 3.3.1, because such a condition is only

necessary for the existence of 𝐺.

3.4 Examples

We now apply the previous results in order to get some specific applications.
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Application 3.4.1. Let 𝐹 ∈ 𝑊1,1(𝐼)′ ∩ u�u�(𝐼)′ and assume 𝐹(cos 𝑚 𝑡) ≠ 𝐹(sin 𝑚 𝑡). The
Riesz Representation Theorem guarantees the existence of a –probably signed– regular Borel

measure of bounded variation 𝜇 on 𝐼 such that 𝐹(𝑥) ∶= ∫u�
−u� 𝑥 d 𝜇 and ‖𝐹‖u�u�(u�)′ = |𝜇|(𝐼),

where |𝜇|(𝐼) is the total variation of the measure 𝜇 on 𝐼.
Let us compute now an estimate for the value of the solution 𝑢 at 𝑡.

|𝑢(𝑡)| =
∣∣∣∣∣
∫u�

−u�
𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠 +

𝑐 − 𝐹 (∫u�
−u� 𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠)

𝐹(𝐺(𝑡, −𝑇))
𝐺(𝑡, −𝑇)

∣∣∣∣∣

≤ sup
u�∈u�

|𝐺(𝑡, 𝑠)|‖ℎ‖1 +
|𝑐 − ∫u�

−u� ∫u�
−u� 𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠 d 𝜇(𝑡)|

|𝐹(𝐺(𝑡, −𝑇))|
|𝐺(𝑡, −𝑇)|

≤ sup
u�∈u�

|𝐺(𝑡, 𝑠)|‖ℎ‖1 +
|𝑐| + supu�,u�∈u� |𝐺(𝑡, 𝑠)||𝜇|(𝐼)‖ℎ‖1

|𝐹(𝐺(𝑡, −𝑇))|
|𝐺(𝑡, −𝑇)|

=
∣∣∣∣

𝑐 𝐺(𝑡, −𝑇)
𝐹(𝐺(𝑡, −𝑇))

∣∣∣∣
+ ⎡⎢

⎣
sup
u�∈u�

|𝐺(𝑡, 𝑠)| +
∣∣∣∣

𝐺(𝑡, −𝑇)
𝐹(𝐺(𝑡, −𝑇))

∣∣∣∣
sup
u�,u�∈u�

|𝐺(𝑡, 𝑠)||𝜇|(𝐼)⎤⎥
⎦

‖ℎ‖1.

Define operator Ξ as Ξ(𝑓 )(𝑡) ∶= ∫u�
−u� 𝐺(𝑡, 𝑠)𝑓 (𝑠) d 𝑠. And let us consider, for notational

purposes, Ξ(𝛿−u�)(𝑡) ∶= 𝐺(𝑡, −𝑇). Hence, equation (3.3.4) can be rewritten as

𝑢(𝑡) = Ξ(ℎ)(𝑡) +
𝑐 − 𝐹 (Ξ(ℎ))
𝐹(Ξ(𝛿−u�))

Ξ(𝛿−u�)(𝑡), 𝑡 ∈ 𝐼. (3.4.1)

Consider now the following lemma.

Lemma 3.4.2 ( [34, Lemma 5.5]). Let 𝑓 ∶ [𝑝 − 𝑐, 𝑝 + 𝑐] → ℝ be a symmetric function with

respect to 𝑝, decreasing in [𝑝, 𝑝 + 𝑐]. Let 𝑔 ∶ [𝑎, 𝑏] → ℝ be a straight line such that

𝑔([𝑎, 𝑏]) ⊂ [𝑝 − 𝑐, 𝑝 + 𝑐]. Under these hypothesis, the following hold.

(1) If 𝑔(𝑎) < 𝑔(𝑏) < 𝑝 or 𝑝 < 𝑔(𝑏) < 𝑔(𝑎) then 𝑓 (𝑔(𝑎)) < 𝑓 (𝑔(𝑏)),

(2) if 𝑔(𝑏) < 𝑔(𝑎) < 𝑝 or 𝑝 < 𝑔(𝑎) < 𝑔(𝑏) then 𝑓 (𝑔(𝑎)) > 𝑓 (𝑔(𝑏)),

(3) if 𝑔(𝑎) < 𝑝 < 𝑔(𝑏) then 𝑓 (𝑔(𝑎)) < 𝑓 (𝑔(𝑏)) if and only if 𝑔(u�+u�
2 ) < 𝑝,

(4) if 𝑔(𝑏) < 𝑝 < 𝑔(𝑎) then 𝑓 (𝑔(𝑎)) < 𝑓 (𝑔(𝑏)) if and only if 𝑔(u�+u�
2 ) > 𝑝.

Remark 3.4.3. An analogous result can be established, with the proper changes in the inequal-

ities, if 𝑓 is increasing in [𝑝, 𝑝 + 𝑐].

Proof. It is clear that 𝑓 (𝑔(𝑎)) < 𝑓 (𝑔(𝑏)) if and only if |𝑔(𝑎) − 𝑝| > |𝑔(𝑏) − 𝑝|, so (1) and

(2) are straightforward. Also, realize that, since 𝑔 is affine, we have that 𝑔 (u�+u�
2 ) = u�(u�)+u�(u�)

2 .

Let us prove (3) as (4) is analogous:

|𝑔(𝑏)−𝑝|−|𝑔(𝑎)−𝑝| = 𝑔(𝑏)−𝑝−(𝑝−𝑔(𝑎)) = 𝑔(𝑎)+𝑔(𝑏)−2𝑝 = 2 [𝑔 (𝑎 + 𝑏
2 ) − 𝑝] .

Therefore |𝑔(𝑎) − 𝑝| > |𝑔(𝑏) − 𝑝| if and only if 𝑔 (u�+u�
2 ) < 𝑝. �
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With this Lemma, we can prove the following proposition.

Proposition 3.4.4. Assume 𝛼 = 𝑚𝑇 ∈ (0, 𝜋/4), 𝐹 ∈ 𝑊1,1(𝐼)′ ∩ u�u�(𝐼)′ such that 𝜇 is its

associated Borel measure and 𝐹(cos 𝑚𝑡) > 𝐹(sin 𝑚𝑡). Then the solution to problem (3.3.2)

is positive if

𝑐 >
2𝑀|𝜇|(𝐼)‖ℎ‖1

1 − tan 𝛼 . (3.4.2)

Proof. Observe that Ξ(𝛿−u�)(𝑡) > 0 ∀𝑡 ∈ 𝐼 for every 𝛼 ∈ (0, u�
4 ) because 𝐹(cos 𝑚𝑡) >

𝐹(sin 𝑚𝑡). Hence, if we assume that 𝑢 is positive, solving for 𝑐 in (3.4.1), we have that

𝑐 > 𝐹(Ξ(ℎ)) − 𝐹(Ξ(𝛿−u�)) Ξ(ℎ)(𝑡)
Ξ(𝛿−u�)(𝑡)

∀𝑡 ∈ 𝐼.

Reciprocally, if this inequality is satisfied, 𝑢 is positive.

It is easy to check using Lemma 3.4.2, that

min
u�∈u�

𝐺(𝑡, −𝑇) = 1
2(cot 𝛼 − 1) and max

u�∈u�
𝐺(𝑡, −𝑇) = 1

2(cot 𝛼 + 1).

Let 𝑀 ∶= maxu�,u�∈u� 𝐺(𝑡, 𝑠).
Then

𝐹(Ξ(ℎ)) − 𝐹(Ξ(𝛿−u�)) Ξ(ℎ)(𝑡)
Ξ(𝛿−u�)(𝑡)

≤ |𝐹(Ξ(ℎ))| + ∣2𝐹(Ξ(𝛿−u�)) Ξ(ℎ)(𝑡)
cot 𝛼 − 1∣

≤𝑀|𝜇|(𝐼)‖ℎ‖1 + (cot 𝛼 + 1)|𝜇|(𝐼)
𝑀‖ℎ‖1

cot 𝛼 − 1 =
2𝑀|𝜇|(𝐼)‖ℎ‖1

1 − tan 𝛼 .

Thus, a sufficient condition for 𝑢 to be positive is

𝑐 >
2𝑀|𝜇|(𝐼)‖ℎ‖1

1 − tan 𝛼 =∶ 𝑘1.

�

Condition (3.4.2) can be excessively strong in some cases, which can be illustrated with the

following example.

Example 3.4.5. Let us assume that 𝐹(𝑥) = ∫u�
−u� 𝑥(𝑡) d 𝑡. For this functional,

2𝑀|𝜇|(𝐼)‖ℎ‖1

1 − tan 𝛼 =
4𝑀𝑇‖ℎ‖1
1 − tan 𝛼.

In [34, Lemma 5.11], it is proven that ∫u�
−u� 𝐺(𝑡, 𝑠) d 𝑡 = 1

u� . Hence, we have the following

𝐹(Ξ(ℎ)) − 𝐹(Ξ(𝛿−u�)) Ξ(ℎ)(𝑡)
Ξ(𝛿−u�)(𝑡)

= ∫u�
−u�

∫u�
−u�

𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠 d 𝑡 − ∫u�
−u�

𝐺(𝑡, −𝑇) d 𝑡
∫u�

−u� 𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠

𝐺(𝑡, −𝑇)
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= 1
𝑚 ∫u�

−u�
ℎ(𝑠) d 𝑠 − 1

𝑚
∫u�

−u� 𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠

𝐺(𝑡, −𝑇)

≤ 1
𝑚 ∫u�

−u�
|ℎ(𝑠)| d 𝑠 + 1

𝑚
∫u�

−u� 𝐺(𝑡, 𝑠)|ℎ(𝑠)| d 𝑠

𝐺(𝑡, −𝑇)

≤ ⎛⎜⎜
⎝

1 + max
u�∈u�

maxu�∈u� 𝐺(𝑡, 𝑠)
𝐺(𝑡, −𝑇)

⎞⎟⎟
⎠

‖ℎ‖1
𝑚 ≤ (1 + 𝑀

minu�∈u� 𝐺(𝑡, −𝑇))
‖ℎ‖1
𝑚

= (1 + 2𝑀
cot 𝛼 − 1)

‖ℎ‖1
𝑚 .

This provides a new sufficient condition to ensure that 𝑢 > 0.

𝑐 > (1 + 2𝑀
cot 𝛼 − 1)

‖ℎ‖1
𝑚 =∶ 𝑘2.

Observe that
𝑘2
𝑘1

= 1 + (2𝑀 − 1) tan 𝛼
4𝑀𝛼 .

In order to quantify the improvement of the estimate, we have to know the value of 𝑀.

Lemma 3.4.6. 𝑀 = 1
2(1 + csc 𝛼).

Proof. By [34, Lemma 5.9] we know that, after the change of variable 𝑡 = 𝑇𝑧, 𝑦 = 𝑇𝑠,

(sin 𝛼)Φ(𝑦) = max
u�∈[−1,1]

𝐺(𝑧, 𝑦) =
⎧{
⎨{⎩

cos [𝛼(𝑦 − 1) + u�
4 ] cos (𝛼𝑦 − u�

4 ) if 𝑦 ∈ [0, 1] ,
cos (𝛼𝑦 + u�

4 ) cos [𝛼(𝑦 + 1) − u�
4 ] if 𝑦 ∈ [−1, 0).

Observe that Φ is symmetric, hence, it is enough to study it on [0, 1]. Differentiating and
equalizing to zero it is easy to check that the maximum is reached at 𝑧 = 1

2 . �

Thus,

𝑓 (𝛼) ∶=
𝑘2
𝑘1

= 1
2𝛼 ⋅ 1 + sec 𝛼

1 + csc 𝛼 .

𝑓 is strictly decreasing on (0, u�
4 ), 𝑓 (0+) = 1 and 𝑓 (u�

4
−) = 2

u� .

Example 3.4.7. We give now an example for which we compute the optimal constant 𝑐 that

ensures the solution is positive and compare it to the aforementioned estimate. Consider the

problem

𝑥′(𝑡) + 𝑥(−𝑡) = 𝑒u�, 𝑡 ∈ [−1
2, 1

2] , ∫
1
2

− 1
2

𝑥(𝑠) d 𝑠 = 𝑐. (3.4.3)

For this specific case,

𝑘2 = cos 𝛼 + 1
cos 𝛼 − sin 𝛼

‖ℎ‖1
𝑚 =

2 cot 1
4 sinh 1

2

cot 1
4 − 1

= 4.91464 …
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Figure 3.4.1:
u�2
u�1

as a function of 𝛼.

Figure 3.4.2: Solution of problem (3.4.3) for 𝑐 = 0.850502 …

Now, using the expression of 𝐺, it is clear that

𝑢(𝑡) = sinh 𝑡 + 𝑐
2 sin 1

2

(cos 𝑡 − sin 𝑡)

is the unique solution of problem (3.4.3). It is easy to check that theminimum of the solution is

reached at−1 for 𝑐 ∈ [0, 1]. Also that the solution is positive for 𝑐 > 2 sin 1
2 sinh 1/(cos 1+

sin 1) = 0.850502 … , which illustrates that the estimate is far from being optimal.
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3.5 Solutions of the initial value problem

In this section we analyze a particular case for the boundary conditions in the previous section:

the initial – or, better said, middle point– problem. We will show that this specific case admits

an interesting way of constructing the Green’s function. The results of the Section follow [43].

3.5.1 The 𝑛-th order problem

Consider the following 𝑛-th order differential equation with involution with involution

𝐿𝑢 ∶=
u�

∑
u�=0

[𝑎u�𝑢(u�)(−𝑡) + 𝑏u�𝑢(u�)(𝑡)] = ℎ(𝑡), 𝑡 ∈ ℝ; 𝑢(𝑡0) = 𝑐, (3.5.1)

where ℎ ∈ 𝐿1
loc(ℝ), 𝑡0, 𝑐, 𝑎u�, 𝑏u� ∈ ℝ for 𝑘 = 0, … 𝑛 − 1; 𝑎u� = 0; 𝑏u� = 1. A solution to

this problem will be a function 𝑢 ∈ 𝑊u�,1
loc (ℝ), that is, 𝑢 is 𝑘 times differentiable in the sense

of distributions and each of the derivatives satisfies 𝑢u�)|u� ∈ L1(𝐾) for every compact set

𝐾 ⊂ ℝ and 𝑘 = 0, … , 𝑛.

Theorem 3.5.1. Assume that there exist �̃� and �̃�, functions such that satisfy

u�−u�

∑
u�=0

(𝑖 + 𝑗
𝑗

) [(−1)u�+u�−1𝑎u�+u��̃�(u�)(−𝑡) + 𝑏u�+u��̃�(u�)(𝑡)] =0, 𝑡 ∈ ℝ; 𝑗 = 0, … , 𝑛 − 1, (3.5.2)

u�−u�

∑
u�=0

(𝑖 + 𝑗
𝑗

) [(−1)u�+u�𝑎u�+u��̃�(u�)(−𝑡) + 𝑏u�+u��̃�(u�)(𝑡)] =0, 𝑡 ∈ ℝ; 𝑗 = 0, … , 𝑛 − 1, (3.5.3)

(�̃�u��̃�u� − �̃�u��̃�u�)(𝑡) ≠0, 𝑡 ∈ ℝ. (3.5.4)

and also one of the following

(ℎ1) 𝐿 �̃� = 0 and �̃�(𝑡0) ≠ 0,
(ℎ2) 𝐿 �̃� = 0 and �̃�(𝑡0) ≠ 0,

(ℎ3) 𝑎0 + 𝑏0 ≠ 0 and (𝑎0 + 𝑏0) ∫u�0

0
(𝑡0 − 𝑠)u�−1 �̃�(𝑡0)�̃�u�(𝑠) − �̃�(𝑡0)�̃�u�(𝑠)

(�̃�u��̃�u� − �̃�u��̃�u�)(𝑠) d 𝑠 ≠ 1.

Then problem (3.5.1) has a solution.

Proof. Define

𝜑 ∶=
ℎu��̃�u� − ℎu��̃�u�
�̃�u��̃�u� − �̃�u��̃�u�

, and 𝜓 ∶=
ℎu��̃�u� − ℎu��̃�0
�̃�u��̃�u� − �̃�u��̃�u�

.

Observe that 𝜑 is odd, 𝜓 is even and ℎ = 𝜑�̃� + 𝜓�̃�. So, in order to ensure the existence of

solution of problem (3.5.1) it is enough to find 𝑦 and 𝑧 such that 𝐿𝑦 = 𝜑�̃� and 𝐿𝑧 = 𝜓�̃� for,

in that case, defining 𝑢 = 𝑦 + 𝑧, we can conclude that 𝐿𝑢 = ℎ. We will deal with the initial

condition later on.

Take 𝑦 = ̃𝜑 �̃�, where

̃𝜑(𝑡) ∶= ∫u�
0

∫u�u�

0
⋯ ∫u�2

0
𝜑(𝑠1) d 𝑠1 ⋯ d 𝑠u� = 1

(𝑛 − 1)! ∫u�
0
(𝑡 − 𝑠)u�−1𝜑(𝑠) d 𝑠.
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Observe that ̃𝜑 is even if 𝑛 is odd and vice-versa. In particular, we have that

̃𝜑(u�)(𝑡) = (−1)u�+u�−1 ̃𝜑(u�)(−𝑡) , 𝑗 = 0, … , 𝑛.

Thus,

𝐿𝑦(𝑡) =
u�

∑
u�=0

[𝑎u�( ̃𝜑�̃�)(u�)(−𝑡) + 𝑏u�( ̃𝜑�̃�)(u�)(𝑡)]

=
u�

∑
u�=0

u�

∑
u�=0

(𝑘
𝑗
) [(−1)u�𝑎u� ̃𝜑(u�)(−𝑡)�̃�(u�−u�)(−𝑡) + 𝑏u� ̃𝜑(u�)(𝑡)�̃�(u�−u�)(𝑡)]

=
u�

∑
u�=0

u�

∑
u�=0

(𝑘
𝑗
) ̃𝜑(u�)(𝑡) [(−1)u�+u�+u�−1𝑎u��̃�(u�−u�)(−𝑡) + 𝑏u��̃�(u�−u�)(𝑡)]

=
u�

∑
u�=0

̃𝜑(u�)(𝑡)
u�

∑
u�=u�

(𝑘
𝑗
) [(−1)u�+u�+u�−1𝑎u��̃�(u�−u�)(−𝑡) + 𝑏u��̃�(u�−u�)(𝑡)]

=
u�

∑
u�=0

̃𝜑(u�)(𝑡)
u�−u�

∑
u�=0

(𝑖 + 𝑗
𝑗

) [(−1)u�+u�−1𝑎u�+u��̃�(u�)(−𝑡) + 𝑏u�+u��̃�(u�)(𝑡)] = ̃𝜑(u�)(𝑡)�̃�(𝑡)

= 𝜑(𝑡)�̃�(𝑡).

Hence, 𝐿𝑦 = 𝜑�̃�.

All the same, by taking 𝑧 = �̃��̃� with �̃�(𝑡) ∶= 1
(u�−1)! ∫u�

0(𝑡 − 𝑠)u�−1𝜓(𝑠) d 𝑠, we have that
𝐿𝑧 = 𝜓�̃�.

Hence, defining �̄� ∶= 𝑦 + 𝑧 = ̃𝜑 �̃� + �̃��̃� we have that �̄� satisfies 𝐿 �̄� = ℎ and �̄�(0) = 0.
If we assume (ℎ1),

𝑤 = �̄� +
𝑐 − �̄�(𝑡0)

�̃�(𝑡0) �̃�

is clearly a solution of problem (3.5.1).

When (ℎ2) is fulfilled a solution of problem (3.5.1) is given by

𝑤 = �̄� +
𝑐 − �̄�(𝑡0)

�̃�(𝑡0) �̃�.

If (ℎ3) holds, using the aforementioned construction we can find 𝑤1 such that 𝐿 𝑤1 = 1
and 𝑤1(0) = 0. Now, 𝑤2 ∶= 𝑤1 − 1/(𝑎0 + 𝑏0) satisfies 𝐿 𝑤2 = 0. Observe that the second
part of condition (ℎ3) is precisely 𝑤2(𝑡0) ≠ 0, and hence, defining

𝑤 = �̄� +
𝑐 − �̄�(𝑡0)
𝑤2(𝑡0) 𝑤2

we have that 𝑤 is a solution of problem (3.5.1). �

Remark 3.5.2. Having in mind condition (ℎ1) in Theorem 3.5.1, it is immediate to verify that

𝐿 �̃� = 0 provided that
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𝑎u� = 0 for all 𝑖 ∈ {0, … , 𝑛 − 1} such that 𝑛 + 𝑖 is even.

In an analogous way, for (ℎ2), one can show that 𝐿 �̃� = 0 when

𝑎u� = 0 for all 𝑖 ∈ {0, … , 𝑛 − 1} such that 𝑛 + 𝑖 is odd.

3.5.2 The first order problem

After proving the general result for the 𝑛-th order case, we concentrate our work in the first

order problem

𝑢′(𝑡) + 𝑎 𝑢(−𝑡) + 𝑏 𝑢(𝑡) = ℎ(𝑡), for a. e. 𝑡 ∈ ℝ; 𝑢(𝑡0) = 𝑐, (3.5.5)

with ℎ ∈ L1
loc(ℝ) and 𝑡0, 𝑎, 𝑏, 𝑐 ∈ ℝ. A solution of this problem will be 𝑢 ∈ 𝑊1,1

loc (ℝ).
In order to do so, we first study the homogeneous equation

𝑢′(𝑡) + 𝑎 𝑢(−𝑡) + 𝑏 𝑢(𝑡) = 0, 𝑡 ∈ ℝ. (3.5.6)

By differentiating and making the proper substitutions we arrive to the equation

𝑢″(𝑡) + (𝑎2 − 𝑏2)𝑢(𝑡) = 0, 𝑡 ∈ ℝ. (3.5.7)

Let 𝜔 ∶= √|𝑎2 − 𝑏2|. Equation (3.5.7) presents three different cases:

(C1). 𝑎2 > 𝑏2. In such a case, 𝑢(𝑡) = 𝛼 cos 𝜔𝑡 + 𝛽 sin 𝜔𝑡 is a solution of (3.5.7) for every

𝛼, 𝛽 ∈ ℝ. If we impose equation (3.5.6) to this expression we arrive to the general solution

𝑢(𝑡) = 𝛼(cos 𝜔𝑡 − 𝑎 + 𝑏
𝜔 sin 𝜔𝑡)

of equation (3.5.6) with 𝛼 ∈ ℝ.

(C2). 𝑎2 < 𝑏2. Now, 𝑢(𝑡) = 𝛼 cosh 𝜔𝑡 + 𝛽 sinh 𝜔𝑡 is a solution of (3.5.7) for every

𝛼, 𝛽 ∈ ℝ. To get equation (3.5.6) we arrive to the general solution

𝑢(𝑡) = 𝛼(cosh 𝜔𝑡 − 𝑎 + 𝑏
𝜔 sinh 𝜔𝑡)

of equation (3.5.6) with 𝛼 ∈ ℝ.

(C3). 𝑎2 = 𝑏2. In this a case, 𝑢(𝑡) = 𝛼𝑡 + 𝛽 is a solution of (3.5.7) for every 𝛼, 𝛽 ∈ ℝ.

So, equation (3.5.6) holds provided that one of the two following cases is fulfilled:

(C3.1). 𝑎 = 𝑏, where
𝑢(𝑡) = 𝛼(1 − 2 𝑎 𝑡)

is the general solution of equation (3.5.6) with 𝛼 ∈ ℝ, and

(C3.2). 𝑎 = −𝑏, where
𝑢(𝑡) = 𝛼

is the general solution of equation (3.5.6) with 𝛼 ∈ ℝ.
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Now, according to Theorem 3.5.1, we denote �̃�, �̃� satisfying

�̃�′(𝑡) + 𝑎�̃�(−𝑡) + 𝑏�̃�(𝑡) = 0, �̃�(0) = 1, (3.5.8)

�̃�′(𝑡) − 𝑎�̃�(−𝑡) + 𝑏�̃�(𝑡) = 0, �̃�(0) = 1. (3.5.9)

Observe that �̃� and �̃� can be obtained from the explicit expressions of the cases (C1)–(C3) by

taking 𝛼 = 1.

Remark 3.5.3. Note that if 𝑢 is in the case (C3.1), 𝑣 is in the case (C3.2) and vice-versa.

We have now the following properties of functions �̃� and �̃�.

Lemma 3.5.4. For every 𝑡, 𝑠 ∈ ℝ, the following properties hold.

(1) �̃�u� ≡ �̃�u�, �̃�u� ≡ 𝑘 �̃�u� for some real constant 𝑘 almost everywhere,

(2) �̃�u�(𝑠)�̃�u�(𝑡) = �̃�u�(𝑡)�̃�u�(𝑠), �̃�u�(𝑠)�̃�u�(𝑡) = �̃�u�(𝑡)�̃�u�(𝑠),

(3) �̃�u��̃�u� − �̃�u��̃�u� ≡ 1.

(4) �̃�(𝑠)�̃�(−𝑠) + �̃�(−𝑠)�̃�(𝑠) = 2[�̃�u�(𝑠)�̃�u�(𝑠) − �̃�u�(𝑠)�̃�u�(𝑠)] = 2.

Proof. (1) and (3) can be checked by inspection of the different cases. (2) is a direct conse-

quence of (1). (4) is obtained from the definition of even and odd parts and (3). �

Now, Theorem 3.5.1 has the following corollary.

Corollary 3.5.5. Problem (3.5.5) has a unique solution if and only if �̃�(𝑡0) ≠ 0.

Proof. Considering Lemma 3.5.4 (3), �̃� and �̃�, defined as in (3.5.8) and (3.5.9) respectively,

satisfy the hypothesis of Theorem 3.5.1, (ℎ1), therefore a solution exists.

Now, assume 𝑤1 and 𝑤2 are two solutions of (3.5.5). Then 𝑤2 − 𝑤1 is a solution of (3.5.6).

Hence,𝑤2−𝑤1 is of one of the forms covered in the cases (C1)–(C3) and, in any case, amultiple

of �̃�, that is 𝑤2 − 𝑤1 = 𝜆 �̃� for some 𝜆 ∈ ℝ. Also, it is clear that (𝑤2 − 𝑤1)(𝑡0) = 0, but
we have �̃�(𝑡0) ≠ 0 as a hypothesis, therefore 𝜆 = 0 and 𝑤1 = 𝑤2. This is, problem (3.5.5)

has a unique solution.

Assume now that 𝑤 is a solution of (3.5.5) and �̃�(𝑡0) = 0. Then 𝑤 + 𝜆 �̃� is also a solution

of (3.5.5) for every 𝜆 ∈ ℝ, which proves the result. �

This last Theorem raises an obvious question: In which circumstances �̃�(𝑡0) ≠ 0? In order

to answer this question, it is enough to study the cases (C1)–(C3). We summarize this study in

the following Lemma which can be checked easily.

Lemma 3.5.6. �̃�(𝑡0) = 0 only in the following cases,

• if 𝑎2 > 𝑏2 and 𝑡0 = 1
u� (arctan u�

u�+u� + 𝑘𝜋) for some 𝑘 ∈ ℤ,

• if 𝑎2 < 𝑏2, 𝑎 𝑏 > 0† and 𝑡0 = 1
u� arctanh u�

u�+u� ,

†𝑎 𝑏 > 0 is equivalent to |𝑏 − 𝑎| < |𝑏 + 𝑎|.
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• if 𝑎 = 𝑏 and 𝑡0 = 1
2u� .

Definition 3.5.7. Let 𝑡1, 𝑡2 ∈ ℝ. We define the oriented characteristic function of the pair

(𝑡1, 𝑡2) as

𝜒u�2
u�1

(𝑡) ∶=
⎧{{
⎨{{⎩

1, 𝑡1 ≤ 𝑡 ≤ 𝑡2,
−1, 𝑡2 ≤ 𝑡 < 𝑡1,
0, otherwise.

Remark 3.5.8. The previous definition implies that, for any given integrable function 𝑓 ∶ ℝ →
ℝ,

∫u�2

u�1
𝑓 (𝑠) d 𝑠 = ∫∞

−∞
𝜒u�2

u�1
(𝑠)𝑓 (𝑠) d 𝑠.

Also, 𝜒u�2
u�1

= −𝜒u�1
u�2
.

The following corollary gives us the expression of the Green’s function for problem (3.5.5).

Corollary 3.5.9. Suppose �̃�(𝑡0) ≠ 0. Then the unique solution of problem (3.5.5) is given by

𝑢(𝑡) ∶= ∫∞
−∞

𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠 +
𝑐 − �̄�(𝑡0)

�̃�(𝑡0) �̃�(𝑡), 𝑡 ∈ ℝ,

where

𝐺(𝑡, 𝑠) ∶= 1
2 ([�̃�(−𝑠)�̃�(𝑡) + �̃�(−𝑠)�̃�(𝑡)]𝜒u�

0(𝑠) + [�̃�(−𝑠)�̃�(𝑡) − �̃�(−𝑠)�̃�(𝑡)]𝜒0
−u�(𝑠)) ,

(3.5.10)

for every 𝑡, 𝑠 ∈ ℝ.

Proof. First observe that 𝐺(𝑡, ⋅) is bounded and of compact support for every fixed 𝑡 ∈ ℝ, so

the integral ∫∞
−∞ 𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠 is well defined. It is not difficult to verify, for any 𝑡 ∈ ℝ, the

following equalities:

𝑢′(𝑡) −
𝑐 − �̄�(𝑡0)

�̃�(𝑡0) �̃�′(𝑡) =1
2 ( d

d 𝑡 ∫u�
0

[�̃�(−𝑠)�̃�(𝑡) + �̃�(−𝑠)�̃�(𝑡)] ℎ(𝑠) d 𝑠

+ d
d 𝑡 ∫0

−u�
[�̃�(−𝑠)�̃�(𝑡) − �̃�(−𝑠)�̃�(𝑡)] ℎ(𝑠) d 𝑠)

=1
2 ( d

d 𝑡 ∫u�
0

[�̃�(−𝑠)�̃�(𝑡) + �̃�(−𝑠)�̃�(𝑡)] ℎ(𝑠) d 𝑠

+ d
d 𝑡 ∫u�

0
[�̃�(𝑠)�̃�(𝑡) − �̃�(𝑠)�̃�(𝑡)] ℎ(−𝑠) d 𝑠)

=ℎ(𝑡) + 1
2 (∫u�

0
[�̃�(−𝑠)�̃�′(𝑡) + �̃�(−𝑠)�̃�′(𝑡)] ℎ(𝑠) d 𝑠

+ ∫u�
0

[�̃�(𝑠)�̃�′(𝑡) − �̃�(𝑠)�̃�′(𝑡)] ℎ(−𝑠) d 𝑠) .

(3.5.11)

On the other hand,

𝑎[𝑢(−𝑡) −
𝑐 − �̄�(𝑡0)

�̃�(𝑡0) �̃�(−𝑡)] + 𝑏[𝑢(𝑡) −
𝑐 − �̄�(𝑡0)

�̃�(𝑡0) �̃�(𝑡)]

=1
2𝑎 ∫−u�

0
([�̃�(−𝑠)�̃�(−𝑡) + �̃�(−𝑠)�̃�(−𝑡)]ℎ(𝑠)
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+[�̃�(𝑠)�̃�(−𝑡) − �̃�(𝑠)�̃�(−𝑡)]ℎ(−𝑠)) d 𝑠

+ 1
2𝑏 ∫u�

0
([�̃�(−𝑠)�̃�(𝑡) + �̃�(−𝑠)�̃�(𝑡)]ℎ(𝑠) + [�̃�(𝑠)�̃�(𝑡) − �̃�(𝑠)�̃�(𝑡)]ℎ(−𝑠)) d 𝑠

= − 1
2𝑎 ∫u�

0
([�̃�(𝑠)�̃�(−𝑡) + �̃�(𝑠)�̃�(−𝑡)]ℎ(−𝑠)

+[�̃�(−𝑠)�̃�(−𝑡) − �̃�(−𝑠)�̃�(−𝑡)]ℎ(𝑠)) d 𝑠

+ 1
2𝑏 ∫u�

0
([�̃�(−𝑠)�̃�(𝑡) + �̃�(−𝑠)�̃�(𝑡)]ℎ(𝑠) + [�̃�(𝑠)�̃�(𝑡) − �̃�(𝑠)�̃�(𝑡)]ℎ(−𝑠)) d 𝑠

=1
2 ∫u�

0
(−𝑎[�̃�(−𝑠)�̃�(−𝑡) − �̃�(−𝑠)�̃�(−𝑡)] + 𝑏[�̃�(−𝑠)�̃�(𝑡) + �̃�(−𝑠)�̃�(𝑡)])ℎ(𝑠) d 𝑠

+ 1
2 ∫u�

0
(−𝑎[�̃�(𝑠)�̃�(−𝑡) + �̃�(𝑠)�̃�(−𝑡)] + 𝑏[�̃�(𝑠)�̃�(𝑡) − �̃�(𝑠)�̃�(𝑡)])ℎ(−𝑠) d 𝑠

=1
2 ∫u�

0
(�̃�(−𝑠)[−𝑎�̃�(−𝑡) + 𝑏�̃�(𝑡)] + �̃�(−𝑠)[𝑎�̃�(−𝑡) + 𝑏�̃�(𝑡)]ℎ(𝑠) d 𝑠

+ 1
2 ∫u�

0
(�̃�(𝑠)[−𝑎�̃�(−𝑡) + 𝑏�̃�(𝑡)] − �̃�(𝑠)[𝑎�̃�(−𝑡) + 𝑏�̃�(𝑡)])ℎ(−𝑠) d 𝑠

= − 1
2 (∫u�

0
(�̃�(−𝑠)�̃�′(𝑡) + �̃�(−𝑠)�̃�′(𝑡))ℎ(𝑠) d 𝑠

+ ∫u�
0
(�̃�(𝑠)�̃�′(𝑡) − �̃�(𝑠)�̃�′(𝑡))ℎ(−𝑠) d 𝑠) . (3.5.12)

Thus, adding (3.5.11) and (3.5.12), it is clear that 𝑢′(𝑡) + 𝑎 𝑢(−𝑡) + 𝑏 𝑢(𝑡) = ℎ(𝑡).
We now check the initial condition.

𝑢(𝑡0) = 𝑐 − �̄�(𝑡0)+
1
2 ∫u�0

0
([�̃�(−𝑠)�̃�(𝑡0) + �̃�(−𝑠)�̃�(𝑡0)]ℎ(𝑠) + [�̃�(𝑠)�̃�(𝑡0) − �̃�(𝑠)�̃�(𝑡0)]ℎ(−𝑠)) d 𝑠.

It can be directly checked that, for all 𝑡 ∈ ℝ,

�̄�(𝑡) = 1
2 ∫u�

0
([�̃�(−𝑠)�̃�(𝑡) + �̃�(−𝑠)�̃�(𝑡)]ℎ(𝑠) + [�̃�(𝑠)�̃�(𝑡) − �̃�(𝑠)�̃�(𝑡)]ℎ(−𝑠)) d 𝑠,

is a solution of problem (3.5.5), which proves the result. �

Denote now 𝐺u�,u� the Green’s function for problem (3.5.5) with constant coefficients 𝑎 and

𝑏. The following Lemma is analogous to Lemma 3.2.6.

Lemma 3.5.10. 𝐺u�,u�(𝑡, 𝑠) = −𝐺−u�,−u�(−𝑡, −𝑠), for all 𝑡, 𝑠 ∈ 𝐼.

Proof. Let 𝑢(𝑡) ∶= ∫∞
−∞ 𝐺u�,u�(𝑡, 𝑠)ℎ(𝑠) d 𝑠 be the solution to

𝑢′(𝑡) + 𝑎 𝑢(−𝑡) + 𝑏 𝑢(𝑡) = ℎ(𝑡), 𝑢(0) = 0.

Let 𝑣(𝑡) ∶= −𝑢(−𝑡). Then 𝑣′(𝑡) − 𝑎 𝑣(−𝑡) − 𝑏 𝑣(𝑡) = ℎ(−𝑡), and therefore 𝑣(𝑡) =
∫∞

−∞ 𝐺−u�,−u�(𝑡, 𝑠)ℎ(−𝑠) d 𝑠.
On the other hand, by definition of 𝑣,

𝑣(𝑡) = − ∫∞
−∞

𝐺u�,u�(−𝑡, 𝑠)ℎ(𝑠) d 𝑠 = − ∫∞
−∞

𝐺u�,u�(−𝑡, −𝑠)ℎ(−𝑠) d 𝑠,

therefore we can conclude that 𝐺u�,u�(𝑡, 𝑠) = −𝐺−u�,−u�(−𝑡, −𝑠) for all 𝑡, 𝑠 ∈ 𝐼. �
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As a consequence of the previous result, we arrive at the following immediate conclusion.

Corollary 3.5.11. 𝐺u�,u� is positive in 𝐼2 if and only if 𝐺−u�,−u� is negative on 𝐼2.

3.6 Sign of the Green’s Function

In this section we use the above obtained expressions to obtain the explicit expression of the

Green’s function, depending on the values of the constants 𝑎 and 𝑏. Moreover we study the

sign of the function and deduce suitable comparison results.

We separate the study in three cases, taking into consideration the expression of the general

solution of equation (3.5.6).

3.6.1 The case (C1)

Now, assume the case (𝐶1), i.e., 𝑎2 > 𝑏2. Using equation (3.5.10), we get the following

expression of 𝐺 for this situation:

𝐺(𝑡, 𝑠) = [cos(𝜔(𝑠 − 𝑡)) + 𝑏
𝜔 sin(𝜔(𝑠 − 𝑡))] 𝜒u�

0(𝑠) + 𝑎
𝜔 sin(𝜔(𝑠 + 𝑡))𝜒0

−u�(𝑠),

which we can rewrite as

𝐺(𝑡, 𝑠) =

⎧{{{{{{{
⎨{{{{{{{⎩

cos 𝜔(𝑠 − 𝑡) + 𝑏
𝜔 sin 𝜔(𝑠 − 𝑡), 0 ≤ 𝑠 ≤ 𝑡,

− cos 𝜔(𝑠 − 𝑡) − 𝑏
𝜔 sin 𝜔(𝑠 − 𝑡), 𝑡 ≤ 𝑠 ≤ 0,

𝑎
𝜔 sin 𝜔(𝑠 + 𝑡), −𝑡 ≤ 𝑠 < 0,

− 𝑎
𝜔 sin 𝜔(𝑠 + 𝑡), 0 < 𝑠 ≤ −𝑡,

0, otherwise.

(3.6.1a)

(3.6.1b)

(3.6.1c)

(3.6.1d)

(3.6.1e)

Studying the expression of 𝐺 we can obtain maximum and antimaximum principles. In

order to do this, we will be interested in those maximal strips (in the sense of inclusion) of the

kind [𝛼, 𝛽] × ℝ where 𝐺 does not change sign depending on the parameters.

So, we are in a position to study the sign of the Green’s function in the different triangles

of definition. The result is the following:

Lemma 3.6.1. Assume 𝑎2 > 𝑏2 and define

𝜂(𝑎, 𝑏) ∶=

⎧{{{{{
⎨{{{{{⎩

1
√𝑎2 − 𝑏2

arctan
√𝑎2 − 𝑏2

𝑏 , 𝑏 > 0,

𝜋
2|𝑎| , 𝑏 = 0,

1
√𝑎2 − 𝑏2

(arctan
√𝑎2 − 𝑏2

𝑏 + 𝜋) , 𝑏 < 0.
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Then, the Green’s function of problem (3.5.5) is

• positive on {(𝑡, 𝑠), 0 < 𝑠 < 𝑡} if and only if 𝑡 ∈ (0, 𝜂(𝑎, 𝑏)),

• negative on {(𝑡, 𝑠), 𝑡 < 𝑠 < 0} if and only if 𝑡 ∈ (−𝜂(𝑎, −𝑏), 0).

If 𝑎 > 0, the Green’s function of problem (3.5.5) is

• positive on {(𝑡, 𝑠), −𝑡 < 𝑠 < 0} if and only if 𝑡 ∈ (0, 𝜋/√𝑎2 − 𝑏2),

• positive on {(𝑡, 𝑠), 0 < 𝑠 < −𝑡} if and only if 𝑡 ∈ (−𝜋/√𝑎2 − 𝑏2, 0),

and, if 𝑎 < 0, the Green’s function of problem (3.5.5) is

• negative on {(𝑡, 𝑠), −𝑡 < 𝑠 < 0} if and only if 𝑡 ∈ (0, 𝜋/√𝑎2 − 𝑏2),

• negative on {(𝑡, 𝑠), 0 < 𝑠 < −𝑡} if and only if 𝑡 ∈ (−𝜋/√𝑎2 − 𝑏2, 0).

Proof. For 0 < 𝑏 < 𝑎, the argument of the sin in (3.6.1c) is positive, so (3.6.1c) is positive for

𝑡 < 𝜋/𝜔. On the other hand, it is easy to check that (3.6.1a) is positive as long as 𝑡 < 𝜂(𝑎, 𝑏).
The rest of the proof continues similarly. �

As a corollary of the previous result we obtain the following one:

Lemma 3.6.2. Assume 𝑎2 > 𝑏2. Then,

• if 𝑎 > 0, the Green’s function of problem (3.5.5) is nonnegative on

[0, 𝜂(𝑎, 𝑏)] × ℝ,

• if 𝑎 < 0, the Green’s function of problem (3.5.5) is nonpositive on

[−𝜂(𝑎, −𝑏), 0] × ℝ,

• the Green’s function of problem (3.5.5) changes sign in any other strip not a subset of the

aforementioned.

Proof. The proof follows from the previous result together with the fact that

𝜂(𝑎, 𝑏) ≤ 𝜋
2𝜔 < 𝜋

𝜔.

�

Remark 3.6.3. Realize that the strips defined in the previous Lemma are optimal in the sense

that𝐺 changes sign in a bigger rectangle. The sameobservation applies to the similar resultswe

will prove for the other cases. This fact implies thatwe cannot havemaximumor anti-maximum

principles on bigger intervals for the solution, something that is widely known and which the

following results, together with Example 3.6.12, illustrate.
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Since 𝐺(𝑡, 0) changes sign at 𝑡 = 𝜂(𝑎, 𝑏). It is immediate to verify that, defining function

ℎu�(𝑠) = 1 for all 𝑠 ∈ (−𝜖, 𝜖) and ℎ(𝑠) = 0 otherwise, we have a solution 𝑢(𝑡) of problem

(3.5.5) that takes the value 𝑐 for 𝑡 = 𝜂(𝑎, 𝑏) + 𝛿(𝜖) with 𝛿(𝜖) > 0 such that lim
u�→0

𝛿(𝜖) = 0.
Hence, the estimates are optimal for this case.

However, one can study problems with particular non homogeneous part ℎ for which the

solution is positive for a bigger interval. This is shown in the following example.

Example 3.6.4. Consider the problem 𝑥′(𝑡) − 5𝑥(−𝑡) + 4𝑥(𝑡) = cos2 3𝑡, 𝑥(0) = 0.
Clearly, we are in the case (C1). For this problem,

�̄�(𝑡) ∶= ∫u�
0

[cos(3(𝑠 − 𝑡)) + 4
3 sin(3(𝑠 − 𝑡))] cos2 3𝑠 d 𝑠 − 5

3 ∫0
−u�

sin(3(𝑠 + 𝑡)) d 𝑠

= 1
18 (6 cos 3𝑡 + 3 cos 6𝑡 + 2 sin 3𝑡 + 2 sin 6𝑡 − 9) .

�̄�(0) = 0, so �̄� is the solution of our problem.

Studying �̄�, we can arrive to the conclusion that �̄� is nonnegative in the interval [0, 𝛾],
being zero at both ends of the interval and

𝛾 =1
3 arccos ⎛⎜

⎝
1
39

⎡⎢
⎣

3

√47215 − 5265√41 +
3

√5 (9443 + 1053√41) − 35⎤⎥
⎦

⎞⎟
⎠

=0.201824 …
Also, �̄�(𝑡) < 0 for 𝑡 = 𝛾 + 𝜖 with 𝜖 ∈ ℝ+ sufficiently small. Furthermore, as Figure 3.6.1

shows, the solution is periodic of period 2𝜋/3.

Figure 3.6.1: Graph of the function �̄� on the interval [0, 2𝜋/3]. Observe that �̄� is positive on

(0, 𝛾) and negative on (𝛾, 2𝜋/3).

If we use Lemma 3.6.2, we have that, a priori, �̄� is nonpositive on [−4/15, 0] which we

know is true by the study we have done of �̄�, but this estimate is, as expected, far from the

interval [𝛾 − 1, 0] in which �̄� is nonpositive. This does not contradict the optimality of the a

priori estimates, as we have shown before, some other examples could be found for which the

interval where the solution has constant sign is arbitrarily close to the one given by the a priori

estimate.
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3.6.2 The case (C2)

We study here the case (C2). In this case, it is clear that

𝐺(𝑡, 𝑠) = [cosh(𝜔(𝑠 − 𝑡)) + 𝑏
𝜔 sinh(𝜔(𝑠 − 𝑡))] 𝜒u�

0(𝑠) + 𝑎
𝜔 sinh(𝜔(𝑠 + 𝑡))𝜒0

−u�(𝑠),

which we can rewrite as

𝐺(𝑡, 𝑠) =

⎧{{{{{{{
⎨{{{{{{{⎩

cosh 𝜔(𝑠 − 𝑡) + 𝑏
𝜔 sinh 𝜔(𝑠 − 𝑡), 0 ≤ 𝑠 ≤ 𝑡,

− cosh 𝜔(𝑠 − 𝑡) − 𝑏
𝜔 sinh 𝜔(𝑠 − 𝑡), 𝑡 ≤ 𝑠 ≤ 0,

𝑎
𝜔 sinh 𝜔(𝑠 + 𝑡), −𝑡 ≤ 𝑠 ≤ 0,

− 𝑎
𝜔 sinh 𝜔(𝑠 + 𝑡), 0 ≤ 𝑠 ≤ −𝑡,

0, otherwise.

(3.6.2a)

(3.6.2b)

(3.6.2c)

(3.6.2d)

(3.6.2e)

Studying the expression of 𝐺 we can obtain maximum and antimaximum principles. With this

information, we can state the following lemma.

Lemma 3.6.5. Assume 𝑎2 < 𝑏2 and define

𝜎(𝑎, 𝑏) ∶= 1
√𝑏2 − 𝑎2

arctanh
√𝑏2 − 𝑎2

𝑏 .

Then,

• if 𝑎 > 0, the Green’s function of problem (3.5.5) is positive on {(𝑡, 𝑠), −𝑡 < 𝑠 < 0} and

{(𝑡, 𝑠), 0 < 𝑠 < −𝑡},

• if 𝑎 < 0, the Green’s function of problem (3.5.5) is negative on {(𝑡, 𝑠), −𝑡 < 𝑠 < 0}
and {(𝑡, 𝑠), 0 < 𝑠 < −𝑡},

• if 𝑏 > 0, the Green’s function of problem (3.5.5) is negative on {(𝑡, 𝑠), 𝑡 < 𝑠 < 0},

• if 𝑏 > 0, the Green’s function of problem (3.5.5) is positive on {(𝑡, 𝑠), 0 < 𝑠 < 𝑡} if and

only if 𝑡 ∈ (0, 𝜎(𝑎, 𝑏)),

• if 𝑏 < 0, the Green’s function of problem (3.5.5) is positive on {(𝑡, 𝑠), 0 < 𝑠 < 𝑡},

• if 𝑏 < 0, the Green’s function of problem (3.5.5) is negative on {(𝑡, 𝑠), 𝑡 < 𝑠 < 0} if and

only if 𝑡 ∈ (𝜎(𝑎, 𝑏), 0).

Proof. For 0 < 𝑎 < 𝑏, he argument of the sinh in (3.6.2d) is negative, so (3.6.2d) is positive.

The argument of the sinh in (3.6.2c) is positive, so (3.6.2c) is positive. It is easy to check that

(3.6.2a) is positive as long as 𝑡 < 𝜎(𝑎, 𝑏).
On the other hand, (3.6.2b) is always negative.

The rest of the proof continues similarly. �
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As a corollary of the previous result we obtain the following one:

Lemma 3.6.6. Assume 𝑎2 < 𝑏2. Then,

• if 0 < 𝑎 < 𝑏, the Green’s function of problem (3.5.5) is nonnegative on

[0, 𝜎(𝑎, 𝑏)] × ℝ,

• if 𝑏 < −𝑎 < 0, the Green’s function of problem (3.5.5) is nonnegative on

[0, +∞) × ℝ,

• if 𝑏 < 𝑎 < 0, the Green’s function of problem (3.5.5) is nonpositive on

[𝜎(𝑎, 𝑏), 0] × ℝ,

• if 𝑏 > −𝑎 > 0, the Green’s function of problem (3.5.5) is nonpositive on

(−∞, 0] × ℝ,

• the Green’s function of problem (3.5.5) changes sign in any other strip not a subset of the

aforementioned.

Example 3.6.7. Consider the problem

𝑥′(𝑡) + 𝜆𝑥(−𝑡) + 2𝜆𝑥(𝑡) = 𝑒u�, 𝑥(1) = 𝑐 (3.6.3)

with 𝜆 > 0.
Clearly, we are in the case (C2).

𝜎(𝜆, 2𝜆) = 1
𝜆√3

ln[7 + 4√3] = 1
𝜆 ⋅ 1.52069 …

If 𝜆 ≠ 1/√3, then

�̄�(𝑡) ∶ = ∫u�
0

[cosh(𝜆√3(𝑠 − 𝑡)) + 2
√3

sinh(𝜆√3(𝑠 − 𝑡))] 𝑒u� d 𝑠

+ 1
√3

∫0
−u�

sinh(𝜔(𝑠 + 𝑡))𝑒u� d 𝑠

= 1
3𝜆2 − 1 [(𝜆 − 1)(√3 sinh(√3𝜆𝑡) − cosh(√3𝜆𝑡)) + (2𝜆 − 1)𝑒u� − 𝜆𝑒−u�] ,

�̃�(𝑡) = cosh(𝜆√3𝑡) − √3 sinh(𝜆√3𝑡).

With these equalities, it is straightforward to construct the unique solution 𝑤 of problem

(3.6.3). For instance, in the case 𝜆 = 𝑐 = 1,

�̄�(𝑡) = sinh(𝑡),

and

𝑤(𝑡) = sinh 𝑡 + 1 − sinh 1
cosh(𝜆√3) − √3 sinh(𝜆√3)

(cosh(𝜆√3𝑡) − √3 sinh(𝜆√3𝑡)) .

Observe that for 𝜆 = 1, 𝑐 = sinh 1, 𝑤(𝑡) = sinh 𝑡. Lemma 3.6.6 guarantees the nonnega-

tivity of 𝑤 on [0, 1.52069 … ], but it is clear that the solution 𝑤(𝑡) = sinh 𝑡 is positive on the
whole positive real line.
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3.6.3 The case (C3)

We study here the case (C3) for 𝑎 = 𝑏. In this case, it is clear that

𝐺(𝑡, 𝑠) = [1 + 𝑎(𝑠 − 𝑡)]𝜒u�
0(𝑠) + 𝑎(𝑠 + 𝑡)𝜒0

−u�(𝑠),

which we can rewrite as

𝐺(𝑡, 𝑠) =

⎧{{{{
⎨{{{{⎩

1 + 𝑎(𝑠 − 𝑡), 0 ≤ 𝑠 ≤ 𝑡,
−1 − 𝑎(𝑠 − 𝑡), 𝑡 ≤ 𝑠 ≤ 0,
𝑎(𝑠 + 𝑡), −𝑡 ≤ 𝑠 ≤ 0,
−𝑎(𝑠 + 𝑡), 0 ≤ 𝑠 ≤ −𝑡,
0, otherwise.

Studying the expression of 𝐺 we can obtain maximum and antimaximum principles. With this

information, we can prove the following Lemma as we did with the analogous ones for cases

(C1) and (C2).

Lemma 3.6.8. Assume 𝑎 = 𝑏. Then, if 𝑎 > 0, the Green’s function of problem (3.5.5) is

• positive on {(𝑡, 𝑠), −𝑡 < 𝑠 < 0} and {(𝑡, 𝑠), 0 < 𝑠 < −𝑡},

• negative on {(𝑡, 𝑠), 𝑡 < 𝑠 < 0},

• positive on {(𝑡, 𝑠), 0 < 𝑠 < 𝑡} if and only if 𝑡 ∈ (0, 1/𝑎),

and, if 𝑎 < 0, the Green’s function of problem (3.5.5) is

• negative on {(𝑡, 𝑠), −𝑡 < 𝑠 < 0} and {(𝑡, 𝑠), 0 < 𝑠 < −𝑡},

• positive on {(𝑡, 𝑠), 0 < 𝑠 < 𝑡}.

• negative on {(𝑡, 𝑠), 𝑡 < 𝑠 < 0} if and only if 𝑡 ∈ (1/𝑎, 0).

As a corollary of the previous result we obtain the following one:

Lemma 3.6.9. Assume 𝑎 = 𝑏. Then,

• if 0 < 𝑎, the Green’s function of problem (3.5.5) is nonnegative on [0, 1/𝑎] × ℝ,

• if 𝑎 < 0, the Green’s function of problem (3.5.5) is nonpositive on [1/𝑎, 0] × ℝ,

• the Green’s function of problem (3.5.5) changes sign in any other strip not a subset of the

aforementioned.

For this particular case we have another way of computing the solution to the problem.

Proposition 3.6.10. Let 𝑎 = 𝑏 and assume 2𝑎𝑡0 ≠ 1. Let 𝐻(𝑡) ∶= ∫u�
u�0

ℎ(𝑠) d 𝑠 and ℋ(𝑡) ∶=
∫u�

u�0
𝐻(𝑠) d 𝑠. Then problem (3.5.5) has a unique solution given by

𝑢(𝑡) = 𝐻(𝑡) − 2𝑎ℋu�(𝑡) + 2𝑎 𝑡 − 1
2𝑎 𝑡0 − 1𝑐.
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Proof. The equation is satisfied, since

𝑢′(𝑡) + 𝑎(𝑢(𝑡) + 𝑢(−𝑡)) = 𝑢′(𝑡) + 2𝑎𝑢u�(𝑡)

=ℎ(𝑡) − 2 𝑎𝐻u�(𝑡) + 2𝑎 𝑐
2𝑎 𝑡0 − 1 + 2 𝑎𝐻u�(𝑡) − 2𝑎 𝑐

2𝑎 𝑡0 − 1 = ℎ(𝑡).

The initial condition is also satisfied for, clearly, 𝑢(𝑡0) = 𝑐. The uniqueness of solution is

derived from the fact that 2𝑎𝑡0 ≠ 1 and Lemma 3.5.6. �

Example 3.6.11. Consider the problem 𝑥′(𝑡)+𝜆(𝑥(𝑡)−𝑥(−𝑡)) = |𝑡|u�, 𝑥(0) = 1 for 𝜆, 𝑝 ∈
ℝ, 𝑝 > −1. For 𝑝 ∈ (−1, 0) we have a singularity at 0. We can arrive to the solution

𝑢(𝑡) = 1
𝑝 + 1𝑡|𝑡|u� + 1 − 2𝜆𝑡,

where �̄�(𝑡) = 1
u�+1𝑡|𝑡|u� and �̃�(𝑡) = 1 − 2𝜆𝑡.

�̄� is positive in (0, +∞) and negative in (−∞, 0) independently of 𝜆, so the solution has

better properties than the ones guaranteed by Lemma 3.6.9.

The next example shows that the estimate is sharp.

Example 3.6.12. Consider the problem

𝑢′
u�(𝑡) + 𝑢u�(𝑡) + 𝑢u�(−𝑡) = ℎu�(𝑡), 𝑡 ∈ ℝ; 𝑢u�(0) = 0, (3.6.4)

where 𝜖 ∈ ℝ, ℎu�(𝑡) = 12𝑡(𝜖 − 𝑡)𝜒[0,u�](𝑡) and 𝜒[0,u�] is the characteristic function of the

interval [0, 𝜖]. Observe that ℎu� is continuous. By means of the expression of the Green’s

function for problem (3.6.4), we have that its unique solution is given by

𝑢u�(𝑡) =

⎧{{{
⎨{{{⎩

−2𝜖3𝑡 − 𝜖4, if 𝑡 < −𝜖,
−𝑡4 − 2𝜖𝑡3, if − 𝜖 < 𝑡 < 0,
𝑡4 − (4 + 2𝜖)𝑡3 + 6𝜖𝑡2, if 0 < 𝑡 < 𝜖,
−2𝜖3𝑡 + 2𝜖3 + 𝜖4, if 𝑡 > 𝜖.

The a priory estimate on the solution tells us that 𝑢u� is nonnegative at least in [0, 1]. Studying
the function𝑢u�, it is easy to check that𝑢u� is zero at0 and1+𝜖/2, positive in (−∞, 1+𝜖/2)\{0}
and negative in (1 + 𝜖/2, +∞).

The case (C3.2) is very similar,

𝐺(𝑡, 𝑠) =

⎧{{{{
⎨{{{{⎩

1 + 𝑎(𝑡 − 𝑠), 0 ≤ 𝑠 ≤ 𝑡,
−1 − 𝑎(𝑡 − 𝑠), 𝑡 ≤ 𝑠 ≤ 0,
𝑎(𝑠 + 𝑡), −𝑡 ≤ 𝑠 ≤ 0,
−𝑎(𝑠 + 𝑡), 0 ≤ 𝑠 ≤ −𝑡,
0, otherwise.

Lemma 3.6.13. Assume 𝑎 = −𝑏. Then, if 𝑎 > 0, the Green’s function of problem (3.5.5) is



3. Sign of the Green’s Function 79

Figure 3.6.2: Graph of the function 𝑢1 and ℎ1 (dashed). Observe that 𝑢 becomes zero at 𝑡 =
1 + 𝜖/2 = 3/2.

• positive on {(𝑡, 𝑠), −𝑡 < 𝑠 < 0}, {(𝑡, 𝑠), 0 < 𝑠 < 𝑡} and {(𝑡, 𝑠), 0 < 𝑠 < −𝑡},

• negative on {(𝑡, 𝑠), 𝑡 < 𝑠 < 0} if and only if 𝑡 ∈ (−1/𝑎, 0),

and, if 𝑎 > 0, the Green’s function of problem (3.5.5) is

• negative on {(𝑡, 𝑠), −𝑡 < 𝑠 < 0}, {(𝑡, 𝑠), 𝑡 < 𝑠 < 0} and {(𝑡, 𝑠), 0 < 𝑠 < −𝑡},

• positive on {(𝑡, 𝑠), 0 < 𝑠 < 𝑡} if and only if 𝑡 ∈ (0, −1/𝑎).

As a corollary of the previous result we obtain the following one:

Lemma 3.6.14. Assume 𝑎 = −𝑏. Then,

• if 𝑎 > 0,the Green’s function of problem (3.5.5) is nonnegative on [0, +∞) × ℝ,

• if 𝑎 < 0 the Green’s function of problem (3.5.5) is nonpositive on (−∞, 0] × ℝ,

• the Green’s function of problem (3.5.5) changes sign in any other strip not a subset of the

aforementioned.

Again, for this particular case we have another way of computing the solution to the prob-

lem.

Proposition 3.6.15. Let 𝑎 = −𝑏, 𝐻(𝑡) ∶= ∫u�
0 ℎ(𝑠) d 𝑠 and ℋ(𝑡) ∶= ∫u�

0 𝐻(𝑠) d 𝑠. Then prob-

lem (3.5.5) has a unique solution given by

𝑢(𝑡) = 𝐻(𝑡) − 𝐻(𝑡0) − 2𝑎(ℋu�(𝑡) − ℋu�(𝑡0)) + 𝑐.

Proof. The equation is satisfied, since

𝑢′(𝑡) + 𝑎(𝑢(𝑡) − 𝑢(−𝑡)) = 𝑢′(𝑡) + 2 𝑎𝑢u�(𝑡) = ℎ(𝑡) − 2 𝑎𝐻u�(𝑡) + 2 𝑎𝐻u�(𝑡) = ℎ(𝑡).

The initial condition is also satisfied for, clearly, 𝑢(𝑡0) = 𝑐. �
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Example 3.6.16. Consider the problem

𝑥′(𝑡) + 𝜆(𝑥(−𝑡) − 𝑥(𝑡)) = 𝜆𝑡2 − 2𝑡 + 𝜆
(1 + 𝑡2)2 , 𝑥(0) = 𝜆

for 𝜆 ∈ ℝ. We can apply the theory in order to get the solution

𝑢(𝑡) = 1
1 + 𝑡2 + 𝜆(1 + 2𝜆𝑡) arctan 𝑡 − 𝜆2 ln(1 + 𝑡2) + 𝜆 − 1

where �̄�(𝑡) = 1
1+u�2 + 𝜆(1 + 2𝜆𝑡) arctan 𝑡 − 𝜆2 ln(1 + 𝑡2) − 1.

Observe that the real function

ℎ(𝑡) ∶= 𝜆𝑡2 − 2𝑡 + 𝜆
(1 + 𝑡2)2

is positive on ℝ if 𝜆 > 1 and negative on ℝ for all 𝜆 < −1. Therefore, Lemma 3.6.14 guaran-

tees that �̄� will be positive on (0, ∞) for 𝜆 > 1 and in (−∞, 0) when 𝜆 < −1.



4. The nonconstant case

In the previous chapter we dealt with order one differential equations with reflection, constant

coefficients and different boundary conditions. Now, following [41] we reduce a new, more

general problem containing nonconstant coefficients and arbitrary differentiable involutions,

to the one studied in Chapter 3. Aswewill see, wewill do this in three steps. First we add a term

depending on 𝑥(𝑡) which does not changemuch with respect to the previous situations. Then,

moving from the reflection to a general involution is fairly simple using some of the knowledge

gathered in Chapter 1.

The last step, changing from constant to nonconstant coefficients, is another matter. In

the nonconstant case computing the Green’s function gets trickier and it is only possible in

some situations. We use a special change of variable (only valid in some cases) that allows

the obtaining the Green’s function of problems with nonconstant coefficients from the Green’s

functions of constant-coefficient analogs.

4.1 Order one linear problems with involutions

Assume 𝜑 is a differentiable involution on a compact interval 𝐽1 ⊂ ℝ. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ L1(𝐽1)
and consider the following problem

𝑑(𝑡)𝑥′(𝑡) + 𝑐(𝑡)𝑥′(𝜑(𝑡)) + 𝑏(𝑡)𝑥(𝑡) + 𝑎(𝑡)𝑥(𝜑(𝑡)) = ℎ(𝑡), 𝑥(inf 𝐽1) = 𝑥(sup 𝐽1).
(4.1.1)

It would be interesting to know under what circumstances problem (4.1.1) is equivalent to

another problem of the same kind but with a different involution, in particular the reflection.

The following corollary of Lemma 1.2.14 will help us to clarify this situation.

Corollary 4.1.1 (CHANGEOF INVOLUTION). Under the hypothesis of Lemma1.2.14, problem (4.1.1)

is equivalent to

𝑑(𝑓 (𝑠))
𝑓 ′(𝑠) 𝑦′(𝑠) + 𝑐(𝑓 (𝑠))

𝑓 ′(𝜓(𝑠))
𝑦′(𝜓(𝑠)) + 𝑏(𝑓 (𝑠))𝑦(𝑠) + 𝑎(𝑓 (𝑠))𝑦(𝜓(𝑠)) = ℎ(𝑓 (𝑠)),

𝑦(inf 𝐽2) = 𝑦(sup 𝐽2).
(4.1.2)

Proof. Consider the change of variable 𝑡 = 𝑓 (𝑠) and 𝑦(𝑠) ∶= 𝑥(𝑡) = 𝑥(𝑓 (𝑠)). Then, using
Lemma 1.2.14, it is clear that

d 𝑦
d 𝑠(𝑠) = d 𝑥

d 𝑡 (𝑓 (𝑠))d 𝑓
d 𝑠(𝑠) and

d 𝑦
d 𝑠(𝜓(𝑠)) = d 𝑥

d 𝑡 (𝜑(𝑓 (𝑠)))d 𝑓
d 𝑠(𝜓(𝑠)).

Making the proper substitutions in problem (4.1.1) we get problem (4.1.2) and vice-versa. �
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This last results allows us to restrict our study of problem (4.1.1) to the case where 𝜑 is the

reflection 𝜑(𝑡) = −𝑡.
Now, take 𝑇 ∈ ℝ+, 𝐼 ∶= [−𝑇, 𝑇]. Equation (4.1.1), for the case 𝜑(𝑡) = −𝑡, can be

reduced to the following system

Λ (𝑥′
u�

𝑥′
u�
) = (𝑎u� − 𝑏u� −𝑎u� − 𝑏u�

𝑎u� − 𝑏u� −𝑎u� − 𝑏u�
) (𝑥u�

𝑥u�
) + (ℎu�

ℎu�
) ,

where

Λ = (𝑐u� + 𝑑u� 𝑑u� − 𝑐u�
𝑐u� + 𝑑u� 𝑑u� − 𝑐u�

) .

To see this, just compute the even and odd parts of both sides of the equation taking into

account Corollary 1.1.7.

Now, if det(Λ(𝑡)) = 𝑑(𝑡)𝑑(−𝑡) − 𝑐(𝑡)𝑐(−𝑡) ≠ 0 for a. e. 𝑡 ∈ 𝐼, Λ(𝑡) is invertible a. e.

and

(𝑥′
u�

𝑥′
u�
) = Λ−1 (𝑎u� − 𝑏u� −𝑎u� − 𝑏u�

𝑎u� − 𝑏u� −𝑎u� − 𝑏u�
) (𝑥u�

𝑥u�
) + Λ−1 (ℎu�

ℎu�
) .

So the general case where 𝑐��≡0 is reduced to the case 𝑐 = 0, taking

Λ−1 (𝑎u� − 𝑏u� −𝑎u� − 𝑏u�
𝑎u� − 𝑏u� −𝑎u� − 𝑏u�

)

as coefficient matrix.

Hence, in the following section we will further restrict our assumptions to the case where

𝑐 ≡ 0 in problem (4.1.1).

4.2 Study of the homogeneous equation

In this section we will study some different cases for the homogeneous equation

𝑥′(𝑡) + 𝑎(𝑡)𝑥(−𝑡) + 𝑏(𝑡)𝑥(𝑡) = 0, 𝑡 ∈ 𝐼, (4.2.1)

where 𝑎, 𝑏 ∈ L1(𝐼). The solutions of equation (4.2.1) satisfy

(𝑥′
u�

𝑥′
u�
) = (𝑎u� − 𝑏u� −𝑎u� − 𝑏u�

𝑎u� − 𝑏u� −𝑎u� − 𝑏u�
) (𝑥u�

𝑥u�
) . (4.2.2)

Realize that, a priori, solutions of system (4.2.2) need not to be pairs of even and odd functions,

nor provide solutions of (4.2.1).

In order to solve this system,wewill restrict problem (4.2.2) to those caseswhere thematrix

𝑀(𝑡) = (𝑎u� − 𝑏u� −𝑎u� − 𝑏u�
𝑎u� − 𝑏u� −𝑎u� − 𝑏u�

) (𝑡)

satisfies that [𝑀(𝑡), 𝑀(𝑠)] ∶= 𝑀(𝑡)𝑀(𝑠) − 𝑀(𝑠)𝑀(𝑡) = 0 ∀𝑡, 𝑠 ∈ 𝐼, for in that case,

the solution of the system (4.2.2) is given by the exponential of the integral of 𝑀. To see this,

we have to present a definition and a related result [119].
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Definition 4.2.1. Let 𝑆 ⊂ ℝ be an interval. Define ℳ ⊂ u�1(ℝ, ℳu�×u�(ℝ)) such that for

every 𝑀 ∈ ℳ,

• there exists 𝑃 ∈ u�1(ℝ, ℳu�×u�(ℝ)) such that 𝑀(𝑡) = 𝑃−1(𝑡)𝐽(𝑡)𝑃(𝑡) for every 𝑡 ∈
𝑆 where 𝑃−1(𝑡)𝐽(𝑡)𝑃(𝑡) is a Jordan decomposition of 𝑀(𝑡);

• the superdiagonal elements of 𝐽 are independent of 𝑡, as well as the dimensions of the

Jordan boxes associated to the different eigenvalues of 𝑀;

• two different Jordan boxes of 𝐽 correspond to different eigenvalues;

• if two eigenvalues of 𝑀 are ever equal, they are identical in the whole interval 𝑆.

Theorem 4.2.2 ( [119]). Let 𝑀 ∈ ℳ. Then, the following statements are equivalent.

• 𝑀 commutes with its derivative.

• 𝑀 commutes with its integral.

• 𝑀 commutes functionally, that is 𝑀(𝑡)𝑀(𝑠) = 𝑀(𝑠)𝑀(𝑡) for all 𝑡, 𝑠 ∈ 𝑆.

• 𝑀 = ∑u�
u�=0 𝛾u�(𝑡)𝐶u� for some 𝐶 ∈ ℳu�×u�(ℝ) and 𝛾u� ∈ u�1(𝑆, ℝ), 𝑘 = 1, … , 𝑟.

Furthermore, any of the last properties imply that 𝑀(𝑡) has a set of constant eigenvectors, i.e.

a Jordan decomposition 𝑃−1𝐽(𝑡)𝑃 where 𝑃 is constant.

Even though the coefficients 𝑎 and 𝑏 may in general not have enough regularity to apply

Theorem 4.2.2, we will see that we can obtain a basis of constant eigenvectors whenever the

matrix 𝑀 functionally commutes. That, as we will see, is enough for the solution of the system

(4.2.2) to be given by the exponential of the integral of 𝑀.

Observe that,

[𝑀(𝑡), 𝑀(𝑠)] = 2 ( u�u�(u�)u�u�(u�)−u�u�(u�)u�u�(u�) u�u�(u�)[u�u�(u�)+u�u�(u�)]−u�u�(u�)[u�u�(u�)+u�u�(u�)]
u�u�(u�)[u�u�(u�)+u�u�(u�)]−u�u�(u�)[u�u�(u�)+u�u�(u�)] u�u�(u�)u�u�(u�)−u�u�(u�)u�u�(u�) ) .

Let 𝐴(𝑡) ∶= ∫u�
0 𝑎(𝑠) d 𝑠, 𝐵(𝑡) ∶= ∫u�

0 𝑏(𝑠) d 𝑠. Let 𝑀 be a primitive (save possibly a constant

matrix) of 𝑀,that is, the matrix,

𝑀 = (𝐴u� − 𝐵u� −𝐴u� − 𝐵u�
𝐴u� − 𝐵u� −𝐴u� − 𝐵u�

) .

Westudy now thedifferent caseswhere [𝑀(𝑡), 𝑀(𝑠)] = 0 ∀𝑡, 𝑠 ∈ 𝐼. Wewill always assume

𝑎��≡0, since the case 𝑎 ≡ 0 is the well-known case of an ordinary differential equation. Let us

see the different possible cases.

(D1). 𝑏u� = 𝑘 𝑎, 𝑘 ∈ ℝ, |𝑘| < 1. In this case, 𝑎u� = 0 and 𝑀 has the form

𝑀 = ( 𝐵u� −(1 + 𝑘)𝐴u�
(1 − 𝑘)𝐴u� −𝐵u�

) .
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𝑀 has two complex conjugate eigenvalues. What is more, both 𝑀 and 𝑀 functionally

commute, and they have a basis of constant eigenvectors given by the constant matrix

𝑌 ∶= (𝑖√1 − 𝑘2 −𝑖√1 − 𝑘2

𝑘 − 1 𝑘 − 1 ) .

We have that

𝑌−1𝑀(𝑡)𝑌 = 𝑍(𝑡) ∶= ⎛⎜
⎝

−𝐵u� − 𝑖√1 − 𝑘2 𝐴u� 0
0 −𝐵u� + 𝑖√1 − 𝑘2 𝐴u�

⎞⎟
⎠

.

Hence,

𝑒u�(u�) =𝑒u�u�(u�)u�−1 = 𝑌𝑒u�(u�)𝑌−1

=𝑒−u�u�(u�) ⎛⎜⎜
⎝

cos (√1 − 𝑘2𝐴(𝑡)) − 1+u�
√1−u�2

sin (√1 − 𝑘2𝐴(𝑡))
√1−u�2

1+u� sin (√1 − 𝑘2𝐴(𝑡)) cos (√1 − 𝑘2𝐴(𝑡))
⎞⎟⎟
⎠

.

Therefore, if a solution to equation (4.2.1) exists, it has to be of the form

𝑢(𝑡) = 𝛼𝑒−u�u�(u�) cos (√1 − 𝑘2𝐴(𝑡)) + 𝛽𝑒−u�u�(u�) 1 + 𝑘
√1 − 𝑘2

sin (√1 − 𝑘2𝐴(𝑡)) .

with 𝛼, 𝛽 ∈ ℝ. It is easy to check that all the solutions of equation (4.2.1) are of this formwith

𝛽 = −𝛼.
(D2). 𝑏u� = 𝑘 𝑎, 𝑘 ∈ ℝ, |𝑘| > 1. This case is much similar to (D1) In this case 𝑀 has again

the form

𝑀 = ( 𝐵u� −(1 + 𝑘)𝐴u�
(1 − 𝑘)𝐴u� −𝐵u�

) .

𝑀 has two real eigenvalues and a basis of constant eigenvectors given by the constant

matrix

𝑌 ∶= (√𝑘2 − 1 −√𝑘2 − 1
𝑘 − 1 𝑘 − 1 ) .

We have that

𝑌−1𝑀(𝑡)𝑌 = 𝑍(𝑡) ∶= ⎛⎜
⎝

−𝐵u� − √𝑘2 − 1 𝐴u� 0
0 −𝐵u� + √𝑘2 − 1 𝐴u�

⎞⎟
⎠

.

And so,

𝑒u�(u�) =𝑒u�u�(u�)u�−1 = 𝑌𝑒u�(u�)𝑌−1

=𝑒−u�u�(u�) ⎛⎜⎜
⎝

cosh (√1 − 𝑘2𝐴(𝑡)) − 1+u�
√u�2−1

sinh (√1 − 𝑘2𝐴(𝑡))
√1−u�2

1+u� sinh (√𝑘2 − 1𝐴(𝑡)) cosh (√1 − 𝑘2𝐴(𝑡))
⎞⎟⎟
⎠

.

Therefore, it yields solutions of system (4.2.2) of the form

𝑢(𝑡) = 𝛼𝑒−u�u�(u�) cosh (√𝑘2 − 1𝐴(𝑡)) + 𝛽𝑒−u�u�(u�) 1 + 𝑘
√𝑘2 − 1

sinh (√𝑘2 − 1𝐴(𝑡)) ,
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which are solutions of equation (4.2.1) when 𝛽 = −𝛼.
(D3). 𝑏u� = 𝑎.

𝑀 = (𝐵u� −(1 + 𝑘)𝐴u�
0 −𝐵u�

) .

Since the matrix is triangular, we can solve sequentially for 𝑥u� and 𝑥u�. In this case the solutions

of system (4.2.2) are of the form

𝑢(𝑡) = 𝛼𝑒−u�u�(u�) + 2𝛽𝑒−u�u�(u�)𝐴(𝑡) (4.2.3)

which are solutions of equation (4.2.1) when 𝛽 = −𝛼.
(D4). 𝑏u� = −𝑎.

𝑀 = ( 𝐵u� 0
(1 − 𝑘)𝐴u� −𝐵u�

) .

We can solve sequentially for 𝑥u� and 𝑥u� and the solutions of system (4.2.2) are the same as in

case (D3), but they are solutions of equation (4.2.1) when 𝛽 = 0.
(D5). 𝑏u� = 𝑎u� = 0.

𝑀 = (𝐴u� − 𝐵u� 0
0 −𝐴u� − 𝐵u�

)

In this case the solutions of system (4.2.2) are of the form

𝑢(𝑡) = 𝛼𝑒u�(u�)−u�(u�) + 𝛽𝑒−u�(u�)−u�(u�),

which are solutions of equation (4.2.1) when 𝛼 = 0.

Remark 4.2.3. Observe that functional matrices appearing in cases (D1)–(D5) belong to ℳ.

4.3 The cases (D1)–(D3) for the complete problem

In the more complicated setting of the following nonhomogeneous problem

𝑥′(𝑡) + 𝑎(𝑡) 𝑥(−𝑡) + 𝑏(𝑡) 𝑥(𝑡) = ℎ(𝑡), 𝑎. 𝑒. 𝑡 ∈ 𝐼, 𝑥(−𝑇) = 𝑥(𝑇), (4.3.1)

we have still that, in the cases (D1)–(D3), it can be sorted out very easily. In fact, we get the

expression of the Green’s function for the operator. We remark that in the three considered

cases along this section the function 𝑎 must be even on 𝐼. We note also that 𝑎 is allowed to

change its sign on 𝐼.
First, we are going to prove a generalization of Proposition 3.2.2.

Consider problem (4.3.1) with 𝑎 and 𝑏 constants.

𝑥′(𝑡) + 𝑎 𝑥(−𝑡) + 𝑏 𝑥(𝑡) = ℎ(𝑡), 𝑡 ∈ 𝐼, 𝑥(−𝑇) = 𝑥(𝑇). (4.3.2)

Considering the homogeneous case (ℎ = 0), differentiating and making proper substitutions,

we arrive to the problem.

𝑥″(𝑡) + (𝑎2 − 𝑏2)𝑥(𝑡) = 0, 𝑡 ∈ 𝐼, 𝑥(−𝑇) = 𝑥(𝑇), 𝑥′(−𝑇) = 𝑥′(𝑇). (4.3.3)
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Which, for 𝑏2 < 𝑎2, is the problem of the harmonic oscillator.

It was shown in Section 3.2 that, under uniqueness conditions, the Green’s function 𝐺 for

problem (4.3.3) (that is, problem (3.2.2) satisfies the following properties in the case 𝑏2 < 𝑎2),

but they can be extended almost automatically to the case 𝑏2 > 𝑎2.

Lemma 4.3.1. The Green’s function 𝐺 related to problem (4.3.3), satisfies the following prop-

erties.

(𝐼) 𝐺 ∈ u�(𝐼2, ℝ),

(𝐼𝐼) u�u�
u�u� and

u�2u�
u�u�2 exist and are continuous in {(𝑡, 𝑠) ∈ 𝐼2 | 𝑠 ≠ 𝑡},

(𝐼𝐼𝐼) u�u�
u�u� (𝑡, 𝑡−) and

u�u�
u�u� (𝑡, 𝑡+) exist for all 𝑡 ∈ 𝐼 and satisfy

𝜕𝐺
𝜕𝑡

(𝑡, 𝑡−) − 𝜕𝐺
𝜕𝑡

(𝑡, 𝑡+) = 1 ∀𝑡 ∈ 𝐼,

(𝐼𝑉) u�2u�
u�u�2 + (𝑎2 − 𝑏2)𝐺 = 0 in {(𝑡, 𝑠) ∈ 𝐼2 | 𝑠 ≠ 𝑡},

(𝑉) (𝑎) 𝐺(𝑇, 𝑠) = 𝐺(−𝑇, 𝑠) ∀𝑠 ∈ 𝐼,
(𝑏) u�u�

u�u� (𝑇, 𝑠) = u�u�
u�u� (−𝑇, 𝑠) ∀𝑠 ∈ (−𝑇, 𝑇).

(𝑉𝐼) 𝐺(𝑡, 𝑠) = 𝐺(𝑠, 𝑡),

(𝑉𝐼𝐼) 𝐺(𝑡, 𝑠) = 𝐺(−𝑡, −𝑠),

(𝑉𝐼𝐼𝐼) u�u�
u�u� (𝑡, 𝑠) = u�u�

u�u� (𝑠, 𝑡),

(𝐼𝑋) u�u�
u�u� (𝑡, 𝑠) = −u�u�

u�u� (−𝑡, −𝑠),

(𝑋) u�u�
u�u� (𝑡, 𝑠) = −u�u�

u�u� (𝑡, 𝑠).

With these properties, we can prove the following Theorem in the same way we proved

Theorem 3.2.2.

Theorem 4.3.2. Suppose that 𝑎2 − 𝑏2 ≠ 𝑛2 (𝜋/𝑇)2, 𝑛 = 0, 1, … Then problem (4.3.2) has a

unique solution given by the expression

𝑢(𝑡) ∶= ∫u�
−u�

𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠,

where

𝐺(𝑡, 𝑠) ∶= 𝑎 𝐺(𝑡, −𝑠) − 𝑏 𝐺(𝑡, 𝑠) + 𝜕𝐺
𝜕𝑡

(𝑡, 𝑠)

is called the Green’s function related to problem (4.3.2).

This last theorem leads us to the question “Which is the Green’s function for the case (D3)

with 𝑎, 𝑏 constants?”. The following Lemma answers that question.
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Lemma 4.3.3. Let 𝑎 ≠ 0 be a constant and let 𝐺u�3 be a real function defined as

𝐺u�3(𝑡, 𝑠) ∶= 𝑡 − 𝑠
2 − 𝑎 𝑠 𝑡 +

⎧{{{
⎨{{{⎩

−1
2 + 𝑎 𝑠 if |𝑠| < 𝑡,

1
2 − 𝑎 𝑠 if |𝑠| < −𝑡,
1
2 + 𝑎 𝑡 if |𝑡| < 𝑠,
−1

2 − 𝑎 𝑡 if |𝑡| < −𝑠.

