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Notation

List of symbols most used throughout the work.

R+

BV )

cI)
C.)

c*I),keN

c=()
D

I o o

Q2

Id
K
LP),p=21

L= (I)
AC)

Set of natural numbers, that is, {1, 2, ... }.

Set of integer numbers.

Set of real numbers.

Set of positive real numbers.

Set of complex numbers.

Functions of bounded variation defined on the interval I, that is,

{f 1> RIV(F) < +o0} where V() = sup Y75 If (5,41) —

Pep;
fx)|, P={xg,.. ,Xy,,,} and Py is the set of partitions of I.

Space of continuous real functions defined on 1.

Space of compactly supported continuous real functions defined on
I.

Space of k-times differentiable real functions defined on I such that
the j-th derivative is continuous forj = 0, ..., k.

Space of infinitely differentiable real functions defined on I.
Derivative operator, in any broad sense.

Even part of a real function f.

Odd part of a real function f.

Hilbert Transform, that is, Hf (¢) := i el_i)inw Ie. C(TSS) ds.
Imaginary part.

Identity function or operator.

Set of compact subsets of R.

Riesz-Lebesgue p space on the set [, that is,
LP(I) = {u:I - R |u Lebesgue measurable, [;|ulf’ < +oo}.

The space of essentially bounded functions.

Absolutely continuous functions, that is, AC(I) =
{uec)|13f e’ d), u@) =ula) + [ f(s)ds, t,a eI}



R[X]

Sloc (I)

SI
Wke(I), k,p € N

XA

Ring of polynomials with coefficients in R and variable X.
Real part.

Local version of a function space. If S is a function space which can
be defined on any compact setand I C R,
Sioc (D :={u:1I - Rsuchthatulpy € S(K),K € K}.

The dual of a topological vector space S.

Sobolev space &k — p on the set I, that is,
{uelP|u® elP(I), a=1,..,k}.

Characteristic function on the set A C R, that is, XA(t) =1,teA,



Preface

The present Thesis contains most of the work undertaken by the author in the last years. It is
indeed a research adventure in the field of solutions of differential equations, therefrom the
title «Existence and multiplicity of solutions of functional differential equations». But, how to
tackle the study of such broad area? In what solutions are to differential equations, we can
take a rather simple approach: there are but two possibilities, either there exist or there exist
not, and, in the first case, there can be one or many.

Whether we want to prove if there is one —uniqueness of solution— or many —multiplicity of
solution— determines the method to be used. Existence has been traditionally derived in two
ways: either through the direct construction of the solution or through topological methods,
the later, in most cases, involving global contractions like the Banach contraction theorem. In
the first part of the report we will deal with uniqueness in the first of the ways using what is
known as the Green’s function. Ever since the work of George Green on the subject, it has been
clear that one of the most fruitful ways of constructing solutions of different kinds of problems
is through the so called Green’s function, that is, the obtaining of a solution to a problem of
the kind Lu = h, u € H, where H is a space of functions, L is a linear operator on H and
h € L(H) by expressing it, if possible, in the form

u(t) = f G(t,s)h(s) ds,

with some appropriate boundaries for the integral. It is then understood that this expression
provides the so-called maximum and anti-maximum principles, which in lay words convey the
simple idea that, if G is positive and A is positive then u is positive (anti-maximum principle)
and if G is negative and A is positive then u is negative (maximum principle).

This is just one of the many remarkable properties of Green’s functions, but as it usually
happens with useful structures, they are hard to obtain. In the case of functional equations
this is no exception and throughout the first seven chapters of this Thesis we will explore the
construction of these functions and their various applications. We will center our attention
in the case of equations with involutions, a particular field of functional differential equations
where we can reduce —in a specific sense we will detail later—the problem studied to a problem
with ordinary differential equations. We will even write a computer program that will allow the
automatic calculation of Green’s functions in the case of constant coefficients and two-point
boundary conditions.

The strength of the Green’s functions method relies on them being the kernel of the inverse
operator that gives us the unique solution for our problem but, of course, this is not the path
to take when we are expecting several solutions. In the second part of this work we explore a
particular kind of topological methods which will allow us to prove the multiplicity of solutions
and further localize those solutions within a carefully defined cone. The problems to which
we will apply this scheme will contain a nonlinearity, that is, a nontrivial, functional, relation
between the derivatives of the solution and the solution itself. The key point of this technique
relies on a refining of the classical Guo-Krasnosel’skii theorem of cone contraction-expansion.
The nonlinearity, which takes real values, will oscillate in some manner, going above and below



certain values depending on the variables and these ripples will cause, precisely, the existence
of many solutions. This situation is similar to what happens to a bucket of water when we shake
it. If we mark a line a little bit above the water level and rock the bucket, ripples start to appear
and, when they get high enough, they reach the line we have marked. The more ripples there
are, the more times that level is reached.

Simple as it may sound, the conditions that have to be satisfied in order to apply this method
can, as we will see, get really convoluted with the increasing generality of the problems studied.

All these discoveries appear in several publications the author has written during the prepa-
ration of the Thesis. The reader may consult [34}35|39-44,96,(165,/166].
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Involutions have been an interesting subject of research at least since Rothe first computed
the number of different involutions on finite setsin 1800 [152]. After that, Babbage published in
1815 [7]] the foundational paper in which functional equations are first considered, in particular
those of the form f (f (¢t)) = ¢ which are called involutionsﬂ

Despite of the progresses on the theory of functional equations, we have to wait for Silber-
stein who, in 1940 [156], solved the first functional differential equation with an involution. The
interest on differential equations with involutions is retaken by Wiener in 1969 [186]. Wiener,
together with Watkins, will lead the discoveries in this direction in the following decades [1,
155,/173}/174,(186-189]. Quite a lot of work has been done ever since by several authors. We
will make a brief review on this in Chapter[2] In 2013 the first Green'’s function for a differential
equation with an involution was computed [39] and the field rapidly expanded [40,/41}43|44].

This first part goes through those discoveries related to Green’s functions. In order to do
that, first we recall some general results concerning involutions which will help us understand
their remarkable analytic and algebraic properties. Chapter[1]will deal about this subject while
Chapter[2]will give a brief overview on differential equations with involutions to set the reader in
the appropriate research framework. We recommend the reader to go through the monograph
[187] which has a whole chapter on the subject and, although it was written more than twenty
years ago, it contains most of what is worth knowing on the matter.

In Chapter [3|we start working on the theory of Green’s functions for functional differential
equations with involutions in the most simple cases: order one problems with constant coeffi-
cients and reflection. Here we solve the problem with different boundary conditions, studying
the specific characteristics which appear when considering periodic, anti-periodic, initial or ar-
bitrary linear boundary conditions. We also apply some very well known techniques (lower
and upper solutions method or Krasnosel’skii’s Fixed Point Theorem, for instance) in order to
further derive results.

Computing explicitly the Green’s function for a problem with nonconstant coefficients is
not simple, not even in the case of ordinary differential equations. We face these obstacles in
Chapter[4] where we reduce a new, more general problem containing nonconstant coefficients
and arbitrary differentiable involutions, to the one studied in Chapter[3] In order to do this we
use a double trick. First, we reduce the case of a general involution to the case of the reflection
using some of the knowledge gathered in Chapter[IJand then we use a special change of variable
(only valid in some cases) that allows the obtaining of the Green’s function of problems with
nonconstant coefficients from the Green’s functions of constant-coefficient analogs.

To end this part of the work, we have Chapter[5] in which we deepen in the algebraic na-
ture of reflections and extrapolate these properties to other algebras. In this way, we do not
only generalize the results of Chapter 3| to the case of n-th order problems and general two-
point boundary conditions, but also solve functional differential problems in which the Hilbert
transform or other adequate operators are involved.

The last chapters of this part are about applying the results we have proved so far to some
related problems. First, in Chapter|6] setting again the spotlight on some interesting relation be-

*Babbage, in the preface to his work [7], described very well the importance of involutions: «Many of the
calculations with which we are familiar, consist of two parts, a direct, and an inverse; thus, when we consider an
exponent of a quantity: to raise any number to a given power, is the direct operation: to extract a given root of
any number, is the inverse method [...] In all these cases the inverse method is by far de most difficult, and it might
perhaps be added, the most useful».
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tween an equation with reflection and an equation with a ¢-Laplacian, we obtain some results
concerning the periodicity of solutions of that first problem with reflection. Chapter[7] moves
to a more practical setting. It is of the greatest interest to have adequate computer programs
in order to derive the Green’s functions obtained in Chapter[5|for, in general, the computations
involved are very convoluted. Being so, we present in this chapter such an algorithm, imple-
mented in Mathematica. We also add some considerations which could lead to simplifying the
computations and therefore the time necessary to run the program. The reader can find in the
appendix the exact code of the program.



1. Involutions and differential equations

1.1 The straight line problem

Before moving to the study of involutions, we will motivate it with a simple problem derived
from some considerations on the straight line.

Let us assume that x(¢) = at + b, where a,b € R, is a straight line on the real plane.
Then, using the formula of the slope between two points (—¢,x(—%)) and (¢,x(¢)) we have
that

¥ = XD —x(=D)

2t

Every straight line satisfies this equation. Nevertheless, observe that we are not asking for the
slope to be constant and therefore we may ask the following questions in a natural way: Are
all of the solutions of equation straight lines? (see here the spirit of Babbage’s words
concerning inverse problems), How can we solve differential equations of this kind? How can
we guarantee the existence of solution?, How do the solutions of the equation depend on the
fact that x” varies depending on both ¢ as well as of the image of # by a symmetry (in this case
the reflection), or, more generally of an involution?

(1.1.1)

In order to answer the first question, we will study the even and odd functions — each one
with a different symmetry property— and how does the derivative operator act on them. We
do this study in its most basic form, on groups, and then apply it to the real case (a group with
the sum).

Definition 1.1.1. Let G and H be groups, A C G and define A~! := {x71 |x € G}. As-
sume that A= C A. We will say that f : A — H is a symmetric or even function if f (x™1) =
f(x) Vx € A. Wewill say that f is an antisymmetric or odd functioniff (x™*) = f(x)~! Vx €
A.

Remark 1.1.2. If f is a homomorphism, f is odd. That is because, first if f is an homeo-
morphism, A is a subgroup of G and f (A) a subgroup of H. Now if e represents the iden-
tity element of G, e’ that of H, andx € A, e = f(e) = f(xx™1) = f@)f &™), so
f(x™Y = f(x)~L. On the other hand, if f is an even homomorphism, all of the elements
of f (A) satisfy y2 = ¢’ foreveryy € f(A). For this reason, the only even and odd function
with real values, that is, with values in the abelian group (IR, +), is the O function.

Remark 1.1.3. The set of even — respectively odd- functions of a subset A C G to a commu-
tative group H is a group with the point-wise operation induced by the operation of H, that is,
(fg) (x) :=f(x)g(x) foreveryx €A, f,g : A — H both even or odd.

Proposition 1.1.4. Let G be a group, A C G such that A~' C A, V is a vector space on a field
IF of characteristic not equal to 2ﬂ Then there exist two mapsf, : A — (V,+) andf, : A —
(V,+), even and odd respectively, such that f = f, + f,. Furthermore, this decomposition is
unique.

"This condition is taken in order to be allowed to divide by 2 in the vector space V.
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Proof. Itis enough to define

f(x) +2f(x‘1)’ £ ) = f (%) 2f(x‘1).

It is clear that £, and f, are even and odd respectively and thatf =f, + f,.

fo(x) =

Assume know that there exist two such decompositions: f = f + f = f + f; Then,

f.—f =Ff —f,butf, —f isevenandf, — f, odd, hence f, — f, = f, — f, = 0 and the

decomposition is unique. |

From now on, given a function f : A — V, £, will stand for its even part and £, for its odd
part.

Corollary 1.1.5. In the conditions ofProposit'ion the vector space F(G,V) :={f : G —
V'} can be decomposed in the direct sum of vector spaces F,(G,V) :={f : G - V | f even }
and F,(G,V) :={f :G - V |fodd}, thatis, F(G,V) = F,(G,V) & F,(G,V).

For rest of the section, let A C R be such that —A C A. Given the expression of f, and £,
in the decomposition we can claimthat D(A,R) = D,(A,R) & D, (A, R) where D(A,R)
are the differentiable functions from A to R and D, (A, R) and D, (A, R) the sets of those
functions which are, respectively, even differentiable and odd differentiable functions.

The following Proposition is an elemental result in differential calculus.

Proposition 1.1.6. The derivative operator acts in the following way:

D,(A,R) ® D,(A,R) —2 D,(A,R) ® D,(A,R)

(g,h) ——— (5 8) (§) = *'.&)
Corollary 1.1.7. Foreveryf € D(A, R) we have that
(1) f)e=f < f=f +c,cER,
(2) )o=f" = f=Ff.
Now we can solve the “straight line problem” as follows: equation (1 can be written as

x(t) —x(=t)  %,()
2 ot

x'(t) =

and since 22 js symmetric, taking into account Proposition|[1.1.6, we arrive at the equivalent

system of differential equations

(x,)" () =0,

t
(x,) (t) = x: )

Hence, x,(t) =c,x,(t) = ktwithc,k € R, thatis, x is the straight line x (¢) = k¢ +c, which
answers the first question we posed.
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Further on we will use this decomposition method in order to obtain solutions of more
complex differential equations with reflection.

Involutions, as we will see, have very special properties. This is due to their double nature,
analytic and algebraic. This chapter is therefore divided in two sections that will explore the
two kinds of properties, arriving at last to some parallelism between involutions and complex
numbers for its capability to decompose certain polynomials (see Remark[1.3.6). In this chapter
we recall results from [39,/41,46[(132,(187,/189,196].