Then the following properties hold.

•
u�u�u�3

u�u� (𝑡, 𝑠) + 𝑎(𝐺u�3(𝑡, 𝑠) + 𝐺u�3(−𝑡, 𝑠)) = 0 for a. e. 𝑡, 𝑠 ∈ (−1, 1).

•
u�u�u�3

u�u� (𝑡, 𝑡+) − u�u�u�3
u�u� (𝑡, 𝑡−) = 1 ∀𝑡 ∈ (−1, 1).

• 𝐺u�3(−1, 𝑠) = 𝐺u�3(1, 𝑠) ∀𝑠 ∈ (−1, 1).

These properties are straightforward to check. Consider the following problem

𝑥′(𝑡) + 𝑎[𝑥(𝑡) + 𝑥(−𝑡)] = ℎ(𝑡), 𝑡 ∈ [−1, 1]; 𝑥(1) = 𝑥(−1). (4.3.4)

In case of having a solution, it is unique, for if 𝑢, 𝑣 are solutions, 𝑢 − 𝑣 is in the case (𝐷3) for

equation (4.2.1), that is, (𝑢−𝑣)(𝑡) = 𝛼(1−2𝑎𝑡). Since (𝑢−𝑣)(−𝑇) = (𝑢−𝑣)(𝑇), 𝑢 = 𝑣.
With this and Lemma 4.3.3 in mind, 𝐺u�3 is the Green’s function for the problem (4.3.4), that

is, the Green’s function for the case (D3) with 𝑎, 𝑏 constants and 𝑇 = 1. For other values of 𝑇,

it is enough to make a change of variables ̃𝑡 = 𝑇𝑡, ̃𝑠 = 𝑇𝑠.

Remark 4.3.4. The function 𝐺u�3 can be obtained from the Green’s functions for the case (D1)

with 𝑎 constant, 𝑏u� ≡ 0 and 𝑇 = 1 taking the limit 𝑘 → 1− for 𝑇 = 1.

The following theorem shows how to obtain a Green’s function for non constant coefficients

of the equation using the Green’s function for constant coefficients. We can find the same

principle, that is, to compose a Green’s function with some other function in order to obtain a

new Green’s function, in [29, Theorem 5.1, Remark 5.1] and also in [74, Section 2].

But first, we need to know how the Green’s function should be defined in such a case.

Theorem 4.3.2 gives us the expression of the Green’s function for problem (4.3.2), 𝐺(𝑡, 𝑠) ∶=
𝑎 𝐺(𝑡, −𝑠) − 𝑏 𝐺(𝑡, 𝑠) + u�u�

u�u� (𝑡, 𝑠). For instance, in the case (D1), if 𝜔 = √|𝑎2 − 𝑏2|, we have
that

2𝜔 sin(𝜔𝑇)𝐺(𝑡, 𝑠)

∶=

⎧{{{
⎨{{{⎩

𝑎 cos[𝜔(𝑠 + 𝑡 − 𝑇)] + 𝑏 cos[𝜔(𝑠 − 𝑡 + 𝑇)] + 𝜔 sin[𝜔(𝑠 − 𝑡 + 𝑇)], 𝑡 > |𝑠|,
𝑎 cos[𝜔(𝑠 + 𝑡 − 𝑇)] + 𝑏 cos[𝜔(−𝑠 + 𝑡 + 𝑇)] − 𝜔 sin[𝜔(−𝑠 + 𝑡 + 𝑇)], 𝑠 > |𝑡|,
𝑎 cos[𝜔(𝑠 + 𝑡 + 𝑇)] + 𝑏 cos[𝜔(−𝑠 + 𝑡 + 𝑇)] − 𝜔 sin[𝜔(−𝑠 + 𝑡 + 𝑇)], −𝑡 > |𝑠|,
𝑎 cos[𝜔(𝑠 + 𝑡 + 𝑇)] + 𝑏 cos[𝜔(𝑠 − 𝑡 + 𝑇)] + 𝜔 sin[𝜔(𝑠 − 𝑡 + 𝑇)], −𝑠 > |𝑡|.

Also, observe that 𝐺 is continuous except at the diagonal, where

𝐺(𝑡, 𝑡−) − 𝐺(𝑡, 𝑡+) = 1.
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Similarly, we can obtain the explicit expression of the Green’s function 𝐺 for the case (D2).

Taking again 𝜔 = √|𝑎2 − 𝑏2|,

𝜔2 (𝑒2u�u�2 − 1) 𝐺(𝑡, 𝑠)

∶=

⎧{{{{{{{{{
⎨{{{{{{{{{⎩

𝑒u�2(u�−u�) (𝑒u�2(u�+u�) − 1) [𝑏 (𝑒u�2(u�−u�) − 1) + 𝜔2]
−4𝑎𝑒

1
2 u�2(u�+u�+2u�) sinh (1

2𝜔2[𝑠 − 𝑇]) sinh (1
2𝜔2[𝑡 − 𝑇]) , |𝑠| < 𝑡,

𝑒−u�u�2 (𝑒u�2(u�+u�) − 1)
⋅ [𝑎 (𝑒u�u�2 − 𝑒u�2(u�+u�+u�)) + (𝜔2 − 𝑏) 𝑒u�u�2 + 𝑏𝑒u�u�2] , −𝑠 > |𝑡|,
𝑒−u�u�2 (𝑒u�u�2 − 𝑒u�u�2)
⋅ [𝑎 (−𝑒u�2(u�+u�)) + 𝑎𝑒u�2(u�+u�) + (𝜔2 − 𝑏) 𝑒u�2(u�+u�) + 𝑏] , 𝑠 > |𝑡|,
−𝑎 (𝑒u�2(u�+u�) − 1) (𝑒u�2(u�+u�) − 1)
+ (𝜔2 − 𝑏) (𝑒u�2(u�+u�) − 𝑒u�2(−u�+u�+2u�)) + 𝑏 (−𝑒u�2(u�−u�)) + 𝑏, |𝑠| < −𝑡.

In any case, we have that the Green’s function for problem (4.3.2) can be expressed as

𝐺(𝑡, 𝑠) ∶=

⎧{{{
⎨{{{⎩

𝑘1(𝑡, 𝑠), 𝑡 > |𝑠|,
𝑘2(𝑡, 𝑠), 𝑠 > |𝑡|,
𝑘3(𝑡, 𝑠), −𝑡 > |𝑠|,
𝑘4(𝑡, 𝑠), −𝑠 > |𝑡|,

were the 𝑘u�, 𝑗 = 1, … , 4 are analytic functions defined on ℝ2.

In order to simplify the statement of the following Theorem, consider the following condi-

tions.

(𝐃𝟏∗). (D1) is satisfied, (1 − 𝑘2)𝐴(𝑇)2 ≠ (𝑛 𝜋)2 for all 𝑛 = 0, 1, …
(𝐃𝟐∗). (D2) is satisfied and 𝐴(𝑇) ≠ 0.
(𝐃𝟑∗). (D3) is satisfied and 𝐴(𝑇) ≠ 0.
Assume one of (𝐷1∗)–(𝐷3∗). In that case, by Theorem 4.3.2 and Lemma 4.3.3, we are

under uniqueness conditions for the solution for the following problem [39].

𝑥′(𝑡) + 𝑥(−𝑡) + 𝑘 𝑥(𝑡) = ℎ(𝑡), 𝑡 ∈ [−|𝐴(𝑇)|, |𝐴(𝑇)|], 𝑥(𝐴(𝑇)) = 𝑥(−𝐴(𝑇)).
(4.3.5)

The Green’s function 𝐺2 for problem (4.3.5) is just an specific case of 𝐺 and can be ex-

pressed as

𝐺2(𝑡, 𝑠) ∶=

⎧{{{
⎨{{{⎩

𝑘1(𝑡, 𝑠), 𝑡 > |𝑠|,
𝑘2(𝑡, 𝑠), 𝑠 > |𝑡|,
𝑘3(𝑡, 𝑠), −𝑡 > |𝑠|,
𝑘4(𝑡, 𝑠), −𝑠 > |𝑡|.

Define now

𝐺1(𝑡, 𝑠) ∶= 𝑒u�u�(u�)−u�u�(u�)𝐻(𝑡, 𝑠) = 𝑒u�u�(u�)−u�u�(u�)

⎧{{{
⎨{{{⎩

𝑘1(𝐴(𝑡), 𝐴(𝑠)), 𝑡 > |𝑠|,
𝑘2(𝐴(𝑡), 𝐴(𝑠)), 𝑠 > |𝑡|,
𝑘3(𝐴(𝑡), 𝐴(𝑠)), −𝑡 > |𝑠|,
𝑘4(𝐴(𝑡), 𝐴(𝑠)), −𝑠 > |𝑡|.

(4.3.6)
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Defined this way, 𝐺1 is continuous except at the diagonal, where 𝐺1(𝑡, 𝑡−) − 𝐺1(𝑡, 𝑡+) = 1.
Now we can state the following Theorem.

Theorem 4.3.5. Assume one of (𝐷1∗)–(𝐷3∗). Let 𝐺1 be defined as in (4.3.6). Assume

𝐺1(𝑡, ⋅)ℎ(⋅) ∈ L1(𝐼) for every 𝑡 ∈ 𝐼. Then problem (4.3.1) has a unique solution given by

𝑢(𝑡) = ∫u�
−u�

𝐺1(𝑡, 𝑠)ℎ(𝑠) d 𝑠.

Proof. First realize that, since 𝑎 is even, 𝐴 is odd, so 𝐴(−𝑡) = −𝐴(𝑡). It is important to note

that if 𝑎 has not constant sign in 𝐼, then 𝐴 may be not injective on 𝐼.
From the properties of 𝐺2 as a Green’s function, it is clear that

𝜕𝐺2

𝜕𝑡
(𝑡, 𝑠) + 𝐺2(−𝑡, 𝑠) + 𝑘 𝐺2(𝑡, 𝑠) = 0 for a. e. 𝑡, 𝑠 ∈ 𝐴(𝐼),

and so,
𝜕𝐻
𝜕𝑡

(𝑡, 𝑠) + 𝑎(𝑡)𝐻(−𝑡, 𝑠) + 𝑘𝑎(𝑡) 𝐻(𝑡, 𝑠) = 0 for a. e. 𝑡, 𝑠 ∈ 𝐼,

Hence

𝑢′(𝑡) + 𝑎(𝑡) 𝑢(−𝑡) + (𝑏u�(𝑡) + 𝑘 𝑎(𝑡)) 𝑢(𝑡)

= d
d 𝑡 ∫u�

−u�
𝐺1(𝑡, 𝑠)ℎ(𝑠) d 𝑠 + 𝑎(𝑡) ∫u�

−u�
𝐺1(−𝑡, 𝑠)ℎ(𝑠) d 𝑠 + (𝑏u�(𝑡)

+ 𝑘 𝑎(𝑡)) ∫u�
−u�

𝐺1(𝑡, 𝑠)ℎ(𝑠) d 𝑠

= d
d 𝑡 ∫u�

−u�
𝑒u�u�(u�)−u�u�(u�)𝐻(𝑡, 𝑠)ℎ(𝑠) d 𝑠 + d

d 𝑡 ∫u�
u�

𝑒u�u�(u�)−u�u�(u�)𝐻(𝑡, 𝑠)ℎ(𝑠) d 𝑠

+ 𝑎(𝑡) ∫u�
−u�

𝑒u�u�(u�)−u�u�(u�)𝐻(−𝑡, 𝑠)ℎ(𝑠) d 𝑠

+ (𝑏u�(𝑡) + 𝑘 𝑎(𝑡)) ∫u�
−u�

𝑒u�u�(u�)−u�u�(u�)𝐻(𝑡, 𝑠)ℎ(𝑠) d 𝑠

= [𝐻(𝑡, 𝑡−) − 𝐻(𝑡, 𝑡+)]ℎ(𝑡) + 𝑎(𝑡) 𝑒−u�u�(u�) ∫u�
−u�

𝑒u�u�(u�) 𝜕𝐻
𝜕𝑡

(𝑡, 𝑠)ℎ(𝑠) d 𝑠

− 𝑏u�(𝑡)𝑒−u�u�(u�) ∫u�
−u�

𝑒u�u�(u�)𝐻(𝑡, 𝑠)ℎ(𝑠) d 𝑠 + 𝑎(𝑡)𝑒−u�u�(u�) ∫u�
−u�

𝑒u�u�(u�)𝐻(−𝑡, 𝑠)ℎ(𝑠) d 𝑠

+ (𝑏u�(𝑡) + 𝑘 𝑎(𝑡))𝑒−u�u�(u�) ∫u�
−u�

𝑒u�u�(u�)𝐻(𝑡, 𝑠)ℎ(𝑠) d 𝑠

= ℎ(𝑡) + 𝑎(𝑡)𝑒−u�u�(u�) ∫u�
−u�

𝑒u�u�(u�) [𝜕𝐻
𝜕𝑡

(𝑡, 𝑠) + 𝑎(𝑡)𝐻(−𝑡, 𝑠) + 𝑘𝑎(𝑡) 𝐻(𝑡, 𝑠)] ℎ(𝑠) d 𝑠

=ℎ(𝑡).

The boundary conditions are also satisfied.

𝑢(𝑇) − 𝑢(−𝑇) = 𝑒−u�u�(u�) ∫u�
−u�

𝑒u�u�(u�)[𝐻(𝑇, 𝑠) − 𝐻(−𝑇, 𝑠)]ℎ(𝑠) d 𝑠 = 0.

In order to check the uniqueness of solution, let 𝑢 and 𝑣 be solutions of problem (4.3.5). Then

𝑢 − 𝑣 satisfies equation (4.2.1) and so is of the form given in Section 4.2. Also, (𝑢 − 𝑣)(𝑇) −
(𝑢 − 𝑣)(−𝑇) = 2(𝑢 − 𝑣)u�(𝑇) = 0, but this can only happen, by what has been imposed by

conditions (𝐷1∗)–(𝐷3∗), if 𝑢 − 𝑣 ≡ 0, thus proving the uniqueness of solution. �
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Example 4.3.6. Consider the problem

𝑥′(𝑡) = cos(𝜋𝑡)𝑥(−𝑡) + sinh(𝑡)𝑥(𝑡) = cos(𝜋𝑡) + sinh(𝑡), 𝑥(3/2) = 𝑥(−3/2).

Clearly we are in the case (D1) with 𝑘 = 0. If we compute the Green’s function according to

Theorem 4.3.5 we obtain

2 sin(sin(𝜋𝑇))𝐺1(𝑡, 𝑠) = 𝑒cosh(u�)−cosh(u�)�̂�1(𝑡, 𝑠),
where

�̂�1(𝑡, 𝑠)

=

⎧{{{
⎨{{{⎩

sin (sin(u�u�)
u� − sin(u�u�)

u� − sin(u�u�)
u� ) + cos (sin(u�u�)

u� + sin(u�u�)
u� − sin(u�u�)

u� ) , |𝑡| < 𝑠,
sin (sin(u�u�)

u� − sin(u�u�)
u� + sin(u�u�)

u� ) + cos (sin(u�u�)
u� + sin(u�u�)

u� + sin(u�u�)
u� ) , |𝑡| < −𝑠,

sin (sin(u�u�)
u� − sin(u�u�)

u� + sin(u�u�)
u� ) + cos (sin(u�u�)

u� + sin(u�u�)
u� − sin(u�u�)

u� ) , |𝑠| < 𝑡,
sin (sin(u�u�)

u� − sin(u�u�)
u� − sin(u�u�)

u� ) + cos (sin(u�u�)
u� + sin(u�u�)

u� + sin(u�u�)
u� ) , |𝑠| < −𝑡.

Figure 4.3.1: Graphs of the kernel (left) and of the functions involved in the problem (right).

One of the most important direct consequences of Theorem 4.3.5 is the existence of maxi-

mum and antimaximum principles in the case 𝑏 ≡ 0†.

Corollary 4.3.7. Under the conditions of Theorem 4.3.5, if 𝑎 is nonnegative on 𝐼, we have the

following properties:

• If 𝐴(𝑇) ∈ (0, u�
4 ) then 𝐺1 is strictly positive on 𝐼2.

• If 𝐴(𝑇) ∈ (−u�
4 , 0) then 𝐺1 is strictly negative on 𝐼2.

• If 𝐴(𝑇) = u�
4 then 𝐺1 vanishes on

𝑃 ∶= {(−𝐴(𝑇), −𝐴(𝑇)), (0, 0), (𝐴(𝑇), 𝐴(𝑇)), (𝐴(𝑇), −𝐴(𝑇))}

and is strictly positive on (𝐼2)\𝑃.

†Note that this discards the case (D3), for which 𝑏 ≡ 0 implies 𝑎 ≡ 0, because we are assuming 𝑎�≡0.
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• If 𝐴(𝑇) = −u�
4 then 𝐺1 vanishes on 𝑃 and is strictly negative on (𝐼2)\𝑃.

• If 𝐴(𝑇) ∈ ℝ\[−u�
4 , u�

4 ] then 𝐺1 is not positive nor negative on 𝐼2.

Furthermore, the operator 𝑅u� ∶ ℱu�(𝐼) → L1(𝐼) defined as

𝑅u�(𝑥(𝑡)) = 𝑥′(𝑡) + 𝑎(𝑡) 𝑥(−𝑡)

satisfies

• 𝑅u� is strongly inverse positive if and only if 𝐴(𝑇) ∈ (0, u�
4u� ] and 𝜆 ≥ 0,

• 𝑅u� is strongly inverse negative if and only if 𝐴(𝑇) ∈ [− u�
4u� , 0) and 𝜆 ≥ 0.

The second part of this last corollary, drawn from positivity (or negativity) of the Green’s

function could have been obtained, as we show below, without having so much knowledge

about the Green’s function. In order to show this, consider the following proposition in the

line of the work of Torres [167, Theorem 2.1].

Proposition 4.3.8. Consider the homogeneous initial value problem

𝑥′(𝑡) + 𝑎(𝑡) 𝑥(−𝑡) + 𝑏(𝑡) 𝑥(𝑡) = 0, a. e. 𝑡 ∈ 𝐼; 𝑥(𝑡0) = 0. (4.3.7)

If problem (4.3.7) has a unique solution (𝑥 ≡ 0) on 𝐼 for all 𝑡0 ∈ 𝐼 then, if the Green’s function

for (4.3.1) exists, it has constant sign.

What is more, if we further assume 𝑎 + 𝑏 has constant sign, the Green’s function has the

same sign as 𝑎 + 𝑏.

Proof. Without lost of generality, consider𝑎 to be a 2𝑇-periodicL1-function defined onℝ (the

solution of (4.3.1) will be considered in 𝐼). Let 𝐺1 be the Green’s function for problem (4.3.1).

Since 𝐺1(𝑇, 𝑠) = 𝐺1(−𝑇, 𝑠) for all 𝑠 ∈ 𝐼, and 𝐺1 is continuous except at the diagonal, it is

enough to prove that 𝐺1(𝑡, 𝑠) ≠ 0 ∀𝑡, 𝑠 ∈ 𝐼.
Assume, on the contrary, that there exists 𝑡1, 𝑠1 ∈ 𝐼 such that 𝐺1(𝑡1, 𝑠1) = 0. Let 𝑔

be the 2𝑇-periodic extension of 𝐺1(⋅, 𝑠1). Let us assume 𝑡1 > 𝑠1 (the other case would be

analogous). Let 𝑓 be the restriction of 𝑔 to (𝑠1, 𝑠1 + 2𝑇). 𝑓 is absolutely continuous and

satisfies (4.3.7) a. e. in 𝐼 for 𝑡0 = 𝑡1, hence, 𝑓 ≡ 0. This contradicts the fact of 𝐺1 being a

Green’s function, therefore 𝐺1 has constant sign.

Realize now that 𝑥 ≡ 1 satisfies

𝑥′(𝑡) + 𝑎(𝑡)𝑥(−𝑡) + 𝑏(𝑡)𝑥(𝑡) = 𝑎(𝑡) + 𝑏(𝑡), 𝑥(−𝑇) = 𝑥(𝑇).

Hence,∫u�
−u� 𝐺1(𝑡, 𝑠)(𝑎(𝑠)+𝑏(𝑠)) d 𝑠 = 1 for all 𝑡 ∈ 𝐼. Since both𝐺1 and𝑎+𝑏 have constant

sign, they have the same sign. �

The following corollaries are an straightforward application of this result to the cases (𝐷1)
– (𝐷3) respectively.
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Corollary 4.3.9. Assume 𝑎 has constant sign in 𝐼. Under the assumptions of (D1) and Theorem

4.3.5, 𝐺1 has constant sign if

|𝐴(𝑇)| < arccos(𝑘)
2√1 − 𝑘2

.

Furthermore, sign(𝐺1) = sign(𝑎).

Proof. The solutions of (4.2.1) for the case (D1), as seen before, are given by

𝑢(𝑡) = 𝛼𝑒−u�u�(u�) [cos (√1 − 𝑘2𝐴(𝑡)) − 1 + 𝑘
√1 − 𝑘2

sin (√1 − 𝑘2𝐴(𝑡))] .

Using a particular case of the phasor addition formula† –see Appendix A,–

𝑢(𝑡) = 𝛼𝑒−u�u�(u�)√ 2
1 − 𝑘 sin (√1 − 𝑘2𝐴(𝑡) + 𝜃) ,

where 𝜃 ∈ [−𝜋, 𝜋) is the angle such that

sin 𝜃 = √1 − 𝑘
2 and cos 𝜃 = −√1 + 𝑘

2 . (4.3.8)

Observe that this implies that 𝜃 ∈ (u�
2 , 𝜋).

In order for the hypothesis of Proposition 4.3.8 to be satisfied, it is enough and sufficient to

ask for 0��∈𝑢(𝐼) for some 𝛼 ≠ 0. Equivalently, that

√1 − 𝑘2𝐴(𝑡) + 𝜃 ≠ 𝜋𝑛 ∀𝑛 ∈ ℤ ∀𝑡 ∈ 𝐼,

That is,

𝐴(𝑡) ≠ 𝜋𝑛 − 𝜃
√1 − 𝑘2

∀𝑛 ∈ ℤ ∀𝑡 ∈ 𝐼.

Since 𝐴 is odd and injective and 𝜃 ∈ (u�
2 , 𝜋), this is equivalent to

|𝐴(𝑇)| < 𝜋 − 𝜃
√1 − 𝑘2

. (4.3.9)

Now, using the double angle formula for the sine and (4.3.8),

1 − 𝑘
2 = sin2 𝜃 = 1 − cos(2𝜃)

2 , this is, 𝑘 = cos(2𝜃),

which implies, since 2𝜃 ∈ (𝜋, 2𝜋),

𝜃 = 𝜋 − arccos(𝑘)
2 ,

†𝛼 cos 𝛾 + 𝛽 sin 𝛾 = √𝛼2 + 𝛽2 sin(𝛾 + 𝜃), where 𝜃 ∈ [−𝜋, 𝜋) is the angle such that cos 𝜃 = u�
√u�2+u�2

,

sin 𝜃 = u�
√u�2+u�2

.
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wherearccos is defined such that it’s image is [0, 𝜋). Plugging this into inequality (4.3.9) yields

|𝐴(𝑇)| < 𝜎(𝑘) ∶= arccos(𝑘)
2√1 − 𝑘2

, 𝑘 ∈ (−1, 1). (4.3.10)

The sign of the Green’s function is given by Proposition 4.3.8 and sign(𝐺1) = sign(𝑎+𝑏).
Now, we have that |𝑘| < 1 and 𝑎 + 𝑏 = (𝑘 + 1)𝑎 + 𝑏u�. Because of the continuity of 𝐺1 with

respect to the parameters 𝑎 and 𝑏, 𝐺1 has to have the same sign in the case 𝑏0 ≡ 0 – observe

that 𝑏0 does not affect inequality (4.3.10)– so, actually, sign(𝐺1) = sign((𝑘 + 1)𝑎) =
sign(𝑎). �

Remark 4.3.10. In the case 𝑎 is a constant 𝜔 and 𝑘 = 0, 𝐴(𝐼) = [−|𝜔|𝑇, |𝜔|𝑇], and the

condition can be written as |𝜔|𝑇 < u�
4 , which is consistent with Theorem 3.2.8.

Remark 4.3.11. Observe that 𝜎 is strictly decreasing on (−1, 1) and

lim
u�→−1+

𝜎(𝑘) = +∞, lim
u�→1−

𝜎(𝑘) = 1
2.

Corollary 4.3.12. Under the conditions of (D3) and Theorem 4.3.5, 𝐺1 has constant sign in 𝐼 if

|𝐴(𝑇)| < 1
2 .

Proof. This corollary is a direct consequence of equation (4.2.3), Proposition 4.3.8 and Theorem

4.3.5. Observe that the result is consistent with 𝜎(1−) = 1
2 . �

In order to prove the next corollary, we need the following «hyperbolic version» of the

phasor addition formula. It’s proof can be done without difficulty.

Lemma 4.3.13. Let 𝛼, 𝛽, 𝛾 ∈ ℝ, then

𝛼 cosh 𝛾 + 𝛽 sinh 𝛾 = √|𝛼2 − 𝛽2|

⎧{{{{{{{
⎨{{{{{{{⎩

cosh (1
2 ln ∣u�+u�

u�−u� ∣ + 𝛾) if 𝛼 > |𝛽|,
− cosh (1

2 ln ∣u�+u�
u�−u� ∣ + 𝛾) if − 𝛼 > |𝛽|,

sinh (1
2 ln ∣u�+u�

u�−u� ∣ + 𝛾) if 𝛽 > |𝛼|,
− sinh (1

2 ln ∣u�+u�
u�−u� ∣ + 𝛾) if − 𝛽 > |𝛼|,

𝛼 𝑒u� if 𝛼 = 𝛽,
𝛼 𝑒−u� if 𝛼 = −𝛽.

Corollary 4.3.14. Assume 𝑎 has constant sign in 𝐼. Under the assumptions of (D2) and Theorem

4.3.5, 𝐺1 has constant sign if 𝑘 < −1 or

|𝐴(𝑇)| < −ln(𝑘 − √𝑘2 − 1)
2√𝑘2 − 1

.

Furthermore, sign(𝐺1) = sign(𝑘 𝑎).

Proof. The solutions of (4.2.1) for the case (D2), as seen before, are given by

𝑢(𝑡) = 𝛼𝑒−u�u�(u�) [cosh (√𝑘2 − 1𝐴(𝑡)) − 1 + 𝑘
√𝑘2 − 1

sinh (√𝑘2 − 1𝐴(𝑡))] .
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If 𝑘 > 1, then 1 < 1+u�
√u�2−1

, so, using Lemma 4.3.13,

𝑢(𝑡) = −𝛼𝑒−u�u�(u�)√ 2𝑘
𝑘 − 1 sinh (1

2 ln ∣𝑘 − √𝑘2 − 1∣ + √𝑘2 − 1𝐴(𝑡)) ,

In order for the hypothesis of Proposition 4.3.8 to be satisfied, it is enough and sufficient to ask

that 0��∈𝑢(𝐼) for some 𝛼 ≠ 0. Equivalently, that

1
2 ln(𝑘 − √𝑘2 − 1) + √𝑘2 − 1𝐴(𝑡) ≠ 0 ∀𝑡 ∈ 𝐼,

That is,

𝐴(𝑡) ≠ −ln(𝑘 − √𝑘2 − 1)
2√𝑘2 − 1

∀𝑡 ∈ 𝐼.

Since 𝐴 is odd and injective, this is equivalent to

|𝐴(𝑇)| < 𝜎(𝑘) ∶= −ln(𝑘 − √𝑘2 − 1)
2√𝑘2 − 1

, 𝑘 > 1.

Now, if 𝑘 < −1, then ∣ 1+u�
√u�2−1

∣ < 1, so using Lemma 4.3.13,

𝑢(𝑡) = 𝛼𝑒−u�u�(u�)√ 2𝑘
𝑘 − 1 cosh (1

2 ln ∣𝑘 − √𝑘2 − 1∣ + √𝑘2 − 1𝐴(𝑡)) ≠ 0,

for all 𝑡 ∈ 𝐼, 𝛼 ≠ 0, so the hypothesis of Proposition 4.3.8 are satisfied.

The sign of the Green’s function is given by Proposition 4.3.8 and sign(𝐺1) = sign(𝑎+𝑏).
Now, we have that |𝑘| > 1 and 𝑎 + 𝑏 = (𝑘−1 + 1)𝑏u� + 𝑏u�. Because of the continuity of 𝐺1
with respect to the parameters 𝑎 and 𝑏, 𝐺1 has to have the same sign in the case 𝑏0 ≡ 0 so,

actually, sign(𝐺1) = sign((𝑘−1 + 1)𝑏u�) = sign(𝑏u�) = sign(𝑘 𝑎). �

Remark 4.3.15. If we consider 𝜎 defined piecewise as in Corollaries 4.3.9 and 4.3.14 and con-

tinuously continued through 1/2, we get

𝜎(𝑘) ∶=

⎧{{
⎨{{⎩

arccos(u�)
2√1−u�2

if 𝑘 ∈ (−1, 1),
1
2 if 𝑘 = 1,
− ln(u�−√u�2−1)

2√u�2−1
if 𝑘 > 1.

This function is not only continuous (it is defined thus), but also analytic. In order to see this

it is enough to consider the extended definition of the logarithm and the square root to the

complex numbers. Remember that √−1 ∶= 𝑖 and that the principal branch of the logarithm is

defined as ln0(𝑧) = ln |𝑧| + 𝑖𝜃 where 𝜃 ∈ [−𝜋, 𝜋) and 𝑧 = |𝑧|𝑒u�u� for all 𝑧 ∈ ℂ\{0}. Clearly,
ln0 |(0,+∞) = ln.

Now, for |𝑘| < 1, ln0(𝑘 − √1 − 𝑘2𝑖) = 𝑖𝜃 with 𝜃 ∈ [−𝜋, 𝜋) such that cos 𝜃 = 𝑘,
sin 𝜃 = −√1 − 𝑘2, that is, 𝜃 ∈ [−𝜋, 0]. Hence, 𝑖 ln0(𝑘 − √1 − 𝑘2𝑖) = −𝜃 ∈ [0, 𝜋]. Since
cos(−𝜃) = 𝑘, sin(−𝜃) = √1 − 𝑘2, it is clear that

arccos(𝑘) = −𝜃 = 𝑖 ln0(𝑘 − √1 − 𝑘2𝑖).
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We thus extend arccos to ℂ by

arccos(𝑧) ∶= 𝑖 ln0(𝑧 − √1 − 𝑧2𝑖),

which is clearly an analytic function. So, if 𝑘 > 1,

𝜎(𝑘) = −ln(𝑘 − √𝑘2 − 1)
2√𝑘2 − 1

= −
ln0(𝑘 − 𝑖√1 − 𝑘2)

2𝑖√1 − 𝑘2

=
𝑖 ln0(𝑘 − 𝑖√1 − 𝑘2)

2√1 − 𝑘2
= arccos(𝑘)

2√1 − 𝑘2
.

𝜎 is positive, strictly decreasing and

lim
u�→−1+

𝜎(𝑘) = +∞, lim
u�→+∞

𝜎(𝑘) = 0.

In a similar way to Corollaries 4.3.9, 4.3.12 and 4.3.14, we can prove results not assuming

𝑎 to be a constant sign function. The result is the following.

Corollary 4.3.16. Under the assumptions of Theorem 4.3.5 and conditions (D1), (D2) or (D3)

(let 𝑘 be the constant involved in such conditions), 𝐺1 has constant sign if max 𝐴(𝐼) < 𝜎(𝑘).

4.4 The cases (D4) and (D5)

Consider the following problem derived from the nonhomogeneous problem (4.3.1).

(𝑥′
u�

𝑥′
u�
) = (𝑎u� − 𝑏u� −𝑎u� − 𝑏u�

𝑎u� − 𝑏u� −𝑎u� − 𝑏u�
) (𝑥u�

𝑥u�
) + (ℎu�

ℎu�
) . (4.4.1)

The following theorems tell us what happens when we impose the boundary conditions.

Theorem 4.4.1. If condition (D4) holds, then problem (4.3.1) has solution if and only if

∫u�
0

𝑒u�u�(u�)ℎu�(𝑠) d 𝑠 = 0,

and in that case the solutions of (4.3.1) are given by

𝑢u�(𝑡) = 𝑒−u�u�(u�) [𝑐 + ∫u�
0

(𝑒u�u�(u�)ℎ(𝑠) + 2𝑎u�(𝑠) ∫u�
0

𝑒u�u�(u�)ℎu�(𝑟) d 𝑟) d 𝑠] for 𝑐 ∈ ℝ. (4.4.2)

Proof. We know that any solution of problem (4.3.1) has to satisfy (4.4.1). In the case (D4), the

matrix in (4.4.1) is lower triangular

(𝑥′
u�

𝑥′
u�
) = (−𝑏u� 0

2𝑎u� −𝑏u�
) (𝑥u�

𝑥u�
) + (ℎu�

ℎu�
) , (4.4.3)

so, the solutions of (4.4.3) are given by

𝑥u�(𝑡) = 𝑒−u�u�(u�) [ ̃𝑐 + ∫u�
0

𝑒u�u�(u�)ℎu�(𝑠) d 𝑠] ,
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𝑥u�(𝑡) = 𝑒−u�u�(u�) [𝑐 + ∫u�
0

(𝑒u�u�(u�)ℎu�(𝑠) + 2𝑎u�(𝑠) [ ̃𝑐 + ∫u�
0

𝑒u�u�(u�)ℎu�(𝑟) d 𝑟]) d 𝑠] ,

where 𝑐, ̃𝑐 ∈ ℝ.

𝑥u� is even independently of the value of 𝑐. Nevertheless, 𝑥u� is odd only when ̃𝑐 = 0. Hence,
a solution of (4.3.1), if it exists, it has the form (4.4.2).

To show the other implication it is enough to check that 𝑢u� is a solution of the problem

(4.3.1).

𝑢′
u�(𝑡) = − 𝑏u�(𝑡)𝑒−u�u�(u�) [𝑐 + ∫u�

0
(𝑒u�u�(u�)ℎ(𝑠) + 2𝑎u�(𝑠) ∫u�

0
𝑒u�u�(u�)ℎu�(𝑟) d 𝑟) d 𝑠]

+ 𝑒−u�u�(u�) (𝑒u�u�(u�)ℎ(𝑡) + 2𝑎u�(𝑡) ∫u�
0

𝑒u�u�(u�)ℎu�(𝑟) d 𝑟)

=ℎ(𝑡) − 𝑏u�(𝑡)𝑢(𝑡) + 2𝑎u�(𝑡)𝑒−u�u�(u�) ∫u�
0

𝑒u�u�(u�)ℎu�(𝑟) d 𝑟.

Now,

𝑎u�(𝑡)(𝑢u�(−𝑡) − 𝑢u�(𝑡)) + 2𝑎u�(𝑡)𝑒−u�u�(u�) ∫u�
0

𝑒u�u�(u�)ℎu�(𝑟) d 𝑟

=𝑎u�(𝑡)𝑒−u�u�(u�) [𝑐 − ∫u�
0

(𝑒u�u�(u�)ℎ(−𝑠) − 2𝑎u�(𝑠) ∫u�
0

𝑒u�u�(u�)ℎu�(𝑟) d 𝑟) d 𝑠]

− 𝑎u�(𝑡)𝑒−u�u�(u�) [𝑐 + ∫u�
0

(𝑒u�u�(u�)ℎ(𝑠) + 2𝑎u�(𝑠) ∫u�
0

𝑒u�u�(u�)ℎu�(𝑟) d 𝑟) d 𝑠]

+ 2𝑎u�(𝑡)𝑒−u�u�(u�) ∫u�
0

𝑒u�u�(u�)ℎu�(𝑟) d 𝑟

= − 2𝑎u�(𝑡)𝑒−u�u�(u�) ∫u�
0

𝑒u�u�(u�)ℎu�(𝑟) d 𝑠 + 2𝑎u�(𝑡)𝑒−u�u�(u�) ∫u�
0

𝑒u�u�(u�)ℎu�(𝑟) d 𝑟 = 0.

Hence,

𝑢′
u�(𝑡) + 𝑎u�(𝑡)𝑢u�(−𝑡) + (−𝑎u�(𝑡) + 𝑏u�(𝑡))𝑢u�(𝑡) = ℎ(𝑡), 𝑎. 𝑒.𝑡 ∈ 𝐼.

The boundary condition 𝑢u�(−𝑇) − 𝑢u�(𝑇) = 0 is equivalent to (𝑢u�)u�(𝑇) = 0, this is,

∫u�
0

𝑒u�u�(u�)ℎu�(𝑠) d 𝑠 = 0

and the result is concluded. �

Theorem 4.4.2. If condition (D5) holds, then problem (4.3.1) has solution if and only if

∫u�
0

𝑒u�(u�)−u�(u�)ℎu�(𝑠) d 𝑠 = 0, (4.4.4)

and in that case the solutions of (4.3.1) are given by

𝑢u�(𝑡) = 𝑒u�(u�)−u�(u�) ∫u�
0

𝑒u�(u�)−u�(u�)ℎu�(𝑠) d 𝑠+𝑒−u�(u�)−u�(u�) [𝑐 + ∫u�
0

𝑒u�(u�)+u�(u�)ℎu�(𝑠) d 𝑠] (4.4.5)

for every 𝑐 ∈ ℝ.

Proof. In the case (D5), 𝑏u� = 𝑏 and 𝑎u� = 𝑎. Also, the matrix in (4.4.1) is diagonal

(𝑥′
u�

𝑥′
u�
) = (𝑎u� − 𝑏u� 0

0 −𝑎u� − 𝑏u�
) (𝑥u�

𝑥u�
) + (ℎu�

ℎu�
) . (4.4.6)

and the solutions of (4.4.6) are given by
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𝑥u�(𝑡) = 𝑒u�(u�)−u�(u�) [ ̃𝑐 + ∫u�
0

𝑒u�(u�)−u�(u�)ℎu�(𝑠) d 𝑠] ,

𝑥u�(𝑡) = 𝑒−u�(u�)−u�(u�) [𝑐 + ∫u�
0

𝑒u�(u�)+u�(u�)ℎu�(𝑠) d 𝑠] ,

where 𝑐, ̃𝑐 ∈ ℝ. Since 𝑎 and 𝑏 are odd, 𝐴 and 𝐵 are even. So, 𝑥u� is even independently of

the value of 𝑐. Nevertheless, 𝑥u� is odd only when ̃𝑐 = 0. In such a case, since we need, as in

Theorem 4.4.1, that 𝑥u�(𝑇) = 0, we get condition (4.4.4), which allows us to deduce the first

implication of the Theorem.

Any solution 𝑢u� of (4.3.1) has the expression (4.4.5).

To show the second implication, it is enough to check that 𝑢 is a solution of the problem

(4.3.1).

𝑢′
u�(𝑡) =(𝑎(𝑡) − 𝑏(𝑡))𝑒u�(u�)−u�(u�) ∫u�

0
𝑒u�(u�)−u�(u�)ℎu�(𝑠) d 𝑠

− (𝑎(𝑡) + 𝑏(𝑡))𝑒−u�(u�)−u�(u�) [𝑐 + ∫u�
0

𝑒u�(u�)+u�(u�)ℎu�(𝑠) d 𝑠] + ℎ(𝑡).

Now,

𝑎(𝑡)𝑢u�(−𝑡) + 𝑏(𝑡)𝑢u�(𝑡)
=𝑎(𝑡) (−𝑒u�(u�)−u�(u�) ∫u�

0
𝑒u�(u�)−u�(u�)ℎu�(𝑠) d 𝑠 + 𝑒−u�(u�)−u�(u�) [𝑐 + ∫u�

0
𝑒u�(u�)+u�(u�)ℎu�(𝑠) d 𝑠])

+ 𝑏(𝑡) (𝑒u�(u�)−u�(u�) ∫u�
0

𝑒u�(u�)−u�(u�)ℎu�(𝑠) d 𝑠 + 𝑒−u�(u�)−u�(u�) [𝑐 + ∫u�
0

𝑒u�(u�)+u�(u�)ℎu�(𝑠) d 𝑠])

= − (𝑎(𝑡) − 𝑏(𝑡))𝑒u�(u�)−u�(u�) ∫u�
0

𝑒u�(u�)−u�(u�)ℎu�(𝑠) d 𝑠

+ (𝑎(𝑡) + 𝑏(𝑡))𝑒−u�(u�)−u�(u�) [𝑐 + ∫u�
0

𝑒u�(u�)+u�(u�)ℎu�(𝑠) d 𝑠] .

So clearly,

𝑢′
u�(𝑡) + 𝑎(𝑡)𝑢u�(−𝑡) + 𝑏(𝑡)𝑢u�(𝑡) = ℎ(𝑡) for a.e. 𝑡 ∈ 𝐼.

which ends the proof. �

4.5 The other cases

When we are not on the cases (D1)-(D5), since the fundamental matrix of 𝑀 is not given by its

exponential matrix, it is more difficult to precise when problem (4.3.1) has a solution. Here we

present some partial results.

Consider the following ordinary differential equation

𝑥′(𝑡) + [𝑎(𝑡) + 𝑏(𝑡)]𝑥(𝑡) = ℎ(𝑡), 𝑥(−𝑇) = 𝑥(𝑇). (4.5.1)

The following lemma gives us the explicit Green’s function for this problem. Let 𝜐 = 𝑎 + 𝑏.

Lemma 4.5.1. Let ℎ, 𝑎, 𝑏 in problem (4.5.1) be in L1(𝐼) and assume ∫u�
−u� 𝜐(𝑡) d 𝑡 ≠ 0. Then

problem (4.5.1) has a unique solution given by

𝑢(𝑡) = ∫u�
−u�

𝐺3(𝑡, 𝑠)ℎ(𝑡) d 𝑠,
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where

𝐺3(𝑡, 𝑠) =
⎧{
⎨{⎩

𝜏 𝑒∫u�
u� u�(u�) d u�, 𝑠 ≤ 𝑡,

(𝜏 − 1)𝑒∫u�
u� u�(u�) d u�, 𝑠 > 𝑡,

and 𝜏 = 1
1 − 𝑒− ∫u�

−u� u�(u�) d u�
. (4.5.2)

Proof.

𝜕𝐺3

𝜕𝑡
(𝑡, 𝑠) =

⎧{
⎨{⎩

−𝜏 𝜐(𝑡) 𝑒∫u�
u� u�(u�) d u�, 𝑠 ≤ 𝑡,

−(𝜏 − 1)𝜐(𝑡)𝑒∫u�
u� u�(u�) d u�, 𝑠 > 𝑡,

= −𝜐(𝑡)𝐺3(𝑡, 𝑠).

Therefore,
𝜕𝐺3

𝜕𝑡
(𝑡, 𝑠) + 𝜐(𝑡)𝐺3(𝑡, 𝑠) = 0, 𝑠 ≠ 𝑡.

Hence,

𝑢′(𝑡) + 𝜐(𝑡)𝑢(𝑡)

= d
d 𝑡 ∫u�

−u�
𝐺3(𝑡, 𝑠)ℎ(𝑠) d 𝑠 + d

d 𝑡 ∫u�
u�

𝐺3(𝑡, 𝑠)ℎ(𝑠) d 𝑠 + 𝜐(𝑡) ∫u�
−u�

𝐺3(𝑡, 𝑠)ℎ(𝑠) d 𝑠

=[𝐺3(𝑡, 𝑡−) − 𝐺3(𝑡, 𝑡+)]ℎ(𝑡) + ∫u�
−u�

[
𝜕𝐺3

𝜕𝑡
(𝑡, 𝑠) + 𝜐(𝑡)𝐺3(𝑡, 𝑠)] ℎ(𝑡) d 𝑠

=ℎ(𝑡) a. e. 𝑡 ∈ 𝐼.

The boundary conditions are also satisfied.

𝑢(𝑇) − 𝑢(−𝑇) = ∫u�
−u�

[𝜏 𝑒∫u�
u� u�(u�) d u� − (𝜏 − 1)𝑒∫u�

−u� u�(u�) d u�] ℎ(𝑠) d 𝑠

= ∫u�
−u�

[ 𝑒∫u�
u� u�(u�) d u�

1 − 𝑒− ∫u�
−u� u�(u�) d u�

− 𝑒− ∫u�
−u� u�(u�) d u� 𝑒∫u�

−u� u�(u�) d u�

1 − 𝑒− ∫u�
−u� u�(u�) d u�

] ℎ(𝑠) d 𝑠

= ∫u�
−u�

[ 𝑒∫u�
u� u�(u�) d u�

1 − 𝑒− ∫u�
−u� u�(u�) d u�

− 𝑒∫u�
u� u�(u�) d u�

1 − 𝑒− ∫u�
−u� u�(u�) d u�

] ℎ(𝑠) d 𝑠 = 0.

�

Lemma 4.5.2.

|𝐺3(𝑡, 𝑠)| ≤ 𝐹(𝜐) ∶= 𝑒‖u�‖1

|𝑒‖u�+‖1 − 𝑒‖u�−‖1 |
. (4.5.3)

Proof. Observe that

𝜏 = 1
1 − 𝑒‖u�−‖1−‖u�+‖1

= 𝑒‖u�+‖1

𝑒‖u�+‖1 − 𝑒‖u�−‖1
.

Hence,

𝜏 − 1 = 𝑒‖u�−‖1

𝑒‖u�+‖1 − 𝑒‖u�−‖1
.

On the other hand,

𝑒∫u�
u� u�(u�) d u� ≤

⎧{
⎨{⎩

𝑒‖u�−‖1, 𝑠 ≤ 𝑡,
𝑒‖u�+‖1, 𝑠 > 𝑡,

which ends the proof. �
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The next result proves the existence and uniqueness of solution of (4.3.1) when 𝜐 is ‘suffi-

ciently small’.

Theorem 4.5.3. Let ℎ, 𝑎, 𝑏 in problem (4.3.1) be in L1(𝐼) and assume ∫u�
−u� 𝜐(𝑡) d 𝑡 ≠ 0. Let

𝑊 ∶= {(2𝑇)
1
u� (‖𝑎‖u�∗ + ‖𝑏‖u�∗)}u�∈[1,+∞] where 𝑝−1 + (𝑝∗)−1 = 1. If

𝐹(𝜐)‖𝑎‖1(inf 𝑊) < 1,

where 𝐹(𝜐) is defined as in (4.5.3), then problem (4.3.1) has a unique solution.

Proof. With some manipulation we get

ℎ(𝑡) =𝑥′(𝑡) + 𝑎(𝑡) (∫−u�
u�

𝑥′(𝑠) d 𝑠 + 𝑥(𝑡)) + 𝑏(𝑡)𝑥(𝑡)

=𝑥′(𝑡) + 𝜐(𝑡)𝑥(𝑡) + 𝑎(𝑡) ∫−u�
u�

(ℎ(𝑠) − 𝑎(𝑠)𝑥(−𝑠) − 𝑏(𝑠)𝑥(𝑠)) d 𝑠.

Hence,

𝑥′(𝑡) + 𝜐(𝑡)𝑥(𝑡) = 𝑎(𝑡) ∫−u�
u�

(𝑎(𝑠)𝑥(−𝑠) + 𝑏(𝑠)𝑥(𝑠)) d 𝑠 + 𝑎(𝑡) ∫u�
−u�

ℎ(𝑠) d 𝑠 + ℎ(𝑡).

Using 𝐺3 defined as in (4.5.2) and Lemma 4.5.1, it is clear that

𝑥(𝑡) = ∫u�
−u�

𝐺3(𝑡, 𝑠)𝑎(𝑠) ∫−u�
u�

(𝑎(𝑟)𝑥(−𝑟) + 𝑏(𝑟)𝑥(𝑟)) d 𝑟 d 𝑠

+ ∫u�
−u�

𝐺3(𝑡, 𝑠) [𝑎(𝑠) ∫u�
−u�

ℎ(𝑟) d 𝑟 + ℎ(𝑠)] d 𝑠,

this is, 𝑥 is a fixed point of an operator of the form 𝐻𝑥(𝑡) + 𝛽(𝑡), so, by Banach contraction

Theorem, it is enough to prove that ‖𝐻‖ < 1 for some compatible norm of 𝐻.

Using Fubini’s Theorem,

𝐻𝑥(𝑡) = − ∫u�
−u�

𝜌(𝑡, 𝑟)(𝑎(𝑟)𝑥(−𝑟) + 𝑏(𝑟)𝑥(𝑟)) d 𝑟,

where 𝜌(𝑡, 𝑟) = [∫u�
|u�| − ∫−|u�|

−u� ] 𝐺3(𝑡, 𝑠)𝑎(𝑠) d 𝑠.

If ∫u�
−u� 𝜐(𝑡) d 𝑡 = ‖𝜐+‖1 − ‖𝜐−‖1 > 0 then 𝐺3 is positive and

𝜌(𝑡, 𝑟) ≤ ∫u�
−u�

𝐺3(𝑡, 𝑠)|𝑎(𝑠)| d 𝑠 ≤ 𝐹(𝜐)‖𝑎‖1.

We have the same estimate for −𝜌(𝑡, 𝑟).
If ∫u�

−u� 𝜐(𝑡) d 𝑡 < 0 we proceed with an analogous argument and arrive to the conclusion

that 𝐺3 is negative and |𝜌(𝑡, 𝑠)| < 𝐹(𝜐)‖𝑎‖1.

Hence,

|𝐻𝑥(𝑡)| ≤𝐹(𝜐)‖𝑎‖1 ∫u�
−u�

|𝑎(𝑟)𝑥(−𝑟) + 𝑏(𝑟)𝑥(𝑟)| d 𝑟
=𝐹(𝜐)‖𝑎‖1‖𝑎(𝑟)𝑥(−𝑟) + 𝑏(𝑟)𝑥(𝑟)‖1.

Thus, it is clear that

‖𝐻𝑥‖u� ≤ (2𝑇)
1
u� 𝐹(𝜐)‖𝑎‖1(‖𝑎‖u�∗ + ‖𝑏‖u�∗)‖𝑥‖u�, 𝑝 ∈ [1, ∞],

which ends the proof. �
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Remark 4.5.4. In the hypothesis of Theorem 4.5.3, realize that 𝐹(𝜐) ≥ 1.

The following result will let us obtain some information on the sign of the solution of prob-

lem (4.3.1). In order to prove it, wewill use a Theorem fromChapter 8 –Theorem 8.4.11–which

is demonstrated independently.

Consider an interval [𝑤, 𝑑] ⊂ 𝐼, the cone

𝐾 = {𝑢 ∈ u�(𝐼) ∶ min
u�∈[u�,u�]

𝑢(𝑡) ≥ 𝑐‖𝑢‖},

and the following problem

𝑥′(𝑡) = ℎ(𝑡, 𝑥(𝑡), 𝑥(−𝑡)), 𝑡 ∈ 𝐼, 𝑥(−𝑇) = 𝑥(𝑇), (4.5.4)

where ℎ is an L1-Carathéodory function. Consider the following conditions.

(I1
u�,u�) There exist 𝜌 > 0 and 𝜔 ∈ (0, u�

4u� ] such that 𝑓 −u�,u�
u� < 𝜔 where

𝑓 −u�,u�
u� ∶= sup {ℎ(𝑡, 𝑢, 𝑣) + 𝜔𝑣

𝜌 ∶ (𝑡, 𝑢, 𝑣) ∈ [−𝑇, 𝑇] × [−𝜌, 𝜌] × [−𝜌, 𝜌]} .

(I0
u�,u�) There exists 𝜌 > 0 such that

𝑓 u�
(u�,u�/u�) ⋅ inf

u�∈[u�,u�]
∫u�

u�
𝐺(𝑡, 𝑠) 𝑑𝑠 > 1,

where

𝑓 u�
(u�,u�/u�) = inf {ℎ(𝑡, 𝑢, 𝑣) + 𝜔𝑣

𝜌 ∶ (𝑡, 𝑢, 𝑣) ∈ [𝑤, 𝑑] × [𝜌, 𝜌/𝑐] × [−𝜌/𝑐, 𝜌/𝑐]} .

Theorem 4.5.5 (Part of Theorem 8.4.11). Let 𝜔 ∈ (0, u�
2 𝑇]. Let [𝑤, 𝑑] ⊂ 𝐼 such that 𝑤 =

𝑇 − 𝑑 ∈ (max{0, 𝑇 − u�
4u�}, u�

2 ). Let

𝑐 = [1 − tan(𝜔𝑑)][1 − tan(𝜔𝑤)]
[1 + tan(𝜔𝑑)][1 + tan(𝜔𝑤)]. (4.5.5)

Problem (4.5.4) has at least one nonzero solution in 𝐾 if either of the following conditions

hold.

(𝑆1) There exist 𝜌1, 𝜌2 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 such that (I0
u�1,u�) and (I1

u�2,u�) hold.

(𝑆2) There exist 𝜌1, 𝜌2 ∈ (0, ∞) with 𝜌1 < 𝜌2 such that (I1
u�1,u�) and (I0

u�2,u�) hold.

Theorem 4.5.6. Let ℎ ∈ L∞(𝐼), 𝑎, 𝑏 ∈ L1(𝐼) be such that 0 < |𝑏(𝑡)| < 𝑎(𝑡) < 𝜔 < u�
2 𝑇

for a. e. 𝑡 ∈ 𝐼 and inf ℎ > 0. Then there exists a solution 𝑢 of (4.3.1) such that, 𝑢 > 0 in

(max{0, 𝑇 − u�
4u�}, min{𝑇, u�

4u�}).
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Proof. Problem (4.3.1) can be rewritten as

𝑥′(𝑡) = ℎ(𝑡) − 𝑏(𝑡) 𝑥(𝑡) − 𝑎(𝑡) 𝑥(−𝑡), 𝑡 ∈ 𝐼, 𝑥(−𝑇) = 𝑥(𝑇).

With this formulation, we can apply Theorem 4.5.5. Since 0 < 𝑎(𝑡) − |𝑏(𝑡)| < 𝜔 for a. e.

𝑡 ∈ 𝐼, take 𝜌2 ∈ ℝ+ large enough such that ℎ(𝑡) < (𝑎(𝑡) − |𝑏(𝑡)|)𝜌2 for a. e. 𝑡 ∈ 𝐼. Hence,
ℎ(𝑡) < (𝑎(𝑡) − 𝜔)𝜌2 − |𝑏(𝑡)|𝜌2 + 𝜌2𝜔 for a. e. 𝑡 ∈ 𝐼, in particular,

ℎ(𝑡) < (𝑎(𝑡) − 𝜔)𝑣 − |𝑏(𝑡)|𝑢 + 𝜌2𝜔 ≤ (𝑎(𝑡) − 𝜔)𝑣 + 𝑏(𝑡) 𝑢 + 𝜌2𝜔

for a. e. 𝑡 ∈ 𝐼; 𝑢, 𝑣 ∈ [−𝜌2, 𝜌2]. Therefore,

sup {ℎ(𝑡) − 𝑏(𝑡)𝑢 − 𝑎(𝑡)𝑣 + 𝜔𝑣
𝜌2

∶ (𝑡, 𝑣) ∈ [−𝑇, 𝑇] × [−𝜌2, 𝜌2]} < 𝜔,

and thus, (I1
u�2,u�) is satisfied.

Let [𝑤, 𝑑] ⊂ 𝐼 be such that [𝑤, 𝑑] ⊂ (𝑇 − u�
4u� , u�

4u�). Let 𝑐 be defined as in (4.5.5) and

𝜖 = 𝜔 ∫u�
u� 𝐺(𝑡, 𝑠) d 𝑠.

Choose 𝛿 ∈ (0, 1) such that ℎ(𝑡) > [(1 + u�
u� ) 𝜔 − (𝑎(𝑡) − |𝑏(𝑡)|)] 𝜌2𝛿 for a. e. 𝑡 ∈ 𝐼

and define 𝜌1 ∶= 𝛿𝑐𝜌2. Therefore, ℎ > [(𝑎(𝑡) − 𝜔)𝑣 + 𝑏(𝑡) 𝑢(𝑡)] u�
u� 𝜌1 for a. e. 𝑡 ∈ 𝐼,

𝑢 ∈ [𝜌1, u�1
u� ] and 𝑣 ∈ [−u�1

u� , u�1
u� ]. Thus,

inf {ℎ(𝑡) − 𝑏(𝑡)𝑢 − 𝑎(𝑡)𝑣 + 𝜔𝑣
𝜌1

∶ (𝑡, 𝑣) ∈ [𝑤, 𝑑] × [−𝜌1/𝑐, 𝜌1/𝑐]} > 𝜔
𝜖 ,

and hence, (I0
u�1,u�) is satisfied.

Finally, (𝑆1) in Theorem 4.5.5 is satisfied and we get the desired result. �

Remark 4.5.7. In the hypothesis of Theorem 4.5.6, if𝜔 < u�
4 𝑇, we can take [𝑤, 𝑑] = [−𝑇, 𝑇]

and continuewith the proof of Theorem 4.5.6 as done above. This guarantees that 𝑢 is positive

in [−𝑇, 𝑇].





5. General linear equations

In this chapter we study differential problems in which the reflection operator and the Hilbert

transformare involved. We reduce these problems to ordinary differential equations in order to

solve them. Also, we describe a general method for obtaining the Green’s function of reducible

functional differential equations and illustrate it with the case of homogeneous boundary value

problems with reflection and several specific examples.

It is important to point out that these transformations, necessary to reduce the problem to

an ordinary one, are of a purely algebraic nature. It is, in this sense, similar to the algebraic

analysis theory which, through the study of Ore algebras and modules, obtains important in-

formation about some functional problems, including explicit solutions [21,50]. Nevertheless,

the algebraic structures we deal with here are somewhat different, e. g., they are not in general

Ore algebras †

Among the reducible functional differential equations, those with reflection have gathered

great interest, some of it due to their applications to supersymmetric quantummechanics [73,

147,153] or to other areas of analysis like topological methods [34].

In this chapter, following [44] we put special emphasis in two operators appearing in the

equations: the reflection operator and the Hilbert transform. Both of them have exceptional

algebraic properties which make them fit for our approach.

5.1 Differential operators with reflection

In this Section we will study a particular family of operators, those that are combinations of

the differential operator 𝐷, the pullback operator of the reflection 𝜑(𝑡) = −𝑡, denoted by

𝜑∗(𝑓 )(𝑡) = 𝑓 (−𝑡), and the identity operator, Id. In order to freely apply the operator 𝐷
without worrying too much about it’s domain of definition, we will consider that 𝐷 acts on

the set of functions locally of bounded variation on ℝ, BVloc(ℝ)‡. Given a compact interval

𝐾 , the space BV(𝐾) is defined as the set {𝑓 ∶ 𝐼 → ℝ | 𝑉(𝑓 ) < +∞} where 𝑉(𝑓 ) =
sup

u�∈u�u�

∑u�u�−1
u�=0 |𝑓 (𝑥u�+1) − 𝑓 (𝑥u�)|, 𝑃 = {𝑥0, … , 𝑥u�u�

}, min 𝐾 = 𝑥0 < 𝑥1 < ⋯ < 𝑥u�u�−1 < 𝑥u�u�
=

max 𝐾 and u�u� is the set of partitions of 𝐾 . BVloc(ℝ) is the set

{𝑓 ∶ ℝ → ℝ | 𝑓 |u� ∈ BV(𝐾), for all 𝐾 ⊂ ℝ compact}.

It is well known that any function locally of bounded variation 𝑓 ∈ BVloc(ℝ) can be ex-

pressed as

𝑓 (𝑥) = 𝑓 (𝑥0) + ∫u�
u�0

𝑔(𝑦) d 𝑦 + ℎ(𝑥),

†We refer the reader to [118, 149–151] for an algebraic approach to the abstract theory of boundary value

problems and its applications to symbolic computation.
‡Since wewill be working withℝ as a domain throughout this chapter, it will be in our interest to take the local

versions of the classical function spaces. By local version we mean that, if we restrict the function to a compact

set, the restriction belongs to the classical space defined with that compact set as domain for its functions.
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for any 𝑥0 ∈ ℝ, where 𝑔 ∈ L1(ℝ), and ℎ is the function which is constant except for a count-

able number of discontinuities (cf. [37,116]). This implies that the distributional derivative (we

will call it weak derivative as shorthand) of 𝑓 is

𝑓 ′ = 𝑔 + ∑
u�∈ℕ

ℎu�𝛿u�u�
, (5.1.1)

where 𝛿u� is the Dirac distribution at 𝑥, the 𝑥u� are the points at which ℎ has discontinuities and

ℎu� is the magnitude of the discontinuity at 𝑥u�. In this way, we will define 𝐷 𝑓 ∶= 𝑔 (we will

restate this definition in a more general way further on).

As we did in Section 2.2, we now consider the real abelian group ℝ[𝐷, 𝜑∗] of generators

{𝐷u�, 𝜑∗𝐷u�}∞
u�=0. If we take the usual composition for operators in ℝ[𝐷, 𝜑∗], we observe that

𝐷𝜑∗ = −𝜑∗𝐷, so composition is closed in ℝ[𝐷, 𝜑∗], which makes it a non commutative

algebra. In general, 𝐷u�𝜑∗ = (−1)u�𝜑∗𝐷u� for 𝑘 = 0, 1, …
The elements of ℝ[𝐷, 𝜑∗] are of the form

𝐿 = ∑
u�

𝑎u�𝜑∗𝐷u� + ∑
u�

𝑏u�𝐷u� ∈ ℝ[𝐷, 𝜑∗]. (5.1.2)

For convenience, we consider the sums on 𝑖 and 𝑗 such that 𝑖, 𝑗 ∈ {0, 1, … }, but taking into

account that the real coefficients 𝑎u�, 𝑏u� are zero for big enough indices – that is, we are dealing

with finite sums.

Despite the non commutativity of the composition in ℝ[𝐷, 𝜑∗] there are interesting rela-

tions in this algebra.

First, notice that ℝ[𝐷, 𝜑∗] is not a unique factorization domain. Take a polynomial 𝑃 =
𝐷2 + 𝛽𝐷 + 𝛼 where 𝛼, 𝛽 ∈ ℝ, and define the following operators.

If 𝛽2 − 4𝛼 ≥ 0,

𝐿1 ∶= 𝐷 + 1
2 (𝛽 − √𝛽2 − 4𝛼) ,

𝑅1 ∶= 𝐷 + 1
2 (𝛽 + √𝛽2 − 4𝛼) ,

𝐿2 ∶= 𝜑∗𝐷 − √2𝐷 + 1
2 (𝛽 − √𝛽2 − 4𝛼) 𝜑∗ +

(−𝛽 + √𝛽2 − 4𝛼)

√2
,

𝑅2 ∶= 𝜑∗𝐷 − √2𝐷 − 1
2 (𝛽 + √𝛽2 − 4𝛼) 𝜑∗ −

(𝛽 + √𝛽2 − 4𝛼)

√2
,

𝐿3 ∶= 𝜑∗𝐷 − √2𝐷 + 1
2 (𝛽 + √𝛽2 − 4𝛼) 𝜑∗ −

(𝛽 + √𝛽2 − 4𝛼)

√2
,

𝑅3 ∶= 𝜑∗𝐷 − √2𝐷 + 1
2 (−𝛽 + √𝛽2 − 4𝛼) 𝜑∗ +

(−𝛽 + √𝛽2 − 4𝛼)

√2
,

𝐿4 ∶= 𝜑∗𝐷 + √2𝐷 + 1
2 (𝛽 − √𝛽2 − 4𝛼) 𝜑∗ +

(𝛽 − √𝛽2 − 4𝛼)

√2
,
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𝑅4 ∶= 𝜑∗𝐷 + √2𝐷 − 1
2 (𝛽 + √𝛽2 − 4𝛼) 𝜑∗ +

(𝛽 + √𝛽2 − 4𝛼)

√2
,

𝐿5 ∶= 𝜑∗𝐷 + √2𝐷 + 1
2 (𝛽 + √𝛽2 − 4𝛼) 𝜑∗ +

(𝛽 + √𝛽2 − 4𝛼)

√2
,

𝑅5 ∶= 𝜑∗𝐷 + √2𝐷 + 1
2 (−𝛽 + √𝛽2 − 4𝛼) 𝜑∗ +

(𝛽 − √𝛽2 − 4𝛼)

√2
.

If 𝛽 = 0 and 𝛼 ≤ 0,

𝐿6 ∶= 𝜑∗𝐷 + √−𝛼𝜑∗,
𝐿7 ∶= 𝜑∗𝐷 − √−𝛼𝜑∗.

If 𝛽 = 0 and 𝛼 ≥ 0,

𝐿8 ∶= 𝐷 + √𝛼𝜑∗,
𝐿9 ∶= 𝐷 − √𝛼𝜑∗.

If 𝛽 = 0 and 𝛼 ≤ 1,

𝐿10 ∶= 𝜑∗𝐷 − √1 − 𝛼𝜑∗ + 1,
𝑅10 ∶= −𝜑∗𝐷 + √1 − 𝛼𝜑∗ + 1,
𝐿11 ∶= 𝜑∗𝐷 + √1 − 𝛼𝜑∗ + 1,
𝑅11 ∶= −𝜑∗𝐷 − √1 − 𝛼𝜑∗ + 1.

If 𝛽 = 0, 𝛼 ≠ 0 and 𝛼 ≤ 1,

𝐿12 ∶= 𝜑∗𝐷 − √1 − 𝛼𝐷 + 𝛼,

𝑅12 ∶= − 1
𝛼𝜑∗𝐷 +

√1 − 𝛼
𝛼 𝐷 + 1,

𝐿13 ∶= 𝜑∗𝐷 + √1 − 𝛼𝐷 + 𝛼,

𝑅13 ∶= − 1
𝛼𝜑∗𝐷 −

√1 − 𝛼
𝛼 𝐷 + 1.

Then,

𝑃 = 𝐿1𝑅1 = 𝑅1𝐿1 = 𝑅2𝐿2 = 𝑅3𝐿3 = 𝑅4𝐿4 = 𝑅5𝐿5,
and, when 𝛽 = 0,

𝑃 = −𝐿2
6 = −𝐿2

7 = 𝐿2
8 = 𝐿2

9 = 𝑅10𝐿10 = 𝐿10𝑅10 = 𝑅11𝐿11
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= 𝐿11𝑅11 = 𝑅12𝐿12 = 𝐿12𝑅12 = 𝑅13𝐿13 = 𝐿13𝑅13.

Observe that only 𝐿1 and 𝑅1 commute in the case of 𝛽 ≠ 0.
This rises the question on whether we can decompose every differential polynomial 𝑃 in

the composition of two ‘order one’ (or degree (1,1), cf. page 31) elements of ℝ[𝐷, 𝜑∗], but
this is not the case in general. Just take 𝑄 = 𝐷2 + 𝐷 + 1 (observe that 𝑄 is not in any of the

aforementioned cases). Consider a decomposition of the kind

(𝑎𝜑∗𝐷 + 𝑏𝐷 + 𝑐𝜑∗ + 𝑑)(𝑒𝜑∗𝐷 + 𝑔𝐷 + ℎ𝜑∗ + 𝑗) = 𝑄,

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑔, ℎ and 𝑗 are real coefficients to be determined. The resulting system

⎧{{{{{{
⎨{{{{{{⎩

𝑑ℎ + 𝑐𝑗 = 0,
𝑑𝑒 − 𝑐𝑔 + 𝑏ℎ + 𝑎𝑗 = 0,

𝑏𝑒 − 𝑎𝑔 = 0,
−𝑎𝑒 + 𝑏𝑔 = 1,

𝑐ℎ + 𝑑𝑗 = 1,
−𝑐𝑒 + 𝑑𝑔 + 𝑎ℎ + 𝑏𝑗 = 1,

has no solution for real coefficients.

Let ℝ[𝐷] be the ring of polynomials with real coefficients on the variable 𝐷. The following

result states a very useful property of the algebra ℝ[𝐷, 𝜑∗].

Theorem 5.1.1. Take 𝐿 as defined in (5.1.2) and take

𝑅 = ∑
u�

𝑎u�𝜑∗𝐷u� + ∑
u�

(−1)u�+1𝑏u�𝐷u� ∈ ℝ[𝐷, 𝜑∗]. (5.1.3)

Then 𝑅𝐿 = 𝐿𝑅 ∈ ℝ[𝐷].

Proof.

𝑅𝐿 = ∑
u�,u�

(−1)u�𝑎u�𝑎u�𝐷u�+u� + ∑
u�,u�

𝑏u�𝑎u�𝜑∗𝐷u�+u� + ∑
u�,u�

(−1)u�(−1)u�+1𝑎u�𝑏u�𝜑∗𝐷u�+u�

+ ∑
u�,u�

(−1)u�+1𝑏u�𝑏u�𝐷u�+u�

= ∑
u�,u�

(−1)u�𝑎u�𝑎u�𝐷u�+u� + ∑
u�,u�

(−1)u�+1𝑏u�𝑏u�𝐷u�+u�.

(5.1.4)

Hence, 𝑅𝐿 ∈ ℝ[𝐷].
Observe that, if we take 𝑅 in the place of 𝐿 in the hypothesis of the Theorem, we obtain 𝐿

in the place of 𝑅 and so, by expression (5.1.4) 𝐿𝑅 ∈ ℝ[𝐷]. �

Remark 5.1.2. Some interesting remarks on the coefficients of the operator 𝑆 = 𝑅𝐿 defined

in Theorem 5.1.1 can be made.

If we have

𝑆 = ∑
u�

𝑐u�𝐷u� = 𝑅𝐿 = ∑
u�,u�

(−1)u�𝑎u�𝑎u�𝐷u�+u� + ∑
u�,u�

(−1)u�+1𝑏u�𝑏u�𝐷u�+u�,
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then

𝑐u� =
u�

∑
u�=0

(−1)u�(𝑎u�𝑎u�−u� − 𝑏u�𝑏u�−u�).

A closer inspection reveals that

𝑐u� =

⎧{{
⎨{{⎩

0, 𝑘 odd,

2

u�
2 −1

∑
u�=0

(−1)u� (𝑎u�𝑎u�−u� − 𝑏u�𝑏u�−u�) + (−1)
u�
2 (𝑎2

u�
2

− 𝑏2
u�
2
) , 𝑘 even.

This has some important consequences. If 𝐿 = ∑u�
u�=0 𝑎u�𝜑∗𝐷u� + ∑u�

u�=0 𝑏u�𝐷u� with 𝑎u� ≠ 0 or

𝑏u� ≠ 0, we have that 𝑐2u� = (−1)u�(𝑎2
u� − 𝑏2

u�)† and so, if 𝑎u� = ±𝑏u�, then 𝑐2u� = 0. This shows
that composing two elements of ℝ[𝐷, 𝜑∗] we can get another element which has simpler

terms in the sense of derivatives of less order. We illustrate this with two examples.

Example 5.1.3. Take𝑛 ≥ 3,𝐿 = 𝜑∗𝐷u� +𝐷u� +𝐷−Id and𝑅 = −𝜑∗𝐷u� +(−1)u�𝐷u� −𝐷−Id.
Then, 𝑅𝐿 = −2𝐷u�(u�) − 𝐷2 + Id where 𝛼(𝑛) = 𝑛 if 𝑛 is even and 𝛼(𝑛) = 𝑛 + 1 if 𝑛 is odd.

If we take 𝑛 ≥ 0, 𝐿 = 𝜑∗𝐷2u�+1 + 𝐷2u�+1 + Id and 𝑅 = 𝜑∗𝐷2u�+1 + 𝐷2u�+1 − Id. Then,
𝑅𝐿 = − Id.
Example 5.1.4. Consider the equation

𝑥(3)(𝑡) + 𝑥(3)(−𝑡) + 𝑥(𝑡) = sin 𝑡.

Applying the operator 𝜑∗𝐷3 +𝐷3 −Id to both sides of the equation we obtain 𝑥(𝑡) = sin 𝑡+
2 cos 𝑡. This is the unique solution of the equation, to which we had not imposed any extra

conditions.

5.2 Boundary Value Problems

In this section we obtain the Green’s function of 𝑛-th order boundary value problems with

reflection and constant coefficients. We point out that the same approach used in this section

is also valid for initial problems among other types of conditions.

Let 𝐼 = [𝑎, 𝑏] ⊂ ℝ be an interval and 𝑓 ∈ L1(𝐼). Consider now the following problem

with the usual derivative.

𝑆𝑢(𝑡) ∶=
u�

∑
u�=0

𝑎u�𝑢(u�)(𝑡) = 𝑓 (𝑡), 𝑡 ∈ 𝐼,

𝐵u�𝑢 ∶=
u�−1

∑
u�=0

𝛼u�u�𝑢(u�)(𝑎) + 𝛽u�u�𝑢(u�)(𝑏) = 0, 𝑖 = 1, … , 𝑛.
(5.2.1)

The following Theorem from [31] states the cases where we can find a unique solution for

problem (5.2.1)‡.

†This is so because if 𝑖 ∈ {0, … , 𝑛 − 1}, then 2𝑖 − 𝑖 ∈ {𝑛 + 1, … , 2𝑛} and 𝑎u� (respectively 𝑏u�) are nonzero

only for 𝑛 ∈ {0, … , 𝑛}.
‡In [31], this result is actually stated for nonconstant coefficients, but the case of constant coefficients is enough

for our purposes.
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Theorem 5.2.1. Assume the following homogeneous problem has a unique solution

𝑆𝑢(𝑡) = 0, 𝑡 ∈ 𝐼, 𝐵u�𝑢 = 0, 𝑖 = 1, … 𝑛.

Then there exists a unique function, called Green’s function, such that

(G1) 𝐺 is defined on the square 𝐼2†.

(G2) The partial derivatives
u�u�u�
u�u�u� exist and are continuous on 𝐼2 for 𝑘 = 0, … , 𝑛 − 2.

(G3)
u�u�−1u�
u�u�u�−1 and

u�u�u�
u�u�u� exist and are continuous on 𝐼2\{(𝑡, 𝑡) ∶ 𝑡 ∈ 𝐼}.

(G4) The lateral limits
u�u�−1u�
u�u�u�−1 (𝑡, 𝑡+) and

u�u�−1u�
u�u�u�−1 (𝑡, 𝑡−) exist for every 𝑡 ∈ (𝑎, 𝑏) and

𝜕u�−1𝐺
𝜕𝑡u�−1 (𝑡, 𝑡−) − 𝜕u�−1𝐺

𝜕𝑡u�−1 (𝑡, 𝑡+) = 1
𝑎u�

.

(G5) For each 𝑠 ∈ (𝑎, 𝑏) the function 𝐺(⋅, 𝑠) is a solution of the differential equation 𝑆𝑢 = 0
on 𝐼\{𝑠}.

(G6) For each 𝑠 ∈ (𝑎, 𝑏) the function 𝐺(⋅, 𝑠) satisfies the boundary conditions

𝐵u�𝑢 = 0 𝑖 = 1, … , 𝑛.

Furthemore, the function 𝑢(𝑡) ∶= ∫u�
u� 𝐺(𝑡, 𝑠)𝑓 (𝑠) d 𝑠 is the unique solution of the problem

(5.2.1).

Using the properties (G1)–(G6) and Theorem 5.1.1 one can prove Theorem 5.2.3. The proof

of this result will be a direct consequence of Theorem 5.3.8.

Definition 5.2.2. Given an operator ℒ for functions of one variable, define the operator ℒ⊢ as

ℒ⊢𝐺(𝑡, 𝑠) ∶= ℒ(𝐺(⋅, 𝑠))|u� for every 𝑠 and any suitable function 𝐺.

Theorem 5.2.3. Let 𝐼 = [−𝑇, 𝑇]. Consider the problem

𝐿𝑢(𝑡) = ℎ(𝑡), 𝑡 ∈ 𝐼, 𝐵u�𝑢 = 0, 𝑖 = 1, … , 𝑛, (5.2.2)

where 𝐿 is defined as in (5.1.2), ℎ ∈ L1(𝐼) and

𝐵u�𝑢 ∶=
u�−1

∑
u�=0

𝛼u�u�𝑢(u�)(−𝑇) + 𝛽u�u�𝑢(u�)(𝑇).

Then, there exists 𝑅 ∈ ℝ[𝐷, 𝜑∗] – defined as in (5.1.3)– such that 𝑆 ∶= 𝑅𝐿 ∈ ℝ[𝐷] and

the unique solution of problem (5.2.2) is given by ∫u�
u� 𝑅⊢𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠 where 𝐺 is the Green’s

function associated to the problem 𝑆𝑢 = 0, 𝐵u�𝑅𝑢 = 0, 𝐵u�𝑢 = 0, 𝑖 = 1, … , 𝑛, assuming that

the homogeneous problem 𝑆𝑢 = 0, 𝐵u�𝑅𝑢 = 0, 𝐵u�𝑢 = 0, 𝑖 = 1, … , 𝑛, has a unique solution.

†Inmost applications it is not necessary to define theGreen’s function on the diagonal for wewill be integrating

the expression ∫u�
u� 𝐺(𝑡, 𝑠)𝑓 (𝑠) d 𝑠. Hence, the uniqueness mentioned in Theorem 5.2.1 has to be understood

‘save for the values on the diagonal’.
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For the following example, let us explain some notations. Let 𝑘, 𝑝 ∈ ℕ. We denote by

𝑊u�,u�(𝐼) the Sobolev Space defined by

𝑊u�,u�(𝐼) = {𝑢 ∈ Lp(𝐼) ∶ 𝐷u�𝑢 ∈ Lp(𝐼) ∀𝛼 ≤ 𝑘} .

Given a constant 𝑎 ∈ ℝ we can consider the pullback by this constant as a functional 𝑎∗ ∶
u�(𝐼) → ℝ such that 𝑎∗𝑓 = 𝑓 (𝑎) in the same way we defined it for functions.

Example 5.2.4. Consider the following problem.

𝑢″(𝑡) + 𝑎 𝑢(−𝑡) + 𝑏 𝑢(𝑡) = ℎ(𝑡), 𝑡 ∈ 𝐼, 𝑢(−𝑇) = 𝑢(𝑇), 𝑢′(−𝑇) = 𝑢′(𝑇). (5.2.3)

where ℎ ∈ 𝑊2,1(𝐼). Then, the operator we are considering is 𝐿 = 𝐷2 + 𝑎 𝜑∗ + 𝑏. If we take
𝑅 ∶= 𝐷2 − 𝑎 𝜑∗ + 𝑏, we have that 𝑅𝐿 = 𝐷4 + 2𝑏 𝐷2 + 𝑏2 − 𝑎2.

The boundary conditions are ((𝑇∗)−(−𝑇)∗)𝑢 = 0 and ((𝑇∗)−(−𝑇)∗)𝐷𝑢 = 0. Taking
this into account, we add the conditions

0 = ((𝑇∗) − (−𝑇)∗)𝑅𝑢 = ((𝑇∗) − (−𝑇)∗)(𝐷2 − 𝑎 𝜑∗ + 𝑏)𝑢 = ((𝑇∗) − (−𝑇)∗)𝐷2𝑢,

0 = ((𝑇∗)−(−𝑇)∗)𝑅𝐷𝑢 = ((𝑇∗)−(−𝑇)∗)(𝐷2 −𝑎 𝜑∗ +𝑏)𝐷𝑢 = ((𝑇∗)−(−𝑇)∗)𝐷3𝑢.
That is, our new reduced problem is

𝑢(4)(𝑡) + 2𝑏 𝑢″(𝑡) + (𝑏2 − 𝑎2)𝑢(𝑡) = 𝑓 (𝑡), 𝑡 ∈ 𝐼, 𝑢(u�)(−𝑇) = 𝑢(u�)(𝑇), 𝑘 = 0, … , 3.
(5.2.4)

where 𝑓 (𝑡) = 𝑅 ℎ(𝑡) = ℎ″(𝑡) − 𝑎 ℎ(−𝑡) + 𝑏 ℎ(𝑡).
Observe that this problem is equivalent to the system of equations (a chain of two order

two problems)

𝑢″(𝑡) + (𝑏 + 𝑎)𝑢(𝑡) = 𝑣(𝑡), 𝑡 ∈ 𝐼, 𝑢(−𝑇) = 𝑢(𝑇), 𝑢′(−𝑇) = 𝑢′(𝑇),
𝑣″(𝑡) + (𝑏 − 𝑎)𝑣(𝑡) = 𝑓 (𝑡), 𝑡 ∈ 𝐼, 𝑣(−𝑇) = 𝑣(𝑇), 𝑣′(−𝑇) = 𝑣′(𝑇).

Thus, it is clear that

𝑢(𝑡) = ∫u�
−u�

𝐺1(𝑡, 𝑠)𝑣(𝑠) d 𝑠, 𝑣(𝑡) = ∫u�
−u�

𝐺2(𝑡, 𝑠)𝑓 (𝑠) d 𝑠,

where, 𝐺1 and 𝐺2 are the Green’s functions related to the previous second order problems.