1.2 Involutions and their properties

1.2.1 The concept of involution

The concept of involution is fundamental for the theory of groups and algebras, but, at the same
time, being an object in mathematical analysis, their analytical properties allow the obtaining of
further information concerning this object. In order to be clear in this respect, let us define what
we understand by involution in this analytical context. We follow the definitions of [187,/189].

Definition 1.2.1. Let A C R be a set containing more that one pointandf : A — A a function
such that f is not the identity Id. Then f is an involution if

2=fof=1d

or, equivalently, if

f=f"
If A = R, we say that f is a strong involution [187]. Involutions are also known as Carleman
functions in the literature [46,148].

Example 1.2.2. The following involutions are the most common examples:

(1) f: R - R, f(x) = —xis an involution known as reflection.
(2) f: R\{0} - R\{0}, f(x) = % known as inversion.

(3) Leta,b,c € R,cb+a®+0,c+0,

g} - r (G re = S

is a family of functions known as bilinear involutions. I1f a® + bc > 0, the involution is
said hyperbolic and has two fixed points in its domain.

The definition of involution can be extended in a natural way to arbitrary sets (not neces-
sarily of real numbers) or, in the following way, to order n involutions.

Definition 1.2.3. LetAC R,f : A - A,n € N, n > 2. We say that f is an order n involution
if

(1) f = fo = of =1d,
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2) f*+Id VE=1,..,n—1.
Example 1.2.4. The following is an example of an involution defined on a set which is not a
subset of R:

27 .
f:C - C,f(z) =e™»"isan order n involution on the complex plane.

Example 1.2.5.

X, x e (_0070) U (n7 +OO),
fx) =qx+1, xe (0,1)H)u(1,2)U-U(®n-2,n-1),
x—(n-1), x€(n-1,n)

is an order n involution in R\{0, 1,...,n}.

Observe that f is not defined on a connected set of R, neither admits a continuous exten-
sion to a connected set. This fact is related to the statement of Theorem[1.2.9

1.2.2 Properties of involutions

Now we will establish a series of results useful when it comes to study involutions.

Proposition 1.2.6. Let A C R, f : A — A be an order n involution, then f is invertible.

Proof. If h og is bijective, then A is surjective, since (hog) (A) C h(A), and g injective, since

g(x) = g(y) implies (h o g) (x) = (hog)(y). Hence, sincef o f* 1 =f*1of =1d,fis
bijective (invertible). [ |

The following proposition [189] is a classical result regarding involutions. Here we present
it for connected subsets of R.

Proposition1.2.7. LetA C R beconnectedandf : A — A an order two continuous involution.
Then,

(1) f is strictly decreasing, and

(2) f has a unique fixed point.

Proof. (1). Since f is invertible, it is strictly monotone. f # Id, so there exists x, € A
such that f (x,) # x,. Let us assume that f is increasing. If x, < f (x,), since A is connected,
f(xy) < f2 (x9) = x, (contradiction) and the same occursiff (xy) < x,. Thus, f is decreasing.

(2). Since A is connected, A isaninterval. Leta € A, thenf (a) € A. Let usassume, with-
out lost of generality, that f (a) > a. Then, [a,f (a)] CAandf([a,f(a)]) = [a,f (a)].
Letg = f—Id, giscontinuousandg(a) =f(a)—a > 0,g(f(a)) = a—f (a) < 0, therefore,
by Bolzano’s Theorem, there exists @ € (a,f (a)) suchthatg(a) =0, i.e.f(a) = a.

Since f is strictly decreasing, such point is unique. [

Remark 1.2.8. If A is not connected, point (2) of Proposition may not be satisfied. For
instance, bilinear involutions have 0 or 2 fixed points.
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Now we will prove a theorem that illustrates the importance of order two involutions. Sim-
ilar proofs can be found in [39,(132,/148].

Theorem 1.2.9. The only continuous involutions defined in connected sets of R are of order 2.

Proof. Let A be a connected subset of R and f : A — A a continuous involution of order n.
Let us prove in several steps thatn = 2.

(a) n is even. We will prove first that f is decreasing. Since f # Id, there exists x, € A such
thatf (xy) # x,. Let us assume that f is increasing. If x, < f (x,), using that A is connected,

xg < f(xg) <f2(x) < <" Hag) <[ (xg) = %,

which is a contradiction. The same happens if f (x,) < x,. Therefore f is decreasing.

The composition of two functions, both increasing or decreasing is increasing. If one is
increasing and the other decreasing, then the composition is a decreasing function. Therefore,
if n is odd and f is decreasing, f" is decreasing, which is absurd since f” = Id.

(b) n = 2m with m odd. Otherwise, n = 4k for some £k € N. Then, ifg = f2k,g + Id
and g2 = Id and, using Proposition g is decreasing, but this is a contradiction since 2k
is even.

(c)n = 2. Ifn = 2m with m odd, m > 3, takeg = f2. Theng # Idandg™ = Id, so

g is an involution of order & < m. But, by part (a), this implies that g is decreasing, which is
impossible since g = f2. [ |

From now on, if we do not specify the order of the involution, we will assume it is of order
two.

The proof of Proposition[1.2.7|suggests a way of constructing an iterative method conver-
gent to the fixed point of the involution. This is illustrated in the following theorem.

Theorem 1.2.10. Let A C R be a connected set, f : A — A a continuous involution, a is the
unique fixed point of f and f of class two in a neighborhood of «. Then, the iterative method

{xo EA,
Xp4+1 :g(xk), k=0,1,..,

where g 1= ’%, is globally convergent to a and of order at least 2.

Proof. Let us consider the closed interval of extremal points x;, and f (x;) that we will denote
in this proof by [x,,f (x;)]. Since x;, , ; is the middle point of the interval [x;, f (x;,) ], x,,1 €
[x,,f (x)] and, furthermore, since f ([x;,f (x3)]1) = [x;,f (x3)], we have that f (x,,;) €
[xg,f (xz)]. Therefore,

1 1
If (1) — Xps1l < Elf(xk) —x <0 < 2k+1lf(x0) — X
Hence,
fxg) +x 1 1
171 — x| = ‘ k2 k — x| = §|f(xk) — x| < Z—klf(xo) — Xl
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Thus,
m—1 1
tm = T4l S B = Bp ot + o+ By =2 < ) 5l () — ol
J=0

= o (1= 50 ) 1P ) =0l < i i) = ol

As a consequence, (x;,)cy is @ Cauchy sequence in [x,f (x,)] and therefore convergent.
This proves that the method is globally convergent in A.

On the other hand, f (f (x)) = x for everyx € A, hencef’ (f (x))f (x) = 1so

L=f"(f(a)f (@) = (f'(a))?.

Since f is decreasing by Proposition f’(a) = —1. Therefore, g’ (@) = 0 and thus, taking
the order 2 Taylor polynomial of g at a, we have that

&E) g EED

N2
2 2 @)

g) =a+g (a)x—a)+

where ._{-‘x is a point of the interval [@,x].

Hence, if ¢ is an upper bound of g” in a neighborhood of «,

g//(gx . ) -
pr — @l = I8 (x) —al = |a+ —F=—(x — a)® = a| < gl — al’,
for k sufficiently big, which proves the method is of order at least 2. |

1.2.3 Characterization of involutions

Involutions can be characterized in a variety of ways. This kind of properties are helpful when
it comes to prove some results.

Proposition 1.2.11 ([148,189]). Every continuous involution ¢ : R — R with a fixed point
p € Risof the form ¢ (t) = ¢, (t —p) + p where

g, t=0,

¢“D:{gﬂw,t<a

andg : R — R is a continuous strictly decreasing function such that g (0) = 0.
Conversely, every function ¢ defined in such way is a continuous involution.
Proposition 1.2.12 ([196, Theorem 2.1] ). Let I,<J be intervals of R, I symmetric. Every con-

tinuous involution ¢ : J — J is of the form ¢ (t) =t — h(t) where h = g Lg:I—J,
gt) = (f @) +t)/2andf : I - R is a symmetric even function such that f (0) = 0.

Conversely, every function ¢ defined in such way is a continuous involution.
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Proposition 1.2.13 ([148, Corollary 1.2, p. 182]). Let< be an open interval of R. Every con-
tinuous involution ¢ : J — J is of the form ¢ (t) = h=1(=h(t)), where h = hy o hy o hg,
hg : J — R is a homeomorphism, h,(s) = s — a where a is the fixed point of the function
hgo@oh,andh, : R — R isa homeomorphism such that h(0) = 0.

Conversely, every function ¢ defined in such way is a continuous involution.

Finally, the following Lemma, similar to the previous result, is specially useful when dealing
with differential equations (cf. [41] Corollary 2.2]).

Lemma 1.2.14 (CORRESPONDENCE OF INVOLUTIONS, [41, Lemma 2.1]). Let ¢ and yb be two differ-
entiable involuﬁonsﬂ on the compact intervals J; and J, respectively. Let t, and s, be the

unique fixed points of ¢ and ¢ respectively. Then, there exists an increasing diffeomorphism
fidy—dysuchthatr =f1togpof.

Conversely, every function ¢ defined in such way is a differentiable involution.

Proof. Letg : [infd,,s,] — [infd;,¢,] be an increasing diffeomorphism, that is, g(sy) =
to. Let us define

£(s) 1= {g(s) if s € [infd,,s,],
. (pogoeh)(s) ifs € (sy,supdy].

Clearly, f (W (s)) = @(f(s)) Vs € J,. Since s, is a fixed point for v, f is continuous.
Furthermore, because ¢ and y are involutions, ¢’ (¢,) = V¥’ (sy) = —1, sof is differentiable
ond,. f is invertible with inverse

Ft) = {g—l(t) ift € [infd, ],
(Yoglop)(t) ift€E (¢,supd;].

f~Lis also differentiable for the same reasons. |

We can prove in the same way a continuous version of Lemma|1.2.14

Corollary 1.2.15. Let ¢ and 1 be two continuous involutions on the intervals J, and J re-
spectively. Let t, and s be the unique fixed points of ¢ and 1,0 respectively. Then, there exists
an orientation preserving homeomorphism f : Jy — JJ; such that yr = flo pof.

Conversely, every function ¢ defined in such way is a continuous involution.

Remark 1.2.16. A similar argument could be done in the case of involutions defined on open,
possibly not bounded, intervals.

Remark 1.2.17. It is easy to check that if ¢ is an involution defined on R with fixed point £,
then WY (¢) := (¢t + ty — sg) — ty + Sg is an involution defined on R with fixed point s,
(cf. [189, Property 2]). For this particular choice of ¢ and ¢, we can take g(s) = s —s,y + ¢,
in Lemma(1.2.14]and, in such a case, f (s) = s — sy + ¢, foralls € R.

Remark 1.2.18. Observe that, if ¢ and Y are continuous involutions and Y = f~1 o @ o f,
then f sends the fixed point of g& to the fixed point of ¢.

*Every differentiable involution is a diffeomorphism.
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The following Lemma establishes that the involution is defined if we know its behavior up
to it’s fixed point.

Lemma 1.2.19. Let o, ¢ be two continuous involutions defined in a compact interval J with
a common fixed point p € J. If Pliinespr = Ylintrp1 O Plipsups = Ylip.supay then

¢ =1

Proof. Lett € [p,supJ]. Y (¢) € [infd,p], so (Y () = Y (Y (t)) = t. Hence,
gb(t) = ¢(t). The proof for the interval [p, sup</] is analogous. |

The previous results highlight a simple way of obtaining involutions from a given one, just
considering the family of homeomorphisms acting on the set of involutions as follows.

Definition 1.2.20. Let
K:={[a,b] CR|a,b € R, a <b},

H’ :={g:J — J | g is a homeomorphism}, for afixedJ € K,
InvCJ i={¢:J — J | ¢isaninvolution}, forafixedJ € K.
For a fixed J € K, H? is a group with the composition and acts transitively on InvCJ:

H? x Invg! —— Invg?
(frp) ———>flopof

1.3 Differential Operators with Involutions

1.3.1 Algebraic Theory

Let A C R be a set without isolated points (just so the derivative can be considered in all of
A). Let us consider some linear operators in the space of continuous functions C* (A, R).

To start with, the differential operator

C*(A,R) —2% C*(A,R)

fe———F

which maps each function to its derivative. Defined in such a way, the linear operator D is
surjective.

Let ¢ € C*(A,A). Then we can consider the pullback operator by ¢

C*(A,R) ’% C”(A,R)

f———Ff°9



1. Differential Operators with Involutions 29

Leta € C” (A, R). We have also the pointwise multiplication operator by a,

C*A,R) —> C¥(A4,R)

fe——>af

Also, if we have a constant a € A we will define a* as the operator that acts on C* (A, R)
asa*f(t) = f(a) forallt € A (thatis, a™ is the Dirac delta function at a.

These operators are well defined and present the associative property of the composition,
but in general do not commute. To be precise, we have the following equalities:

Da =a’ +aD, (1.3.1)
P a = ¢*(a) ", (1.3.2)
Do* = ¢’ ¢*D, (1.3.3)

foreacha € C*(A,R), p €C*(A,A).

From these we derive the following:

DaD = a’'D + aD?, (1.3.4)
Dayg* =a’¢* +a¢’¢*D, (1.3.5)
p*aD = ¢*(a) ™D, (1.3.6)

Prap* = p*(a) (p*)2. (1.3.7)

These equalities allow to express any composition of such operators (multiplication, pull-
back and differential operators) as a composition in a predefined order. In other words, if we
fix ¢ € C”(A,A) such that * # Id Vk € N and consider A, as the C* (A, R)-free

module generated by {(‘JD*)iDj}i,ij (the O power is the identity), this is a unitary associative
R-algebra with the composition.

Let us assume now that ¢ is an involution. In this case, the algebra A(’D is generated by

{(9*)'D'}i=0,1.

Jj=0

1.3.2 Differential equations with involutions

We will describe now a method inspired in the annihilator method that will allow us to solve
differential equations with involutions. It is in our interest to think of a way of transforming
(somehow) expressions in A(p to expressions in the ring of polynomials C* (A) [D], since the
equations of the form Lx = 0 are known for L € C* (A) [D] (i.e. L is an ordinary differential
operator). In other words, Is there for every L € A, anR € A, such that RL € C*(A) [D]?
Furthermore, it would be convenient that such R is “minimal” in the sense we will detail latter.
This is due to the fact that if the difference between the kernel of L and that of RL is minimal,
we can obtain the solutions of Lx = 0 from those of RLx = 0. The ideal case would be the
one in which both kernels coincide.
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Definition 1.3.1. If R[D] is the ring of polynomials on the usual differential operator D and
A is any operator algebra containing R[D], then an equation Lx = 0, where L € A, is said
to be a reducible differential equation if there exits R € A such that RL € R[D]. A similar
definition could be done for nonconstant or complex coefficients.

Proposition 1.3.2. Let ¢ € C*(A,A) be an involution and D + cyp* +d € A, c(t) #
0 Vt € A. Then, there exista, b, a, 3 € C* (A, R) such that

(D +ap* +b)(D+cp*+d) =D?*+aD + € C*(A)[D],
and are defined by
a=—cqy,
_ oy —
b= ¢ ¢*(d) o

4 ’

a=d+ ¢ p*(d) —%,

B=d (90'(,0*(d) - %,) +d —cp' p*(c).

Proof. Using the identities (1.3.1) —(1.3.7), we have that

D +ap*+b)(D+cp*+d) =D*>+ (b+d)D +bd +d' +ap*(c) + (a+cg)p*D
+ (" +bc+ap*(d))p*

Therefore, we have to solve the linear system of four equations and four unknowns

b+d = a,
bd+d +ap*(c) =0,
a+cy =0,

¢ +bct+ap*d) =0,
which has as unique solution

a=—cy,
b=¢ ") - %,

a=d+ ¢ ¢*(d) —%,

B=d ((,0'90*(d) — %,) +d —cp’ p*(c).

Remark 1.3.3. The previous Proposition can be modified for the case of considering all func-
tions to be just differentiable.

Remark 1.3.4. The condition that ¢ is an involution is necessary for, otherwise, the term
ap*(c) (<]0”‘)2 would appear and the equation ¢’ + bc + a¢*(d) = 0 would split in two:

’

¢ +bc=0and ap*(d) = 0, forcinga = 0, which is incompatible witha = —c¢".
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Corollary 1.3.5. Under the conditions of Proposition ifd = 0, we have that

’ ’

(D — @'cp* — %) (D +co*) =D* — %D — @' p*(c)e.
Remark 1.3.6. In this corollary, if ¢ is constant and ¢ is the reflection we have that
(D +cp*) (D +cp*) =D? + %
Observe the parallelism between this expression and
(D +ic) (D —ic) = D? + ¢
where i denotes the imaginary unity. We will deepen in this relation in Chapter |5

Definition 1.3.7. Let ¢ € C*(A), L := ) 7" @, (9*)'D) € A, such that @,,;, @y, # 0
forsomek € {0,...,n} andsomel € {0, ...,m}. We call degree of L to JL = (m,n).

Assume now that ¢ is an involution of order p. Let R € -'4<p- We want to find L € A4,
and S € C*(A)[D] such that LR = S. Hence, if JR = (my,ny), JL = (my,n,) and
d(S) = (0,n3), we have that 0 < m;,my < p — 1and n,; + ny = ng, which means that, in
order to find the coefficients of L, we have to solve the linear system LR = S, which consists
of (14 n; +ny) min{p, m,; + my + 1} equations with (m, + 1) (n, + 1) + n5 unknowns.
Assumingm; = my, = p — 1, we have (1 + n; + ny)p equations and p(ny, + 1) + n, +
n, unknowns. Thus, if we pretend to obtain a “minimal” operator as said before, we will try
to make the number of equations equal to the number of unknowns, in such a way that the
solution of the consequent linear system LR = S, if it exists, is unique, which only happens if
andonlyifn, =n;(p — 1).

In the case where ¢ is an involution, p = 2 and hence our condition is n, = n;. The
case n; = ngy = 1 isillustrated by Proposition Needless to say, the complexity of the
equations and its solving increases with the degree of R.

We will use now Proposition in order to latter study an example.

Example 1.3.8. SeaT € R*,I = [¢(T),T] C R where ¢ is a differentiable involution on
I,m,h e c*d),m(T) = m(@(T)) andm(t) # 0 V¢ € I. Let us consider the operator
L = D + m¢* and the boundary value problem

Lx(t) =h(t) Vtel, x(p(T)) =x(T). (1.3.8)
Observe that the boundary condition can be expressed, with our notation, as

(T" = (p(T))")x =0,

andthatLx (¢) = x"(¢) +m (t)x(¢(t)). Following Proposition|1.3.2} if R = D—mgo'go*—%,
then we have that

’

m
m
Remember that ¢ (¢ (T')) = T. Therefore, it is satisfied that

RL=D?-

D — ¢’ ¢*(m)m.

x'(T) —x'(p(T)) = (T* — ((T))*)Dx = (T* — (p(T))*) (L —m¢*)x
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= (T* = (o(T))")Lx — (T* — (p(T))* )m¢p*x

=h(T) —h(p(T)) —m(T)x(p(T)) + m(p(T))x(p(p(T)))
=h(T) —h(p(T)) —m((T)x(p(T)) + m(T)x(T)

=h(T) —h(p((T)).

Hence, any solution of problem (1.3.8) is a solution of problem

RLx = Rh,

x(p(T)) =x(T),
' (T) —x' (p(T)) = h(T) —h(p(T)).

Rewriting this expression,

n m,(t) ’ ’
x () — o> @) = @)m(p@))m@)x()
YR ' _m'@)
=h'(t) —m@) ¢ ) h(p@)) ) h(?),

x(p(T)) =x(T), *(T) -« (p(T)) = h(T) —h(p(T)),

which is a system of ordinary differential equations with nonhomogeneous boundary condi-
tions.

The reverse problem, determining whether the solution of this system is a solution of (1.3.8),
is more difficult and it is not always the case. We will deepen in this fact further on and compute
the Green’s function in those cases there is a unique solution.



2. General results for differential equations
with involutions

As mentioned in the Introduction, this chapter is devoted to those results related to differential
equations with involution not directly associated with Green’s functions. The proofs of the
results can be found in the bibliography cited for each case. We will not deepen into these
results, but we summarize their nature for the convenience of the reader. The reader may
consult as well the book by Wiener [187] as a good starting point for general results in this
direction.

It is interesting to observe the progression and different kinds of results collected in this
Chapter with those related to Green’s functions that we will show latter on.

2.1 The bases of the study

As was pointed out in the introduction, the study of differential equations with reflection starts
with the solving of the Siberstein equation in 1940 [156].

Theorem 2.1.1. The equation
, 1 +
has exactly the following solutions:

x(t) = cvtcos (glnt— %) , c€R.

In Silberstein’s article it was written % instead of %, which appears corrected in [186,187].
Wiener provides a more general result in this line.

Theorem 2.1.2 ( [187]). Letn € R. The equation
Ny 1 +

has exactly the following solutions:

ct, n=-1,
ct(l—-2Int), n=23,
x(t) =<c(t}tl+/11t/‘2), n<-lorn>3,

cts lcos (alnt) + \‘gii sin (alnt)] , ne(-1,3),
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wherec € R, A, and A, are the roots of the polynomial A> + (n — 1) A + 1 and

Jin+1)(3—n)
5 )

It is also Wiener [186|/187]] who formalizes the concept of differential equation with involu-
tions.

Definition 2.1.3 ([186]). An expression of the form

ftx(p1(#), ., 2(0p (), (91 (8)), 0, 2™ (0, (1)) =0, t ER

where ¢, ..., ¢, are involutions and f is a real function of nk + 1 real variables is called
differential equation with involutions.

The first objective in the research concerning this kind of equations was to find a way of
reducing them to ordinary differential equations of systems of ordinary differential equations.
In this sense, we have the following reduction results for the existence of solutions [186,/187].

Theorem 2.1.4. Consider the equation
x' () =f(t,x(),x(@®))), tER (2.1.1)

and assume the following hypotheses are satisfied:

* The function ¢ is a continuously differentiable strong involution with fixed point ¢ ,.

e The function f (t,y,z) is defined and is continuously differentiable in the space where its
arguments take values.

e The equation is uniquely solvable with respect to x(¢(t)), i.e. there exists a
unique function g (t,x(t),x’ (t)) such that

x(p(t)) =g, x(t),x' (t)).

Then, the solution of the ordinary differential equation

x//(t) —
af ’ 8}0 ’ ’ af ’
lﬁ +x (t)a—y + o (Of (p(t),8(t,x(t),x (t)),x(t))zl (t,x(),g(t,x(@),x (2))),

with initial conditions
x(to) =x0, x,(to) =f(t0,x0,x0),

is a solution of the equation with initial conditions x (t) = x.

Corollary 2.1.5 ( [186]). Let us assume that in the equation

x'(@#) =f(x(p®))) (2.1.2)
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the function ¢ is a continuously differentiable function with a fixed point t, and the function f
is monotone and continuously differentiable in R. Then, the solution of the equations

@) =f T ONFE@®) @),
x(p®) =1 @),

with initial conditions
x(ty) = xg, x/(to) = f(x())a
is a solution of the equation with initial condition x (¢,) = x,.

In Lemma (page we prove a result more general than Corollary There we
show the equivalence of x" (¢) = f(x(cp(t) )) and

(&) =f (@ ONFE@) @’ @).

Luci¢ has extended these results to more general ones which include higher order deriva-
tives or different involutions. We refer the reader to [128,(129,/187].

On the other hand, Sarkovskii [169] studies the equation x"(¢) = f(x(¢),x(—t)) and,
noting y () := x(—t), arrives to the conclusion that the solutions of such equation are solu-
tions of the system

x'(8) =f (%),
y,(t) = _f(y;x)a

with the conditionx (0) = y(0). Then he applies this expression to the stability of differential-
difference equations. We will arrive to this expression by other means in Proposition (see

page(43).
The traditional study of differential equations with involutions has been done for the case

of connected domains. Watkins [173] extends these results (in particular Theorem [2.1.4) to
the case of nonconnected domains, as it is the case of the inversion 1/¢ in R\{0}.

The asymptotic behavior of equations with involutions has also been studied.

Theorem 2.1.6 ([174]). Leta > 0. Assume ¢ : [0, +0o0) — [0, +o0) is a continuously differ-
entiable involution such that

px) — () < % - %,forallx,b € (a,+o0), x > b.

Then the equationy’ (t) = ¥ (¢ (1)) has an oscillatory solution.

We will deepen in the fact that such a type of equations oscillate and compute the period
later on (see page|124).

Related to this oscillatory behavior is the fact, pointed out by Zampieri [196], that involu-
tions are related to a potential of some second order differential equations.

Definition 2.1.7. An equilibrium point of a planar vector field is called a (local) center if all orbits
in a neighborhood are periodic and enclose it. The center is called isochronous if all periodic
orbits have the same period in a neighborhood of the center.
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Theorem 2.1.8 ([196]). Let ¢ € Cl(J) be an involution, @ > 0, and define

C()z P)
Vix) = ?(x— px), xed.

Then the origin is an isochronous center for x” (t) = —V'(x(¢)). Namely, all orbits which
intersect J and the interval of the x-axis in the x, x"-plane, are periodic and have the same
period 27 | w.

On the other hand, if g is a continuous function defined on a neighborhood of 0 € R, such
that g(0) = 0, there exists g’ (0) > 0 and the origin is an isochronous center for x” (t) =
g(x(t)), then there exist an open interval J, 0 € J, which is a subset of the domain of g, and
an involution ¢ : J — oJ such that

2
[fewdy="gG-pw)* xed,

where w = \/g’(O).

2.2 Differential equations with reflection

The particular field of differential equations with reflection has been subject to much study
motivated by the simplicity of this particular involution and its good algebraic properties.

O’Regan [136] studies the existence of solutions for problems of the form
yP @) =fEy®),y(=1), ... y* PV @),y*V(-t), -T<t<T, yeB,

where BB represents some initial or boundary value conditions, using a nonlinear alternative
result.

On the same line, existence and uniqueness results are proven by Hai [84] for problems of
the kind

x(—1) =ax'(-1), x(1) = -bx'(1),
withc € R, a,b > 0.

Wiener and Watkins study in [189] the solution of the equation x"(¢) — ax(—t) = 0
with initial conditions. Equation x" (¢) + ax(t) + bx(—t) = g(t) has been treated by Piao
in [141,142]. For the equation

x' () +ax(t) +bx(—=t) =f(t,x(@),x(—=t)), b+0, t € R,

Piao [141] obtains existence results concerning periodic and almost periodic solutions using
topological degree techniques (in particular Leray-Schauder Theorem). In [122,/155,/173}/187,
189] some results are introduced to transform this kind of problems with involutions and initial
conditions into second order ordinary differential equations with initial conditions or first order
two dimensional systems, granting that the solution of the last will be a solution to the first.
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Beyond existence, in all its particular forms, the spectral properties of equations with re-
flection have also been studied. In [117], the focus is set on the eigenvalue problem

uW(=t)+au®)=Au@),te[-1,1], u(-1) =yu(l).

If a® € (—=1,1) and v # @ = V1 — a2, the eigenvalues are given by

\ll—a2lk7r+arctan( —7 1+“)],kez,
l+y¥Vl—-a

and the related eigenfunctions by

1—
u,(t) :=v1+ acos [k7r+arctan(—(y 1+a)]t
1+yVl-a

+ V1 as1nlk7r+arctan( —7 1+a)]t,kEZ.
l+y¥Vl-a

The study of equations with reflection extends also to partial differential equations. See for
instance [23}/187].