Explicitly, in the case 𝑏 > |𝑎| (the study for other cases would be analogous cf. page 85),

2√𝑏 + 𝑎 sin(√𝑏 + 𝑎 𝑇)𝐺1(𝑡, 𝑠) =
⎧{
⎨{⎩

cos √𝑏 + 𝑎(𝑇 + 𝑠 − 𝑡) if 𝑠 ≤ 𝑡,
cos √𝑏 + 𝑎(𝑇 − 𝑠 + 𝑡) if 𝑠 > 𝑡.

and

2√𝑏 − 𝑎 sin(√𝑏 − 𝑎 𝑇)𝐺2(𝑡, 𝑠) =
⎧{
⎨{⎩

cos √𝑏 − 𝑎(𝑇 + 𝑠 − 𝑡) if 𝑠 ≤ 𝑡,
cos √𝑏 − 𝑎(𝑇 − 𝑠 + 𝑡) if 𝑠 > 𝑡.

Hence, the Green’s function 𝐺 for problem (5.2.4) is given by

𝐺(𝑡, 𝑠) = ∫u�
−u�

𝐺1(𝑡, 𝑟)𝐺2(𝑟, 𝑠) d 𝑟.

Therefore, using Theorem 5.2.3, the Green’s function for problem (5.2.3) is

𝐺(𝑡, 𝑠) = 𝑅⊢𝐺(𝑡, 𝑠) = 𝜕2𝐺
𝜕𝑡2 (𝑡, 𝑠) − 𝑎 𝐺(−𝑡, 𝑠) + 𝑏 𝐺(𝑡, 𝑠).



110 5.2. Boundary Value Problems

Remark 5.2.5. We can reduce the assumptions on the regularity of ℎ to ℎ ∈ L1(𝐼) just taking

into account the density of 𝑊2,1(𝐼) in L1(𝐼).

Remark 5.2.6. Example 5.1.4 illustrates the importance of the existence and uniqueness of

solution of the problem 𝑆𝑢 = 0, 𝐵u�𝑅𝑢 = 0, 𝐵u�𝑢 = 0 in the hypothesis of Theorem 5.2.3.

In general, when we compose two linear ordinary differential equations, respectively of orders

𝑚 and 𝑛 and a number 𝑚 and 𝑛 of conditions, we obtain a new problem of order 𝑚 + 𝑛 and

𝑚 + 𝑛 conditions. As we see this is not the case in the reduction provided by Theorem 5.2.3.

In the case the order of the reduced problem is less than 2𝑛 anything is possible: we may

have an infinite number of solutions, no solution or uniqueness of solution being the problem

nonhomogeneous. The following example illustrates this last case.

Example 5.2.7. Consider the problem

𝐿𝑢(𝑡) ∶= 𝑢(4)(𝑡) + 𝑢(4)(−𝑡) + 𝑢″(−𝑡) = ℎ(𝑡), 𝑡 ∈ [−1, 1], 𝑢(1) = 𝑢(−1) = 0,

where ℎ ∈ 𝑊4,1([−1, 1]).
For this case, 𝑅𝑢(𝑡) ∶= −𝑢(4)(𝑡) + 𝑢(4)(−𝑡) + 𝑢″(−𝑡) and the reduced equation is

𝑅𝐿𝑢 = 2𝑢(6) + 𝑢(4) = 𝑅ℎ, which has order 6 < 2 ⋅ 4 = 8, so there is a reduction of the

order. Now we have to be careful with the new reduced boundary conditions.

𝐵1𝑢(𝑡) = 𝑢(1) = 0,
𝐵2𝑢(𝑡) = 𝑢(−1) = 0,

𝐵1𝑅𝑢(𝑡) = −𝑢(4)(1) + 𝑢(4)(−1) + 𝑢″(−1) = 0,
𝐵2𝑅𝑢(𝑡) = −𝑢(4)(−1) + 𝑢(4)(1) + 𝑢″(1) = 0,
𝐵1𝐿𝑢(𝑡) = 𝑢(4)(1) + 𝑢(4)(−1) + 𝑢″(−1) = ℎ(1),
𝐵2𝐿𝑢(𝑡) = 𝑢(4)(−1) + 𝑢(4)(1) + 𝑢″(1) = ℎ(−1).

(5.2.5)

Being the two last conditions the obtained from applying the original boundary conditions to

the original equation.

(5.2.5) is a system of linear equations which can be solved for 𝑢 and its derivatives as

𝑢(1) = 𝑢(−1) = 0, − 𝑢″(1) = 𝑢″(−1) = 1
2(ℎ(1) − ℎ(−1)), 𝑢(4)(±1) = ℎ(±1)

2 .
(5.2.6)

Consider now the reduced problem

2𝑢(6)(𝑡) + 𝑢(4)(𝑡) = 𝑅ℎ(𝑡) =∶ 𝑓 (𝑡), 𝑡 ∈ [−1, 1],

𝑢(1) = 𝑢(−1) = 0, −𝑢″(1) = 𝑢″(−1) = 1
2(ℎ(1) − ℎ(−1)), 𝑢(4)(±1) = ℎ(±1)

2 ,

and the change of variables 𝑣(𝑡) ∶= 𝑢(4)(𝑡). Now we look the solution of

2𝑣″(𝑡) + 𝑣(𝑡) = 𝑓 (𝑡), 𝑡 ∈ [−1, 1], 𝑣(±1) = ℎ(±1)
2 ,

Which is given by

𝑣(𝑡) = ∫1
−1

𝐺(𝑡, 𝑠)𝑓 (𝑠) d 𝑠 − ℎ(1) csc √2
2 sin (𝑡 − 1

√2
) + ℎ(−1) csc √2

2 sin (𝑡 + 1
√2

) ,
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where

𝐺(𝑡, 𝑠) ∶= csc √2
√2

⎧{{{
⎨{{{⎩

sin (𝑠 + 1
√2

) sin (𝑡 − 1
√2

) , −1 ≤ 𝑠 ≤ 𝑡 ≤ 1,

sin (𝑠 − 1
√2

) sin (𝑡 + 1
√2

) , −1 ≤ 𝑡 < 𝑠 ≤ 1.

Now, it is left to solve the problem

𝑢(4)(𝑡) = 𝑣(𝑡), 𝑢(1) = 𝑢(−1) = 0, −𝑢″(1) = 𝑢″(−1) = 1
2(ℎ(1) − ℎ(−1)).

The solution is given by

𝑢(𝑡) = ∫1
−1

𝐾(𝑡, 𝑠)𝑣(𝑠) d 𝑠 − ℎ(1) − ℎ(−1)
12 𝑡(𝑡 − 1)(𝑡 + 1).

where

𝐾(𝑡, 𝑠) = 1
12

⎧{
⎨{⎩

(𝑠 + 1)(𝑡 − 1) (𝑠2 + 2𝑠 + 𝑡2 − 2𝑡 − 2) , −1 ≤ 𝑠 ≤ 𝑡 ≤ 1,
(𝑠 − 1)(𝑡 + 1) (𝑠2 − 2𝑠 + 𝑡2 + 2𝑡 − 2) , −1 ≤ 𝑡 < 𝑠 ≤ 1.

Hence, taking 𝐽(𝑡, 𝑠) = ∫1
−1 𝐻(𝑡, 𝑟)𝐺(𝑟, 𝑠) d 𝑠,

𝐽(𝑡, 𝑠) ∶=

csc √2
12√2

⎧{{{{{{
⎨{{{{{{⎩

√2 sin(√2)(𝑠 + 1)(𝑡 − 1)[𝑠(𝑠 + 2) + (𝑡 − 2)𝑡 − 14]

+24 cos (𝑠 − 𝑡 + 2
√2

) − 24 cos (𝑠 + 𝑡
√2

) , −1 ≤ 𝑠 ≤ 𝑡 ≤ 1,

√2 sin(√2)(𝑠 − 1)(𝑡 + 1)[(𝑠 − 2)𝑠 + 𝑡(𝑡 + 2) − 14]

+24 cos (𝑠 − 𝑡 − 2
√2

) − 24 cos (𝑠 + 𝑡
√2

) , −1 ≤ 𝑡 < 𝑠 ≤ 1.

Therefore,

𝑢(𝑡) = ∫1
−1

𝐽(𝑡, 𝑠)𝑓 (𝑠) d 𝑠

− ℎ(1) csc √2
2 [1

6(𝑡 − 5)(𝑡 − 1)(𝑡 + 3) sin (√2) + 4 sin (𝑡 − 1
√2

)]

+ ℎ(−1) csc √2
2 [1

6(𝑡 − 3)(𝑡 + 1)(𝑡 + 5) sin (√2) + 4 sin (𝑡 + 1
√2

)]

− ℎ(1) − ℎ(−1)
12 𝑡(𝑡 − 1)(𝑡 + 1).

5.3 The reduced problem

The usefulness of a theorem of the kind of Theorem 5.2.3 is clear, for it allows the obtaining of

the Green’s function of any problem of differential equations with constant coefficients and in-

volutions. The proof of this Theorem relies heavily on the properties (𝐺1)−(𝐺6), so ourmain
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goal now is to consider abstractly these properties in order to apply them in a more general

context with different kinds of operators.

Let 𝑋 be a vector subspace of L1
loc(ℝ), and (ℝ, 𝜏) the real line with its usual topology.

Define 𝑋u� ∶= {𝑓 |u� ∶ 𝑓 ∈ 𝑋} for every 𝑈 ∈ 𝜏 (observe that 𝑋u� is a vector space as well).

Assume that 𝑋 satisfies the following property.

(P) For every partition of ℝ, {𝑆u�}u�∈u� ∪ {𝑁}, consisting of measurable sets where 𝑁 has no

accumulation points and the 𝑆u� are open, if 𝑓u� ∈ 𝑋u�u�
for every 𝑗 ∈ 𝐽, then there exists 𝑓 ∈ 𝑋

such that 𝑓 |u�u�
= 𝑓u� for every 𝑗 ∈ 𝐽.

Example 5.3.1. The set of locally absolutely continuous functions ACloc(ℝ) ⊂ L1
loc(ℝ) does

not satisfy (P). To see this just take the following partition of ℝ: 𝑆1 = (−∞, 0), 𝑆2 =
(0, +∞), 𝑁 = {0} and consider 𝑓1 ≡ 0, 𝑓2 ≡ 1. 𝑓u� ∈ AC(ℝ)u�u�

for 𝑗 = 1, 2, but any
function 𝑓 such that 𝑓 |u�u�

= 𝑓u�, 𝑗 = 1, 2 has a discontinuity at 0, so it cannot be absolutely

continuous. That is, (P) is not satisfied.

Example 5.3.2. 𝑋 = BVloc(ℝ) satisfies (P). Take a partition of ℝ, {𝑆u�}u�∈u� ∪ {𝑁}, with the

properties of (P) and a family of functions (𝑓u�)u�∈u� such that 𝑓u� ∈ 𝑋u�u�
for every 𝑗 ∈ 𝐽. We

can further assume, without lost of generality, that the 𝑆u� are connected. Define a function 𝑓
such that 𝑓 |u�u�

∶= 𝑓u� and 𝑓 |u� = 0. Take a compact set 𝐾 ⊂ ℝ. Then, by Bolzano-Weierstrass’

and Heine-Borel’s Theorems, 𝐾 ∩ 𝑁 is finite for 𝑁 has no accumulation points. Therefore,

𝐽u� ∶= {𝑗 ∈ 𝐽 ∶ 𝑆u� ∩ 𝐾 ≠ ∅} is finite as well. To see this denote by 𝜕𝑆 the boundary of a set

𝑆 and observe that 𝑁 ∩ 𝐾 = ∪u�∈u�𝜕(𝑆u� ∪ 𝐾) and that the sets 𝜕(𝑆u� ∩ 𝐾) ∩ 𝜕(𝑆u� ∩ 𝐾) are

finite for every 𝑗, 𝑘 ∈ 𝐽.
Thus, the variation of 𝑓 in 𝐾 is 𝑉u�(𝑓 ) ≤ ∑u�∈u�u�

𝑉u�u�
(𝑓 ) < ∞ since 𝑓 is of bounded

variation on each 𝑆u�. Hence, 𝑋 satisfies (P).

Throughout this section we will consider a function space 𝑋 satisfying (P) and two families

of linear operators 𝐿 = {𝐿u�}u�∈u� and 𝑅 = {𝑅u�}u�∈u� that satisfy

Locality: 𝐿u� ∈ ℒ(𝑋u� , L1
loc(𝑈)), 𝑅u� ∈ ℒ(im(𝐿u�), L1

loc(𝑈)),

Restriction: 𝐿u�(𝑓 |u�) = 𝐿u�(𝑓 )|u� , 𝑅u�(𝑓 |u�) = 𝑅u�(𝑓 )|u� for every 𝑈, 𝑉 ∈ 𝜏
such that 𝑉 ⊂ 𝑈†.

The following definition allows us to give an example of an space that satisfies the properties

of locality and restriction.

Definition 5.3.3. Let 𝑓 ∶ ℝ → ℝ and assume there exists a partition {𝑆u�}u�∈u� ∪ {𝑁} of ℝ
consisting of measurable sets where 𝑁 is of zero Lebesgue measure satisfying that the weak

derivative 𝑔u� exists for every 𝑓 |u�u�
, then a function 𝑔 such that 𝑔|u�u�

= 𝑔u� is called the very weak

derivative (vw-derivative) of 𝑓 .

Remark 5.3.4. The vw-derivative is uniquely defined save for a zero measure set and is equiv-

alent to the weak derivative for absolutely continuous functions.

†The definitions here presented of 𝐿 and 𝑅 are deeply related to Sheaf Theory. Since the authors want to

make this work as self-contained as possible, we will not deepen into that fact.
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Nevertheless, the vw-derivative is different from the derivative of distributions. For in-

stance, the derivative of the Heavyside function in the distributional sense is de Dirac delta

at 0, whereas its vw-derivative is zero. What is more, the kernel of the vw-derivative is the set

of functions which are constant on a family of open sets {𝑆u�}u�∈u� such that ℝ\(∪u�∈u�𝑆u�) has

Lebesgue measure zero.

Example 5.3.5. Take 𝑋 = BVloc(ℝ) and 𝐿 = 𝐷 to be the very weak derivative. Then 𝐿
satisfies the locality and restriction hypotheses.

Remark 5.3.6. The vw-derivative, as defined here, is the 𝐷 operator defined in (5.1.1) for func-

tions of bounded variation. In other words, the vw-derivative ignores the jumps and considers

only those parts with enough regularity.

Remark 5.3.7. The locality property allows us to treat the maps 𝐿 and 𝑅 as if they were just

linear operators in ℒ(𝑋, L1
loc(ℝ)) and ℒ(im(𝐿), L1

loc(ℝ)) respectively, although we must

not forget their more complex structure.

Assume 𝑋u� ⊂ im(𝐿u�) ⊂ im(𝑅u�) for every 𝑈 ∈ 𝜏. 𝐵u� ∈ ℒ(im(𝑅ℝ), ℝ), 𝑖 = 1, … , 𝑚
and ℎ ∈ im(𝐿ℝ). Consider now the following problem

𝐿𝑢 = ℎ, 𝐵u�𝑢 = 0, 𝑖 = 1, … , 𝑚. (5.3.1)

Let

𝑍 ∶= {𝐺 ∶ ℝ2 → ℝ | 𝐺(𝑡, ⋅) ∈ 𝑋∩ (ℝ) and supp{𝐺(𝑡, ⋅)} is compact, 𝑠 ∈ ℝ}.

𝑍 is a vector space.

Let 𝑓 ∈ im(𝐿ℝ) and consider the problem

𝑅𝐿𝑣 = 𝑓 , 𝐵u�𝑣 = 0, 𝐵u�𝑅𝑣 = 0, 𝑖 = 1, … , 𝑚. (5.3.2)

Let 𝐺 ∈ 𝑍 and define the operator 𝐻u� such that 𝐻u�(ℎ)|u� ∶= ∫ℝ 𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠. We have

now the following theorem relating problems (5.3.1) and (5.3.2). Recall that, by definition,

ℒ⊢𝐺(𝑡, 𝑠) ∶= ℒ(𝐺(⋅, 𝑠))|u�.

Theorem 5.3.8. Assume 𝐿 and 𝑅 are the aforementioned operators with the locality and re-

striction properties and let ℎ ∈ Dom(𝑅ℝ). Assume 𝐿 commutes with 𝑅 and that there exists

𝐺 ∈ 𝑍 such that

(𝐼) (𝑅𝐿)⊢𝐺 = 0,
(𝐼𝐼) 𝐵u� ⊢𝐺 = 0, 𝑖 = 1, … , 𝑚,

(𝐼𝐼𝐼) (𝐵u�𝑅)⊢𝐺 = 0, 𝑖 = 1, … , 𝑚,
(𝐼𝑉) 𝑅𝐿𝐻u�ℎ = 𝐻(u�u�)⊢u�ℎ + ℎ,
(𝑉) 𝐿𝐻u�⊢u�ℎ = 𝐻u�⊢u�⊢u�ℎ + ℎ.

(𝑉𝐼) 𝐵u�𝐻u� = 𝐻u�u� ⊢u�, 𝑖 = 1, … , 𝑚,
(𝑉𝐼𝐼) 𝐵u�𝑅𝐻u� = 𝐵u�𝐻u�⊢u� = 𝐻(u�u�u�)⊢u�, 𝑖 = 1, … , 𝑚,
Then, 𝑣 ∶= 𝐻u�(ℎ) is a solution of problem (5.3.2) and 𝑢 ∶= 𝐻u�⊢u�(ℎ) is a solution of

problem (5.3.1).
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Proof. (𝐼) and (𝐼𝑉) imply that

𝑅𝐿𝑣 = 𝑅𝐿𝐻u�ℎ = 𝐻(u�u�)⊢u�ℎ + ℎ = 𝐻0ℎ + ℎ = ℎ.

On the other hand, (𝐼𝐼𝐼) and (𝑉𝐼𝐼) imply that, for every 𝑖 = 1, … , 𝑚,

𝐵u�𝑅𝑣 = 𝐵u�𝑅𝐻u�ℎ = 𝐻(u�u�u�)⊢u�ℎ = 0.

All the same, by (𝐼𝐼) and (𝑉𝐼),

𝐵u�𝑣 = 𝐵u�𝐻u�ℎ = 𝐻u�u� ⊢u�ℎ = 0.

Therefore, 𝑣 is a solution to problem (5.3.2).

Now, using (𝐼) and (𝑉) and the fact that 𝐿𝑅 = 𝑅𝐿, we have that

𝐿𝑢 = 𝐿𝐻u�⊢u�ℎ = 𝐻u�⊢u�⊢u�ℎ + ℎ = 𝐻(u�u�)⊢u�ℎ + ℎ = 𝐻(u�u�)⊢u�ℎ + ℎ = ℎ.

Taking into account (𝐼𝐼𝐼) and (𝑉𝐼𝐼),

𝐵u�𝑢 = 𝐵u�𝐻u�⊢u�(ℎ) = 𝐻(u�u�u�)⊢u�ℎ = 0, 𝑖 = 1, … , 𝑚.

Hence, 𝑢 is a solution of problem (5.3.1). �

The following Corollary is proved in the same way as the previous Theorem.

Corollary 5.3.9. Assume 𝐺 ∈ 𝑍 satisfies

(1) 𝐿⊢𝐺 = 0,
(2) 𝐵u� ⊢𝐺 = 0, 𝑖 = 1, … , 𝑚,
(3) 𝐿𝐻u�ℎ = 𝐻u�⊢u�ℎ + ℎ,
(4) 𝐵u�𝐻u�ℎ = 𝐻u�u� ⊢u�ℎ.
Then 𝑢 = 𝐻u�ℎ is a solution of problem (5.3.1).

Proof of Theorem 5.2.3. Originally, we would need to take ℎ ∈ Dom(𝑅), but by a simple

density argument –u�∞(𝐼) is dense in L1(𝐼)– we can take ℎ ∈ L1(𝐼). If we prove that the

hypothesis of Theorem 5.3.8 are satisfied, then the existence of solution will be proved.

First, Theorem 5.1.1 guarantees the commutativity of 𝐿 and 𝑅. Now, Theorem 5.2.1 im-

plies hypothesis (𝐼) − (𝑉𝐼𝐼) of Theorem 5.3.8 in terms of the vw-derivative. Indeed, (𝐼) is

straightforward from (𝐺5). (𝐼𝐼) and (𝐼𝐼𝐼) are satisfied because (𝐺1) − −(𝐺6) hold and

𝐵u�𝑢, 𝐵u�𝑅𝑢 = 0. (𝐺2) and (𝐺4) imply (𝐼𝑉) and (𝑉). (𝑉𝐼) and (𝑉𝐼𝐼) hold because of

(𝐺2), (𝐺5) and the fact that the boundary conditions commute with the integral.

On the other hand, the solution to problem (5.2.2) must be unique for, otherwise, the re-

duced problem 𝑆𝑢 = 0, 𝐵u�𝑅𝑢 = 0, 𝐵u�𝑢 = 0, 𝑖 = 1, … , 𝑛 would have several solutions,

contradicting the hypotheses. �

The following Lemma, in the line of Theorem 4.3.5, extends the application of Theorem

5.2.3 to the case of nonconstant coefficients with some restrictions for problems similar to the

one in Example 5.2.4.
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Lemma 5.3.10. Consider the problem

𝑢″(𝑡) + 𝑎(𝑡) 𝑢(−𝑡) + 𝑏(𝑡) 𝑢(𝑡) = ℎ(𝑡), 𝑢(−𝑇) = 𝑢(𝑇), (5.3.3)

where 𝑎 ∈ 𝑊2,1
loc (ℝ) is nonnegative and even,

𝑏 = 𝑘 𝑎 + 𝑎″

4 𝑎 − 5
16 (𝑎′

𝑎 )
2

,

for some constant 𝑘 ∈ ℝ, 𝑘2 ≠ 1 and 𝑏 is integrable.

Define 𝐴(𝑡) ∶= ∫u�
0 √𝑎(𝑠) d 𝑠, consider

𝑢″(𝑡) + 𝑢(−𝑡) + 𝑘 𝑢(𝑡) = ℎ(𝑡), 𝑢(−𝐴(𝑇)) = 𝑢(𝐴(𝑇))

and assume it has a Green’s function 𝐺.

Then

𝑢(𝑡) = ∫u�
−u�

𝐻(𝑡, 𝑠)ℎ(𝑠) d 𝑠

is a solution of problem (5.3.3) where

𝐻(𝑡, 𝑠) ∶=
4

√
𝑎(𝑠)
𝑎(𝑡) 𝐺(𝐴(𝑡), 𝐴(𝑠)),

And 𝐻(𝑡, ⋅)ℎ(⋅) is assumed to be integrable in [−𝑇, 𝑇].

Proof. Let 𝐺 be the Green’s function of the problem

𝑢″(𝑡) + 𝑢(−𝑡) + 𝑘 𝑢(𝑡) = ℎ(𝑡), 𝑢(−𝐴(𝑇)) = 𝑢(𝐴(𝑇)), 𝑢 ∈ W2,1
loc (ℝ).

Observe that, since |𝑘| ≠ 1, we are in the cases (𝐷1) − (𝐷2) in Chapter 4. Now, we show

that 𝐻 satisfies the equation, that is,

𝜕2𝐻
𝜕𝑡2 (𝑡, 𝑠) + 𝑎(𝑡)𝐻(−𝑡, 𝑠) + 𝑏(𝑡)𝐻(𝑡, 𝑠) = 0 for a. e. 𝑡, 𝑠 ∈ ℝ.

𝜕2𝐻
𝜕𝑡2 (𝑡, 𝑠) = 𝜕2

𝜕𝑡2
⎡⎢
⎣

4

√
𝑎(𝑠)
𝑎(𝑡) 𝐺(𝐴(𝑡), 𝐴(𝑠))⎤⎥

⎦

= 𝜕
𝜕𝑡

⎡⎢
⎣

−𝑎′(𝑡)
4

4

√
𝑎(𝑠)
𝑎5(𝑡)

𝐺(𝐴(𝑡), 𝐴(𝑠)) + 4√𝑎(𝑠)𝑎(𝑡)𝜕𝐺
𝜕𝑡

(𝐴(𝑡), 𝐴(𝑠))⎤⎥
⎦

= − 𝑎″(𝑡)
4

4

√
𝑎(𝑠)
𝑎5(𝑡)

𝐺(𝐴(𝑡), 𝐴(𝑠)) + 5
16(𝑎′(𝑡))2

4

√
𝑎(𝑠)
𝑎9(𝑡)

𝐺(𝐴(𝑡), 𝐴(𝑠))

+ 4√𝑎(𝑠)𝑎3(𝑡)𝜕2𝐺
𝜕𝑡2 (𝐴(𝑡), 𝐴(𝑠)).

Therefore,

𝜕2𝐻
𝜕𝑡2 (𝑡, 𝑠) + 𝑎(𝑡)𝐻(−𝑡, 𝑠) + 𝑏(𝑡)𝐻(𝑡, 𝑠)
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= 4√𝑎(𝑠)𝑎3(𝑡)𝜕2𝐺
𝜕𝑡2 (𝐴(𝑡), 𝐴(𝑠)) + 𝑎(𝑡)

4

√
𝑎(𝑠)
𝑎(𝑡) 𝐺(−𝐴(𝑡), 𝐴(𝑠))

+ 𝑘 𝑎(𝑡)
4

√
𝑎(𝑠)
𝑎(𝑡) 𝐺(𝐴(𝑡), 𝐴(𝑠))

= 4√𝑎(𝑠)𝑎3(𝑡) (𝜕2𝐺
𝜕𝑡2 (𝐴(𝑡), 𝐴(𝑠)) + 𝐺(−𝐴(𝑡), 𝐴(𝑠)) + 𝑘 𝐺(𝐴(𝑡), 𝐴(𝑠))) = 0.

The boundary conditions are satisfied as well. �

The same construction of Lemma 5.3.10 is valid for the case of the initial value problem.

We illustrate this in the following example.

Example 5.3.11. Let 𝑎(𝑡) = |𝑡|u�, 𝑘 > 1. Taking 𝑏 as in Lemma 5.3.10,

𝑏(𝑡) = 𝑘|𝑡|u� − 𝑝(𝑝 + 4)
16𝑡2 ,

consider problems

𝑢″(𝑡) + 𝑎(𝑡) 𝑢(−𝑡) + 𝑏(𝑡) 𝑢(𝑡) = ℎ(𝑡), 𝑢(0) = 𝑢′(0) = 0 (5.3.4)

and

𝑢″(𝑡) + 𝑢(−𝑡) + 𝑘 𝑢(𝑡) = ℎ(𝑡), 𝑢(0) = 𝑢′(0) = 0. (5.3.5)

Using an argument similar as the one in Example 5.2.4 and considering 𝑅 = 𝐷2 − 𝜑∗ + 𝑘, we
can reduce problem (5.3.5) to

𝑢(4)(𝑡) + 2𝑘𝑢″(𝑡) + (𝑘2 − 1)𝑢(𝑡) = 𝑓 (𝑡), 𝑢(u�)(0) = 0, 𝑗 = 0, … , 3, (5.3.6)

which can be decomposed in

𝑢″(𝑡) + (𝑘 + 1)𝑢(𝑡) = 𝑣(𝑡), 𝑡 ∈ 𝐼, 𝑢(0) = 𝑢′(0) = 0,
𝑣″(𝑡) + (𝑘 − 1)𝑣(𝑡) = 𝑓 (𝑡), 𝑡 ∈ 𝐼, 𝑣(0) = 𝑣′(0) = 0,

which have as Green’s functions, respectively,

�̃�1(𝑡, 𝑠) =
sin (√𝑘 + 1 (𝑡 − 𝑠))

√𝑘 + 1
𝜒u�

0(𝑠), 𝑡 ∈ ℝ,

�̃�2(𝑡, 𝑠) =
sin (√𝑘 − 1 (𝑡 − 𝑠))

√𝑘 − 1
𝜒u�

0(𝑠), 𝑡 ∈ ℝ.

Then, the Green’s function for problem (5.3.6) is

𝐺(𝑡, 𝑠) = ∫u�
u�

�̃�1(𝑡, 𝑟)�̃�2(𝑟, 𝑠) d 𝑟

= 1
2√𝑘2 − 1

[√𝑘 − 1 sin (√𝑘 + 1(𝑠 − 𝑡)) − √𝑘 + 1 sin (√𝑘 − 1(𝑠 − 𝑡))] 𝜒u�
0(𝑠).
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Observe that

𝑅⊢𝐺(𝑡, 𝑠) = − ⎡⎢
⎣

sin (√𝑘 − 1(𝑠 − 𝑡))

2√𝑘 − 1
+

sin (√𝑘 + 1(𝑠 − 𝑡))

2√𝑘 + 1
⎤⎥
⎦

𝜒u�
0(𝑠).

Hence, considering

𝐴(𝑡) ∶= 2
𝑝 + 2|𝑡|

u�
2 𝑡,

the Green’s function of problem (5.3.4) follows the expression

𝐻(𝑡, 𝑠) ∶=
4

√
𝑎(𝑠)
𝑎(𝑡) 𝐺(𝐴(𝑡), 𝐴(𝑠)),

This is,

𝐻(𝑡, 𝑠) = − ∣𝑠𝑡 ∣
u�
4

⎡⎢⎢⎢
⎣

sin (2√u�−1(u�|u�|u�/2−u�|u�|u�/2)
u�+2 )

2√𝑘 − 1
+

sin (2√u�+1(u�|u�|u�/2−u�|u�|u�/2)
u�+2 )

2√𝑘 + 1

⎤⎥⎥⎥
⎦

𝜒u�
0(𝑠).

5.4 The Hilbert transform and other algebras

In this section we devote our attention to new algebras to which we can apply the previous

results. To achieve this goal we recall the definition and remarkable properties of the Hilbert

transform [114].

We define the Hilbert transform 𝖧 of a function 𝑓 as

𝖧𝑓 (𝑡) ∶= 1
𝜋 lim

u�→∞
∫u�

−u�

𝑓 (𝑠)
𝑡 − 𝑠 d 𝑠 ≡ 1

𝜋 ∫∞
−∞

𝑓 (𝑠)
𝑡 − 𝑠 d 𝑠,

where the last integral is to be understood as the Cauchy principal value.

Among its properties, we would like to point out the following.

• 𝖧 ∶ Lp(ℝ) → Lp(ℝ) is a linear bounded operator for every 𝑝 ∈ (1, +∞) and

‖𝖧‖u� =
⎧{
⎨{⎩

tan u�
2u� , 𝑝 ∈ (1, 2],

cot u�
2u� , 𝑝 ∈ [2, +∞),

in particular ‖𝖧‖2 = 1.

• 𝖧 is an anti-involution: 𝖧2 = − Id.

• Let 𝜎(𝑡) = 𝑎𝑡 + 𝑏 for 𝑎, 𝑏 ∈ ℝ. Then 𝖧𝜎∗ = sign(𝑎)𝜎∗𝖧 (in particular, 𝖧𝜑∗ =
−𝜑∗𝖧). Furthermore, if a linear bounded operator 𝖮 ∶ Lp(ℝ) → Lp(ℝ) satisfies this

property, 𝖮 = 𝛽𝐻 where 𝛽 ∈ ℝ.

• 𝖧 commutes with the derivative: 𝖧𝐷 = 𝐷𝖧.
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• 𝖧(𝑓 ∗ 𝑔) = 𝑓 ∗ 𝖧𝑔 = 𝖧𝑓 ∗ 𝑔 where ∗ denotes the convolution.

• 𝖧 is an isometry in L2(ℝ): ⟨𝖧𝑓 , 𝖧𝑔⟩ = ⟨𝑓 , 𝑔⟩ where ⟨ , ⟩ is the scalar product in

L2(ℝ). In particular ‖𝖧𝑓 ‖2 = ‖𝑓 ‖2.

Consider now the same construction we did for ℝ[𝐷, 𝜑∗] changing 𝜑∗ by 𝖧 and denote this

algebra as ℝ[𝐷, 𝖧]. In this case we are dealing with a commutative algebra. Actually, this

algebra is isomorphic to the complex polynomials ℂ[𝐷]. Just consider the isomorphism

ℝ[𝐷, 𝖧] ℂ[𝐷]

∑
u�

(𝑎u�𝖧 + 𝑏u�)𝐷u� ∑
u�

(𝑎u� 𝑖 + 𝑏u�)𝐷u�

Ξ

Observe that Ξ|ℝ[u�] = Id |ℝ[u�].

We now state a result analogous to Theorem 5.1.1.

Theorem 5.4.1. Take

𝐿 = ∑
u�

(𝑎u�𝖧 + 𝑏u�)𝐷u� ∈ ℝ[𝐷, 𝖧]

and define

𝑅 = ∑
u�

(𝑎u�𝖧 − 𝑏u�)𝐷u�.

Then 𝐿𝑅 = 𝑅𝐿 ∈ ℝ[𝐷].

Remark 5.4.2. Theorem 5.4.1 is clear from the point of view ofℂ[𝐷]. SinceΞ(𝑅) = −Ξ(𝐿),

𝑅𝐿 = Ξ−1(−Ξ(𝐿)Ξ(𝐿)) = Ξ−1(−|Ξ(𝐿)|2).

Therefore, |Ξ(𝐿)|2 ∈ ℝ[𝐷], implies 𝑅𝐿 ∈ ℝ[𝐷].

Remark 5.4.3. Since ℝ[𝐷, 𝖧] is isomorphic to ℂ[𝐷], the Fundamental Theorem of Algebra

also applies toℝ[𝐷, 𝖧], which shows a clear classificationof the decompositions of an element

of ℝ[𝐷, 𝖧] in contrast with those of ℝ[𝐷, 𝜑∗] which, in page 89, was shown not to be a

unique factorization domain.

In the following example we will use some properties of the Hilbert transform [114]:

𝖧 cos = sin,
𝖧 sin = − cos,

𝖧(𝑡𝑓 (𝑡))(𝑡) = 𝑡 𝖧𝑓 (𝑡) − 1
𝜋 ∫∞

−∞
𝑓 (𝑠) d 𝑠,

where, as we have noted before, the integral is considered as the principal value.
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Example 5.4.4. Consider the problem

𝐿𝑢(𝑡) ≡ 𝑢′(𝑡) + 𝑎𝖧𝑢(𝑡) = ℎ(𝑡) ∶= sin 𝑎𝑡, 𝑢(0) = 0, (5.4.1)

where 𝑎 > 0. Composing the operator 𝐿 = 𝐷 +𝑎𝖧 with the operator 𝑅 = 𝐷 −𝑎𝖧 we obtain

𝑆 = 𝑅𝐿 = 𝐷2 +𝑎2, the harmonic oscillator operator. The extra boundary conditions obtained

applying 𝑅 are 𝑢′(0) − 𝑎𝖧𝑢(0) = 0. The general solution to the problem 𝑢″(𝑡) + 𝑎2𝑢(𝑡) =
𝑅ℎ(𝑡) = 2𝑎 cos 𝑎𝑡, 𝑢(0) = 0 is given by

𝑣(𝑡) = ∫u�
0

sin (𝑎 [𝑡 − 𝑠])
𝑎 𝑅ℎ(𝑠) d 𝑠 + 𝛼 sin 𝑎𝑡 = (𝑡 + 𝛼) sin 𝑎𝑡,

where 𝛼 is a real constant. Hence,

𝖧𝑣(𝑡) = −(𝑡 + 𝛼) cos 𝑎𝑡.

If we impose the boundary conditions 𝑣′(0) − 𝑎𝖧𝑣(0) = 0 then we get 𝛼 = 0. Hence, the
unique solution of problem (5.4.1) is

𝑢(𝑡) = 𝑡 sin 𝑎𝑡.

Remark 5.4.5. It can be checked that the kernel of 𝐷 + 𝑎𝖧 (𝑎 > 0) is spanned by sin 𝑡 and
cos 𝑡 and, also, the kernel of 𝐷 − 𝑎𝖧 is just 0. This defies, in the line of Remark 5.2.6, the usual

relation between the degree of the operator and the dimension of the kernel which is held for

ordinary differential equations, that is, the operator of a linear ordinary differential equation

of order 𝑛 has a kernel of dimension 𝑛. In this case we have the order one operator 𝐷 + 𝑎𝖧
with a dimension two kernel and the injective order one operator 𝐷 − 𝑎𝖧.

Now, we consider operators with reflection and Hilbert transforms, and denote the algebra

as ℝ[𝐷, 𝖧, 𝜑∗]. We can again state a reduction Theorem.

Theorem 5.4.6. Take

𝐿 = ∑
u�

𝑎u�𝜑∗𝖧𝐷u� + ∑
u�

𝑏u�𝖧𝐷u� + ∑
u�

𝑐u�𝜑∗𝐷u� + ∑
u�

𝑑u�𝐷u� ∈ ℝ[𝐷, 𝖧, 𝜑∗]

and define

𝑅 = ∑
u�

𝑎u�𝜑∗𝖧𝐷u� + ∑
u�

(−1)u�𝑏u�𝖧𝐷u� + ∑
u�

𝑐u�𝜑∗𝐷u� − ∑
u�

(−1)u�𝑑u�𝐷u�.

Then 𝐿𝑅 = 𝑅𝐿 ∈ ℝ[𝐷].

5.4.1 Hyperbolic numbers as operators

Finally, we use the same idea behind the isomorphism Ξ to construct an operator algebra iso-

morphic to the algebra of polynomials on the hyperbolic numbers.

The hyperbolic numbers† are defined, in a similar way to the complex numbers, as follows,

𝔻 = {𝑥 + 𝑗𝑦 ∶ 𝑥, 𝑦 ∈ ℝ, 𝑗��∈ℝ, 𝑗2 = 1}.
†See [6, 166] for an introduction to hyperbolic numbers and some of their properties and applications.
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The arithmetic in 𝔻 is that obtained assuming the commutative, associative and distributive

properties for the sum and product. In a parallel fashion to the complex numbers, if 𝑤 ∈ 𝔻,

with 𝑤 = 𝑥 + 𝑗𝑦, we can define

𝑤 ∶= 𝑥 − 𝑗𝑦, ℜ(𝑤) ∶= 𝑥, ℑ(𝑤) ∶= 𝑦,

and, since 𝑤𝑤 = 𝑥2 − 𝑦2 ∈ ℝ, we set

|𝑤| ∶= √|𝑤𝑤|,

which is called the Minkowski norm. It is clear that |𝑤1𝑤2| = |𝑤1||𝑤2| for every 𝑤1, 𝑤2 ∈ 𝔻
and, if |𝑤| ≠ 0, then 𝑤−1 = 𝑤/|𝑤|2. If we add the norm

‖𝑤‖ = √2(𝑥2 + 𝑦2),

we have that (𝔻, ‖⋅‖) is a Banach algebra, so the exponential and the hyperbolic trigonometric

functions are well defined. Although, unlike ℂ, 𝔻 is not a division algebra (not every nonzero

element has an inverse), we can derive calculus (differentiation, integration, holomorphic func-

tions…) for 𝔻 as well [6].

In this setting, we want to derive an operator 𝐽 defined on a suitable space of functions

such that satisfies the same algebraic properties as the hyperbolic imaginary unity 𝑗. In other

words, we want the map

ℝ[𝐷, 𝐽] 𝔻[𝐷]

∑
u�

(𝑎u�𝐽 + 𝑏u�)𝐷u� ∑
u�

(𝑎u� 𝑗 + 𝑏u�)𝐷u�

Θ

to be an algebra isomorphism. This implies:

• 𝐽 is a linear operator,

• 𝐽��∈ℝ[𝐷].

• 𝐽2 = Id, that is, 𝐽 is an involution,

• 𝐽𝐷 = 𝐷𝐽.

There is a simple characterization of linear involutions on a vector space: every linear involution

𝐽 is of the form

𝐽 = ±(2𝑃 − Id)

where 𝑃 is a projection operator, that is, 𝑃2 = 𝑃. It is clear that ±(2𝑃 − Id) is, indeed a

linear operator and an involution. On the other hand, it is simple to check that, if 𝐽 is a linear

involution, 𝑃 ∶= (±𝐽 + Id)/2 is a projection, so 𝐽 = ±(2𝑃 − Id).
Hence, it is sufficient to look for a projection 𝑃 commuting with de derivative.
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Example 5.4.7. Consider the space 𝑊 = L2([−𝜋, 𝜋]) and define

𝑃𝑓 (𝑡) ∶= ∑
u�∈ℕ

∫u�
−u�

𝑓 (𝑠) cos(2 𝑛 𝑠) d 𝑠 cos(2 𝑛 𝑡) for every𝑓 ∈ 𝑊,

that is, take only the sumover the even coefficients of the Fourier series of 𝑓 . Clearly𝑃𝐷 = 𝐷𝑃.

𝐽 ∶= 2𝑃 − Id satisfies the aforementioned properties.

The algebra ℝ[𝐷, 𝐽], being isomorphic to 𝔻[𝐷], satisfies also very good algebraic prop-

erties (see, for instance, [146]). In order to get an analogous theorem to Theorem 5.1.1 for the

algebra ℝ[𝐷, 𝐽] it is enough to take, as in the case of ℝ[𝐷, 𝐽], 𝑅 = Θ−1(Θ(𝐿)).





6. An application to the 𝜑-Laplacian

This chapter is devoted to the study of the existence and periodicity of solutions of initial differ-

ential problems, paying special attention to the explicit computation of the period. These prob-

lems are also connected with some particular initial and boundary value problems with reflec-

tion, which allows us to prove existence of solutions of the latter using the existence of the

first.

Let us consider the problems (3.1.1) and (3.1.2) again for a differentiable involution 𝜑. Ob-

serve that, from problem (3.1.6), we have that

0 = 𝑥″(𝑡)
𝑓 ′(𝑓 −1(𝑥′(𝑡)))

− 𝑓 (𝑥(𝑡))𝜑′(𝑡) = (𝑓 −1)′(𝑥′(𝑡))𝑥″(𝑡) − 𝑓 (𝑥(𝑡))𝜑′(𝑡)

=(𝑓 −1 ∘ 𝑥′)′(𝑡) − 𝑓 (𝑥(𝑡))𝜑′(𝑡).

So, clearly, problem (3.1.6) is equivalent to the problem

(𝑓 −1 ∘ 𝑥′)′(𝑡) − 𝜑′(𝑡)𝑓 (𝑥(𝑡)) = 0, 𝑥(𝑎) = 𝑥(𝑏), 𝑥′(𝑎) = 𝑓 (𝑥(𝑎)). (6.0.1)

Which involves the 𝑓 −1-Laplacian (𝑓 −1 ∘ 𝑥′)′, although, contrary to most literature, the other

term in the equation does not involve 𝑓 −1 but 𝑓 . As we will see, this is not more than a further

generalization in the line of the 𝑝-𝑞-Laplacian.
Problems concerning the 𝜑-Laplacian (or, particularly, the 𝑝-Laplacian) have been studied

extensively in recent literature. Drábek, Manásevich and others study the eigenvalues of prob-

lems with the 𝑝-Laplacian in [15, 61, 63, 64, 145] using variational methods. The existence of

positive solutions is treated in [62], the existence of an exact number of solutions in [154] and

topological existence results can be found in [55]. Anti-maximumprinciples and sign properties

of the solutions are studied in [32, 36]. In [49] the authors study a variant of the 𝑝-Laplacian
equation with an approach based on variational methods, in [16] they study the eigenvalues

of the Dirichlet problem and in [60] they find some oscillation criteria for equations with the

𝑝-Laplacian.
The 𝜑-Laplacian is studied from different points of view in several papers, e. g. [2,9–13,33,

38,48, 53, 54, 86, 110,127,136]. Actually, if we consider the problem with the 𝑓 −1-Laplacian

(𝑓 −1 ∘ 𝑥′
u�)′(𝑡) + 𝑓 (𝑥u�(𝑡)) = 0, 𝑥u�(𝑎) = 𝑐, 𝑥′

u�(𝑎) = 𝑓 (𝑐), (6.0.2)

and we assume there exist 𝑐1, 𝑐2 ∈ ℝ, 𝑐1 < 𝑐2, such that a unique solution of problem (6.0.2)

exists for every 𝑐 ∈ [𝑐1, 𝑐2] and (𝑥u�1
(𝑏) − 𝑐1)(𝑥u�2

(𝑏) − 𝑐2) < 0, then problem (3.1.6)

must have at least a solution due to the continuity of 𝑥u� on 𝑐 and Bolzano’s Theorem. For this

reason we will be interested in studying the properties of problem (6.0.2) and its solutions in

this chapter. In the sections to come we study this problem and more general versions of it.

In the following section wewill study the existence, uniqueness and periodicity of solutions

of problem (6.1.1) and in Section 6.2 we will apply these results to the case of problems with

reflection. The results of this chapter can be found in [42].
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6.1 General solutions

First, we write in a general way the solutions of equations involving the 𝑔-𝑓 -Laplacian.
Let 𝜏u�, 𝜎u� ∈ [−∞, ∞], 𝑖 = 1, … , 4, 𝜏1 < 𝜏2, 𝜎1 < 𝜎2, 𝜏3 < 𝜏4, 𝜎3 < 𝜎4. Let

𝑓 ∶ (𝜏1, 𝜏2) → (𝜎1, 𝜎2) and 𝑔 ∶ (𝜏3, 𝜏4) → (𝜎3, 𝜎4) be invertible functions such that

𝑓 and 𝑔−1 are continuous. Assume there is 𝑠0 ∈ (𝜏1, 𝜏2) such that 𝑓 (𝑠0) = 0 and define

𝐹(𝑡) ∶= ∫u�
u�0

𝑓 (𝑠) d 𝑠. Observe that 𝐹 is 0 at 𝑠0 and of constant sign everywhere else. The

following Lemma is an straightforward application of the properties of the integral.

Lemma 6.1.1. If 𝑓 is continuous, invertible and increasing (decreasing) then 𝐹− ≡ 𝐹|(−∞,u�0] is

strictly decreasing (increasing) and 𝐹+ ≡ 𝐹|[u�0,+∞) is strictly increasing (decreasing). Further-

more, if 𝜏1 = −∞, 𝐹(−∞) = +∞ (−∞) and if 𝜏2 = +∞, 𝐹(+∞) = +∞ (−∞).
All the same, define 𝐺(𝑡) ∶= ∫u�

u�−1({0}) 𝑔−1(𝑠) d 𝑠 and consider the problem

(𝑔 ∘ 𝑥′)′(𝑡) + 𝑓 (𝑥(𝑡)) = 0, a. e. 𝑡 ∈ ℝ, 𝑥(𝑎) = 𝑐1, 𝑥′(𝑎) = 𝑐2, (6.1.1)

for some fixed 𝑐1, 𝑐2 ∈ ℝ.

Definition 6.1.2. A solution 𝑥 of problem (6.1.1) will be 𝑥 ∈ u�1(𝐼), such that 𝑔∘𝑥′ is absolutely

continuous on 𝐼, where 𝐼 is an open interval with 𝑎 ∈ 𝐼. The solution must further satisfy that

the equation in problem (6.1.1) holds a. e. and the initial conditions are satisfied as well.

Theorem 6.1.3. Let 𝑓 ∶ (𝜏1, 𝜏2) → (𝜎1, 𝜎2) and 𝑔 ∶ (𝜏3, 𝜏4) → (𝜎3, 𝜎4) be invertible

functions such that 𝑓 and 𝑔−1 are continuous and assume 0 ∈ (𝜏1, 𝜏2) ∩ (𝜏3, 𝜏4), 𝑓 (0) = 0,
𝑔(0) = 0, 𝑓 and 𝑔 increasing, 𝐹(𝑐1) + 𝐺(𝑔(𝑐2)) < min{𝐺(𝜎3), 𝐺(𝜎4)}. Then there exists
a unique local solution of problem (6.1.1).

Furthermore, if 𝐹(𝑐1) + 𝐺(𝑔(𝑐2)) < min{𝐹(𝜏1), 𝐹(𝜏2)}, then such solution is defined

on the whole real line and is periodic of smallest period

𝑇 ∶= ∫u�−1
+ (u�(u�(u�2))+u�(u�1))

u�−1− (u�(u�(u�2))+u�(u�1))
[ 1

𝑔−1 ∘ 𝐺−1
+ (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1) − 𝐹(𝑟))

− 1
𝑔−1 ∘ 𝐺−1

− (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1) − 𝐹(𝑟))] d 𝑟.
(6.1.2)

Proof. For the first part of the Theorem and without loss of generality, we will prove the exis-

tence of solution in an interval of the kind [𝑎, 𝑎 + 𝛿), 𝛿 ∈ ℝ+. The proof would be analogous

for an interval of the kind (𝑎 − 𝛿, 𝑎].
Let 𝑦(𝑡) = 𝑔(𝑥′(𝑡)). Then problem (6.1.1) is equivalent to

𝑥′(𝑡) = 𝑔−1(𝑦(𝑡)), 𝑦′(𝑡) = − 𝑓 (𝑥(𝑡)), 𝑡 ∈ ℝ 𝑥(𝑎) = 𝑐1, 𝑦(𝑎) = 𝑔(𝑐2).

Hence,

𝑓 (𝑥(𝑡))𝑥′(𝑡) + 𝑔−1(𝑦(𝑡))𝑦′(𝑡) = 0, 𝑡 ∈ ℝ,
so, integrating both sides from 𝑎 to 𝑡,

𝐹(𝑥(𝑡)) + 𝐺(𝑦(𝑡)) = 𝑘, 𝑡 ∈ ℝ,
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where 𝑘 = 𝐹(𝑐1) + 𝐺(𝑔(𝑐2)). That is, undoing the change of variables,

𝐺(𝑔(𝑥′(𝑡))) = 𝐺(𝑔(𝑐2)) + 𝐹(𝑐1) − 𝐹(𝑥(𝑡)), 𝑡 ∈ ℝ. (6.1.3)

If 𝑐1 = 𝑐2 = 0 it is clear that the only possible solution is 𝑥 ≡ 0 for, in that case,

𝐺(𝑔(𝑥′(𝑡))) + 𝐹(𝑥(𝑡)) = 0 and, since 𝐺 and 𝐹 are nonnegative and increasing, 𝑥′(𝑡) =
𝑥(𝑡) = 0 for 𝑡 ∈ ℝ. Assume, without loss of generality, that 𝑐2 is nonnegative and 𝑐1 negative

(the other cases are similar). If 𝑐2 = 0 then, integrating (6.1.1),

𝑔 ∘ 𝑥′(𝑡) = − ∫u�
u�

𝑓 (𝑥(𝑠)) d 𝑠,

which implies 𝑥′ is positive in some interval [𝑎, 𝑎 + 𝛿).
If 𝑐2 is positive, then 𝑥′ has to be positive at least in some neighborhood of 𝑎, so, in a right

neighborhood of 𝑎, we can solve for 𝑔 ∘ 𝑥′ in (6.1.3) as

𝑔 ∘ 𝑥′(𝑡) = 𝐺−1
+ (𝐹(𝑐1) − 𝐹(𝑥(𝑡)) + 𝐺(𝑔(𝑐2))). (6.1.4)

In order to solve for 𝑥′ in (6.1.4), we need 𝐹(𝑐1) + 𝐺(𝑔(𝑐2)) < 𝐺(𝜎4). Then,

𝑥′(𝑡) = 𝑔−1 ∘ 𝐺−1
+ (𝐹(𝑐1) − 𝐹(𝑥(𝑡)) + 𝐺(𝑔(𝑐2))). (6.1.5)

Integrating between 𝑎 and 𝑡,

𝑡 = ∫u�
u�

𝑥′(𝑠)
𝑔−1 ∘ 𝐺−1

+ (𝐹(𝑐1) − 𝐹(𝑥(𝑠)) + 𝐺(𝑔(𝑐2)))
d 𝑠 + 𝑎 = 𝐻+(𝑥(𝑡)),

where

𝐻+(𝑟) ∶= ∫u�
u�1

1
𝑔−1 ∘ 𝐺−1

+ (𝐹(𝑐1) − 𝐹(𝑠) + 𝐺(𝑔(𝑐2)))
d 𝑠 + 𝑎.

𝐻+ is strictly increasing in its domain due to the positivity of the denominator in the integrand.

Hence, for 𝑡 sufficiently close to 𝑎,

𝑥(𝑡) = 𝐻−1
+ (𝑡).

Therefore, a solution of problem (6.1.1) exists and is unique (by construction) on an interval

[𝑎, 𝑎 + 𝛿).
If we assume 𝐹(𝑐1) + 𝐺(𝑔(𝑐2)) < min{𝐹(𝜏1), 𝐹(𝜏2)}, 𝑐2 > 0 (the case 𝑐2 = 0 is

similar), 𝐻+ is well defined on

𝐼 ∶= (𝐹−1
− (𝐹(𝑐1) + 𝐺(𝑔(𝑐2))), 𝐹−1

+ (𝐹(𝑐1) + 𝐺(𝑔(𝑐2)))) .

Now, we study the range of 𝐻+.

𝑔(𝑥′(𝑡)) is positive as long as 𝑥′(𝑡) is positive. Hence, consider

𝑡0 ∶= sup{𝑡 ∈ [𝑎, +∞) ∶ 𝑥′(𝑠) > 0 for a. e. 𝑠 ∈ [𝑎, 𝑡)} ∈ [𝑎, +∞].

𝐺 is positive on nonzero values, so equation (6.1.3) implies that

𝐹(𝑥(𝑡)) < 𝐺(𝑔(𝑐2)) + 𝐹(𝑐1)
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for all 𝑡 ∈ (𝑎, 𝑡0).
Assume 𝑡0 = +∞. Now, 𝑥′(𝑡) > 0 a. e. in [𝑎, +∞) so there exists

𝑥(+∞) ∈ (𝑐1, 𝐹−1
+ (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1))] .

On the other hand, since 𝑥 is increasing in [𝑎, +∞) and 𝑐1 < 0, by equation (6.1.5) we

have that 𝑥′ is increasing as long as 𝑥 is negative. This means that, eventually (in finite time),

𝑥 will be positive and therefore, 𝑥′ is decreasing in [ ̃𝑎, +∞) for ̃𝑎 big enough, so there exists

𝑥′(+∞) ≥ 0. If we assume 𝑥′(+∞) = 𝜖 > 0, this implies that 𝑥(+∞) = +∞, for there

would exist 𝑀 ∈ ℝ such that 𝑥′(𝑡) > 𝜖/2 for every 𝑡 ≥ 𝑀, so 𝑥′(+∞) = 0. Taking the limit

𝑡 → +∞ in equation (6.1.3), 𝑥(+∞) = 𝐹−1
+ (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1)).

Now, take 𝜖 ∈ (0, 𝑓 (𝑥(+∞))). Since 𝑔 ∘ 𝑥′(+∞) = 0 and 𝑔 ∘ 𝑥′ is continuous and

decreasing in [ ̃𝑎, +∞), there exists 𝑀 ∈ ℝ+ such that |𝑔(𝑥′(𝑀2)) − 𝑔(𝑥′(𝑀1))| < 𝜖 for

every 𝑀1, 𝑀2 > 𝑀. Since 𝑓 is continuous, there exits �̃� > 𝑀 such that 𝑓 (𝑥(𝑀3)) > 𝜖 for

every 𝑀3 > �̃�. Take 𝑀3 in such a way. Then, integrating equation (6.1.1) between 𝑀3 and

𝑀3 + 1,
(𝑔 ∘ 𝑥′)(𝑀3 + 1) − (𝑔 ∘ 𝑥′)(𝑀3) = ∫u�3+1

u�3
𝑓 (𝑥(𝑠)) d 𝑠 > 𝜖,

a contradiction. Therefore, 𝑡0 ∈ ℝ.

Observe that 𝑥′(𝑡0) = 0, so 𝑥 attains its maximum at 𝑡0 and 𝑥(𝑡0) = 𝐹−1
+ (𝐺(𝑔(𝑐2)) +

𝐹(𝑐1)) by equation (6.1.3), that is, 𝑥(𝑡0) = sup 𝐼. In order for this value to be well defined it

is necessary that 𝐺(𝑔(𝑐2)) + 𝐹(𝑐1) ≤ 𝐹(𝜏2).
Now, we have that 𝐻+ is well defined at sup 𝐼 (assuming it is defined continuous at that

point). Indeed,

𝑡0 = lim
u�→u�0

𝐻+(𝑥(𝑡)) = 𝐻+(𝐹−1
+ (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1))).

We prove now that there is a neighborhood (𝑡0, 𝑡0 +𝜖)where 𝑥′ is negative, whichmeans that

we can take

𝑡1 ∶= sup{𝑡 ∈ [𝑡0, +∞) ∶ 𝑥′(𝑠) < 0 for a. e. 𝑠 ∈ [𝑡0, 𝑡)}.

Fix 𝜉 such that 0 < 𝜉 < 𝑓 (𝑥(𝑡0)) and take 𝜖 such that 𝑓 (𝑥(𝑡)) > 𝜉 in (𝑡0, 𝑡0 + 𝜖). Take
𝑡 ∈ (𝑡0, 𝑡0 + 𝜖), then, integrating equation (6.1.1) between 𝑡0 and 𝑡,

𝑔(𝑥′(𝑡)) = − ∫u�
u�0

𝑓 (𝑥(𝑠)) d 𝑠 < −𝜉(𝑡 − 𝑡0) < 0.

We deduce that 𝑡1 < +∞ by the same kind of reasoning we used to prove 𝑡0 < +∞. Observe

that 𝑥′(𝑡1) = 0 and 𝑥(𝑡1) = 𝐹−1
− (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1)). This last equality comes from eval-

uating equation (6.1.3) at 𝑡1 and Rolle’s Theorem as we show now: the other possibility would

be 𝑥(𝑡1) = 𝐹−1
+ (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1)). Observe that, by equation (6.1.5), 𝑥′ is continuous, so

𝑥 ∈ u�1([𝑎, 𝑡1)). Since 𝑥(𝑡0) = 𝑥(𝑡1), there would exist ̃𝑡 ∈ (𝑡0, 𝑡1) such that 𝑥′( ̃𝑡) = 0, a
contradiction.

Now, we have that 𝑥′(𝑡) = 𝑔−1 ∘ 𝐺−1
− (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1) − 𝐹(𝑥(𝑡))), that is,

1 = 𝑥′(𝑡)/(𝑔−1 ∘ 𝐺−1
− )(𝐺(𝑔(𝑐2)) + 𝐹(𝑐1) − 𝐹(𝑥(𝑡))).
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Thus,

𝑡1 − 𝑡0 = ∫u�1

u�0

𝑥′(𝑠) d 𝑠
𝑔−1 ∘ 𝐺−1

− (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1) − 𝐹(𝑥(𝑠)))

= ∫u�−1
− (u�(u�(u�2))+u�(u�1))

u�−1
+ (u�(u�(u�2))+u�(u�1))

d 𝑟
𝑔−1 ∘ 𝐺−1

− (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1) − 𝐹(𝑟))
.

If we define

𝐻−(𝑠) ∶= ∫u�
u�−1

+ (u�(u�(u�2))+u�(u�1))
d 𝑟

𝑔−1 ∘ 𝐺−1
− (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1) − 𝐹(𝑟))

+ 𝑡0,

𝐻− is strictly decreasing in its domain and 𝑥(𝑡) = 𝐻−1
− (𝑡) for 𝑡 ∈ [𝑡0, 𝑡1].

We can again deduce that

𝑡2 ∶= sup{𝑡 ∈ [𝑡1, +∞) ∶ 𝑥′(𝑠) > 0 for a. e. 𝑠 ∈ [𝑡1, 𝑡)} < +∞.

Using the positivity and growth conditions of the functions involved, it is easy to check that

𝑥(𝑡1) = 𝐹−1
− (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1)) < 𝑐1 < 𝐹−1

+ (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1)) = 𝑥(𝑡2), so there

exists a unique 𝑏 ∈ (𝑡1, 𝑡2) such that 𝑥(𝑏) = 𝑐1. Now,

𝑏 − 𝑡1 = ∫u�
u�1

𝑥′(𝑠) d 𝑠
𝑔−1 ∘ 𝐺−1

+ (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1) − 𝐹(𝑥(𝑠)))

= ∫u�1

u�−1− (u�(u�(u�2))+u�(u�1))
d 𝑟

𝑔−1 ∘ 𝐺−1
+ (𝐺(𝑔(𝑐2)) + 𝐹(𝑐1) − 𝐹(𝑟))

.

Defining 𝑇 ∶= 𝑏 − 𝑎 and extending 𝑥 periodically in the following way (we have 𝑥 already

defined in [𝑎, 𝑎 + 𝑇]),
𝑥(𝑡) = 𝑥 (𝑡 − ⌊𝑡 − 𝑎

𝑇 ⌋ 𝑇) ,

where ⌊𝑡⌋ ∶= sup{𝑘 ∈ ℤ ∶ 𝑘 ≤ 𝑡}, it is easy to check that 𝑥, extended in such a way, is a

global periodic solution of problem (6.1.1).

Take 𝑧(𝑡) ∶= 𝑥(𝑡 − 𝑇), 𝑡 ∈ ℝ, we show that 𝑧 is a solution of the problem in [𝑎 + 𝑇, 𝑎 +
2𝑇].

0 = (𝑔 ∘ 𝑥′)′(𝑡) + 𝑓 (𝑥(𝑡)) = (𝑔 ∘ 𝑧′)′(𝑡 + 𝑇) + 𝑓 (𝑧(𝑡 + 𝑇)) for a. e. 𝑡 ∈ ℝ

This is equivalent to

(𝑔 ∘ 𝑧′)′(𝑡) + 𝑓 (𝑧(𝑡)) = 0 for a. e 𝑡 ∈ ℝ.

Also,

𝑧(𝑎 + 𝑇) = 𝑥(𝑎) = 𝑐1,
𝑧′(𝑎 + 𝑇) = 𝑥′(𝑎) = 𝑐2.

�

Remark 6.1.4. A similar argument can be done for the case 𝑓 and 𝑔 have different growth type

(e. g. 𝑓 increasing and 𝑔 decreasing), but taking the negative branch of the inverse function

𝐺−1 in (6.1.5).
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Remark 6.1.5. In the hypotheses of Theorem6.1.3, if instead of𝑔(0) = 𝑓 (0) = 0wehave that

𝑔(𝑠0) = 𝑓 (𝑠0) = 0, define ̃𝑓 (𝑥) ∶= 𝑓 (𝑥 + 𝑠0), ̃𝑔(𝑥) ∶= 𝑔(𝑥 + 𝑠0). Then ̃𝑓 (0) = ̃𝑔(0) = 0
and problem (6.1.1) is equivalent to

( ̃𝑔 ∘ 𝑣′)′(𝑡) + ̃𝑓 (𝑣(𝑡)) = 0, 𝑣(𝑎) = 𝑐1 − 𝑠0, 𝑣(𝑎) = 𝑐2,

with 𝑣(𝑡) = 𝑥(𝑡) − 𝑠0. Hence, we can apply Theorem 6.1.3 to this case.

Remark 6.1.6. Using the notation of Theorem6.1.3, the explicit formof the solution of problem

(6.1.1) is given by

𝑥(𝑡) =
⎧{{
⎨{{⎩

𝐻−1
+ (𝑡 − ⌊𝑡 − 𝑎

𝑇 ⌋ 𝑇) , 𝑡 ∈ [𝑎 + 2𝑇𝑘, 𝑎 + (2𝑘 + 1)𝑇], 𝑘 ∈ ℤ,

𝐻−1
− (𝑡 − ⌊𝑡 − 𝑎

𝑇 ⌋ 𝑇) , 𝑡 ∈ [𝑎 + (2𝑘 − 1)𝑇, 𝑎 + 2𝑘𝑇], 𝑘 ∈ ℤ,

Remark 6.1.7. Consider the following particular case of problem (6.1.1)with 𝑓 (0) = 0, 𝑔(0) =
0, 𝑓 and 𝑔 increasing and the hypothesis for a unique global solution of the following problem

are satisfied in Theorem 6.1.3.

(𝑔 ∘ 𝑥′)′(𝑡) + 𝑓 (𝑥(𝑡)) = 0, 𝑥(0) = 0, 𝑥′(0) = 1. (6.1.6)

It is clear that, in the case 𝑔(𝑥) = 𝑓 (𝑥) = 𝑥, the unique solution of problem (6.1.6) is sin(𝑡),
which suggests the definition of the sinu�,u� function as the unique solution of problem (6.1.6)

for general 𝑔 and 𝑓 . Correspondingly,

arcsin+
u�,u� (𝑟) ∶= 𝐻+(𝑟).

This function, defined as such, coincides with the arcsinu� function defined in [24, 115] for

the 𝑝-Laplacian 𝑓 (𝑥) = 𝑔(𝑥) = |𝑥|u�−2𝑥, the function arcsinu�,u� defined in [14,65,108] for the

𝑝-𝑞-Laplacian 𝑓 (𝑥) = |𝑥|u�−2𝑥, 𝑔(𝑥) = |𝑥|u�−2𝑥, which first appearedwith a slightly different de-
finition in [64], and the hyperbolic version of this function, also in [14,108], which corresponds

to the case 𝑓 (𝑥) = |𝑥|u�−2𝑥, 𝑔(𝑥) = −|𝑥|u�−2𝑥. [164] derives generalized Jacobian functions in

a similar way, defining

arcsnu�,u�(𝑡, 𝑘) ∶= ∫u�
0

1
u�√(1 − 𝑠u�)(1 − 𝑘u�𝑠u�)

d 𝑠,

of which the inverse (see [164, Proposition 3.2]) is precisely a solution of

(𝑓u� ∘ 𝑥′(𝑡))′ + 𝑞
𝑝∗ 𝑓u�(𝑥(𝑡))(1 + 𝑘u� − 2𝑘u�|𝑥(𝑡)|u�) = 0,

where 𝑓u� is the 𝑟-Laplacian for 𝑟 = 𝑝, 𝑞 and 𝑝∗𝑝 = 𝑝∗ + 𝑝. Observe that this case is also

covered by our definition.

In all of the aforementioned works they are interested on the inverse of the arcsinu�,u� func-

tion, the sinu�,u� function, which they extend to the whole real line by symmetry and periodicity.

Observe that in our case 𝑓 and 𝑔 need not to be odd functions, contrary to the above examples,

but we can still give the definition of the sinu�,u� function in the whole real line. Also, this lack

of symmetry gives rise to a richer set of right inverses of sinu�,u� , for instance,
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arcsin−
u�,u� (𝑟) ∶= 𝐻−(𝑟).

In general, if we have a problem of the kind

Φ((𝑔 ∘ 𝑥′)′, 𝑥(𝑡)) = 0; 𝑥(0) = 0, 𝑥′(0) = 1,

and we know it has a unique solution in a neighborhood of 0, then we can define sinu�,Φ as

such unique solution and its inverse, in a neighborhood of 0, arcsinu�,Φ.

6.1.1 A particular case

Having in mind problem (6.0.2), we now consider a particular case of problem (6.1.1) for the

rest of this section. Assume 𝑓 is invertible and both 𝑓 and 𝑓 −1 are continuous. For convenience,

assume also that 𝑓 is increasing and 𝑓 (0) = 0. Consider the following problem.

(𝑓 −1 ∘ 𝑥′)′(𝑡) + 𝜆 𝑓 (𝑥(𝑡)) = 0, 𝑥(𝑎) = 𝑐, 𝑥′(𝑎) = 𝑓 (𝑐), (6.1.7)

where 𝜆 ∈ ℝ+.

The following corollary is just the restatement of Theorem 6.1.3 for this particular case.

Corollary 6.1.8. Let 𝑓 ∶ (𝜏1, 𝜏2) → (𝜎1, 𝜎2) be an invertible function such that 𝑓 is con-

tinuous and assume 0 ∈ (𝜏1, 𝜏2), 𝑓 (0) = 0 and 𝑓 increasing, 𝜆 > 0, (1 + 𝜆)𝐹(𝑐) <
min{𝐹(𝜏1), 𝐹(𝜏2)}. Then there exists a unique local solution of problem (6.1.7).

Furthermore, if (1 + 𝜆−1)𝐹(𝑐) < min{𝐹(𝜏1), 𝐹(𝜏2)}, then such solution is defined on

ℝ and is periodic of first period

𝑇 ∶= ∫u�−1
+ ((1+u�−1)u�(u�))

u�−1− ((1+u�−1)u�(u�))
[ 1

𝑓 (𝐹−1
+ ((1 + 𝜆)𝐹(𝑐) − 𝜆 𝐹(𝑟)))

− 1
𝑓 (𝐹−1

− ((1 + 𝜆)𝐹(𝑐) − 𝜆 𝐹(𝑟)))] d 𝑟.
(6.1.8)

There are some particular cases where the formula (6.1.8) can be simplified.

If 𝑓 is odd then𝐹 is even and, with the change of variables 𝑟 = |𝑐| 𝑠, we have that expression
(6.1.8) becomes

𝑇 = ∫
u�−1

+ ((1+u�−1)u�(u�))
|u�|

0
4 |𝑐| d 𝑟

𝑓 (𝐹−1
+ ((1 + 𝜆)𝐹(𝑐) − 𝜆 𝐹(|𝑐| 𝑟)))

.

Also, if we further assume that 𝑓 is defined in ℝ and that 𝑓 (𝑟𝑡) = ℎ(𝑟)𝑓 (𝑡) for every

𝑟, 𝑡 ∈ ℝ (see Remark 6.1.10 for a classification of such functions) and some function ℎ, then

𝐹(𝑟𝑡) = ∫u�u�
0

𝑓 (𝑠) d 𝑠 = ∫u�
0

𝑓 (𝑟𝑠)𝑟 d 𝑠 = 𝑟 ℎ(𝑟) ∫u�
0

𝑓 (𝑠) d 𝑠 = 𝑟ℎ(𝑟)𝐹(𝑡),

so 𝐹 satisfies the same kind of property for ℎ̃(𝑟) = 𝑟 ℎ(𝑟).
Clearly, for 𝑡 > 0,

𝐹−1
− (ℎ̃(𝑟)𝑡) = 𝑟 𝐹−1

− (𝑡), 𝐹−1
+ (ℎ̃(𝑟)𝑡) = 𝑟 𝐹−1

+ (𝑡).
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Observe that ℎ̃(𝑟) = 𝐹(𝑟)/𝐹(1), and therefore ℎ̃|(−∞,0], ℎ̃|[0,+∞) are invertible. Also, ℎ̃−1
+ (𝑡) =

𝐹−1
+ (𝑡 𝐹(1)) for 𝑡 > 0. Hence,

𝐹−1
+ ((1 + 𝜆−1)𝐹(𝑐))

|𝑐| =
𝐹−1

+ (ℎ̃(ℎ̃−1
+ (1 + 𝜆−1))𝐹(𝑐))

|𝑐| =
ℎ̃−1

+ (1 + 𝜆−1)𝐹−1
+ (𝐹(𝑐))

|𝑐|
= ℎ̃−1

+ (1 + 𝜆−1) = 𝐹−1
+ ((1 + 𝜆−1)𝐹(1)).

All the same, 𝐹−1
− ((1 + 𝜆−1)𝐹(𝑐))/|𝑐| = −𝐹−1

− ((1 + 𝜆−1)𝐹(1)).
Also,

𝑓 (𝐹−1
+ ((1 + 𝜆)𝐹(𝑐) − 𝜆 𝐹(|𝑐| 𝑟))) = 𝑓 (𝐹−1

+ ((1 + 𝜆)ℎ̃(|𝑐|)𝐹(1) − 𝜆 ℎ̃(|𝑐|)𝐹(𝑟)))
=𝑓 (𝐹−1

+ (ℎ̃(|𝑐|)[(1 + 𝜆)𝐹(1) − 𝜆 𝐹(𝑟))]) = 𝑓 (|𝑐| 𝐹−1
+ ((1 + 𝜆)𝐹(1) − 𝜆 𝐹(𝑟)))

=ℎ(|𝑐|)𝑓 (𝐹−1
+ ((1 + 𝜆)𝐹(1) − 𝜆 𝐹(𝑟)))

=(𝑓 (|𝑐|)/𝑓 (1))𝑓 (𝐹−1
+ ((1 + 𝜆)𝐹(1) − 𝜆 𝐹(𝑟))).

With these considerations in mind, we have that we can further reduce expression (6.1.8)

to

𝑇(𝑐, 𝜆) = 4|𝑐|𝑓 (1)
𝑓 (|𝑐|) ∫u�−1

+ ((1+u�−1)u�(1))
0

d 𝑟
𝑓 (𝐹−1

+ ((1 + 𝜆)𝐹(1) − 𝜆 𝐹(𝑟)))
.

Example 6.1.9. Let 𝑓 (𝑡) ∶= |𝑡|u�−2𝑡, 𝑝 > 1. Then

𝑇(𝑐, 𝜆, 𝑝) = 4 |𝑐|2−u� ∫(1+u�−1)
1
u�

0
[1 + 𝜆 − 𝜆 𝑟u�]

1−u�
u� d 𝑟.

Observe that with the change of variable 𝑟 = (1 + 𝜆−1)
1
u� 𝑠 we have that

𝑇(𝑐, 𝜆, 𝑝) = 4 |𝑐|2−u� ∫1
0

(1 + 𝜆−1)
1
u� [(1 + 𝜆)(1 − 𝑠u�)]

1−u�
u� d 𝑠

= 4 |𝑐|2−u�𝜆− 1
u� (1 + 𝜆)

2
u� −1 ∫1

0
(1 − 𝑠u�)

1−u�
u� d 𝑠

= 4 |𝑐|2−u�𝜆− 1
u� (1 + 𝜆)

2
u� −1

Γ (1
u�)

2

𝑝 Γ (2
u�)

.

𝑇 is increasing on |𝑐| if 𝑝 ∈ (1, 2) and decreasing on |𝑐| if 𝑝 > 2 and independent of |𝑐| if
𝑝 = 2.

If we take 𝜆 = 1,

𝑇(𝑐, 1, 𝑝) = 2
2
u� +1 |𝑐|2−u�

Γ (1
u�)

2

𝑝 Γ (2
u�)

.

In particular, 𝑇(𝑐, 1, 2) = 2𝜋 (independently of 𝑐).
We can also consider the dependence of 𝑇 on 𝜆. We do this study for this particular ex-

ample and in the following section we develop a general theory.

𝜕𝑇
𝜕𝜆

(𝑐, 𝜆, 𝑝) = −4 |𝑐|2−u�

𝑝𝜆 (1 + 1
𝜆)

1
u� (1 + 𝜆)

1−2u�
u� (1 + (𝑝 − 1)𝜆) ∫1

0
(1 − 𝑠u�)

1−u�
u� d 𝑠 < 0.

Therefore the period 𝑇 is decreasing on 𝜆.
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Remark 6.1.10. If a continuous function 𝑓 satisfies that 𝑓 (𝑟𝑡) = ℎ(𝑟)𝑓 (𝑡), we can obtain

the explicit expression of 𝑓 . Let 𝑐 = 𝑓 (1), 𝑔(𝑡) ∶= 𝑓 (𝑡)/𝑓 (1) and 𝛼 = ln 𝑔(𝑒). Then

𝑔(𝑡 𝑠) = 𝑔(𝑡)𝑔(𝑠). Also, for 𝑡 ≠ 0, 1 = 𝑔(1) = 𝑔(𝑡/𝑡) = 𝑔(𝑡)𝑔(1/𝑡) and therefore

𝑔(𝑡−1) = 𝑔(𝑡)−1. If 𝑛 ∈ ℕ, 𝑔(𝑡u�) = 𝑔(𝑡)u�, so, for 𝑡 ≥ 0, 𝑔(𝑡) = 𝑔(𝑡
u�
u� ) = 𝑔(𝑡

1
u� )u� and

𝑔(𝑡
1
u� ) = 𝑔(𝑡)

1
u� . Hence, 𝑔(𝑡

u�
u� ) = 𝑔(𝑡)

u�
u� for every 𝑝, 𝑞 ∈ ℕ, 𝑞 ≠ 0 and, by the density of ℚ

in ℝ and the continuity of 𝑓 , 𝑔(𝑡u�) = 𝑔(𝑡)u� for all 𝑡 ≥ 0, 𝑟 ∈ ℝ+.

Now, for 𝑡 > 0, 𝑔(𝑡) = 𝑔(𝑒ln u�) = 𝑔(𝑒)ln u� = 𝑒ln u�(u�) ln u� = 𝑡ln u�(u�) = 𝑡u�. Hence, 𝑓 (𝑡) =
𝛽 𝑡u� for 𝑡 ≥ 0. On the other hand, 1 = 𝑔(1) = (𝑔(−1))2, so 𝑔(−1) = ±1. Also, 𝑓 (−𝑡) =
𝑔(−1)𝑓 (𝑡) and thus, 𝑓 (−𝑡) = ±𝛽 𝑡u� for 𝑡 > 0. In summary,

𝑓 (𝑡) =
⎧{
⎨{⎩

𝛽 𝑡u� if 𝑡 ≥ 0,
±𝛽 (−𝑡)u� if 𝑡 < 0.

If we further ask for 𝑓 to be injective, 𝑓 (𝑡) = 𝛽|𝑡|u�−1𝑡, that is, 𝑓 is an 𝛼-laplacian.

6.1.2 Dependence of T on 𝜆 and 𝑐

Based on the approach used in Example 6.1.9, we study now the dependence of 𝑇 on 𝜆 and 𝑐
in a general way. For simplicity, we will assume 𝑐 > 0. For the case 𝑐 < 0, just do the change

of variable 𝑦(𝑡) = −𝑥(𝑡).
We continue to assume the hypotheses for (6.1.7) and further assume that 𝑓 is a differ-

entiable function. Let us divide the interval of integration in equation (6.1.2) in [𝐹−1
− ((1 +

𝜆−1)𝐹(𝑐)), 0] and [0, 𝐹−1
+ ((1 + 𝜆−1)𝐹(𝑐))]. Observe that 𝐹 is injective restricted to any

of the two intervals. For the nonnegative interval, taking the change of variables

𝑟 = 𝐹−1
+ ((1 + 𝜆−1)𝐹(𝑐 𝑠)) ,

we have that

∫u�−1
+ ((1+u�−1)u�(u�))

0
[ 1

𝑓 (𝐹−1
+ ((1 + 𝜆)𝐹(𝑐) − 𝜆 𝐹(𝑟)))

− 1
𝑓 (𝐹−1

− ((1 + 𝜆)𝐹(𝑐) − 𝜆 𝐹(𝑟)))] d 𝑟

= ∫1
0

[ 1
𝑓 (𝐹−1

+ ((1 + 𝜆)[𝐹(𝑐) − 𝐹(𝑐 𝑠)])
− 1

𝑓 (𝐹−1
− ((1 + 𝜆)[𝐹(𝑐) − 𝐹(𝑐 𝑠)])]

⋅ [1 + 𝜆−1]𝑐 𝑓 (𝑐 𝑠)
𝑓 (𝐹−1

+ ((1 + 𝜆−1)𝐹(𝑐 𝑠)))
d 𝑠.

All the same, with the change of variables

𝑟 = 𝐹−1
− ((1 + 𝜆−1)𝐹(𝑐 𝑠)) ,

∫0
u�−1− ((1+u�−1)u�(u�))

[ 1
𝑓 (𝐹−1

+ ((1 + 𝜆)𝐹(𝑐) − 𝜆 𝐹(𝑟)))
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− 1
𝑓 (𝐹−1

− ((1 + 𝜆)𝐹(𝑐) − 𝜆 𝐹(𝑟)))] d 𝑟

= ∫0
1

[ 1
𝑓 (𝐹−1

+ ((1 + 𝜆)[𝐹(𝑐) − 𝐹(𝑐 𝑠)])
− 1

𝑓 (𝐹−1
− ((1 + 𝜆)[𝐹(𝑐) − 𝐹(𝑐 𝑠)])]

⋅ [1 + 𝜆−1]𝑐 𝑓 (𝑐 𝑠)
𝑓 (𝐹−1

− ((1 + 𝜆−1)𝐹(𝑐 𝑠)))
d 𝑠.

Now let, for 𝜆 ∈ ℝ+ and 𝑠 ∈ [0, 1],

𝛼(𝜆, 𝑠, 𝑐) ∶ = (1 + 𝜆−1)𝑐 𝑓 (𝑐 𝑠), 𝜕𝛼
𝜕𝜆

(𝜆, 𝑠, 𝑐) = −𝜆−2𝑐 𝑓 (𝑐 𝑠),

𝛽±(𝜆, 𝑠, 𝑐) ∶ = 𝑓 (𝐹−1
± ((1 + 𝜆−1)𝐹(𝑐 𝑠))) ,

𝜕𝛽±

𝜕𝜆
(𝜆, 𝑠, 𝑐) = −𝜆−2𝐹(𝑐 𝑠)

𝑓 ′ (𝐹−1
± ((1 + 𝜆−1)𝐹(𝑐 𝑠)))

𝑓 (𝐹−1
± ((1 + 𝜆−1)𝐹(𝑐 𝑠)))

,

𝛾±(𝜆, 𝑠, 𝑐) ∶ = 𝑓 (𝐹−1
± ((1 + 𝜆)[𝐹(𝑐) − 𝐹(𝑐 𝑠)])),

𝜕𝛾±

𝜕𝜆
(𝜆, 𝑠, 𝑐) = [𝐹(𝑐) − 𝐹(𝑐 𝑠)]

𝑓 ′ (𝐹−1
± ((1 + 𝜆)[𝐹(𝑐) − 𝐹(𝑐 𝑠)]))

𝑓 (𝐹−1
± ((1 + 𝜆)[𝐹(𝑐) − 𝐹(𝑐 𝑠)]))

.