Furthermore, asymptotic properties and boundedness of the solutions of initial first order
problems are studied in [174] and [1] respectively. Second order boundary value problems
have been considered in [82}/83,|137,/187] for Dirichlet and Sturm-Liouville boundary value
conditions, higher order equations has been studied in [136]. Other techniques applied to
problems with reflection of the argument can be found in [5,/131,188].






3. Order one problems with constant
coefficients

In this chapter we recall some results in [39}/40,43]. We start studying the first order operator
x' (t) + mx(—t) coupled with periodic boundary value conditions. We describe the eigenval-
ues of the operator and obtain the expression of its related Green’s function in the nonresonant
case. We also obtain the range of the values of the real parameter m for which the integral
kernel, which provides the unique solution, has constant sign. In this way, we automatically
establish maximum and anti-maximum principles for the equation.

In the last part of the chapter we generalize these results to the case of antiperiodic and
general conditions and study the different maximum and anti-maximum principles derived il-
lustrating them with some examples. Also, we put special attention in the case of initial condi-
tions, in which we obtain the Green’s function in a particular way and undertake a study of its
sign in different circumstances.

3.1 Reduction of differential equations with involutions

Let us consider the problems

x' (@) =fx(e®))), x(c)=x, (3.1.1)

and

") =f (@ ONFE@) ' @), x(e) =x, x' (c) =f(x,). (3.1.2)
Then we have the following Lemma:

Lemma 3.1.1. Let (a,b) C Randletf : R — R be a diffeomorphism. Let ¢ € Cl((a,b))
be an involution. Let ¢ be a fixed point of ¢. Then x is a solution of the first order differen-
tial equation with involution if and only if x is a solution of the second order ordinary
differential equation (3.1.2).

We note that this lemma improves Corollary

Remark 3.1.2. This result is still valid for f : J; — 4, being J;,J, two real intervals as long
as the values of the solution x stay in J,. We will detail more on this subject in Chapter@

Proof. That those solutions of (3.1.1) are solutions of (3.1.2) is almost trivial. The boundary
conditions are justified by the fact that ¢ (c) = c. Differentiating (3.1.1) we get

@) =f (x(p))x' (p1)) @' ()
and, taking into account that x" (¢ (t)) = f (x(t)) by (3.1.1), we obtain (3.1.2).
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Conversely, let x be a solution of (3.1.2). The equation implies that

FH" @ @)x" (t) =f(x () ¢’ (t). (3.1.3)
Integrating from c to ¢ in (3.1.3),
FE @) =2 =@ @) =@ (©) = [[fx() 9" (s)ds (3.1.4)

and thus, defining g (s) :=f (x(¢(s))) —«’(s), we conclude from that
X @) =f (2 + [[f ()¢ (s)ds)
=f (2@ + [[(F @) == (p())) ¢’ (s) ds)
=f (xp®) + [77 Fx(p(s)) ' (5)) ds)
=f (x(p@) + [7V g(s) ds).

Let us fixt > ¢ where x (%) is defined. We will prove that is satisfied in [c, ] (the
proof is done analogously for ¢ < ¢). Recall that ¢ has to be decreasing, so ¢ () < c. Also,
since f is a diffeomorphism, the derivative of f is bounded on [c, t], so f is Lipschitz on [c, ¢].
Since f, x, x" and ¢’ are continuous, we can define

K =inf{a € R* ¢ [f (x(p () + [*7 g(s) ds) —f ()|
< alL‘p(r)g(s) ds| Vr e [c,t]},
and
K,:=inf{a € R* : |f (x() + [[g(s)ds) —f @()))|
< a”crg(s) ds| Vr e [c,t]}.

Let K = max{K;,K,}. Now,

eI = (x(p@) + [* e ds) —Falp®)| <K |[*” g(s) ds|
<K [""g©)lds = K [[lg(p(s))lg’ (s) ds.
Applying this inequality at 7 = ¢ (s) inside the integral we deduce that
g <-K ['K|[*gr)dr|¢ (s)ds < —K* " [lg(r)ldr ¢'(s)ds
=K2lp®) — 9@ [ lg(rldr <K*(c—a) ['lg(r)|dr.

Thus, by Gronwall’s Lemma, g(¢) = 0 and hence (3.1.1) is satisfied for all ¢ < b where x is
defined. |

Notice that, as an immediate consequence of this result, we have that the unique solution
of the equation

x"(t) = —y1+ (&' (t))2 sinhx(¢), x(0) =x,, x"(0) = sinhx,,
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coincide with the unique solution of

x'(t) = sinhx(—t), x(0) =x,.

Furthermore, Lemma can be extended, with a very similar proof, to the case with
periodic boundary value conditions. Let us consider the equations

x'(@t) =fx(p®)), x(a)=x(b) (3.1.5)
and
X" @) = (@ ONFa®)) P’ @), x(@) =x(b) =F1(a)). (3.1.6)

Lemma3.1.3. Let [a,b] C Randletf : R — R be a diffeomorphism. Let ¢ € Cl([a,d])
be an involution such that ¢ ([a,b]) = [a,b]. Then x is a solution of the first order differ-
ential equation with involution if and only if x is a solution of the second order ordinary

differential equation (3.1.6).

Proof. Let x be a solution of (3.1.5). Since ¢ (a) = b we trivially get that x is a solution of
(3.1.6).

Let x be a solution of (3.1.6). As in the proof of the previous lemma, we have that
, )
&) =f (x(p@) + [7"g() ds),

where g (s) :=f(x(¢@(s))) —x'(s).
Let

K, :=inf{a € R* : [f (x(p(r) + [7 7 g(s) ds) —fx(p()))]
< alfa¢(r)g(s) ds| Vr e [a,b]} ,

K,:=inf{a € R* : |f (x() + ["g(s)ds) —f ()|
< alfarg(s) ds| Vr e [a,b]}.

K :=inf{a € R* : |f (x(p() + [77 g(9) ds) - fx(p ()]
< a,Ub‘p(r)g(s) ds| Vr e [a,b]} )

Kol

J=inf{a € R« |f (x() + [[g(s) ds) —f(@(r))|
< a”brg(s) ds| Vr e [a,b]}

K, K, be as in the proof of Lemma but changing ¢ by a and [c, t] by [a,b]. Let K],
K be as K, K, but changing c by b. Let K = max{K,,K,,K;,K}}. Then, fort in [a,b],

gOI<K|[77g(s)ds| <K [ lg(p(5))lg’ () ds
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<K ['K|[’2(r)dr|¢'(s)ds <K?lp(®) — p(@)] [ lg(r)Idr
<K’(b-a) [ lg@ldr,

and we conclude analogously to the other proof. |

Remark 3.1.4. Condition x(a) = x(b) = f~1(x"(a)) in Lemma can be replaced by
x(a) =x(b) =f1(x"(b)). The proof in this case is analogous.

Remark 3.1.5. It is important to notice that the proofs of Lemmas[3.1.1]and[3.1.3]are still valid
if we weaken the regularity hypothesis on f and £~ to f and f ! absolutely continuous and f
locally Lipschitz. It is enough to check that we have sufficient regularity for using the chain rule
(cf. [37, Lemma 1 and Remark 3]).

let] := [-T,T] C R and consider a problem of the kind
x' @) =ft,x(=t),x(t)), x(=T)=x(T). (3.1.7)
If we consider now the endomorphism £ : R® — R? defined as
Et,z,w) = (t,z —w,z +w) Vz,w € R,
with inverse

x+y x—y
2ot

E1(ty,x) = (t, ) Y,y ER.

It is clear that

ftx(=t),x@®) = (f o &) (¢, (1), %, (1)),
and
f(=t,x(®),x(=t)) = (fo &) (—t,x,(t),—x,(t)).
where x, and x, denote the even and odd parts of x respectively.

On the other hand, we define

t,x(—t),x(t —t,x(t),x(—t
g.(8) = fo(t,x(—t),x(t)) = L )’x(>>+2f< ,x (), x(—t))

_(feE)(tx,(),x,)) + (f o &) (=t,x,(8), —x, (1))
B 2

and

(f o &) (t,x,(2),%,(1)) — (f o £) (—t,x,(t), —x, ()

go(t) :fo(t,X(—t),X(t)) = 2

which are an even and an odd function respectively. Furthermore, since x, is even, x,(—=T') =
x,(T) and sincex, is odd, x,(=T') = —x,(T'). Taking into account Proposition we can
state the following theorem.
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Theorem 3.1.6. If x is a solution of problem and y(t) = x(—t), then (z,w) : I —
R? satisfying (¢,z,w) = f‘l (t,y,x) is a solution of the system of boundary value ordinary
differential equations

(feo &) (t,2(),w () — (f o £) (=t,2(t), —w (1))
2 )

(fod)t,z@®),w®)) + (fo &) (—t,2(),—w(?)) el (3.1.8)
2 b b

Z'(t) = tel,

w'(t) =
z,w) (=T) = (z,—w) (T).

We can take this one step further trying to “undo” what we did:

X)) =(E+w) @) =8 Etz@®),w®) =fEty®),x®)),
Y(#)=@-—w) () ==& (=tz®),~w®) =—f(=t,xt),y®)),
%) (=T) = (—-w)(=1), @+ w) (-T)) = (z+w)(T), z—w)(T)) = (x,y)(T).

We get then the following result.

Proposition3.1.7. (z,w) isasolution of problem ifandonly if (y,x) such that g(t, zZ,w)
= (t,y,x) is a solution of the system of boundary value ordinary differential equations

x' (@) =f,y@),x()),
¥ (@) =—f(=t,x@),y(®)), (3.1.9)
@, %) (=T) = (x,y)(T).

The next corollary can also be obtained in a straightforward way without going trough prob-
lem (3.1.8).

Corollary 3.1.8. Ifx is a solution of problem andy(t) = x(—t), then (y,x) : I — R2
is a solution of the problem .
Solving problems (3.1.8) or (3.1.9) we can check whether x, obtained from the relation

(¢t,y,x) = E(t,z,w) is a solution to problem (3.1.7). Unfortunately, not every solution of
(3.1.8) — or (3.1.9)—is a solution of (3.1.7), as we show in the following example.

Example 3.1.9. Consider the problem

X)) =x@)x(=t),tel; x(=T)=x(T). (3.1.10)

Using Proposition and Theorem|3.1.6] we know that the solutions of problem (3.1.10)
are those of problem
@) =x@)y®), tel;
Yy @t)=—x@)y@), tel,; (3.1.11)
To solve the problem, observe that, adding the two equations, we get x'(¢) + y'(¢) = 0,
soy(t) = ¢ — x(t) for some constant ¢ € R. Substituting y in the first equation we get



44 3.2. Solution of the equation x’ (t) + mx(—t) = h(t)

x'(t) =x(t) (c —x(t)). Itis easy to check that the only solutions of problem (3.1.11) defined
on I are of the kind

(x.y) = ( cke c )

’ ket +1 kect +1)°
with ¢,k € R. However, in order to have x (T') = x(—T'), a condition necessary for x to be a
solution of problem (3.1.10), the only possibility is to have ck = 0, and so x(¢) = 0 is the only
solution of problem which is a solution of problem (3.1.10). Hence, using Corollary
3.1.8] we conclude that x = 0 is the only solution of problem (3.1.10).

In a completely analogous way, we can study the initial value problem
X' (@) =f@,x(—t),x()), x(0)=x,. (3.1.12)
In such a case we would have the following versions of the previous results.

Theorem 3.1.10. Ifx : (—e€,€) — R is a solution of problem (3.1.12) and y(t) = x(—t),
then (z,w) : (—e,€) — RZ satisfying (t,z,w) = E‘l (t,y,x) is a solution of the system of
boundary value ordinary differential equations

v = 2D EzOw®) —2(f°f>(—t,z(t),—w(t))’ er
W (8 = (fof)(t,z(t),w(t))+2(fof)(—t,z(t),—w(t)), tel (3.1.13)

(z,w) (0) = (x(,0).

Proposition 3.1.11. (z,w) is a solution of problem if and only if (y,x), such that
f (t,z,w) = (t,y,x), is a solution of the system of ordinary differential equations with ini-
tial conditions

x () =f @y @),x()),
y' @) = —f(=t,x(@),y (), (3.1.14)
(,2) (0) = (x¢,%0)-
Corollary 3.1.12. Ifx : (—¢,€) — R is a solution of problem andy(t) = x(—t), then
(¥,%) : (—e,€) — R? is a solution of problem (3.1.14).

Remark 3.1.13. The relation y(z) = x(—t) is used in [187] to study conditions under which
the problem
x'(t) =f@tx@),x(-1)), tER

has a unique bounded solution.

3.2 Solution of the equation x (t) + mx(—t) = h(?)

In this section we will solve a first order linear equation with reflection coupled with periodic
boundary value conditions using its Green’s function. More concisely, we consider the following
differential functional equation:

X' @) +mx(—t) =h@), tel, (3.2.1a)
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x(T) —x(=T) =0, (3.2.1b)

where m is a real nonzero constant, T € R* and h € L' (I).

Applying the result obtained in Example to this particular case arrive to a problem of
the kind
x"(t) +m?x(t) =f (@), te,
x(T) —x(=T) =0, (3.2.2)
' (T) —x'(-T) =0,
where f € L (I). Observe that there is some abuse in this reduction of the problem. First,
observe that f, if taken as in Example should be &’ (t) + m h(—t) but, here, h € L1 (I)
so we cannot guarantee it is differentiable. This paradox is solved by developing a density
argument. C* (I) functions are dense in L' (I) so, in general, we may assume the independent
term A is differentiable as necessary and then argue that, since C* (I) is dense in L (), the

expression of the Green’s function obtained for the original problem should hold for A € L (1)
as well (as will always be the case).