Then

𝑇(𝜆, 𝑐) = ∫1
0

𝛼(𝜆, 𝑠, 𝑐) [ 1
𝛽+(𝜆, 𝑠, 𝑐)

− 1
𝛽−(𝜆, 𝑠, 𝑐)

] [ 1
𝛾+(𝜆, 𝑠, 𝑐) − 1

𝛾−(𝜆, 𝑠, 𝑐)] d 𝑠.

(6.1.9)

Therefore,

𝜕𝑇
𝜕𝜆

(𝜆, 𝑐) = ∫1
0

{𝜕𝛼
𝜕𝜆

(𝜆, 𝑠, 𝑐) [ 1
𝛽+(𝜆, 𝑠, 𝑐)

− 1
𝛽−(𝜆, 𝑠, 𝑐)

] [ 1
𝛾+(𝜆, 𝑠, 𝑐) − 1

𝛾−(𝜆, 𝑠, 𝑐)]

+ 𝛼(𝜆, 𝑠, 𝑐) ⎡⎢⎢
⎣

u�u�−
u�u� (𝜆, 𝑠, 𝑐)

𝛽−(𝜆, 𝑠, 𝑐)2
−

u�u�+
u�u� (𝜆, 𝑠, 𝑐)

𝛽+(𝜆, 𝑠, 𝑐)2
⎤⎥⎥
⎦

[ 1
𝛾+(𝜆, 𝑠, 𝑐) − 1

𝛾−(𝜆, 𝑠, 𝑐)]

+ 𝛼(𝜆, 𝑠, 𝑐) [ 1
𝛽+(𝜆, 𝑠, 𝑐)

− 1
𝛽−(𝜆, 𝑠, 𝑐)

] ⎡
⎢
⎣

u�u�−
u�u� (𝜆, 𝑠, 𝑐)

𝛾−(𝜆, 𝑠, 𝑐)2 −
u�u�+
u�u� (𝜆, 𝑠, 𝑐)

𝛾+(𝜆, 𝑠, 𝑐)2
⎤
⎥
⎦

⎫}
⎬}⎭

d 𝑠.

Observe that𝛼, 𝑓 |[0,1], 𝑓 ′, 𝐹, 𝐹−1
+ , 𝛽+,

u�u�−
u�u� , 𝛾+,

u�u�+
u�u� are nonnegative, while

u�u�
u�u� , 𝐹−1

− , 𝛽−,
u�u�+
u�u� ,

𝛾−,
u�u�−
u�u� are nonpositive. In general we cannot tell the sign of 𝑇(𝜆, 𝑐) from this expression,

but making certain assumptions we can simplify it to derive information.

Assume now 𝑓 is and odd function. Then 𝐹−1
− = −𝐹−1

+ , 𝛽− = −𝛽+ and 𝛾− = −𝛾+, so

𝜕𝑇
𝜕𝜆

(𝜆, 𝑐) =4 ∫1
0

1
𝛽+(𝜆, 𝑠, 𝑐)𝛾+(𝜆, 𝑠, 𝑐)

[𝜕𝛼
𝜕𝜆

(𝜆, 𝑠, 𝑐)

−𝛼(𝜆, 𝑠, 𝑐) ⎛⎜⎜⎜
⎝

u�u�+
u�u� (𝜆, 𝑠, 𝑐)
𝛽+(𝜆, 𝑠, 𝑐)

+
u�u�+
u�u� (𝜆, 𝑠, 𝑐)
𝛾+(𝜆, 𝑠, 𝑐)

⎞⎟⎟⎟
⎠

⎤⎥⎥
⎦

d 𝑠.
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Now, if we differentiate equation (6.1.9) with respect to 𝑐,

𝜕𝑇
𝜕𝑐

(𝜆, 𝑐) = ∫1
0

{𝜕𝛼
𝜕𝑐

(𝜆, 𝑠, 𝑐) [ 1
𝛽+(𝜆, 𝑠, 𝑐)

− 1
𝛽−(𝜆, 𝑠, 𝑐)

] [ 1
𝛾+(𝜆, 𝑠, 𝑐) − 1

𝛾−(𝜆, 𝑠, 𝑐)]

+ 𝛼(𝜆, 𝑠, 𝑐) ⎡⎢⎢
⎣

u�u�−
u�u� (𝜆, 𝑠, 𝑐)

𝛽−(𝜆, 𝑠, 𝑐)2
−

u�u�+
u�u� (𝜆, 𝑠, 𝑐)

𝛽+(𝜆, 𝑠, 𝑐)2
⎤⎥⎥
⎦

[ 1
𝛾+(𝜆, 𝑠, 𝑐) − 1

𝛾−(𝜆, 𝑠, 𝑐)]

+ 𝛼(𝜆, 𝑠, 𝑐) [ 1
𝛽+(𝜆, 𝑠, 𝑐)

− 1
𝛽−(𝜆, 𝑠, 𝑐)

] ⎡
⎢
⎣

u�u�−
u�u� (𝜆, 𝑠, 𝑐)

𝛾−(𝜆, 𝑠, 𝑐)2 −
u�u�+
u�u� (𝜆, 𝑠, 𝑐)

𝛾+(𝜆, 𝑠, 𝑐)2
⎤
⎥
⎦

⎫}
⎬}⎭

d 𝑠.

Observe that

𝜕𝛼
𝜕𝑐

(𝜆, 𝑠, 𝑐) = (1 + 𝜆−1) [𝑓 (𝑐 𝑠) + 𝑐 𝑠 𝑓 ′(𝑐 𝑠)] ,

𝜕𝛽±

𝜕𝑐
(𝜆, 𝑠, 𝑐) = (1 + 𝜆−1) 𝑠 𝑓 (𝑐 𝑠)

𝑓 ′ (𝐹−1
± ((1 + 𝜆−1)𝐹(𝑐 𝑠)))

𝑓 (𝐹−1
± ((1 + 𝜆−1)𝐹(𝑐 𝑠)))

,

𝜕𝛾±

𝜕𝑐
(𝜆, 𝑠, 𝑐) = (1 + 𝜆)[𝑓 (𝑐) − 𝑠 𝑓 (𝑐 𝑠)]

𝑓 ′ (𝐹−1
± ((1 + 𝜆)[𝐹(𝑐) − 𝐹(𝑐 𝑠)]))

𝑓 (𝐹−1
± ((1 + 𝜆)[𝐹(𝑐) − 𝐹(𝑐 𝑠)]))

.

Hence,
u�u�
u�u� ,

u�u�+
u�u� is positive and

u�u�−
u�u� negative for 𝑐 ≥ 0. Assume now 𝑓 is an odd function.

𝜕𝑇
𝜕𝑐

(𝜆, 𝑐) =4 ∫1
0

1
𝛽+(𝜆, 𝑠, 𝑐)𝛾+(𝜆, 𝑠, 𝑐)

[𝜕𝛼
𝜕𝑐

(𝜆, 𝑠, 𝑐)

−𝛼(𝜆, 𝑠, 𝑐) ⎛⎜⎜⎜
⎝

u�u�+
u�u� (𝜆, 𝑠, 𝑐)
𝛽+(𝜆, 𝑠, 𝑐)

+
u�u�+
u�u� (𝜆, 𝑠, 𝑐)
𝛾+(𝜆, 𝑠, 𝑐)

⎞⎟⎟⎟
⎠

⎤⎥⎥
⎦

d 𝑠.

Example 6.1.11. Let 𝑓 ∶ (−1, 1) → ℝ, 𝑓 (𝑥) ∶= 𝑥/√1 − 𝑥2, 𝑥 ∈ ℝ and consider problem

(6.1.7)†. Then

𝐹(𝑥) = 1 − √1 − 𝑥2, 𝐹−1
+ (𝑥) = √2𝑥 − 𝑥2.

In order for the conditions in Corollary 6.1.8 to be satisfied we need

(1 + 𝜆)𝐹(𝑐) < 1, (1 + 𝜆−1)𝐹(𝑐) < 1,

that is

|𝑐| < min
⎧{
⎨{⎩

√𝜆(𝜆 + 2)
𝜆 + 1 ,

√2𝜆 + 1
𝜆 + 1

⎫}
⎬}⎭

.

In Figure 6.1.1 we plot how the period varies as a function of 𝑐 and 𝜆. Observe how the period

is decreasing in both parameters and limu�,u�→0 𝑇(𝜆, 𝑐) = +∞.

†The diffeomorphisms 𝑓 in this example has been widely studied by Bereanu and Mawhin (see, for instance,

[8, 10]) and is a type of singular 𝜑-Laplacian known as the mean curvature operator of the Minkowski space. Its

inverse, the mean curvature operator of the Euclidean space, also studied in [8], appears in Example 6.1.12.
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Figure 6.1.1: Graph of the period 𝑇 function of 𝑐 and 𝜆.

Example 6.1.12. Let 𝑓 be the bounded 𝜑-Laplacian [8] given by 𝑓 ∶ ℝ → (−1, 1), 𝑓 (𝑥) ∶=
𝑥/√1 + 𝑥2, 𝑥 ∈ ℝ and consider problem (6.1.7). 𝑓 is effectively the inverse function of the

one in the previous example. Then

𝐹(𝑥) = √1 + 𝑥2 − 1, 𝐹−1
+ (𝑥) = √2𝑥 + 𝑥2.

The conditions in Corollary 6.1.8 are satisfied without any further restrictions. In Figure 6.1.2

we plot how the period varies as a function of 𝑐 and 𝜆. Observe in this plot how the period is

decreasing in 𝜆, increasing in 𝑐 and limu�→0 𝑇(𝑐, 𝜆) = limu�→+∞ 𝑇(𝑐, 𝜆) = +∞.

Figure 6.1.2: Graph of the period 𝑇 function of 𝑐 and 𝜆.
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6.2 Problems with reflection

Let us consider again the problem that motivated this chapter, the obtaining of solutions of

problem (3.1.5) in the case 𝜑(𝑡) = −𝑡. Hence, consider again the problems (3.1.1) and (3.1.2)

in the case 𝜑(𝑡) = −𝑡.
Observe that Lemma 3.1.1 (following Remark 3.1.5) can be trivially extended to the follow-

ing lemma.

Lemma 6.2.1. Let 𝑓 ∶ (𝜏1, 𝜏2) → (𝜎1, 𝜎2) an locally Lipschitz a. c. function with a. c. inverse.

Then 𝑥 is a solution of the first order differential equation with involution (3.1.5) if and only if 𝑥
is a solution of the second order ordinary differential equation (3.1.6).

As was previously shown, problem (3.1.6) is equivalent to problem (6.0.1). We can now

state the following corollary of Theorem 6.1.3 regarding the periodicity of problem (3.1.5) as

foreseen at the beginning of the chapter.

Corollary 6.2.2. Let 𝑓 ∶ (𝜏1, 𝜏2) → (𝜎1, 𝜎2) an increasing locally Lipschitz a. c. function with

a. c. inverse such that0 ∈ (𝜏1, 𝜏2), 𝑓 (0) = 0and 𝑐 > 0. Assume2𝐹(𝑐) < min{𝐹(𝜏1), 𝐹(𝜏2)}.
Then, if 𝑥u�(𝑡) is a solution of problem (6.0.2) and we assume there exist 𝑐1, 𝑐2 ∈ ℝ, 𝑐1 < 𝑐2,

such that 2 max{𝐹(𝑐1), 𝐹(𝑐2)} < min{𝐹(𝜏1), 𝐹(𝜏2)} and (𝑥u�1
(𝑏) − 𝑐1)(𝑥u�2

(𝑏) − 𝑐2) <
0, then problem (3.1.5)must have at least a solution.

We now give an example in which there is no need to find 𝑐1, 𝑐2 ∈ ℝ in the conditions of

Corollary 6.2.2 because the function determining the period has a simple inverse.

Example 6.2.3. Take again 𝑓 (𝑡) ∶= |𝑡|u�−2𝑡, 𝑝 > 1, 𝑐 > 0 and consider the problem

𝑥′(𝑡) = |𝑥(−𝑡)|u�−2𝑥(−𝑡), 𝑡 ∈ ℝ, 𝑥(0) = 𝑐. (6.2.1)

By Corollaries 6.1.8 and 6.2.2 and Example 6.1.9, we have that the solutions of are periodic for

every 𝑐 ≠ 0 and

𝑇(𝑐, 1, 𝑝) = 2
2
u� +1 𝑐2−u�

Γ (1
u�)

2

𝑝 Γ (2
u�)

.

Consider now the problem

𝑥′(𝑡) = |𝑥(−𝑡)|u�−2𝑥(−𝑡), 𝑡 ∈ ℝ, 𝑥(𝑎) = 𝑥(𝑏). (6.2.2)

There is a unique solution for problem (6.2.2) for 𝑝 ∈ (2, +∞). Just take the unique solution
of problem (6.2.1) with

𝑐 =
⎛⎜⎜⎜⎜
⎝

𝑏 − 𝑎
2

2
u� +1

𝑝
Γ (2

u�)

Γ (1
u�)

2

⎞⎟⎟⎟⎟
⎠

1
2−u�

.

Observe that for 𝑝 ∈ (0, 2) the function 𝑓 is not locally Lipschitz, and therefore we cannot

apply Lemma 6.2.1.





7. AMathematica implementation

In this chapter we develop an algorithm implemented in Mathematica which allows the ob-

taining of the Green’s function associated to a differential equation with constant coefficients,

reflection and boundary conditions. We also point out possible ways to improve the computa-

tional time of the algorithm based on particular decompositions of the problem. The results in

this chapter were sent for publication [165].

In order to establish a useful framework to work with these equations, we go back to the

notation in Chapter 5. We consider the differential operator 𝐷, the pullback operator of the

reflection 𝜑(𝑡) = −𝑡, denoted by 𝜑∗(𝑢)(𝑡) = 𝑢(−𝑡), and the identity operator, Id.
Let 𝑇 ∈ ℝ+ and 𝐼 ∶= [−𝑇, 𝑇]. We consider again the algebra ℝ[𝐷, 𝜑∗].

7.1 The algorithm

Theorem 5.2.3 gives a way of computing the Green’s function of a problem with reflection via

reduction of the problem. The possibility of computing the Green’s function relies entirely on

whether the reduced problem has a unique solution or not.

Once we have reduced the problem, we check whether it has a unique solution and, in that

case, we use part of the algorithm described in Chapter 6 to derive its Green’s function. Then

it is left to compute the function 𝑅⊢𝐺 as expressed in Theorem 5.2.3 which will be the Green’s

function to our problem. Figure 7.1.1 shows the flow diagram of the algorithm.

7.1.1 Characteristics of theMathematica notebook

We work with the following input variables:

• Coefficients 𝐚𝐤: The coefficients associated to the terms 𝑢u�)(𝑡).

• Coefficients 𝐛𝐤: The coefficients associated to the terms 𝑢u�)(−𝑡).

• 𝐓: A positive number, half of the length of the interval on which the solution is defined.

• Boundary conditions: A vector in Mathematica notation which specifies the boundary

conditions.

The input variables may be numbers or abstract symbols. The vectors of coefficents must be

introduced in Mathematica notation (there is a default example when the program starts so

to get an idea, see Figure 7.1.2). Furthermore, there is a checkbox which allowsMathematica

to consider the numbers in the input variables as numerical approximations, which greatly re-

duces the computation time.

While running, the steps of the computation will be shown in the ‘Progress’ frame. These

messages will be, in order, ‘Processing data...’, ‘Solving homogeneous equation...’, ‘Computing
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Figure 7.1.1: Flow diagram of the algorithm.

fundamental matrix...’, ‘Constructing Green’s function... (100 s max)’ and, finally ‘done’, right

before the graphical output appears (see Figure 7.1.3). Usually, the step that takes the longest

is the construction of the Green’s function. The ‘100 s max’ comment makes reference to the

total time limit set for thoseMathematica commands during this process which can be aborted

after some time giving a valid result, like, for instance Simplify or FullSimplify . This does
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not mean that other operations on which no time limit can be placed cannot make the whole

process take longer.

Figure 7.1.2: The Mathematica Notebook after initialization.

7.1.2 Validation of the input variables and error messages

The fist step in the algorithm is to check whether the input data is correct. The order of the

equation will be computed automatically as the index of the highest nonzero coefficient in the

vectors (𝑎u�) and (𝑏u�). If the order is zero ((𝑎u�) = (𝑏u�) = 0), then an error message will

appear. The program will check as well whether the length of the vectors (𝑎u�) and (𝑏u�) is

consistent, if the boundary conditions are valid, if 𝑇 is a positive real number (in the case it is a

number) and so on. Most important, it will check as well if the condition 𝑎u� = ±𝑏u� is satisfied

for in that case we cannot use the algorithm to derive a Green’s function.

7.1.3 Computing the reduced problem

The program reads the input values in the variables and vectors c1, c2, T, cc1 andNap, which

correspond, respectively, to (𝑎u�), (𝑏u�), 𝑇, the boundary conditions and whether the ‘Numer-
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Figure 7.1.3: Result of the default problem.

ical approximation’ checkbox is activated. If the ‘Numerical approximation’ checkbox is acti-

vated, the program will automatically transform the values of c1 and, c2 to numerical values if

possible:

If [Nap,

If [Element[c1,Reals ], c1= N[c1 ]];

If [Element[c2,Reals ], c2=N[c2 ]];

]

The program now separates the problem in three different cases. First, if there is no reflection

((𝑎u�) = 0, If [TrueQ[Norm[c1]==0]) the Green’s function will be obtained by the algorithm de-

scribed in [31] for the nonhomogeneous case. If all of the terms depend on the reflection, that

is, ((𝑏u�) = 0, If [TrueQ[Norm[c2]==0]), we can apply the change of variable 𝑠 = −𝑡 and turn it
into a problem with an ordinary differential equation and use the mentioned algorithm. Then

it is left to undo the change of variable for the Green’s function and so obtain it for our problem
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(here Gb is a variable where the Green’s function is stored before the change of variable):

G[t_ ,s_]=Chop[PiecewiseExpand[Gb[−s][t]/c [[m+1]], TimeConstraint −> 15]];

Finally, there is the case where no shortcut is possible ( If [Not[TrueQ[Norm[c1]*Norm[c2

]==0]]). In these circumstances, we define the operator 𝐿 related to de equation as

L[ f_ ][ x_] := Sum[c1b[[k + 1]] Derivative [k ][ f][−x] + c2b[[k + 1]] Derivative [k ][ f

][ x ], {k , 0, n }];

and the associated operator 𝑅 as

R[f_ ][ x_] := Sum[c1b[[k + 1]] Derivative [k ][ f][−x] −(−1)^k c2b[[k + 1]] Derivative

[k ][ f ][ x ], {k , 0, n }];

Now we obtain the coefficients of the reduced equation:

Do[c[[ j + 1]] = Sum[(−1)^i*(c1b[[ i + 1]]*c1b[[ j − i + 1]] − c2b[[ i + 1]]*c2b[[ j −
i + 1]]) , { i , 0, j }], { j , 0, m}];

and the new boundary conditions:

aux2[u_]:= Join [aux[u ], Expand[aux[R[u ]]]];

which are the original conditions (stored in the vector aux) together with the ones obtained

composing such conditions with the operator 𝑅. Now we proceed as usual with the classical

algorithm and obtain the Green’s function composing with the operator 𝑅:

Gb1[t_,s_]=PiecewiseExpand[R[Gb[s ]][ t ], TimeConstraint −> 15];

7.1.4 Final remarks

Although the algorithm allows the obtaining of the Green’s function for any order of the equa-

tion, the implementation inMathematica suffers severe limitations in this regard. Often, for big

orders or several parameters, the computations are too long and convoluted for Mathematica

to obtain the result in a reasonable time and, when it succeeds, the output is frequently gar-

gantuan.

We can think of various possibilities in order to palliate the computational time problem.

One of them could be computing the Green’s function for the reduced problem using matrix

exponentiation. Another one could be the one we sketch next.

First observe that, from Remark 5.1.2, we know that the reduced equation has no deriv-

atives in odd indices. This allows to use the following Lemma. For convenience, if 𝑝 is a real

(complex) polynomial, we will denote by 𝑝− the polynomial with the same principal coefficient

and opposite eigenvalues.

Lemma 7.1.1. Let 𝑛 ∈ ℕ and 𝑝(𝑥) = ∑u�
u�=0 𝛼2u�𝑥2u� a real polynomial of order 2𝑛. Then

there is a complex polynomial 𝑞 of order 𝑛 such that 𝑝 = 𝛼2u�𝑞𝑞−. Furthermore, if �̃�(𝑥) =
∑u�

u�=0 𝛼2u�𝑥u� has no negative eigenvalues, 𝑞 is a real polynomial.

Proof. First observe that 𝑝 is a polynomial on 𝑥2, and therefore, if 𝜆 is an eigenvalue of 𝑝, so
has to be −𝜆. Hence, using the Fundamental Theorem of Algebra the first part of the result
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can be derived by separating the monomials that compose 𝑝 in two different polynomials with

opposite eigenvalues.

Let us do that explicitly to show how in the case �̃� has no negative eigenvalues, 𝑞 is a real

polynomial.

Take the change of variables 𝑦 = 𝑥2. Then,𝑝(𝑥) = �̃�(𝑦) and, by the Fundamental Theorem

of Algebra,

�̃�(𝑦) =
u�

∑
u�=0

𝛼2u�𝑦u� =𝛼2u�𝑦u�(𝑦 − 𝜆2
1) ⋯ (𝑦 − 𝜆2

u�)(𝑦 + 𝜆2
u�+1)

⋯ (𝑦 + 𝜆2
u�)(𝑦2 + 𝜇1𝑦 + 𝜈2

1) ⋯ (𝑦2 + 𝜇u�𝑦 + 𝜈2
u� ),

for some integers𝜎, 𝑚, 𝑚, 𝑙 and real numbers𝜆1, … , 𝜆u�, 𝜈1, … , 𝜈u�, 𝜇1, … , 𝜇u� such that𝜆u� >
0 and 𝜈u� > |𝜇u�|/2 for every 𝑘 in the appropriate set of indices†. Hence,

𝑝(𝑥) =𝛼2u�𝑥2u�(𝑥2 − 𝜆2
1) ⋯ (𝑥2 − 𝜆2

u�)(𝑥2 + 𝜆2
u�+1)

⋯ (𝑥2 + 𝜆u�𝑟)(𝑥4 + 𝜇1𝑥2 + 𝜈2
1) ⋯ (𝑥4 + 𝜇u�𝑥2 + 𝜈2

u� ).

Now we have that

(𝑥2 − 𝜆2
u�) = (𝑥 + 𝜆u�)(𝑥 − 𝜆u�), (𝑥2 + 𝜆2

u�) = (𝑥 + 𝜆u�𝑖)(𝑥 − 𝜆u�𝑖)

and (𝑥4 + 𝜇u�𝑥2 + 𝜈2
u�) = (𝑥2 − 𝑥√2𝜈u� − 𝜇u� + 𝜈u�)(𝑥2 + 𝑥√2𝜈u� − 𝜇u� + 𝜈u�),

for any 𝑘 in the appropriate set of indices. Define

𝑞(𝑥) =𝑥u�(𝑥 − 𝜆1) ⋯ (𝑥 − 𝜆u�)(𝑥 − 𝜆u�+1𝑖) ⋯ (𝑥 − 𝜆u�𝑖)(𝑥2 − 𝑥√2𝜈1 − 𝜇1 + 𝜈1)
⋯ (𝑥2 − 𝑥√2𝜈u� − 𝜇u� + 𝜈u�)

and

𝑞−(𝑥) =𝑥u�(𝑥 + 𝜆1) ⋯ (𝑥 + 𝜆u�)(𝑥 + 𝜆u�+1𝑖) ⋯ (𝑥 + 𝜆u�𝑖)(𝑥2 + 𝑥√2𝜈1 − 𝜇1 + 𝜈1)
⋯ (𝑥2 + 𝑥√2𝜈u� − 𝜇u� + 𝜈u�).

We have that 𝑝 = 𝛼2u�𝑞𝑞−. The nonzero eigenvalues of 𝑞 are

𝜆1, … , 𝜆u�, 𝜆u�+1𝑖, … , 𝜆u�𝑖, 1
2 (√2𝜈1 − 𝜇1 ± 𝑖√2𝜈1 + 𝜇1) ,

… , 1
2 (√2𝜈u� − 𝜇u� ± 𝑖√2𝜈u� + 𝜇u�)

and those of 𝑞− are precisely

− 𝜆1, … , −𝜆u�, −𝜆u�+1𝑖, … , −𝜆u�𝑖, −1
2 (√2𝜈1 − 𝜇1 ± 𝑖√2𝜈1 + 𝜇1) ,

… , −1
2 (√2𝜈u� − 𝜇u� ± 𝑖√2𝜈u� + 𝜇u�) .

Clearly, if �̃� has no negative real eigenvalues, 𝑞 and 𝑞− are real polynomials. �

†The 𝑦2 + 𝜇u�𝑦 + 𝜈2
u� correspond to the pairs of complex roots of the polynomial. This means that the discrim-

inant Δ = 𝜇2
u� − 4𝜈u� < 0, that is, 𝜈u� > |𝜇u�|/2.
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Remark 7.1.2. Descartes’ rule of signs establishes that the number of positive roots (with mul-

tiple roots of the same value counted separately) of a real polynomial on one variable is either

equal to the number of sign differences between consecutive nonzero coefficients, or less than

it by an even number, considering the case the terms of the polynomial are ordered by de-

scending variable exponent. This implies that a sufficient criterion for a polynomial 𝑝(𝑥) to

have no negative roots is for 𝑝(−𝑥) to have all coefficients with positive sign, that is, for 𝑝(𝑥)
to have positive even coefficients and negative odd coefficients.

There exist algorithmic ways of determining the exact number of positive (or real) roots of

a polynomial. For more information on this issue see, for instance, [126,190,191].

The following Lemma establishes a relation between the coefficients of 𝑞 and 𝑞−.

Lemma 7.1.3. Let 𝑛 ∈ ℕ and 𝑞(𝑥) = ∑u�
u�=0 𝛼u�𝑥u� be a complex polynomial. Then 𝑞−(𝑥) =

∑u�
u�=0(−1)u�+u�𝛼u�𝑥u�.

Proof. We proceed by induction†. For 𝑛 = 1, 𝑞(𝑥) = 𝛼(𝑥−𝜆1). Clearly, 𝑞 has the eigenvalue

𝜆1 and 𝑞−(𝑥) = 𝛼(𝑥 + 𝜆1) = (−1)1+1𝛼𝑥 + (−1)1𝛼𝜆1 the eigenvalue −𝜆1.

Assume the result is true for some 𝑛 ≥ 1. Then, for 𝑛 + 1, 𝑞 is of the form 𝑞(𝑥) =
(𝑥 − 𝜆u�+1)𝑟(𝑥) where 𝑟(𝑥) = ∑u�

u�=0 𝛼u�𝑥u� is a polynomial of order 𝑛, that is,

𝑞(𝑥) = (𝑥 − 𝜆u�+1)
u�

∑
u�=0

𝛼u�𝑥u� = 𝑥u�+1 +
u�

∑
u�=1

[𝛼u�−1 − 𝜆u�+1𝛼u�] 𝑥u� − 𝜆u�+1𝛼0.

Now, 𝑞−(𝑥) = (𝑥 + 𝜆u�+1)𝑟−(𝑥). Since the formula is valid for 𝑛,

𝑞−(𝑥) = (𝑥 + 𝜆u�+1)𝑟−(𝑥) = (𝑥 + 𝜆u�+1)
u�

∑
u�=0

(−1)u�+u�𝛼u�𝑥u�

= 𝑥u�+1 +
u�

∑
u�=1

(−1)u�+u�+1 [𝛼u�−1 − 𝜆u�+1𝛼u�] 𝑥u� − (−1)u�+1𝜆u�+1𝛼0.

So the formula is valid for 𝑛 + 1 as well. �

This last Lemma allows the computation of the polynomials 𝑞 and 𝑞− related to the polyno-

mial𝑅𝐿on the variable𝐷using the formula given in Remark 5.1.2. Wewill assume that𝑅𝐿 is of

order2𝑛, that is, 𝑎2
u�−𝑏2

u���=0. Otherwise the problemof computing𝑞 and𝑞− would be the same

but these polynomials would be of less order. Also, assume 𝑅𝐿, considered as a polynomial on

𝐷2, has no negative roots in order for 𝑞 to be a real polynomial. If 𝐿 = ∑u�
u�=0(𝑎u�𝜑∗ + 𝑏u�)𝐷u�

and 𝑞(𝐷) = 𝐷u� + ∑u�−1
u�=0 𝛼u�𝐷u� then 𝑅𝐿 = ∑2u�

u�=0 𝑐u�𝐷u� = (−1)u�(𝑎2
u� − 𝑏2

u�)𝑞(𝐷)𝑞−(𝐷).
This relation establishes the following system of quadratic equations:

𝑐2u� =2
u�−1

∑
u�=0

(−1)u� (𝑎u�𝑎2u�−u� − 𝑏u�𝑏2u�−u�) + (−1)u� (𝑎2
u� − 𝑏2

u�)

†The result can be directly proven by considering the last statement in Remark 7.1.2. If we take a polynomial

𝑝(𝑥) = 𝑎(𝑥 − 𝜆1) ⋯ (𝑥 − 𝜆u�), the polynomial 𝑝(−𝑥) has exactly opposite eigenvalues. Actually, 𝑝(−𝑥) =
𝑎(−𝑥 − 𝜆1) ⋯ (−𝑥 − 𝜆u�) = (−1)u�𝑎(𝑥 + 𝜆1) ⋯ (𝑥 + 𝜆u�). It is easy to check that the coefficients of 𝑝(−𝑥)
are precisely as described in the statement of Lemma 7.1.3 save for the factor (−1)u�.
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=(𝑎2
u� − 𝑏2

u�) ⎡⎢
⎣

2
u�−1

∑
u�=0

(−1)u� (𝛼u�𝛼2u�−u�) + (−1)u� 𝛼2
u�
⎤⎥
⎦

,

for 𝑘 = 0, … , 𝑛 where 𝑎u�, 𝑏u�, 𝛼u� = 0 if 𝑘��∈{0, … , 𝑛} and 𝛼u� = 1. These are 𝑛 equations

with 𝑛 unknowns: 𝛼0, … , 𝛼u�. We present here the case of 𝑛 = 2 to illustrate the solution of

these equations.

Example 7.1.4. For 𝑛 = 2, we have that

𝑅𝐿 = (𝑎2
2 − 𝑏2

2) 𝐷4 + (−𝑎2
1 + 2𝑎0𝑎2 + 𝑏2

1 − 2𝑏0𝑏2) 𝐷2 + 𝑎2
0 − 𝑏2

0,
(𝑎2

2 − 𝑏2
2) 𝑞(𝐷)𝑞−(𝐷) = (𝑎2

2 − 𝑏2
2) 𝐷4 + (2𝛼0 − 𝛼2

1) (𝑎2
2 − 𝑏2

2) 𝐷2 + 𝛼2
0 (𝑎2

2 − 𝑏2
2) ,

and the system of equations is

𝑎2
0 − 𝑏2

0 = (𝑎2
2 − 𝑏2

2) 𝛼2
0,

−𝑎2
1 + 2𝑎0𝑎2 + 𝑏2

1 − 2𝑏0𝑏2 = (𝑎2
2 − 𝑏2

2) (2𝛼0 − 𝛼2
1) .

(7.1.1)

Before computing the solutions let us state explicitly de limitations that the fact that 𝑅𝐿, con-
sidered as an order 2 polynomial on 𝐷2, that is 𝑅𝐿(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, has no negative roots

implies. There are two options:

(1) There are two complex roots, that is, Δ = 𝑏2 − 4𝑎𝑐 < 0. This is equivalent to 𝑎𝑐 >
0 ∧ |𝑏| < 2√𝑎𝑐. Expressed in terms of the coefficients of 𝑅𝐿:

(𝑏2
0 −𝑎2

0)(𝑏2
2 −𝑎2

2) > 0, and |−𝑎2
1 +2𝑎0𝑎2 +𝑏2

1 −2𝑏0𝑏2| < 2√(𝑏2
0 − 𝑎2

0)(𝑏2
2 − 𝑎2

2).

(2) There are two nonnegative roots, that is Δ = 𝑏2 − 4𝑎𝑐 ≥ 0 and

(−𝑏 + √𝑏2 − 4𝑎𝑐)/(2𝑎) ≤ 0.

This is equivalent to (𝑎, 𝑐 ≥ 0 ∧ −𝑏 ≥ 2√𝑎𝑐) ∨ (𝑎, 𝑐 ≤ 0 ∧ 𝑏 ≥ 2√𝑎𝑐). Expressed in

terms of the coefficients of 𝑅𝐿:

[(𝑏2
0 − 𝑎2

0), (𝑏2
2 − 𝑎2

2) ≥ 0 ∧ −(−𝑎2
1 + 2𝑎0𝑎2 + 𝑏2

1 − 2𝑏0𝑏2) ≥ 2√(𝑏2
0 − 𝑎2

0)(𝑏2
2 − 𝑎2

2)]

OR

[(𝑏2
0 − 𝑎2

0), (𝑏2
2 − 𝑎2

2) ≤ 0 ∧ −(−𝑎2
1 + 2𝑎0𝑎2 + 𝑏2

1 − 2𝑏0𝑏2) ≥ 2√(𝑏2
0 − 𝑎2

0)(𝑏2
2 − 𝑎2

2)] .

Now, with these conditions, the solutions the system of equations (7.1.1) are:

Case (I).We have two solutions:

𝛼0 =
√
√√
⎷

𝑏2
0 − 𝑎2

0

𝑏2
2 − 𝑎2

2
,
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𝛼1 = ±

√
√
√
⎷

2 sign(𝑎2
2 − 𝑏2

2)√(𝑏2
0 − 𝑎2

0)(𝑏2
2 − 𝑎2

2) − (−𝑎2
1 + 2𝑎0𝑎2 + 𝑏2

1 − 2𝑏0𝑏2)
𝑎2

2 − 𝑏2
2

.

Case (II).We have four solutions depending on whether we choose 𝜉 = 1 or 𝜉 = −1:

𝛼0 = 𝜉
√
√√
⎷

𝑏2
0 − 𝑎2

0

𝑏2
2 − 𝑎2

2
,

𝛼1 = ±

√
√
√
⎷

2𝜉 sign(𝑎2
2 − 𝑏2

2)√(𝑏2
0 − 𝑎2

0)(𝑏2
2 − 𝑎2

2) − (−𝑎2
1 + 2𝑎0𝑎2 + 𝑏2

1 − 2𝑏0𝑏2)
𝑎2

2 − 𝑏2
2

.

These solution provide well defined real numbers by conditions (I) and (II).

Nowwe could consider those caseswhere the problem can be decomposed easily. Consider

that the reduced problemgiven by Theorem5.2.3,𝑆𝑢 = 𝑅ℎ,𝐵u�𝑅𝑢 = 0,𝐵u�𝑢 = 0, 𝑗 = 1, … , 𝑛
can be expressed as an equivalent factored problem

𝐿1𝑢 = 𝑦, 𝑉u�𝑢 = 0, 𝑗 = 1, … , 𝑛,
𝐿2𝑦 = 𝑅ℎ, 𝑉u�𝑦 = 0, 𝑗 = 1, … , 𝑛,

where the conditions 𝑉u�𝑢 = 0, 𝑉u�𝐿1𝑢 = 0, 𝑗 = 1, … , 𝑛 are equivalent to the conditions

𝐵u�𝑅𝑢 = 0,𝐵u�𝑢 = 0, 𝑗 = 1, … , 𝑛. Then theGreen’s function of problem𝑆𝑢 = 𝑅ℎ,𝐵u�𝑅𝑢 = 0,
𝐵u�𝑢 = 0, 𝑗 = 1, … , 𝑛 can be expressed as

𝐺(𝑡, 𝑠) = ∫u�
−u�

𝐺1(𝑡, 𝑟)𝐺2(𝑟, 𝑠) d 𝑟,

where 𝐺1 is the Green’s function associated to the problem 𝐿1𝑢 = 𝑦, 𝑉u�𝑢 = 0, 𝑗 = 1, … , 𝑛,
and 𝐺2 the one associated to the problem 𝐿2𝑦 = 𝑅ℎ, 𝑉u�𝑦 = 0, 𝑗 = 1, … , 𝑛, in the case both

Green’s functions exist. This procedure was already illustrated in Example 5.2.4.

Computationally, this procedure poses a big advantage: it is always easier to obtain the

Green’s function two order 𝑛 problems than to do so for one order 2𝑛 problem. Furthermore,

if the hypothesis of Lemma 7.1.1 are satisfied and we are able to obtain a factorization of the

aforementioned kind using 𝑞 and 𝑞− in the place of𝐿1 and𝐿2, we have an extra advantage: the

differential equation given by 𝑞− is the adjoint equation of the one given by 𝑞 multiplied by the

factor (−1)u�. This fact, together with the following result (which can be found, although not

stated as in this work, in [28]), illustrates that in this case it may be possible to solve problem

(5.2.2) just computing the Green’s function of one order 𝑛 problem.

Theorem 7.1.5. Consider an interval 𝐽 = [𝑎, 𝑏] ⊂ ℝ, functions 𝜎, 𝑎u� ∈ L1(𝐽), 𝑖 = 1, … , 𝑛,
real numbers 𝛼u�u�, 𝛽u�u�, ℎu�, 𝑖 = 1, … , 𝑛, 𝑗 = 0, … , 𝑛−1, 𝐷(𝐿u�) ⊂ 𝑊u�,1(𝐽) a vector subspace,

the operator

𝐿u�𝑢(𝑡) = 𝑎0𝑢(u�)(𝑡)+𝑎1(𝑡)𝑢(u�−1)(𝑡)+⋯+𝑎u�−1(𝑡)𝑢′(𝑡)+𝑎u�(𝑡)𝑢(𝑡), 𝑡 ∈ 𝐽, 𝑢 ∈ 𝐷(𝐿u�),

with 𝑎0 = 1 and the problem

𝐿u�𝑢(𝑡) = 𝜎(𝑡), 𝑡 ∈ 𝐽, 𝑈u�(𝑢) = ℎu�, 𝑖 = 1, … , 𝑛, (7.1.2)
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where

𝑈u�(𝑢) ∶=
u�−1

∑
u�=0

(𝛼u�u�𝑢(u�)(𝑎) + 𝛽u�u�𝑢(u�)(𝑏)) , 𝑖 = 1, … , 𝑛.

Then, the associated adjoint problem is

𝐿†
u�𝑣(𝑡) =

u�

∑
u�=0

(−1)u�𝑎u�−u�(𝑡)𝑢(u�)(𝑡), 𝑡 ∈ 𝐽, 𝑣 ∈ 𝐷(𝐿†
u�), (7.1.3)

where 𝐷(𝐿†
u�) =

⎧{
⎨{⎩

𝑣 ∈ 𝑊u�,2(𝐽) ∶ (𝑏∗ − 𝑎∗) ⎛⎜⎜
⎝

u�

∑
u�=1

u�−1

∑
u�=0

(−1)(u�−u�−1)(𝑎u�−u�𝑣)u�−u�−1𝑢(u�)⎞⎟⎟
⎠

= 0, 𝑢 ∈ 𝐷(𝐿u�)
⎫}
⎬}⎭

Furthermore, if 𝐺(𝑡, 𝑠) is the Green’s function of problem (7.1.2), then the one associated to

problem (7.1.3) is 𝐺(𝑠, 𝑡).
Hence, if we can decompose problem (5.2.2) in two adjoint problems, its Green’s function

will be

𝐺(𝑡, 𝑠) = ∫u�
−u�

𝐺1(𝑡, 𝑟)𝐺2(𝑟, 𝑠) d 𝑟 = ∫u�
−u�

𝐺1(𝑡, 𝑟)𝐺1(𝑠, 𝑟) d 𝑟.

We note though, that unless the operator 𝑞− is the adjoint equation times (−1)u�, the bound-

ary conditions may be not the adjoint ones.



Part II

Topological Methods
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We have so far studied differential equations with reflection finding, when possible, the

Green’s function in order to derive the solution in the case of uniqueness. Still, many situations,

in which nonlinearities are involved, escape the direct construction of solutions and different

methods become necessary.

Topological methods come handy in these situations, in particular those related to the fixed

point index. These tools permit to guarantee the existence and multiplicity of fixed points of

continuous maps through an index which counts themwith sign. We have already used in Sub-

section 3.2.3 the celebrated cone contraction-expansion fixed point theorem of Krasnosel’skiĭ.

Here we avoid its limitations using an approach developed by Infante and Webb [97] and used

in several publications [34,35,87–95,98–100,175–184].

In the following four chapters we will use this method to solve four different kinds of prob-

lems increasing in complexity: a problem with reflection, a problem with deviated arguments

(applied to a thermostat model), a problemwith nonlinear Neumann boundary conditions and

a problem with functional nonlinearities in both the equation and the boundary conditions.

The structure of the method is fairly consistent and is developed as follows.

(1) State the nature of the problem being studied and its specific characteristics.

(2) Elaborate a list of properties, of the elements involved in the problem, which is necessary

to ask for so we can grant that the existence / multiplicity / nonexistence results can be

applied. For instance, the operator 𝐹 of which its fixed points will be solutions for our

problem has to be continuous.

(3) Define an appropriate cone𝐾 in whichwewill localize the solutions of our problem. Here

we have to take an important decision: large cones allow the finding of more solutions

but, at the same time, they do not provide good localization results.

(4) Prove that the operator 𝐹 is compact, continuous andmaps 𝐾 to 𝐾 .

(5) Find sufficient conditions for which the fixed point index of the operator 𝐹 is 0 and ±1
respectively in (at least) two nested subsets of the cone. If we find 𝑛 nested subsets for

which the index alternates from 0 to ±1 we can guarantee the existence of at least 𝑛−1
different nontrivial solutions (cf. [123]).

By making the cone smaller, we trade solutions for simpler conditions. Also, we may

use conditions for the index related to the eigenvalues of the operators involved (see

Chapters 10 and 11).

(6) Finally, we can apply the results derived to a vast variety of problems and illustrate its

usefulness with some examples.

As we will see, the particularities of each problem make it impossible to take a common

approach to all of the problems studied. Still, therewill be important similarities in the different

cases which will lead to comparable results. The results in Chapters 8, 9 and 10 have been

published in [34], [34] and [96] respectively. Those in Chapter 11 are ready to be sent for

publication soon.

Due to the bast amount of notation necessary to develop this theory, we will consider it

only valid for the chapter in question, so we can use the same symbols for similar (but different)

purposes.





8. A cone approximation to a problem with

reflection

We have studied previously (see Chapter 3), the first order operator 𝑢′(𝑡) + 𝜔 𝑢(−𝑡) cou-

pled with periodic boundary value conditions, describing the eigenvalues of the operator and

providing the expression of the associated Green’s function in the nonresonant case. We pro-

vide the range of values of the real parameter 𝜔 for which the Green’s function has constant

sign and apply these results to prove the existence of constant sign solutions for the nonlinear

periodic problem with reflection of the argument (see page 55)

𝑢′(𝑡) = ℎ(𝑡, 𝑢(𝑡), 𝑢(−𝑡)), 𝑡 ∈ [−𝑇, 𝑇], 𝑢(−𝑇) = 𝑢(𝑇). (8.0.1)

The methodology, analogous to the one used by Torres [167] in the case of ordinary differ-

ential equations, is to rewrite the problem (8.0.1) as an Hammerstein integral equation with

reflections of the type

𝑢(𝑡) = ∫u�
−u�

𝑘(𝑡, 𝑠)[ℎ(𝑠, 𝑢(𝑠), 𝑢(−𝑠)) + 𝜔 𝑢(−𝑠)] d 𝑠, 𝑡 ∈ [−𝑇, 𝑇],

where the kernel 𝑘 has constant sign, and to make use of the well-known Guo-Krasnosel’skiĭ

theorem on cone compression-expansion (see Theorem 3.2.19).

In this chapter we continue this study and we prove new results regarding the existence of

nontrivial solutions of Hammerstein integral equations with reflections of the form

𝑢(𝑡) = ∫u�
−u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(−𝑠)) d 𝑠, 𝑡 ∈ [−𝑇, 𝑇],

where the kernel 𝑘 is allowed to be not of constant sign. In order to do this, we extend the

results of [98], valid for Hammerstein integral equations without reflections, to the new con-

text. We make use of a cone of functions that are allowed to change sign combined with the

classical fixed point index for compact maps (we refer to [4] or [81] for further information).

As an application of our theory we prove the existence of nontrivial solutions of the periodic

problem with reflections (8.0.1). The results of this chapter were published in [34]

8.1 The case of kernels that change sign

We begin with the case of kernels that are allowed to change sign. We impose the following

conditions on 𝑘, 𝑓 , 𝑔 that occur in the integral equation

𝑢(𝑡) = ∫u�
−u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(−𝑠)) d 𝑠 =∶ 𝐹𝑢(𝑡), (8.1.1)

where 𝑇 is fixed in (0, ∞).

(𝐶1) The kernel 𝑘 is measurable, and for every 𝜏 ∈ [−𝑇, 𝑇] we have

lim
u�→u�

|𝑘(𝑡, 𝑠) − 𝑘(𝜏, 𝑠)| = 0 for almost every (a. e.) 𝑠 ∈ [−𝑇, 𝑇].
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(𝐶2) There exist a subinterval [𝑎, 𝑏] ⊆ [−𝑇, 𝑇], a measurable function Φ with Φ ≥ 0 a. e.

and a constant 𝑐 = 𝑐(𝑎, 𝑏) ∈ (0, 1] such that

|𝑘(𝑡, 𝑠)| ≤ Φ(𝑠) for all 𝑡 ∈ [−𝑇, 𝑇] and a. e. 𝑠 ∈ [−𝑇, 𝑇],
𝑘(𝑡, 𝑠) ≥ 𝑐 Φ(𝑠) for all 𝑡 ∈ [𝑎, 𝑏] and a. e. 𝑠 ∈ [−𝑇, 𝑇].

(𝐶3) The function 𝑔 is measurable and satisfies that 𝑔 Φ ∈ L1([−𝑇, 𝑇]), 𝑔(𝑡) ≥ 0 a. e.

𝑡 ∈ [−𝑇, 𝑇] and ∫u�
u� Φ(𝑠)𝑔(𝑠) d 𝑠 > 0.

(𝐶4) The nonlinearity 𝑓 ∶ [−𝑇, 𝑇] × ℝ × ℝ → [0, ∞) satisfies the L∞-Carathéodory condi-

tions, that is, 𝑓 (⋅, 𝑢, 𝑣) is measurable for each fixed 𝑢 and 𝑣 and 𝑓 (𝑡, ⋅, ⋅) is continuous

for a. e. 𝑡 ∈ [−𝑇, 𝑇], and for each 𝑟 > 0, there exists 𝜙u� ∈ L∞([−𝑇, 𝑇]) such that

𝑓 (𝑡, 𝑢, 𝑣) ≤ 𝜙u�(𝑡) for all (𝑢, 𝑣) ∈ [−𝑟, 𝑟] × [−𝑟, 𝑟], and a. e. 𝑡 ∈ [−𝑇, 𝑇].

We recall the following definition.

Definition 8.1.1. Let 𝑋 be a Banach Space. A cone on 𝑋 is a closed, convex subset of 𝑋 such

that 𝜆 𝑥 ∈ 𝐾 for 𝑥 ∈ 𝐾 and 𝜆 ≥ 0 and 𝐾 ∩ (−𝐾) = {0}.

Here we work in the space 𝐶[−𝑇, 𝑇], endowed with the usual supremum norm, and we

use the cone

𝐾 = {𝑢 ∈ 𝐶[−𝑇, 𝑇] ∶ min
u�∈[u�,u�]

𝑢(𝑡) ≥ 𝑐‖𝑢‖}, (8.1.2)

where 𝑐 and [𝑎, 𝑏] are defined in (𝐶2). Note that 𝐾 ≠ {0}.
The cone 𝐾 has been essentially introduced by Infante and Webb in [98] and later used in

[34,66,69,70,87,93,94,97,99,100,134]. 𝐾 is similar to a type of cone of nonnegative functions

first used by Krasnosel’skiĭ, see e.g. [121], and D. Guo, see e.g. [81]. Note that functions in 𝐾
are positive on the subset [𝑎, 𝑏] but are allowed to change sign in [−𝑇, 𝑇].

We require some knowledge of the classical fixed point index for compact maps, see for

example [4] or [81] for further information. If Ω is a bounded open subset of 𝐾 (in the relative

topology) we denote by Ω and 𝜕Ω the closure and the boundary relative to 𝐾 . When 𝐷 is an

open bounded subset of 𝑋 we write 𝐷u� = 𝐷 ∩ 𝐾 , an open subset of 𝐾 .

Next Lemma is a direct consequence of classical results from degree theory [81].

Lemma 8.1.2. Let Ω be an open bounded set with 0 ∈ Ωu� and Ωu� ≠ 𝐾 . Assume that

𝐹 ∶ Ωu� → 𝐾 is a continuous compact map such that 𝑥 ≠ 𝐹𝑥 for all 𝑥 ∈ 𝜕Ωu� . Then the fixed

point index 𝑖u�(𝐹, Ωu�) has the following properties.

(1) If there exists 𝑒 ∈ 𝐾\{0} such that 𝑥 ≠ 𝐹𝑥 + 𝜆𝑒 for all 𝑥 ∈ 𝜕Ωu� and all 𝜆 > 0, then
𝑖u�(𝐹, Ωu�) = 0.

(2) If 𝜇𝑥 ≠ 𝐹𝑥 for all 𝑥 ∈ 𝜕Ωu� and for every 𝜇 ≥ 1, then 𝑖u�(𝐹, Ωu�) = 1.

(3) If 𝑖u�(𝐹, Ωu�) ≠ 0, then 𝐹 has a fixed point in Ωu� .

(4) LetΩ1 be open in𝑋 withΩ1 ⊂ Ωu� . If 𝑖u�(𝐹, Ωu�) = 1 and 𝑖u�(𝐹, Ω1
u�) = 0, then𝐹 has

a fixed point in Ωu�\Ω1
u� . The same result holds if 𝑖u�(𝐹, Ωu�) = 0 and 𝑖u�(𝐹, Ω1

u�) = 1.
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Definition 8.1.3. We use the following sets:

𝐾u� = {𝑢 ∈ 𝐾 ∶ ‖𝑢‖ < 𝜌}, 𝑉u� = {𝑢 ∈ 𝐾 ∶ min
u�∈[u�,u�]

𝑢(𝑡) < 𝜌}.

The set 𝑉u� was introduced in [100] and is equal to the set called Ωu�/u� in [97]. The notation 𝑉u�
makes shows that choosing 𝑐 as large as possible yields a weaker condition to be satisfied by 𝑓
in Lemma 8.1.10. A key feature of these sets is that they can be nested, that is

𝐾u� ⊂ 𝑉u� ⊂ 𝐾u�/u�.

Lemma 8.1.4. The operator 𝑁u� (𝑢, 𝑣)(𝑡) = ∫1
0 𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑣(𝑠)) d 𝑠 maps 𝐶(𝐼) ×

L∞(𝐼) to 𝐶(𝐼) and is compact and continuous.

Proof. Fix (𝑢, 𝑣) ∈ 𝐶(𝐼) × L∞(𝐼) and let (𝑡u�)u�∈ℕ ⊂ 𝐼 be such that lim
u�→∞

(𝑡u�) = 𝑡 ∈ 𝐼. Take
𝑟 = ‖(𝑢, 𝑣)‖ ∶= ‖𝑢‖ + ‖𝑣‖ and consider

ℎu�(𝑠) ∶= 𝑘(𝑡u�, 𝑠) 𝑔(𝑠) 𝑓 (𝑠, 𝑢(𝑠), 𝑣(𝑠)), for a.e. 𝑠 ∈ 𝐼.

We have, by (𝐶1), that

lim
u�→∞

ℎu�(𝑠) = ℎ(𝑠) ∶= 𝑘(𝑡, 𝑠) 𝑔(𝑠) 𝑓 (𝑠, 𝑢(𝑠), 𝑣(𝑠)), for a.e. 𝑠 ∈ 𝐼.

On the other hand, |ℎu�| ≤ Φ 𝑔 ‖𝜙u�‖ ∈ L1(𝐼) so, by the Dominated Convergence Theorem,

we have lim
u�→∞

𝑁u� (𝑢, 𝑣)(𝑡u�) = 𝑁u� (𝑢, 𝑣)(𝑡) and therefore 𝑁u� (𝑢, 𝑣) ∈ 𝐶(𝐼).

Now let’s see that 𝑁u� is compact, indeed, let (𝑢u�, 𝑣u�)u�∈ℕ ⊂ 𝐶(𝐼) × L∞(𝐼) be such that

‖(𝑢u�, 𝑣u�)‖ ≤ 𝑅 ∈ ℝ+ for all 𝑛 ∈ ℕ.

Define 𝑦u�(𝑠) = 𝑓 (𝑠, 𝑢u�(𝑠), 𝑣u�(𝑠)). By Condition (𝐶4) we know that ‖𝑦u�‖ ≤ ‖𝜙u�‖ ∈
L∞(𝐼), therefore (𝑦u�(𝑠))u�∈ℕ is a bounded sequence in ℝ and by the Bolzano-Weierstrass

Theorem it has a convergent subsequence (𝑦u�u�
(𝑠))u�∈ℕ. Take 𝑦(𝑠) ∶= lim

u�→∞
𝑦u�u�

(𝑠).
Now, since

‖𝑘(𝑡, ⋅)𝑔(⋅)𝑦u�u�
(⋅)‖ ≤ Φ(⋅)𝑔(⋅)‖𝜙u�‖, for all 𝑡 ∈ 𝐼,

we can apply the Dominated Convergence Theorem and therefore

lim
u�→∞

𝑁u� (𝑢u�u�
, 𝑣u�u�

)(𝑡) = ∫1
0

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑦(𝑠) d 𝑠, for all 𝑡 ∈ 𝐼.

So we have proved that there exists the point-wise limit on 𝐼. To conclude the assertion of

compactness we verify that such convergence is uniform in 𝐼. To this end, we take into account
that for all 𝑡 ∈ 𝐼 it is verified that

|𝑁u� (𝑢u�u�
, 𝑣u�u�

)(𝑡) − 𝑁u� (𝑢, 𝑣)(𝑡)| ≤ ∫1
0

|𝑘(𝑡, 𝑠)|𝑔(𝑠)|𝑦u�u�
(𝑠) − 𝑦(𝑠)| d 𝑠

≤ ∫1
0

Φ(𝑠)𝑔(𝑠)|𝑦u�u�
(𝑠) − 𝑦(𝑠)| d 𝑠.

Since the last expression on the right is independent of 𝑡 we have that such convergence is

uniform in 𝐼, and the assertion holds.

The continuity is proved in a similar manner. �
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Remark 8.1.5. If 𝑁u� maps 𝐶(𝐼) × 𝐶(𝐼) to 𝐶(𝐼) the proof works exactly the same.

Theorem 8.1.6. Assume that hypotheses (𝐶1)–(𝐶4) hold. Then 𝐹 maps 𝐾u� into 𝐾 and is

compact and continuous. In particular 𝐹 maps 𝐾 into 𝐾 .

Proof. For 𝑢 ∈ 𝐾u� and 𝑡 ∈ [−𝑇, 𝑇] we have,

|𝐹𝑢(𝑡)| ≤ ∫u�
−u�

|𝑘(𝑡, 𝑠)|𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(−𝑠)) d 𝑠

≤ ∫u�
−u�

Φ(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(−𝑠)) d 𝑠,

and

min
u�∈[u�,u�]

𝐹𝑢(𝑡) ≥ +𝑐 ∫u�
−u�

Φ(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(−𝑠)) d 𝑠 ≥ 𝑐‖𝐹𝑢‖.

Therefore we have that 𝐹𝑢 ∈ 𝐾 for every 𝑢 ∈ 𝐾u�.

The compactness of 𝐹 follows from Lemma 8.1.4. �

In the sequel, we give a condition that ensures that, for a suitable 𝜌 > 0, the index is 1 on

𝐾u�.

Lemma 8.1.7. Assume that

(I1
u�) there exists 𝜌 > 0 such that

𝑓 −u�,u� ⋅ sup
u�∈[−u�,u�]

∫u�
−u�

|𝑘(𝑡, 𝑠)|𝑔(𝑠) d 𝑠 < 1

where

𝑓 −u�,u� = sup {𝑓 (𝑡, 𝑢, 𝑣)
𝜌 ∶ (𝑡, 𝑢, 𝑣) ∈ [−𝑇, 𝑇] × [−𝜌, 𝜌] × [−𝜌, 𝜌]} .

Then the fixed point index, 𝑖u�(𝐹, 𝐾u�), is equal to 1.

Proof. We show that 𝜇𝑢 ≠ 𝐹𝑢 for every 𝑢 ∈ 𝜕𝐾u� and for every 𝜇 ≥ 1. In fact, if this does

not happen, there exist 𝜇 ≥ 1 and 𝑢 ∈ 𝜕𝐾u� such that 𝜇𝑢 = 𝐹𝑢, that is

𝜇𝑢(𝑡) = ∫u�
−u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(−𝑠)) d 𝑠,

Taking the absolute value and then the supremum for 𝑡 ∈ [−𝑇, 𝑇] gives

𝜇𝜌 ≤ sup
u�∈[−u�,u�]

∫u�
−u�

|𝑘(𝑡, 𝑠)|𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(−𝑠)) d 𝑠

≤ 𝜌 𝑓 −u�,u� ⋅ sup
u�∈[−u�,u�]

∫u�
−u�

|𝑘(𝑡, 𝑠)|𝑔(𝑠) d 𝑠 < 𝜌.

This contradicts the fact that 𝜇 ≥ 1 and proves the result. �

For the next remark consider the following lemma.
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Lemma 8.1.8. Let 𝜔 ∈ L1([0, 1]) and denote

𝜔+(𝑠) = max{𝜔(𝑠), 0}, 𝜔−(𝑠) = max{−𝜔(𝑠), 0}.

Then we have

∣∫1
0

𝜔(𝑠) d 𝑠∣ ≤ max {∫1
0

𝜔+(𝑠) d 𝑠, ∫1
0

𝜔−(𝑠) d 𝑠} ≤ ∫1
0

|𝜔(𝑠)| d 𝑠.

Proof. Observing that, since 𝜔 = 𝜔+ − 𝜔−,

∫1
0

𝜔(𝑠) d 𝑠 = ∫1
0

𝜔+(𝑠) d 𝑠 − ∫1
0

𝜔−(𝑠) d 𝑠 ≤ ∫1
0

𝜔+(𝑠) d 𝑠,

− ∫1
0

𝜔(𝑠) d 𝑠 = ∫1
0

𝜔−(𝑠) d 𝑠 − ∫1
0

𝜔+(𝑠) d 𝑠 ≤ ∫1
0

𝜔−(𝑠) d 𝑠,

we get the first inequality, the second comes from the fact that |𝜔| = 𝜔+ + 𝜔−. �

Remark 8.1.9. We point out that, as in [181], a stronger (but easier to check) condition than

(I1
u�) is given by the following.

𝑓 −u�,u�

𝑚 < 1,

where
1
𝑚 ∶= sup

u�∈[0,1]
{max {∫1

0
𝑘+(𝑡, 𝑠)𝑔(𝑠) d 𝑠, ∫1

0
𝑘−(𝑡, 𝑠)𝑔(𝑠) d 𝑠}} ,

which is finite since 𝑘+𝑔 ≤ Φ𝑔 ∈ L1([−𝑇, 𝑇]).

Let us see now a condition that guarantees the index is equal to zero on 𝑉u� ∶= {𝑢 ∈ 𝐾 ∶
minu�∈[û�,û�] 𝑢(𝑡) < 𝜌} for some appropriate 𝜌 > 0.

Lemma 8.1.10. Assume that

(I0
u�) there exists 𝜌 > 0 such that

𝑓(u�,u�/u�)/𝑀(𝑎, 𝑏) > 1,
where

𝑓(u�,u�/u�) ∶= inf {𝑓 (𝑡, 𝑢, 𝑣)
𝜌 ∶ (𝑡, 𝑢, 𝑣) ∈ [𝑎, 𝑏] × [𝜌, 𝜌/𝑐] × [−𝜌/𝑐, 𝜌/𝑐]} ,

1
𝑀(𝑎, 𝑏) ∶= inf

u�∈[u�,u�]
∫u�

u�
𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠.

Then 𝑖u�(𝐹, 𝑉u�) = 0.

Proof. Let 𝑒(𝑡) ≡ 1, then 𝑒 ∈ 𝐾 . We prove that

𝑢 ≠ 𝐹𝑢 + 𝜆𝑒 for all 𝑢 ∈ 𝜕𝑉u� and 𝜆 ≥ 0.

In fact, if not, there exist 𝑢 ∈ 𝜕𝑉u� and 𝜆 ≥ 0 such that 𝑢 = 𝐹𝑢 + 𝜆𝑒. Then we have

𝑢(𝑡) = ∫u�
−u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(−𝑠)) d 𝑠 + 𝜆.
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Thus, taking into account that 𝑘, 𝑔, 𝑓 ≥ 0 in [𝑎, 𝑏] × [−𝑇, 𝑇], we get, for 𝑡 ∈ [𝑎, 𝑏],

𝑢(𝑡) = ∫u�
−u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(−𝑠)) d 𝑠 + 𝜆 ≥ ∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(−𝑠)) d 𝑠

≥ 𝜌𝑓(u�,u�/u�) (∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠) .

Taking the minimum over [𝑎, 𝑏] gives 𝜌 > 𝜌 a contradiction. �

The above Lemmas can be combined to prove the following theorem. Here we deal with

the existence of at least one, two or three solutions. We stress that, by expanding the lists in

conditions (𝑆5), (𝑆6) below, it is possible to state results for four or more solutions in 𝐾 , see

for example the paper by Lan [123] for the type of results that might be stated.

We omit the proof which follows directly from the properties of the fixed point index stated

in Lemma 8.1.2, (3). In it we would basically construct, using the 𝐾u� and 𝑉u�, an strictly increas-

ing –in the subset order sense– sequence of subsets of the cone 𝐾 , 𝐴1 ⊂ 𝐴2 ⊂ … satisfying

𝐴u�
u� ⊂ �̊�u�+1

u� , 𝑗 ∈ ℕ, and such the index alternates its value throughout the sequence, thus

guaranteeing the existence of solution in the intersection of every two consecutive sets in the

sequence. Since the sequence is strictly increasing, all the solutions found are different.

Theorem 8.1.11. The integral equation (8.1.1) has at least one nonzero solution in 𝐾 if either

of the following conditions hold.

(𝑆1) There exist 𝜌1, 𝜌2 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 such that (I0
u�1

) and (I1
u�2

) hold.

(𝑆2) There exist 𝜌1, 𝜌2 ∈ (0, ∞) with 𝜌1 < 𝜌2 such that (I1
u�1

) and (I0
u�2

) hold.

The integral equation (8.1.1) has at least two nonzero solutions in 𝐾 if one of the following

conditions hold.

(𝑆3) There exist 𝜌1, 𝜌2, 𝜌3 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 < 𝜌3 such that (I0
u�1

), (I1
u�2

) and (I0
u�3

)
hold.

(𝑆4) There exist 𝜌1, 𝜌2, 𝜌3 ∈ (0, ∞) with 𝜌1 < 𝜌2 and 𝜌2/𝑐 < 𝜌3 such that (I1
u�1

), (I0
u�2

)
and (I1

u�3
) hold.

The integral equation (8.1.1) has at least three nonzero solutions in 𝐾 if one of the following

conditions hold.

(𝑆5) There exist 𝜌1, 𝜌2, 𝜌3, 𝜌4 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 < 𝜌3 and 𝜌3/𝑐 < 𝜌4 such that

(I0
u�1

), (I1
u�2

), (I0
u�3

) and (I1
u�4

) hold.

(𝑆6) There exist 𝜌1, 𝜌2, 𝜌3, 𝜌4 ∈ (0, ∞) with 𝜌1 < 𝜌2 and 𝜌2/𝑐 < 𝜌3 < 𝜌4 such that

(I1
u�1

), (I0
u�2

), (I1
u�3

) and (I0
u�4

) hold.
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8.2 The case of nonnegative kernels

We now assume the functions 𝑘, 𝑓 , 𝑔 that occur in (8.1.1) satisfy the conditions (𝐶1) − (𝐶4)
in the previous section, where (𝐶2) and (𝐶4) are replaced with the following.

(𝐶′
2) The kernel 𝑘 is nonnegative for 𝑡 ∈ [−𝑇, 𝑇] and a. e. 𝑠 ∈ [−𝑇, 𝑇] and there exist a

subinterval [𝑎, 𝑏] ⊆ [−𝑇, 𝑇], a measurable function Φ, and a constant 𝑐 = 𝑐(𝑎, 𝑏) ∈
(0, 1] such that

𝑘(𝑡, 𝑠) ≤ Φ(𝑠) for 𝑡 ∈ [−𝑇, 𝑇] and a. e. 𝑠 ∈ [−𝑇, 𝑇],
𝑘(𝑡, 𝑠) ≥ 𝑐Φ(𝑠) for 𝑡 ∈ [𝑎, 𝑏] and a. e. 𝑠 ∈ [−𝑇, 𝑇].

(𝐶′
4) The nonlinearity 𝑓 ∶ [−𝑇, 𝑇] × [0, ∞) × [0, ∞) → [0, ∞) satisfies L∞-Carathéodory

conditions, that is, 𝑓 (⋅, 𝑢, 𝑣) is measurable for each fixed 𝑢 and 𝑣 and 𝑓 (𝑡, ⋅, ⋅) is contin-

uous for a. e. 𝑡 ∈ [−𝑇, 𝑇], and for each 𝑟 > 0, there exists 𝜙u� ∈ L∞([−𝑇, 𝑇]) such

that

𝑓 (𝑡, 𝑢, 𝑣) ≤ 𝜙u�(𝑡) for all (𝑢, 𝑣) ∈ [0, 𝑟] × [0, 𝑟], and a. e. 𝑡 ∈ [−𝑇, 𝑇].

These hypotheses enable us to work in the cone of nonnegative functions

𝐾 ′ = {𝑢 ∈ 𝐶[−𝑇, 𝑇] ∶ 𝑢 ≥ 0 on [−𝑇, 𝑇], min
u�∈[u�,u�]

𝑢(𝑡) ≥ 𝑐‖𝑢‖}, (8.2.1)

that is smaller than the cone (8.1.2). It is possible to show that 𝐹 is compact and leaves the

cone 𝐾 ′ invariant. The conditions on the index are given by the following Lemmas, the proofs

are omitted as they are similar to the ones in the previous section.

Lemma 8.2.1. Assume that

(I1
u�) there exists 𝜌 > 0 such that 𝑓 0,u� < 𝑚, where

𝑓 0,u� = sup {𝑓 (𝑡, 𝑢, 𝑣)
𝜌 ∶ (𝑡, 𝑢, 𝑣) ∈ [−𝑇, 𝑇] × [0, 𝜌] × [0, 𝜌]} .

Then 𝑖u�(𝐹, 𝐾u�) = 1.

Lemma 8.2.2. Assume that

(I0
u�) there exist 𝜌 > 0 such that 𝑓(u�,u�/u�)′ > 𝑀, where

𝑓(u�,u�/u�)′ = inf {𝑓 (𝑡, 𝑢, 𝑣)
𝜌 ∶ (𝑡, 𝑢, 𝑣) ∈ [𝑎, 𝑏] × [𝜌, 𝜌/𝑐] × [0, 𝜌/𝑐]} .

Then 𝑖u�(𝐹, 𝑉u�) = 0.
A result equivalent to Theorem 8.1.11 is valid in this case, with nontrivial solutions belong-

ing to the cone (8.2.1).
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8.3 The case of kernels with extra positivity

We now assume the functions 𝑘, 𝑓 , 𝑔 that occur in (8.1.1) satisfy the conditions (𝐶1),(𝐶′
2),

(𝐶3) and (𝐶′
4)with [𝑎, 𝑏] = [−𝑇, 𝑇]; in particular note that the kernel satisfies the stronger

positivity requirement

𝑐Φ(𝑠) ≤ 𝑘(𝑡, 𝑠) ≤ Φ(𝑠) for 𝑡 ∈ [−𝑇, 𝑇] and a. e. 𝑠 ∈ [−𝑇, 𝑇].
These hypotheses enable us to work in the cone

𝐾″ = {𝑢 ∈ 𝐶[−𝑇, 𝑇] ∶ min
u�∈[−u�,−u�]

𝑢(𝑡) ≥ 𝑐‖𝑢‖}.

Remark 8.3.1. Note that a function in 𝐾″ that possesses a nontrivial norm, has the useful

property that is strictly positive on [−𝑇, 𝑇].

Once again 𝐹 is compact and leaves the cone 𝐾″ invariant. The assumptions on the index

are as follows.

Lemma 8.3.2. Assume that

(Ĩ1
u�) there exists 𝜌 > 0 such that 𝑓 u�u�,u� < 𝑚, where

𝑓 u�u�,u� = sup {𝑓 (𝑡, 𝑢, 𝑣)
𝜌 ∶ (𝑡, 𝑢, 𝑣) ∈ [−𝑇, 𝑇] × [𝑐𝜌, 𝜌] × [𝑐𝜌, 𝜌]} .

Then 𝑖u�(𝐹, 𝐾u�) = 1.

Lemma 8.3.3. Assume that

(Ĩ1
u�) there exist 𝜌 > 0 such that 𝑓(u�,u�/u�)″ > 𝑀, where

𝑓(u�,u�/u�)″ = inf {𝑓 (𝑡, 𝑢, 𝑣)
𝜌 ∶ (𝑡, 𝑢, 𝑣) ∈ [𝑎, 𝑏] × [𝜌, 𝜌/𝑐] × [𝜌, 𝜌/𝑐]} .

Then 𝑖u�(𝐹, 𝑉u�) = 0.
A result similar to Theorem 8.1.11 holds in this case.

Remark 8.3.4. If 𝑓 is defined only on [−𝑇, 𝑇] × [𝑢1, 𝑢2] × [𝑣1, 𝑣2] we can extend it, with

continuity, to [−𝑇, 𝑇] × ℝ × ℝ considering firstly

̄𝑓 (𝑡, 𝑢, 𝑣) ∶=
⎧{{
⎨{{⎩

𝑓 (𝑡, 𝑢1, 𝑣), 𝑢 ≤ 𝑢1,
𝑓 (𝑡, 𝑢, 𝑣), 𝑢1 ≤ 𝑢 ≤ 𝑢2,
𝑓 (𝑡, 𝑢2, 𝑣), 𝑢2 ≤ 𝑢,

and secondly

̃𝑓 (𝑡, 𝑢, 𝑣) ∶=
⎧{{
⎨{{⎩

̄𝑓 (𝑡, 𝑢, 𝑣1), ≤ 𝑣1,
̄𝑓 (𝑡, 𝑢, 𝑣), 𝑣1 ≤ 𝑣 ≤ 𝑣2,
̄𝑓 (𝑡, 𝑢, 𝑣2), 𝑣2 ≤ 𝑣.

Remark 8.3.5. Note that results similar to those presented so far in the chapter hold when the

kernel 𝑘 is negative on a strip, negative and strictly negative. This gives nontrivial solutions that

are negative on an interval, negative and strictly negative respectively.
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8.4 An application

We now turn our attention to the first order functional periodic boundary value problem

𝑢′(𝑡) = ℎ(𝑡, 𝑢(𝑡), 𝑢(−𝑡)), 𝑡 ∈ [−𝑇, 𝑇], (8.4.1)

𝑢(−𝑇) = 𝑢(𝑇), (8.4.2)

Weapply the shift argument of Subsection3.2.3 –a similar idea has been used in [167,184],–

by fixing 𝜔 ∈ ℝ+ and considering the equivalent expression

𝑢′(𝑡) + 𝜔𝑢(−𝑡) = ℎ(𝑡, 𝑢(𝑡), 𝑢(−𝑡)) + 𝜔𝑢(−𝑡) ∶= 𝑓 (𝑡, 𝑢(𝑡), 𝑢(−𝑡)), 𝑡 ∈ [−𝑇, 𝑇],
(8.4.3)

𝑢(−𝑇) = 𝑢(𝑇). (8.4.4)

Following the ideas developed in Subsection 3.2.3, we can conclude that the functional bound-

ary value problem (8.4.3)-(8.4.4) can be rewritten into a Hammerstein integral equation of the

type

𝑢(𝑡) = ∫u�
−u�

𝑘(𝑡, 𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(−𝑠)) d 𝑠, (8.4.5)

Also, 𝑘(𝑡, 𝑠) can be expressed in the following way (see page 50):

2 sin(𝜔𝑇)𝑘(𝑡, 𝑠) =

⎧{{{
⎨{{{⎩

cos 𝜔(𝑇 − 𝑠 − 𝑡) + sin 𝜔(𝑇 + 𝑠 − 𝑡), 𝑡 > |𝑠|,
cos 𝜔(𝑇 − 𝑠 − 𝑡) − sin 𝜔(𝑇 − 𝑠 + 𝑡), |𝑡| < 𝑠,
cos 𝜔(𝑇 + 𝑠 + 𝑡) + sin 𝜔(𝑇 + 𝑠 − 𝑡), |𝑡| < −𝑠,
cos 𝜔(𝑇 + 𝑠 + 𝑡) − sin 𝜔(𝑇 − 𝑠 + 𝑡), 𝑡 < −|𝑠|.

(8.4.6)

The results that follow are meant to prove that we are under the hypothesis of Theorem 8.1.6.

Apart from Theorem 3.2.3, Lemma 3.2.6 and Theorem 3.2.8, there are some things to

be said about the kernel 𝑘 when 𝜁 = 𝜔𝑇 ∈ ℝ\[−u�
4 , u�

4 ]. First, realize that, using the

trigonometric identities cos(𝑎 − 𝑏) ± sin(𝑎 + 𝑏) = (cos 𝑎 ± sin 𝑎)(cos 𝑏 ± sin 𝑏) and

cos(𝑎) + sin(𝑎) = √2 cos(𝑎 − u�
4 ) and making the change of variables 𝑡 = 𝑇𝑧, 𝑠 = 𝑇𝑦, we

can express 𝑘 as

sin(𝜁)𝑘(𝑧, 𝑦) =

⎧{{{
⎨{{{⎩

cos[𝜁(1 − 𝑧) − u�
4 ] cos(𝜁𝑦 − u�

4 ), 𝑧 > |𝑦|,
cos(𝜁𝑧 + u�

4 ) cos[𝜁(𝑦 − 1) − u�
4 ], |𝑧| < 𝑦,

cos(𝜁𝑧 + u�
4 ) cos[𝜁(1 + 𝑦) − u�

4 ], −|𝑧| > 𝑦,
cos[𝜁(𝑧 + 1) + u�

4 ] cos(𝜁𝑦 − u�
4 ), 𝑧 < −|𝑦|.

(8.4.7)

Lemma 8.4.1. The following properties hold:

(1) If 𝜁 ∈ (u�
4 , u�

2 ), then 𝑘 is strictly positive in

𝑆 ∶= [(− 𝜋
4|𝜁|

, 𝜋
4|𝜁|

− 1) ∪ (1 − 𝜋
4|𝜁|

, 𝜋
4|𝜁|

)] × [−1, 1].
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(2) If 𝜁 ∈ (−u�
2 , −u�

4 ), 𝑘 is strictly negative in 𝑆.

Proof. By Lemma 3.2.6, it is enough to prove that 𝑘 is strictly positive in 𝑆 for 𝜁 ∈ (u�
4 , u�

2 ). We

do here the proof for the connected component (1 − u�
4u� , u�

4u� ) × [−1, 1] of 𝑆. For the other

one the proof is analogous.

If 𝑧 ∈ (1 − u�
4u� , u�

4u� ), then 𝜁𝑧 + u�
4 ∈ (𝜁, u�

2 ) ⊂ (u�
4 , u�

2 ), and hence cos (𝜁𝑧 + u�
4 ) > 0.

Also, if 𝑧 ∈ (1 − u�
4u� , u�

4u� ), then 𝜁(1 − 𝑧) − u�
4 ∈ (𝜁 − u�

2 , 0) ⊂ (−u�
4 , 0) and therefore

cos (𝜁(1 − 𝑧) − u�
4 ) > 0.

If 𝑦 ∈ (− u�
4u� , u�

4u� ), then 𝜁𝑦 − u�
4 ∈ (−u�

2 , 0) so cos (𝜁𝑦 − u�
4 ) > 0.

If 𝑦 ∈ (1 − u�
4u� , 1), then 𝜁(𝑦 − 1) − u�

4 ∈ (−u�
2 , −u�

4 ) so cos (𝜁(𝑦 − 1) − u�
4 ) > 0.

If 𝑦 ∈ (−1, u�
4u� − 1), then 𝜁(𝑦 + 1) + u�

4 ∈ (u�
4 , u�

2 ) so cos (𝜁(𝑦 + 1) + u�
4 ) > 0.

With these inequalities the result is straightforward from equation (8.4.7). �

Lemma 8.4.2. If 𝜁 ∈ (u�
4 , u�

2 ) then sin(𝜁)|𝑘(𝑧, 𝑦)| ≤ Φ(𝑦) ∶= sin(𝜁) maxu�∈[−1,1] 𝑘(𝑟, 𝑦)
where Φ admits the following expression:

Φ(𝑦) =

⎧{{{{{
⎨{{{{{⎩

cos [𝜁(𝑦 − 1) − u�
4 ] , 𝑦 ∈ [𝛽, 1],

cos [𝜁(𝑦 − 1) + u�
4 ] cos (𝜁𝑦 − u�

4 ) , 𝑦 ∈ [1 − u�
4u� , 𝛽) ,

cos (𝜁𝑦 − u�
4 ) , 𝑦 ∈ [𝛽 − 1, 1 − u�

4u� ) ,
cos (𝜁𝑦 + u�

4 ) cos [𝜁(𝑦 + 1) − u�
4 ] , 𝑦 ∈ [− u�

4u� , 𝛽 − 1),
cos [𝜁(𝑦 + 1) − u�

4 ] , 𝑦 ∈ [−1, − u�
4u� ),

and 𝛽 is the only solution of the equation

cos [𝜁(𝑦 − 1) + 𝜋
4 ] cos (𝜁𝑦 − 𝜋

4 ) − cos [𝜁(𝑦 − 1) − 𝜋
4 ] = 0 (8.4.8)

in the interval [1
2 , 1].

Proof. First observe that, for convenience, we are redefining Φ multiplying it by sin(𝜁). Let

𝑣(𝑦) ∶= cos [𝜁(𝑦 − 1) + 𝜋
4 ] cos (𝜁𝑦 − 𝜋

4 ) − cos [𝜁(𝑦 − 1) − 𝜋
4 ] ,

then

𝑣′(𝑦) = 𝜁 [sin (𝜁(𝑦 − 1) − 𝜋
4 ) − sin (𝜁(2𝑦 − 1))] .

Observe that 𝑦 ∈ [1
2 , 1] implies

𝜁(𝑦 − 1) − 𝜋
4 ∈ [−𝜁

2 − 𝜋
4 , −𝜋

4 ] ⊂ [−3𝜋
4 , −𝜋

4 ]
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and

𝜁(2𝑦 − 1) ∈ (0, 𝜁) ⊂ (0, 𝜋
2 ) ,

therefore 𝑣′(𝑦) < 0 ∀𝑦 ∈ (1
2 , 1). Furthermore, since 𝜁 ∈ (u�

4 , u�
2 ),

𝑣 (1
2) = cos2 (𝜁

2 − 𝜋
4 ) − cos (𝜁

2 + 𝜋
4 )

= 1 − [cos (−𝜁
2 ) +

√2
2 ] [sin (−𝜁

2 ) +
√2
2 ] ≥

√4 − 2√2
2 > 0,

𝑣(1) =
√2
2 [1 − cos (𝜁 − 𝜋

4 )] ≤ 0.

Hence, equation (8.4.8) has a unique solution𝛽 in [1
2 , 1]. Besides, since 𝑣( u�

4u� ) = √2 sin(𝜁 −
u�
4 ) > 0, we have that 𝛽 > u�

4u� . Furthermore, it can be checked that

−1 < − 𝜋
4𝜁

< 𝛽 − 1 < 𝜋
4𝜁

− 1 < 0 < 1 − 𝜋
4𝜁

< 𝜋
4𝜁

< 𝛽 < 1.

Now, realize that

sin(𝜁)𝑘(𝑧, 𝑦) ≤ 𝜉(𝑧, 𝑦)

∶=

⎧{{{{
⎨{{{{⎩

cos[𝜁(1 − max{1 − u�
4u� , |𝑦|}) − u�

4 ] cos(𝜁𝑦 − u�
4 ), 𝑧 > |𝑦|,

cos(𝜁 min{ u�
4u� , 𝑦} − u�

4 ) cos[𝜁(𝑦 − 1) − u�
4 ], |𝑧| < 𝑦,

cos(𝜁 max{− u�
4u� , 𝑦} + u�

4 ) cos[𝜁(1 + 𝑦) − u�
4 ], −|𝑧| > 𝑦,

√2
2 cos(𝜁𝑦 − u�

4 ), 𝑧 < −|𝑦|,

(8.4.9)

while 𝜉(𝑧, 𝑦) ≤ Φ(𝑦).
We study now the different cases for the value of 𝑦.