Also, the second boundary condition is, following Example[1.3.8]
x'(T) =« (=T) =h(T) — h(-T),

but, since & € L1 (I), we may as well assume that 2 (T") = A (—T'). We will use this density
argument several times throughout the work, so the reader should pay careful attention when
it appears.

There is much literature on how to solve this problem and the properties of the solution
(see for instance [2}30,31]). It is very well known that for all m? # (k7w /T)%, k =0,1,...,
problem (3.2.2) has a unique solution given by the expression

u(t) = [ Gt,s)f (s)ds,

where G is the so-called Green’s function.

This function is unique insofar as it satisfies the following properties [28]:

I) Gecd?*R),

2
1) aa—f and ‘Zlg exist and are continuous in {(¢,s) € I? | s # t},

(III) aa—?(t, t7) and aa—C:(t, t*) exist for all ¢ € I and satisfy

oG G
—@t)——=—@t"H) =1Vtel
5 L) — =5, 61 el

(IV) %TG +m2G =0in{(t,s) €I?|s +1},

V) (@) G(T,s) =G(-T,s) Vsel,
(b) Z(T,s) =5 (=T,s) Vs € (-T,T).
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The solution to problem (3.2.2) is unique whenever T' € R*\{k7/|m|} <y, so the solution to
(3.2.1) is unique in such a case. We will assume uniqueness conditions from now on.

The following proposition gives us some more properties of the Green’s function for (3.2.2).

Proposition 3.2.1. Forallt,s € I, the Green’s function associated to problem (3.2.2) satisfies
the following properties as well:

VI) G(t,s) =G(s,t),
(VII) G(t,s) = G(-t,—s),
IG IG
(VIII) E(tys) = g(s,t),

IX) Z(t,s) = -2 (—t,-s),

G G
(X) 8_t(t’s) =_a_s(t78)

Proof. (VI). The differential operator L = ;—; + m? associated to equation (3.2.2) is self-
adjoint, so in an analogous way to [2, Chapter 33] or [28, Section 1.3], we deduce that function
G is symmetric.

(VII). Let u be a solution to (3.2.2) and define v(¢) := u(—t), then v is a solution of
problem (3.2.2) with f (—t) instead of f (¢). This way

v@) = [ Gt,9)f (=s)ds = [ G(t,=s)f (s)ds,

but we have also )
o) =u(=t) = [ G(=t,5)f (s) ds,

therefore .
|-, [G @ =) —G(=t,9)1f (s) = 0

and, since continuous functions are dense in L2 (I), G (t,—s) = G (—t,s) on IZ, this is,
G(t,s) =G(—t,—s) Vt,sel.

To prove (VIII) and (IX) itis enough to differentiate (VI) and (VII) with respect to t.

(X) Assume f is differentiable. Let u be a solution to (3.2.2), thenu € C1(I) andv = u’
is a solution of

2" (t) +m?ix(@t) =f'(t), tEI,
x(T) —x(=T) =0,
' (T) =" (=T) = f(T) - f(=T).

Therefore,

o) = [ G@9)f (5)ds — G, =T [f(T) —f (-T)],
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where the second term in the right hand side stands for the nonhomogeneity of the boundary
conditions and properties (I1I), (IV) and (V) (a).

Hence, from (V) (a) and (VI), we have that

o t IG 7 G
o) = GIf S - [ 5@ f o) ds— [T S5 s)f () ds
T JG

-G(t,-DIF () —f(-T)1=-]" = (1,9)f (5) ds.
On the other hand,
, d pt d ¢r T JG
vt) =u' () = a5 f_TG(t,s)f(s) ds+ ﬁft G(t,8)f(s)ds = f_T g(t,s)f(s) ds.

Since differentiable functions are dense in L2 (I), we conclude that
G JG
—(t,8) = ——(t,s).
5 (t,s) s (t,s)
[ |

Now we are in a position to prove the main result of this section, in which we deduce the
expression of the Green’s function related to problem (3.2.1)).

Proposition 3.2.2. Suppose thatm + kw|T, k € 7. Then problem has a unique
solution given by the expression

u(t) := f_TTE(t,s)h(s) ds, (3.2.3)
where
Gt,5) = mG(t,~s) — 28 (1,5)
ds

is called the Green’s function related to problem .
Proof. As we have previously remarked, problem (3.2.1) has at most one solution for all m +

ka|T,k € 7. Let us see that function u defined in (3.2.3) fulfills (3.2.1) (we assume ¢ > 0,
the other case is analogous):

u' (t) +mu(—t)
d (5~ d ¢t =
= EI_TG(t,s)h(s)ds+ aj_tG(t,s)h(s)ds

+% LTE(t,s)h(s) ds+m f_TTE(—t,s)h(s) ds

= (Gt) -GN + [ l’"%—?(t’ —s) = =

2
"G (t,s)] h(s)ds
ds

+m J‘_TT [mG(—t, —8) — %—f(—t,s)] h(s)ds.
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Using (I1I), we deduce that this last expression is equal to

*G
dtds

(t,s) + m2G(—t,—s) — m%—f(—t,s)] h(s)ds.

h(t) + f_TT lm%—f(t, _s) —

which is, by (IV), (VII), (IX) and (X), equal to

2
h) + 7 (m |22t —) - L2ty | + S 1,90 + sz(t,s)) his)ds = (D).

Therefore, (3.2.13) is satisfied.

Condition (V) allows us to verify the boundary condition:
u(T) —u(-T)
= [mG(T, —s) = 28T, 5) - mG (T, —s) + a—G(—T,s)] h(s) = 0.
-T s Js

As the original Green’s function, G satisfies several properties.

Proposition 3.2.3. G satisfies the following properties:

) ‘Z—C: exists and is continuous in {(t,s) € I? |s # t},

1" g(t,t‘) ania(t, t*) exist for allt € I and satisfy
Git,t)—-G@itT) =1 Vtel,

I1I') %—?(t,s) +mG(—t,8) =0fora.e.t,sE€1l, s +1

aIV’y G(T,s) = G(-T,s) Vse (=T,T),

(V') G(t,s) = G(—s,—t) Vt,s el

Proof. Properties (I'), (II") and (IV") are straightforward from the analogous properties for
function G.

(III'). In the proof of Proposition we implicitely showed that function u defined in
(3.2.3), and thus the unique solution of (3.2.1)), satisfies

W) =h) + [ aa—C:(t,s)h(s)ds.

-T
Hence, sinceu’ (t) —h(t) + mu(—t) =0,
IT 35

L Sy 6 ds +m [ G(=t,9)h(s) ds =0,
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this is,

[ [%—C:(t,s) + mE(—t,s)] h(s)ds = 0forallh € L'(),

and thus i
G

ot

(V). This result is proven using properties (VI) — (X):

(t,8) +m5(—t,s) =0fora.e.t,s€l, s +t.

G(—s,—t) = mG(—s,t) — 8—G(—s, —t) = mG(t, —s) + B—G(—s, —1)
Js ot

= mG(t,—s) — a—G(s,t) = mG(t,—s) — a—G(t,s) = G(t,s).
ot Js

Remark 3.2.4. Due to the expression of G given in next section, properties (II) and (I’) can
be improved by adding that G and G are analytic on {(¢t,s) € I?|s # t} and {(¢,s) €
I? | |s| # |t|} respectively.

Using properties (II') — (V') we obtain the following corollary of Proposition|[3.2.2]

Corollary 3.2.5. Suppose thatm # k7w |T, k € 7Z. Then the problem
xX @) +mx(=t)=h@), tel:=[-T,T],
x(=T)—x(T) = A,

with A € R has a unique solution given by the expression

u(t) i= " G(t,5)h(s)ds + AG(t,~T).

3.2.1 Constant sign of function G

We will now give a result on the positivity or negativity of the Green’s function for problem
(3.2.1). In order to achieve this, we need a new lemma and the explicit expression of the func-
tion G.

Let ¢ := mT and Ea be the Green’s function for problem 1) for a particular value of
the parameter a. Note that sign(a) = sign(m) because T is always positive.

Lemma 3.2.6. Ea (t,8) = —E_Q(—t, —s) Vt,sel.

Proof. Letu(t) := f_TTéa (¢,8)h(s) ds be asolution to (3.2.1). Let v (¢) := —u(—t). Then
vV(t) —muv(—=t) =u' (=t) + mu(t) = h(—t), and therefore

v@) = [ G_,(t,9)h(-s)ds.

On the other hand, by definition of v,
v(t) = —J‘_TTaa(—t,s)h(s) ds = —f_TTﬁa(—t, —s)h(—s)ds,

therefore we can conclude that Ea (t,s) = —E_a (—t,—s) forallt, sel. [ |
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Corollary 3.2.7. 5“ is positive if and only if@_a is negative on I2.

With this corollary, to make a complete study of the positivity and negativity of the Green’s
function, it is enough to find out for what values @ = m T € R™ function G is positive and
for which is not. This will be very useful to state maximum and anti-maximum prmuples for

- due to the way we express its solution as an integral operator with kernel G.

Using the algorithm described in [31] we can obtain the explicit expression of G:

cosm(T+s—t) if s<t,

2m sin(mT)G(t,s) = .
cosm(T —s+t) if s>t

Therefore,

cosm(T—s—t) +sinm(T+s—-t) if —t<s<t,
cosm(T—s—t) —sinm(T —s+t) if —s<t<s,
cosm(T+s+t)+sinm(T+s—t) if —|t|>s,
cosm(T +s+t) —sinm(T —s+1t) if t<—]s|.

ZSin(mT)a(t,s) =

Realize that G is continuous in {(t,s) € I? |t + s}. Making the change of variables t = Tz,
s = Ty, we can simplify this expression to

cosa(l—y—2z)+sina(l+y—2) if —z<y<z,
cosa(l—y—2z)—sina(l—y+z) if —y<z<y,
cosa(l+y+z)+sina(l+y—2z) if —|z|>y,
cosa(l+y+z)—sina(l—y+2z) if z<-—|y.

2sin(a)5(z,y) =

Using the trigonometric identity
cos(a — b) +sin(a + b) = (cosa + sina) (cosb + sinb),
we can factorise this expression as follows:

[cosa(l—2) +sina(l—2)][sinay +cosay] if —z<y<z,
[cosaz —sinaz][sina(y —1) +cosa(y—1)] if —y<z<y,
[cosa(1+y) +sina(l+y)][cosaz —sinaz] if —|z|>y,
[cosay + sinay][cosa(z+ 1) —sina(z+1)] if z<—|y|.

2sin(a)6(z,y) =

(3.2.5)
Note that
. T 3
cos£ +siné >0 VSE(ZkW—Z, 2k + 4) keZ
cosE+siné <0 Vf€(2k7r+%7,2k7r+71) keZ
(3.2.6)
cosE—sinf >0 Vf€(2k7—3z 2k7r+4),k€Z
coséE—siné <0 er(zkw+z 2k7r+%7),kez
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w

Figure 3.2.1: Plot of the function a(z,y) fora = e

As we have seen, the Green’s function G is not defined on the diagonal of I2. For easier
manipulation, we will define it in the diagonal as follows:

limG(,s) if m>0
G(t,t) = {5t _ for t e (-T,T);
111}1 G(t,s) if m<O0

G(T,T) = 111%1_G(s,s), G(-T,-T) = liII:,11+G(s,s)
Using expression (3.2.5) and formulae (3.2.6) we can prove the following theorem.

Theorem 3.2.8.

(1) If a € (O, %) then G is strictly positive on I2.

(2) Ifa € (—%, 0) then Gis strictly negative on I2.

(3) Ifa = % then G vanishes on P := {(-T,-T), (0,0),(T,T), (T,-T)} and is strictly
positive on (I2)\P.

(4) Ifa = —% then G vanishes on P and is strictly negative on (I?)\P.

(5) Ifa € R\ [—%, %] then G is not positive nor negative on I2.

Proof. Lemma allows us to restrict the proof to the positive values of «.

We study here the positive values of@(z,y) inA :={(z,y) € [—1, 1121z > lyl}. The
rest of cases are done in an analogous fashion. Let

B, = (1—%(2k1+%),1—%(2k1—i)),
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T 7 T 3
1‘5(2k1+z)’1‘z(2k1+z))’

3 7
(2k2 + Z,2k2 + Z) 9

B:={(z,y) € By xBylz>yl}, and C:={(z,y) € C; xCylz > |yl}.

S0
i i

C 2

I3 ~— =213

Realize that B N C = (. Moreover, we have that 5(z,y) >0onAifandonlyifA Cc BUC.

To prove the case A C B, it is a necessary and sufficient condition that [—-1,1] C B, and
[0,1] C B,.

[-1,1] C B,ifandonlyifk, € %(% — %, % — %) for some k, € Z, but, since @ > 0, this
only happens if k&, = 0. Insuch acase [-1,1] C ﬁ(—l,S), which implies @ < %. Hence,
s 3 lay T 3 T 1 _
Z>4,50[0,11C (1-3Z,143%) = (1-Z(2k; +3),1—Z(2k; — 1)) fork, = 0.
Therefore A C B.

We repeat this study for the case A C C and all the other subdivisions of the domain of 5,
proving the statement. |

The following definitions [25] lead to a direct corollary of Theorem [3.2.8]
Definition 3.2.9. Let F, (I) be the set of real differentiable functions f defined on I such that
f(=T) —f(T) = A. Alinear operatorR : F, (I) — L () is said to be

(1) strongly inverse positive on Fy (I) if Rx > 0onl =x>0onl Vx € F, ),

(2) strongly inverse negative on F) (I) if Rx > Oonl =x<0onl Vx e F, ),

where x > 0 stands forx > 0 and f_TTx(t) d¢ > 0. Respectively, x < 0 stand for stands for
x < 0and f_TTx(t) dt <O.