• If 𝑦 ∈ [𝛽, 1], then

𝜉(𝑧, 𝑦) =

⎧{{{{
⎨{{{{⎩

cos [𝜁(𝑦 − 1) + 𝜋
4 ] cos (𝜁𝑦 − 𝜋

4 ) , 𝑧 > 𝑦, (8.4.10a)

cos [𝜁(𝑦 − 1) − 𝜋
4 ] , |𝑧| < 𝑦, (8.4.10b)

√2
2 cos (𝜁𝑦 − 𝜋

4 ) , 𝑧 < −𝑦. (8.4.10c)

It is straightforward that cos[𝜁(𝑦 − 1) + u�
4 ] > cos(u�

4 ) = √2
2 , so (8.4.10a)>(8.4.10c). By

our study of equation (8.4.8), we have that that

cos [𝜁(𝑦 − 1) + 𝜋
4 ] cos (𝜁𝑦 − 𝜋

4 ) ≤ cos [𝜁(𝑦 − 1) − 𝜋
4 ] .
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Therefore (8.4.10a)≥(8.4.10b) and Φ(𝑦) = cos [𝜁(𝑦 − 1) − u�
4 ].

• If 𝑦 ∈ [ u�
4u� , 𝛽), then 𝜉 is as in (8.4.10) and (8.4.10a)>(8.4.10c), but in this case

cos [𝜁(𝑦 − 1) + 𝜋
4 ] cos (𝜁𝑦 − 𝜋

4 ) ≥ cos [𝜁(𝑦 − 1) − 𝜋
4 ] ,

so (8.4.10a)≤(8.4.10b) and Φ(𝑦) = cos [𝜁(𝑦 − 1) + u�
4 ] cos (𝜁𝑦 − u�

4 ).

• If 𝑦 ∈ [1 − u�
4u� , u�

4u� ), then

𝜉(𝑧, 𝑦) =

⎧{{{{
⎨{{{{⎩

cos [𝜁(𝑦 − 1) + 𝜋
4 ] cos (𝜁𝑦 − 𝜋

4 ) , 𝑧 > 𝑦, (8.4.11a)

cos [𝜁(𝑦 − 1) − 𝜋
4 ] cos (𝜁𝑦 − 𝜋

4 ) , |𝑧| < 𝑦, (8.4.11b)

√2
2 cos (𝜁𝑦 − 𝜋

4 ) , 𝑧 < −𝑦. (8.4.11c)

We have that

cos [𝜁(𝑦 − 1) + 𝜋
4 ] − cos [𝜁(𝑦 − 1) − 𝜋

4 ] = √2 sin[𝜁(1 − 𝑦)] > 0,

therefore (8.4.11a)≥(8.4.11b) and Φ(𝑦) = cos[𝜁(𝑦 − 1) + u�
4 ] cos(𝜁𝑦 − u�

4 ).

• If 𝑦 ∈ [0, 1 − u�
4u� ), then

𝜉(𝑧, 𝑦) =

⎧{{{{
⎨{{{{⎩

cos (𝜁𝑦 − 𝜋
4 ) , 𝑧 > 𝑦, (8.4.12a)

cos [𝜁(𝑦 − 1) − 𝜋
4 ] cos (𝜁𝑦 − 𝜋

4 ) , |𝑧| < 𝑦, (8.4.12b)

√2
2 cos (𝜁𝑦 − 𝜋

4 ) , 𝑧 < −𝑦. (8.4.12c)

cos [𝜁(𝑦 − 1) − u�
4 ] < √2

2 , so (8.4.12b)≤(8.4.12c)≤(8.4.12a) and Φ(𝑦) = cos (𝜁𝑦 − u�
4 ).

• If 𝑦 ∈ [𝛽 − 1, 0), then

𝜉(𝑧, 𝑦) =

⎧{{{{
⎨{{{{⎩

cos (𝜁𝑦 − 𝜋
4 ) , 𝑧 > −𝑦,

cos (𝜁𝑦 + 𝜋
4 ) cos [𝜁(1 + 𝑦) − 𝜋

4 ] , −|𝑧| > 𝑦,

√2
2 cos (𝜁𝑦 − 𝜋

4 ) , 𝑧 < 𝑦.

(8.4.13)

Let 𝑦 = 𝑦 − 1, then

cos (𝜁𝑦 + 𝜋
4 ) cos [𝜁(1 + 𝑦) − 𝜋

4 ] ≤ cos (𝜁𝑦 − 𝜋
4 )
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if and only if

cos [𝜁(𝑦 − 1) + 𝜋
4 ] cos (𝜁𝑦 − 𝜋

4 ) ≤ cos [𝜁(𝑦 − 1) − 𝜋
4 ]

which is true as 𝑦 ∈ [𝛽, 1) and our study of equation (8.4.8). Hence, Φ(𝑦) = cos (𝜁𝑦 − u�
4 ).

• If 𝑦 ∈ [ u�
4u� − 1, 𝛽 − 1), then

𝜉 is the same as in (8.4.13) but in this case

cos (𝜁𝑦 + 𝜋
4 ) cos [𝜁(1 + 𝑦) − 𝜋

4 ] ≥ cos (𝜁𝑦 − 𝜋
4 )

so Φ(𝑦) = cos (𝜁𝑦 + u�
4 ) cos [𝜁(1 + 𝑦) − u�

4 ].

• If 𝑦 ∈ [− u�
4u� , u�

4u� − 1), then

𝜉(𝑧, 𝑦) =

⎧{{{{
⎨{{{{⎩

cos [𝜁(1 − 𝑦) − 𝜋
4 ] cos (𝜁𝑦 − 𝜋

4 ) , 𝑧 > −𝑦,

cos (𝜁𝑦 + 𝜋
4 ) cos [𝜁(1 + 𝑦) − 𝜋

4 ] , −|𝑧| > 𝑦,

√2
2 cos (𝜁𝑦 − 𝜋

4 ) , 𝑧 < 𝑦.

cos (𝜁𝑦 + 𝜋
4 ) cos [𝜁(1 + 𝑦) − 𝜋

4 ] − cos [𝜁(1 − 𝑦) − 𝜋
4 ] cos (𝜁𝑦 − 𝜋

4 )

= − sin 𝜁 sin(2𝜁𝑦) > 0,

then Φ(𝑦) = cos (𝜁𝑦 + u�
4 ) cos [𝜁(1 + 𝑦) − u�

4 ].

• If 𝑦 ∈ [−1, − u�
4u� ), then

𝜉(𝑧, 𝑦) =

⎧{{{{
⎨{{{{⎩

cos [𝜁(1 − 𝑦) − 𝜋
4 ] cos (𝜁𝑦 − 𝜋

4 ) , 𝑧 > −𝑦,

cos [𝜁(1 + 𝑦) − 𝜋
4 ] , −|𝑧| > 𝑦,

√2
2 cos (𝜁𝑦 − 𝜋

4 ) , 𝑧 < 𝑦.

Since

cos [𝜁(1 + 𝑦) − 𝜋
4 ] ≥ cos (𝜁𝑦 + 𝜋

4 ) cos [𝜁(1 + 𝑦) − 𝜋
4 ]

> cos [𝜁(1 − 𝑦) − 𝜋
4 ] cos (𝜁𝑦 − 𝜋

4 ) ,

we have that Φ(𝑦) = cos [𝜁(1 + 𝑦) − u�
4 ].

It can be checked that, just studying the arguments of the cosines involved, that

− sin(𝜁)𝑘(𝑧, 𝑦) ≤ 1
2 ≤ Φ(𝑦),

therefore sin(𝜁)|𝑘(𝑧, 𝑦)| ≤ Φ(𝑦) for all 𝑧, 𝑦 ∈ [−1, 1]. �
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Lemma 8.4.3. Let 𝜁 ∈ (u�
4 , u�

2 ) and 𝑏 ≥ 𝑎 ≥ 0 such that 𝑎 + 𝑏 = 1. Then

sin(𝜁)𝑘(𝑧, 𝑦) ≥ 𝑐(𝑎)Φ(𝑦) for 𝑧 ∈ [𝑎, 𝑏] , 𝑦 ∈ [−1, 1] ,

where

𝑐(𝑎) ∶= inf
u�∈[−1,1]

⎧{
⎨{⎩

sin(𝜁) inf
u�∈[u�,u�]

𝑘(𝑧, 𝑦)

Φ(𝑦)

⎫}
⎬}⎭

= [1 − tan(𝜁𝑎)][1 − tan(𝜁𝑏)]
[1 + tan(𝜁𝑎)][1 + tan(𝜁𝑏)]

.

Proof. We know by Lemma 8.4.1 that 𝑘 is positive in 𝑆u� ∶= [𝑎, 𝑏] × [−1, 1]. Furthermore, it

is proved in Proposition 3.2.3 that

𝜕𝑘
𝜕𝑡

(𝑡, 𝑠) + 𝜔 𝑘(−𝑡, 𝑠) = 0 ∀𝑡, 𝑠 ∈ [−𝑇, 𝑇],

so, differentiating and doing the proper substitutions we get that

𝜕2𝑘
𝜕𝑡2 (𝑡, 𝑠) + 𝜔2𝑘(𝑡, 𝑠) = 0 ∀𝑡, 𝑠 ∈ [−𝑇, 𝑇].

Therefore,
u�2u�
u�u�2 < 0 in 𝑆u�, which means that any minimum of 𝑘 with respect to 𝑡 has to be in

the boundary of the differentiable regions of 𝑆u�. Thus, in 𝑆u�,

sin(𝜁)𝑘(𝑧, 𝑦) ≥ 𝜂(𝑧, 𝑦)

∶=

⎧{{{{{{{
⎨{{{{{{{⎩

cos([max{|𝜁𝑎 + u�
4 |, |𝜁𝑏 + u�

4 |}) cos[𝜁(𝑦 − 1) − u�
4 ], |𝑧| < 𝑦, 𝑦 ∈ [𝑏, 1],

cos([max{|𝜁𝑎 + u�
4 |, |𝜁𝑦 + u�

4 |}) cos[𝜁(𝑦 − 1) − u�
4 ], |𝑧| < 𝑦, 𝑦 ∈ [𝑎, 𝑏),

cos[max{|𝜁(1 − 𝑦) − u�
4 |, |𝜁(1 − 𝑏) − u�

4 |] cos(𝜁𝑦 − u�
4 ), 𝑧 > |𝑦|, 𝑦 ∈ [𝑎, 𝑏),

cos[max{|𝜁(1 − 𝑎) − u�
4 |, |𝜁(1 − 𝑏) − u�

4 |] cos(𝜁𝑦 − u�
4 ), 𝑧 > |𝑦|, 𝑦 ∈ [−𝑎, 𝑎),

cos[max{|𝜁(1 − 𝑦) − u�
4 |, |𝜁(1 − 𝑏) − u�

4 |] cos(𝜁𝑦 − u�
4 ), 𝑧 > |𝑦|, 𝑦 ∈ [−𝑏, −𝑎),

cos([max{|𝜁𝑎 + u�
4 |, |𝜁𝑦 + u�

4 |}) cos[𝜁(1 + 𝑦) − u�
4 ], −|𝑧| > 𝑦, 𝑦 ∈ [−𝑏, −𝑎),

cos([max{|𝜁𝑎 + u�
4 |, |𝜁𝑏 + u�

4 |}) cos[𝜁(1 + 𝑦) − u�
4 ], −|𝑧| > 𝑦, 𝑦 ∈ [−1, −𝑏).

By definition, 𝜂(𝑧, 𝑦) ≥ Ψ(𝑦) ∶= sin(𝜁) infu�∈[u�,u�] 𝑘(𝑟, 𝑦). Also, realize that the ar-

guments of the cosine in (8.4.7) are affine functions and that the cosine function is strictly

decreasing in [0, 𝜋] and symmetric with respect to zero. We can apply Lemma 3.4.2 to get

𝜂 (𝑧, 𝑦) =

⎧{{{{{{{
⎨{{{{{{{⎩

cos (𝜁𝑏 + 𝜋
4 ) cos [𝜁 (𝑦 − 1) − 𝜋

4 ] , |𝑧| < 𝑦, 𝑦 ∈ [𝑏, 1], (8.4.14a)

cos (𝜁𝑦 + 𝜋
4 ) cos [𝜁 (𝑦 − 1) − 𝜋

4 ] , |𝑧| < 𝑦, 𝑦 ∈ [𝑎, 𝑏), (8.4.14b)

cos (𝜁 (1 − 𝑏) − 𝜋
4 ) cos (𝜁𝑦 − 𝜋

4 ) , 𝑧 > |𝑦|, 𝑦 ∈ [−𝑏, 𝑏), (8.4.14c)

cos (𝜁𝑦 + 𝜋
4 ) cos [𝜁 (1 + 𝑦) − 𝜋

4 ] , −|𝑧| > 𝑦, 𝑦 ∈ [−𝑏, −𝑎), (8.4.14d)

cos (𝜁𝑏 + 𝜋
4 ) cos [𝜁 (1 + 𝑦) − 𝜋

4 ] , −|𝑧| > 𝑦, 𝑦 ∈ [−1, −𝑏). (8.4.14e)
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Finally, we have to compare the cases (8.4.14b) with (8.4.14c) for 𝑦 ∈ [𝑎, 𝑏) and (8.4.14d)

with (8.4.14c) for 𝑦 ∈ [−𝑏, −𝑎). Using again Lemma 3.4.2, we obtain the following inequality.

cos (𝜁 (1 − 𝑏) − 𝜋
4 ) cos (𝜁𝑦 − 𝜋

4 ) − cos (𝜁𝑦 + 𝜋
4 ) cos [𝜁 (𝑦 − 1) − 𝜋

4 ]

≥ cos (𝜁 (1 − 𝑏) − 𝜋
4 ) cos (𝜁𝑏 − 𝜋

4 ) − cos (𝜁𝑏 + 𝜋
4 ) cos [𝜁 (𝑏 − 1) − 𝜋

4 ]

= sin 𝜁 > 0.

Thus, (8.4.14c)>(8.4.14b) for 𝑦 ∈ [𝑎, 𝑏).
To compare (8.4.14d) with (8.4.14c) for 𝑦 ∈ [−𝑏, 𝑏) realize that 𝑘 is continuous in the

diagonal 𝑧 = −𝑦 (see Theorem 3.2.3). Hence, since the expressions of (8.4.14d) and (8.4.14c)

are already locally minimyzing (in their differentiable components) for the variable 𝑧, we have

that (8.4.14d)≥(8.4.14c) for 𝑦 ∈ [−𝑏, −𝑎). Therefore,

Ψ (𝑦) =

⎧{{{{{
⎨{{{{{⎩

cos (𝜁𝑏 + 𝜋
4 ) cos [𝜁 (𝑦 − 1) − 𝜋

4 ] , 𝑦 ∈ [𝑏, 1] ,

cos (𝜁𝑦 + 𝜋
4 ) cos [𝜁 (𝑦 − 1) − 𝜋

4 ] , 𝑦 ∈ [𝑎, 𝑏) ,

cos (𝜁 (1 − 𝑏) − 𝜋
4 ) cos (𝜁𝑦 − 𝜋

4 ) , 𝑦 ∈ [−𝑏, 𝑎) ,

cos (𝜁𝑏 + 𝜋
4 ) cos [𝜁 (1 + 𝑦) − 𝜋

4 ] , 𝑦 ∈ [−1, −𝑏) .

(8.4.15)

It can be checked that the following order holds:

−1 < − 𝜋
4𝜁

< −𝑏 < 𝛽 − 1 < 1 − 𝜋
4𝜁

< 𝑎 < 𝑏 < 𝛽 < 1.

Thus, we get the following expression Ψ (𝑦)/Φ(𝑦) =

⎧{{{{{{{{{{{{{{{{{{{{
⎨{{{{{{{{{{{{{{{{{{{{⎩

cos (𝜁𝑏 + 𝜋
4 ) , 𝑦 ∈ [𝛽, 1] , (8.4.16a)

cos (𝜁𝑏 + u�
4 ) cos (𝜁(𝑦 − 1) − u�

4 )

cos (𝜁𝑦 − u�
4 ) cos (𝜁(𝑦 − 1) + u�

4 )
, 𝑦 ∈ [𝑏, 𝛽) , (8.4.16b)

cos (𝜁𝑦 + u�
4 ) cos (𝜁(𝑦 − 1) − u�

4 )

cos (𝜁𝑦 − u�
4 ) cos (𝜁(𝑦 − 1) + u�

4 )
, 𝑦 ∈ [𝑎, 𝑏) , (8.4.16c)

cos (𝜁(1 − 𝑏) − u�
4 )

cos (𝜁(𝑦 − 1) + u�
4 )

, 𝑦 ∈ [1 − u�
4u� , 𝑎) , (8.4.16d)

cos (𝜁(1 − 𝑏) − 𝜋
4 ) , 𝑦 ∈ [𝛽 − 1, 1 − u�

4u� ) , (8.4.16e)

cos (𝜁(1 − 𝑏) − u�
4 ) cos (𝜁𝑦 − u�

4 )

cos (𝜁𝑦 + u�
4 ) cos (𝜁(1 + 𝑦) − u�

4 )
, 𝑦 ∈ [−𝑏, 𝛽 − 1) , (8.4.16f)

cos (𝜁𝑏 + u�
4 )

cos (𝜁𝑦 + u�
4 )

, 𝑦 ∈ [− u�
4u� , −𝑏) , (8.4.16g)

cos (𝜁𝑏 + 𝜋
4 ) , 𝑦 ∈ [−1, − u�

4u� ) . (8.4.16h)
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To find the infimum of this function we will go through several steps in which we discard

different cases. First, it can be checked that the inequalities (8.4.16g)≥(8.4.16h)= (8.4.16a)

and (8.4.16d)≥(8.4.16e), so we need not to think about (8.4.16d), (8.4.16g) and (8.4.16h) any-

more.

Now, realize that |𝜁(1 − 𝑏) − u�
4 | ≤ |𝜁𝑏 + u�

4 | ≤ 𝜋. Since the cosine is decreasing in [0, 𝜋]
and symmetric with respect to zero this implies that (8.4.16e)≥(8.4.16a).

Note that (8.4.16c) can be written as

𝑔1(𝑦) ∶= [1 − tan(𝜁𝑦)](1 − tan[𝜁(1 − 𝑦)])
[1 + tan(𝜁𝑦)](1 + tan[𝜁(1 − 𝑦)])

.

Its derivative is

𝑔′
1(𝑦) = −4𝜁[tan2(𝜁𝑦) − tan2 𝜁(𝑦 − 1)]

(tan 𝜁𝑦 + 1)2[tan 𝜁(𝑦 − 1)]2
,

which only vanishes at 𝑦 = 1
2 for 𝑦 ∈ [𝑎, 𝑏].

𝑔″
1 (1

2) = −
16𝜁2 tan (u�

2 ) (tan2 u�
2 + 1)

(tan u�
2 + 1)

4 < 0,

Therefore 𝑦 = 1
2 is a maximum of the function. Since 𝑔1 is symmetric with respect to

1
2 and 𝑎

is the symmetric point of 𝑏 with respect to
1
2 , 𝑔(𝑎) = 𝑔(𝑏) is the infimum of (8.4.16c) which

is contemplated in (8.4.16b) for 𝑦 = 𝑏.
Making the change of variables 𝑦 = 𝑦 − 1 we have that (8.4.16f) can be written as

cos (𝜁(1 − 𝑏) − u�
4 ) cos (𝜁(𝑦 − 1) − u�

4 )

cos (𝜁𝑦 − u�
4 ) cos (𝜁(𝑦 − 1) + u�

4 )
, 𝑦 ∈ [𝑎, 𝛽) . (8.4.16f’)

Since (8.4.16e)≥(8.4.16a), now we have that (8.4.16f’)≥(8.4.16b) in [𝑏, 𝛽).
Let

𝑔2(𝑦) ∶=
cos (𝜁(𝑦 − 1) − u�

4 )

cos (𝜁𝑦 − u�
4 ) cos (𝜁(𝑦 − 1) + u�

4 )
.

Then

𝑔′
2(𝑦) = 𝜁

4 ⋅
sin [𝜁(2 − 𝑦) − u�

4 ] + sin [𝜁(3𝑦 − 2) − u�
4 ] + 4 cos [𝜁𝑦 − u�

4 ]

sin2 [𝜁𝑦 + u�
4 ] cos2 [𝜁(1 − 𝑦) − u�

4 ]2 .

Since the argument in the cosine of the numerator is in the interval [−u�
4 , u�

4 ] for 𝑦 ∈ [𝑎, 1],
we have that 𝑔′

2(𝑦) > 0 for 𝑦 ∈ [𝑎, 1], which implies that 𝑔2 is increasing in that interval

and (8.4.16b) and (8.4.16f) reach their infimum in the left extreme point of their intervals of

definition.

We have then that

𝑐(𝑎) = inf
u�∈[−1,1]

Ψ(𝑦)
Φ(𝑦)
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= min
⎧{
⎨{⎩

cos (𝜁𝑏 + 𝜋
4 ) ,

cos (𝜁𝑏 + u�
4 ) cos (𝜁(𝑏 − 1) − u�

4 )

cos (𝜁𝑏 − u�
4 ) cos (𝜁(𝑏 − 1) + u�

4 )
,
cos (−𝜁𝑏 − u�

4 )

cos (−𝜁𝑏 + u�
4 )

⎫}
⎬}⎭

.

The third element of the set is greater or equal than the first. The second element can be

simplified to cos (𝜁𝑏 + u�
4 ) 𝑔2(𝑏). Since 𝑔2 is increasing in [𝑎, 1],

cos (𝜁𝑏 + 𝜋
4 ) 𝑔2(𝑏) ≤ cos (𝜁𝑏 + 𝜋

4 ) 𝑔2(1) = cos (𝜁𝑏 + 𝜋
4 ) cos(𝜁)

sin(𝜁)
≤ cos (𝜁𝑏 + 𝜋

4 ) .

Therefore,

𝑐(𝑎) =
cos (𝜁𝑏 + u�

4 ) cos (𝜁(𝑏 − 1) − u�
4 )

cos (𝜁𝑏 − u�
4 ) cos (𝜁(𝑏 − 1) + u�

4 )
= [1 − tan(𝜁𝑎)][1 − tan(𝜁𝑏)]

[1 + tan(𝜁𝑎)][1 + tan(𝜁𝑏)]
.

�

Remark 8.4.4. Let us find an upper estimate of 𝑐(𝑎). Just assume 𝑎 = 𝑏 = 1
2 .

𝑐(𝑎) ≤ 𝑐(1/2) = ⎛⎜⎜⎜
⎝

1 − tan u�
2

1 + tan u�
2

⎞⎟⎟⎟
⎠

2

≤ ⎛⎜
⎝

1 − tan u�
8

1 + tan u�
8

⎞⎟
⎠

2

= (2 − √2)2

2 = 0.17157 …

We can do the same study for 𝜁 ∈ (0, u�
4 ]. The proofs are almost the same, but in this case

the calculations are much easier.

Lemma 8.4.5. If 𝜁 ∈ (0, u�
4 ] then sin(𝜁)|𝑘(𝑧, 𝑦)| ≤ Φ(𝑦) ∶= maxu�∈[−1,1] 𝑘(𝑟, 𝑦) where Φ

admits the following expression:

Φ(𝑦) =
⎧{
⎨{⎩

cos [𝜁(𝑦 − 1) + u�
4 ] cos (𝜁𝑦 − u�

4 ) , 𝑦 ∈ [0, 1] ,
cos (𝜁𝑦 + u�

4 ) cos [𝜁(𝑦 + 1) − u�
4 ] , 𝑦 ∈ [−1, 0).

Proof. This time, a simplified version of inequality (8.4.9) holds,

sin(𝜁)𝑘(𝑧, 𝑦) ≤ 𝜉(𝑧, 𝑦) ∶=

⎧{{{
⎨{{{⎩

cos[𝜁(1 − |𝑦|) − u�
4 ] cos(𝜁𝑦 − u�

4 ), 𝑧 > |𝑦|,
cos(𝜁𝑦 − u�

4 ) cos[𝜁(𝑦 − 1) − u�
4 ], |𝑧| < 𝑦,

cos(𝜁𝑦 + u�
4 ) cos[𝜁(1 + 𝑦) − u�

4 ], −|𝑧| > 𝑦,
√2
2 cos(𝜁𝑦 − u�

4 ), 𝑧 < −|𝑦|,

so we only need to study two cases. If 𝑦 > 0, we are in the same situation as in the case 𝑦 ∈
[1 − u�

4u� , u�
4u� ) studied in Lemma 8.4.2. Hence, Φ(𝑦) = cos [𝜁(𝑦 − 1) + u�

4 ] cos (𝜁𝑦 − u�
4 ).

If 𝑦 < 0 we are in the same situation as in the case 𝑦 ∈ [− u�
4u� , u�

4u� − 1). Therefore, Φ(𝑦) =
cos (𝜁𝑦 + u�

4 ) cos [𝜁(𝑦 + 1) − u�
4 ]. �
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Lemma 8.4.6. Let 𝜁 ∈ (0, u�
4 ] and 𝑏 ≥ 𝑎 ≥ 0 such that 𝑎 + 𝑏 = 1. Then

sin (𝜁) 𝑘 (𝑧, 𝑦) ≥ 𝑐(𝑎)Φ (𝑦) for 𝑧 ∈ [𝑎, 𝑏] , 𝑦 ∈ [−1, 1] ,

where

𝑐(𝑎) ∶= inf
u�∈[−1,1]

⎧{
⎨{⎩

sin(𝜁) inf
u�∈[u�,u�]

𝑘(𝑧, 𝑦)

Φ(𝑦)

⎫}
⎬}⎭

= [1 − tan(𝜁𝑎)][1 − tan(𝜁𝑏)]
[1 + tan(𝜁𝑎)][1 + tan(𝜁𝑏)]

.

Proof. Let Ψ be as in (8.4.15). In this case we get the simpler expression

Ψ (𝑦)
Φ(𝑦) =

⎧{{{{{{{{{{{{{
⎨{{{{{{{{{{{{{⎩

cos (𝜁𝑏 + u�
4 ) cos (𝜁(𝑦 − 1) − u�

4 )

cos (𝜁𝑦 − u�
4 ) cos (𝜁(𝑦 − 1) + u�

4 )
, 𝑦 ∈ [𝑏, 1] ,

cos (𝜁𝑦 + u�
4 ) cos (𝜁(𝑦 − 1) − u�

4 )

cos (𝜁𝑦 − u�
4 ) cos (𝜁(𝑦 − 1) + u�

4 )
, 𝑦 ∈ [𝑎, 𝑏) ,

cos (𝜁(1 − 𝑏) − u�
4 )

cos (𝜁(𝑦 − 1) + u�
4 )

, 𝑦 ∈ [0, 𝑎) ,

cos (𝜁(1 − 𝑏) − u�
4 ) cos (𝜁𝑦 − u�

4 )

cos (𝜁𝑦 + u�
4 ) cos (𝜁(1 + 𝑦) − u�

4 )
, 𝑦 ∈ [−𝑏, 0) ,

cos (𝜁𝑏 + 𝜋
4 ) , 𝑦 ∈ [−1, −𝑏) .

By the same kind of arguments used in the proof of Lemma 8.4.3, we get the desired result.

�

Lemma 8.4.7.

sup
u�∈[−u�,u�]

∫u�
−u�

|𝑘(𝑡, 𝑠)| d 𝑠

=

⎧{{{
⎨{{{⎩

1
𝜔, 𝜁 ∈ (0, 𝜋

4 ] ,

1
𝜔

⎡⎢⎢
⎣

1 +
√2 cos 2u�+u�

3 sin u�−4u�
12 + cos u�−u�

3 (1 − sin 2u�+u�
3 )

sin 𝜁
⎤⎥⎥
⎦

, 𝜁 ∈ [𝜋
4 , 𝜋

2 ] .

Proof. First of all, if 𝜁 ∈ [0, u�
4 ], then |𝑘(𝑡, 𝑠)| = 𝑘(𝑡, 𝑠). The solution of the problem

𝑥′ (𝑡) + 𝜔 𝑥 (−𝑡) = 1, 𝑥 (−𝑇) = 𝑥 (𝑇)

is 𝑢 (𝑡) ≡ 1
u� , but at the same time it has to be of the kind in equation (8.4.5), so 𝑢 (𝑡) =

∫u�
−u� 𝑘(𝑡, 𝑠) d 𝑠. This proves the first part.

If 𝜁 ∈ [u�
4 , u�

2 ], then

∫u�
−u�

|𝑘(𝑡, 𝑠)| d 𝑠 = ∫u�
−u�

𝑘+(𝑡, 𝑠) d 𝑠 + ∫u�
−u�

𝑘−(𝑡, 𝑠) d 𝑠 = 1
𝜔 + 2 ∫u�

−u�
𝑘−(𝑡, 𝑠) d 𝑠.
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We make two observations here.

Fromequation (8.4.6), it can be checked that𝑘 (𝑡 + 𝑇, 𝑠 + 𝑇) = 𝑘(𝑡, 𝑠) and𝑘 (𝑡 + 𝑇, 𝑠) =
𝑘 (𝑡, 𝑠 + 𝑇) for a.e. 𝑡, 𝑠 ∈ [−𝑇, 0]. Hence, for 𝑡 ∈ [−𝑇, 0] and a function 𝜉 ∶ ℝ → ℝ, using

the change of variables 𝑟 = 𝑠 + 𝑇, 𝜏 = 𝑠 − 𝑇, we have that

∫u�
−u�

𝜉 (𝑘 (𝑡 + 𝑇, 𝑠)) d 𝑠 = ∫0
−u�

𝜉 (𝑘 (𝑡 + 𝑇, 𝑠)) 𝑑𝑠 + ∫u�
0

𝜉 (𝑘 (𝑡 + 𝑇, 𝑠)) d 𝑠

= ∫0
−u�

𝜉 (𝑘 (𝑡, 𝑠 + 𝑇)) d 𝑠 + ∫0
−u�

𝜉 (𝑘 (𝑡 + 𝑇, 𝜏 + 𝑇)) d 𝜏

= ∫u�
0

𝜉 (𝑘 (𝑡, 𝑟)) d 𝑟 + ∫0
−u�

𝜉 (𝑘 (𝑡, 𝜏)) d 𝜏 = ∫u�
−u�

𝜉 (𝑘(𝑡, 𝑠)) d 𝑠.

Therefore,

sup
u�∈[−u�,u�]

∫u�
−u�

|𝑘(𝑡, 𝑠)| d 𝑠 = sup
u�∈[−u�,0]

∫u�
−u�

|𝑘(𝑡, 𝑠)| d 𝑠.

The second observation is that, taking into account Lemma 8.4.1, 𝑘(𝑡, 𝑠) is positive in

(− u�
4u� , 𝑇 − u�

4u�) × [−𝑇, 𝑇], so

sup
u�∈[−u�,0]

∫u�
−u�

|𝑘(𝑡, 𝑠)| d 𝑠 = sup
u�∈[−u�,0]\(− u�

4u� ,1− u�
4u� )

∫u�
−u�

|𝑘(𝑡, 𝑠)| d 𝑠.

Using the same kind of arguments as in Lemma 8.4.1, it can be checked that 𝑘(𝑡, 𝑠) is negative

in

(−𝑇, − 𝜋
4𝜔) × (𝑡, − 𝜋

4𝜔) if 𝑡 ∈ (−𝑇, − 𝜋
4𝜔)

and in

( 𝜋
4𝜔 − 1, 0) × (𝑡, 1 − 𝜋

4𝜔) if 𝑡 ∈ ( 𝜋
4𝜔 − 1, 0) ,

so it is enough to compute 𝜂 (𝑡) ∶= ∫u�(u�) 𝑘−(𝑡, 𝑠) d 𝑠 where

𝐵 (𝑡) = {𝑠 ∈ [−𝑇, 𝑇] ∶ (𝑡, 𝑠) ∈ supp (𝑘−)}.

We have that 2𝜔 sin(𝜁)𝜂(𝑡) =

⎧{
⎨{⎩

cos (𝜔𝑡 + 𝜁 + u�
4 ) [1 + sin (𝜔𝑡 − u�

4 )] , 𝑡 ∈ (−𝑇, − u�
4u�) ,

√2 cos (𝜔𝑡 + 𝜁 + u�
4 ) sin 𝜔𝑡 + cos (𝜔𝑡 + u�

4 ) [1 − sin (𝜔𝑡 + 𝜁 + u�
4 )], 𝑡 ∈ ( u�

4u� − 1, 0) .

With the change of variable 𝑡 = 𝑧𝑇,

2𝜔 sin (𝜁) 𝜂 (𝑧) =
⎧{
⎨{⎩

𝜂1 (𝑧) if 𝑧 ∈ (−1, − u�
4u� ) ,

𝜂2 (𝑧) if 𝑧 ∈ ( u�
4u� − 1, 0) ,

where

𝜂1 (𝑧) = cos [𝜁 (𝑧 + 1) + 𝜋
4 ] [1 + sin (𝜁𝑧 − 𝜋

4 )]

and

𝜂2 (𝑧) = √2 cos [𝜁 (𝑧 + 1) + 𝜋
4 ] sin 𝜁𝑧 + cos (𝜁𝑧 + 𝜋

4 ) [1 − sin (𝜁 (𝑧 + 1) + 𝜋
4 )] .
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It can be checked that

𝜂′
1 (−1) ≤ 0, 𝜂′

1 (− 𝜋
4𝜁

) = 0, 𝜂″
1 (𝑧) ≥ 0 for 𝑧 ∈ [−1, − 𝜋

4𝜁
] ,

𝜂′
1 (−1) = 𝜂2 (0) ,

𝜂′
2 ( 𝜋

4𝜔 − 1) > 0, 𝜂′
2 (0) < 0, 𝜂″

2 (𝑧) ≥ 0 for 𝑧 ∈ [ 𝜋
4𝜁

− 1, 0] .

With these facts we conclude that there is a unique maximum of the function 𝜂 (𝑧) in the

interval( u�
4u� − 1, 0), precisely where𝜂′

2 (𝑧) = 𝜁 (cos [𝜁 (1 + 2𝑧)] − sin (u�
4 + 𝑧𝜁)) = 0,

this is, for 𝑧 = 1
3(u�

4 − 1), and therefore the statement of the theorem holds. �

Lemma 8.4.8. Let 𝜔 ∈ [u�
4 𝑇, u�

2 𝑇] and 𝑇 − u�
4u� < 𝑎 < 𝑏 = 𝑇 − 𝑎 < u�

4u� . Then

2𝜔 sin(𝜁) inf
u�∈[u�,u�]

∫u�
u�

𝑘(𝑡, 𝑠) d 𝑠 = sin 𝜔(𝑇 − 2𝑎) + cos 𝜁 − cos 2𝜔𝑎.

Proof. We can check that

2𝜔 sin(𝜁) ∫u�
−u�

𝑘(𝑡, 𝑟) d 𝑟

=

⎧{{{
⎨{{{⎩

sin 𝜔(𝑇 + 𝑠 + 𝑡) − cos 𝜔(𝑇 + 𝑠 − 𝑡) − sin 𝜔𝑡 + cos 𝜔𝑡, |𝑡| ≤ −𝑠,
sin 𝜔(𝑇 + 𝑠 + 𝑡) − cos 𝜔(𝑇 − 𝑠 + 𝑡) − sin 𝜔𝑡 + cos 𝜔𝑡, |𝑠| ≤ −𝑡,
− sin 𝜔(𝑇 − 𝑠 − 𝑡) − cos 𝜔(𝑇 + 𝑠 − 𝑡) − sin 𝜔𝑡 + cos 𝜔𝑡 + 2 sin 𝜔𝑡, |𝑠| ≤ 𝑡,
− sin 𝜔(𝑇 − 𝑠 − 𝑡) − cos 𝜔(𝑇 − 𝑠 + 𝑡) − sin 𝜔𝑡 + cos 𝜔𝑡 + 2 sin 𝜔𝑡, |𝑡| ≤ 𝑠.

Therefore ∫u�
u� 𝑘(𝑡, 𝑠) d 𝑠 = ∫u�

−u� 𝑘(𝑡, 𝑠) d 𝑠 − ∫u�
−u� 𝑘(𝑡, 𝑠) d 𝑠, this is,

2𝜔 sin(𝜁) ∫u�
u�

𝑘(𝑡, 𝑠) d 𝑠
= sin 𝜔(𝑇 − 𝑎 − 𝑡) − sin 𝜔(𝑎 − 𝑡) + cos 𝜔(𝑇 + 𝑎 − 𝑡) − cos 𝜔(𝑎 + 𝑡), 𝑡 ∈ [𝑎, 𝑏].

Using similar arguments to the ones used in the proof of Lemma 8.4.3 we can show that

2𝜔 sin(𝜁) inf
u�∈[u�,u�]

∫u�
u�

𝑘(𝑡, 𝑠) d 𝑠 = sin 𝜔(𝑇 − 2𝑎) + cos 𝜁 − cos 2𝜔𝑎.

�

With the same method, we can prove the following corollary.

Corollary 8.4.9. Let 𝜔 ∈ (0, u�
4 𝑇] and 0 < 𝑎 < 𝑏 = 𝑇 − 𝑎 < 1. Then

2𝜔 sin(𝜁) inf
u�∈[u�,u�]

∫u�
u�

𝑘(𝑡, 𝑠) d 𝑠 = sin 𝜔(𝑇 − 2𝑎) + cos 𝜁 − cos 2𝜔𝑎.

Remark 8.4.10. If 𝜔 ∈ (0, u�
4 𝑇], then

inf
u�∈[−u�,u�]

∫u�
−u�

𝑘(𝑡, 𝑠) d 𝑠 = 1
𝜔,

just because of the observation in the proof of Lemma 8.4.7.
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Now we can state conditions (𝐼0
u�) and (𝐼1

u�) for the special case of problem (8.4.1)–(8.4.2):

(I1
u�,u�) Let

𝑓 −u�,u�
u� ∶= sup {ℎ(𝑡, 𝑢, 𝑣) + 𝜔𝑣

𝜌 ∶ (𝑡, 𝑢, 𝑣) ∈ [−𝑇, 𝑇] × [−𝜌, 𝜌] × [−𝜌, 𝜌]} .

There exist 𝜌 > 0 and 𝜔 ∈ (0, u�
4 ] such that 𝑓 −u�,u�

u� < 𝜔,

or

there exist 𝜌 > 0 and 𝜔 ∈ (u�
4 , u�

2 ] such that

𝑓 −u�,u�
u� ⋅

⎡⎢⎢
⎣

1 +
√2 cos 2u�+u�

3 sin u�−4u�
12 + cos u�−u�

3 (1 − sin 2u�+u�
3 )

sin 𝜁
⎤⎥⎥
⎦

< 𝜔.

(I0
u�,u�) there exist 𝜌 > 0 such that such that

𝑓 u�
(u�,u�/u�) ⋅ inf

u�∈[u�,u�]
∫u�

u�
𝑘(𝑡, 𝑠) d 𝑠 > 1,

where

𝑓 u�
(u�,u�/u�) = inf {ℎ(𝑡, 𝑢, 𝑣) + 𝜔𝑣

𝜌 ∶ (𝑡, 𝑢, 𝑣) ∈ [𝑎, 𝑏] × [𝜌, 𝜌/𝑐] × [−𝜌/𝑐, 𝜌/𝑐]} .

Theorem 8.4.11. Assume (𝐶1)–(𝐶4) hold. Let 𝜔 ∈ (0, u�
2 𝑇]. Let [𝑎, 𝑏] ⊂ [−𝑇, 𝑇] such

that 𝑎 = 1 − 𝑏 ∈ (max{0, 𝑇 − u�
4u�}, u�

2 ). Let

𝑐 = [1 − tan(𝜔𝑎)][1 − tan(𝜔𝑏)]
[1 + tan(𝜔𝑎)][1 + tan(𝜔𝑏)].

Problem (8.4.1)–(8.4.2) has at least one nonzero solution in 𝐾 if either of the following

conditions hold.

(𝑆1) There exist 𝜌1, 𝜌2 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 such that (I0
u�1,u�) and (I1

u�2,u�) hold.

(𝑆2) There exist 𝜌1, 𝜌2 ∈ (0, ∞) with 𝜌1 < 𝜌2 such that (I1
u�1,u�) and (I0

u�2,u�) hold.

Problem (8.4.1)–(8.4.2) has at least two nonzero solutions in𝐾 if one of the following conditions

hold.

(𝑆3) There exist 𝜌1, 𝜌2, 𝜌3 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 < 𝜌3 such that (I0
u�1,u�), (I1

u�2,u�)
and (I0

u�3,u�) hold.

(𝑆4) There exist𝜌1, 𝜌2, 𝜌3 ∈ (0, ∞)with𝜌1 < 𝜌2 and𝜌2/𝑐 < 𝜌3 such that (I1
u�1,u�), (I0

u�2,u�)
and (I1

u�3,u�) hold.
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Problem (8.4.1)–(8.4.2) has at least three nonzero solutions in 𝐾 if one of the following condi-

tions hold.

(𝑆5) There exist 𝜌1, 𝜌2, 𝜌3, 𝜌4 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 < 𝜌3 and 𝜌3/𝑐 < 𝜌4 such that

(I0
u�1,u�), (I1

u�2,u�), (I0
u�3,u�) and (I1

u�4,u�) hold.

(𝑆6) There exist 𝜌1, 𝜌2, 𝜌3, 𝜌4 ∈ (0, ∞) with 𝜌1 < 𝜌2 and 𝜌2/𝑐 < 𝜌3 < 𝜌4 such that

(I1
u�1,u�), (I0

u�2,u�), (I1
u�3,u�) and (I0

u�4,u�) hold.

Example 8.4.12. Consider problem (8.4.1)–(8.4.2) with

ℎ(𝑡, 𝑢, 𝑣) = 1
4 ( 1

5 + (𝑡 − 1)2 + 𝑢2

5 + 2|𝑢| + 1
3 + 7𝑣2 ) − 3

2𝑣.

Then, for 𝜔 = 3/2,

𝑓 (𝑡, 𝑢, 𝑣) = 1
4 ( 1

5 + (𝑡 − 1)2 + 𝑢2

5 + 2|𝑢| + 1
3 + 7𝑣2 ) .

Let𝑇 = 1, 𝜁 = 3/2, 𝑎 = 12/25, 𝑏 = 13/25, 𝜌1 = 1/4, 𝜌2 = 2.2⋅105. Conditions (𝐶1)–(𝐶3)

are satisfied by the results proved before (in this case 𝑔 ≡ 1). (𝐶1) is satisfied by equation

(8.4.6) and (𝐶2) and (𝐶3) by Lemmas 8.4.2 and 8.4.3. (𝐶4) is implied in a straightforward

way from the expression of ℎ, so we are in the hypothesis of Theorem 8.4.11. Also,

𝑐 = 0.000353538 … ,

𝑟1 ∶ = 𝜔
⎡⎢⎢
⎣

1 +
√2 cos 2u�+u�

3 sin u�−4u�
12 + cos u�−u�

3 (1 − sin 2u�+u�
3 )

sin 𝜁
⎤⎥⎥
⎦

−1

= 1.2021 … ,

𝑟2 ∶ = ( inf
u�∈[u�,u�]

∫u�
u�

𝑘(𝑡, 𝑠) d 𝑠)
−1

= (sin 𝜔(𝑇 − 2𝑎) + cos 𝜁 − cos 2𝜔𝑎
2𝜔 sin 𝜁

)
−1

= 10783.8 … ,

𝑓 −u�1,u�1
u� =

𝑓 (𝑇, 𝜌1, 0)
𝜌1

= 1.04583,

𝑓 u�
(u�2,u�2/u�) =

𝑓 (𝑎, 𝜌2, 𝜌2/𝑐)
𝜌2

= 11000.5 …

We have that 𝑓 −u�1,u�1
u� < 𝑟1 and 𝑓 u�

(u�2,u�2/u�) > 𝑟2, so condition (𝑆2) in the previous theorem is

satisfied, and therefore problem (8.4.1)-(8.4.2) has at least one solution.



9. A thermostat model with deviated

arguments

The existence of solutions of boundary value problems with deviated arguments has been

investigated recently by a number of authors using the upper and lower solutions method

[68], monotone iterative methods [101, 106, 162, 163]†, the classic Avery-Peterson Theorem

[102–105] or, in the special case of reflections, the classical fixed point index as in Chapter 8.

One motivation for studying these problems is that they often arise when dealing with real

world problems, for example when modeling the stationary distribution of the temperature of

a wire of length one which is bent, see the recent paper by Figueroa and Pouso [68] for details.

Most of the worksmentioned above are devoted to the study of positive solutions, while in this

chapter we focus our attention on the existence of nontrivial solutions. In particular we show

how the fixed point index theory can be used to develop a theory for the existence of multi-

ple nonzero solutions for a class of perturbed Hammerstein integral equations with deviated

arguments of the form

𝑢(𝑡) = 𝛾(𝑡)𝛼[𝑢] + ∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠, 𝑡 ∈ [𝑎, 𝑏],

where 𝛼[𝑢] is a linear functional on u�([𝑎, 𝑏]) given by

𝛼[𝑢] = ∫u�
u�

𝑢(𝑠) d 𝐴(𝑠), (9.0.1)

involving a Stieltjes integral with a signed measure, that is, 𝐴 has bounded variation.

Here 𝜎 is a continuous function such that 𝜎([𝑎, 𝑏]) ⊆ [𝑎, 𝑏]. We point out that when

𝜎(𝑡) = 𝑎 + 𝑏 − 𝑡 this type of perturbed Hammerstein integral equation is well-suited to treat

problems with reflections. We apply our theory to prove the existence of nontrivial solutions

of the first order functional periodic boundary value problem

𝑢′(𝑡) = ℎ(𝑡, 𝑢(𝑡), 𝑢(−𝑡)), 𝑡 ∈ [−𝑇, 𝑇]; 𝑢(−𝑇) − 𝑢(𝑇) = 𝛼[𝑢],

which generalises the boundary conditions in Chapter 8 by adding a nonlocal term. The formu-

lation of the nonlocal boundary conditions in terms of linear functionals is fairly general and

includes, as special cases, multi-point and integral conditions, namely

𝛼[𝑢] =
u�

∑
u�=1

𝛼u�𝑢(𝜂u�) or 𝛼[𝑢] = ∫1
0

𝜙(𝑠)𝑢(𝑠) d 𝑠.

where the 𝛼u� and 𝜙 might change sign. The study of multi-point problems has been initiated

by 1908 by Picone [143] and continued by a number of authors. For an introduction to nonlocal

problems we refer to the reviews of Whyburn [185], Conti [52], Ma [130], Ntouyas [135] and

Štikonas [158] and to the papers [109,112,180].

†The tight relationship between the monotone iterative method and the upper and lower solutions method

has been highlighted in [26]. Therefore, to make a difference between them is mostly a convention.



174 9.1. On a class of perturbed Hammerstein integral equations

We study as well the existence of nontrivial solutions of the boundary value problem

𝑢″(𝑡) + 𝑔(𝑡)𝑓 (𝑡, 𝑢(𝑡), 𝑢(𝜎(𝑡))) = 0, 𝑡 ∈ (0, 1), (9.0.2)

𝑢′(0) + 𝛼[𝑢] = 0, 𝛽𝑢′(1) + 𝑢(𝜂) = 0, 𝜂 ∈ [0, 1]. (9.0.3)

This type of problems ariseswhenmodeling the problemof a cooling or heating system con-

trolled by a thermostat, something that has been studied in several papers, for instance [20,

45,72]. Nonlocal heat flow problems of the type (9.0.2)-(9.0.3) were studied, without the pres-

ence of deviated arguments, by Infante andWebb in [99], who weremotivated by the previous

work of Guidotti and Merino [80]. This study continued in a series of papers, see [66, 88, 90,

100,113,139,175,176,179] and references therein. The case of deviating arguments has been

the subject of a recent paper by Figueroa and Pouso, see [68]. In Section 9.3 we describe with

more details the physical interpretation of the boundary value problem (9.0.2)–(9.0.3).

We stress that the existenceof nontrivial solutions of perturbedHammerstein integral equa-

tions, without the presence of deviated arguments, namely

𝑢(𝑡) = 𝛾(𝑡) ̂𝛼[𝑢] + ∫u�
u�

𝑘(𝑡, 𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠,

where ̂𝛼[⋅] is an affine functional given by a positive measure, have been investigated by In-

fante and Webb in [100], also by means of fixed point index. We make use of ideas from [100]

paper, but our results are somewhat different and complementary in the case of undeviated

arguments.

We work in the space u�([𝑎, 𝑏]) of continuous functions endowed with the usual supre-

mum norm, and use the well-known classical fixed point index for compact maps, we refer to

the review of Amann [4] and to the book of Guo and Lakshmikantham [81] for further informa-

tion. The results in this chapter where published in [34]-

9.1 On a class of perturbed Hammerstein integral equations

We impose the following conditions on 𝑘, 𝑓 , 𝑔, 𝛾, 𝛼, 𝜎 that occur in the integral equation

𝑢(𝑡) = 𝛾(𝑡)𝛼[𝑢] + ∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠 =∶ 𝐹𝑢(𝑡). (9.1.1)

(𝐶1) The kernel 𝑘 is measurable, and for every 𝜏 ∈ [𝑎, 𝑏] we have

lim
u�→u�

|𝑘(𝑡, 𝑠) − 𝑘(𝜏, 𝑠)| = 0 for a. e. 𝑠 ∈ [𝑎, 𝑏].

(𝐶2) There exist a subinterval [ ̂𝑎, �̂�] ⊆ [𝑎, 𝑏], a measurable function Φ with Φ ≥ 0 a. e. in

[𝑎, 𝑏] and a constant 𝑐1 = 𝑐1( ̂𝑎, �̂�) ∈ (0, 1] such that

|𝑘(𝑡, 𝑠)| ≤ Φ(𝑠) for all 𝑡 ∈ [𝑎, 𝑏] and a. e. 𝑠 ∈ [𝑎, 𝑏],
𝑘(𝑡, 𝑠) ≥ 𝑐1 Φ(𝑠) for all 𝑡 ∈ [ ̂𝑎, �̂�] and a. e. 𝑠 ∈ [𝑎, 𝑏].

(𝐶3) 𝐴 is of bounded variation, u�u�(𝑠) ∶= ∫u�
u� 𝑘(𝑡, 𝑠) d 𝐴(𝑡) ≥ 0 for a. e. 𝑠 ∈ [𝑎, 𝑏] and

u�u� ∈ L1([𝑎, 𝑏]).
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(𝐶4) The function 𝑔 is measurable and satisfies that

𝑔 Φ, 𝑔 u�u� ∈ L1([𝑎, 𝑏]), 𝑔(𝑡) ≥ 0 a. e. 𝑡 ∈ [𝑎, 𝑏] and ∫û�
û�

Φ(𝑠)𝑔(𝑠) d 𝑠 > 0.

(𝐶5) 0��≡𝛾 ∈ u�([𝑎, 𝑏]), 0 ≤ 𝛼[𝛾] < 1 and there exists 𝑐2 ∈ (0, 1] such that 𝛾(𝑡) ≥ 𝑐2‖𝛾‖
for all 𝑡 ∈ [ ̂𝑎, �̂�].

(𝐶6) The nonlinearity 𝑓 ∶ [𝑎, 𝑏] × ℝ × ℝ → [0, ∞) satisfies L∞-Carathéodory conditions.

𝑓 (𝑡, 𝑢, 𝑣) ≤ 𝜙u�(𝑡) for all (𝑢, 𝑣) ∈ [−𝑟, 𝑟] × [−𝑟, 𝑟], and a. e. 𝑡 ∈ [𝑎, 𝑏].

(𝐶7) The function 𝜎 ∶ [𝑎, 𝑏] → [𝑎, 𝑏] is continuous.

Here we work in the cone

𝐾 = {𝑢 ∈ u�([𝑎, 𝑏]) ∶ min
u�∈[û�,û�]

𝑢(𝑡) ≥ 𝑐‖𝑢‖, 𝛼[𝑢] ≥ 0},

where 𝑐 = min{𝑐1, 𝑐2} and 𝑐1 and 𝑐2 are given in (C2) and (C5) respectively. Note that, from

(𝐶5), 𝐾 ≠ {0} since 0 ≠ 𝛾 ∈ 𝐾 .

The cone 𝐾 is a modification of a cone of positive functions introduced in [181], that allows

the use of signed measures.

Theorem 9.1.1. Assume that hypotheses (𝐶1)–(𝐶7) hold. Then 𝐹 maps 𝐾 into 𝐾 and is com-

pact and continuous.

Proof. Let 𝑢 ∈ 𝐾 , 𝑡 ∈ [𝑎, 𝑏] we have,

|𝐹𝑢(𝑡)| ≤ |𝛾(𝑡)|𝛼[𝑢] + ∫u�
u�

|𝑘(𝑡, 𝑠)|𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠

≤ 𝛼[𝑢]‖𝛾‖ + ∫u�
u�

Φ(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠.

Taking the supremum on 𝑡 ∈ [𝑎, 𝑏] we get

‖𝐹𝑢‖ ≤ 𝛼[𝑢]‖𝛾‖ + ∫u�
u�

Φ(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠

and, combining this fact with (𝐶2) and (𝐶5),

min
u�∈[û�,û�]

𝐹𝑢(𝑡) ≥ 𝑐2𝛼[𝑢]‖𝛾‖ + 𝑐1 ∫u�
u�

Φ(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠 ≥ 𝑐‖𝐹𝑢‖.

Furthermore, by (𝐶3), (𝐶5) and (9.0.1),

𝛼[𝐹𝑢] = 𝛼[𝛾]𝛼[𝑢] + ∫u�
u�

u�u�(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠 ≥ 0.

Therefore we have 𝐹𝑢 ∈ 𝐾 for every 𝑢 ∈ 𝐾 .

The continuity and compactness of 𝐹 follows from Lemma 8.1.4. �

In the sequel, we give a condition that ensures that, for a suitable 𝜌 > 0, the index is 1 on

𝐾u� ∶= {𝑢 ∈ 𝐾 ∶ ‖𝑢‖ < 𝜌}.
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Lemma 9.1.2. Assume that

(I1
u�) there exists 𝜌 > 0 such that

𝑓 −u�,u� ⋅ sup
u�∈[u�,u�]

{
|𝛾(𝑡)|

1 − 𝛼[𝛾] ∫u�
u�

u�u�(𝑠)𝑔(𝑠) d 𝑠 + ∫u�
u�

|𝑘(𝑡, 𝑠)| 𝑔(𝑠) d 𝑠} < 1

where

𝑓 −u�,u� ∶= sup {𝑓 (𝑡, 𝑢, 𝑣)
𝜌 ∶ (𝑡, 𝑢, 𝑣) ∈ [𝑎, 𝑏] × [−𝜌, 𝜌] × [−𝜌, 𝜌]} .

Then the fixed point index, 𝑖u�(𝐹, 𝐾u�), is equal to 1.

Proof. We show that 𝜇𝑢 ≠ 𝐹𝑢 for every 𝑢 ∈ 𝜕𝐾u� and for every 𝜇 ≥ 1. In fact, if this does

not happen, there exist 𝜇 ≥ 1 and 𝑢 ∈ 𝜕𝐾u� such that 𝜇𝑢 = 𝐹𝑢, that is

𝜇𝑢(𝑡) = 𝛾(𝑡)𝛼[𝑢] + ∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠.

Furthermore, applying 𝛼 to both sides of the equation,

𝜇𝛼[𝑢] = 𝛼[𝛾]𝛼[𝑢] + ∫u�
u�

u�u�(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠,

thus, from (𝐶5), 𝜇 − 𝛼[𝛾] ≥ 1 − 𝛼[𝛾] > 0, and we deduce that

𝛼[𝑢] = 1
𝜇 − 𝛼[𝛾] ∫u�

u�
u�u�(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠

and we get, substituting,

𝜇𝑢(𝑡) =
𝛾(𝑡)

𝜇 − 𝛼[𝛾] ∫u�
u�

u�u�(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠

+ ∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠.

Taking the absolute value, and then the supremum for 𝑡 ∈ [𝑎, 𝑏], gives

𝜇𝜌 ≤ sup
u�∈[u�,u�]

{
|𝛾(𝑡)|

1 − 𝛼[𝛾] ∫u�
u�

u�u�(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠

+ ∫u�
u�

|𝑘(𝑡, 𝑠)|𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠}

≤𝜌𝑓 −u�,u� ⋅ sup
u�∈[u�,u�]

{
|𝛾(𝑡)|

1 − 𝛼[𝛾] ∫u�
u�

u�u�(𝑠)𝑔(𝑠) d 𝑠 + ∫u�
u�

|𝑘(𝑡, 𝑠)|𝑔(𝑠) d 𝑠} < 𝜌.

This contradicts the fact that 𝜇 ≥ 1 and proves the result. �

Remark 9.1.3. We point out, in similar way as in [181], that a stronger (but easier to check)

condition than (I1
u�) is given by the following.

𝑓 −u�,u� (
‖𝛾‖

1 − 𝛼[𝛾] ∫u�
u�

u�u�(𝑠)𝑔(𝑠) d 𝑠 + 1
𝑚) < 1, (9.1.2)

where
1
𝑚 ∶= sup

u�∈[u�,u�]
∫u�

u�
|𝑘(𝑡, 𝑠)|𝑔(𝑠) d 𝑠.
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Let’s see now a condition that guarantees that the index is equal to zero on

𝑉u� ∶= {𝑢 ∈ 𝐾 ∶ min
u�∈[û�,û�]

𝑢(𝑡) < 𝜌},

for some appropriate 𝜌 > 0.

Lemma 9.1.4. Assume that

(I0
u�) there exists 𝜌 > 0 such that

𝑓u�,u�/u� ⋅ inf
u�∈[û�,û�]

{
𝛾(𝑡)

1 − 𝛼[𝛾] ∫û�
û�

u�u�(𝑠)𝑔(𝑠) d 𝑠 + ∫û�
û�

𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠} > 1,

where

𝑓u�,u�/u� ∶= inf {𝑓 (𝑡, 𝑢, 𝑣)
𝜌 ∶ (𝑡, 𝑢, 𝑣) ∈ [ ̂𝑎, �̂�] × [𝜌, 𝜌/𝑐] × [𝜃, 𝜌/𝑐]} ,

and

𝜃 ∶=
⎧{
⎨{⎩

𝜌, if 𝜎([ ̂𝑎, �̂�]) ⊆ [ ̂𝑎, �̂�],
−𝜌/𝑐, otherwise.

Then 𝑖u�(𝐹, 𝑉u�) = 0.

Proof. Since 0��≡𝛾 ∈ 𝐾 we can choose 𝑒 = 𝛾 in Lemma 8.1.2, so we now prove that

𝑢 ≠ 𝐹𝑢 + 𝜇𝛾 for all 𝑢 ∈ 𝜕𝑉u� and every 𝜇 > 0.

In fact, if not, there exist 𝑢 ∈ 𝜕𝑉u� and 𝜇 > 0 such that 𝑢 = 𝐹𝑢 + 𝜇𝛾. Then we have

𝑢(𝑡) = 𝛾(𝑡)𝛼[𝑢] + ∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠 + 𝜇𝛾(𝑡)

and

𝛼[𝑢] = 𝛼[𝛾]𝛼[𝑢] + ∫u�
u�

u�u�(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠 + 𝜇𝛼[𝛾],
and therefore

𝛼[𝑢] = 1
1 − 𝛼[𝛾] ∫u�

u�
u�u�(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠 +

𝜇𝛼[𝛾]
1 − 𝛼[𝛾].

Thus we get, for 𝑡 ∈ [ ̂𝑎, �̂�],

𝑢(𝑡) =
𝛾(𝑡)

1 − 𝛼[𝛾] (∫u�
u�

u�u�(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠 + 𝜇𝛼[𝛾])

+ ∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠 + 𝜇𝛾(𝑡)

≥
𝛾(𝑡)

1 − 𝛼[𝛾] ∫û�
û�

u�u�(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠

+ ∫û�
û�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠

≥𝜌𝑓u�,u�/u� (
𝛾(𝑡)

1 − 𝛼[𝛾] ∫û�
û�

u�u�(𝑠)𝑔(𝑠) d 𝑠 + ∫û�
û�

𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠) .

Taking the minimum over [ ̂𝑎, �̂�] gives 𝜌 > 𝜌, a contradiction. �
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Remark 9.1.5. We point out, that a stronger condition than (I0
u�) is given by the following.

𝑓u�,u�/u�
⎛⎜
⎝

𝑐2‖𝛾‖
1 − 𝛼[𝛾] ∫û�

û�
u�u�(𝑠)𝑔(𝑠) d 𝑠 + 1

𝑀( ̂𝑎, �̂�)
⎞⎟
⎠

> 1, (9.1.3)

where
1

𝑀( ̂𝑎, �̂�)
∶= inf

u�∈[û�,û�]
∫û�

û�
𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠. (9.1.4)

Remark 9.1.6. Depending on the nature of the nonlinearity 𝑓 and due to the way 𝜃 is defined,

sometimes it could be useful to take a smaller [ ̂𝑎, �̂�] such that 𝜎([ ̂𝑎, �̂�]) ⊆ [ ̂𝑎, �̂�]. This fact
is illustrated in Section 9.3.

The above Lemmas can be combined to prove the following Theorem. Here we deal with

the existence of at least one, two or three solutions. We stress that, by expanding the lists in

conditions (𝑆5), (𝑆6) below, it is possible to state results for four or more positive solutions.

Theorem 9.1.7. Assume (𝐶1)-(𝐶7) are satisfied. The integral equation (9.1.1) has at least

one nonzero solution in 𝐾 if any of the following conditions hold.

(𝑆1) There exist 𝜌1, 𝜌2 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 such that (I0
u�1

) and (I1
u�2

) hold.

(𝑆2) There exist 𝜌1, 𝜌2 ∈ (0, ∞) with 𝜌1 < 𝜌2 such that (I1
u�1

) and (I0
u�2

) hold.

The integral equation (9.1.1) has at least two nonzero solutions in 𝐾 if one of the following

conditions hold.

(𝑆3) There exist 𝜌1, 𝜌2, 𝜌3 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 < 𝜌3 such that (I0
u�1

), (I1
u�2

) and (I0
u�3

)
hold.

(𝑆4) There exist 𝜌1, 𝜌2, 𝜌3 ∈ (0, ∞) with 𝜌1 < 𝜌2 and 𝜌2/𝑐 < 𝜌3 such that (I1
u�1

), (I0
u�2

)
and (I1

u�3
) hold.

The integral equation (9.1.1) has at least three nonzero solutions in 𝐾 if one of the following

conditions hold.

(𝑆5) There exist 𝜌1, 𝜌2, 𝜌3, 𝜌4 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 < 𝜌3 and 𝜌3/𝑐 < 𝜌4 such that

(I0
u�1

), (I1
u�2

), (I0
u�3

) and (I1
u�4

) hold.

(𝑆6) There exist 𝜌1, 𝜌2, 𝜌3, 𝜌4 ∈ (0, ∞) with 𝜌1 < 𝜌2 and 𝜌2/𝑐 < 𝜌3 < 𝜌4 such that

(I1
u�1

), (I0
u�2

), (I1
u�3

) and (I0
u�4

) hold.

Remark 9.1.8. A similar approach can be used, depending on the signs of 𝑘 and 𝛾, to prove the
existence of solutions that are negative on sub-interval, nonpositive, strictly negative, nonneg-

ative and strictly positive the same way we did in the previous chapter.
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9.2 An application to a problem with reflection

We now turn our attention to the first order functional periodic boundary value problem

𝑢′(𝑡) = ℎ(𝑡, 𝑢(𝑡), 𝑢(−𝑡)), 𝑡 ∈ 𝐼 ∶= [−𝑇, 𝑇], (9.2.1)

𝑢(−𝑇) − 𝑢(𝑇) = 𝛼[𝑢], (9.2.2)

where 𝛼 is a linear functional on 𝐶(𝐼) given by

𝛼[𝑢] = ∫u�
−u�

𝑢(𝑠) d 𝐴(𝑠),

involving a Stieltjes integral with a signed measure.

We use again the shift argument of the Chapter 8, by fixing 𝜔 ∈ ℝ\{0} and considering

the equivalent expression

𝑢′(𝑡) + 𝜔𝑢(−𝑡) = ℎ(𝑡, 𝑢(𝑡), 𝑢(−𝑡)) + 𝜔𝑢(−𝑡) =∶ 𝑓 (𝑡, 𝑢(𝑡), 𝑢(−𝑡)), 𝑡 ∈ 𝐼, (9.2.3)

with the boundary conditions

𝑢(−𝑇) − 𝑢(𝑇) = 𝛼[𝑢]. (9.2.4)

Note that the Green’s function 𝑘 of the periodic problem only exists when 𝜔𝑇 ≠ 𝑙𝜋 for

every 𝑙 ∈ ℤ. Hence, Corollary 3.2.5 guarantees that problem (9.2.3)–(9.2.4) is equivalent to

the perturbed Hammerstein integral equation

𝑢(𝑡) = 𝑘(𝑡, −𝑇)𝛼[𝑢] + ∫u�
−u�

𝑘(𝑡, 𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(−𝑠)) d 𝑠,

where 𝑘 is the associated Green’s function given by equation (8.4.6). Thus, we are working

with an equation of the type (9.1.1) where

𝛾(𝑡) = 𝑘(𝑡, −𝑇) = cos 𝜔𝑡 − sin 𝜔𝑡 = √2 sin (𝜋
4 − 𝜔𝑡) .

In order to apply Theorem 9.1.7, we must verify conditions (𝐶1)–(𝐶7) and study when (𝐼0
u�)

and (𝐼1
u�) are fulfilled.

Let 𝜁 ∶= 𝜔𝑇. Then we have

‖𝛾‖ =
⎧{
⎨{⎩

√2 sin (u�
4 + 𝜁) , 𝜁 ∈ (0, u�

4 ) ,
√2, 𝜁 ∈ [u�

4 , u�
2 ) .

Also, using Lemma 3.4.2, the constant 𝑐2 is given by

‖𝛾‖𝑐2 = inf
u�∈[û�,û�]

𝛾(𝑡) =
⎧{
⎨{⎩

𝛾(�̂�), 𝜁 ∈ (0, u�
4 ] or ∣ ̂𝑎 + u�

4u� ∣ < ∣�̂� + u�
4u� ∣ ,

𝛾( ̂𝑎), 𝜁 ∈ (u�
4 , u�

2 ] and ∣ ̂𝑎 + u�
4u� ∣ ≥ ∣�̂� + u�

4u� ∣ .
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The constant 𝑐1 was given in Chapter 8, Theorem 8.4.11, for the case ̂𝑎 + �̂� = 1 and has the

following expression

𝑐1 = (1 − tan 𝜔 ̂𝑎)(1 − tan 𝜔�̂�)
(1 + tan 𝜔 ̂𝑎)(1 + tan 𝜔�̂�)

. (9.2.5)

Observe that using the fact that 𝑘(𝑡, 𝑠) = 𝑘(𝑡 + 𝑇, 𝑠 + 𝑇), 𝑘(𝑡 + 𝑇, 𝑠) = 𝑘(𝑡, 𝑠 + 𝑇) for

𝑡, 𝑠 ∈ [−𝑇, 0] and formula (9.2.5) for [ ̂𝑎, �̂�] = [0, 𝑇] we get that

𝑐1 = 1 − tan 𝜁
1 + tan 𝜁

= cot (𝜋
4 + 𝜁) .

Consider now the set �̂� ∶= {( ̂𝑎, �̂�) ∈ ℝ2 ∶ ̂𝑎 < �̂�, (𝐶2) is satisfied for [ ̂𝑎, �̂�]} and 𝑀( ̂𝑎, �̂�)
defined as in (9.1.4) (with 𝑔 ≡ 1). Since a smaller constant 𝑀( ̂𝑎, �̂�) relaxes the growth con-

ditions imposed on the nonlinearity 𝑓 by the inequality (9.1.3), we turn our attention to the

quantity
1

𝑀u�u�u�
∶= sup

(û�,û�)∈û�

1
𝑀( ̂𝑎, �̂�)

.

A similar study has been done, in the case of second-order boundary value problems in [94,

175,176] and for fourth order boundary value problems in [92,144,182].

Before computing this value, we need some relevant information about the kernel 𝑘.
First, observe that with the change of variables 𝑡 = 𝑥 𝑇, 𝑠 = 𝑦 𝑇, 𝑘(𝑥, 𝑦) = 𝑘(𝑡, 𝑠),

𝑎 = 𝑎 𝑇, 𝑏 = 𝑏 𝑇 we have

1
𝑀u�u�u�

= 𝑇 sup
(u�,u�)∈ũ�

min
u�∈[u�,u�]

∫u�
u�

𝑘(𝑥, 𝑦) d 𝑦,

where �̃� ∶= {(𝑎, 𝑏) ∈ ℝ2 ∶ (𝑎 𝑇, 𝑏 𝑇) ∈ �̂�}.
Recall (see Lemma 3.2.6) that there is a symmetry between the cases 𝜔 and −𝜔 given by

the fact that 𝑘u�(𝑥, 𝑦) = −𝑘−u�(−𝑥, −𝑦), so we can restrict our problem to the case 𝜔 > 0.

We proved in the previous Chapter that 𝑘 satisfies the equation
u�u�
u�u� (𝑥, 𝑦)+𝜔𝑘(−𝑥, 𝑦) = 0.

Also, the strip 𝑆, defined in Lemma 8.4.1, satisfies that, if (𝑥, 𝑦) ∈ 𝑆, then (−𝑥, 𝑦) ∈ 𝑆, so,
wherever 𝑘 ≥ 0, u�u�

u�u� ≤ 0. Hence, we have

1
𝑀(𝜔) = 𝑇 sup

(u�,u�)∈ũ�
∫u�

u�
𝑘(𝑏, 𝑦) d 𝑦.

Notice that, fixed𝑏, it is of our interest to take𝑎 as small as possible (as long as (𝐶2) is satisfied)
for we are integrating a positive function on the interval [𝑎, 𝑏].

With these considerations in mind, we will prove that

𝑀u�u�u� =
⎧{
⎨{⎩

𝜔, if 𝜁 ∈ (0, u�
4 ),

u�
cos u� , if 𝜁 ∈ [u�

4 , u�
2 ),

by studying two cases: (A) and (B).
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(A) If 𝜁 ∈ (0, u�
4 ), 𝑘 is positive and

1
𝑀u�u�u�

= 𝑇 sup
u�∈[−1,1]

∫u�
−1

𝑘(𝑏, 𝑦) d 𝑦.

(A1) If 𝑏 ≤ 0, let

𝑔1(𝑏) ∶=2 sin 𝜁 ∫u�
−1

𝑘(𝑏, 𝑦) d 𝑦 = ∫u�
−1

[cos 𝜁(1 + 𝑦 + 𝑏) + sin 𝜁(1 + 𝑦 − 𝑏)] d 𝑠

= 1
𝜁

[sin 𝜁(1 + 2𝑏) − sin 𝜁𝑏 + cos 𝜁𝑏 − cos 𝜁] .

Then, taking into account that 𝑏 ∈ [−1, 0] and 𝜁 ∈ (0, u�
4 ) and studying the range of the

arguments of the sines and cosines involved, we get

𝑔′
1(𝑏) = 2 cos 𝜁(1 + 2𝑏) − √2 sin (𝜁𝑏 + 𝜋

4 ) ≥ 2
√2
2 − √2

√2
2 = √2 − 1 > 0.

Therefore, the maximum of 𝑔1 in [−1, 0] is reached at 0.

(A2) If 𝑏 ≥ 0,

𝑔1(𝑏) = ∫−u�
−1

[cos 𝜁(1 + 𝑦 + 𝑏) + sin 𝜁(1 + 𝑦 − 𝑏)] d 𝑠

+ ∫u�
−u�

[cos 𝜁(1 − 𝑦 − 𝑏) + sin 𝜁(1 + 𝑦 − 𝑏)] d 𝑠

= − 1
𝜁

[cos 𝜁 − cos 𝜁𝑏 − 2 sin 𝜁 + sin 𝜁𝑏 + sin 𝜁(1 − 2𝑏)] .

Now, we have

𝑔‴
1 (𝑏) = −𝜁2 [8 cos 𝜁(1 − 2𝑏) − √2 sin (𝜁𝑏 + 𝜋

4 )] < 0.

Therefore, 𝑔′
1 reaches its minimum in [0, 1] at 0 or 1.

𝑔′
1(0) = 2 cos 𝜁 − 1, 𝑔′

1(1) = cos 𝜁 − sin 𝜁 > 0.

Thus, 𝑔′
1 > 0 in [0, 1], this is, the maximum of 𝑔1 in [0, 1] is reached at 1. In conclusion, by

the continuity of 𝑔1, the maximum of 𝑔1 in [−1, 1] is reached at 1 and so

1
𝑀u�u�u�

= 𝑇 ∫1
−1

𝑘(1, 𝑦) d 𝑦 = 𝑇
𝑔1(1)
2 sin 𝜁

= 𝑇
𝜁

= 1
𝜔.

Observe now that, since [𝑎, 𝑏] = [−1, 1], 𝑐 = 𝑐1 = 𝑐2 = cot (u�
4 + 𝜁).

(B) Now assume 𝜁 ∈ [u�
4 , u�

2 ). 𝑘 is positive on 𝑆.

Assume 𝑏 > 0. Also, since 𝑘(𝑥, 𝑦) = 𝑘(−𝑦, −𝑥), fixed 𝑏 ∈ 𝑆, the smallest 𝑎 that can be

taken is 𝑎 = 1 − u�
4u� , so

𝑔2(𝑏) ∶=2 sin 𝜁 ∫u�
1− u�

4u�
𝑘(𝑏, 𝑦) d 𝑦
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= 1
𝜁

[cos (𝜋
4 + (𝑏 − 2)𝜁) + cos (𝜋

4 + 𝑏𝜁) − cos 𝜁 + sin ((2𝑏 − 1)𝜁)] .

Thus, we have

𝑔‴
2 (𝑏) =𝜁2 [sin (𝜋

4 + (𝑏 − 2)𝜁) + sin (𝜋
4 + 𝑏𝜁) − 8 cos ((1 − 2𝑏) 𝜁)]

>𝜁2 (2 − 8
√2
2 ) < 0.

Therefore, 𝑔′
2 reaches its minimum in 𝑌 ∶= [1 − u�

4u� , u�
4u� ] at 1 − u�

4u� or
u�
4u� .

𝑔′
2 (1 − 𝜋

4𝜁
) = 2 sin 𝜁, 𝑔′

2 ( 𝜋
4𝜁

) = 2(sin 𝜁 − cos2 𝜁) > 0.

Thus, 𝑔′
2 > 0 in 𝑌 , this is, the maximum of 𝑔2 in 𝑌 is reached at

u�
4u� and so

𝑇 ∫
u�

4u�

1− u�
4u�

𝑘 ( 𝜋
4𝜁

, 𝑦) d 𝑦 = 𝑇
𝑔2 ( u�

4u� )

2 sin 𝜁
= 𝑇 cos 𝜁

𝜁
= cos 𝜁

𝜔 .

Now, the case 𝑏 ≤ 0 can be reduced to the case 𝑏 ≥ 0 just taking into account that

𝑘(𝑧, 𝑦) = 𝑘(𝑧 + 1, 𝑦 + 1) for 𝑧, 𝑦 ∈ [−1, 0] (cf. Chapter 7) and making the change of

variables 𝑦 = 𝑦 − 1, so

∫
u�

4u�

1− u�
4u�

𝑘 ( 𝜋
4𝜁

, 𝑦) d 𝑦 = ∫
u�

4u� −1

− u�
4u�

𝑘 ( 𝜋
4𝜁

, 𝑦 + 1) d 𝑦 = ∫
u�

4u� −1

− u�
4u�

𝑘 ( 𝜋
4𝜁

− 1, 𝑦) d 𝑦.

Hence we have

1
𝑀u�u�u�

= cos 𝜁
𝜔 .

Consider again the case 𝜁 ∈ (0, u�
4 ) and ̂𝑎u�u�u�, �̂�u�u�u�, 𝑐( ̂𝑎u�u�u�, �̂�u�u�u�), the values for which 𝑀u�u�u� is

reached. In the following table we summarize these findings.

𝜁 ̂𝑎u�u�u� �̂�u�u�u� 𝑀u�u�u� 𝑐( ̂𝑎u�u�u�, �̂�u�u�u�) ‖𝛾‖
(0, u�

4 ) −1 1 𝜔 cot (u�
4 + 𝜁) √2 sin (u�

4 + 𝜁)

When 𝜁 ∈ [u�
4 , u�

2 ) we have the following.

𝜁 ̂𝑎u�u�u� �̂�u�u�u� 𝑀u�u�u� ‖𝛾‖
[u�

4 , u�
2 ) 1 − u�

4u�
u�
4u�

u�
cos u�

√2
− u�

4u�
u�
4u� − 1
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Wepoint out that in this second casewe cannot take an interval [ ̂𝑎, �̂�] atwhich𝑀u�u�u� is reached

because 𝑐1 and 𝑐2 tend to zero as we approach that interval, but we may take [ ̂𝑎, �̂�] as close

as possible to these values, in order to approximate 𝑀u�u�u�.

With all these ingredients we can apply Theorem 9.1.7 in order to solve (9.2.1)-(9.2.2) for

some given 𝑓 and 𝛼.

9.3 An application to a thermostat problem

9.3.1 The model

Wework herewith themodel of a light bulbwith a temperature regulating system (thermostat).

The model includes a bulb in which a metal filament, bended on itself, is inserted with only its

two extremes outside of the bulb. There is a sensor that allows to measure the temperature

of the filament at a point 𝜂 (see Figure 9.3.1). The bulb is sealed with some gas in its interior.

Figure 9.3.1: Sketch of the light bulb model with a sensor at the point 𝜂.

As variables, we take 𝑢 for the temperature, 𝑡 ∈ [0, 1] for a point in the filament and 𝑥 for

the time†.

We control the light bulb via two thermopairs connected to the extremes of the filament.

This allows us to measure (and hence modify via a resistance or with some other heating or

cooling system) the variation of the temperature with respect to 𝑥. Also, we will be able to

measure the total light ouput of the light bulb.

The problem can then be stated as

𝑑𝑢
𝑑𝑥 (𝑡, 𝑥) =𝑑1

𝑑2𝑢
𝑑𝑡2 (𝑡, 𝑥) + ∫1

0
𝑢4(𝑦, 𝑥)𝜐(𝑠, 𝑡, 𝑢(𝑡, 𝑥)) d 𝑠 − 𝑑2𝑢4(𝑡, 𝑥)

+ 𝑗(𝑡, 𝑢(𝑡, 𝑥)) + (𝑑3 + 𝑑4𝑢(𝑡, 𝑥)) ̂𝐼2 + 𝑑5(𝑢0 − 𝑢(𝑡, 𝑥)),
(9.3.1)

𝑑𝑢
𝑑𝑡 (0, 𝑥) + 𝑑6 ∫1

0
𝑢4(𝑠, 𝑥) d 𝑠 = 0, 𝛽𝑑𝑢

𝑑𝑡 (1, 𝑥) + 𝑢(𝜂, 𝑥) = 0, (9.3.2)

where 𝑑1, … , 𝑑5 and 𝑢0 are physical (real) constants that can be determined either theoreti-

cally or experimentally; 𝑑6,
̂𝐼 and 𝛽 are real constants to be chosen; 𝜂 ∈ [0, 1] is the position

†We use this unusual notation in order to be consistent with the rest of the section. Since we are looking for

stationary solutions of the model, the temporal variable will no longer appear after the model is set.
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of the sensor at the filament and 𝜐 is some real continuous function. We explain now each

component of the equation.

The term 𝑑1
u�2u�
u�u�2 (𝑡, 𝑥) comes from the traditional heat equation,

u�u�
u�u� = 𝑑1

u�2u�
u�u�2 . The integral

in the equation stands for the temperature (that is, power per space unit squared), in form

of blackbody radiation, absorbed by the point 𝑡 and emitted from every other point 𝑠 of the

filament. The function 𝜐 gives the rate of this absorption depending on 𝑡, 𝑠 and also on 𝑢,
since the reflectivity of metals changes with temperature (see [168]). The equation behind the

fourth power in the integral comes from the Stefan-Boltzmann equation for blackbody power

emission, 𝑗⋆ = �̃�𝑢4(𝑡, 𝑥), where 𝑗⋆ is the irradiance and �̃� a constant. Observe that consid-

ering the power emission from the rest of the filament is important, since, as early as 1914

(see [51]), it has been observed that an interior and much brighter (90 to 100 percent) helix

appears in helical filaments of tungsten. Although a 200 ∘C difference would be necessary to

account for the extra brightness, experiments show that most of it is due to reflection, being

the difference in the temperature less than 5 ∘C.

The term −𝑑2𝑢4(𝑡, 𝑥) accounts again for the Stefan-Boltzmann equation, this time for

the irradiance of the point, 𝑗(𝑡, 𝑢(𝑡, 𝑥)) for the energy absorbed from the bulb (via reflec-

tion and/or blackbody emission) and (𝑑3 + 𝑑4𝑢(𝑡, 𝑥)) ̂𝐼2 is the heat produced by the intensity

of the electrical current, ̂𝐼, going through the filament via Ohm’s law taking into account a first

order approximation of the variation of the resistivity of the metal with temperature. Finally,

𝑑5(𝑢0 −𝑢(𝑡, 𝑥)) is the heat transfer from the filament to the gas due to Newton’s law of cool-

ing, where 𝑢0 is the temperature at the interior of the bulb which we may assume constant.

The first boundary condition controls the variation of the temperature at the left extreme

depending on the total irradiance of the bulb, while the second boundary condition controls

the variation of the temperature at the right end of the filament depending on the temperature

at 𝜂.
Consider now the term

Γ[𝑢](𝑡, 𝑥) ∶= ∫1
0

𝑢4(𝑠, 𝑥)𝜐(𝑠, 𝑡, 𝑢(𝑡, 𝑥)) d 𝑠.

For a fixed 𝑥, Γ is an operator on 𝐶[0, 1]. If we consider the wire to be bended on itself,

in such a way that every point of the filament touches one and only one other point of the

filament, by the continuity of the temperature on the filament, wemay take the approximation

Γ[𝑢](𝑡, 𝑥) = 𝑑7𝑢4(𝜎(𝑡, 𝑥)) for some constant 𝑑7 and a function 𝜎 which maps every point

in the filament to the other point it is affected by. Now, 𝜎 is an involution.

With these ingredients, and looking for stationary solutions of problem (9.3.1)-(9.3.2), we

arrive to a boundary value problem of the form

𝑢″(𝑡) + 𝑔(𝑡)𝑓 (𝑡, 𝑢(𝑡), 𝑢(𝜎(𝑡))) = 0, 𝑡 ∈ (0, 1), (9.3.3)

𝑢′(0) + 𝛼[𝑢] = 0, 𝛽𝑢′(1) + 𝑢(𝜂) = 0, 𝜂 ∈ [0, 1]. (9.3.4)

Remark 9.3.1. In some other light bulb model it could happen that every point of the filament

is ‘within reach’ of more than one other point, which would mean we could have a multivalued

function𝜎 or just two functions𝜎1 and𝜎2 in the equation (9.3.3). Our theory can be extended

to the case of having more than one function 𝜎. A possible approach to the multivalued case

would require to extend the theory in [94].
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9.3.2 The associated perturbed integral equation

We now turn our attention to the second order boundary value problem (9.3.3)-(9.3.4).

In a similar way as in Chapter 7, the solution of the boundary value problem (9.3.3)-(9.3.4)

can be expressed as

𝑢(𝑡) = 𝛾(𝑡)𝛼[𝑢] + ∫1
0

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢(𝜎(𝑠))) d 𝑠,

where 𝛾(𝑡) = 𝛽 + 𝜂 − 𝑡, and

𝑘(𝑡, 𝑠) = 𝛽 +
⎧{
⎨{⎩

𝜂 − 𝑠, 𝑠 ≤ 𝜂
0, 𝑠 > 𝜂

−
⎧{
⎨{⎩

𝑡 − 𝑠, 𝑠 ≤ 𝑡
0, 𝑠 > 𝑡.

Here we focus on the case 𝛽 ≥ 0 and 0 < 𝛽 + 𝜂 < 1, that leads (in similar way to [100]) to

the existence of solutions that are positive on a subinterval. The constant 𝑐 for this problem

(see for example [94]) is

𝑐 =

⎧{{{
⎨{{{⎩

𝛽/(𝛽 + 𝜂), �̂� ≤ 𝜂, 𝛽 + 𝜂 ≥ 1
2 ,

𝛽/(1 − (𝛽 + 𝜂)), �̂� ≤ 𝜂, 𝛽 + 𝜂 < 1
2 ,

(𝛽 + 𝜂 − �̂�)/(𝛽 + 𝜂), �̂� > 𝜂, 𝛽 + 𝜂 ≥ 1
2 ,

(𝛽 + 𝜂 − �̂�)/(1 − (𝛽 + 𝜂)), �̂� > 𝜂, 𝛽 + 𝜂 < 1
2 .

Also, we have

Φ(𝑠) = ‖𝛾‖ =
⎧{
⎨{⎩

𝛽 + 𝜂, 𝛽 + 𝜂 ≥ 1
2 ,

1 − (𝛽 + 𝜂), 𝛽 + 𝜂 < 1
2 ,

and

𝑐2‖𝛾‖ = 𝛽 + 𝜂 − �̂�.
Theorem 9.1.7 can be applied to this problem for given 𝑓 , 𝛼 and 𝑔. We now set 𝑔 ≡ 1 and

recall (see [100]) that

sup
u�∈[0,1]

∫1
0

|𝑘(𝑡, 𝑠)| d 𝑠 = max{𝛽 + 1
2𝜂2, 𝛽2 − 𝛽 + 1

2(1 − 𝜂2)}.

Furthermore, note that the solution of the problem

𝑤″(𝑡) = −1, 𝑤′(0) = 0, 𝛽𝑤′(1) + 𝑤(𝜂) = 0,

is given by 𝑤(𝑡) = 𝛽 + 1
2(𝜂2 − 𝑡2), which implies that

𝑤(𝑡) = ∫1
0

𝑘(𝑡, 𝑠) d 𝑠 = 𝛽 + 1
2(𝜂2 − 𝑡2).

Using this fact, equation (9.0.1) and Fubini’s Theorem we have

∫1
0

u�u�(𝑠) d 𝑠 = ∫1
0

∫1
0

𝑘(𝑡, 𝑠) d 𝐴(𝑡) d 𝑠

= ∫1
0

∫1
0

𝑘(𝑡, 𝑠) d 𝑠 d 𝐴(𝑡) = 𝛼 [𝛽 + 1
2(𝜂2 − 𝑡2)] .
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With all these facts, the conditions (9.1.2) and (9.1.3) can be rewritten, respectively, for prob-

lem (9.0.2)–(9.0.3) as

𝑓 −u�,u� < 𝑚u�, ( ̃I1
u�)

where

1
𝑚u�

∶=
(𝛽 + 𝜂)𝜒[ 1

2 ,+∞)(𝛽 + 𝜂) + (1 − 𝛽 − 𝜂)𝜒(−∞, 1
2 )(𝛽 + 𝜂)

1 − 𝛼[𝛽 + 𝜂 − 𝑡]
⋅ 𝛼 [𝛽 + 1

2(𝜂2 − 𝑡2)]

+ max {𝛽 + 1
2𝜂2, 𝛽2 − 𝛽 + 1

2(1 − 𝜂2)} ,

𝜒u� is the characteristic function of the set 𝐵; and

𝑓u�,u�/u� > 𝑀u�, ( ̃I0
u�)

where

1
𝑀u�

∶=
𝛽 + 𝜂 − �̂�

1 − 𝛼[𝛽 + 𝜂 − 𝑡]
⋅ 𝛼 [∫û�

û�
𝑘(𝑡, 𝑠) d 𝑠] + 1

𝑀( ̂𝑎, �̂�)
.

Therefore, we can restate Theorem 9.1.7 as follows.

Theorem 9.3.2. Theorem 9.1.7 is satisfied if we change the conditions (I0
u�) and (I1

u�) by ( ̃I0
u�)

and ( ̃I1
u�) respectively.

We now illustrate how the behavior of the deviated argument affects the allowed growth

of the nonlinearity 𝑓 .

Example 9.3.3. Take 𝜂 = 1/5, 𝛽 = 3/5. It was proven in [94] that the optimal interval for

such a choice of parameters is [ ̂𝑎, �̂�] = [0, 3/5], for which 𝑀u�u�u� = 5, 𝑚 = 50/31, 𝑐1 = 1/4.
Consider 𝜎(𝑡) = 11𝑡 − 101𝑡2 + 318𝑡3 − 394𝑡4 + 167𝑡5. 𝜎 satisfies 𝜎([0, 1]) = [0, 1] and

𝜎([0, 2/5]) ⊆ [0, 2/5] as it is shown in Figure 9.3.2.

Figure 9.3.2: Plot of the function 𝜎 and the identity.



9. An application to a thermostat problem 187

Remember that the condition ( ̃I0
u�) is of the form

𝑓u�,u�/u�( ̂𝑎, �̂�) (𝑝(𝛼)𝑞( ̂𝑎, �̂�) + 𝑟( ̂𝑎, �̂�)) > 1

where

𝑝(𝛼) =
‖𝛾‖

1 − 𝛼[𝛾], 𝑞( ̂𝑎, �̂�) = 𝑐2( ̂𝑎, �̂�) ∫û�
û�

u�u�(𝑠)𝑔(𝑠) d 𝑠 and 𝑟( ̂𝑎, �̂�) = 1
𝑀( ̂𝑎, �̂�)

.

Now, picking up Remark 9.1.6, the questions is: Is it worth it to take [ ̂𝑎, �̂�] = [0, 3/5] or it is

preferable to take [ ̂𝑎, �̂�] = [0, 2/5]? Observe that, as mentioned, 𝜎([0, 2/5]) ⊆ [0, 2/5]
but 𝜎([0, 3/5])��⊆[0, 3/5], which means that the value of 𝑓u�,u�/u�( ̂𝑎, �̂�) can vary considerably

from one case to the other. It will be preferable to take [ ̂𝑎, �̂�] = [0, 2/5] if and only if

𝑓u�,u�/u�(0, 2/5)
𝑓u�,u�/u�(0, 3/5) >

𝑝(𝛾, 𝛼)𝑞(0, 3/5) + 𝑟(0, 3/5)
𝑝(𝛾, 𝛼)𝑞(0, 2/5) + 𝑟(0, 2/5).

We can compute, a priori, 𝑞(0, 3/5), 𝑞(0, 2/5), 𝑟(0, 2/5) and 𝑟(0, 3/5), but 𝑓u�,u�/u�(0, 2/5)
and 𝑓u�,u�/u�(0, 3/5)will depend on 𝑓 and 𝑝(𝛾, 𝛼) on𝛼. As a simple example, if 𝑓 is zero at a sub-
set of (2/3, 5/3] of positive measure, we have that the choice to make is [ ̂𝑎, �̂�] = [0, 2/5].

Example 9.3.4. Continuing with last example, assume now 𝛼[𝑢] = 𝜆 𝑢(2/5) for some 𝜆 ∈
(0, 5/2). (𝐶1) and (𝐶2) are satisfied by the properties of the kernel and by the choice of

𝑐1. We assume (𝐶6) is satisfied for the nonlinearity chosen. (𝐶4) and (𝐶7) are obviously

satisfied. u�u�(𝑠) = 𝑘((2𝜆)/5, 𝑠) > 0 for every 𝑠 ∈ [0, 1] by the properties of the kernel, so

(𝐶3) is also satisfied. Last, 0 ≤ 𝛼[4/5 − 𝑡] = (2𝜆)/5 < 1 and, by the choice of 𝑐2, (𝐶7)
is satisfied as well. In this case we have 𝑚u� = 25/26, and it is independent of the choice of

[ ̂𝑎, �̂�]. Let us compare the intervals [0, 2/5] and [0, 3/5].

1
𝑀u�(0, �̂�)

= 4 − 5�̂�
1 − 2𝜆 ∫û�

0
𝑘((2𝜆)/5, 𝑠) d 𝑠 + inf

u�∈(0,û�]
∫û�

0
𝑘(𝑡, 𝑠) d 𝑠.

It was proven in [94] that, for 0 ≤ ̂𝑎 < �̂� < 𝛽 + 𝜂,

inf
u�∈(0,û�]

∫û�
0

𝑘(𝑡, 𝑠) d 𝑠 = ∫û�
0

𝑘(�̂�, 𝑠) d 𝑠.

Hence,

𝑀u�(0, 2/5) =
⎧{
⎨{⎩

50(1−2u�)
43+2u� if 𝜆 ∈ [1, 5/2),
50(1−2u�)

(7−2u�)(5+4u�) if 𝜆 ∈ (0, 1),

𝑀u�(0, 3/5) =
⎧{
⎨{⎩

25+50u�
19+4u� if 𝜆 ∈ [1, 5/2),

50(1+2u�)
29+20u�−4u�2 if 𝜆 ∈ (0, 1).

Figure 9.3.3 shows how these two values vary depending on 𝜆.

If we take an specific value for 𝜆, say 𝜆 = 1, we get 𝑀u�(0, 2/5) = 𝑀u�(0, 3/5) =
10/3, and so it is more convenient to take [ ̂𝑎, �̂�] = [0, 2/5]. The reason for this is that

𝑓u�,u�/u�(0, 2/5) ≥ 𝑓u�,u�/u�(0, 3/5) independently of 𝑓 , and so I0
u� is more easily satisfied.
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Figure 9.3.3: Plot of 𝑀u�(0, 2/5) and 𝑀u�(0, 3/5) depending on 𝜆.

Observe in Figure 9.3.3 that the graphs of 𝑀u�(0, 2/5)(𝜆) and 𝑀u�(0, 3/5)(𝜆) cross at

𝜆 = 1. If 𝑓 is continuous and 𝑓u�,u�/u�(0, 2/5) > 𝑓u�,u�/u�(0, 3/5), since𝑀u�(0, 2/5)(1) is a better

choice than 𝑀u�(0, 3/5)(1), by the continuity of 𝑓 , so it will be in a neighborhood of 1. That
shows that the condition 𝑀u�(0, 2/5)(𝜆) < 𝑀u�(0, 3/5)(𝜆) may help but is not deciding

when choosing the interval.



10. Nonlocal boundary conditions

In this chapter we discuss the existence, localization, multiplicity and nonexistence of nontrivial

solutions of the second order differential equation

𝑢″(𝑡) + ℎ(𝑡, 𝑢(𝑡)) = 0, 𝑡 ∈ (0, 1), (10.0.1)

subject to (local) Neumann boundary conditions

𝑢′(0) = 𝑢′(1) = 0, (10.0.2)

or to nonlocal boundary conditions of Neumann type

𝑢′(0) = 𝛼[𝑢], 𝑢′(1) = 𝛽[𝑢], (10.0.3)

where 𝛼[⋅], 𝛽[⋅] are linear functionals given by Stieltjes integrals, namely

𝛼[𝑢] = ∫1
0

𝑢(𝑠) d 𝐴(𝑠), 𝛽[𝑢] = ∫1
0

𝑢(𝑠) d 𝐵(𝑠).

The local boundary value problem (10.0.1)–(10.0.2) has been studied by Miciano and Shivaji

in [133], where the authors proved the existence of multiple positive solutions, by means of

the quadrature technique; using Morse theory, Li [124] proved the existence of positive so-

lutions and Li and co-authors [125] continued the study of [124] and proved the existence of

multiple solutions. Multiple positive solutions were also investigated by Boscaggin [19] via

shooting-type arguments.

Note that, since 𝜆 = 0 is an eigenvalue of the associated linear problem

𝑢″(𝑡) + 𝜆𝑢(𝑡) = 0, 𝑢′(0) = 𝑢′(1) = 0,

the corresponding Green’s function does not exist. Therefore we use a shift argument similar

to the ones in [85, 167, 184] and previous chapters and we study two related boundary value

problems for which the Green’s function can be constructed, namely

− 𝑢″(𝑡) − 𝜔2𝑢(𝑡) = 𝑓 (𝑡, 𝑢(𝑡)) ∶= ℎ(𝑡, 𝑢(𝑡)) − 𝜔2𝑢(𝑡), 𝑢′(0) = 𝑢′(1) = 0, (10.0.4)

and (with an abuse of notation)

− 𝑢″(𝑡) + 𝜔2𝑢(𝑡) = 𝑓 (𝑡, 𝑢(𝑡)) ∶= ℎ(𝑡, 𝑢(𝑡)) + 𝜔2𝑢(𝑡), 𝑢′(0) = 𝑢′(1) = 0. (10.0.5)

The boundary value problems (10.0.4) and (10.0.5) have been recently object of interest by

a number of authors, see for example [18, 59, 67, 159, 160, 170–172, 194, 195, 197–199]; in

Section 10.4 we study in details the properties of the associated Green’s functions and we

improve and complement some estimates that occur in earlier papers, see Remark 10.4.2.

As we have mentioned in Chapter 9 The formulation of the nonlocal boundary conditions

in terms of linear functionals is fairly general and includes, as special cases, multi-point and

integral conditions, namely

𝛼[𝑢] =
u�

∑
u�=1

𝛼u�𝑢(𝜂u�) or 𝛼[𝑢] = ∫1
0

𝜙(𝑠)𝑢(𝑠) d 𝑠.
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Onemotivation for studying nonlocal problems in the context of Neumann problems is that

they occur naturally when modeling heat-flow problems.

For example, the four point boundary value problem

𝑢″(𝑡) + ℎ(𝑡, 𝑢(𝑡)) = 0, 𝑢′(0) = 𝛼𝑢(𝜉), 𝑢′(1) = 𝛽𝑢(𝜂), 𝜉, 𝜂 ∈ [0, 1],

(an specific case of the one studied in Chapter 9) models a thermostat where two controllers

at 𝑡 = 0 and 𝑡 = 1 add or remove heat according to the temperatures detected by two sensors

at 𝑡 = 𝜉 and 𝑡 = 𝜂. In particular Webb [179] studied the existence of positive solutions of the

boundary value problem

𝑢″(𝑡) + ℎ(𝑡, 𝑢(𝑡)) = 0, 𝑢′(0) = 𝛼[𝑢], 𝑢′(1) = −𝛽[𝑢].

The methodology in [179] is somewhat different from ours and relies on a careful rewriting

of the associated Green’s function, due to the presence of the term −𝛽[𝑢] in the boundary

conditions. The existence of solutions that change sign have been investigated by Fan and

Ma [66], in the case of the boundary value problem

𝑢″(𝑡) + ℎ(𝑡, 𝑢(𝑡)) = 0, 𝑢′(0) = 𝛼𝑢(𝜉), 𝑢′(1) = −𝛽𝑢(𝜂), 𝜉, 𝜂 ∈ [0, 1],

and in [30,94,100] for the boundary value problem

𝑢″(𝑡) + ℎ(𝑡, 𝑢(𝑡)) = 0, 𝑢′(0) = −𝛼[𝑢], 𝑢′(1) = −𝛽𝑢(𝜂), 𝜂 ∈ [0, 1].

A common feature of the papers [30, 66, 94, 100] is that a direct construction of a Green’s

function is possible due to the term −𝛽𝑢(𝜂).
In Section 10.1 we develop a fairly general theory for the existence and multiplicity of non-

trivial solutions of the perturbed Hammerstein integral equation of the form

𝑢(𝑡) = 𝛾(𝑡)𝛼[𝑢] + 𝛿(𝑡)𝛽[𝑢] + ∫1
0

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠, (10.0.6)

that covers, as special cases, the boundary value problem (10.0.1)–(10.0.3) and the boundary

value problem (10.0.1)–(10.0.2) –in this last case, when 𝛼 and 𝛽 are the trivial functionals. We

recall that the existence of positive solutions of this type of integral equations has been investi-

gated byWebb and Infante in [180], under a nonnegativity assumption on the terms 𝛾, 𝛿, 𝑘, by
working on a suitable cone of positive functions that takes into account the functionals 𝛼, 𝛽.

In Section 10.2 we provide some sufficient conditions on the nonlinearity 𝑓 for the nonex-

istence of solutions of the equation (10.0.6), this is achieved via an associated Hammerstein

integral equation

𝑢(𝑡) = ∫1
0

𝑘u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠,

whose kernel 𝑘u� is allowed to change sign and is constructed in the line of [180], where the

authors dealt with positive kernels.

In Section 10.3 we provide a number of results that link the existence of nontrivial solutions

of the equation (10.0.6) with the spectral radius of some associated linear integral operators.

The main tool here is the celebrated Krein-Rutman Theorem, combined with some ideas from

the paper of Webb and Lan [183]; here due to the nonconstant sign of the Green’s function the
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situation is more delicate than the one in [183] and we introduce a number of different linear

operators that yield different growth restrictions on the nonlinearity 𝑓 .
In Section 10.5 we illustrate the applicability of our theory in three examples, two of which

deal with solutions that change sign. The third example is taken from an interesting paper

by Bonanno and Pizzimenti [18], where the authors proved the existence, with respect to the

parameter 𝜆, of positive solutions of the following boundary value problem

−𝑢″(𝑡) + 𝑢(𝑡) = 𝜆𝑡𝑒u�(u�), 𝑢′(0) = 𝑢′(1) = 0.

The methodology used in [18] relies on a critical point Theorem of Bonanno [17]. Here we

enlarge the range of the parameters and provide a sharper localization result. We also prove a

nonexistence result for this boundary value problem.

Our results complement the ones of [180], focusing the attention on the existence of so-

lutions that are allowed to change sign, in the spirit of the earlier works [97, 98, 100]. The

approach that we use is topological, relies on classical fixed point index theory and we make

use of ideas from the papers [30,98,178,180,183]. The results in this Chapter were published

in [96].

10.1 Nonzero solutionsof perturbedHammerstein integral equa-

tions

In this Section we study the existence of solutions of the perturbed Hammerstein equations of

the type

𝑢(𝑡) = 𝛾(𝑡)𝛼[𝑢] + 𝛿(𝑡)𝛽[𝑢] + ∫1
0

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠 ∶= 𝑇𝑢(𝑡), (10.1.1)

where

𝛼[𝑢] = ∫1
0

𝑢(𝑠) d 𝐴(𝑠), 𝛽[𝑢] = ∫1
0

𝑢(𝑠) d 𝐵(𝑠),

and 𝐴 and 𝐵 are functions of bounded variation. If we set

𝐹𝑢(𝑡) ∶= ∫1
0

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠

we can write

𝑇𝑢(𝑡) = 𝛾(𝑡)𝛼[𝑢] + 𝛿(𝑡)𝛽[𝑢] + 𝐹𝑢(𝑡),

that is, we consider 𝑇 as a perturbation of the simpler operator 𝐹.

We work in the space u�([0, 1]) of the continuous functions on [0, 1] endowed with the

usual supremum norm.

We make the following assumptions on the terms that occur in (10.1.1).

(𝐶1) 𝑘 ∶ [0, 1] × [0, 1] → ℝ is measurable, and for every 𝜏 ∈ [0, 1] we have

lim
u�→u�

|𝑘(𝑡, 𝑠) − 𝑘(𝜏, 𝑠)| = 0 for almost every 𝑠 ∈ [0, 1].
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(𝐶2) There exist a subinterval [𝑎, 𝑏] ⊆ [0, 1], a function Φ ∈ L∞([0, 1]), and a constant

𝑐1 ∈ (0, 1] such that

|𝑘(𝑡, 𝑠)| ≤ Φ(𝑠) for 𝑡 ∈ [0, 1] and almost every 𝑠 ∈ [0, 1],
𝑘(𝑡, 𝑠) ≥ 𝑐1Φ(𝑠) for 𝑡 ∈ [𝑎, 𝑏] and almost every 𝑠 ∈ [0, 1].

(𝐶3) 𝑔 is measurable, 𝑔 Φ ∈ L1([0, 1]), 𝑔(𝑠) ≥ 0 for almost every 𝑠 ∈ [0, 1], and
∫u�

u� Φ(𝑠)𝑔(𝑠) d 𝑠 > 0.

(𝐶4) The nonlinearity 𝑓 ∶ [0, 1]×(−∞, ∞) → [0, ∞) satisfiesL∞-Carathéodory conditions,

that is, 𝑓 (⋅, 𝑢) is measurable for each fixed 𝑢 ∈ (−∞, ∞) , 𝑓 (𝑡, ⋅) is continuous for

almost every 𝑡 ∈ [0, 1], and for each 𝑟 > 0, there exists 𝜙u� ∈ L∞([0, 1]) such that

𝑓 (𝑡, 𝑢) ≤ 𝜙u�(𝑡) for all 𝑢 ∈ [−𝑟, 𝑟], and almost every 𝑡 ∈ [0, 1].

(𝐶5) 𝐴, 𝐵 are functions of bounded variation and u�u�(𝑠), u�u�(𝑠) ≥ 0 for almost every 𝑠 ∈
[0, 1], where

u�u�(𝑠) ∶= ∫1
0

𝑘(𝑡, 𝑠) d 𝐴(𝑡) and u�u�(𝑠) ∶= ∫1
0

𝑘(𝑡, 𝑠) d 𝐵(𝑡).

(𝐶6) 𝛾 ∈ 𝐶[0, 1], 0 ≤ 𝛼[𝛾] < 1, 𝛽[𝛾] ≥ 0.
There exists 𝑐2 ∈ (0, 1] such that 𝛾(𝑡) ≥ 𝑐2‖𝛾‖ for 𝑡 ∈ [𝑎, 𝑏].

(𝐶7) 𝛿 ∈ 𝐶[0, 1], 0 ≤ 𝛽[𝛿] < 1, 𝛼[𝛿] ≥ 0.
There exists 𝑐3 ∈ (0, 1] such that 𝛿(𝑡) ≥ 𝑐3‖𝛿‖ for 𝑡 ∈ [𝑎, 𝑏].

(𝐶8) 𝐷 ∶= (1 − 𝛼[𝛾])(1 − 𝛽[𝛿]) − 𝛼[𝛿]𝛽[𝛾] > 0.

From (𝐶6)-(𝐶8) it follows that, for 𝜆 ≥ 1,

𝐷u� ∶= (𝜆 − 𝛼[𝛾])(𝜆 − 𝛽[𝛿]) − 𝛼[𝛿]𝛽[𝛾] ≥ 𝐷 > 0.

The assumptions above allow us to work in the cone

𝐾 ∶= {𝑢 ∈ 𝐶[0, 1] ∶ min
u�∈[u�,u�]

𝑢(𝑡) ≥ 𝑐‖𝑢‖, 𝛼[𝑢], 𝛽[𝑢] ≥ 0}

where 𝑐 = min{𝑐1, 𝑐2, 𝑐3}.
The cone 𝐾 allows the use of signed measures, taking into account two functionals.

We denote by 𝑃 the cone of positive functions

𝑃 ∶= {𝑢 ∈ 𝐶[0, 1] ∶ 𝑢(𝑡) ≥ 0, 𝑡 ∈ [0, 1]}.

First of all we prove that 𝑇 leaves 𝐾 invariant and is compact and continuous.

Lemma 10.1.1. The operator (10.1.1)maps 𝐾 into 𝐾 and is compact and continuous.
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Proof. Let 𝑢 ∈ 𝐾 . First of all, we observe that 𝑇𝑢(𝑡) ≥ 0 for 𝑡 ∈ [𝑎, 𝑏]. We have, for

𝑡 ∈ [0, 1],

|𝑇𝑢(𝑡)| ≤ |𝛾(𝑡)|𝛼[𝑢] + |𝛿(𝑡)|𝛽[𝑢] + ∫1
0

|𝑘(𝑡, 𝑠)|𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠,

therefore, taking the supremum on 𝑡 ∈ [0, 1], we get

‖𝑇𝑢‖ ≤ ‖𝛾‖𝛼[𝑢] + ‖𝛿‖𝛽[𝑢] + ∫1
0

Φ(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠,

and, combining this fact with (𝐶2), (𝐶6) and (𝐶7),

min
u�∈[u�,u�]

𝑇𝑢(𝑡) ≥ 𝑐2‖𝛾‖𝛼[𝑢] + 𝑐3‖𝛿‖𝛽[𝑢] + 𝑐1 ∫1
0

Φ(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠

≥ 𝑐‖𝑇𝑢‖.

Furthermore, by (𝐶3) and (𝐶5)-(𝐶7),

𝛼[𝑇𝑢] = 𝛼[𝛾]𝛼[𝑢] + 𝛼[𝛿]𝛽[𝑢] + ∫1
0

u�u�(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠 ≥ 0

and

𝛽[𝑇𝑢] = 𝛽[𝛾]𝛼[𝑢] + 𝛽[𝛿]𝛽[𝑢] + ∫1
0

u�u�(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠 ≥ 0.

Hence we have 𝑇𝑢 ∈ 𝐾 .

The compactness and continuity are derived from Lemma 8.1.4. �

For 𝜌 > 0 we recall the following open subsets of 𝐾 :

𝐾u� ∶= {𝑢 ∈ 𝐾 ∶ ‖𝑢‖ < 𝜌}, 𝑉u� ∶= {𝑢 ∈ 𝐾 ∶ min
u�∈[u�,u�]

𝑢(𝑡) < 𝜌}.

We have 𝐾u� ⊂ 𝑉u� ⊂ 𝐾u�/u�.

We state now some useful facts concerning real 2 × 2 matrices.

Definition 10.1.2. [180] A 2 × 2 matrix u� is said to be order preserving (or nonnegative) if

𝑝1 ≥ 𝑝0, 𝑞1 ≥ 𝑞0 imply

u� (𝑝1
𝑞1

) ≥ u� (𝑝0
𝑞0

) ,

in the sense of components.

We have the following property, as stated in [180], whose proof is straightforward.

Lemma 10.1.3. Let

u� = ( 𝑎 −𝑏
−𝑐 𝑑 )

with 𝑎, 𝑏, 𝑐, 𝑑 ≥ 0 and det u� > 0. Then u�−1 is order preserving.
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Remark 10.1.4. It is a consequence of Lemma 10.1.3 that if

u� = (1 − 𝑎 −𝑏
−𝑐 1 − 𝑑) ,

satisfies the hypotheses of Lemma 10.1.3, 𝑝 ≥ 0, 𝑞 ≥ 0 and 𝜇 > 1 then

u� −1
u� (𝑝

𝑞) ≤ u� −1 (𝑝
𝑞) ,

where

u�u� = (𝜇 − 𝑎 −𝑏
−𝑐 𝜇 − 𝑑) .

We now give a sufficient condition on the growth of the nonlinearity that provides that the

index is 1 on 𝐾u�.

Lemma 10.1.5. Assume that

(I1
u�) there exists 𝜌 > 0 such that

𝑓 −u�,u� ( sup
u�∈[0,1]

{(
|𝛾(𝑡)|

𝐷 (1 − 𝛽[𝛿]) + |𝛿(𝑡)|
𝐷 𝛽[𝛾]) ∫1

0
u�u�(𝑠)𝑔(𝑠) d 𝑠

+ (
|𝛾(𝑡)|

𝐷 𝛼[𝛿] + |𝛿(𝑡)|
𝐷 (1 − 𝛼[𝛾])) ∫1

0
u�u�(𝑠)𝑔(𝑠) d 𝑠

+ max {∫1
0

𝑘+(𝑡, 𝑠)𝑔(𝑠) d 𝑠, ∫1
0

𝑘−(𝑡, 𝑠)𝑔(𝑠) d 𝑠}}) < 1. (10.1.2)

where

𝑓 −u�,u� ∶= ess sup{𝑓 (𝑡, 𝑢)
𝜌 ∶ (𝑡, 𝑢) ∈ [0, 1] × [−𝜌, 𝜌]}.

Then we have 𝑖u�(𝑇, 𝐾u�) = 1.

Proof. We show that𝑇𝑢 ≠ 𝜆𝑢 for all𝜆 ≥ 1when 𝑢 ∈ 𝜕𝐾u�, which implies that 𝑖u�(𝑇, 𝐾u�) =
1. In fact, if this does not happen, then there exist 𝑢 with ‖𝑢‖ = 𝜌 and 𝜆 ≥ 1 such that

𝜆𝑢(𝑡) = 𝑇𝑢(𝑡), that is

𝜆𝑢(𝑡) = 𝛾(𝑡)𝛼[𝑢] + 𝛿(𝑡)𝛽[𝑢] + 𝐹𝑢(𝑡). (10.1.3)

Therefore we obtain

𝜆𝛼[𝑢] = 𝛼[𝛾]𝛼[𝑢] + 𝛼[𝛿]𝛽[𝑢] + 𝛼[𝐹𝑢]

and

𝜆𝛽[𝑢] = 𝛽[𝛾]𝛼[𝑢] + 𝛽[𝛿]𝛽[𝑢] + 𝛽[𝐹𝑢].

Thus we have

(𝜆 − 𝛼[𝛾] −𝛼[𝛿]
−𝛽[𝛾] 𝜆 − 𝛽[𝛿]) (𝛼[𝑢]

𝛽[𝑢]) = (𝛼[𝐹𝑢]
𝛽[𝐹𝑢]) . (10.1.4)
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Note that the matrix that occurs in (10.1.4), due to (𝐶6)–(𝐶8), satisfies the hypothesis of

Lemma 10.1.3, so its inverse is order preserving. Then, applying its inverse matrix to both sides

of (10.1.4), we have

(𝛼[𝑢]
𝛽[𝑢]) = 1

𝐷u�
(𝜆 − 𝛽[𝛿] 𝛼[𝛿]

𝛽[𝛾] 𝜆 − 𝛼[𝛾]) (𝛼[𝐹𝑢]
𝛽[𝐹𝑢]) .

By Remark 10.1.4, we obtain that

(𝛼[𝑢]
𝛽[𝑢]) ≤ 1

𝐷 (1 − 𝛽[𝛿] 𝛼[𝛿]
𝛽[𝛾] 1 − 𝛼[𝛾]) (𝛼[𝐹𝑢]

𝛽[𝐹𝑢]) . (10.1.5)

Hence, from (10.1.3) and (10.1.5) we get

𝜆|𝑢(𝑡)| ≤
|𝛾(𝑡)|

𝐷 ((1 − 𝛽[𝛿])𝛼[𝐹𝑢] + 𝛼[𝛿]𝛽[𝐹𝑢])

+ |𝛿(𝑡)|
𝐷 ((1 − 𝛼[𝛾])𝛽[𝐹𝑢]) + 𝛽[𝛾]𝛼[𝐹𝑢]) + |𝐹𝑢(𝑡)|.

Taking the supremum over [0, 1] gives

𝜆𝜌 ≤ 𝜌𝑓 −u�,u� ( sup
u�∈[0,1]

{(
|𝛾(𝑡)|

𝐷 (1 − 𝛽[𝛿]) + |𝛿(𝑡)|
𝐷 𝛽[𝛾]) ∫1

0
u�u�(𝑠)𝑔(𝑠) d 𝑠

+ (
|𝛾(𝑡)|

𝐷 𝛼[𝛿] + |𝛿(𝑡)|
𝐷 (1 − 𝛼[𝛾])) ∫1

0
u�u�(𝑠)𝑔(𝑠) d 𝑠

+ max {∫1
0

𝑘+(𝑡, 𝑠)𝑔(𝑠) d 𝑠, ∫1
0

𝑘−(𝑡, 𝑠)𝑔(𝑠) d 𝑠}}) .

From (10.1.2) we obtain that 𝜆𝜌 < 𝜌, contradicting the fact that 𝜆 ≥ 1. �

Remark 10.1.6. In similar way as in [180] (where the positive case was studied) we point out

that a stronger (but easier to check) condition than (I1
u�) is given by the following.

𝑓 −u�,u� [(
‖𝛾‖
𝐷 (1 − 𝛽[𝛿]) + ‖𝛿‖

𝐷 𝛽[𝛾]) ∫1
0

u�u�(𝑠)𝑔(𝑠) d 𝑠

+ (
‖𝛾‖
𝐷 𝛼[𝛿] + ‖𝛿‖

𝐷 (1 − 𝛼[𝛾])) ∫1
0

u�u�(𝑠)𝑔(𝑠) d 𝑠 + 1
𝑚] < 1.

where
1
𝑚 ∶= sup

u�∈[0,1]
{max {∫1

0
𝑘+(𝑡, 𝑠)𝑔(𝑠) d 𝑠, ∫1

0
𝑘−(𝑡, 𝑠)𝑔(𝑠) d 𝑠}} .

Note that, since max{𝑘+, 𝑘−} ≤ |𝑘|, the constant 𝑚 provides a better estimate on the

growth of the nonlinearity 𝑓 than the constant

sup
u�∈[0,1]

∫1
0

|𝑘(𝑡, 𝑠)|𝑔(𝑠) d 𝑠,

used in [30,34,66, 69, 70, 87, 93, 94, 97, 99, 100,134].
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Remark 10.1.7. If the functions𝛾, 𝛿, 𝑘 are nonnegative on [0, 1], we canworkwithin the cone
𝐾 ∩ 𝑃, regaining the condition given in [180], namely

𝑓 0,u� ( sup
u�∈[0,1]

{(
𝛾(𝑡)

𝐷 (1 − 𝛽[𝛿]) + 𝛿(𝑡)
𝐷 𝛽[𝛾]) ∫1

0
u�u�(𝑠)𝑔(𝑠) d 𝑠

+ (
𝛾(𝑡)

𝐷 𝛼[𝛿] + 𝛿(𝑡)
𝐷 (1 − 𝛼[𝛾])) ∫1

0
u�u�(𝑠)𝑔(𝑠) d 𝑠 + ∫1

0
𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠}) < 1,

where

𝑓 0,u� ∶= ess sup{𝑓 (𝑡, 𝑢)
𝜌 ∶ (𝑡, 𝑢) ∈ [0, 1] × [0, 𝜌]}.

Lemma 10.1.8. Assume that

(I0
u�) There exists 𝜌 > 0 such that

𝑓u�,u�/u� ( inf
u�∈[u�,u�]

{(
𝛾(𝑡)

𝐷 (1 − 𝛽[𝛿]) + 𝛿(𝑡)
𝐷 𝛽[𝛾]) ∫u�

u�
u�u�(𝑠)𝑔(𝑠) d 𝑠

+ (
𝛾(𝑡)

𝐷 𝛼[𝛿] + 𝛿(𝑡)
𝐷 (1 − 𝛼[𝛾])) ∫u�

u�
u�u�(𝑠)𝑔(𝑠) d 𝑠 + ∫u�

u�
𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠}) > 1,

(10.1.6)

where

𝑓u�,u�/u� ∶= ess inf {𝑓 (𝑡, 𝑢)
𝜌 ∶ (𝑡, 𝑢) ∈ [𝑎, 𝑏] × [𝜌, 𝜌/𝑐]} .

Then we have 𝑖u�(𝑇, 𝑉u�) = 0.

Proof. Let 𝑒(𝑡) = ∫1
0 𝑘(𝑡, 𝑠) d 𝑠 for 𝑡 ∈ [0, 1]. Then, according to (𝐶2), (𝐶3) and (𝐶5), we

have 𝑒 ∈ 𝐾\{0}. We show that 𝑢 ≠ 𝑇𝑢 + 𝜆𝑒 for all 𝜆 ≥ 0 and 𝑢 ∈ 𝜕𝑉u� which implies that

𝑖u�(𝑇, 𝑉u�) = 0. In fact, if this does not happen, there are 𝑢 ∈ 𝜕𝑉u� (and so for 𝑡 ∈ [𝑎, 𝑏] we

have min 𝑢(𝑡) = 𝜌 and 𝜌 ≤ 𝑢(𝑡) ≤ 𝜌/𝑐) , and 𝜆 ≥ 0 with

𝑢(𝑡) = 𝑇𝑢(𝑡) + 𝜆𝑒(𝑡) = 𝛾(𝑡)𝛼[𝑢] + 𝛿(𝑡)𝛽[𝑢] + 𝐹𝑢(𝑡) + 𝜆𝑒(𝑡).

Applying 𝛼 and 𝛽 to both sides of the previous equation we get

(1 − 𝛼[𝛾] −𝛼[𝛿]
−𝛽[𝛾] 1 − 𝛽[𝛿]) (𝛼[𝑢]

𝛽[𝑢]) = (𝛼[𝐹𝑢] + 𝜆𝛼[𝑒]
𝛽[𝐹𝑢] + 𝜆𝛽[𝑒]) ≥ (𝛼[𝐹𝑢]

𝛽[𝐹𝑢]) . (10.1.7)

Note that the matrix that occurs in (10.1.7), due to (𝐶6)-(𝐶8), satisfies the hypothesis of

Lemmas 10.1.3, so its inverse is order preserving. Then applying the inverse matrix to both

sides of (10.1.7) we have

(𝛼[𝑢]
𝛽[𝑢]) ≥ 1

𝐷 (1 − 𝛽[𝛿] 𝛼[𝛿]
𝛽[𝛾] 1 − 𝛼[𝛾]) (𝛼[𝐹𝑢]

𝛽[𝐹𝑢]) .
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Therefore, for 𝑡 ∈ [𝑎, 𝑏], we obtain

𝑢(𝑡) ≥ (
𝛾(𝑡)

𝐷 (1 − 𝛽[𝛿]) + 𝛿(𝑡)
𝐷 𝛽[𝛾]) 𝛼[𝐹𝑢]

+ (
𝛾(𝑡)

𝐷 𝛼[𝛿] + 𝛿(𝑡)
𝐷 (1 − 𝛼[𝛾])) 𝛽[𝐹𝑢] + 𝐹𝑢(𝑡) + 𝜆𝑒(𝑡)

≥ (
𝛾(𝑡)

𝐷 (1 − 𝛽[𝛿]) + 𝛿(𝑡)
𝐷 𝛽[𝛾]) ∫u�

u�
u�u�(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠

+ (
𝛾(𝑡)

𝐷 𝛼[𝛿] + 𝛿(𝑡)
𝐷 (1 − 𝛼[𝛾])) ∫u�

u�
u�u�(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠

+ ∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠.

Taking the infimum for 𝑡 ∈ [𝑎, 𝑏] then gives

𝜌 = min 𝑢(𝑡)

≥𝜌 𝑓u�,u�/u� ( inf
u�∈[u�,u�]

{(
𝛾(𝑡)

𝐷 (1 − 𝛽[𝛿]) + 𝛿(𝑡)
𝐷 𝛽[𝛾]) ∫u�

u�
u�u�(𝑠)𝑔(𝑠) d 𝑠

+ (
𝛾(𝑡)

𝐷 𝛼[𝛿] + 𝛿(𝑡)
𝐷 (1 − 𝛼[𝛾])) ∫u�

u�
u�u�(𝑠)𝑔(𝑠) d 𝑠 + ∫u�

u�
𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠}) ,

contradicting (10.1.6). �

Remark 10.1.9. We point out, in similar way as in [180], that a stronger (but easier to check)

condition than (I0
u�) is given by the following.

𝑓u�,u�/u� ((
𝑐2‖𝛾‖

𝐷 (1 − 𝛽[𝛿]) +
𝑐3‖𝛿‖

𝐷 𝛽[𝛾]) ∫u�
u�

u�u�(𝑠)𝑔(𝑠) d 𝑠

+ ((
𝑐2‖𝛾‖

𝐷 𝛼[𝛿] +
𝑐3‖𝛿‖

𝐷 (1 − 𝛼[𝛾])) ∫u�
u�

u�u�(𝑠)𝑔(𝑠) d 𝑠 + 1
𝑀(𝑎, 𝑏)) > 1,

where
1

𝑀(𝑎, 𝑏) ∶= inf
u�∈[u�,u�]

∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠.

We now combine the results above in order to prove a Theorem regarding the existence of

one, two or three nontrivial solutions. The proof is a direct consequence of the properties of

the fixed point index and is omitted. It is possible to state a result for the existence of four or

more solutions, we refer to Lan [123] for similar statements.

Theorem 10.1.10. Assume conditions (𝐶1)–(𝐶8) are satisfied. The integral equation (10.1.1)

has at least one nonzero solution in 𝐾 if any of the following conditions hold.

(𝑆1) There exist 𝜌1, 𝜌2 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 such that (I0
u�1

) and (I1
u�2

) hold.

(𝑆2) There exist 𝜌1, 𝜌2 ∈ (0, ∞) with 𝜌1 < 𝜌2 such that (I1
u�1

) and (I0
u�2

) hold.



198 10.2. Some nonexistence results

The integral equation (10.1.1) has at least two nonzero solutions in 𝐾 if one of the following

conditions hold.

(𝑆3) There exist 𝜌1, 𝜌2, 𝜌3 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 < 𝜌3 such that (I0
u�1

), (I1
u�2

) and (I0
u�3

)
hold.

(𝑆4) There exist 𝜌1, 𝜌2, 𝜌3 ∈ (0, ∞) with 𝜌1 < 𝜌2 and 𝜌2/𝑐 < 𝜌3 such that (I1
u�1

), (I0
u�2

)
and (I1

u�3
) hold.

The integral equation (10.1.1) has at least three nonzero solutions in 𝐾 if one of the following

conditions hold.

(𝑆5) There exist 𝜌1, 𝜌2, 𝜌3, 𝜌4 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 < 𝜌3 and 𝜌3/𝑐 < 𝜌4 such that

(I0
u�1

), (I1
u�2

), (I0
u�3

) and (I1
u�4

) hold.

(𝑆6) There exist 𝜌1, 𝜌2, 𝜌3, 𝜌4 ∈ (0, ∞) with 𝜌1 < 𝜌2 and 𝜌2/𝑐 < 𝜌3 < 𝜌4 such that

(I1
u�1

), (I0
u�2

), (I1
u�3

) and (I0
u�4

) hold.

Figure 10.1.1: Illustration of conditions (𝑆2) (left) and (𝑆3) (right).

10.2 Some nonexistence results

We now consider the auxiliary Hammerstein integral equation

𝑢(𝑡) = ∫1
0

𝑘u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠 ∶= 𝑆𝑢(𝑡), (10.2.1)

where the kernel 𝑘u� is given by the formula

𝑘u�(𝑡, 𝑠) =
𝛾(𝑡)

𝐷 [(1 − 𝛽[𝛿])u�u�(𝑠) + 𝛼[𝛿]u�u�(𝑠)]

+ 𝛿(𝑡)
𝐷 [𝛽[𝛾]u�u�(𝑠) + (1 − 𝛼[𝛾])u�u�(𝑠)] + 𝑘(𝑡, 𝑠).

The operator 𝑆 shares a number of useful properties with 𝑇, firstly the cone invariance, conti-

nuity and compactness, the proof follows directly from (𝐶1)-(𝐶8) and is omitted.



10. Some nonexistence results 199

Lemma 10.2.1. The operator 𝑆 defined in (10.2.1)maps 𝐾 into 𝐾 and is compact and contin-

uous.

A key property that is also useful is the one given by the following Theorem; the proof is

similar to the one in [180, Lemma 2.8 and Therem 2.9] and is omitted.

Lemma10.2.2. The operators𝑆 and𝑇 have the samefixed points in𝐾 . Furthermore if𝑢 ≠ 𝑇𝑢
for 𝑢 ∈ 𝜕𝐷u� , then 𝑖u�(𝑇, 𝐷u�) = 𝑖u�(𝑆, 𝐷u�).

We define the constants

1
𝑚u�

∶= sup
u�∈[0,1]

{max {∫1
0

𝑘+
u�(𝑡, 𝑠)𝑔(𝑠) d 𝑠, ∫1

0
𝑘−

u�(𝑡, 𝑠)𝑔(𝑠) d 𝑠}} ,

1
𝑀u�(𝑎, 𝑏) = 1

𝑀u�
∶= inf

u�∈[u�,u�]
∫u�

u�
𝑘u�(𝑡, 𝑠)𝑔(𝑠) d 𝑠,

and we prove the following nonexistence results.

Theorem 10.2.3. Assume that one of the following conditions holds:

(1) 𝑓 (𝑡, 𝑢) < 𝑚u�|𝑢| for every 𝑡 ∈ [0, 1] and 𝑢 ∈ ℝ\{0},
(2) 𝑓 (𝑡, 𝑢) > 𝑀u�𝑢 for every 𝑡 ∈ [𝑎, 𝑏] and 𝑢 ∈ ℝ+.

Then the equations (10.1.1) and (10.2.1) have no nontrivial solution in 𝐾 .

Proof. In view of Lemma 10.2.2 we prove the Theorem using the operator 𝑆.
(1) Assume, on the contrary, that there exists 𝑢 ∈ 𝐾 , 𝑢��≡0 such that 𝑢 = 𝑆𝑢 and let

𝑡0 ∈ [0, 1] such that ‖𝑢‖ = |𝑢(𝑡0)|. Then we have

‖𝑢‖ =|𝑢(𝑡0)| = ∣∫1
0

𝑘u�(𝑡0, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠∣

≤ max {∫1
0

𝑘+
u�(𝑡0, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠, ∫1

0
𝑘−

u�(𝑡0, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠}

< max {∫1
0

𝑘+
u�(𝑡0, 𝑠)𝑔(𝑠)𝑚u�|𝑢(𝑠)| d 𝑠, ∫1

0
𝑘−

u�(𝑡0, 𝑠)𝑔(𝑠)𝑚u�|𝑢(𝑠)| d 𝑠}

≤ max {∫1
0

𝑘+
u�(𝑡0, 𝑠)𝑔(𝑠) d 𝑠, ∫1

0
𝑘−

u�(𝑡0, 𝑠)𝑔(𝑠) d 𝑠} 𝑚u�‖𝑢‖ ≤ ‖𝑢‖,

a contradiction.

(2) Assume, on the contrary, that there exists 𝑢 ∈ 𝐾 , 𝑢��≡0 such that 𝑢 = 𝑆𝑢 and let

𝜂 ∈ [𝑎, 𝑏] be such that 𝑢(𝜂) = minu�∈[u�,u�] 𝑢(𝑡). For 𝑡 ∈ [𝑎, 𝑏] we have

𝑢(𝑡) = ∫1
0

𝑘u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠 ≥ ∫u�
u�

𝑘u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠

>𝑀u� ∫u�
u�

𝑘u�(𝑡, 𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠.

Taking the infimum for 𝑡 ∈ [𝑎, 𝑏], we have

min
u�∈[u�,u�]

𝑢(𝑡) > 𝑀u� inf
u�∈[u�,u�]

∫u�
u�

𝑘u�(𝑡, 𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠.

Thus we obtain

𝑢(𝜂) > 𝑀u�𝑢(𝜂) inf
u�∈[u�,u�]

∫u�
u�

𝑘u�(𝑡, 𝑠)𝑔(𝑠) d 𝑠 = 𝑢(𝜂),

a contradiction. �
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Figure 10.2.1: Illustration of the conditions in Theorem 10.2.3. 𝑓 cannot intersect one of the

shaded areas in each case.

10.3 Eigenvalue criteria for the existenceof nontrivial solutions

In this Section we assume the additional hypothesis that the functionals 𝛼 and 𝛽 are given by

positive measures.

In order to state our eigenvalue comparison results, we consider the following operators

on 𝐶[0, 1].

𝐿 𝑢(𝑡) ∶= ∫1
0

|𝑘u�(𝑡, 𝑠)|𝑔(𝑠)𝑢(𝑠) d 𝑠, �̃� 𝑢(𝑡) ∶= ∫u�
u�

𝑘+
u�(𝑡, 𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠.

By similar proofs of [180, Lemma 2.6 and Theorem 2.7], we study the properties of those op-

erators.

Theorem 10.3.1. Assume properties (𝐶1)–(𝐶8) hold. The operators 𝐿 and �̃� are compact

and continuous and map 𝑃 into 𝑃 ∩ 𝐾 .

Proof. Note that the operators 𝐿 and �̃� map 𝑃 into 𝑃 (because they have a positive integral

kernel) and are compact. We now show that they map 𝑃 into 𝑃 ∩ 𝐾 . We do this for the

operator 𝐿, a similar proof works for �̃�.
Firstly we observe that

|𝑘u�(𝑡, 𝑠)| ≤
|𝛾(𝑡)|

𝐷 ((1 − 𝛽[𝛿])u�u�(𝑠) + 𝛼[𝛿]u�u�(𝑠)) + |𝛿(𝑡)|
𝐷 (𝛽[𝛾]u�u�(𝑠)

+ (1 − 𝛼[𝛾])u�u�(𝑠)) + |𝑘(𝑡, 𝑠)|

≤
‖𝛾‖
𝐷 ((1 − 𝛽[𝛿])u�u�(𝑠) + 𝛼[𝛿]u�u�(𝑠)) + ‖𝛿‖

𝐷 (𝛽[𝛾]u�u�(𝑠)

+ (1 − 𝛼[𝛾])u�u�(𝑠)) + |𝑘(𝑡, 𝑠)|
≤Υ(𝑠) + Φ(𝑠) =∶ Ψ(𝑠),

where

Υ(𝑠) =
‖𝛾‖
𝐷 ((1 − 𝛽[𝛿])u�u�(𝑠) + 𝛼[𝛿]u�u�(𝑠))
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+ ‖𝛿‖
𝐷 (𝛽[𝛾]u�u�(𝑠) + (1 − 𝛼[𝛾])u�u�(𝑠)) .

Moreover, we have, for 𝑡 ∈ [𝑎, 𝑏],

|𝑘u�(𝑡, 𝑠)| = 𝑘u�(𝑡, 𝑠) ≥
𝑐2‖𝛾‖

𝐷 [(1 − 𝛽[𝛿])u�u�(𝑠) + 𝛼[𝛿]u�u�(𝑠)]

+
𝑐3‖𝛿‖

𝐷 [𝛽[𝛾]u�u�(𝑠) + (1 − 𝛼[𝛾])u�u�(𝑠)] + 𝑐1Φ(𝑡) ≥ 𝑐Ψ(𝑠),

and thus

min
u�∈[u�,u�]

𝑘u�(𝑡, 𝑠) ≥ 𝑐Ψ(𝑠). (10.3.1)

Also we have 𝑔 Ψ ∈ L1([0, 1]) and we obtain that, for 𝑢 ∈ 𝑃 and 𝑡 ∈ [0, 1],

𝐿𝑢(𝑡) ≤ ∫1
0

Ψ(𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠,

in such a way that, taking the supremum on 𝑡 ∈ [0, 1], we get

‖𝐿𝑢‖ ≤ ∫1
0

Ψ(𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠.

On the other hand,

min
u�∈[u�,u�]

𝐿𝑢(𝑡) ≥ 𝑐 ∫1
0

Ψ(𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠 ≥ 𝑐‖𝐿𝑢‖.

Furthermore, since 𝛼 and 𝛽 are given by positive measures,

𝛼[𝐿𝑢] = ∫1
0

∫1
0

|𝑘u�(𝑡, 𝑠)|𝑔(𝑠)𝑢(𝑠) d 𝑠 d 𝐴(𝑡) ≥ 0

and

𝛽[𝐿𝑢] = ∫1
0

∫1
0

|𝑘u�(𝑡, 𝑠)|𝑔(𝑠)𝑢(𝑠) d 𝑠 d 𝐵(𝑡) ≥ 0.

Hence we have 𝐿𝑢 ∈ 𝐾 . �

We recall that𝜆 is an eigenvalue of a linear operatorΓwith corresponding eigenfunction𝜑
if𝜑 ≠ 0 and𝜆𝜑 = Γ𝜑. The reciprocals of nonzero eigenvalues are called characteristic values

of Γ. We will denote the spectral radius of Γ by 𝑟(Γ) ∶= limu�→∞ ‖Γu�‖
1
u� and its principal

characteristic value (the reciprocal of the spectral radius) by 𝜇(Γ) = 1/𝑟(Γ).
The following Theorem is analogous to the ones in [180,183] and is proven by using the facts

that the considered operators leave 𝑃 invariant, that 𝑃 is reproducing, that is 𝐶(𝐼) = 𝑃 − 𝑃,

combined with the well-known Krein-Rutman Theorem. The condition (𝐶3) is used to show

that 𝑟(𝐿) > 0.

Theorem 10.3.2. The spectral radius of 𝐿 is nonzero and is an eigenvalue of 𝐿 with an eigen-

function in 𝑃. A similar result holds for �̃�.

Remark 10.3.3. As a consequenceof the twoprevious theorems, wehave the abovementioned

eigenfunction is in 𝑃 ∩ 𝐾 .
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We use the following operator on u�([𝑎, 𝑏]) defined by, for 𝑡 ∈ [𝑎, 𝑏],

�̄�𝑢(𝑡) ∶= ∫u�
u�

𝑘+
u�(𝑡, 𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠

and the cone 𝑃[u�,u�] of positive functions in u�([𝑎, 𝑏]).
In the recent papers [177, 178], Webb developed a theory valid for 𝑢0-positive linear op-

erators relative to two cones. It turns out that our operator �̄� fits within this setting and, in

particular, satisfies the assumptions of Theorem 3.4 of [178]. We state here a special case of

Theorem 3.4 of [178] that can be used for �̄�.

Theorem 10.3.4. Suppose that there exist 𝑢 ∈ 𝑃[u�,u�]\{0} and 𝜆 > 0 such that

𝜆𝑢(𝑡) ≥ �̄�𝑢(𝑡), for 𝑡 ∈ [𝑎, 𝑏].

Then we have 𝑟(�̄�) ≤ 𝜆.

We define the following extended real numbers.

𝑓 0 = lim
u�→0

ess sup
u�∈[0,1]

𝑓 (𝑡, 𝑢)

|𝑢| , 𝑓0 = lim
u�→0+

ess inf
u�∈[u�,u�]

𝑓 (𝑡, 𝑢)

𝑢 ,

𝑓 ∞ = lim
|u�|→+∞

ess sup
u�∈[0,1]

𝑓 (𝑡, 𝑢)

|𝑢| , 𝑓∞ = lim
u�→+∞

ess inf
u�∈[u�,u�]

𝑓 (𝑡, 𝑢)

𝑢 .

In order to prove the following Theorem, we adapt some of the proofs of [183, Theorems

3.2-3.5] to this new context.

Theorem 10.3.5. We have the following.

(1) If 0 ≤ 𝑓 0 < 𝜇(𝐿), then there exists 𝜌0 > 0 such that 𝑖u�(𝑇, 𝐾u�) = 1 for each

𝜌 ∈ (0, 𝜌0].

(2) If 0 ≤ 𝑓 ∞ < 𝜇(𝐿), then there exists 𝑅0 > 0 such that 𝑖u�(𝑇, 𝐾u�) = 1 for each

𝑅 > 𝑅0.

(3) If 𝜇(�̃�) < 𝑓0 ≤ ∞, then there exists 𝜌0 > 0 such that 𝑖u�(𝑇, 𝐾u�) = 0 for each 𝜌 ∈
(0, 𝜌0].

(4) If 𝜇(�̃�) < 𝑓∞ ≤ ∞, then there exists 𝑅1 > 0 such that 𝑖u�(𝑇, 𝐾u�) = 0 for each

𝑅 ≥ 𝑅1.

Proof. We show the statements for the operator 𝑆 instead of 𝑇, in view of Lemma 10.2.2.

(1) Let 𝜏 ∈ ℝ+ be such that 𝑓 0 ≤ 𝜇(𝐿) − 𝜏. Then there exists 𝜌0 ∈ (0, 1) such that for

all 𝑢 ∈ [−𝜌0, 𝜌0] and almost every 𝑡 ∈ [0, 1] we have

𝑓 (𝑡, 𝑢) ≤ (𝜇(𝐿) − 𝜏)|𝑢|.

Let𝜌 ∈ (0, 𝜌0]. We prove that𝑆𝑢 ≠ 𝜆𝑢 for𝑢 ∈ 𝜕𝐾u� and𝜆 ≥ 1, which implies 𝑖u�(𝑆, 𝐾u�) =
1. In fact, if we assume otherwise, then there exist 𝑢 ∈ 𝜕𝐾u� and 𝜆 ≥ 1 such that 𝜆𝑢 = 𝑆𝑢.
Therefore,

|𝑢(𝑡)| ≤𝜆|𝑢(𝑡)| = |𝑆𝑢(𝑡)| = ∣∫1
0

𝑘u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠∣
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≤ ∫1
0

|𝑘u�(𝑡, 𝑠)|𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠

≤(𝜇(𝐿) − 𝜏) ∫1
0

|𝑘u�(𝑡, 𝑠)|𝑔(𝑠)|𝑢(𝑠)| d 𝑠 = (𝜇(𝐿) − 𝜏)𝐿|𝑢|(𝑡).

Thus, we have, for 𝑡 ∈ [0, 1],

|𝑢|(𝑡) ≤(𝜇(𝐿) − 𝜏)𝐿[(𝜇(𝐿) − 𝜏)𝐿|𝑢|(𝑡)]
=(𝜇(𝐿) − 𝜏)2𝐿2|𝑢|(𝑡) ≤ ⋯ ≤ (𝜇(𝐿) − 𝜏)u�𝐿u�|𝑢|(𝑡),

thus, taking the norms, 1 ≤ (𝜇(𝐿) − 𝜏)u�‖𝐿u�‖, and then

1 ≤ (𝜇(𝐿) − 𝜏) lim
u�→∞

‖𝐿u�‖
1
u� =

𝜇(𝐿) − 𝜏
𝜇(𝐿) < 1,

a contradiction.

(2) Let 𝜏 ∈ ℝ+ such that 𝑓 ∞ < 𝜇(𝐿) − 𝜏. Then there exists 𝑅1 > 0 such that for every

|𝑢| ≥ 𝑅1 and almost every 𝑡 ∈ [0, 1]

𝑓 (𝑡, 𝑢) ≤ (𝜇(𝐿) − 𝜏)|𝑢|.

Also, by (𝐶4) there exists 𝜙u�1
∈ L∞([0, 1]) such that 𝑓 (𝑡, 𝑢) ≤ 𝜙u�1

(𝑡) for all 𝑢 ∈
[−𝑅1, 𝑅1] and almost every 𝑡 ∈ [0, 1]. Hence,

𝑓 (𝑡, 𝑢) ≤ (𝜇(𝐿) − 𝜏)|𝑢| + 𝜙u�1
(𝑡) for all 𝑢 ∈ ℝ and almost every 𝑡 ∈ [0, 1]. (10.3.2)

Denote by Id the identity operator and observe that Id −(𝜇(𝐿) − 𝜏)𝐿 is invertible since

(𝜇(𝐿) − 𝜏)𝐿 has spectral radius less than one. Furthermore, by the Neumann series expres-

sion,

[Id −(𝜇(𝐿) − 𝜏)𝐿]−1 =
∞

∑
u�=0

[(𝜇(𝐿) − 𝜏)𝐿]u�

therefore, [Id −(𝜇(𝐿) − 𝜏)𝐿]−1 maps 𝑃 into 𝑃, since 𝐿 does.

Let

𝐶 ∶= ∫u�
u�

Φ(𝑠)𝑔(𝑠)𝜙u�1
(𝑠) d 𝑠 and 𝑅0 ∶= ‖[Id −(𝜇(𝐿) − 𝜏)𝐿]−1𝐶‖.

Now we prove that for each 𝑅 > 𝑅0, 𝑆𝑢 ≠ 𝜆𝑢 for all 𝑢 ∈ 𝜕𝐾u� and 𝜆 ≥ 1, which implies

𝑖u�(𝑆, 𝐾u�) = 1. Assume otherwise: there exists 𝑢 ∈ 𝜕𝐾u� and 𝜆 ≥ 1 such that 𝜆𝑢 = 𝑆𝑢.
Taking into account the inequality (10.3.2), we have for 𝑡 ∈ [0, 1]

|𝑢(𝑡)| ≤ 𝜆|𝑢(𝑡)| =|𝑆𝑢| = ∣∫1
0

𝑘u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠∣ ≤ ∫1
0

|𝑘u�(𝑡, 𝑠)|𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠

≤(𝜇(𝐿) − 𝜏) ∫1
0

|𝑘u�(𝑡, 𝑠)|𝑔(𝑠)|𝑢(𝑠)| d 𝑠 + 𝐶 = (𝜇(𝐿) − 𝜏)𝐿|𝑢|(𝑡) + 𝐶,

which implies

[Id −(𝜇(𝐿) − 𝜏)𝐿]|𝑢|(𝑡) ≤ 𝐶.
Since (Id −(𝜇(𝐿) − 𝜏)𝐿)−1 is nonnegative, we have

|𝑢|(𝑡) ≤ [Id −(𝜇(𝐿) − 𝜏)𝐿]−1𝐶 ≤ 𝑅0.
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Therefore, we have ‖𝑢‖ ≤ 𝑅0 < 𝑅, a contradiction.

(3) There exists 𝜌0 > 0 such that for all 𝑢 ∈ [0, 𝜌0] and all 𝑡 ∈ [𝑎, 𝑏] we have

𝑓 (𝑡, 𝑢) ≥ 𝜇(�̃�)𝑢.

Let 𝜌 ∈ (0, 𝜌0]. Let us prove that 𝑢 ≠ 𝑆𝑢 + 𝜆𝜑1 for all 𝑢 in 𝜕𝐾u� and 𝜆 ≥ 0, where
𝜑1 ∈ 𝐾 ∩𝑃 is the eigenfunction of �̃�with ‖𝜑1‖ = 1 corresponding to the eigenvalue 1/𝜇(�̃�).
This implies that 𝑖u�(𝑆, 𝐾u�) = 0.

Assume, on the contrary, that there exist 𝑢 ∈ 𝜕𝐾u� and 𝜆 ≥ 0 such that 𝑢 = 𝑆𝑢 + 𝜆𝜑1.

We distinguish two cases.

Firstly we discuss the case 𝜆 > 0. We have, for 𝑡 ∈ [𝑎, 𝑏],

𝑢(𝑡) = ∫1
0

𝑘u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠 + 𝜆𝜑1(𝑡)

≥ ∫u�
u�

𝑘+
u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠 + 𝜆𝜑1(𝑡)

≥𝜇(�̃�) ∫u�
u�

𝑘+
u�(𝑡, 𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠 + 𝜆𝜑1(𝑡) = 𝜇(�̃�)�̃�𝑢(𝑡) + 𝜆𝜑1(𝑡).

Moreover, we have 𝑢(𝑡) ≥ 𝜆𝜑1(𝑡) in [𝑎, 𝑏] and then �̃�𝑢(𝑡) ≥ 𝜆�̃�𝜑1(𝑡) = 𝜆
𝜇(�̃�)

𝜑1(𝑡) in

[𝑎, 𝑏] in such a way that we obtain

𝑢(𝑡) ≥ 𝜇(�̃�)�̃�𝑢(𝑡) + 𝜆𝜑1(𝑡) ≥ 2𝜆𝜑1(𝑡), for 𝑡 ∈ [𝑎, 𝑏].

By iteration, we deduce that, for 𝑡 ∈ [𝑎, 𝑏], we get

𝑢(𝑡) ≥ 𝑛𝜆𝜑1(𝑡) for every 𝑛 ∈ ℕ,

a contradiction because ‖𝑢‖ = 𝜌.
Now we consider the case 𝜆 = 0. Let 𝜀 > 0 be such that for all 𝑢 ∈ [0, 𝜌0] and almost

every 𝑡 ∈ [𝑎, 𝑏] we have

𝑓 (𝑡, 𝑢) ≥ (𝜇(�̃�) + 𝜀)𝑢.
We have, for 𝑡 ∈ [𝑎, 𝑏],

𝑢(𝑡) = ∫1
0

𝑘u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠

≥ ∫u�
u�

𝑘+
u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠 ≥ (𝜇(�̃�) + 𝜀)�̃�𝑢(𝑡).

Since �̃�𝜑1(𝑡) = 𝑟(�̃�)𝜑1(𝑡) for 𝑡 ∈ [0, 1], we have, for 𝑡 ∈ [𝑎, 𝑏],

�̄�𝜑1(𝑡) = �̃�𝜑1(𝑡) = 𝑟(�̃�)𝜑1(𝑡),

and we obtain 𝑟(�̄�) ≥ 𝑟(�̃�). On the other hand, we have, for 𝑡 ∈ [𝑎, 𝑏],

𝑢(𝑡) ≥ (𝜇(�̃�) + 𝜀)�̃�𝑢(𝑡) = (𝜇(�̃�) + 𝜀)�̄�𝑢(𝑡),

where 𝑢(𝑡) > 0 in [𝑎, 𝑏]. Thus, using Theorem 10.3.4, we have

𝑟(�̄�) ≤ 1
𝜇(�̃�) + 𝜀

and, therefore, 𝑟(�̃�) ≤ 1
𝜇(�̃�) + 𝜀

.
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This gives 𝜇(�̃�) + 𝜀 ≤ 𝜇(�̃�), a contradiction.
(4) Let 𝑅1 > 0 such that

𝑓 (𝑡, 𝑢) > 𝜇(�̃�)𝑢
for all 𝑢 ≥ 𝑐𝑅1, 𝑐 as in (10.3.1), and all 𝑡 ∈ [𝑎, 𝑏].
Let 𝑅 ≥ 𝑅1. We prove that 𝑢 ≠ 𝑆𝑢 + 𝜆𝜑1 for all 𝑢 in 𝜕𝐾u� and 𝜆 ≥ 0, which implies

𝑖u�(𝑆, 𝐾u�) = 0.
Assume now, on the contrary, that there exist 𝑢 ∈ 𝜕𝐾u� and 𝜆 ≥ 0 such that 𝑢 = 𝑆𝑢 +

𝜆𝜑1. Observe that for 𝑢 ∈ 𝜕𝐾u�, we have 𝑢(𝑡) ≥ 𝑐‖𝑢‖ = 𝑐𝑅 ≥ 𝑐𝑅1 for 𝑡 ∈ [𝑎, 𝑏]. Hence,
we have 𝑓 (𝑡, 𝑢(𝑡)) > 𝜇(�̃�)𝑢(𝑡) for 𝑡 ∈ [𝑎, 𝑏]. This implies, proceeding as in the proof of

the statement (3) for the case 𝜆 > 0, that

𝑢(𝑡) ≥ 𝜇(�̃�)�̃�𝑢(𝑡) + 𝜆𝜑1(𝑡) ≥ 2𝜆𝜑1(𝑡), for 𝑡 ∈ [𝑎, 𝑏].

Then, for 𝑡 ∈ [𝑎, 𝑏], we have 𝑢(𝑡) ≥ 𝑛𝜆𝜑1(𝑡) for every 𝑛 ∈ ℕ, a contradiction because

‖𝑢‖ = 𝑅. The proof in the case 𝜆 = 0 is treated as in the proof of the statement (3). �

Figure 10.3.1: Illustration of conditions (1) and (4) of Theorem 10.3.5 being satisfied simul-

taneously.

The following Theorem, in the line of [180,184], applies the index results in Lemmas 10.1.5

and 10.1.8 and Theorem 10.3.5 in order to get some results on existence of multiple nontrivial

solutions for the equation (10.1.1).

Theorem 10.3.6. Assume that conditions (𝐶1)-(𝐶8) hold with 𝛼, 𝛽 given by positive mea-

sures.

The integral equation (10.1.1) has at least one nontrivial solution in 𝐾 if one of the following

conditions holds.

(𝐻1) 0 ≤ 𝑓 0 < 𝜇(𝐿) and 𝜇(�̃�) < 𝑓∞ ≤ ∞.

(𝐻2) 0 ≤ 𝑓 ∞ < 𝜇(𝐿) and 𝜇(�̃�) < 𝑓0 ≤ ∞.

The integral equation (10.1.1) has at least two nontrivial solutions in 𝐾 if one of the following

conditions holds.
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(𝑍1) 0 ≤ 𝑓 0 < 𝜇(𝐿), 𝑓u�,u�/u� > 𝑀u�(𝑎, 𝑏) for some 𝜌 > 0, and 0 ≤ 𝑓 ∞ < 𝜇(𝐿).

(𝑍2) 𝜇(�̃�) < 𝑓0 ≤ ∞, 𝑓 −u�,u� < 𝑚u� for some 𝜌 > 0, and 𝜇(�̃�) < 𝑓∞ ≤ ∞.

The integral equation (10.1.1) has at least three nontrivial solutions in 𝐾 if one of the following

conditions holds.

(𝑇1) There exist 0 < 𝜌1 < 𝜌2 < ∞, such that

𝜇(�̃�) < 𝑓0 ≤ ∞, 𝑓 −u�1,u�1 < 𝑚u�, 𝑓u�2,u�2/u� > 𝑀u�(𝑎, 𝑏), 0 ≤ 𝑓 ∞ < 𝜇(𝐿).

(𝑇2) There exist 0 < 𝜌1 < 𝑐𝜌2 < ∞, such that

0 ≤ 𝑓 0 < 𝜇(𝐿), 𝑓u�1,u�1/u� > 𝑀u�(𝑎, 𝑏), 𝑓 −u�2,u�2 < 𝑚u�, 𝜇(�̃�) < 𝑓∞ ≤ ∞.

It is possible to give criteria for the existence of an arbitrary number of nontrivial solutions

by extending the list of conditions. We omit the routine statement of such results.

The following Lemma sheds some light on the relation between some of these constants.

Lemma 10.3.7. The following relations hold

𝑀u�(𝑎, 𝑏) ≥ 𝜇(�̃�) ≥ 𝜇(𝐿) ≥ 𝑚u�.

Proof. The fact that 𝜇(𝐿) ≥ 𝑚u� essentially follows from Theorem 2.8 of [183]. The comment

that follows after Theorem 3.4 of [183] also applies in our case, giving 𝜇(�̃�) ≥ 𝜇(𝐿).
We now prove 𝑀u�(𝑎, 𝑏) ≥ 𝜇(�̃�). Let 𝜑 ∈ 𝑃 ∩ 𝐾 be a corresponding eigenfunction

of norm 1 of 1/𝜇(�̃�) for the operator �̃�, that is 𝜑 = 𝜇(�̃�)�̃�(𝜑) and ‖𝜑‖ = 1. Then, for

𝑡 ∈ [𝑎, 𝑏] we have

𝜑(𝑡) = 𝜇(�̃�) ∫u�
u�

𝑘u�(𝑡, 𝑠)𝑔(𝑠)𝜑(𝑠) d 𝑠 ≥ 𝜇(�̃�) min
u�∈[u�,u�]

𝜑(𝑡) ∫u�
u�

𝑘u�(𝑡, 𝑠)𝑔(𝑠) d 𝑠.

Taking the infimum over [𝑎, 𝑏], we obtain

min
u�∈[u�,u�]

𝜑(𝑡) ≥ 𝜇(�̃�) min
u�∈[u�,u�]

𝜑(𝑡)/𝑀u�(𝑎, 𝑏),

that is 𝑀u�(𝑎, 𝑏) ≥ 𝜇(�̃�). �

In order to present an index zero result of a different nature, we introduce the following

operator

𝐿+ 𝑢(𝑡) ∶= ∫1
0

𝑘+
u�(𝑡, 𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠,

for which a result similar to Theorems 10.3.1 and 10.3.2 hold.

In the next Theorem we use the following notation, with 𝑐 as in (10.3.1),

̃𝑓0 = lim
u�→0

ess inf
u�∈[0,1]

𝑓 (𝑡, 𝑢)

|𝑢| , ̃𝑐 ∶= 1
𝑐 sup

u�∈[0,1]

∫1
0 𝑘−

u�(𝑡, 𝑠)𝑔(𝑠) d 𝑠
∫u�

u� 𝑘+
u�(𝑡, 𝑠)𝑔(𝑠) d 𝑠

.
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Theorem10.3.8. If𝜇(𝐿+) < ̃𝑓0− ̃𝑐 𝑓 0, then there exists𝜌0 > 0 such that for each𝜌 ∈ (0, 𝜌0],
if 𝑢 ≠ 𝑇𝑢 for 𝑢 ∈ 𝜕𝐾u�, it is satisfied that 𝑖u�(𝑇, 𝐾u�) = 0.

Proof. Firstly, since 𝑢 ∈ 𝐾 we have, for 𝑡 ∈ [0, 1],

∫1
0

𝑘−
u�(𝑡, 𝑠)𝑔(𝑠)|𝑢(𝑠)| d 𝑠 ≤ ∫1

0
𝑘−

u�(𝑡, 𝑠)𝑔(𝑠)‖𝑢‖ d 𝑠 ≤ ̃𝑐 ∫u�
u�

𝑘+
u�(𝑡, 𝑠)𝑔(𝑠)𝑐‖𝑢‖ d 𝑠

≤ ̃𝑐 ∫u�
u�

𝑘+
u�(𝑡, 𝑠)𝑔(𝑠)|𝑢(𝑠)| d 𝑠 ≤ ̃𝑐 𝐿+|𝑢|(𝑡).

Observe that the hypothesis 𝜇(𝐿+) < ̃𝑓0 − ̃𝑐 𝑓 0 implies ̃𝑓0, 𝑓 0 < ∞. Let 𝜌0 > 0 such that

𝑓 (𝑡, 𝑢) ≥ (𝜇(𝐿+) + ̃𝑐 𝑓 0)|𝑢| and 𝑓 (𝑡, 𝑢) ≤ (𝑓 0 + 𝜇(𝐿+)/2)|𝑢|
for all 𝑢 ∈ [−𝜌0, 𝜌0] and almost all 𝑡 ∈ [0, 1].
Let 𝜌 ≤ 𝜌0. We will prove that 𝑢 ≠ 𝑆𝑢 + 𝜆𝜑+ for all 𝑢 in 𝜕𝐾u� and 𝜆 > 0 where 𝜑+ ∈ 𝐾 is

an eigenfunction of 𝐿+ related to the eigenvalue 1/𝜇(𝐿+) such that ‖𝜑+‖ = 1.
Assume now, on the contrary, that there exist 𝑢 ∈ 𝜕𝐾u� and 𝜆 > 0 such that 𝑢(𝑡) =

𝑆𝑢(𝑡) + 𝜆𝜑+(𝑡) for all 𝑡 ∈ [0, 1]. Hence, we have

𝑢(𝑡) = − ∫1
0

𝑘−
u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠 + ∫1

0
𝑘+

u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠 + 𝜆𝜑+(𝑡).
On one hand, we have

𝑢(𝑡) + ∫1
0

𝑘−
u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠 ≤|𝑢(𝑡)| + [𝑓 0 + 1

2𝜇(𝐿+)] ∫1
0

𝑘−
u�(𝑡, 𝑠)𝑔(𝑠)|𝑢(𝑠)| d 𝑠

≤|𝑢(𝑡)| + ̃𝑐[𝑓 0 + 1
2𝜇(𝐿+)]𝐿+|𝑢|(𝑡).

On the other hand, we have

∫1
0

𝑘+
u�(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠 + 𝜆𝜑+(𝑡) ≥ (𝜇(𝐿+) + ̃𝑐 𝑓 0)𝐿+|𝑢|(𝑡) + 𝜆𝜑+(𝑡).

Therefore, we obtain

(𝜇(𝐿+) + ̃𝑐 𝑓 0)𝐿+|𝑢|(𝑡) + 𝜆𝜑+ ≤ |𝑢(𝑡)| + ̃𝑐 [𝑓 0 + 1
2𝜇(𝐿+)]𝐿+|𝑢|(𝑡),

or, equivalently,
1
2𝜇(𝐿+)𝐿+|𝑢|(𝑡) + 𝜆𝜑+(𝑡) ≤ |𝑢(𝑡)|.

Hence we get

𝜆𝜑+(𝑡) ≤ |𝑢(𝑡)|.
Reasoning as in the proof of (3) of Theorem 10.3.5, we obtain

|𝑢(𝑡)| ≥ 𝜆1
2𝜇(𝐿+)𝐿+𝜑+(𝑡) + 𝜆𝜑+(𝑡) = 3

2𝜆𝜑+(𝑡).

By induction we deduce that |𝑢(𝑡)| ≥ (u�
2 + 1)𝜆𝜑+(𝑡) for every 𝑛 ∈ ℕ, a contradiction since

‖𝑢‖ = 𝜌. �

As in Theorem 10.3.6, results on existence of multiple nontrivial solutions can be estab-

lished. We omit the statement of such results.

Remark 10.3.9. The hypothesis in the Theorem 10.3.8 imply that ̃𝑐 ∈ (0, 1). Also, if ̃𝑓0 =
𝑓 0 = 𝑓0 then the hypothesis in the Theorem 10.3.8 is equivalent to 𝜇(𝐿+)/(1 − ̃𝑐) < ̃𝑓0 <
∞. Furthermore, if [𝑎, 𝑏] = [0, 1], then 𝐿 = 𝐿+ = �̃� and the growth condition becomes

𝜇(𝐿) < ̃𝑓0 < ∞, which is condition (3) in the Theorem 10.3.5 for 𝑓0 < ∞.
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10.4 Related boundary value problems

In this Section we study the properties of the Green’s function of the boundary value problem

𝜖𝑢″(𝑡) + 𝜔2𝑢(𝑡) = 𝑦(𝑡), 𝑢′(0) = 𝑢′(1) = 0,

where 𝑦 ∈ L1([0, 1]), 𝜖 = ±1 and 𝜔 ∈ ℝ+. We discuss separately two cases.

10.4.1 CASE 𝛜 = −𝟏

The Green’s function 𝑘 of boundary value problem

−𝑢″(𝑡) + 𝜔2𝑢(𝑡) = 𝑦(𝑡), 𝑢′(0) = 𝑢′(1) = 0,
is given by (see for instance [170] or [195]),

𝜔 sinh 𝜔 𝑘(𝑡, 𝑠) ∶=
⎧{
⎨{⎩

cosh 𝜔(1 − 𝑡) cosh 𝜔𝑠, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
cosh 𝜔(1 − 𝑠) cosh 𝜔𝑡, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

Note that 𝑘 is continuous, positive and satisfies some symmetry properties such as

𝑘(𝑡, 𝑠) = 𝑘(𝑠, 𝑡) = 𝑘(1 − 𝑡, 1 − 𝑠).

Observe that
𝜕𝑘
𝜕𝑡

(𝑡, 𝑠) < 0 for 𝑠 < 𝑡 and 𝜕𝑘
𝜕𝑡

(𝑡, 𝑠) > 0 for 𝑠 > 𝑡. Therefore we choose

Φ(𝑠) ∶= sup
u�∈[0,1]

𝑘(𝑡, 𝑠) = 𝑘(𝑠, 𝑠).