Corollary 3.2.10. The operator R,, : F, (I) — L) defined as R, (x(t)) = x'(t) +
mx(—t), withm € R\{0}, satisfies

(1) R,, is strongly inverse positive on F, (I) ifand only if m € (O, %] and A > 0,
(2) R,, is strongly inverse negative on F, (I) ifand only if m € —%, 0)and A = 0.

This last corollary establishes a maximum and anti-maximum principle (cf. [25, Lemma 2.5,
Remark 2.3]).

The function G has a fairly convoluted expression which does not allow us to see in a
straightforward way its dependence on m (see Figure [3.2.1). This dependency can be ana-
lyzed, without computing and evaluating the derivative with respect to m, just using the prop-
erties of equation ) in those regions where the operator R,, is inverse positive or in-
verse negative. A different method to the one used here but pursuing a similar purpose can be
found in [30, Lemma 2.8] for the Green’s function related to the second order Hill’s equation.
In [28, Section 1.8] the reader can find a weaker result for n-th order equations.
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Proposition 3.2.11. Let Gmi : I — R be the Green’s function and u, the solution to the prob-
lem with constantm = m;, i = 1, 2 respectively. Then the following assertions hold.

(1) If0<my <mgy < %then uy >uy >0onlforeveryh >0onlandG,, >G,, >0
onI?.

(2) lf—% <m; <my < 0then0 > u; > uy > 0onl foreveryh > 0onlI and
0>aG,, >G,, onI?.

Proof. (1). Let A > 0 in equation (3.2.1@). Then, by Corollary[3.2.10, u; > OonI,i = 1,2.
We have that

u,(t) + mu,(—t) =h) i=12.
Therefore, fora.e. t € 1,
O = (U2 - ul),(t) + m2u2(_t) - mlul(_t) > (u2 - ul),(t) + ml(u2 - ul) (_t),

and 0 = (ugy —uq) (T) — (ug —u4) (=T'). Hence, from Corollary|3.2.10, u, < u; on 1.
On the other hand, for all ¢ € I, it is satisfied that

0> (uy—uy) (@) = [ (G, (t,5) = Gy, (1,5))h(s) ds VA > 0. (3.2.7)

This makes clear that 0 < G,,,_ < G, a.e. onI°.

To prove that G,,, < G,,, on I?, let s € I be fixed, and define v, : R — R as the 2T-
periodic extension to the whole real line of Gmi (-,8).

Using (I") = (IV"), we have that v, — v; is a continuosly differentiable function on I, =
(s,s + 2T). Futhermore, it is clear that (v, — v,)” is absolutely continuous on I,. Using
(III"), we have that

(Vg — V1) () + Myvy(—t) —mqv;(—t) =0 onl,.

As consequence, v} (t) +mi2 v, (t) = 0a.e. onI,. Moreover, using (II') and (IV") we know
that

(Vg —v1)(8) = (Vg —vy) (s +2T), (vyg—vy) (8) = (Vy—vy) (s+2T).

Hence, for all ¢ € I, we have that
0= (vy—v))" @) +m2vy(t) —m2v,(t) > (vy — V1) (&) + M2 (Vg —vy) (2).
The periodic boundary value conditions, together the fact that for this range of values of

m,, operator v” + m? v is strongly inverse positive (see Corollary|3.2.10), we conclude that
vy < vqonl, thisis, sz (t,8) < Gml (¢,8) forallt, s el.

(2). This is straightforward using part (1), Lemma and Theorem[3.2.8;
sz(t,s) = —G_mz(—t, —-3) < —G_ml(—t, —8) = Gml(t,s) <0 Vt,sel.
By equation (3.2.7), uy < u; onl.
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Remark 3.2.12. In (1) and (2) we could have added that u; < uy, VA < 0. These are
straightforward consequences of the rest of the proposition.

The next subsection is devoted to point out some applications of the given results to the
existence of solutions of nonlinear periodic boundary value problems. Due to the fact that the
proofs follow similar steps to the ones given in some previous papers (see [25,(167]), we omit
them.

3.2.2 Lower and upper solutions method

Lower and upper solutions methods are a variety of widespread techniques that supply infor-
mation about the existence —and sometimes construction— of solutions of differential equa-
tions. Depending on the particular type of differential equation and the involved boundary
value conditions, it is subject to these techniques change but are in general suitable —with
proper modifications— to other cases.

For this application we will follow the steps in [25] and use Corollary|3.2.10| to establish
conditions under which the more general problem

xX'@)=ft,x(=t)) Vtel, x(=T)=x(T), (3.2.8)

has a solution. Heref : I x R — R is an LP-Carathéodory function, that is, f (-,x) is mea-
surable for allx € R, f(t,-) is continuous for a.e. ¢t € I, and for every R > 0, there exists
hg € LP () such that, if with |x| < R then

If (t,x)| < hp(t) fora.e.teEl.

Definition 3.2.13. We say u € C(I) is an absolutely continuous function in I if there exists
f € L1(I) such that foralla € I,

u() =u(@) + [ f(s)ds, t €L
We denote by AC (I) the set of absolutely continuous functions defined on 1.
Definition 3.2.14. We say that « € AC (]) is a lower solution of if @ satisfies
a @) =>f a(=t)) forae.tel, a(-T)-—a(T)=>0.
Definition 3.2.15. We say that 5 € AC (I) is an upper solution of if 3 satisfies

B’ @) <f@B(-t) foraetel, B(-T)-pB(T) <O0.

We establish now a theorem that proves the existence of solutions of (3.2.8) under some
conditions. The proof follows the same steps of [25, Theorem 3.1] and we omit it here.

Theorem 3.2.16. Letf : I xR — R be a L1-Carathéodory function. If there exist a > ,8 lower
. 5 . T
and upper solutions of respectively and m € (0, -] such that

ft,x)—f(ty) =>—-m((x—y) foraeteclwithB(t) <y<x<a(t),
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then there exist two monotone sequences (@) ,en, (8,) nen, NONINcreasing and nondecreas-
ing respectively, with a, = a, ,30 = (3, which converge uniformly to the extremal solutions in

[8, a] of (3.2.8).
Furthermore, the estimate m = % is best possible in the sense that, for every fixed m >
%, there are problems with its unique solution outside of the interval [,3 ,al.

In an analogous way we can prove the following theorem.

Theorem 3.2.17. Letf : IXR — R be a L'-Carathéodory function. If there exist & < 3 lower
and upper solutions of respectively and m € [—%, 0) such that

f@x) —fty) <—-m(x—y) foraetelwtha®) <y<x<p(@),

then there exist two monotone sequences (&,,) ,en, (3,) nen» NONINcreasing and nondecreas-
ing respectively, with ay = a, ,6’0 3 ,8, which converge uniformly to the extremal solutions in

[a, 5] of (3.2.8).

Furthermore, the estimate m = —% is best possible in the sense that, for every fixed

m < —%, there are problems with its unique solution outside of the interval [a, 3].

3.2.3 Existence of solutions via Krasnosel’skii’s Fixed Point Theorem

In this section we implement the methods used in [120] for the existence of solutions of second
order differential equations to prove new existence results for problem

xX' @) =f(t,x(=t),x@t)) Vitel, x(-T)=x(T), (3.2.9)

wheref : I x R x R — R is 2T-periodic on ¢ and an L!-Carathéodory function, that is,
f (-,u,v) ismeasurable for each fixedu andv and f (¢, -, -) iscontinuous fora.e. t € [-T,T1],
and for each r > 0, there exists ¢, € LY ([-T,T]) such that

fu,v) <o, (t) foral (u,v) € [-r,r] x[-r,r], anda.e. t € [-T,T].

Let us first establish the fixed point theorem we are going to use [120].

Definition 3.2.18. Let 7 be a real topological vector space. Acone K in T is closed set such that
is closed under the sum (thatis,x +y € K forallx,y € K), closed under the multiplication by
nonnegative scalars (thatis Ax € K forall A € [0, +o0),x € K)andsuchthatK N (—K) =
{0} (thatis, ifx, —x € K, thenx = 0).

Theorem 3.2.19 (Krasnosel’skii). Let B be a Banach space, and let P C B be a cone in B.
Assume ()4, ), are open subsets of Bwith0 € ()4, ; C QyandletA: PN (Q\0) - P
be a compact and continuous operator such that one of the following conditions is satisfied:

(1) 1Aull < llullifu € PN IO, and |Aull = llullifu € P N IQy,

(2) |Aull = llullifu € P N IQy and Aull < llull ifu € P N IQ,.
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Then, A has at least one fixed point in P N (9_2\91)-
In the following, let m € R\{0} and G be the Green function for problem

X' @) +mx(=t) =h@), x(=T)=x(T).
Let M = sup{G(t,s) : t,s €I}, L =inf{G(t,s) : t,sEI}.

Theorem 3.2.20. Letm € (O, %). Assume there existr, R € R*, r < R such that

L M
> —r, — . e. .
ft,x,y) +mx>0 Vx,y € [Mr,LR],a etel

Then, if one of the following conditions holds,

(1)
(t,x,y) +mx > ——x Vx,y€ |—=r,r|,a.e.t€l,
f s Yoo € |57 ,
f(t,x,y) +mx < 2TMx Vx,y € [R,%’R],a. e.tel;
(2)
L
f(t,x,y) +mx < 2TMx Vx,y € [A—/Ir,r],a.e. tel,
f(t,x,y) +mx > %x Vx,y € [R,%’R], a.etel,

problem has a positive solution.
ifB=(CU),| "), bydefining the absolutely continuous operator A : B — B such that
Ax) @) = [1 G 9)[f (5,%(=5),2(5)) +mx(—s)],ds

we deduce the result following the same steps as in [167].
We present now two corollaries (analogous to the ones in [167]]). The first one is obtained
by strengthening the hypothesis and making them easier to check.

Corollary 3.2.21. Letm € (0, %), ft,x,y) >0forallx,y € Rtanda.e. t € I. Then, if
one of the following condition holds:

(1)
lim f(t,x,y) — too, lim f(t,x,y) o,
x,y—0* X x,y—+00 X
(2) , ,
lim ftxy) ~0, lim f@xy) _ oo

x,y—0+ X X,y —>+oo X

uniformly for a. e. t € I, then problem has a positive solution.
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Corollary 3.2.22. Letm € (0, ﬁ). Assume there existr, R € R*, r < R such that

M L
< —_— — .e. .
ft,x,y) +mx<0 Vx,yE[ LR, Mr],aetel

Then, if one of the following conditions holds,

(1)
ft,x,y) +mx < 2%236 Vx,y € [—r,—%r],a.e.tel,
1 M
> A4 ——R,— .e. I,
f(t,x,y)+mx_2TMx x,ye[ LR, R],aete ;
(2)
1

x Vx,y € [—r,—]‘%r],a.e. tel,
M
L

>
ftx,y) +mx > ST

Mo
2TL?

problem has a negative solution.

fxy) +mx < Vx,y € [— R,—R],a.e.tel;

Similar results to these —with analogous proofs— can be given when the Green'’s function is
negative.

Theorem 3.2.23. Letm € (—41, 0). Assume there existr, R € R*, r < R such that

M L
< —N=— . e. .
ft,x,y) +mx<0 Vx,y € [Lr,MR],a e.tel

Then, if one of the following conditions holds,

(1)
f(t,x,y) +mx < 2TI]J\/12x Vx,y € [%r,r], aetel,
f(t,x,y) +mx > ﬁx Vx,y € [R, ]\%R]' a.e. tel,
(2)

ftx,y) +mx> ﬁx Vx,y € [%’r,r], aetel,

x Vx,y € [R,A%R],a.e. tel,

L
t,x,y) +mx <
f(t,x,y) ST
problem has a positive solution.
Corollary 3.2.24. letm € (—%, 0). Assume there existr, R € R™, r < R such that

L M
> —_— —__ .e. .
f(t,x,y) +mx>0 Vx,ye[ MR’ Lr],ae tel

Then, if one of the following conditions holds,
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(1)

ft,x,y) +mx > 2T1;sz Vx,y € [—r,—%r], aetel,

L

ft,x,y) +mx < 2TLx Vx,y € [ MR,—R],a.e.tEI,

(2)
1 M
f(t,x,y) +mx < 2TLx Vx,y € [—r,—fr],a.e.tel,
f(t,x,y) +mx > 2TM2x Vx,y € [—%R,—R],a.e. tel,

problem has a negative solution.

We could also state analogous corollaries to Corollary(3.2.21|for Theorem(3.2.23|and Corol-
laries[3.2.22]and [3.2.24]

3.2.4 Examples

We will now analyze two examples to which we can apply the previous results. Observe that
both examples do not lie under the hypothesis of the existence results for bounded solutions for
differential equations with reflection of the argument in [187] nor in those of the more general
results found in [1}/155,(173,/174}/189] or any other existence results known to the authors.

Example 3.2.25. Consider the problem
x'(t) = A sinh (¢t —x(=t)), Vtel, x(-T)=x(T). (3.2.10)

It is easy to check that @ = T and /3 = —T are lower and upper solutions for problem (3.2.10)
forall A > 0. Since f (¢,y) := A sinh (¢ — y) satisfies that Ig(t,y)l < Acosh (2T), forall

(t,y) € I?, we know, from Theorem [3.2.16)} that problem (3.2.10) has extremal solutions on
[=T,T] forall
T

<
O<As< 4T cosh (2T)°

Example 3.2.26. Consider the problem

2 (t) = t2x%(t) [cos® (x?(—t)) +1] Vte I, x(-T) =x(T). (3.2.11)

By defining f (¢, x,y) as the 2T -periodic extension on ¢ of the function
t?x%[cos? (y?) + 1],

we may to apply Corollary|3.2.21|to deduce that problem (3.2.11) has a positive solution. Using
the analogous corollary for Corollary|3.2.24}, we know that it also has a negative solution.
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3.3 The antiperiodic case

As we will see in this section, the antiperiodic case satisfies properties which are analogous to
the periodic one.