For a fixed [𝑎, 𝑏] ⊂ [0, 1] we have

𝑐(𝑎, 𝑏) ∶= min
u�∈[u�,u�]

min
u�∈[0,1]

𝑘(𝑡, 𝑠)
Φ(𝑠) =

min {cosh 𝜔𝑎, cosh 𝜔(1 − 𝑏)}
cosh 𝜔 .

The choice of 𝑔 ≡ 1 gives
1
𝑚 = sup

u�∈[0,1]
∫1

0
𝑘(𝑡, 𝑠) d 𝑠,

and, by direct calculation, we obtain that 𝑚 = 𝜔2.

The constant 𝑀 can be computed as follows

1
𝑀(𝑎, 𝑏) ∶= inf

u�∈[u�,u�]
∫u�

u�
𝑘(𝑡, 𝑠) d 𝑠

= 1
𝜔2 − sup

u�∈[u�,u�]

sinh 𝜔𝑎 cosh 𝜔(1 − 𝑡) + sinh 𝜔(1 − 𝑏) cosh 𝜔𝑡
𝜔2 sinh 𝜔

.

Let 𝜉1(𝑡) ∶= sinh 𝜔𝑎 cosh 𝜔(1 − 𝑡) + sinh 𝜔(1 − 𝑏) cosh 𝜔𝑡. Then we have 𝜉″
1(𝑡) =

𝜔2𝜉(𝑡) ≥ 0. Therefore the supremum of 𝜉1 must be attained in one of the endpoints of the

interval [𝑎, 𝑏]. Thus we have

1
𝑀(𝑎, 𝑏) = 1

𝜔2 −
max{𝜉1(𝑎), 𝜉1(𝑏)}

𝜔2 sinh 𝜔
.
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Note that

𝜉1(𝑏) − 𝜉1(𝑎) = −2 sinh2 (𝑏 − 𝑎
2 𝜔) sinh 𝜔(𝑎 + 𝑏 − 1),

and therefore, 𝜉1(𝑏) ≥ 𝜉1(𝑎) if and only if 𝑎 + 𝑏 ≤ 1. Hence, we have that 1/𝑀(𝑎, 𝑏) =

1
𝜔2 − 1

𝜔2 sinh 𝜔
⎧{
⎨{⎩

sinh 𝜔𝑎 cosh 𝜔(1 − 𝑏) + sinh 𝜔(1 − 𝑏) cosh 𝜔𝑏, 𝑎 + 𝑏 ≤ 1,
sinh 𝜔𝑎 cosh 𝜔(1 − 𝑎) + sinh 𝜔(1 − 𝑏) cosh 𝜔𝑎, 𝑎 + 𝑏 > 1.

10.4.2 CASE 𝛜 = 𝟏

The Green’s function 𝑘 of the boundary value problem

𝑢″(𝑡) + 𝜔2𝑢(𝑡) = 𝑦(𝑡), 𝑢′(0) = 𝑢′(1) = 0,

is given by

𝜔 sin 𝜔 𝑘(𝑡, 𝑠) ∶=
⎧{
⎨{⎩

cos 𝜔(1 − 𝑡) cos 𝜔𝑠, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
cos 𝜔(1 − 𝑠) cos 𝜔𝑡, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

In the following Lemmawedescribe the sign properties of this Green’s functionwith respect

to the parameter 𝜔. The proof is straightforward and is omitted.

Lemma 10.4.1. We have the following.

(1) 𝑘 is positive for 𝜔 ∈ (0, 𝜋/2).

(2) 𝑘 is positive for 𝜔 = 𝜋/2 except at the points (0, 0) and (1, 1) where it is zero.

(3) 𝑘 is positive on the strip (1 − 𝜋/(2𝜔), 𝜋/(2𝜔)) × [0, 1] if 𝜔 ∈ (𝜋/2, 𝜋).

(4) if 𝜔 > 𝜋, there is no strip of the form (𝑎, 𝑏) × [0, 1] where 𝑘 is positive.

Consider 𝜔 ∈ (0, 𝜋). Fix 𝑠 ∈ [0, 1] and note that
𝜕𝑘
𝜕𝑡

(𝑡, 𝑠) never changes sign for 𝑡 ∈
[0, 𝑠) nor for 𝑡 ∈ (𝑠, 1]. Thus we can take

Φ(𝑠) ∶ = sup
u�∈[0,1]

|𝑘(𝑡, 𝑠)| = max{|𝑘(0, 𝑠)|, |𝑘(1, 𝑠)|, |𝑘(𝑠, 𝑠)|}

= max{| cos 𝜔(1 − 𝑠)|, | cos 𝜔𝑠|, | cos 𝜔𝑠 cos 𝜔(1 − 𝑠)|}
𝜔 sin 𝜔

= max{cos 𝜔(1 − 𝑠), cos 𝜔𝑠}
𝜔 sin 𝜔 .

The last equality holds because cos(𝜔𝑠) ≥ − cos 𝜔(1 − 𝑠) ≥ 0 for 𝑠 ≤ 1 − 𝜋/(2𝜔) and

cos(1 − 𝜔𝑠) ≥ − cos 𝜔𝑠 ≥ 0 for 𝑠 ≥ 𝜋/(2𝜔).
On the other hand, for [𝑎, 𝑏] ⊂ (max{0, 1 − 𝜋/(2𝜔)}, min{1, 𝜋/(2𝜔)}), we have

inf
u�∈[u�,u�]

𝑘(𝑡, 𝑠) =
⎧{
⎨{⎩

min {𝑘(𝑎, 𝑠), 𝑘(𝑏, 𝑠)} , 𝑠 ∈ [0, 1]\[𝑎, 𝑏],
min {𝑘(𝑎, 𝑠), 𝑘(𝑠, 𝑠), 𝑘(𝑏, 𝑠)} , 𝑠 ∈ [𝑎, 𝑏].
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Now, we study the three intervals [0, 𝑎), [𝑎, 𝑏] and (𝑏, 1] separately.

If 𝑠 ∈ [0, 𝑎), we have

inf
u�∈[0,u�)

min {𝑘(𝑎, 𝑠), 𝑘(𝑏, 𝑠)}
Φ(𝑠)

= inf
u�∈[0,u�)

min {cos 𝜔(1 − 𝑎) cos 𝜔𝑠, cos 𝜔(1 − 𝑏) cos 𝜔𝑠}
max{cos 𝜔(1 − 𝑠), cos 𝜔𝑠}

= inf
u�∈[0,u�)

min {cos 𝜔(1 − 𝑎), cos 𝜔(1 − 𝑏), cos 𝜔(1 − 𝑎) cos 𝜔𝑠
cos 𝜔(1 − 𝑠),

cos 𝜔(1 − 𝑏) cos 𝜔𝑠
cos 𝜔(1 − 𝑠)}

= min {cos 𝜔(1 − 𝑎), cos 𝜔(1 − 𝑏), cos 𝜔𝑎, cos 𝜔(1 − 𝑏) cos 𝜔𝑎
cos 𝜔(1 − 𝑎)}

= min {cos 𝜔(1 − 𝑎), cos 𝜔(1 − 𝑏), cos 𝜔𝑎} ,

where these equalities hold because
cos 𝜔𝑠

cos 𝜔(1 − 𝑠) is a decreasing function for 𝑠 ∈ [max{0, 1−
𝜋/(2𝜔)}, 1] and the function cosine is decreasing in [0, 𝜋].

If 𝑠 ∈ [𝑎, 𝑏], we have

inf
u�∈[u�,u�]

min {𝑘(𝑎, 𝑠), 𝑘(𝑠, 𝑠), 𝑘(𝑏, 𝑠)}
Φ(𝑠)

= inf
u�∈[u�,u�]

min {cos 𝜔𝑎 cos 𝜔(1 − 𝑠), cos 𝜔𝑠 cos 𝜔(1 − 𝑠), cos 𝜔(1 − 𝑏) cos 𝜔𝑠}
max{cos 𝜔(1 − 𝑠), cos 𝜔𝑠}

= inf
u�∈[u�,u�]

min{cos 𝜔𝑎, cos 𝜔(1 − 𝑏), cos 𝜔𝑠, cos 𝜔(1 − 𝑠), cos 𝜔𝑎cos 𝜔(1 − 𝑠)
cos 𝜔𝑠 ,

cos 𝜔(1 − 𝑏) cos 𝜔𝑠
cos 𝜔(1 − 𝑠)}

= min {cos 𝜔𝑎, cos 𝜔(1 − 𝑏), cos 𝜔𝑏, cos 𝜔(1 − 𝑎)} .

If 𝑠 ∈ (𝑏, 1]), we have

inf
u�∈(u�,1]

min {𝑘(𝑎, 𝑠), 𝑘(𝑏, 𝑠)}
Φ(𝑠)

= inf
u�∈(u�,1]

min {cos 𝜔𝑎 cos 𝜔(1 − 𝑠), cos 𝜔𝑏 cos 𝜔(1 − 𝑠)}
max{cos 𝜔(1 − 𝑠), cos 𝜔𝑠}

= inf
u�∈(u�,1]

min {cos 𝜔𝑎, cos 𝜔𝑏, cos 𝜔𝑎cos 𝜔(1 − 𝑠)
cos 𝜔𝑠 , cos 𝜔𝑏cos 𝜔(1 − 𝑠)

cos 𝜔𝑠 }

= min {cos 𝜔𝑎, cos 𝜔𝑏, cos 𝜔𝑎cos 𝜔(1 − 𝑏)
cos 𝜔𝑏 , cos 𝜔(1 − 𝑏)}

= min {cos 𝜔𝑎, cos 𝜔𝑏, cos 𝜔(1 − 𝑏)} .

Therefore, taking into account these three infima, we obtain that

𝑐(𝑎, 𝑏) ∶= inf
u�∈[0,1]

infu�∈[u�,u�] 𝑘(𝑡, 𝑠)
Φ(𝑠) = min {cos 𝜔𝑎, cos 𝜔(1 − 𝑎), cos 𝜔𝑏, cos 𝜔(1 − 𝑏)} .
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In order to compute the constant 𝑚 we use Lemma 10.4.1 and the fact that 𝑘(𝑡, 𝑠) = 𝑘(𝑠, 𝑡)
for all 𝑡, 𝑠 ∈ [0, 1].
If 𝜔 ∈ (0, 𝜋/2), the function 𝑘 is positive and therefore

𝑚 = 𝜔2.
If 𝜔 ∈ [𝜋/2, 𝜋), we have

𝜁(𝑡) ∶= ∫1
0

𝑘+(𝑡, 𝑠) d 𝑠 =

⎧{{{
⎨{{{⎩

∫1
1− u�

2u�
𝑘(𝑡, 𝑠) d 𝑠 = 1

𝜔2
cos 𝜔𝑡
sin 𝜔 , 𝑡 ∈ [0, 1 − u�

2u�),
1

𝜔2 , 𝑡 ∈ [1 − u�
2u� , u�

2u�],

∫
u�

2u�
0 𝑘(𝑡, 𝑠) d 𝑠 = 1

𝜔2
cos 𝜔(1 − 𝑡)

sin 𝜔 , 𝑡 ∈ ( u�
2u� , 1].

Since

0 < 1
𝜔2 = ∫1

0
𝑘(𝑡, 𝑠) d 𝑠 = ∫1

0
𝑘+(𝑡, 𝑠) d 𝑠 − ∫1

0
𝑘−(𝑡, 𝑠) d 𝑠,

we obtain that ∫1
0 𝑘+(𝑡, 𝑠) d 𝑠 > ∫1

0 𝑘−(𝑡, 𝑠) d 𝑠, in such a way that

𝑚 = 1/ max
u�∈[0,1]

𝜁(𝑡) = 𝜔2 sin 𝜔.

Also we have

1
𝑀(𝑎, 𝑏) = 1

𝜔2 − sup
u�∈[u�,u�]

cos 𝜔(1 − 𝑡) sin 𝜔𝑎 + cos 𝜔𝑡 sin 𝜔(1 − 𝑏)
𝜔2 sin 𝜔

.

Denote by

𝜉3(𝑡) ∶= cos 𝜔(1 − 𝑡) sin 𝜔𝑎 + cos 𝜔𝑡 sin 𝜔(1 − 𝑏),

and observe that

𝜉3(𝑡) = 𝜔2 sin 𝜔 (∫1
0

𝑘(𝑡, 𝑠) d 𝑠 − ∫u�
u�

𝑘(𝑡, 𝑠) d 𝑠) ,

and therefore we have 𝜉3(𝑡) ≥ 0 for 𝑡 ∈ [𝑎, 𝑏]. Then, we have 𝜉′
3(𝑎)𝜉′

3(𝑏) =

−4𝜔2 cos [𝜔
2 (2 − 𝑎 + 𝑏)] cos [𝜔

2 (𝑎 + 𝑏)] sin2 [𝜔
2 (𝑎 − 𝑏)] sin 𝜔(1 − 𝑏) sin 𝜔𝑎.

Now, 𝜉′
3(𝑎)𝜉′

3(𝑏) < 0 if and only if 2 − 𝜋/𝜔 < 𝑎 + 𝑏 < 𝜋/𝜔, which is always satisfied for

[𝑎, 𝑏] ⊂ (1 − 𝜋/(2𝜔), 𝜋/(2𝜔)). In such a case, 𝜉3 has a maximum in [𝑎, 𝑏], precisely at
the unique point 𝑡0 satisfying

sin 𝜔𝑡0 = sin 𝜔 sin 𝜔𝑎
cos 𝜔 sin 𝜔𝛼 + sin 𝜔(1 − 𝑏) cos 𝜔𝑡0.

Thus we obtain 𝜉3(𝑡0) =

cos 𝜔 cos 𝜔𝑏 cos 𝜔𝑡0 + cos 𝜔 sin 𝜔𝑎 cos 𝜔𝑡0
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− cos 𝜔 sin 𝜔𝑏 cos 𝜔𝑡0 + sin 𝜔 sin 𝜔𝑎 sin 𝜔𝑡0

= (cos 𝜔 cos 𝜔𝑏 + cos 𝜔 sin 𝜔𝑎 − cos 𝜔 sin 𝜔𝑏 + (sin 𝜔 sin 𝜔𝑎)2

cos 𝜔 sin 𝜔𝛼 + sin 𝜔(1 − 𝑏))

⋅ cos 𝜔𝑡0

=
∣cos 𝜔 cos 𝜔𝑏 + cos 𝜔 sin 𝜔𝑎 − cos 𝜔 sin 𝜔𝑏 + (sin 𝜔 sin 𝜔𝑎)2

cos 𝜔 sin 𝜔𝛼 + sin 𝜔(1 − 𝑏)∣

√( sin 𝜔 sin 𝜔𝑎
cos 𝜔 sin 𝜔𝛼 + sin 𝜔(1 − 𝑏))

2
+ 1

Remark 10.4.2. In the particular case 𝑎 + 𝑏 = 1, we have 𝜉3(𝑡) = sin 𝜔𝑎[cos 𝜔(1 − 𝑡) +
cos 𝜔𝑡]. In this case, observe that 𝜉3(𝑡) = 𝜉3(1 − 𝑡) and recall that 𝜉″

3(𝑡) = −𝜔2𝜉3(𝑡) ≥ 0
(𝜉3 is not constantly zero in any open subinterval). Therefore the maximum is reached at the

only point where 𝑡 = 1 − 𝑡, that is, 𝑡 = 1/2. Hence we obtain

1
𝑀(𝑎, 𝑏) =

1 − 2 cos 𝜔
2 sin 𝜔𝑎

𝜔2 sin 𝜔
.

Remark 10.4.3. The constants 𝑚, 𝑀(𝑎, 𝑏), 𝑐(𝑎, 𝑏) and the function Φ improve and comple-

ment some of the ones used in [159–161,170,171,194,195].

10.5 Examples

In this Sectionwe present some examples in order to illustrate some of the constants that occur

in our theory and the applicability of our theoretical results. Note that the constants that occur

are rounded to the third decimal place unless exact.

In the first example we study the existence of multiple nontrivial solutions of a (local) Neu-

mann boundary value problem.

Example 10.5.1. Consider the boundary value problem

𝑢″(𝑡) + (7𝜋
12 )

2
𝑢(𝑡) =

𝜏1𝑢2(𝑡)
1 + 𝑡2 𝑒−u�2|u�(u�)|, 𝑡 ∈ [0, 1], 𝑢′(0) = 𝑢′(1) = 0, (10.5.1)

where 𝜏1, 𝜏2 > 0.
In this case 𝜔 = 7u�

12 and, by Lemma 10.4.1, the Green’s function is positive on the strip

(1/7, 6/7) × [0, 1]. We illustrate the Remark 10.4.2 by choosing [1/4, 3/4] ⊂ (1/7, 6/7)
and we prove, by means of Theorem 10.3.6, the existence of two nontrivial solutions of the

boundary value problem (10.5.1) which are (strictly) positive on the interval [1/4, 3/4].

In order to do this, note that in our casewe have 𝑓 (𝑡, 𝑢) =
𝜏1𝑢2

1 + 𝑡2 𝑒−u�2|u�| and 𝑓 0 = 𝑓 ∞ = 0.
Furthermore, using the results in the previous Section, we have

𝑐(1/4, 3/4) = cos (7𝜋
16 ) = 1

2
√2 − √2 + √2 = 0.195, (10.5.2)
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and

𝑀 = 𝑀(1/4, 3/4) = 7.029.
Henceforth we work in the cone

𝐾 = {𝑢 ∈ 𝐶[0, 1] ∶ min
u�∈[1/4,3/4]

𝑢(𝑡) ≥ 𝑐‖𝑢‖},

with 𝑐 given by (10.5.2).

We set

̂𝑓0 ∶= 2𝑐 − 1
ln 𝑐 𝑐

u�
u�−1 𝑀 = 10.289.

We now prove that if 𝜏1/𝜏2 > ̂𝑓0, then the condition (𝑍1) is satisfied. Let

̂𝑓 (𝑢) ∶= inf
u�∈[0,1]

𝜏1𝑢2

1 + 𝑡2 𝑒−u�2u� = 1
2𝜏1𝑢2𝑒−u�2u�, 𝑢 ∈ [0, +∞).

Note that ̂𝑓 ′ only vanishes at 0 and 2/𝜏2,
̂𝑓 is strictly increasing in the interval (0, 2

u�2
) and is

strictly decreasing in the interval ( 2
u�2

, +∞). Thus ̂𝑓 assumes the maximum in the unique point

2/𝜏2 and, since ̂𝑓 (0) = 0 and lim
u�→+∞

̂𝑓 (𝑥) = 0, the inverse image by ̂𝑓 of any strictly positive

real number different to ̂𝑓 ( 2
u�2

) has either 2 or no points. Let for 𝑥 ∈ [0, +∞)

𝑙(𝑥) ∶= ̂𝑓 (𝑥) − ̂𝑓 (𝑥/𝑐).

Take 𝜀 ∈ (0, 2u�
u�2

) and note that 𝑙(𝜀) < 0 in view of the strict monotonicity of ̂𝑓 . Moreover, if

𝜂 > 2
u�2
, then 𝑙(𝜂) > 0. Since the function 𝑙 is continuous, there exists a point ̄𝑥 ∈ (𝜀, 𝜂) such

that 𝑙( ̄𝑥) = 0, that is, ̂𝑓 ( ̄𝑥)= ̂𝑓 ( ̄𝑥/𝑐) = 𝑝. From the type of monotonicity of 𝑓 , for 𝑥 ∈ [ ̄𝑥, ̄𝑥/𝑐]
we have 𝑝 ≤ ̂𝑓 (𝑥). Hence we have

̂𝑓 ( ̄𝑥) = ̂𝑓 ( ̄𝑥/𝑐) ⇒ ̄𝑥 = 𝑒u�2( ̄u�/u�− ̄u�) ̄𝑥/𝑐 ⇒ ̄𝑥 = 2𝑐 ln 𝑐
𝜏2(𝑐 − 1), ̄𝑥/𝑐 = 2 ln 𝑐

𝜏2(𝑐 − 1).

Thus, if we impose 𝑝 > 𝑀 ̄𝑥, we obtain

𝑀 2𝑐 ln 𝑐
𝜏2(𝑐 − 1) = 𝑀 ̄𝑥 < ̂𝑓 ( ̄𝑥) = ̂𝑓 ( ̄𝑥/𝑐) = 𝜏1 ( 2 ln 𝑐

𝜏2(𝑐 − 1))
2

𝑐− 2
u�−1 ,

that is, 𝜏1/𝜏2 > ̂𝑓0.

We now present an example for a boundary value problem subject to two nonlocal bound-

ary conditions.

Example 10.5.2. Consider the boundary value problem

𝑢″(𝑡) + 𝜔2𝑢(𝑡) = 𝑒−|u�(u�)|, 𝑡 ∈ [0, 1],
𝑢′(0) = 𝑢(0) + 𝑢(1),
𝑢′(1) = ∫1

0
𝑢(𝑡) sin 𝜋𝑡 d 𝑡,

(10.5.3)
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where 𝜔 ∈ (𝜋/2, 𝜋). We rewrite the boundary value problem (10.5.3) in the integral form

𝑇𝑢(𝑡) = 𝛾(𝑡)𝛼[𝑢] + 𝛿(𝑡)𝛽[𝑢] + ∫1
0

𝑘(𝑡, 𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠,

where

𝛾(𝑡) = cos 𝜔(1 − 𝑡)/(𝜔 sin 𝜔), 𝛿(𝑡) = cos(𝜔𝑡)/(𝜔 sin 𝜔),
𝛼[𝑢] =𝑢(0) + 𝑢(1), 𝛽[𝑢] = ∫1

0
𝑢(𝑡) sin 𝜋𝑡 d 𝑡.

In order to verify condition (𝑆1)of Theorem10.1.10, we take [𝑎, 𝑏] ⊂ (1−𝜋/(2𝜔), 𝜋/(2𝜔))
and let 𝑓 (𝑢) = 𝑒−|u�|.

Note that the condition 𝑓 ∞ = 0 implies that the condition (𝐼1
u�) is satisfied for 𝜌 sufficiently

large (hence 𝑖u�(𝑇, 𝐾u�) = 1 for 𝑅 big enough).

Now it is left to prove that 𝑖u�(𝑇, 𝑉u�) = 0 for 𝜌 small enough (condition (𝐼0
u�)).

We have

𝛼[𝛾] =𝛼[𝛿] = √2
sin (u�

4 + 𝜔)
𝜔 sin 𝜔 , 𝛽[𝛾] = 𝛽[𝛿] =

𝜋 cot (u�
2 )

𝜋2𝜔 − 𝜔3 ,

𝐷 ∶= 𝐷(𝜔) =
(𝜋2𝜔 − 𝜔3) sin(𝜔/2) − (𝜋 + 𝜋2 − 𝜔2) cos (u�

2 )
(𝜋2𝜔 − 𝜔3) sin(𝜔/2)

,

u�u�(𝑠) =cos 𝜔𝑠 + cos(𝜔[1 − 𝑠])
𝜔 sin 𝜔 ,

u�u�(𝑠) =𝜋 cos 𝜔𝑠 cot(𝜔/2) − 𝜔 sin 𝜋𝑠 + 𝜋 sin 𝜔𝑠
𝜋2𝜔 − 𝜔3 .

Observe that𝛼[𝛾], 𝛼[𝛿], 𝛽[𝛾], 𝛽[𝛿], u�u�(𝑠), u�u�(𝑠) ≥ 0 and𝛼[𝛾], 𝛽[𝛿] < 1 for𝜔 ∈
(𝜋/2, 𝜋).
Also, we have 𝐷(𝜔) > 0 for 𝜔 ∈ (𝜋/2, 𝜋). In fact, 𝐷(𝜔) is a strictly increasing function

(since 𝐷′(𝜔) > 0 for 𝜔 ∈ (0, 𝜋)), lim
u�→0+

𝐷(𝜔) = −∞ and 𝐷(𝜋) = 1 − 1
4u� > 0, so there is

a unique zero 𝜔0 of 𝐷 in (0, 𝜋) but 𝜔0 = 1.507 … < 𝜋/2.
Now, 𝛾 is increasing and 𝛿 is decreasing, therefore 𝑐2 = 𝛾(𝑎)/𝛾(1) = cos(𝜔[1 − 𝑎]),

𝑐3 = 𝛿(𝑏)/𝛿(0) = cos 𝜔𝑏. On the other hand, we have

𝑓u�,u�/u� =𝑓 (𝜌/𝑐)/(𝜌/𝑐) = 𝑒−u�/u�𝑐/𝜌,
𝑐(𝑎, 𝑏) = min{cos 𝜔𝑎, cos 𝜔(1 − 𝑎), cos 𝜔𝑏, cos 𝜔(1 − 𝑏)},

∫u�
u�

u�u�(𝑠) d 𝑠 =sin 𝜔𝑏 − sin 𝜔𝑎 + sin 𝜔(1 − 𝑎) − sin 𝜔(1 − 𝑏)
𝜔2 sin 𝜔

,

𝜔2 (𝜋3 − 𝜋𝜔2) ∫u�
u�

u�u�(𝑠) d 𝑠 =𝜋2 cot (𝜔
2 ) (sin(𝑏𝜔) − sin(𝑎𝜔)) + 𝜋2 cos(𝑎𝜔)

− 𝜋2 cos(𝑏𝜔) − 𝜔2 cos(𝜋𝑎) + 𝜔2 cos(𝜋𝑏).

Taking 𝑎 + 𝑏 = 1, we obtain

∫u�
u�

u�u�(𝑠) d 𝑠 =
2 csc (u�

2 ) sin (1
2(𝜔 − 2𝑎𝜔))

𝜔2 ,
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∫u�
u�

u�u�(𝑠) d 𝑠 = −
2 (𝜔2 cos(𝜋𝑎) − 𝜋2 cos(𝑎𝜔) + 𝜋2 cot (u�

2 ) sin(𝑎𝜔))
𝜔2 (𝜋3 − 𝜋𝜔2)

,

𝑐 = cos 𝜔𝑎.

Condition (𝐼0
u�) is equivalent to

𝑓u�,u�/u� ⋅ inf
u�∈[u�,u�]

{𝑞(𝑡, 𝜔, 𝑎) + ∫u�
u�

𝑘(𝑡, 𝑠) d 𝑠} > 1,

where 𝑞(𝑡, 𝜔, 𝑎) ∶=

2 csc(𝜔) (𝜋 csc (u�
2 ) sin (1

2(𝜔 − 2𝑎𝜔)) (𝜋 cos(𝑡𝜔) + (𝜋 − 𝜔)(𝜔 + 𝜋) cos(𝜔 − 𝑡𝜔)))

𝜋𝜔2 ((𝜋 − 𝜔)𝜔(𝜔 + 𝜋) − (−𝜔2 + 𝜋2 + 𝜋) cot (u�
2 ))

− 2𝜔 csc(𝜔) cos(𝜋𝑎)(sin(𝑡𝜔) − sin(𝜔 − 𝑡𝜔) + 𝜔 cos(𝑡𝜔))
𝜋𝜔2 ((𝜋 − 𝜔)𝜔(𝜔 + 𝜋) − (−𝜔2 + 𝜋2 + 𝜋) cot (u�

2 ))
.

Using Remark 10.1.9, it is enough to check

𝑓u�,u�/u� ⋅ ( inf
u�∈[u�,u�]

𝑞(𝑡, 𝜔, 𝑎) + 1
𝑀(𝑎, 𝑏)) > 1.

It can be checked that infu�∈[u�,u�] 𝑞(𝑡, 𝜔, 𝑎) = 𝑞(𝑎, 𝜔, 𝑎). Hence, we need

𝑒−u�/ cos u�u� cos 𝜔𝑎
𝜌 (𝑞(𝑎, 𝜔, 𝑎) +

1 − 2 cos u�
2 sin 𝜔𝑎

𝜔2 sin 𝜔 ) > 1.

Since limu�→0 𝑒−u�/ cos u�u�/𝜌 = +∞, the inequality is satisfied for 𝜌 small enough and, hence,

we have proved that the boundary value problem (10.5.3) has at least a nontrivial solution in

the cone 𝐾 .

We now study an example that occurs in an earlier article by Bonanno and Pizzimenti [18].

Example 10.5.3. Consider the boundary value problem

− 𝑢″(𝑡) + 𝑢(𝑡) = 𝜆𝑡𝑒u�(u�), 𝑡 ∈ [0, 1], 𝑢′(0) = 𝑢′(1) = 0. (10.5.4)

In [18] the authors establish the existence of at least one positive solution such that ‖𝑢‖ < 2
for 𝜆 ∈ (0, 2𝑒−2).

The boundary value problem (10.5.4) is equivalent to the following integral problem

𝑢(𝑡) = ∫1
0

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑢(𝑠)) d 𝑠,

where

𝑔(𝑠) = 𝑠, 𝑓 (𝑢) = 𝜆𝑒u�

and
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𝑘(𝑡, 𝑠) ∶= 1
sinh(1)

⎧{
⎨{⎩

cosh(1 − 𝑡) cosh 𝑠, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
cosh(1 − 𝑠) cosh 𝑡, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

The kernel 𝑘 is positive and, by the results provided in this section, conditions (𝐶1)-(𝐶8) are

satisfied with [𝑎, 𝑏] = [0, 1]. Thus we work in the cone

𝐾 = {𝑢 ∈ 𝐶[0, 1] ∶ min
u�∈[0,1]

𝑢(𝑡) ≥ 𝑐‖𝑢‖},

where

𝑐 = 𝑐(0, 1) = 1/ cosh 1 = 0.648.

We can compute the following constants

𝑚 =𝑒 + 1
2 = 1.859,

𝑀(0, 1) =𝑒 + 1
𝑒 − 1 = 2.163,

𝑓 0,u� =𝑓u�,u�/u� = 𝜆𝑒u�/𝜌.

Taking 𝜌2 = 2 we have (𝐼1
u�2

) is satisfied for 𝜆 < (𝑒 + 1)𝑒−2, and taking 0 < 𝜌1 < 𝑐/2 we

have (𝐼0
u�1

) for 𝜆 > [(𝑒 + 1)/(𝑒 − 1)]𝜌1𝑒−u�1.

Hence, the condition (𝑆1) of Theorem 10.1.10 is satisfied whenever

𝜆 ∈ (0, 𝑒 + 1
𝑒2 ) ⊃ (0, 2𝑒−2).

Furthermore, reasoning as in [95], when 𝜆 = 1
4 the choice of 𝜌2 = 0.16 and 𝜌1 = 0.1

gives the following localization for the solution

0.064 ≤ 𝑢(𝑡) ≤ 0.16, 𝑡 ∈ [0, 1].

An application of Theorem 10.2.3 gives that for

𝜆 > 𝑒 + 1
𝑒(𝑒 − 1) = 0.797,

there are no solutions in 𝐾 (the trivial solution does not satisfy the differential equation). Fur-

thermore note that 𝑇 ∶ 𝑃 → 𝐾 ; this shows that there are no positive solutions for the bound-

ary value problem (10.5.4) when 𝜆 > 𝑒 + 1
𝑒(𝑒 − 1) .



11. General nonlocal operators

In Chapters 8-10wehave dealtwith linear conditionswhere in terms of Stieltjes integrals, which

are fairly general and include, as special cases, multi-point and integral conditions.

Webb and Infante [182] gave a unified method for establishing the existence of positive

solutions of a large class of ordinary differential equations of arbitrary order, subject to nonlocal

boundary conditions. Themethodology in [182] involves the fixed point index and, in particular

deals with the integral equation

𝑢(𝑡) =
u�

∑
u�=1

𝛾u�(𝑡)𝛼u�[𝑢] + ∫1
0

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠. (11.0.1)

Here the functions 𝛾u� are nonnegative and the linear functionals 𝛼u�[⋅] are of the type 𝛼[𝑢] =
∫1

0 𝑢(𝑠) d 𝐴(𝑠). The results of [182] are well suited for dealing with differential equations of

arbitrary order with many nonlocal terms. These results were applied to the study of fourth

order problems that model the deflection of an elastic beam.

An important feature of the integral equation (11.0.1) is the fact that it is designed to deal

with boundary value problems where the boundary conditions involve at most affine func-

tionals. In physical models this corresponds to feedback controllers having a linear response.

Nevertheless, in a number of applications, the response of the feedback controller can be non-

linear; for example the nonlocal boundary value problem

𝑢(4)(𝑡) = 𝑔(𝑡)𝑓 (𝑡, 𝑢(𝑡)), 𝑢(0) = 𝑢′(0) = 𝑢″(1) = 0, 𝑢‴(1) + �̂�(𝑢(𝜂)) = 0, (11.0.2)

describes a cantilever equation with a feedback mechanism, where a spring reacts (in a nonlin-

ear manner) to the displacement registered in a point 𝜂 of the beam. Positive solutions of the

boundary value problem (11.0.2) were investigated by Infante and Pietramala in [92] by means

of the perturbed integral equation

𝑢(𝑡) = 𝛾(𝑡)�̂�( ̂𝛼[𝑢]) + ∫1
0

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠)) d 𝑠,

where �̂� ∶ ℝ+ → ℝ+ is a continuous, possibly nonlinear function.

Note that the idea of using perturbed Hammerstein integral equations in order to deal with

the existence of solutions of boundary value problems with nonlinear boundary conditions has

been used with success in a number of papers, see, for example, the manuscripts of Alves and

co-authors [3], Cabada [27], Franco et al. [71], Goodrich [75–79], Infante [88], Karakostas [111],

Pietramala [144], Yang [192,193] and references therein.

The existence of nontrivial solutions of the boundary value problem

−𝑢″(𝑡) = 𝑔(𝑡)𝑓 (𝑢(𝑡)), 𝑢′(0) + �̂�( ̂𝛼[𝑢]) = 0, 𝛽𝑢′(1) + 𝑢(𝜂) = 0,

that models a heat-flow problem with a nonlinear controller, were discussed by Infante [89],

by means of the perturbed integral equation

𝑢(𝑡) = 𝛾(𝑡)�̂�( ̂𝛼[𝑢]) + ∫1
0

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑢(𝑠)) d 𝑠.



218 11.1. The integral operator

In this chapter we generalize the previous ones insofar as we consider nonlinear boundary

conditions and functional terms. To be precise, we discuss the existence of multiple nontrivial

solutions of perturbed Hammerstein integral equations of the kind

𝑢(𝑡) = 𝐵𝑢(𝑡) + ∫1
0

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝐷𝑢(𝑠)) d 𝑠,

where 𝐵 ∶ 𝐶(𝐼) → u�(𝐼) is a compact and continuous map, 𝐷 ∶ u�(𝐼) → L∞(𝐼), a continuous
map and 𝑓 is a nonnegative L∞-Carathéodory function. In our setting 𝐵 and 𝐷 are possibly

nonlinear. This type of integral equation arises naturally when dealing with a boundary value

problem where nonlocal terms occur in the differential equation and in the boundary condi-

tions. Here we prove the existence of multiple solutions that are allowed to change sign, in the

spirit of the earlier chapters.

At the end of the chapter we study, for illustrative purposes and in two examples, the non-

local differential equation

−𝑢″(𝑡) = 𝑓 (𝑡, 𝑢(𝑡)) + 𝛾(𝑡)𝑢(𝜂(𝑡)),

subject to the boundary conditions

𝑢(0) = 0, 𝑢(1) = 𝜃‖𝑢‖ or 𝑢(0) = 𝑢′(1), 𝑢′(0) = 𝑢(1),

showing that the constants occurring in our theoretical results can be computed.

11.1 The integral operator

Let 𝐼 ∶= [0, 1]. In this section we obtain results for the fixed points of the integral operator

𝑇𝑢(𝑡) = 𝐵𝑢(𝑡) + ∫1
0

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝐷𝑢(𝑠)) d 𝑠, (11.1.1)

where𝐵 ∶ 𝐶(𝐼) → 𝐶(𝐼) is a continuous and compactmap,𝐷 ∶ 𝐶(𝐼) → L∞(𝐼), a continuous
map and 𝑓 is a nonnegative L∞-Carathéodory function. 𝐵 and 𝐷 are not necessarily linear.

Recall that 𝑃 be the cone of nonnegative functions in 𝐶(𝐼). We make the following as-

sumptions.

(𝐶1) 𝑘 ∶ 𝐼 × 𝐼 → ℝ is measurable, and for every 𝜏 ∈ 𝐼 we have

lim
u�→u�

|𝑘(𝑡, 𝑠) − 𝑘(𝜏, 𝑠)| = 0 for a.e. 𝑠 ∈ 𝐼.

(𝐶2) There exist a subinterval [𝑎, 𝑏] ⊆ 𝐼, a function Φ ∈ L1(𝐼), and a constant 𝑐1 ∈ (0, 1]
such that

|𝑘(𝑡, 𝑠)| ≤ Φ(𝑠) for 𝑡 ∈ 𝐼 and almost every 𝑠 ∈ 𝐼,
𝑘(𝑡, 𝑠) ≥ 𝑐1Φ(𝑠) for 𝑡 ∈ [𝑎, 𝑏] and almost every 𝑠 ∈ 𝐼.

(𝐶3) 𝑔, 𝑔 Φ ∈ L1(𝐼), 𝑔(𝑡) ≥ 0 for a.e. 𝑡 ∈ 𝐼, and ∫u�
u� Φ(𝑠)𝑔(𝑠) d 𝑠 > 0.
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(𝐶4) Consider functions 𝑓u� ∶ 𝐼 × ℝ → [0, ∞), 𝛾u�u� ∶ 𝐼 → ℝ, 𝑗 = 1, … , 𝑚u�, 𝛿u�u� ∶ 𝐼 → ℝ,

𝑗 = 1, … , 𝑛u� and continuous functionals 𝛼u�u� ∶ 𝐶(𝐼) → ℝ, 𝑗 = 1, … , 𝑚u� and 𝛽u�u� ∶
𝐶(𝐼) → ℝ, 𝑗 = 1, … , 𝑛u�, 𝑖 = 1, 2, a constant 𝑐 ∈ (0, 𝑐1] and a cone

𝐾 ∶= {𝑢 ∈ 𝐶(𝐼) ∶ min
u�∈[u�,u�]

𝑢(𝑡) ≥ 𝑐‖𝑢‖, 𝛼u�u�[𝑢], 𝛽u�u�[𝑢] ≥ 0}

such that, for all 𝑢 ∈ 𝐾 , the following inequalities hold:

u�1

∑
u�=1

𝛾1u�(𝑡)𝛼1u�[𝑢] + 𝑓1(𝑡, 𝑢(𝑡)) ≤ 𝑓 (𝑡, 𝑢(𝑡), 𝐷𝑢(𝑡)), for every 𝑡 ∈ [𝑎, 𝑏],

u�1

∑
u�=1

𝛿1u�(𝑡)𝛽1u�[𝑢] ≤ 𝐵𝑢(𝑡), for every 𝑡 ∈ [𝑎, 𝑏],

𝑓 (𝑡, 𝑢(𝑡), 𝐷𝑢(𝑡)) ≤
u�2

∑
u�=1

𝛾2u�(𝑡)𝛼2u�[𝑢] + 𝑓2(𝑡, 𝑢(𝑡)), for every 𝑡 ∈ 𝐼

and

𝐵𝑢(𝑡) ≤
u�2

∑
u�=1

𝛿2u�(𝑡)𝛽2u�[𝑢], for every 𝑡 ∈ 𝐼.

(𝐶5) The nonlinearities 𝑓 ∶ 𝐼 × ℝ2 → [0, +∞), 𝑓1 ∶ 𝐼 × ℝ → [0, +∞) and 𝑓2 ∶ 𝐼 × ℝ →
[0, +∞) satisfy L∞-Carathéodory conditions, that is 𝑓 (⋅, 𝑢, 𝑣), 𝑓u�(⋅, 𝑢) are measurable

for each fixed 𝑢, 𝑣 ∈ ℝ; 𝑓 (𝑡, ⋅, ⋅), 𝑓u�(𝑡, ⋅) are continuous for a. e. 𝑡 ∈ 𝐼, and for each

𝑟 > 0, there exists 𝜙u� ∈ L∞(𝐼) such that

𝑓 (𝑡, 𝑢, 𝑣), 𝑓u�(𝑡, 𝑢) ≤ 𝜙u�(𝑡) for all 𝑢, 𝑣 ∈ [−𝑟, 𝑟], and a. e. 𝑡 ∈ 𝐼.

(𝐶6) 𝛾u�u� ∈ 𝐶(𝐼). Let �̃�u�u�(𝑡) ∶= ∫1
0 𝑘+(𝑡, 𝑠)𝑔(𝑠)𝛾u�u�(𝑠) d 𝑠. Assume the families of functions

{�̃�u�u�, 𝛿u�u�}u�,u� belong to 𝐾\{0}.

(𝐶7) Define 𝜑u� = (𝛼u�1, … , 𝛼u�u�u�
, 𝛽u�1, … , 𝛽u�u�u�

), 𝜓u� = (�̃�u�1, … , �̃�u�u�u�
, 𝛿u�1, … , 𝛿u�u�u�

) and de-

note by 𝜑u�u� and 𝜓u�u� the 𝑗-th element of 𝜑u� and 𝜓u� respectively. We have the following

inequalities.

𝜑u�u�[𝜏1𝑢 + 𝜏2𝑣] ≥ 𝜏1𝜑u�u�[𝑢] + 𝜏2𝜑u�u�[𝑣],
𝜏1, 𝜏2 ∈ ℝ+, 𝑢, 𝑣 ∈ 𝐾, 𝑗 = 1, … , 𝑚u� + 𝑛u�, 𝑖 = 1, 2,

(11.1.2)

𝜑2u�[𝜏1𝑢 + 𝜏2𝑣] ≤ |𝜏1| |𝜑2u�[𝑢]| + |𝜏2| |𝜑2u�[𝑣]|,
𝜏1, 𝜏2 ∈ ℝ, 𝑢, 𝑣 ∈ 𝐾, 𝑗 = 1, … , 𝑚2 + 𝑛2.

(11.1.3)

Let u�u�1u�
(𝑠) ∶= 𝜑1u�[𝑘(⋅, 𝑠)] ≥ 0, u�u�2u�

(𝑠) ∶= 𝜑2u�[𝑘+(⋅, 𝑠)] ≥ 0 for a. e. 𝑠 ∈ 𝐼, and
assume u�u�u�u�

∈ L∞(𝐼) for every 𝑗 = 1, … , 𝑚u� + 𝑛u�, 𝑖 = 1, 2.

𝜑1u� [∫u�
u�

𝑘(⋅, 𝑠)𝑔(𝑠)𝑓1(𝑠, 𝑢(𝑠)) d 𝑠] ≥ ∫u�
u�

𝜑1u�[𝑘(⋅, 𝑠)]𝑔(𝑠)𝑓1(𝑠, 𝑢(𝑠)) d 𝑠,
𝑢 ∈ 𝐾, 𝑗 = 1, … , 𝑚1 + 𝑛1,

(11.1.4)
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𝜑2u� [∫1
0

𝑘+(⋅, 𝑠)𝑔(𝑠)𝑓2(𝑠, 𝑢(𝑠)) d 𝑠] ≤ ∫1
0

|𝜑2u�[𝑘+(⋅, 𝑠)]|𝑔(𝑠)𝑓2(𝑠, 𝑢(𝑠)) d 𝑠,
𝑢 ∈ 𝐾, 𝑗 = 1, … , 𝑚2 + 𝑛2,

(11.1.5)

(𝐶8) Define 𝑀u� = (𝜑u�u�[𝜓u�u�])u�u�+u�u�
u�,u�=1 ∈ ℳu�u�+u�u�

(ℝ), 𝑘 = 1, 2. Assume that their respec-

tive spectral radii 𝑟 satisfy that 𝑟(𝑀1) < 1/𝑐1 and 𝑟(𝑀2) < 1.

(𝐶9) Let 𝑐 and 𝐾 be given in (𝐶4). Then
u�1

∑
u�=1

𝛿1u�(𝑡)𝛽1u�[𝑢] ≥ 𝑐
u�2

∑
u�=1

‖𝛿2u�‖𝛽2u�[𝑢] for every 𝑡 ∈ [𝑎, 𝑏] and 𝑢 ∈ 𝐾.

(𝐶10) 𝜑1u�[𝑢] ≥ 𝜑1u�[𝑣] for every𝑢, 𝑣 ∈ 𝐾 such that𝑢(𝑡) ≥ 𝑣(𝑡) for all 𝑡 ∈ [𝑎, 𝑏],𝜑2u�[𝑢] ≥
𝜑2u�[𝑣] for every 𝑢, 𝑣 ∈ 𝐾 such that 𝑢(𝑡) ≥ 𝑣(𝑡) for all 𝑡 ∈ 𝐼 and 𝜑u�u�[𝑢] ≥ 0 for every

𝑢 ∈ 𝑃.

Also, 𝜑u�u�[𝑇𝑢], 𝜑u�u�[𝐹1𝑢], 𝜑u�u�[𝐹2𝑢], 𝜑u�u�[𝐿1𝑢] ≥ 0 for every 𝑢 ∈ 𝐾 where, for 𝑡 ∈
[0, 1],

𝐹1𝑢(𝑡) ∶= ∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓1(𝑠, 𝑢(𝑠)) d 𝑠,

𝐹2𝑢(𝑡) ∶= ∫1
0

𝑘+(𝑡, 𝑠)𝑔(𝑠)𝑓2(𝑠, 𝑢(𝑠)) d 𝑠,

𝐿1𝑢(𝑡) ∶= ∫u�
u�

𝑘+(𝑡, 𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠.

Remark 11.1.1. Observe that from conditions (𝐶6) and (𝐶8) we know that 𝜓u�u� ∈ 𝐾 and 𝑀u�
has positive entries for 𝑘 = 1, 2. Also, if the 𝜑u�u� are linear functionals defined as integrals with

respect to a measure of bounded variation, properties (11.1.2)–(11.1.5) hold.

Remark 11.1.2. Condition (11.1.3) is some sort of triangle inequality. In particular, it implies a

kind of second triangle inequality. Indeed, let 𝑢, 𝑣 ∈ 𝐾 , Then we have

𝜑2u�[𝑢] = 𝜑2u�[(𝑢 + 𝑣) − 𝑣] ≤ |𝜑2u�[𝑢 + 𝑣]| + |𝜑2u�[𝑣]|.

Hence we obtain

𝜑2u�[𝑢] − |𝜑2u�[𝑣]| ≤ |𝜑2u�[𝑢 + 𝑣]|.
Interchanging 𝑢 and 𝑣 we get

𝜑2u�[𝑣] − |𝜑2u�[𝑢]| ≤ |𝜑2u�[𝑢 + 𝑣]|,

which implies, in particular,

|𝜑2u�[𝑢] − 𝜑2u�[𝑣]| ≤ |𝜑2u�[𝑢 + 𝑣]|.

Therefore we obtain

|𝜑2u�[𝑢] − 𝜑2u�[𝑣]| ≤ |𝜑2u�[𝑢 − 𝑣]|.

Remark 11.1.3. By (𝐶10), if 𝑢 ∈ 𝐾 , then 𝑢+, |𝑢| ∈ 𝐾 .
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Remark 11.1.4. Let �̃� = {𝑢|[u�,u�] ∶ 𝑢 ∈ 𝐾} and 𝜄 ∶ 𝐶([𝑎, 𝑏]) → 𝐶(𝐼) such that 𝜄[𝑢](𝑡) =
𝑢(𝑡) for 𝑡 ∈ [𝑎, 𝑏], 𝜄[𝑢](𝑡) = 𝑢(𝑎) for 𝑡 ∈ [0, 𝑎] and 𝜄[𝑢](𝑡) = 𝑢(𝑏) for 𝑡 ∈ [𝑏, 1]. The
first part of condition (𝐶10) implies that, if 𝑢, 𝑣 ∈ 𝐾 satisfy 𝑢|[u�,u�] = 𝑣|[u�,u�], then 𝜑1u�[𝑢] =
𝜑1u�[𝑣]. Hence, there exists ̃𝜑1u� ∶ �̃� → ℝ such that 𝜑1u�|u� = ̃𝜑1u� ∘ 𝜄.

Lemma 11.1.5. The operator 𝑇 defined in (11.1.1)maps 𝐾 into 𝐾 and is continuous and com-

pact.

Proof. Take 𝑢 ∈ 𝐾 . Then, by (𝐶2), (𝐶4) and (𝐶5), we have

𝑇𝑢(𝑡) =𝐵𝑢(𝑡) + ∫1
0

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝐷𝑢(𝑠)) d 𝑠

≤
u�2

∑
u�=1

𝛿2u�(𝑡)𝛽2u�[𝑢] + ∫1
0

Φ(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝐷𝑢(𝑠)) d 𝑠.

Hence, we obtain

‖𝑇𝑢‖ ≤
u�2

∑
u�=1

‖𝛿2u�‖𝛽2u�[𝑢] + ∫1
0

Φ(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝐷𝑢(𝑠)) d 𝑠.

Combining this fact with (𝐶2), (𝐶5), (𝐶6) and (𝐶9), for 𝑡 ∈ [𝑎, 𝑏], we get

𝑇𝑢(𝑡) ≥
u�1

∑
u�=1

𝛿1u�(𝑡)𝛽1u�[𝑢] + 𝑐1 ∫1
0

Φ(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝐷𝑢(𝑠)) d 𝑠

≥𝑐
u�2

∑
u�=1

‖𝛿2u�‖𝛽2u�[𝑢] + 𝑐 ∫1
0

Φ(𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝐷𝑢(𝑠)) d 𝑠 ≥ 𝑐‖𝑇𝑢‖.

Furthermore, by (𝐶10), 𝜑u�u�[𝑇𝑢] ≥ 0. Hence we have 𝑇𝑢 ∈ 𝐾 .

Now, we have that the operator 𝑁u� ∶ 𝐶(𝐼) × L∞(𝐼) → 𝐶(𝐼) such that 𝑁u� (𝑢, 𝑣)(𝑡) =
∫1

0 𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑣(𝑠)) d 𝑠 is compact.

Since 𝐷 is continuous, Id ×𝐷 is also continuous so 𝑁u� ∘ (Id ×𝐷) is compact. Since 𝑇 is the

sum of two compact operators, it is compact. The continuity is proved in a similar way. �

Remark 11.1.6. Similarly, from condition (𝐶2), we observe here that 𝐹1, 𝐹2 and 𝐿1 map 𝐾 to

𝐾 . To see this, observe that for all 𝑡 ∈ [𝑎, 𝑏] and 𝑢 ∈ 𝐾 the following properties hold:

𝐹1𝑢(𝑡) = ∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓1(𝑠, 𝑢(𝑠)) d 𝑠 ≥ 𝑐 ∫u�
u�

Φ(𝑠)𝑔(𝑠)𝑓1(𝑠, 𝑢(𝑠)) d 𝑠 ≥ 𝑐‖𝐹1𝑢‖,

𝐹2𝑢(𝑡) = ∫1
0

𝑘+(𝑡, 𝑠)𝑔(𝑠)𝑓2(𝑠, 𝑢(𝑠)) d 𝑠 ≥ 𝑐 ∫1
0

Φ(𝑠)𝑔(𝑠)𝑓2(𝑠, 𝑢(𝑠)) d 𝑠 ≥ 𝑐‖𝐹2𝑢‖,

𝐿1𝑢(𝑡) = ∫u�
u�

𝑘+(𝑡, 𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠 ≥ 𝑐 ∫u�
u�

Φ(𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠 ≥ 𝑐‖𝐿1𝑢‖.

Also, 𝜑u�u�[𝐹1𝑢], 𝜑u�u�[𝐹2𝑢], 𝜑u�u�[𝐿1𝑢] ≥ 0 by (𝐶10).
On the other hand, 𝐿1 maps 𝑃 to 𝑃, but also maps 𝑃 to 𝐾 . The proof goes as above.
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11.2 Fixed point index calculations

Let us define, in a similar way to the previous times,

𝐾u� ∶= {𝑢 ∈ 𝐾 ∶ ‖𝑢‖ < 𝜌}, 𝑉u� ∶= {𝑢 ∈ 𝐾 ∶ min
u�∈[u�,u�]

𝑢(𝑡) < 𝜌}.

If 𝑢, 𝑣 are vectors, we denote by [𝑢]u� the 𝑗-th component of 𝑢 and if we write 𝑢 ≤ 𝑣 the

inequality is to be interpreted component-wise. Also, we denote by u�u�u�
∶= (u�u�u�u�

)u�u�+u�u�

u�=1
, 𝑖 =

1, 2 (u�u�u�u�
as defined in (𝐶7)).

Lemma 11.2.1. Assume that

(I1
u�) there exists 𝜌 > 0 such that

𝑓 −u�,u�
2 ⋅ sup

u�∈u�

⎛⎜⎜
⎝

u�2+u�2

∑
u�=1

|𝜓2u�(𝑡)| [(Id −𝑀2)−1 ∫1
0

|u�u�2
(𝑠)|𝑔(𝑠)𝑑𝑠]

u�
+ 𝜎(𝑡)⎞⎟⎟

⎠
< 1,

(11.2.1)

where

𝑓 −u�,u�
2 ∶= ess sup{

𝑓2(𝑡, 𝑢)
𝜌 ∶ (𝑡, 𝑢) ∈ 𝐼 × [−𝜌, 𝜌]}

and

𝜎(𝑡) ∶= max {∫1
0

𝑘+(𝑡, 𝑠)𝑔(𝑠) d 𝑠, ∫1
0

𝑘−(𝑡, 𝑠)𝑔(𝑠) d 𝑠} .

Then we have 𝑖u�(𝑇, 𝐾u�) = 1.

Proof. We show that𝑇𝑢 ≠ 𝜆𝑢 for all𝜆 ≥ 1when 𝑢 ∈ 𝜕𝐾u�, which implies that 𝑖u�(𝑇, 𝐾u�) =
1. In fact, if this does not happen, then there exist 𝑢 with ‖𝑢‖ = 𝜌 and 𝜆 ≥ 1 such that

𝜆𝑢(𝑡) = 𝑇𝑢(𝑡). Therefore, by (𝐶4) and (𝐶6),

𝜆𝑢(𝑡) ≤
u�2+u�2

∑
u�=1

𝜓2u�(𝑡)𝜑2u�[𝑢] + 𝐹2𝑢(𝑡), 𝑡 ∈ 𝐼, (11.2.2)

so, from (𝐶6), and Remark 11.1.6, we have that both sides of the inequality are in 𝐾 . As a

consequence, from (11.1.3), we deduce

𝜆𝜑2u�[𝑢] ≤
u�2+u�2

∑
u�=1

𝜑2u�[𝜓2u�]𝜑2u�[𝑢] + |𝜑2u�[𝐹2𝑢]|,

which, expressed in matrix notation, is

𝜆𝜑2[𝑢] ≤ 𝑀2𝜑2[𝑢] + |𝜑2[𝐹2𝑢]|.
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Hence, we have

(Id −𝑀2)𝜑2[𝑢] ≤ (𝜆 Id −𝑀2)𝜑2[𝑢] ≤ |𝜑2[𝐹2𝑢]|.

Since 𝑟(𝑀2) < 1, Id −𝑀2 is invertible and (Id −𝑀2)−1 = ∑∞
u�=0 𝑀u�

2 , so (Id −𝑀2)−1 is

positive and thus

𝜑2[𝑢] ≤ (Id −𝑀2)−1|𝜑2[𝐹2𝑢]|. (11.2.3)

Therefore, from (11.1.5), (11.2.2) and (11.2.3) we obtain, for all 𝑡 ∈ 𝐼,

𝜆|𝑢(𝑡)| ≤
u�2+u�2

∑
u�=1

|𝜓2u�(𝑡)|𝜑2u�[𝑢] + |𝐹2𝑢(𝑡)|

≤
u�2+u�2

∑
u�=1

|𝜓2u�(𝑡)| [(Id −𝑀2)−1|𝜑2[𝐹2𝑢]|]u� + |𝐹2𝑢(𝑡)|

≤𝜌𝑓 −u�,u�
2 sup

u�∈u�

⎛⎜⎜
⎝

u�2+u�2

∑
u�=1

|𝜓2u�(𝑡)| [(Id −𝑀2)−1 ∫1
0

|u�u�2
(𝑠)|𝑔(𝑠) d 𝑠]

u�
+ 𝜎(𝑡)⎞⎟⎟

⎠
.

Taking the supremum on 𝑡 ∈ 𝐼,

𝜆𝜌 ≤ 𝜌𝑓 −u�,u�
2 sup

u�∈u�

⎛⎜⎜
⎝

u�2+u�2

∑
u�=1

|𝜓2u�(𝑡)| [(Id −𝑀2)−1 ∫1
0

|u�u�2
(𝑠)|𝑔(𝑠) d 𝑠]

u�
+ 𝜎(𝑡)⎞⎟⎟

⎠
.

From (11.2.1) we obtain 𝜆𝜌 < 𝜌, contradicting the fact that 𝜆 ≥ 1. �

Remark 11.2.2. We point out, in similar way as in Chapter 10, that a stronger (but easier to

check) condition than (I1
u�) is given by the following.

𝑓 −u�,u�
2

⎛⎜⎜
⎝

u�2+u�2

∑
u�=1

‖𝜓2u�‖ [(Id −𝑀2)−1 ∫1
0

∣u�u�2
(𝑠)∣ 𝑔(𝑠) d 𝑠]

u�
+ 1

𝑚
⎞⎟⎟
⎠

< 1.

where
1
𝑚 ∶= sup

u�∈u�
𝜎(𝑡). (11.2.4)

Lemma 11.2.3. Assume that

(I0
u�) There exists 𝜌 > 0 such that

𝑓1,u�,u�/u� ⋅ inf
u�∈[u�,u�]

⎛⎜⎜
⎝

u�1+u�1

∑
u�=1

𝜓1u�(𝑡) [(Id −𝑐1𝑀1)−1 ∫u�
u�

u�u�1
(𝑠)𝑔(𝑠) d 𝑠]

u�

+ ∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠⎞⎟⎟
⎠

> 1,

where

𝑓1,u�,u�/u� ∶= ess inf {
𝑓1(𝑡, 𝑢)

𝜌 ∶ (𝑡, 𝑢) ∈ [𝑎, 𝑏] × [𝜌, 𝜌/𝑐]} .
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Then we have 𝑖u�(𝑇, 𝑉u�) = 0.

Proof. Take 𝑒 ∈ 𝐾\{0}. We will show that 𝑢 ≠ 𝑇𝑢 + 𝜆𝑒 for all 𝜆 ≥ 0 and 𝑢 ∈ 𝜕𝑉u� which

implies that 𝑖u�(𝑇, 𝑉u�) = 0. In fact, if this does not happen, there are 𝑢 ∈ 𝜕𝑉u� (and so we

have minu�∈[u�,u�] 𝑢(𝑡) = 𝜌 and 𝜌 ≤ 𝑢(𝑡) ≤ 𝜌/𝑐 for all 𝑡 ∈ [𝑎, 𝑏]), and 𝜆 ≥ 0 with

𝑢(𝑡) = 𝑇𝑢(𝑡) + 𝜆𝑒.

Therefore, for 𝑡 ∈ [𝑎, 𝑏], by (𝐶2), (𝐶4), (𝐶6) and Remark 11.1.6, we have

𝑢(𝑡) ≥
u�1+u�1

∑
u�=1

𝜓1u�(𝑡)𝜑1u�[𝑢] + 𝐹1𝑢(𝑡) + 𝜆 𝑒(𝑡) ∈ 𝐾. (11.2.5)

Thus we obtain, using (11.1.2),

𝜑1u�[𝑢] ≥
u�1+u�1

∑
u�=1

𝜑1u�[𝜓1u�]𝜑1u�[𝑢] + 𝜑1u�[𝐹1𝑢] + 𝜆𝜑1u�[𝑒]

≥ 𝑐1
⎛⎜⎜
⎝

u�1+u�1

∑
u�=1

𝜑1u�[𝜓1u�]𝜑1u�[𝑢] + 𝜑1u�[𝐹1𝑢]⎞⎟⎟
⎠

,

which, expressed in matrix notation, is

𝜑1[𝑢] ≥ 𝑐1 (𝑀1𝜑1[𝑢] + 𝜑1[𝐹1𝑢]) .

Hence we get

(Id −𝑐1𝑀1)𝜑1[𝑢] ≥ 𝜑1[𝐹1𝑢].
Since 𝑟(𝑀1) < 1/𝑐1, Id −𝑐1 𝑀1 is invertible and (Id −𝑐1 𝑀1)−1 = ∑∞

u�=0 (𝑐1 𝑀1)u�, so

(Id −𝑐1𝑀1)−1 is positive and hence

𝜑1[𝑢] ≥ (Id −𝑐1 𝑀1)−1𝜑1[𝐹1𝑢]. (11.2.6)

Therefore, from (11.1.2), (11.2.5) and (11.2.6) we obtain, for 𝑡 ∈ [𝑎, 𝑏],

𝑢(𝑡) ≥
u�1+u�1

∑
u�=1

𝜓1u�(𝑡)𝜑1u�[𝑢] + 𝐹1𝑢(𝑡)

≥
u�1+u�1

∑
u�=1

𝜓1u�(𝑡) [(Id −𝑐1 𝑀1)−1𝜑1[𝐹1𝑢]]u� + 𝐹1𝑢(𝑡)

≥ inf
u�∈[u�,u�]

⎛⎜⎜
⎝

u�1+u�1

∑
u�=1

𝜓1u�(𝑡) [(Id −𝑐1 𝑀1)−1 ∫u�
u�

u�u�1
(𝑠)𝑔(𝑠) d 𝑠]

u�
+ ∫u�

u�
𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠⎞⎟⎟

⎠
⋅ 𝜌𝑓1,u�,u�/u�.

Taking the infimum on 𝑡 ∈ [𝑎, 𝑏], gives

𝜌 ≥ inf
u�∈[u�,u�]

⎛⎜⎜
⎝

u�1+u�1

∑
u�=1

𝜓1u�(𝑡) [(Id −𝑐1 𝑀1)−1 ∫u�
u�

u�u�1
(𝑠)𝑔(𝑠) d 𝑠]

u�
+ ∫u�

u�
𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠⎞⎟⎟

⎠
𝜌𝑓1,u�,u�/u�.

which contradicts the hypothesis. �
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Remark 11.2.4. Again, a stronger condition than (I0
u�) is given by the following.

𝑓1,u�,u�/u�
⎛⎜⎜
⎝

inf
u�∈[u�,u�]

u�1+u�1

∑
u�=1

𝜓1u�(𝑡) [(Id −𝑐1𝑀1)−1 ∫u�
u�

u�u�1
(𝑠)𝑔(𝑠) d 𝑠]

u�
+ 1

𝑀(𝑎, 𝑏)
⎞⎟⎟
⎠

> 1,

where
1

𝑀(𝑎, 𝑏) ∶= inf
u�∈[u�,u�]

∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠. (11.2.7)

The results above can be used in order to prove the existence of at least one, two or three

nontrivial solutions.

Theorem11.2.5. Assume conditions (𝐶1)−(𝐶10) are satisfied. The integral equation (11.1.1)
has at least one nonzero solution in 𝐾 if any of the following conditions hold.

(𝑆1) There exist 𝜌1, 𝜌2 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 such that (I0
u�1

) and (I1
u�2

) hold.

(𝑆2) There exist 𝜌1, 𝜌2 ∈ (0, ∞) with 𝜌1 < 𝜌2 such that (I1
u�1

) and (I0
u�2

) hold.

The integral equation (11.1.1) has at least two nonzero solutions in 𝐾 if one of the following

conditions hold.

(𝑆3) There exist 𝜌1, 𝜌2, 𝜌3 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 < 𝜌3 such that (I0
u�1

), (I1
u�2

) and (I0
u�3

)
hold.

(𝑆4) There exist 𝜌1, 𝜌2, 𝜌3 ∈ (0, ∞) with 𝜌1 < 𝜌2 and 𝜌2/𝑐 < 𝜌3 such that (I1
u�1

), (I0
u�2

)
and (I1

u�3
) hold.

The integral equation (11.1.1) has at least three nonzero solutions in 𝐾 if one of the following

conditions hold.

(𝑆5) There exist 𝜌1, 𝜌2, 𝜌3, 𝜌4 ∈ (0, ∞) with 𝜌1/𝑐 < 𝜌2 < 𝜌3 and 𝜌3/𝑐 < 𝜌4 such that

(I0
u�1

), (I1
u�2

), (I0
u�3

) and (I1
u�4

) hold.

(𝑆6) There exist 𝜌1, 𝜌2, 𝜌3, 𝜌4 ∈ (0, ∞) with 𝜌1 < 𝜌2 and 𝜌2/𝑐 < 𝜌3 < 𝜌4 such that

(I1
u�1

), (I0
u�2

), (I1
u�3

) and (I0
u�4

) hold.

11.2.1 Nonexistence results

For this epigraph we will assume that the operators 𝜑u�u� are linearly bounded.

Definition 11.2.6. An operator𝐴 ∶ 𝑋 → 𝑌 between two normed spaces (𝑋, ‖⋅‖) and (𝑌, ‖⋅‖)†

is linearly bounded if there exists 𝑀 ∈ ℝ+ such that ‖𝐴𝑥‖ ≤ 𝑀‖𝑥‖ for every 𝑥 ∈ 𝑋 . We then

define the norm of 𝐴 as

‖𝐴‖ ∶= inf{𝑀 ∈ ℝ+ ∶ ‖𝐴𝑥‖ ≤ 𝑀‖𝑢‖, 𝑥 ∈ 𝑋}.
†Although they may be different, we use the same notation for the norms in 𝑋 and 𝑌 to simplify the notation.
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Observe that for linear operators this is the usual norm. We denote by LB(𝑋, 𝑌) the space

of linearly bounded operators from 𝑋 to 𝑌 (and by LB(𝑋) if 𝑋 = 𝑌 ). For operators 𝐴 ∈
LB(𝑋) we can define the spectral radius of 𝐴 as 𝑟(𝐴) = lim

u�→∞
‖𝐴u�‖

1
u� . We define the principal

characteristic value as 𝜇(𝐴) ∶= 1/𝑟(𝐴).
For more properties on this generalized spectral value we refer the reader to [22,200].

We now offer some nonexistence results for the integral equation (11.1.1).

Theorem 11.2.7. Let 𝑚 and 𝑀(𝑎, 𝑏) be defined in (11.2.4) and (11.2.7) respectively and the

𝜑u�u� be linearly bounded. If one of the following conditions holds,

(1) 𝑓2(𝑡, 𝑢) < 𝑚 (1 − ∑u�2+u�2
u�=1 ‖𝜓2u�‖‖𝜑2u�‖) |𝑢|, for every 𝑡 ∈ 𝐼 and 𝑢 ∈ ℝ\{0},

(2) 𝑓1(𝑡, 𝑢) > 𝑀(𝑎, 𝑏) 𝑢 for every 𝑡 ∈ [𝑎, 𝑏] and 𝑢 ∈ ℝ+,

then there is no nontrivial solution of the problem (11.1.1) in 𝐾 .

Proof. (1) Assume, on the contrary, that there exists 𝑢 ∈ 𝐾 , 𝑢��≡0 such that 𝑢 = 𝑇𝑢 and let

𝑡0 ∈ 𝐼 such that ‖𝑢‖ = |𝑢(𝑡0)|. Then, arguing as in the proof of Lemma 11.2.1,

‖𝑢‖ = |𝑢(𝑡0)|

≤
u�2+u�2

∑
u�=1

‖𝜓2u�‖𝜑2u�[𝑢]

+ max {∫1
0

𝑘+(𝑡0, 𝑠)𝑔(𝑠)𝑓2(𝑠, 𝑢(𝑠)) d 𝑠, ∫1
0

𝑘−(𝑡0, 𝑠)𝑔(𝑠)𝑓2(𝑠, 𝑢(𝑠)) d 𝑠}

<
u�2+u�2

∑
u�=1

‖𝜓2u�‖‖𝜑2u�‖‖𝑢‖

+ max {∫1
0

𝑘+(𝑡0, 𝑠)𝑔(𝑠) d 𝑠, ∫1
0

𝑘−(𝑡0, 𝑠)𝑔(𝑠) d 𝑠} 𝑚 ⎛⎜⎜
⎝

1 −
u�2+u�2

∑
u�=1

‖𝜓2u�‖‖𝜑2u�‖⎞⎟⎟
⎠

‖𝑢‖

=
u�2+u�2

∑
u�=1

‖𝜓2u�‖‖𝜑2u�‖‖𝑢‖ + ⎛⎜⎜
⎝

1 −
u�2+u�2

∑
u�=1

‖𝜓2u�‖‖𝜑2u�‖⎞⎟⎟
⎠

‖𝑢‖ = ‖𝑢‖,

a contradiction, thus there is no nontrivial solution of problem (11.1.1) in 𝐾 .

(2) Assume, on the contrary, that there exists 𝑢 ∈ 𝐾 , 𝑢��≡0 such that 𝑢 = 𝑇𝑢 and let

𝑡0 ∈ [𝑎, 𝑏] such that 𝑢(𝑡0) = minu�∈[u�,u�] 𝑢(𝑡). Then, as in the proof of Lemma 11.2.3,

𝑢(𝑡0) = 𝑇𝑢(𝑡0) ≥
u�2+u�2

∑
u�=1

𝜓1u�(𝑡0)𝜑1u�[𝑢] + ∫1
0

𝑘(𝑡0, 𝑠)𝑔(𝑠)𝑓1(𝑠, 𝑢(𝑠)) d 𝑠

> ∫u�
u�

𝑘(𝑡0, 𝑠)𝑔(𝑠)𝑀(𝑎, 𝑏)𝑢(𝑠) d 𝑠

≥𝑀(𝑎, 𝑏)𝑢(𝑡0) ∫u�
u�

𝑘(𝑡0, 𝑠)𝑔(𝑠) d 𝑠 ≥ 𝑢(𝑡0),

a contradiction, thus there is no nontrivial solution of problem (11.1.1) in 𝐾 . �
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11.3 The spectral radius and the existence ofmultiple solutions

In order to prove the results to come we will need different requirements on the functionals

𝜑u�,u� than being linearly bounded. We introduce now some definitions [57, 58]. Let 𝑋, 𝑌 be

two real normed spaces. Let Lip(𝑋, 𝑌) be the set of operators between 𝑋 and 𝑌 such that

satisfy the Lipschitz property, that is,

Lip(𝑋, 𝑌) ∶= {𝑁 ∶ 𝑋 → 𝑌 ∶ ∃𝑀 ∈ ℝ+, ‖𝑁𝑥 − 𝑁𝑦‖ ≤ 𝑀‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝑋}.

Define the function

‖𝑁‖∗ ∶= inf{𝑀 ∈ ℝ+ ∶ ‖𝑁𝑥 − 𝑁𝑦‖ ≤ 𝑀‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝑋}, 𝑁 ∈ Lip(𝑋, 𝑌).

We denote byLip(𝑋) ≡ Lip(𝑋, 𝑋). Lip(𝑋, 𝑌) is a real vector space and ‖ ⋅‖∗ is a seminorm

on Lip(𝑋, 𝑌) (in fact, (‖ ⋅ ‖∗)−1({0}) = ℝ). Also, observe that

‖𝑁 − 𝑁(0)‖ = sup
u�∈u�,
u�≠0

‖𝑁(𝑥) − 𝑁(0)‖
‖𝑥‖ ≤ sup

u�,u�∈u�,
u�≠u�

‖𝑁(𝑥) − 𝑁(𝑦)‖
‖𝑥 − 𝑦‖ = ‖𝑁‖∗,

so in particular 𝑁 − 𝑁(0) is linearly bounded for every 𝑁 ∈ Lip(𝑋, 𝑌). On the other hand if
𝑁(0) ≠ 0, 𝑁 is not linearly bounded, for the definition of linearly bounded operators implies

that they vanish at zero. With these considerations we can define then

Lip0(𝑋, 𝑌) ∶= Lip(𝑋, 𝑌) ∩ LB(𝑋, 𝑌) = {𝑁 ∈ Lip(𝑋, 𝑌) ∶ 𝑁(0) = 0}.

‖ ⋅ ‖∗ is a norm on Lip0(𝑋, 𝑌).
The following Theorem from [58] characterizes invertibility of the operators between𝑋 and

𝑌 .

Theorem 11.3.1. [58, Theorem 2] Let 𝑋 a real normed space and 𝑌 a real Banach space. Let

𝑁 ∶ 𝑋 → 𝑌 be an operator. Then𝑁 is invertible if and only if there exists an invertible operator

𝐽 ∶ 𝑌 → 𝑋 such that (𝑁 − 𝐽)𝐽−1 ∈ Lip(𝑌) and ‖(𝑁 − 𝐽)𝐽−1‖∗ < 1.
In such a case, ‖𝑁−1‖∗ ≤ ‖𝐽−1‖∗/(1 − ‖(𝑁 − 𝐽)𝐽−1‖∗).
The following consequence (in the line of [57, Corollary 2]) can be obtained by taking 𝑋 =

𝑌 , 𝑁 = Id −𝑄, 𝐽 = Id.

Corollary 11.3.2. Let 𝑋 be a real Banach space and 𝑄 ∈ Lip(𝑋) such that ‖𝑄‖∗ < 1. Then
Id −𝑄 is an invertible operator and ‖(Id −𝑄)−1‖∗ ≤ 1/(1 − ‖𝑄‖∗).

Remark 11.3.3. Assume 𝑄 ∈ Lip(𝑋), 𝑄(𝑋) closed for the sum, ‖𝑄‖∗ < 1. Then

(Id −𝑄)−1|u�(u�) ∶ 𝑄(𝑋) → 𝑄(𝑋).

To see this take 𝑥 ∈ 𝑋 and define 𝑦 = (Id −𝑄)−1𝑄𝑥. Then 𝑦 = 𝑄𝑥 + 𝑄𝑦 ∈ 𝑄(𝑋).

We now present a result which is an straightforward generalization to the case of linearly

bounded operators of a classical result on linear operators. Let us define the following opera-

tors and constants.
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𝐻1𝑢(𝑡) ∶=
u�1+u�1

∑
u�=1

𝜓1u�(𝑡)𝜑1u�[𝑢],

𝐻2𝑢(𝑡) ∶=
u�2+u�2

∑
u�=1

|𝜓2u�(𝑡)||𝜑2u�[𝑢]|,

𝐿2𝑢(𝑡) ∶= ∫1
0

|𝑘(𝑡, 𝑠)|𝑔(𝑠)𝑢(𝑠) d 𝑠,

𝑓 0
2 ∶= lim

u�→0
ess supu�∈u�

𝑓2(𝑡, 𝑢)
|𝑢| , 𝑓1,0 ∶= lim

u�→0+
ess infu�∈[u�,u�]

𝑓1(𝑡, 𝑢)
𝑢 ,

𝑓 ∞
2 ∶= lim

|u�|→∞
ess supu�∈u�

𝑓2(𝑡, 𝑢)
|𝑢| , 𝑓1,∞ ∶=lim

u�→∞
ess infu�∈[u�,u�]

𝑓1(𝑡, 𝑢)
𝑢 .

Lemma11.3.4. Assume that condition (11.1.3)holds for every𝑢, 𝑣 ∈ 𝐶(𝐼)and𝐻2 ∈ LB(𝐶(𝐼)),
then 𝐻2 ∈ Lip0(𝐶(𝐼)).

Proof. Let 𝑢, 𝑣 ∈ 𝐶(𝐼). Using inequality (11.1.3) and Remark 11.1.2.

|𝐻2𝑢 − 𝐻2𝑣| =
∣∣∣∣

u�2+u�2

∑
u�=1

|𝜓2u�(𝑡)|𝜑2u�[𝑢] −
u�2+u�2

∑
u�=1

|𝜓2u�(𝑡)|𝜑2u�[𝑣]
∣∣∣∣

=
∣∣∣∣

u�2+u�2

∑
u�=1

|𝜓2u�(𝑡)| (𝜑2u�[𝑢] − 𝜑2u�[𝑣])
∣∣∣∣

≤
u�2+u�2

∑
u�=1

‖𝜓2u�‖ ∣𝜑2u�[𝑢] − 𝜑2u�[𝑣]∣ ≤
u�2+u�2

∑
u�=1

‖𝜓2u�‖ ∣𝜑2u�[𝑢 − 𝑣]∣

≤
u�2+u�2

∑
u�=1

‖𝜓2u�‖‖𝜑2u�‖‖𝑢 − 𝑣‖.

Hence, 𝐻2 ∈ Lip(𝐶(𝐼)) and ‖𝐻2‖∗ ≤ ∑u�2+u�2
u�=1 ‖𝜓2u�‖‖𝜑2u�‖. Also, since 𝐻2 ∈ LB(𝐶(𝐼)),

𝐻2(0) = 0, so 𝐻2 ∈ Lip0(𝐶(𝐼)).
�

We recall now the following Theorem and Remark from [178], applied to our particular

setting.

Theorem 11.3.5. [178, Theorem 2.4] Let 𝐾1 be a cone in a Banach space 𝑋 , and let ⪯ denote

the partial order in 𝐾1. Suppose that a bounded linear operator 𝑁 ∶ 𝑋 → 𝑋 maps 𝐾1 to 𝐾1.

Let there exist 𝜆0 > 0 and 𝑢 ∈ 𝑋 such that 𝑁𝑢 ⪰ 𝜆0𝑢 where −𝑢��∈𝐾1 and 𝑢 = 𝑢1 − 𝑢2 with

𝑢1, 𝑢2 ∈ 𝐾1. Then, if 𝑟(𝑁) < 𝜆0, there exist 𝜆 ≥ 𝜆0 and 𝜐 ∈ 𝐾1\{0} such that 𝑁𝜐 = 𝜆𝜐.

Remark 11.3.6. [178, Remark 2.5] If 𝐾1 is a total cone, that is, 𝐾1 − 𝐾1 = 𝑋 , 𝑁 is compact

and continuous and 𝑟(𝑁) > 0, then 𝑟(𝑁) is an eigenvalue of 𝑁 with an eigenvector in 𝐾1.

Corollary 11.3.7. The spectral radius of 𝐿1 is an eigenvalue of 𝐿1 with an eigenfunction in

𝑃 ∩ 𝐾 .
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Proof. Recall that 𝐿1 maps 𝑃 to 𝑃 ∩𝐾 (see Remark 11.1.6). Choose, for the previous Theorem

and Remark 𝐾1 = 𝑃 and 𝑁 = 𝐿1. It is not difficult to verify that 𝐿1 is compact and continuous

and 𝑟(𝐿1) > 0. Also, 𝑃 is a total cone.

Let 𝑢 ≡ 1. Then 𝑢 ∈ 𝑃 and we have by (𝐶3) that

𝐿1𝑢(𝑡) = ∫u�
u�

𝑘+(𝑡, 𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠 ≥ 𝑐 ∫u�
u�

Φ(𝑠)𝑔(𝑠) d 𝑠 = 𝑐 ∫u�
u�

Φ(𝑠)𝑔(𝑠) d 𝑠 𝑢(𝑡), 𝑡 ∈ 𝐼,

that is 𝐿1𝑢 ≥ 𝜆0𝑢 for 𝜆0 = 𝑐 ∫u�
u� Φ(𝑠)𝑔(𝑠) d 𝑠. Therefore, the hypothesis of Theorem 11.3.5

are satisfied and therefore there is 𝜐 ∈ 𝑃 such that 𝐿1𝜐 = 𝑟(𝐿1)𝜐. Since 𝐿1 ∶ 𝑃 → 𝑃 ∩ 𝐾 ,

𝜐 ∈ 𝑃 ∩ 𝐾 . �

In order to prove the next result, we use the following operator on u�([𝑎, 𝑏]) defined by

�̄�𝑢(𝑡) ∶= ∫u�
u�

𝑘+(𝑡, 𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠, 𝑡 ∈ [𝑎, 𝑏]

and the cone 𝑃[u�,u�] of positive functions in u�([𝑎, 𝑏]).

Theorem 11.3.8. We have the following.

(1) If 𝐻2 ∈ Lip0(𝐶(𝐼)), ‖𝐻2‖∗ < 1, (Id −𝐻2)−1𝐿2 ∈ LB(𝐶(𝐼)), (Id −𝐻2)−1 ∶ 𝑃 ∩
𝐾 → 𝑃 ∩ 𝐾 order preserving, (Id −𝐻2)−1(𝜆𝑢) ≤ 𝜆(Id −𝐻2)−1𝑢 for every 𝜆 ∈ ℝ+

and 𝑢 ∈ 𝐾 ∩ 𝑃, and 0 ≤ 𝑓 0
2 < 𝜇((Id −𝐻2)−1𝐿2), then there exists 𝜌0 ∈ ℝ+ such

that

𝑖u�(𝑇, 𝐾u�) = 1 for each 𝜌 ∈ (0, 𝜌0].

(2) If 𝜇(𝐿1) < 𝑓1,0 ≤ ∞, then there exists 𝜌0 ∈ ℝ+ such that for each 𝜌 ∈ (0, 𝜌0]

𝑖u�(𝑇, 𝐾u�) = 0.

(3) If 𝜇(𝐿1) < 𝑓1,∞ ≤ ∞, then there exists 𝑅1 such that for each 𝑅 ≥ 𝑅1

𝑖u�(𝑇, 𝐾u�) = 0.

Proof. (1)
Let 𝜉 = 𝜇((Id −𝐻2)−1𝐿2). By the hypotheses, there exist 𝜌0, 𝜏 ∈ (0, 1) such that

𝑓2(𝑡, 𝑢) ≤ (𝜉 − 𝜏)|𝑢|

for all 𝑢 ∈ [−𝜌0, 𝜌0] and almost every 𝑡 ∈ 𝐼.
Let 𝜌 ∈ (0, 𝜌0], we prove that 𝑇𝑢 ≠ 𝜆𝑢 for 𝑢 ∈ 𝜕𝐾u� and 𝜆 ≥ 1, which implies the

result by Lemma 8.1.2. In fact, if we assume otherwise, then there exists 𝑢 ∈ 𝜕𝐾u� and 𝜆 ≥ 1
such that 𝜆𝑢 = 𝑇𝑢. Observe that if 𝑢 ∈ 𝐾 , |𝑢| ∈ 𝐾 ∩ 𝑃 and for 𝑡 ∈ 𝐼,

|𝑢(𝑡)| ≤𝜆|𝑢(𝑡)| = |𝑇𝑢(𝑡)| ≤ 𝐻2𝑢(𝑡) + ∫1
0

|𝑘(𝑡, 𝑠)|𝑔(𝑠)𝑓2(𝑠, 𝑢(𝑠)) d 𝑠
≤𝐻2|𝑢|(𝑡) + (𝜉 − 𝜏)𝐿2|𝑢|(𝑡).
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Now,

|𝑢|(𝑡) ≤ (Id −𝐻2)−1(𝜉 − 𝜏)𝐿2|𝑢|(𝑡) ≤ (𝜉 − 𝜏)(Id −𝐻2)−1𝐿2|𝑢|(𝑡).

Iterating, that is, substituting the left hand side into the right hand side, for 𝑛 ∈ ℕ,

|𝑢|(𝑡) ≤ … ≤ [(𝜉 − 𝜏)(Id −𝐻2)−1𝐿2]u� |𝑢|(𝑡).
So, taking norms,

‖𝑢‖ ≤ ‖ [(𝜉 − 𝜏)(Id −𝐻2)−1𝐿2]u� |𝑢|‖,
which implies

1 ≤ ‖ [(𝜉 − 𝜏)(Id −𝐻2)−1𝐿2]u� ‖,
or

1 ≤ (𝜉 − 𝜏)‖ [(Id −𝐻2)−1𝐿2]u� ‖
1
u� .

Taking the limit on both sides we arrive to a contradiction,

1 ≤
𝜉 − 𝜏

𝜉
< 1.

(2) There exists 𝜌0 > 0 such that 𝑓1(𝑡, 𝑢) ≥ 𝜇(𝐿1)𝑢 for all 𝑢 ∈ [0, 𝜌0] and almost all

𝑡 ∈ 𝐼.
Let 𝜌 ∈ [0, 𝜌0] and let us prove that 𝑢 ≠ 𝑇𝑢 + 𝜆𝜐1 for all 𝑢 in 𝜕𝐾u� and 𝜆 ≥ 0, where

𝜐1 ∈ 𝐾 is the eigenfunction (cf. Corollary 11.3.7) of 𝐿1 with ‖𝜐1‖ = 1 corresponding to the

eigenvalue 1/𝜇(𝐿1), which would imply the result.

We distinguish now two cases, 𝜆 ∈ ℝ+ and 𝜆 = 0. Assume, on the contrary, that there

exist 𝑢 ∈ 𝜕𝐾u� and 𝜆 ∈ ℝ+ such that 𝑢 = 𝑇𝑢 + 𝜆𝜐1. Since 𝑇𝑢 ≥ 0 in [𝑎, 𝑏], this implies

𝑢 ≥ 𝜆𝜐1 in [𝑎, 𝑏] and 𝐿1𝑢 ≥ 𝜆𝐿1𝜐1 ≥ [𝜆/𝜇(𝐿1)]𝜐1 in [𝑎, 𝑏]. Using this and the previous

estimate for 𝑓 we have, by (𝐶4) and (𝐶6),

𝑢 ≥ 𝜇(𝐿1)𝐿1𝑢 + 𝜆𝜐1 ≥ 𝜆𝜇(𝐿1)𝐿1𝜐1 + 𝜆𝜐1 = 2𝜆𝜐1, in [𝑎, 𝑏].

Through induction we deduce that 𝜌 ≥ 𝑢 ≥ 𝑛𝜆𝜐1 in [𝑎, 𝑏] for every 𝑛 ∈ ℕ, a contradiction

because 𝜐1 ∈ 𝐾 .

Now we consider the case 𝜆 = 0. Let 𝜀 > 0 be such that for all 𝑢 ∈ [0, 𝜌0] and almost

every 𝑡 ∈ [𝑎, 𝑏] we have

𝑓1(𝑡, 𝑢) ≥ (𝜇(𝐿1) + 𝜀)𝑢.
Arguing as in the previous cases, we have, for 𝑡 ∈ [𝑎, 𝑏],

𝑢(𝑡) ≥ (𝜇(𝐿1) + 𝜀)𝐿1𝑢(𝑡).

Since 𝐿1𝜐1(𝑡) = 𝑟(𝐿1)𝜐1(𝑡) for 𝑡 ∈ [0, 1], we have, for 𝑡 ∈ [𝑎, 𝑏],

�̄�𝜐1(𝑡) = 𝐿1𝜐1(𝑡) = 𝑟(𝐿1)𝜐1(𝑡),
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and we obtain 𝑟(�̄�) ≥ 𝑟(𝐿1). On the other hand, we have, for 𝑡 ∈ [𝑎, 𝑏],

𝑢(𝑡) =𝑇𝑢 = 𝐵𝑢(𝑡) + ∫1
0

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝐷𝑢(𝑠)) d 𝑠

≥(𝜇(𝐿1) + 𝜀) ∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠)𝑢(𝑠) d 𝑠 = (𝜇(𝐿1) + 𝜀)𝐿1𝑢(𝑡) = (𝜇(𝐿1) + 𝜀)�̄�𝑢(𝑡).

where 𝑢(𝑡) > 0 in [𝑎, 𝑏]. Thus, using Theorem 10.3.4, we have 𝑟(�̄�) ≤ 1/(𝜇(𝐿1) + 𝜀) and

therefore 𝑟(𝐿1) ≤ 1/(𝜇(𝐿1) + 𝜀). This gives 𝜇(𝐿1) + 𝜀 ≤ 𝜇(𝐿1), a contradiction.
(3) Take 𝑣1 as in part (2). Let 𝑅1 ∈ ℝ+ such that 𝑓1(𝑡, 𝑢) > 𝜇(𝐿1)𝑢 for all 𝑢 ≥ 𝑐𝑅1, 𝑐 as

in (𝐶4), and almost all 𝑡 ∈ 𝐼. We will prove that 𝑢 ≠ 𝑇𝑢 + 𝜆𝜐1 for all 𝑢 in 𝜕𝐾u� and 𝜆 ∈ ℝ+

when 𝑅 > 𝑅1. Observe that for 𝑢 ∈ 𝜕𝐾u�, we have 𝑢(𝑡) ≥ 𝑐‖𝑢‖ ≥ 𝑐𝑅1 for all 𝑡 ∈ [𝑎, 𝑏], so
𝑓1(𝑡, 𝑢) > 𝜇(𝐿1)𝑢 on [𝑎, 𝑏].

Assume now, on the contrary, that there exist 𝑢 ∈ 𝜕𝐾u� and𝜆 ∈ ℝ+ (the proof in the case

𝜆 = 0 is treated as in the proof of the statement (2)) such that 𝑢 = 𝑇𝑢 + 𝜆𝜐1. This implies

𝑢 ≥ 𝜆𝜐1 in [𝑎, 𝑏] and 𝐿1𝑢 ≥ 𝜆𝐿1𝜐1 ≥ [𝜆/𝜇(𝐿1)]𝜐1 in [𝑎, 𝑏]. Using this and the previous

estimate for 𝑓 we have

𝑢 ≥ 𝜇(𝐿1)𝐿1𝑢 + 𝜆𝜐1 ≥ 𝜆𝜇(𝐿1)𝐿1𝜐1 + 𝜆𝜐1 = 2𝜆𝜐1, in [𝑎, 𝑏].

Through induction we deduce that 𝑅 ≥ 𝑢 ≥ 𝑛𝜆𝜐1 for every 𝑛 ∈ ℕ, a contradiction because

𝜐1 ∈ 𝐾 . �

Remark 11.3.9. In the previous Theorem, in point (1), it is enough to ask for𝐿2 ∈ LB(𝐶(𝐼))
in order to have (Id −𝐻2)−1𝐿2 ∈ LB(𝐶(𝐼)) since (Id −𝐻2)−1 ∈ Lip(𝐶(𝐼)).

Remark 11.3.10. It can be checked that the spectral radius of a linearly bounded operator is

bounded from above by the norm ‖ ⋅ ‖. Hence, in the previous Theorem, in point (1) the con-

dition 0 ≤ 𝑓 0
2 < 𝜇((Id −𝐻2)−1𝐿2) can be strengthened to 0 ≤ 𝑓 0

2 < 1/‖(Id −𝐻2)−1𝐿2‖∗,

and even further, through Corollary 11.3.2, to 0 ≤ 𝑓 0
2 < (1 − ‖𝐻2‖∗)/‖𝐿2‖.

Remark 11.3.11. In the previous Theorem, the conditions 𝜇(𝐿1) < 𝑓1,0 ≤ ∞ and 𝜇(𝐿1) <
𝑓1,∞ ≤ ∞ in (2) and (3) respectively can be strengthen in order to avoid the computation of

the spectral value of 𝐿1. As it is shown in [183], the new conditions would be

1/ inf
u�∈[0,1]

∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠 < 𝑓1,0 ≤ ∞

and

1/ inf
u�∈[0,1]

∫u�
u�

𝑘(𝑡, 𝑠)𝑔(𝑠) d 𝑠 < 𝑓1,∞ ≤ ∞.

11.4 An applicaton

In order to prove the usefulness of our theory, we present a simple but yet fairly general appli-

cation in this Section. Consider the boundary value problem

− 𝑢″(𝑡) = 𝑓 (𝑡, 𝑢(𝑡)) + 𝛾(𝑡)𝑢(𝜂(𝑡)), 𝑡 ∈ [0, 1] 𝑢(0) = 0, 𝑢(1) = 𝜃‖𝑢‖. (11.4.1)
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where 𝑓 satisfies the L∞-Carathéodory conditions (see (𝐶5)), 𝛾 ∈ 𝐶(𝐼), 𝛾 ≥ 0, 𝜃 ∈ (0, 1)
and 𝜂 ∶ 𝐼 → 𝐼 is a measurable function such that for a fixed [𝑎, 𝑏] ⊂ (0, 1) such that

𝜂([𝑎, 𝑏]) ⊂ [𝑎, 𝑏]. Note that 𝑢 ∘ 𝜂 is in L∞(𝐼).
We could consider more complex boundary conditions or nonlinearities, but for the sake of

simplicity and insight we will keep it this way. Observe that this problem is equivalent to

𝑢(𝑡) = ∫1
0

𝑘(𝑡, 𝑠) [𝑓 (𝑠, 𝑢(𝑠)) + 𝛾(𝑠)𝑢(𝜂(𝑠))] d 𝑠 + 𝜃𝑡‖𝑢‖,

where

𝑘(𝑡, 𝑠) ∶=
⎧{
⎨{⎩

𝑠(1 − 𝑡), 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
𝑡(1 − 𝑠), 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

Observe that 𝑘 is nonnegative. Take Φ(𝑠) = supu�∈u� 𝑘(𝑡, 𝑠) = 𝑠(1 − 𝑠). By direct calculation
we obtain

Φ̃(𝑠) ∶= inf
u�∈[u�,u�]

𝑘(𝑡, 𝑠) =
⎧{
⎨{⎩

𝑠(1 − 𝑏), 0 ≤ 𝑠 ≤ u�
1−(u�−u�) ,

𝑎(1 − 𝑠), u�
1−(u�−u�) ≤ 𝑠 ≤ 1.

Thus, infu�∈u� Φ̃(𝑠)/Φ(𝑠) = min{𝑎, 1 − 𝑏}, so we have to take 𝑐 ≤ min{𝑎, 1 − 𝑏}. Fix

𝑐 = min{𝑎, 1 − 𝑏}. Observe that, for 𝑢 ∈ 𝐾 ,

𝑓 (𝑡, 𝑢(𝑡)) + 𝛾(𝑡)𝑢(𝜂(𝑡)) ≤𝑓 (𝑡, 𝑢(𝑡)) + 𝛾(𝑡)‖𝑢‖, 𝑡 ∈ 𝐼,
𝑓 (𝑡, 𝑢(𝑡)) + 𝛾(𝑡) min

u�∈[u�,u�]
𝑢(𝑡) ≤𝑓 (𝑡, 𝑢(𝑡)) + 𝛾(𝑡)𝑢(𝜂(𝑡)), 𝑡 ∈ [𝑎, 𝑏].

Hence, take 𝑔 ≡ 1, 𝑓u� = 𝑓 , 𝑚u� = 𝑛u� = 1, 𝑖 = 1, 2, 𝜑1[𝑢] = minu�∈[u�,u�] 𝑢(𝑡), 𝜑2[𝑢] = ‖𝑢‖,
�̃�1(𝑡) = �̃�2(𝑡) = �̃�(𝑡) = ∫1

0 𝑘(𝑡, 𝑠)𝛾(𝑠) d 𝑠 + 𝜃 𝑡.
Observe that, with these definitions, conditions (𝐶1)–(𝐶5), (𝐶7), (𝐶9) and (𝐶10) are

satisfied. Assume now that �̃�(𝑡) ≥ 𝑐‖�̃�‖ for 𝑡 ∈ [𝑎, 𝑏] and ‖�̃�‖ < 1. Then we have that (𝐶6)
and (𝐶8) are also satisfied.

If we write condition (𝐼1
u�) in terms of the choices we have made, we get

𝑓 −u�,u� sup
u�∈u�

(
�̃�(𝑡)

6(1 − ‖�̃�‖) + 1
2𝑡(1 − 𝑡)) < 1.

Of course, a sufficient condition in order for (𝐼1
u�) to be satisfied, which is easier to check, is

𝑓 −u�,u� (
‖�̃�‖

6(1 − ‖�̃�‖) + 1
8) < 1.

If we write condition (𝐼0
u�) in terms of the choices we have made, we get

𝑓u�,u�/u� (
‖�̃�‖

1 − ‖�̃�‖ ⋅ 𝑎(1 − 𝑏)[2 − (𝑏 − 𝑎)]
2𝑐[1 − (𝑏 − 𝑎)] + inf

u�∈[u�,u�]
∫u�

u�
𝑘(𝑡, 𝑠) d 𝑠) > 1.

Example 11.4.1. Let us nowconsider a particular case. Take 𝑓 (𝑡, 𝑢) = 𝑡𝑢2,𝛾(𝑡) = 𝑡(1−𝑡)+1
4 ,

𝜃 = 1/2 in the boundary value problem (11.4.1). Fix 𝜌1 = 5/2, 𝜌2 = 4, 𝑎 = 1/4, 𝑏 = 3/4.
With this data, we have 𝑐 = 1/4, 𝑓 −u�1,u�1 = 𝜌2

1 = 25/4, 𝑓u�2,u�2/u� = 4.
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Also, �̃�(𝑡) = 1
24𝑡 (17 − 3𝑡 − 4𝑡2 + 2𝑡3), ‖�̃�‖ = 1/2 and

sup
u�∈u�

(
�̃�(𝑡)

6(1 − ‖�̃�‖) + 1
2𝑡(1 − 𝑡))

=1
2 (1 + 5√2 cos (1

3 cot−1 ( 3
√31241

)) − 5√6 sin (1
3 cot−1 ( 3

√31241
)))

=0.540002 …

Hence, condition (𝐼1
u�1

) is satisfied.

Also,

(
‖�̃�‖

1 − ‖�̃�‖ ⋅ 𝑎(1 − 𝑏)[2 − (𝑏 − 𝑎)]
2𝑐[1 − (𝑏 − 𝑎)] + inf

u�∈[u�,u�]
∫u�

u�
𝑘(𝑡, 𝑠) d 𝑠) = 7

16,

so condition (𝐼0
u�2

) is satisfied. Therefore (𝑆2) in Theorem 11.2.5 is satisfied and problem

(11.4.1) has at least a solution which is positive in [1/4, 3/4].

We now apply Theorem 11.3.8 to the boundary value problem

− 𝑢″(𝑡) = 𝑓 (𝑡, 𝑢(𝑡)) + 𝛾(𝑡)𝑢(𝜂(𝑡)), 𝑢(0) = 𝑢′(1), 𝑢′(0) = 𝑢(1), (11.4.2)

rewriting sufficient conditions according to Remarks 11.3.9–11.3.11, for the points (1) − (3)
to be satisfied. First, let us bound ‖𝐿2‖ from above.

𝑘(𝑡, 𝑠) =
⎧{
⎨{⎩

1 + (1 − 𝑠)𝑡, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
1 − 𝑠 + (2 − 𝑠)𝑡, 0 < 𝑡 < 𝑠 ≤ 1,

𝐿2𝑢(𝑡) = ∫1
0

|𝑘(𝑡, 𝑠)|𝑢(𝑠) d 𝑠 ≤ ∫1
0

|𝑘(𝑡, 𝑠)| d 𝑠‖𝑢‖.

Hence we obtain

‖𝐿2‖ ≤ sup
u�∈[0,1]

∫1
0

|𝑘(𝑡, 𝑠)| d 𝑠 = 3
2.

Also, assuming ‖�̃�‖ < 1, take 𝐻2𝑢(𝑡) = ‖�̃�‖‖𝑢‖ ∀𝑡 ∈ 𝐼.
In this case 𝐻2(𝐾 ∩ 𝑃) = {𝑟 ‖�̃�‖ ∶ 𝑟 ∈ [0, +∞)} is a cone and therefore closed for the

sum, which means, by Remark 11.3.3, that (Id −𝐻2)−1 maps 𝐾 ∩ 𝑃 to itself. Furthermore,

we have that

(Id −𝐻2)−1𝑢(𝑡) = 𝑢(𝑡) +
‖�̃�‖

1 − ‖�̃�‖‖𝑢‖,

for ‖�̃�‖ ≤ 1/2, which satisfies (Id −𝐻2)−1𝑢 ≤ (Id −𝐻2)−1𝑣, (Id −𝐻2)−1(𝜆𝑢) ≤ 𝜆(Id −𝐻2)−1𝑢
for every 𝑢 ≤ 𝑣, 𝑢, 𝑣 ∈ 𝑃 ∩ 𝐾 , 𝜆 ∈ ℝ+.

On the other hand, we have

inf
u�∈[0,1]

∫u�
u�

𝑘(𝑡, 𝑠) d 𝑠 = 1
2(𝑏 − 𝑎)(2 − 𝑎 − 𝑏).

With these values, we have
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(1) ‖�̃�‖ ≤ 1
2 , 0 ≤ 𝑓 0

2 < 2
3(1 − ‖�̃�‖),

(2) ‖�̃�‖ < 1, 0 ≤ 2/[(𝑏 − 𝑎)(2 − 𝑎 − 𝑏)] < 𝑓1,0 ≤ ∞,

(3) ‖�̃�‖ < 1, 0 ≤ 2/[(𝑏 − 𝑎)(2 − 𝑎 − 𝑏)] < 𝑓1,∞ ≤ ∞.

Example 11.4.2. Consider again 𝑓 (𝑡, 𝑢) = 𝑡𝑢2, 𝛾(𝑡) = 𝑡(1 − 𝑡) + 1
4 , 𝜃 = 1/2, 𝑎 = 1/4,

𝑏 = 3/4; this time in the boundary value problem (11.4.2). We have that 𝑓 0
2 = 𝑓0 = 0 and

𝑓 ∞ = 𝑓∞ = +∞. Hence, the conditions (1) and (3) in Theorem 11.3.8 are satisfied and

therefore, by Lemma 8.1.2, the boundary value problem (11.4.2) has at least a solution.



A. A Hyperbolic Analog of the Phasor Addi-

tion Formula

A.1 Introduction

The idea for this chapter was born when the author was confronted with the need of sim-

plifying linear combinations of hyperbolic sines and cosines with the same argument into a

single trigonometric expression in order to solve for that argument (see Section 4.3). In the

usual euclidean case, there are very well know formulae for the sum of linear combinations of

sines and cosines. In particular, we have the phasor addition formula (equations (A.3.1)–(A.3.2)

are some of its incarnations) which, somehow, is a generalization of the standard formula

cos 𝑥 + sin 𝑥 = √2 sin(𝑥 + 𝜋/4). Nevertheless, similar formulae for the hyperbolic case

seem to be absent from the literature, thus the results of this Chapter were published in [166].

It is interesting to note that something that seems so trivial as a mere algebraic manipu-

lation has profound (and very well studied) roots in physics, where these linear combinations

(in the euclidean case) occur naturally when studying phasors. This chapter is written with the

intention of introducing the reader to the usual phasor formalism used in physics and the mo-

tivation behind it, containing all the rigor expected by a mathematician. It will also generalize

the formulae previously derived for the hyperbolic case with the hope they may eventually

become handy for the reader.

A.2 Phasors in physics

To bemore precise, phasors appear in Physics from the need of establishing some kind of arith-

metic for the set of functions

ℱ ∶= {𝑓 ∶ ℝ → ℝ ∶ 𝑓 (𝑡) = 𝑎 cos(𝜔𝑡 + 𝜑), 𝑎 ∈ ℝ, 𝜑 ∈ ℝ|∼},

for some fixed 𝜔 ∈ ℝ\{0} and where 𝜑1 ∼ 𝜑2 if and only if 𝜑1 − 𝜑2 ∈ 2𝜋ℤ for any

𝜑1, 𝜑2 ∈ ℝ. The parameters present in the functions of ℱ are called, respectively, amplitude

(𝑎), frequency (𝜔) and phase (𝜑). The functions in ℱ occur mostly in problems related to Me-

chanics and Electronics (see, for instance, [56, 107, 140]), but their origin is rooted in arguably

the most important problem in Physics: the harmonic oscillator.

If we consider one space variable 𝑥 and a time variable 𝑡, the Euler-Lagrange equation of

motion (a fundamental principle of Dynamics) implies that the equation of motion of a free

particle is given by

𝑚 𝑥″(𝑡) + 𝑉 ′(𝑥(𝑡)) = 0, (A.2.1)

where 𝑚 is the mass of the particle and 𝑉 ∶ ℝ → ℝ is a given potential. Equation (A.2.1) is,

basically, Newton’s second Law of motion for the potential 𝑉 .
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In many problems of Physics it is common to chose as potential a quadratic function of the

kind 𝑉(𝑥) = 1
2𝑘 𝑥2 with 𝑘 > 0. This is the case, for instance, of Hook’s Law on the force

of a spring, but this kind of potential also occurs in problems concerning pendula (when the

angle of displacement is considered to be small), RLC circuits, or acoustical systems. If fact, this

potential appears naturally when taking a ‘first order’ approximation for small perturbations

on a mass in a stable equilibrium with respect to the forces it is subject to.

Hence, considering𝑉(𝑥) = 1
2𝑘 𝑥2, and defining𝜔 = √𝑘/𝑚, we have that equation (A.2.1)

can be expressed as

𝑥″(𝑡) + 𝜔2𝑥(𝑡) = 0,
which is known as the equation of the harmonic oscillator.

The set of solutions of this equation is precisely

{𝑎 cos 𝜔𝑡 + 𝑏 cos (𝜔𝑡 + 𝜋/2) ∶ 𝑎, 𝑏 ∈ ℝ}

(observe that − cos (𝜔𝑡 + 𝜋/2) = sin 𝜔𝑡). Therefore, the need for adding functions in ℱ
appears in a natural way, because they are the solutions of one or more harmonic oscillators

with the same constant 𝑘.
Now, the question that almost any mathematician would ask is, ‘what happens when 𝑘 <

0?’ This situation has to do with the theory of critical phenomena [157]. Briefly speaking, the

potential has a critical point at 𝑘 = 0 and for 𝑘 < 0 the physical laws change qualitatively. This

is the case of phase transitions in matter, for instance, the change from liquid to vapor or from

being a normal conductor to being a superconductor.

In this new scenario, we can define 𝜔 = √−𝑘/𝑚 and the equation derived from equation

(A.2.1) is

𝑥″(𝑡) − 𝜔2𝑥(𝑡) = 0, (A.2.2)

which has

{𝑎 cosh 𝜔𝑡 + 𝑏 sinh 𝜔𝑡 ∶ 𝑎, 𝑏 ∈ ℝ}
as set of solutions. Now, can we develop a hyperbolic version of the phasor understanding

of equation (A.2.2)? Section A.4 will answer this question and in Section A.3 we establish the

basics of the phasor formalism. Finally, Section A.5 is a brief note on the possible extensions of

the phasor addition formula and a new way of obtaining it.

A.3 The phasor addition formula

Fix 𝜔 ∈ ℝ. First of all, we will show that ℱ is a group using some basic group algebra. Let

ℱℂ ∶= {𝑓 ∶ ℝ → ℂ ∶ 𝑓 (𝑡) = 𝑧𝑒u�u�u�, 𝑧 ∈ ℂ}.

The functions in ℱ are called phasors. Observe that the map 𝑃 ∶ u�(ℝ, ℂ) → u�(ℝ, ℂ) such

that 𝑃𝑓 (𝑡) = 𝑓 (𝑡)/𝑒u�u�u� is a group isomorphism with respect to the sum. We have that ℱ is a

subset of u�(ℝ, ℂ) and (ℂ, +), identified with the set of constant functions of u�(ℝ, ℂ), is a
subgroup of u�(ℝ, ℂ). Furthermore, 𝑃|ℱℂ

∶ ℱℂ → ℂ is bijective. Hence, (ℱℂ, +) is a group.

To see this it suffices to see that 𝑥 + 𝑦 ∈ ℱℂ for any given 𝑥, 𝑦 ∈ ℱℂ. 𝑃(𝑥), 𝑃(𝑦) ∈ ℂ and,

since (ℂ, +) is a group, 𝑃(𝑥) + 𝑃(𝑦) ∈ ℂ. Thus, 𝑃−1(𝑃(𝑥) + 𝑃(𝑦)) = 𝑥 + 𝑦 ∈ ℱℂ.
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On the other hand, consider the real part operator ℜ ∶ u�(ℝ, ℂ) → u�(ℝ, ℝ). ℜ is a

surjective homomorphism and ℜ|ℱℂ
∶ ℱℂ → ℱ is a surjective function. Thus, ℱ is also a group.

To see this, let 𝑥, 𝑦 ∈ ℱ and 𝑥′, 𝑦′ ∈ ℱℂ such thatℜ(𝑥′) = 𝑥, ℜ(𝑦′) = 𝑦. Hence, 𝑥′+𝑦′ ∈ ℱℂ
and ℜ(𝑥′ + 𝑦′) = 𝑥 + 𝑦 ∈ ℱ. Due to these homomorphisms between the considered groups,

to study the sum in ℱ, it is enough to study the sum in ℂ.

Let 𝑎 𝑒u�u�, 𝑏 𝑒u�u� ∈ ℂ\{0}. Then 𝑎 𝑒u�u� + 𝑏 𝑒u�u� = 𝑐 𝑒u�u� for some 𝑐 ∈ ℝ+ and 𝜃 ∈ ℝ|∼.
Observe that

𝑎 𝑒u�u� = 𝑎 cos 𝜑 + 𝑖𝑎 sin 𝜑, 𝑏 𝑒u�u� = 𝑏 cos 𝜓 + 𝑖𝑏 sin 𝜓,
so

𝑎 𝑒u�u� + 𝑏 𝑒u�u� = 𝑎 cos 𝜑 + 𝑏 cos 𝜓 + 𝑖(𝑎 sin 𝜑 + 𝑏 sin 𝜓).
Therefore, using the law of cosines,

𝑐 = |𝑎 𝑒u�u� + 𝑏 𝑒u�u�| = √(𝑎 cos 𝜑 + 𝑏 cos 𝜓)2 + (𝑎 sin 𝜑 + 𝑏 sin 𝜓)2

= √𝑎2 + 𝑏2 + 2 𝑎 𝑏 cos(𝜑 − 𝜓).

In order to get 𝜃, we consider the principal argument function arg† such that, for every 𝑧 =
𝑥 + 𝑖𝑦 ∈ ℂ, arg(𝑧) = 𝛼 where 𝛼 is the only angle in [−𝜋, 𝜋) satisfying sin 𝛼 = 𝑦/√𝑥2 + 𝑦2

and cos 𝛼 = 𝑥/√𝑥2 + 𝑦2.

Therefore, 𝜃 = arg(𝑎 cos 𝜑 + 𝑏 cos 𝜓 + 𝑖(𝑎 sin 𝜑 + 𝑏 sin 𝜓)). So we can conclude that

𝑎 𝑒u�u� + 𝑏 𝑒u�u� = √𝑎2 + 𝑏2 + 2 𝑎 𝑏 cos(𝜑 − 𝜓)𝑒u� arg(u� cos u�+u� cos u�+u�(u� sin u�+u� sin u�)).
(A.3.1)

Equation (A.3.1) is called the phasor addition formula.

If we want to write equation (A.3.1) in terms of the elements of ℱ, we just have to take the

real part on both sides of the equation:

𝑎 cos(𝜔𝑡 + 𝜑) + 𝑏 cos(𝜔𝑡 + 𝜓) = √𝑎2 + 𝑏2 + 2 𝑎 𝑏 cos(𝜑 − 𝜓)
⋅ cos[𝜔𝑡 + arg(𝑎 cos 𝜑 + 𝑏 cos 𝜓 + 𝑖(𝑎 sin 𝜑 + 𝑏 sin 𝜓))].

In particular,

𝑎 cos(𝜔𝑡) + 𝑏 sin(𝜔𝑡) = 𝑎 cos(𝜔𝑡) − 𝑏 cos(𝜔𝑡 + 𝜋/2)
=√𝑎2 + 𝑏2 cos[𝜔𝑡 + arg(𝑎 − 𝑖𝑏)] = √𝑎2 + 𝑏2 sin[𝜔𝑡 + arg(𝑏 + 𝑖𝑎)].

(A.3.2)

From this last formula, we can recover the phasor addition formula just by observing the clas-

sical trigonometric identities sin(𝛼 ± 𝛽) = sin 𝛼 cos 𝛽 ± cos 𝛼 sin 𝛽 and cos(𝛼 ± 𝛽) =
cos 𝛼 cos 𝛽 ∓ sin 𝛼 sin 𝛽.

There is an straightforward geometrical representation of the phasor addition formula in

the euclidean case as Figure 1 shows. The key to this graphical representation is that, on ℱℂ,

†The principal argument function is basically the atan2 function common to the math libraries of many com-

puter languages such as FORTRAN [138, p. 42], C, Java, Python, Ruby or Pearl. The principal advantage of having

two arguments instead of one, unlike in the traditional definition of the arctan function, is that it returns the

appropriate quadrant of the angle, something that cannot be achieved with the arctan. Some more basic infor-

mation on the atan2 function and its usage can be found at http://en.wikipedia.org/wiki/Atan2.

http://en.wikipedia.org/wiki/Atan2
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Figure A.3.1: Graphical representation of 𝑎 cos 𝜃 + 𝑏 cos 𝜑 and 𝑎 sin 𝜃 + 𝑏 sin 𝜑

the sum is the sum of vectors on the plane. Then we just have to take the real part of this sum,

that is, the projection onto the 𝑂𝑋 axis, to obtain the desired result.

A.4 The hyperbolic version of the phasor addition formula

We now obtain a hyperbolic counterpart of the phasor addition formula as expressed in equa-

tion (A.3.2).

Let

u� ∶= {𝑓 ∶ ℝ → ℝ ∶ 𝑓 (𝑡) = 𝑎 cosh 𝜔𝑡 + 𝑏 sinh 𝜔𝑡; 𝑎, 𝑏 ∈ ℝ}.
It is straightforward to check that (u�, +) is a group (and a 2-dimensional real vector space).

Taking into account the identities

cosh(𝑥 + 𝑦) = sinh 𝑥 sinh 𝑦 + cosh 𝑥 cosh 𝑦,
sinh(𝑥 + 𝑦) = cosh 𝑥 sinh 𝑦 + sinh 𝑥 cosh 𝑦,

it is clear that

𝑎 cosh(𝜔𝑡 + 𝜑) + 𝑏 sinh(𝜔𝑡 + 𝜓)
=(𝑎 cosh 𝜑 + 𝑏 sinh 𝜓) cosh 𝜔𝑡 + (𝑎 sinh 𝜑 + 𝑏 cosh 𝜓) sinh 𝜔𝑡 ∈ u�.

It is also clear that

𝑎 cosh(𝜔𝑡 + 𝜑) + 𝑏 cosh(𝜔𝑡 + 𝜓)
=(𝑎 cosh 𝜑 + 𝑏 cosh 𝜓) cosh 𝜔𝑡 + (𝑎 cosh 𝜑 + 𝑏 cosh 𝜓) sinh 𝜔𝑡 ∈ u�,

and

𝑎 sinh(𝜔𝑡 + 𝜑) + 𝑏 sinh(𝜔𝑡 + 𝜓)
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=(𝑎 sinh 𝜑 + 𝑏 sinh 𝜓) cosh 𝜔𝑡 + (𝑎 sinh 𝜑 + 𝑏 sinh 𝜓) sinh 𝜔𝑡 ∈ u�.

So we can reduce the general sums 𝑎 cosh(𝜔𝑡 + 𝜑) + 𝑏 sinh(𝜔𝑡 + 𝜓), 𝑎 cosh(𝜔𝑡 +
𝜑) + 𝑏 cosh(𝜔𝑡 + 𝜓) and 𝑎 sinh(𝜔𝑡 + 𝜑) + 𝑏 sinh(𝜔𝑡 + 𝜓) to the more simple case of

𝛼 cosh 𝜔𝑡 + 𝛽 sinh 𝜔𝑡.
Now we prove the following hyperbolic version of the phasor addition formula.

Lemma A.4.1. Let 𝑎, 𝑏, 𝑡 ∈ ℝ. Then

𝑎 cosh 𝜔𝑡 + 𝑏 sinh 𝜔𝑡 =

⎧{{{{{{
⎨{{{{{{⎩

√|𝑎2 − 𝑏2| cosh (1
2 ln ∣u�+u�

u�−u� ∣ + 𝜔𝑡) if 𝑎 > |𝑏|,
−√|𝑎2 − 𝑏2| cosh (1

2 ln ∣u�+u�
u�−u� ∣ + 𝜔𝑡) if − 𝑎 > |𝑏|,

√|𝑎2 − 𝑏2| sinh (1
2 ln ∣u�+u�

u�−u� ∣ + 𝜔𝑡) if 𝑏 > |𝑎|,
−√|𝑎2 − 𝑏2| sinh (1

2 ln ∣u�+u�
u�−u� ∣ + 𝜔𝑡) if − 𝑏 > |𝑎|,

𝑎 𝑒u�u� if 𝑎 = 𝑏,
𝑎 𝑒−u�u� if 𝑎 = −𝑏.

(A.4.1)

Proof. For convenience, let 𝑐 = 𝑒u�u�. We prove the case 𝑎 > |𝑏|. The rest of the cases are

proved in an analogous fashion.

Observe that, if 𝑎 > |𝑏|, then 𝑎 + 𝑏, 𝑎 − 𝑏 > 0. Thus,

𝑎 cosh 𝜔𝑡 + 𝑏 sinh 𝜔𝑡

=𝑎
2(𝑐 + 𝑐−1) + 𝑏

2(𝑐 − 𝑐−1) = 𝑎 + 𝑏
2 𝑐 + 𝑎 − 𝑏

2 𝑐−1

=
√𝑎2 − 𝑏2

2
⎛⎜
⎝

√𝑎 + 𝑏
𝑎 − 𝑏𝑐 + √𝑎 − 𝑏

𝑎 + 𝑏𝑐−1⎞⎟
⎠

=
√𝑎2 − 𝑏2

2 (𝑒ln √ u�+u�
u�−u� 𝑐 + 𝑒− ln √ u�+u�

u�−u� 𝑐−1)

=
√𝑎2 − 𝑏2

2 (𝑒
1
2 ln u�+u�

u�−u� 𝑐 + 𝑒− 1
2 ln u�+u�

u�−u� 𝑐−1)

=
√𝑎2 − 𝑏2

2 (𝑒
1
2 ln u�+u�

u�−u� +u�u� + 𝑒−( 1
2 ln u�+u�

u�−u� +u�u�)) = √𝑎2 − 𝑏2 cosh (1
2 ln 𝑎 + 𝑏

𝑎 − 𝑏 + 𝜔𝑡) .

�

Remark A.4.2. One of the crucial differences between the hyperbolic and euclidean cases is

that in the hyperbolic case there is not periodicity†, what is more, we cannot relate the hyper-

bolic sine and cosine by a phase displacement, which implies that we may or may not be able

to express an element of u� in the form of a hyperbolic cosine depending on the values of 𝑎 and

𝑏, as Lemma A.4.1 shows.

Also, comparing it with formula (A.3.2), we observe two common elements. First, the ar-

gument of the function (euclidean or hyperbolic) involved is 𝜔𝑡 plus a displacement depending

on the parameters 𝑎 and 𝑏. The second similitude is that, multiplying such function, there is

a metric applied to the vector (𝑎, 𝑏). In the euclidean case case, it is just the euclidean norm

‖(𝑎, 𝑏)‖ = √𝑎2 + 𝑏2, that is, the square root of the metric 𝜇(𝑎, 𝑏) = 𝑎2 + 𝑏2 on ℝ2. In the

†Not, at least, when we consider those functions as defined on the real numbers. Hyperbolic functions are

periodic when defined on the complex plane.
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hyperbolic case, however, we have what is called theMinkowski norm ‖(𝑎, 𝑏)‖u� = √|𝜈(𝑎, 𝑏)|
where 𝜈(𝑎, 𝑏) = 𝑎2 − 𝑏2 is theMinkowski metric on ℝ2 of signature (1, −1). The Minkowski

norm is not a norm in the usual sense (it is not subadditive), but it provides a useful general-

ization of the concept of ‘length’ in the Minkowski plane†.

The vectors 𝑤 = (𝑎, 𝑏) are called timelikewhen 𝜈(𝑤, 𝑤) < 0, spacelikewhen 𝜈(𝑤, 𝑤) >
0 and null, or lightlikewhen 𝜈(𝑤, 𝑤) = 0. Observe that the two first cases of equation (A.4.1)

are for spacelike vectors, the two following ones for timelike vectors, and the two last ones for

lightlike vectors.

It is also possible to give a geometrical representation of linear combinations of hyperbolic

sines and cosines but, due to the euclidean nature of the plane, it is not as straightforward

as in the euclidean case. In Figure 2 we illustrate how 𝑎 cosh 𝑢 + 𝑏 sinh 𝑢 can be computed

graphically.

Figure A.4.1: Graphical representation of 𝑎 cosh 𝑢 + 𝑏 sinh 𝑢

Consider 𝑎, 𝑏, 𝑢 > 0. The graph of the hyperbola 𝑦2 −𝑥2 = 1 satisfies that its points are of

the form (cosh 𝑢, sinh 𝑢). Furthermore, the area between the vector (cosh 𝑢, sinh 𝑢), the
hyperbola and the 𝑂𝑋 axis is half the hyperbolic angle 𝑢. Now, if we draw the vector (−𝑏, 𝑎)
and consider the parallelogram formed by the vectors (cosh 𝑢, sinh 𝑢) and (−𝑏, 𝑎), the area
of this parallelogram is precisely 𝑎 cosh 𝑢 + 𝑏 sinh 𝑢. The reason for this is given by the cross

product formula for the area of the parallelogram and the fact that 𝑢 > 0:

|(cosh 𝑢, sinh 𝑢, 0) × (−𝑏, 𝑎, 0)| = |(0, 0, 𝑎 cosh 𝑢 + 𝑏 sinh 𝑢)|
=|𝑎 cosh 𝑢 + 𝑏 sinh 𝑢| = 𝑎 cosh 𝑢 + 𝑏 sinh 𝑢.

†For more information on this topic, the book [47] has a whole chapter on the trigonometry of the Minkowski

plane.



A. A final note: extending the formula 241

A.5 A final note: extending the formula

If there is anything powerful behind the concept of exponential, hyperbolic sine, hyperbolic

cosine, and other trigonometric functions, it is their wide range of definition. By this, we mean

that they are defined in any Banach algebra with unity†. Let u� be a Banach algebra and 𝑥 ∈ u�.

We define, as usual,

𝑒u� ∶=
∞

∑
u�=0

𝑥u�

𝑘! ,

cosh 𝑥 ∶=𝑒u� + 𝑒−u�

2 =
∞

∑
u�=0

𝑥2u�

(2𝑘)!,

sinh 𝑥 ∶=𝑒u� − 𝑒−u�

2 =
∞

∑
u�=0

𝑥2u�+1

(2𝑘 + 1)!.

Clearly, cosh is just the even part of the exponential and sinh its odd part, so 𝑒u� = cosh 𝑥 +
sinh 𝑥. If we go back to the proof of LemmaA.4.1, we observe that it relies only on these kind of

definitions, so it is valid for every 𝑎, 𝑏 ∈ ℝ and any 𝛾 = 𝜔𝑡 in a real Banach algebra with unity

u�, in particular for 𝛾 ∈ ℂ. This is consistent with the euclidean phasor addition formula as we

show next. Let 𝑎, 𝑏, 𝑥 ∈ ℝ, assume, for instance, 𝑎 > |𝑏| and consider 𝑎 cosh 𝑖𝑥 + 𝑏 sinh 𝑖𝑥.
Then, using Lemma A.4.1,

𝑎 cosh 𝑖𝑥 + 𝑏 sinh 𝑖𝑥 = √𝑎2 − 𝑏2 cosh (1
2 ln 𝑎 + 𝑏

𝑎 − 𝑏 + 𝑖𝑥)

=
√𝑎2 − 𝑏2

2
⎛⎜
⎝

√𝑎 + 𝑏
𝑎 − 𝑏𝑒u�u� + √𝑎 − 𝑏

𝑎 + 𝑏𝑒−u�u�⎞⎟
⎠

=1
2 [(𝑎 + 𝑏)(cos 𝑥 + 𝑖 sin 𝑥) + (𝑎 − 𝑏)(cos 𝑥 − 𝑖 sin 𝑥)] = 𝑎 cos 𝑥 + 𝑖𝑏 sin 𝑥

which is expected from the known fact that cosh 𝑖𝑥 = cos 𝑥, sinh 𝑖𝑥 = 𝑖 sin 𝑥.
This observation relating the generality of the definitions of the trigonometric functions

suggests yet another question. Is there a way to derive the hyperbolic phasor addition formula

in the same way we derived it for the euclidean case? Or, to be more precise, is there a Ba-

nach algebra which would fulfill the role ℂ played in the euclidean case? The answer is yes.

Remember the traditional definition of the complex numbers:

ℂ = {𝑥 + 𝑖𝑦 ∶ 𝑥, 𝑦 ∈ ℝ, 𝑖��∈ℝ, 𝑖2 = −1}.

In the same way, we can define the hyperbolic numbers‡:

𝔻 = {𝑥 + 𝑗𝑦 ∶ 𝑥, 𝑦 ∈ ℝ, 𝑗��∈ℝ, 𝑗2 = 1}.
†A Banach algebra u� is just an algebra endowed with a norm ‖ ⋅ ‖ that makes it a Banach space such that

‖𝑥𝑦‖ ≤ ‖𝑥‖‖𝑦‖ for every 𝑥, 𝑦 ∈ u�.
‡See [6, 47] for an extended description on hyperbolic number arithmetic, calculus and geometry. It is also

interesting to point out that hyperbolic numbers are a natural setting for the Theory of Relativity.
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We introduced the the hyperbolic numbers in Section 5.4.1. Here we recall that, as in the case

of the complex numbers, the arithmetic in𝔻 is the natural extension assuming the distributive,

associative, and commutative properties for the sum and product. Several definitions appear

in a natural way, parallel to the case of ℂ.

Let 𝑤 ∈ 𝔻, with 𝑤 = 𝑥 + 𝑗𝑦. Hence

𝑤 ∶= 𝑥 − 𝑗𝑦, ℜ(𝑤) ∶= 𝑥, ℑ(𝑤) ∶= 𝑦,

and since 𝑤𝑤 = 𝑥2 − 𝑦2 ∈ ℝ, we can define

|𝑤| ∶= √|𝑤𝑤|,

which is precisely the Minkowski norm. It follows that |𝑤1𝑤2| = |𝑤1||𝑤2| for every 𝑤1, 𝑤2 ∈
𝔻 and, if |𝑤| ≠ 0, then 𝑤−1 = 𝑤/|𝑤|2. If we define

‖𝑤‖ = √2(𝑥2 + 𝑦2),

we have that ‖ ⋅ ‖ is a norm and (𝔻, ‖ ⋅ ‖) is a Banach algebra, so the exponential and the

hyperbolic trigonometric functions are well defined. Also, it is clear from the definitions that

𝑒u�u� = cosh 𝑤 + 𝑗 sinh 𝑤,

and |𝑒u�u�| = 1 for 𝑥 ∈ ℝ.

The only important differencewith respect toℂ is that𝔻 is not a division algebra (not every

nonzero element has an inverse).

Now, let 𝑎, 𝑏 ∈ ℝ and 𝛾 = 𝛾1 + 𝑗𝛾2 ∈ 𝔻 with 𝛾1, 𝛾2 ∈ ℝ. Observe that

ℜ([𝑎 + 𝑗𝑏]𝑒u�u�) = 𝑎 cosh 𝛾 + 𝑏 sinh 𝛾.

We try, as we do with complex numbers, to rewrite (𝑎 + 𝑗𝑏)𝑒u�u� as 𝑟 𝑒u�u�, where 𝑟 ∈ [0, +∞)
and 𝜃 ∈ ℝ. Assume |𝑎 + 𝑗𝑏| ≠ 0. Then

𝑟 = |(𝑎 + 𝑗𝑏)𝑒u�u�| = |𝑎 + 𝑗𝑏|𝑒u�2,

and

(𝑎 + 𝑗𝑏)𝑒u�u� =𝑒u�2[𝑎 cosh 𝛾1 + 𝑏 sinh 𝛾1 + 𝑗(𝑎 sinh 𝛾1 + 𝑏 cosh 𝛾1)]
=|𝑎 + 𝑗𝑏|𝑒u�2 cosh 𝜃 + 𝑗|𝑎 + 𝑗𝑏|𝑒u�2 sinh 𝜃 = 𝑟 𝑒u�u�.

Therefore,

𝑎 cosh 𝛾1 + 𝑏 sinh 𝛾1 = |𝑎 + 𝑗𝑏| cosh 𝜃 and 𝑏 cosh 𝛾1 + 𝑎 sinh 𝛾1 = |𝑎 + 𝑗𝑏| sinh 𝜃.

That is, assuming 𝑎 > |𝑏| and defining 𝜎 = arctanh(𝑏/𝑎),

tanh 𝜃 =
𝑏 cosh 𝛾1 + 𝑎 sinh 𝛾1

𝑎 cosh 𝛾1 + 𝑏 sinh 𝛾1
=

u�
u� + tanh 𝛾1

1 + u�
u� tanh 𝛾1

= tanh(𝜎 + 𝛾1),
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so

𝜃 = arctanh 𝑏
𝑎 + 𝛾1 = 1

2 ln
1 + u�

u�

1 − u�
u�

+ 𝛾1 = 1
2 ln 𝑎 + 𝑏

𝑎 − 𝑏 + 𝛾1.

Hence,

𝑎 cosh 𝛾 + 𝑏 sinh 𝛾 =|𝑎 + 𝑗𝑏|𝑒u�2ℜ (𝑒u�( 1
2 ln u�+u�

u�−u� +u�1))

=|𝑎 + 𝑗𝑏|𝑒u�2 cosh (1
2 ln 𝑎 + 𝑏

𝑎 − 𝑏 + 𝛾1) .

For 𝛾 ∈ ℝ, we recover the first case of Lemma A.4.1.





B. AMathematica Implementation

Now we present the complete code of the program introduced in Chapter 7. The reader may

download theMathematicanotebook and abrief user’s guide from theWolframLibraryArchive

at http://library.wolfram.com/infocenter/MathSource/9087/.

1 Clear["Global`*"];
2 mess="done";
3 result="";
4

5 CLength[x_] := Module[{y}, y = x;
6 While[y[[Length[y]]] == 0, y = y[[1 ;; Length[y] - 1]]];
7 Length[y]]
8

9 NFill[x_, n_] := If[TrueQ[n > Length[x]], Join[x, Table[0, {n - Length[x]}]], x
];

10

11 Start[c1_,c2_,T_,cc1_]:= Module[
12 {asdf,aa,n,bb,bcn,rango2,m, Graphic,opred,Opp,cadenatexto,equation, ecuacion,

condcont, condcont2, ecinicial, ecu, eqaux,ViaLibre,c,lc,c1b,c2b},
13 Off[];
14 ecu=0;
15 aa=-T;
16 bb=T;
17 mess="Processing␣data...";
18 n=Max[CLength[c1],CLength[c2]]-1;
19 If[TrueQ[c1 \[Element] Reals && c2 \[Element] Reals && T \[Element] Reals],

Graphic = True, Graphic = False];
20 ViaLibre = True;
21 If[Not[n \[Element] Integers && n > 0], MessageDialog["Order␣must␣be␣a␣

positive␣integer"];
22 ViaLibre = False;
23 ];
24 If[Not[T > 0] && ViaLibre,
25 MessageDialog["T␣must␣be␣a␣positive␣real␣number"];
26 ViaLibre = False;
27 ];
28 If[Not[n + 1 == Length[c1] && n + 1 == Length[c2]] && ViaLibre,
29 MessageDialog[
30 "Vector␣of␣coefficients:␣LENGTH␣INCORRECT"];
31 ViaLibre = False;
32 ];
33 L[f_][x_] := Sum[c1b[[k + 1]] Derivative[k][f][-x] + c2b[[k + 1]] Derivative[

k][f][x], {k, 0, n}];
34 R[f_][x_] := Sum[c1b[[k + 1]] Derivative[k][f][-x] -(-1)^k c2b[[k + 1]]

Derivative[k][f][x], {k, 0, n}];

http://library.wolfram.com/infocenter/MathSource/9087/
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35 Clear[aux];
36 Opp=1;
37 If[Opp==1, aux[var_]:= cc1 /.u->var,aux[var_]:= cc1 /.{u->var,T->-T}];
38 EG=False;
39 If[Not[TrueQ[Norm[c1]*Norm[c2]==0]],
40 m=2 n;
41 c1b=NFill[c1,m+1];
42 c2b=NFill[c2,m+1];
43 bcn=2*CLength[cc1];
44 c=Table[0,{m+1}];
45 Do[c[[j + 1]] = Sum[(-1)^i*(c1b[[i + 1]]*c1b[[j - i + 1]] - c2b[[i + 1]]*

c2b[[j - i + 1]]), {i, 0, j}], {j, 0, m}];
46 aux2[u_]:= Join[aux[u], Expand[aux[R[u]]]];
47 ,
48 m=n;
49 c1b=NFill[c1,m+1];
50 c2b=NFill[c2,m+1];
51 EG=True;
52 bcn=CLength[cc1];
53 aux2[var_]:= aux[var];
54 If[TrueQ[Norm[c1]==0],
55 c=c2;
56 ];
57 If[TrueQ[Norm[c2]==0],
58 c=c1;
59 Opp=-1;
60 ];
61 ];
62 lc = CLength[c]-1;
63 If[TrueQ[c[[m+1]]==0],
64 MessageDialog["The␣reduced␣problem␣is␣of␣order␣less␣than␣2␣n"];
65 G[t_, s_] = "Undetermined";
66 ,
67 If[ViaLibre == True,
68 Do[alfa[i, j] = Coefficient[aux2[u][[i]], Derivative[j][u][-T]], {j, 0, m

- 1}, {i, 1, bcn}];
69 Do[beta[i, j] = Coefficient[aux2[u][[i]], Derivative[j][u][T]], {j, 0, m

- 1}, {i, 1, bcn}];
70 Do[U[i][u_]= Sum[alfa[i, j]*Derivative[j][u][-T] + beta[i, j]*Derivative[

j][u][T], {j, 0, m - 1}], {i, 1, bcn}];
71 condcont2 = Sort[Table[Expand[U[i][u]] == 0, {i, 1, bcn}]];
72 condcont = Sort[Table[Expand[aux2[u][[i]]] == 0, {i, 1, bcn}]];
73 If[TrueQ[Chop[condcont] == Chop[condcont2]],
74 opred[u_][t_]:=Sum[c[[k+1]]Derivative[k][u][t], {k,0, lc}];
75 D0[k_][u_]:=Derivative[k][u][0];
76 equation=Join[{opred[y][t] == 0}, Table[D0[i][y] == 0, {i, 0, lc - 2}],

{D0[lc-1][y] == 1}];
77 mess="Solving␣homogeneous␣equation...";
78 ecinicial = DSolve[equation, y, t];
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79 cadenatexto = ToString[ecinicial];
80 If[Not[StringMatchQ[cadenatexto, "*Root*"]],
81 Result=Style[Column[{
82 Style["␣", Bold],
83 Style["PROBLEM:␣", Bold], Style["␣", Bold],
84 Row[{TraditionalForm[L[u][t]] == \[Sigma][t], ",␣␣␣␣t␣\[Element]␣["

, -T, ",", T, "]"}],
85 Style["␣", Bold],
86 Style["with␣boundary␣conditions", Bold],
87 Style["␣", Bold], Table[aux[u][[i]] == 0, {i, 1,Length[aux[u]]}],
88 Style["␣", Bold],
89 Style["The␣Green\.b4s␣function␣is␣giving␣by:␣", Bold],
90 r = ComplexExpand[Re[y /. ecinicial[[1]]]];,
91 mess="Computing␣fundamental␣matrix...";
92 If[TrueQ[c \[Element] Reals && T \[Element] Reals],
93 Do[soluci[k] = DSolve[Join[{opred[y][t] == 0}, Table[D0[i][y] ==

0, {i, 0, k-2}], {D0[k-1][y] == 1}, Table[D0[i][y]== 0, {i, k, lc-1}]], y[t
], t];

94 yk[k][t_]=FullSimplify[ComplexExpand[y[t]/.soluci[k][[1]]]];
95 , {k, 1, lc}];
96 ,
97 Do[yk[k][t_] = Sum[c[[lc + 1 - j]] Derivative[j - k][r][t], {j,

k, lc}];, {k, 1, lc}];
98 ];
99 rango2=MatrixRank[Table[U[i][yk[j]], {i, 1, bcn}, {j, 1, lc}]];

100 If[TrueQ[Not[rango2 == lc]],
101 MessageDialog["There␣is␣no␣Green's␣function␣for␣the␣reduced␣

problem"];
102 Graphic = False;
103 G[t_, s_] = "There␣is␣no␣unique␣solution";
104 ,
105 eqaux=Table[Sum[beta[i, j]*Derivative[j][r][T - s] , {j, 0, lc -

1}] + Sum[d[j][s] U[i][yk[j]],{j, 1, lc}]==0, {i, 1, bcn}];
106 ecuacion =Solve[eqaux , Table[d[j][s], {j, 1, lc}]];
107 If[ecuacion == {},
108 MessageDialog["There␣is␣no␣Green's␣function"];
109 Graphic = False;
110 G[t_, s_] = "There␣is␣no␣unique␣solution";
111 ,
112 ecu = 1;
113 mess="Constructing␣Green's␣function...␣(100␣s␣max)";
114 asdf=ecuacion/.Rule[a_,b_]:>b;
115 Do[e[j][s_]= d[j][s] /. {d[j][s]->asdf[[1]][[j]]}, {j, 1, lc}]

;
116 h[t_, s_] = Simplify[Sum[e[i][s]*yk[i][t], {i, 1, lc}],

TimeConstraint->15];
117 G1[t_, s_] = Simplify[TrigFactor[Chop[r[t - s]] + h[t, s]],

TimeConstraint->15];
118 G2[t_, s_] = Simplify[TrigFactor[h[t, s]],TimeConstraint->15];
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119 Gb[s_][t_] = Piecewise[{{G1[t, s], -T <= s<=T&&-T <= t<=T&&s <=
t},{G2[t, s], -T <= s<=T&&-T <= t<=T&&t<s},{0, -T>s||-T>t||T<s||T<t}}];

120 If[Not[EG],
121 Gb1[t_,s_]=PiecewiseExpand[R[Gb[s]][t], TimeConstraint ->

15];
122 G[t_,s_]=Piecewise[{{Simplify[Gb1[t,s],-T<=s<=T\[And]-T<=t<=T

\[And]s-t<=0\[And]s+t<=0],-T<=s<=T\[And]-T<=t<=T\[And]s-t<=0\[And]s+t<=0},{
Simplify[Gb1[t,s],-T<=s<=T\[And]-T<=t<=T\[And]s-t>0\[And]s+t<=0],-T<=s<=T\[
And]-T<=t<=T\[And]s-t>0\[And]s+t<=0},{Simplify[Gb1[t,s],-T<=s<=T\[And]-T<=t
<=T\[And]s-t<=0\[And]s+t>0],-T<=s<=T\[And]-T<=t<=T\[And]s-t<=0\[And]s+t
>0},{Simplify[Gb1[t,s],-T<=s<=T\[And]-T<=t<=T\[And]s-t>0\[And]s+t>0],-T<=s
<=T\[And]-T<=t<=T\[And]s-t>0\[And]s+t>0}}];

123 G[t_,s_]=Chop[PiecewiseExpand[G[t,s]/c[[m+1]], TimeConstraint
-> 15]];

124 ,
125 If[Opp==1,
126 G[t_,s_]=Chop[PiecewiseExpand[Gb[s][t]/c[[m+1]],

TimeConstraint -> 15]];
127 ,
128 G[t_,s_]=Chop[PiecewiseExpand[Gb[-s][t]/c[[m+1]],

TimeConstraint -> 15]];
129 ];
130 ];
131 ];
132 ];
133 Row[{Style["G[t,s]=␣", Bold], TraditionalForm[G[t, s]]}],
134 Style["␣", Bold],
135 Style["␣", Bold],
136 Style["␣", Bold],
137 If[TrueQ[Graphic],
138 If[ecu == 1,
139 Plot3D[G[t, s], {s, aa, bb}, {t, aa, bb}]
140 ,
141 Print["Cannot␣show␣the␣graphic"]]]
142 },{Frame->True,Alignment->Center}]]
143 ,
144 MessageDialog["Green's␣Function␣with␣a␣complex␣expression"];
145 ];
146 ,
147 MessageDialog["The␣boundary␣conditions␣are␣not␣valid"];
148 ];
149 ];
150 ];
151 mess="done";
152 ];
153

154 F[]:=(c1={1, 0, 1};c2={0, 0, 0};lim=1;cc1={u[1],u[-1]}; Nap=False;Framed[Column
[{

155 Style["Program␣to␣compute␣the␣Green's␣␣function␣of␣the␣equation:␣␣␣␣", Bold],
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156 Style[Row[{TraditionalForm[Sum[Subscript[a, j] Derivative[j][u][-t], {j, 0, n}]
+ Sum[Subscript[b, j] Derivative[j][u][t] , {j, 0, n}] == \[Sigma] [t]],",
␣␣␣␣t\[Element][-T,T]"}], Bold],

157 Style[Column[{"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣"}, Center], Bold],
158 Style["with␣boundary␣conditions:␣␣␣␣", Bold],
159 Style[Row[{TraditionalForm[Subscript[U,i][u]=Sum[Subsuperscript[\[Alpha],i,j]

Superscript[u,(j)][-T],{j,0,n-1}]+Sum[Subsuperscript[\[Beta],i,j]
Superscript[u,(j)][T],{j,0,n-1}]==0],",␣␣␣␣i=1,...,n"}], Bold],

160 Style["␣", Bold],
161 Column[{Panel[Grid[{
162 {"Coefficients␣\!\(\*SubscriptBox[\(a\),␣\(i\)]\)", InputField[Dynamic[c1

]]},
163 {"Coefficients␣\!\(\*SubscriptBox[\(b\),␣\(i\)]\)", InputField[Dynamic[c2

]]},
164 {"T", InputField[Dynamic[lim]]},
165 {"Boundary␣conditions", InputField[Dynamic[cc1]]},
166 {"Numerical␣Approximation", Checkbox[Dynamic[Nap],Appearance->Large]}
167 },Alignment -> {{Right, Left}}]],
168 Button["Enter", If[Nap,
169 If[Element[c1,Reals],c1= N[c1]];
170 If[Element[c2,Reals],c2=N[c2]];
171 ];Start[c1, c2, lim, cc1],ImageSize->150,Method -> "Queued"]},Alignment->

Center],
172 Column[{Framed[Style[Row[{"Progress:␣",Dynamic[mess]}],Bold]],Dynamic[Result]},

Alignment->Left]}]])
173

174 F[]





C. Resumen en castellano

La presente Tesis contiene la mayoría del trabajo llevado a cabo por el autor en los últimos

años. Es, de hecho, una aventura investigadora en el ámbito de las soluciones de ecuaciones

diferenciales, de ahí el título «Existencia yMultiplicidad de Soluciones de Ecuaciones diferencia-

les Funcionales». Sin embargo, ¿cómo aproximarse al estudio de un área tan amplia? En tanto

a lo que las soluciones son a las ecuaciones diferenciales, podemos optar por una aproxima-

ción bastante sencilla: existen dos posibilidades, o bien hay soluciones o no las hay y, si las hay,

puede haber una o muchas. De este simple hecho surge este trabajo y las publicaciones que se

han realizado durante la elaboración del mismo [34,35,39–44,96,165,166].

C.1 Primera Parte

Que queramos demostrar que hay una –unicidad de solución– o muchas –multiplicidad de

solución– es lo que determina que usemos unmétodo u otro a la hora de tratar cada problema

considerado. La existencia se ha obtenido tradicionalmente en una de dos maneras: o bien

a través de la construcción directa de la solución, o bien usando métodos topológicos, estos

últimos, en la mayoría de los casos, concerniendo contracciones globales como el teorema de

contracción de Banach.

En la primera parte de esta memoria nos ocuparemos de la unicidad por medio de la cons-

trucción directa usando lo que se conoce como función de Green, esto es, la obtención de la

solución de un problema del tipo 𝐿𝑢 = ℎ, 𝑢 ∈ 𝐻, donde 𝐻 es un espacio de funciones, 𝐿 un

operador lineal definido en 𝐻 y ℎ ∈ 𝐿(𝐻), expresándola, de ser posible, de la forma

𝑢(𝑡) = ∫ 𝐺(𝑡, 𝑠)ℎ(𝑠) d 𝑠,

con los extremos de integración adecuados para el problema. Se entiende entonces que esta

expresión proporciona los que se conocen como principios del máximo y del anti-máximo, los

cuales, en pocas palabras, recogen la idea de que, si 𝐺 es positiva y ℎ es positiva entonces 𝑢
es positiva –principio del anti-máximo– y que si 𝐺 es negativa y ℎ es positiva entonces 𝑢 es

negativa –principio del máximo–.

Estas son sólo algunas de las notables propiedades de las funciones de Green pero, como

suele suceder con las estructuras matemáticas más útiles, estas son a menudo también las

más difíciles de obtener. El caso de las ecuaciones funcionales no es una excepción a esta regla

y a través de los siete primeros capítulos de esta memoria exploraremos la construcción de

estas funciones y sus diferentes aplicaciones. Centraremos nuestra atención en el caso de las

ecuaciones con involuciones, un campo particular de las ecuaciones diferenciales funcionales

donde podemos reducir –de una manera específica que detallaremos en su momento– el pro-

blema estudiado a un problema con ecuaciones diferenciales ordinarias. Además escribiremos

un programa de ordenador en Mathematica que nos permitirá calcular automáticamente las

funciones de Green para el caso de coeficientes constantes y condiciones de contorno de dos

puntos.
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Pero, ¿qué son las involuciones? Este tipo particular de funciones ha constituido un área

de investigación de interés desde que Rothe calculó por primera vez, en 1800, el número de

involuciones diferentes que es posible encontrar sobre conjuntos finitos [152]. Después de eso,

Babbage publicó en 1815 [7] el trabajo fundacional en el cual las ecuaciones funcionales se

consideraban por primera vez, en particular aquellas de la forma 𝑓 ∘ 𝑓 = Id, cuyas soluciones
distintas de la identidad son, precisamente, lo que llamamos involuciones†.

A pesar de los progresos en el estudio de las ecuaciones funcionales, tenemos que esperar

hasta 1940, cuando Silberstein [156] resolvió por primera vez una ecuación diferencial con in-

volución. El interés por las ecuaciones diferenciales con involuciones es retomado por Wiener

en 1969 [186]. Wiener, junto con Watkins, liderarán los descubrimientos en esta dirección en

las décadas venideras [1,155,173,174,186–189]. Muchos autores han llevado a cabo una gran

cantidad de trabajo desde entonces en este campo. Hacemos una breve reseña al respecto en

el Capítulo 2. En el año 2013 aparecieron de la mano del autor y su director de Tesis los prime-

ros resultados sobre funciones de Green para ecuaciones diferenciales [39] y estos estudios se

continúan en [40,41,43,44]. La primera parte de la Tesis recoge estos descubrimientos relacio-

nados con funciones de Green. En el primer capítulo repasamos algunos resultados generales

sobre involuciones que nos ayudarán a entender sus sorprendentes propiedades analíticas y

algebraicas.

El Capítulo 2, como ya hemos dicho, está dedicado a aquellos resultados con involución

no directamente asociados a funciones de Green. Las demostraciones de esos resultados se

pueden encontrar en la bibliografía citada en cada caso. No se profundiza en los mismos, pero

se resumen a conveniencia del lector, quien puede consultar asimismo el libro deWiener [187]

que, a pesar de haber sido escrito hace más de veinte años, sigue siendo un buen punto de

partida en lo que a este tipo de resultados generales se refiere. En este capítulo, es interesante

observar la progresión y los distintos tipos de resultados recogidos con aquellos relacionados

con funciones de Green que aparecen en los capítulos posteriores.

En el siguiente capítulo, el 3, empezamos a trabajar con la teoría de funciones de Green

para ecuaciones diferenciales funcionales con involuciones en aquellos casos más sencillos:

problemas de orden uno con coeficientes constantes y reflexión. En él resolvemos el problema

asociado al operador 𝑥′(𝑡) + 𝑚 𝑥(−𝑡) y describimos sus autovalores, obteniendo la función

de Green en el caso no resonante y el rango de valores del parámetro real 𝑚 para el cual el

núcleo integral –la función de Green–, que proporciona la única solución, tiene signo constan-

te. Esto nos permite derivar de manera automática principios del máximo y del anti-máximo.

Este estudio se lleva a cabo con diferentes condiciones de contorno, analizando las caracterís-

ticas específicas que aparecen cuando consideramos condiciones periódicas, anti-periódicas,

iniciales o lineales arbitrarias. Además aplicamos algunas técnicas muy conocidas –sub y so-

bresoluciones, el teorema de contracción-expansión de Krasnosel’skiĭ…– para obtener nuevos

resultados que son ilustrados con diversos ejemplos.

Calcular las funciones de Green de manera explícita en el caso de un problema con coe-

ficientes no constantes no es sencillo, ni siquiera cuando estamos tratando con ecuaciones

†Babbage, en el prefacio de su trabajo [7], describió muy bien la importancia de las involuciones: «Muchos

de los cálculos con los que estamos familiarizados consisten de dos partes, una directa y su inversa; así, cuando

consideramos el exponente de una cantidad, esto es, elevarla a una potencia, esa es la operación directa; cuando

tomamos la raíz de una cantidad, ese es elmétodo inverso […] En todos los casos elmétodo inverso es con diferencia

el más difícil y también podríamos añadir que el más útil».
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diferenciales ordinarias. Siguiendo los resultados publicados en [41], nos enfrentamos a es-

tos obstáculos en el Capítulo 4, donde reducimos un nuevo problema general con coeficientes

no constantes e involuciones diferenciables arbitrarias al caso estudiado en el Capítulo 3. Pa-

ra poner esto en práctica llevamos a cabo un triple artificio tomando como punto de partida

los conocimientos del capítulo anterior. Primero añadimos un término que depende de 𝑥(𝑡)
que hace que la situación no cambie demasiado con respecto a la estudiada en el Capítulo 3

para luego reducir el caso de una involución general al caso de la reflexión usando algo del

conocimiento adquirido en el Capítulo 1 . El último paso, ir del caso constante al no constante,

es un tema aparte. Tenemos que usar un cambio especial de variable –sólo válido en deter-

minados casos– que nos permitirá obtener la función de Green para aquellos problemas con

coeficientes no constantes a partir de la función de Green de problemas análogos con coefi-

cientes constantes. En estemismo capítulo estudiamos además aquellos casos en los que dicho

cambio de variable no es posible, demostrando que, cuando se presentan, puede ocurrir que

exista solución única, múltiple o que no exista solución.

Para terminar esta parte del trabajo más teórica, tenemos el Capítulo 5, en el que profundi-

zamos en la naturaleza algebraica de las reflexiones y extrapolamos estas propiedades a otras

álgebras. De estamanera, no sólo generalizamos los resultados del capítulo 3 al caso de proble-

mas de orden 𝑛 y condiciones de contorno de dos puntos generales, sino que además resolve-

mos problemas diferenciales funcionales en los que participa la transformada de Hilbert y / u

otros operadores adecuados, escogidos por sus propiedades algebraicas. En este capítulo redu-

cimos los problemas en cuestión a ecuaciones diferenciales ordinarias para poder resolverlos

y describimos un método general para obtener funciones de Green de problemas funcionales

(diferenciales o no) generales. La utilidad de este método se ilustra con el caso de problemas

con condiciones de contorno homogéneas con reflexión y varios ejemplos específicos.

Es necesario apuntar que las transformaciones necesarias en este proceso en el que re-

ducimos un problema funcional a uno ordinario son de naturaleza puramente algebraica. Esta

teoría, publicada en [44], es por tanto, y en ese sentido, similar a lo que se conoce como aná-

lisis algebraico, una teoría con la cual, a través del estudio de álgebras y módulos de Ore, se

obtiene información importante acerca de algunos problemas funcionales, incluyendo solucio-

nes explícitas [21, 50]. Sin embargo, las estructuras algebraicas con las que lidiamos aquí son

en cierto modo diferentes, es decir, en general no son álgebras de Ore†.

Cabe destacar que de entre las ecuaciones diferenciales funcionales reducibles, aquellas

con reflexión han generado un interés más allá del mero formalismo matemático. Algunas por

sus aplicaciones a la mecánica cuántica supersimétrica [73,147,153] y otras por su uso en otras

áreas de lasmatemáticas, como son losmétodos topológicos de los que tratamos en la segunda

parte de la Tesis.

El final de la primera parte de la memoria coincide con dos capítulos dedicados a aplicar

los resultados obtenidos anteriormente a algunos problemas relacionados. Para empezar, en el

Capítulo 6 obtenemos algunos resultados relativos a la periodicidad de las soluciones de aquel

primer problema con reflexión. Esto se hace recogiendo de nuevo una interesante relación

entre una ecuación con reflexión y una ecuación con un 𝜑-laplaciano expuesta en el Capítulo

3 que nos permite deducir la existencia de solución en un caso partiendo del otro y viceversa.

El estudio de esta periodicidad de problemas de valor inicial se lleva a cabo poniendo el foco

†Remitimos al lector a [118,149–151] para una aproximación algebraica a la teoría abstracta de problemas de

contorno y sus aplicaciones a la computación simbólica.
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sobre el cálculo explícito del período, lo que resulta interesante ya que nos permitirá estudiar

su variación en función de varios parámetros.

El último capítulo de la primera parte, el Capítulo 7, nos devuelve a una situación más prác-

tica para poder aplicar, en situaciones concretas, el método desarrollado en el Capítulo 5 para

obtener funciones de Green asociadas a ecuaciones diferenciales con reflexión, coeficientes

constantes y condiciones de contorno de dos puntos. Es del máximo interés poder disponer de

programas de ordenador adecuados que nos permitan obtener las funciones de Green men-

cionadas dado que, en general, los cálculos necesarios para derivarlas son muy complicados.

Siendo así, presentamos en este capítulo un algoritmo para el caso implementado en Mathe-

matica. Además añadimos algunas consideraciones que nos podrían ayudar a simplificar los

cálculos a realizar, y por lo tanto el tiempo necesario para ejecutar el programa, en un futuro.

El lector puede encontrar en el Apéndice B el código exacto del programa en cuestión.

C.2 Segunda Parte

La fortaleza del método de las funciones de Green reside en que estas son los núcleos in-

tegrales del operador inverso que nos proporciona la única solución del problema en cuestión

pero, por supuesto, este no es el camino a tomar cuando lo esperable es que existan varias

soluciones. En la segunda parte de la memoria exploramos un tipo particular demétodos topo-

lógicos que nos permiten demostrar la existencia de múltiples soluciones e incluso localizarlas

dentro de un conometiculosamente definido. Los problemas a los que vamos a aplicar esta téc-

nica contendrán una no-linealidad, esto es, una relación funcional no lineal entre las derivadas

de la solución y la propia solución. El punto clave de estemétodo se encuentra en un perfeccio-

namiento del teorema clásico de Guo-Krasnosel’skiĭ para la contracción / expansión en conos.

La no linealidad, que toma valores reales, oscilará de una determinada manera, sobrepasando

y quedando por debajo, alternativamente, de ciertos valores dependientes de las variables y

estas ondas causarán, precisamente, la existencia de muchas soluciones. Esta situación es si-

milar a la que ocurre cuando agitamos un cubo con agua. Si hacemos una pequeña marca un

poco por encima del nivel del agua y agitamos el cubo, empiezan a aparecer ondas sobre la

superficie y, cuando llegan a una altura suficiente, alcanzan la línea que habíamos marcado.

Cuantas más ondas hay, tantas más veces el agua alcanza el nivel marcado.

Sencillo como pueda parecer, las condiciones que se tienen que satisfacer para poder apli-

car esta técnica pueden llegar a ser, como se puede apreciar en esta parte, muy complicadas.

Además, esta complejidad crece a medida que los problemas a estudiar aumentan en genera-

lidad.

Comodecíamos, antes de llegar a esta parte se habían estudiado, eminentemente, las situa-

ciones de unicidad de solución en casos lineales pero, cuando hay no-linealidades involucradas,

los problemas se escapan a la construcción directa de soluciones y otros métodos diferentes

se hacen necesarios.

Los métodos topológicos se vuelven útiles en estas situaciones, en particular aquellos rela-

cionados con el índice de punto fijo. En los cuatro capítulos de esta parte usamos esta técnica

para resolver cuatro problemas crecientes en dificultad. La estructura del método es bastante

consistente y se desarrolla como sigue.
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(1) Se establece la naturaleza del problema a ser estudiado y sus características específicas.

(2) Se elabora una lista de propiedades, a tener por parte de los elementos considerados en

el problema, que son necesarias para poder garantizar que los resultados de existencia /

multiplicidad / no existencia de soluciones se pueden aplicar. Por ejemplo el operador 𝐹
del cual los puntos fijos serán las soluciones a nuestro problema tiene que ser continuo

y compacto.

(3) Se define un cono apropiado𝐾 en el cual localizaremos las soluciones del problema. Aquí

tenemos que tomar una importante decisión: los conos grandes permiten encontrar más

soluciones pero, al mismo tiempo, no proporcionan buenos resultados de localización.

(4) Se demuestra que el operador 𝐹 es compacto, continuo, y lleva 𝐾 en 𝐾 .

(5) Se encuentran condiciones suficientes para las cuales el índice de punto fijo del opera-

dor 𝐹 es 0 y ±1 respectivamente en –al menos– dos subconjuntos del cono anidados.

Si encontramos 𝑛 subconjuntos del cono anidados para los cuales el índice alterna el va-

lor 0 con los valores ±1, entonces podemos garantizar la existencia de al menos 𝑛 − 1
soluciones no triviales diferentes (cf. [123]).

Haciendo el cono más pequeño trocamos un mayor número de soluciones por condi-

ciones más simples. Por otra parte, también podemos usar condiciones para el índice

relacionadas con los autovalores de algunos de los operadores involucrados –véanse los

Capítulos 10 y 11–.

(6) Finalmente, podemos aplicar los resultados obtenidos a una enorme variedad de proble-

mas e ilustrar así su aplicación con algunos ejemplos.

Como se puede observar, las particularidades de cada problemahacen que sea imposible tomar

una aproximación común a todos. Sin embargo, se presentan importantes similitudes que nos

llevarán a la obtención de resultados comparables. Los resultados presentados en los Capítulos

8, 9 y 10 han sido publicados, respectivamente, en [34], [34] y [96]. Los del Capítulo 11 ya están

listos para ser enviados pronto para publicación.

En el Capítulo 8 se prueban nuevos resultados relativos a la existencia de soluciones no

triviales de una ecuación integral de Hammerstein –que nos sirve como modelo para los si-

guientes capítulos– que incluye una reflexión, con la particularidad de que al núcleo integral

en cuestión le es permitido cambiar de signo fuera de un intervalo del dominio. Resolver este

problema nos permitirá aplicar los resultados obtenidos a una ecuación diferencial con refle-

xión estudiada en el Capítulo 3. Además, realizamos el estudio en diferentes conos, observando

como los resultados van variando según el contexto.

El Capítulo 8 abre la puerta a modelos más generales. En el Capítulo 9 cambiamos la refle-

xión por una función continua cualquiera, lo que nos permite estudiar el modelo de un termos-

tato con argumento desviado. Este modelo tiene en cuenta todos los efectos físicos relevantes

que pueden darse en el mundo real, lo cual lo hace demasiado complicado para estudiarlo

mediante un método convencional. Además, añadimos al problema la presencia, en las con-

diciones de contorno, de un funcional lineal arbitrario, lo cual permite adaptar el modelo a

sistemas de control muy variados.
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El hecho de haber contribuido con la presencia de un funcional en las condiciones de con-

torno hace que en el Capítulo 10 se estudie otra vez el problema integral de Hammerstein,

pero en este caso con la peculiaridad de estar sometido a dos funcionales lineales distintos en

las condiciones de contorno que, por otra parte, son de tipo Neumann. A mayores se ofrecen

por primera vez resultados para el cálculo del índice de punto fijo relacionados con el radio

espectral de los operadores asociados lo cual, en muchos casos, resulta ventajoso a la hora de

obtener resultados sin realizar demasiados cálculos.

Finalmente, corona la segunda parte de esta memoria el Capítulo 11. Este destaca sobre

los anteriores en tanto a que la complejidad del problema estudiado es muy superior. Esto se

debe a la presencia de funcionales y operadores no lineales, tanto en la ecuación como en las

condiciones de contorno. Tal generalidad obliga a la aparición de una gran profusión de condi-

ciones a ser satisfechas y resultados muy interesantes. En particular, se aplica la generalización

de la definición del radio espectral a operadores acotados para poder obtener resultados de

índice de punto fijo sencillos.

Más allá de las dos partes que constituyen el núcleo del trabajo realizado, encontramos dos

apéndices. El primero profundiza en un tema que semencionó en el Capítulo 5, la obtención de

una versión hiperbólica de la fórmula para la suma de fasores. La obtención de dicha fórmula

da lugar a un capítulo muy didáctico –publicado en [166]– en el cual se desgrana, desde el

punto de vista matemático, el formalismo de fasores tan comúnmente utilizado en el ámbito

de la física y la ingeniería eléctrica. El segundo apéndice contiene el código del programa de

Mathematica desarrollado en el Capítulo 7 y una referencia a la biblioteca electrónicaWolfram

Library Archive desde el cual se puede descargar.
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reproducing, 201
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degree theory, 152
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distributional, 104, 113
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differential equation with involutions, 34

differential operator, 28
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eigenvalue, 201

equilibrium point, 35

Euler-Lagrange equation, 235
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function
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Dirac delta, 29

even, 21
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symmetric, 21

functional
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Hammerstein integral equations, 151

harmonic oscillator, 235

Hill’s equation, 52

Hook’s Law, 236
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identity, 23

inversion, 23

involution, 23

bilinear, 23

hyperbolic, 23

order 𝑛, 23
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isochronous center, 35
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Krasnosel’skiĭ’s Fixed Point Theorem, 55
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Laplacian
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lightlike vector, 240

Lipschitz property, 227
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bounded variation, 103
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maximum principle, 52
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positive, 174

signed, 173
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multiplication operator, 29
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Newton’s second Law of motion, 235

norm, 225

null vector, 240

O

operator

linearly bounded, 225

norm, 225

oriented characteristic function, 70

P

pendulum, 236

phase, 235

phasor, 236

phasor addition formula, 237

hyperbolic, 93

planar vector field, 35

principal chapracteristic value, 226

principal characteristic value, 201

pullback operator, 28

R

reflection, 23
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solution

lower, 54

upper, 54
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spectral radius, 201, 226

Stieltjes integral, 173

strongly inverse negative, 52

strongly inverse positive, 52

symbols, list of, 13

T

Taylor polynomial, 26

Theorem

Krein-Rutman, 201

thermostat model, 183

timelike vector, 240

topological methods, 149
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