We consider the antiperiodic problem
xX'(t) +mx(=t) =h@), x(=T)+x(T) =0, (3.3.1)

we have that the reduced problem for A = 0 corresponds with the harmonic oscillator with
antiperiodic boundary value conditions

x" (@) +m?x() =0, x(-T)+x(T)=0, x'(-T)+x(T)=0
of which the Green'’s function, H, is given by the expression

sinm(t—-s—-T) f-T<s<t<T,

2mcos(mTYH (t,s) =4 . )
sinm(s—t—-T) if —-T<t<s<T.

It is straight forward to check that the following properties are fulfilled.
(A)He C(I2 R).

(Az) y
Also,

P H oyist and are continuous on I?\D where D := {(t,s) €I? : t =s}.

mcosm(t—s—T) if —T<s<t<T,

2mcos(mT)8—H(t,s) =< .
ot —mcosm(s—t—T) f—-T<t<s<T,

111}1 2m cos(m T)&&—I;I (t,s) =mcosmT,
lirg 2m cos(m T)(};—I;[(t,s) =-—mcosmT,
hence
(Ag) ZX(t,t7) = 22(t,t1) =1 Vi el

Furthermore we have the following

A, Z& s H (¢ sy + m2H (¢,s) =0 VY (¢,5) € I2\D.

(A5) a) H(T,s) + H(-T,s) =0 Vsel,
b) (T )+ (Ts)—OVsEI

Foreveryt, s € I, we have that

(Ag) H(t,s) = H(s,t).

(A;) H(t,s) =H(—t,—s).

(Ag) 2L (t,5) = 2L (s,0).

Ag) & o L(t,s) = —ZL(—t,—s).
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(Ay0) ZE(t,5) = =22 (t,5).

The properties (A;) — (A,,) are equivalent to the properties (I) — (X)) in the previous
section. This allows us to prove the following proposition in an analogous fashion to Proposition
3.2.2]

Proposition 3.3.1. Assumem # (k+%) % k € 7. Then problem (3.3.1)) has a unique solution

u(t) = [ H(t,9)h(s)ds,

where )
H(t,s) :=mH(t,—s) — a—iI(t,s)

is the Green’s function relative to problem .

The Green’s function H has the following explicit expression:

sinm(=T +s+t)+cosm(=T —s+1t) si t>]s,
— ' -T — -T — i
9 cos(mT)H(t,s) = s%nm( +s+t) —cosm( +s—1t) S{ 7] < s,
sinm(=T —s—t) +cosm(—T —s+1t) si —|t>s,
sinm(=T —s—t) —cosm (=T +s—t) si t<—|s|.

The following properties of H hold and are equivalent to properties (I’) — (V’) in the previous
section.

(A'l) 8&—1;1 exists and is continuous on I2\D,

(A3) H(t,t7) yH(t,t") exist for all £ € I and satisfy

H¢t)—H@tt)=1Vtel,

(A3) %(t,s) +mH(~t,s) =0a.e.t,s€l, s+t
(A)) H(T,s) +H(-T,s) =0 Vs € (-T,T),
(AL) H(t,s) = H(—s,—t) Vt,s €.

Despite the parallelism with the periodic problem, we cannot geneEIize the maximum and
anti-maximum results of [39] because property (A:l) guarantees that H (-, s) changes sign for

a.e. s and, by property (A'5), that ﬁ(t, -) changes sign for a. e. ¢ fixed.

3.3.1 The general case

In this section we study equation x’ (¢) + mx(¢) = h(¢) under the conditions imposed by a
linear functional F, this is, we study the problem

X)) +mx(=t) =h@®), F(x)=c, (3.3.2)

wherec € Rand F € Wh1(I)'.
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Remember that that W1 (1) := {f : I - R : f' € L' (I)} and we denote by Wi1 (1)’
its dual. Also, we will denote by C, (I) the space of compactly supported functions on I.

Recall that the solutions of equation x” () + m2x(¢) = 0 are parametrized by two real
numbers a and b in the following way: u(¢) = acosmt + bsinmt. Since every solution
of equation x’ (¢) + mx(—t) = 0 has to be of this form, if we impose the equation to be
satisfied, we obtain a relationship between the parameters: b = —a, and hence the solutions
ofx (t) + mx(—t) = 0aregivenbyu(t) =a(cosmt —sinmt),a € R.

Observe that 2sin(m T') a(t, —T) = cosmt — sinmt, and a(t, —T) is the unique
solution of the problem

X)) +mx(—=t) =0, x(=T)—x(T) =1.
Hence, if we look for a solution of the form
x(t) = [ G(t,9)h(s) ds + AG(t,—T), (3.3.3)
and impose the condition F'(x) = ¢, we have that
r — _
c=F ([, Gt5)h(s)ds) +AF (G, ~T))
and hence, for

L c—F (f_TTa(t,s)h(s) ds)

>

F(G(,-T))

expression (3.3.3) is a solution of problem (3.3.2) as long asF(@(t, —T)) # 0or, whichis the
same,
F(cosmt) + F(sinmt).

We summarize this argument in the following result.

Corollary 3.3.2. Assumem # kaw/T, k € Z, F € WY (I)’ such that F(cosmt) #
F (sinmt). Then problem (3.3.2)) has a unique solution given by

c—F (f_TTE(t,s)h(s) ds)
G@t,-T), tel. (3.3.4)

u(t) := fT G(t,s)h(s)ds + -
- F(G(t,-T))

Remark 3.3.3. The conditionm # kw /T, k € 7 together with the rest of the hypothesis
of the corollary is sufficient for the existence of a unique solution of problem (3.3.2) but is
not necessary, as it has been illustrated in Proposition because such a condition is only

necessary for the existence of G.

3.4 Examples

We now apply the previous results in order to get some specific applications.
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Application 3.4.1. Let F € WY1 (1)’ N C,(I)" and assume F (cosmt) # F(sinmt). The
Riesz Representation Theorem guarantees the existence of a —probably signed— regular Borel
measure of bounded variation @ on I such that F'(x) := f_TTxd,u and ”F”CC(I)’ = |uld),
where |u|(I) is the total variation of the measure w on I.

Let us compute now an estimate for the value of the solution u at .

. c—F f_T G(t,s)h(s)ds)_
@l =|[" Gt,5)h(s)ds + ( — )G(t,—T>
- F(G(t,-T))
_ — (T (T G(t,s)h(s)dsdu(t)] —
< sup Gt o)l 4 I Ln GO dsdu®iz -
sel F(G(t,~T))|

el + sup, .e; IG &, )l (D 1Al —

< sup |G (¢, s)lIAll; + = IG(t,-T)|
sel IF(G(t,-T))|
G, -T » G, -T —
= c_(t;) + [Sup IG(t,s)| + # sup IG(t,s)II,uI(I)] Al .
F(Gt,-T)) sel F(G(t,—-T))|tsel

Define operator = as 2 (f) (¢) := f_TTE(t,s)f(s) d s. And let us consider, for notational
purposes, E(S_T) (¢) := G(t,—T). Hence, equation (3.3.4) can be rewritten as

u() =EMh) @) + —— HE0_) @), tel. (3.4.1)
F(E(5_p) !

Consider now the following lemma.

Lemma 3.4.2 ( [34, Lemma 5.5]). Letf : [p —¢c,p + c] — R be a symmetric function with
respect to p, decreasing in [p,p + c]. Letg : [a,b] — R be a straight line such that
g([a,b]) C [p —c,p + c]. Under these hypothesis, the following hold.

(1) Ifg(a) <g(b) <porp <g(b) <g(a)thenf(g(a)) <f(g(b)),

(2) ifg(b) <g(a) <porp<g(a) <g(b)thenf(g(a)) >f(g(d)),

(3) ifg(a) <p <g(b) thenf(g(a)) <f(g(b)) ifand only if g (“:%) < p,

(4) ifg(b) <p <g(a) thenf(g(a)) <f(g(b)) ifandon/yifg(%) > p.

Remark 3.4.3. An analogous result can be established, with the proper changes in the inequal-
ities, if f is increasing in [p,p + c].

Proof. Itisclearthatf(g(a)) < f(g(b)) ifand onlyif|g(a) —p| > lg(b) — p|, so (1) and

(2) are straightforward. Also, realize that, since g is affine, we have that g (%) = 3%5’“’).

Let us prove (3) as (4) is analogous:

g(b) —pl—lg(@) —pl =g(b) —p— (p—g(a)) = g(a) +g(b) —2p = 2 [g (“ ; b) _p] ,

Therefore |g(a) — p| > lg(b) — p|ifand only ifg (%) <p. [ ]
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With this Lemma, we can prove the following proposition.

Proposition 3.4.4. Assume @ = mT € (0,7/4), F € W1 ()" N C.(I)’ such that w is its
associated Borel measure and F' (cos mt) > F (sinmt). Then the solution to problem (3.3.2)
is positive if
2M |\l (D) Al
c> —.

3.4.2
1—tana ( )

Proof. Observe that E(S_T)(t) > 0 Vt € I forevery a € (0,%) because F (cosmt) >
F (sinmt). Hence, if we assume that u is positive, solving for ¢ in (3.4.1), we have that

E(h) (@)
E(S_p) (2)
Reciprocally, if this inequality is satisfied, u is positive.

It is easy to check using Lemma that

c>F(EM) —F(EG_1) Viel.

mina(t, -T) = 1(cota —1) and maxa(t, =T = 1(cotcz +1).
tel 2 tel 2

Let M := max, ,; G(t,s).

Then

E(h) (8) = . Eh) @)
Y IF(E(R)] + 2F (B (0_1)) ————=

Mihll,  2MiulD)lkll,
ota—1 1—tana

F(Eh) —F((E_p)

<M\u|(D) Rl + (cot @ + 1) |ul (D) 3

Thus, a sufficient condition for u to be positive is

2M || )k
\ Ll (DAl

1—-tana

=t k;.
u

Condition (3.4.2) can be excessively strong in some cases, which can be illustrated with the
following example.

Example 3.4.5. Let us assume that F'(x) = f_TTx(t) d ¢. For this functional,

2Mpl (DRI, AMTIAI,
l1—tana 1—tana’

In [34}, Lemma 5.11], it is proven that f_@_,,@(t,s) dt = % Hence, we have the following

F(E(h)) — F(E(S_p)) =B
=(0_p) (1)

G = T G(t,s)h(s)d
:fT fT G(t,s)h(s) det—J'T G(t,—T)dt'f_T _( s)h(s)ds
_TJ_T r =
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1 [ Gt,9)h(s)ds

=lfTTh(s)ds— —

m == m G, -T)

T G(t,s)h(s)|ds

<L 7 hesyias+ LIS

m == m G, -T)

max,_; G(t,s) \ Al M IRl

< <
_(1+ntléalx G(t,-T) ) m 1-I_minteIG(t,—T) m
_ 2M A4
_(1+cota—1) m

This provides a new sufficient condition to ensure that u > 0.

h
C>(1+ oM )n g

cota—1/) m

Observe that
k_2 1+ (@M -1)tana

kq 4M«a

In order to quantify the improvement of the estimate, we have to know the value of M.

Lemma3.4.6. M = %(1 + csca).

Proof. By [34, Lemma 5.9] we know that, after the change of variable t = Tz, y = T's,

— cos|la(y—1)+ Z|cos(ay—=) if ye[0,1],
(sina)®(y) = max G(z,y) = [ o W) 4] ( 4 ;ir) i y € 10,1]
z€[-1,1] cos (ay + —) cos [a(y +1) — —] if yel[-1,0).
4 4
Observe that @ is symmetric, hence, it is enough to study it on [0, 1]. Differentiating and
equalizing to zero it is easy to check that the maximum is reached at z = % [ |

Thus,
ko 1 1+seca

@ :=k_1=%' l1+csca’

f is strictly decreasing on (O,%),f(OJF) =1landf (%_) = %

Example 3.4.7. We give now an example for which we compute the optimal constant ¢ that
ensures the solution is positive and compare it to the aforementioned estimate. Consider the
problem

() +x(=t) =€, te [—%, %] , f_zlx(s) ds=c. (3.4.3)

For this specific case,

1

h 2 cot 2 sinh
py=—cosatl Wh PR PS4 91464

cosa —sina m cot:—1
4
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f(a)
1.00

095t

0.90

0.85}

0.80

0.75

0.70

0.65t

0.0 0.2 0.4 0.6 0.8

Figure 3.4.1: :—2 as a function of «.
1

-1.0 05 0.5 10
Figure 3.4.2: Solution of problem (3.4.3) for ¢ = 0.850502 ...
Now, using the expression of 5, itis clear that

u(t) = sinht + &

(cost — sint)
2 sin >

is the unique solution of problem (3.4.3). It is easy to check that the minimum of the solution is
reached at —1 forc € [0, 1]. Also that the solution is positive forc > 2 sin % sinh1/(cos 1+
sin1) = 0.850502 ..., which illustrates that the estimate is far from being optimal.
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3.5 Solutions of the initial value problem

In this section we analyze a particular case for the boundary conditions in the previous section:
the initial — or, better said, middle point— problem. We will show that this specific case admits
an interesting way of constructing the Green’s function. The results of the Section follow [43].

3.5.1 The n-th order problem

Consider the following n-th order differential equation with involution with involution

n

Lu:=) [au® (=) +bu® ®)] =h@), t € R; ulty) =c, (3.5.1)
k=0
where h € LIIOC(R), ty,c,a,, b, € Rfork =0,...n—1;a, = 0;b, = 1. Asolution to

this problem will be a functionu € Wn 1(R) that is, u is k times differentiable in the sense

of distributions and each of the derlvatlves satisfies uk)IK € LY(K) for every compact set
KCcRandk=0,...,n

Theorem 3.5.1. Assume that there exist i and U, functions such that satisfy
n—j

(L +J) [(~D)r*i1q,, @D (=t) +b,,,0® @) ] =0, €R;j = 0,...,n— 1, (3.5.2)

i=0
n—

y (i +J) [(=1)"*ia,, 5D (=t) + b, 5P (#)] =0, t ER; j = 0,...,n— 1, (3.53)
J

i=0

(@0, —U,0,) (t) #0, t € R. (3.5.4)
and also one of the following

(h1) L& =0andii(t,) + 0,
(h2) L% =0and¥(t,) +0,

(h3) ag+by # 0and (ag+by) [ty — )"
Then problem has a solution.

Proof. Define

—0, and 17&* = e
Observe that ¢ is odd, 1,& is even and & = il + Y. So, in order to ensure the existence of
solution of problem (3 it is enough to find y and 2z such that Ly = i and Lz = 7 for,
in that case, deﬁnlng u =y + z, we can conclude that Lu = h. We will deal with the initial
condition later on.

h, i
—

<

e-e o~ o

Takey = ¢ Ui, where

- t (s, S _ 1 ¢ n—
(]D(t) = f() fo fo (Io(sl)dsl...dsn_mfo(t—S) 1(]0(3) ds.
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Observe that ¢ is even if n is odd and vice-versa. In particular, we have that
PP (t) = (=1L gD (—t), j=0,..,n.

Thus,

agE

Ly@) =) [ap(gi)® (=t) + by (g)® (1) ]

k

Bl
I
=}

I
agE

(k) [( l)k (l)( t)u(k—J)( t)+bk90(’)(t)u(k"f)(t)]
o \J

it
(=}

J

(k) (t) [( 1)k+]+n 1 ﬁ(k_j)(—t) +bkl'z(k—j) (t)]

Bl
Il
(=]

I I
Miw
Mw

( ) [ (1) ¥+ g, 5D (=) + b, u* (1) ]

k=j

n—j
) (l +J) ( 1)i+n—1ai+ji~t(i)(_t) +bi+jﬁ(i) (t)] — (,5(n) )i (t)

t)u(t)

Il
&, .
M S
(=}

~ O

P
Hence, Ly = ¢.

All the same, by taking z = 3;17 with &(t) =
Lz = .

Hence, definingit :=y +2 = gt + 3}5 we have that & satisfies Lz = h and 2 (0) = 0.

ﬁ Jo@ =) "1 (s) ds, we have that

If we assume (1),
c—ul(t
. () G T (o) ;
u(to)
is clearly a solution of problem (3.5.1)).

When (h2) is fulfilled a solution of problem (3 is given by

c—u(ty) .
U(ty)

If (h3) holds, using the aforementioned construction we can find w such that Lw,; =1
andw; (0) = 0. Now, wy, :=w; — 1/(ay + b,) satisfies Lw, = 0. Observe that the second
part of condition (h3) is precisely wy (¢,) # 0, and hence, defining

w=u+-———Ww
wy (ty) 2

we have that w is a solution of problem (3.5.1)). [

Remark 3.5.2. Having in mind condition (A1) in Theorem3.5.1} it is immediate to verify that
L @i = 0 provided that
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a; =0foralli € {0,...,n — 1} such thatn + i is even.
In an analogous way, for (A2), one can show that L T = 0 when

a; =0foralli € {0,...,n — 1} such that n 4+ i is odd.

3.5.2 The first order problem

After proving the general result for the n-th order case, we concentrate our work in the first
order problem

u' (@) +au(—t) +bu(t) =h(t), fora.e.t€R; u(ty =c, (3.5.5)

with A € LY . (R) and ¢, a, b, c € R. A solution of this problem will be u € Wllo’c1 (R).

In order to do so, we first study the homogeneous equation
u (@) +au(-=t) +bu@) =0,teR. (3.5.6)
By differentiating and making the proper substitutions we arrive to the equation
u @)+ @ -b>u@) =0, t < R. (3.5.7)

Let w := a2 — b2|. Equation (3.5.7) presents three different cases:

(C1). a® > b2. Insuch a case, u(t) = a cos wt + ,Bsin wt is a solution of (3.5.7) for every
a, 8 € R. If we impose equation (3.5.6) to this expression we arrive to the general solution

u(t) = a(cos wt — atb sin wt)

of equation (3.5.6) with ¢ € R.

(C2). a® < b2 Now, u(t) = acoshwt + [3sinhwt is a solution of (3.5.7) for every
a, ,3 € R. To get equation (3.5.6) we arrive to the general solution

a+b

u(t) = a(cosh wt — sinh wt)

of equation (3.5.6) with ¢« € R.

(C3). a? = b2 Inthisacase, u(t) = at + [ is a solution of (3.5.7) for every a, B € R.
So, equation (3.5.6) holds provided that one of the two following cases is fulfilled:

(C3.1). a = b, where
u(t) =a(l—2at)
is the general solution of equation (3.5.6) with « € R, and
(C3.2). a = —b, where
u(t) =a

is the general solution of equation (3.5.6) with ¢ € R.
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Now, according to Theorem(3.5.1} we denote i, U satisfying

' (t) +a(—=t) +dbu(t) =0, u(0) =1, (3.5.8)

U (t) —ab(=t) +bv(t) =0, ©v(0) =1. (3.5.9)
Observe that &z and U can be obtained from the explicit expressions of the cases (C1)—(C3) by
taking @ = 1.

Remark 3.5.3. Note that if u is in the case (C3.1), v is in the case (C3.2) and vice-versa.

We have now the following properties of functions & and 0.

Lemma 3.5.4. Foreveryt,s € R, the following properties hold.

. =0, U, = kU, for some real constant k almost everywhere,

(2) 4,(s)v,(t) =0, (t)0,(s), u,(s)V,(t) =u,(t)v,(s),
(3) w0, —u,0, = 1.
(4) u(s)v(—s) +u(—s)v(s) =2[u,(s)v,(s) —u,(s)v,(s)] = 2.

Proof. (1) and (3) can be checked by inspection of the different cases. (2) is a direct conse-
quence of (1). (4) is obtained from the definition of even and odd parts and (3). |

Now, Theorem has the following corollary.

Corollary 3.5.5. Problem (3.5.5) has a unique solution if and only if i (¢,) # O.

Proof. Considering Lemma (3), & and U, defined as in (3.5.8) and (3.5.9) respectively,
satisfy the hypothesis of Theorem (h1), therefore a solution exists.

Now, assume w and w,, are two solutions of (3.5.5). Then w, — w; is a solution of (3.5.6).
Hence, wy,—w/ is of one of the forms covered in the cases (C1)—(C3) and, in any case, a multiple
of &z, that is wy — w; = A i forsome A € R. Also, it is clear that (wy — w;) (¢,) = 0, but
we have @i (t,) # 0 as a hypothesis, therefore A = 0 and w; = w,. This is, problem (3.5.5)
has a unique solution.

Assume now that w is a solution of (3.5.5) and & (¢,) = 0. Thenw + A & is also a solution
of (3.5.5) for every A € R, which proves the result. [ |

This last Theorem raises an obvious question: In which circumstances & (£,) # 0? In order
to answer this question, it is enough to study the cases (C1)—(C3). We summarize this study in
the following Lemma which can be checked easily.

Lemma 3.5.6. & (¢y) = 0 only in the following cases,

e ifa® >b%andt, = % (arctanﬁ + k7r) for somek € 7,

o ifa?<b?ab> and ty = %arctanh ﬁ,

fab > 0is equivalentto [b —a| < |b + al.
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e ifa=bandt, = i

Definition 3.5.7. Let ¢,,t, € R. We define the oriented characteristic function of the pair
(¢4,t59) as
1, 1, <t<t,,

th (t) :=1-1, t,<t<ty,
0, otherwise.

Remark 3.5.8. The previous definition implies that, for any given integrable functionf : R —
R, to et
ftl f(s)ds= f_m Xz, (9)f (s) ds.
Also, X2 = =t
The following corollary gives us the expression of the Green’s function for problem (3.5.5).
Corollary 3.5.9. Suppose i (t,) # 0. Then the unique solution of problem (3 is given by

oo —u t ~
u(t) := J'_OOG(t,s)h(s) ds + %u(t), t e R,

where
G(t,s) = % ([&(=)0() + 0 (—s)u@) x5 (s) + [@(—s)D () — 17(—8)l~t(t)])(9t(8)) ,

(3.5.10)
foreveryt,s € R.

Proof. First observe that G (¢, -) is bounded and of compact support for every fixed t € R, so
the integral [ G (¢,s)h(s) ds is well defined. It is not difficult to verify, for any ¢ € R, the
following equalities:

w0 = S @ =5 (7 [ 00 +59aW 1 h) ds

t
f [G(—8)D(t) —D(— s)u(t)]h(s)ds)

s
MY
2 (Efo [iL (=)0 (¢) + D (=s)i(¢)1h(s)ds (3.5.11)

d ¢t~ N~
+@f0 [ (s)D(t) — D (s)it(t)] h(—s) ds)
=h(t) + % ([] [a(=)8" (&) + B(=s)& @) ] h(s) ds
+ [ @)’ @) —5(s)i' (1) ] h(—s) ds) .

On the other hand,

a[u(—t)—% (- t)] [u(t)—%ﬁ(t)]

=2a [} ([B=9)8(~0) + B (=9)E(-D ()
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+[@(s)0(—t) —V(s)it(—t)]h(—s)) ds
+ %b J'Ot ([a(=s)0(t) +0(=s)u(t)]h(s) + [U(s)D(t) —V(s)i(t)]h(—s)) ds

= - L[l (@)1 + 3 E-D1h(=s)
+[@ (=)0 (=) —0(=s)u(-t)]h(s))ds
+ 20 1 ([@(=)5() +5(=)BM1RE) + [FE6)TE) DR M1A(-5) ds
=2 Jy(=ali(=9)5 (=) =5 (=9)B(-O1 + b[E(=9)F (1) + 5 (=9)a O Dh(s) ds
+ 2 [1(—ala©)5 (=) +5E)R(-0] +b[aETE — 5 (TMODh(-5) ds
=% [ @i (=) [—ab(=t) + b8 ()] + B(—s) [aii (—t) + bit(£) A (s) ds
+ % [, @(s)[—ab (=t) +bB(E)] — (s) [aii(~t) +biL(@) A (—s) ds
= % ([; @(=9)% (1) + B(=s)& (t))h(s) ds
+ [T @(s)¥ (1) — 5 () (1)h(—s) ds) . (3.5.12)

Thus, adding (3.5.17) and (3.5.12), itis clear that &’ (¢) + au (—t) +bu(t) = h(?).

We now check the initial condition.

u(ty) =c—u(ty)+
5 [ ([B(=9)t0) +(=9)2t) 1h(5) + [($)(t) — D((t0) Th (—5)) ds.
It can be directly checked that, forallt € R,
a(t) = 5 f) ([@(=)5(t) +5(-)uMIR(E) + [@ETE —5 ()T M1A(=s) ds,
is a solution of problem (3.5.5), which proves the result. u

Denote now Ga,b the Green’s function for problem (3.5.5) with constant coefficients a and
b. The following Lemma is analogous to Lemma(3.2.6

Lemma3.5.10. G, ,(¢,s) = —G_, ,(—t,—s), forallt,s €I

Proof. Letu(t) := f_""oo G, (t,8)h(s) ds be the solution to
u @) +au(=t) +bu@) =h@), u) =0.

Llet v(¢) := —u(—t). Thenv'(¢) —av(—t) —bv(t) = h(-t), and therefore v(¢) =
J© Gy (t,8)h(—s) ds.

On the other hand, by definition of v,
v(t) =— [T G, (~t,9)h(s)ds = — [T G, ,(—t,—s)h(—s) ds,

therefore we can conclude that Ga’b (t,s) = —G_a’_b (—t,—s) forallt, sel. [ |
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As a consequence of the previous result, we arrive at the following immediate conclusion.

Corollary 3.5.11. G, , is positive in I? ifand only if G_, _p is negative on I?.

3.6 Sign of the Green’s Function

In this section we use the above obtained expressions to obtain the explicit expression of the
Green'’s function, depending on the values of the constants a and b. Moreover we study the
sign of the function and deduce suitable comparison results.

We separate the study in three cases, taking into consideration the expression of the general
solution of equation (3.5.6).

3.6.1 The case (C1)

Now, assume the case (C1), i.e., a® > b2 Using equation (3.5.10), we get the following
expression of G for this situation:

G(t,s) = [cos(w(s—t)) + gsin(a)(s —t))] X’E)(s) + %sin(w(s +t))X9t(3),

which we can rewrite as

cosw (s —1t) +gsinw(s—t), 0<s<t, (3.6.1a)
—cosa)(s—t)—gsina)(s—t), t<s<0, (3.6.1b)
G(ts) :‘%sma)(sﬂ), —t<s<0, (3.6.1¢)
- %sina)(s +1), 0<s<-—t, (3.6.1d)
0, otherwise. (3.6.1¢)

Studying the expression of G we can obtain maximum and antimaximum principles. In
order to do this, we will be interested in those maximal strips (in the sense of inclusion) of the
kind [a,,B] x R where (G does not change sign depending on the parameters.

So, we are in a position to study the sign of the Green’s function in the different triangles
of definition. The result is the following:

Lemma 3.6.1. Assume a? > b2 and define

2 _p2
arctan , b>0,
a2 — b2 b
T
n(a,b) :=<m7 b_O)
2 _ h2
— (arctan a*—b +7r), b<O0
a —
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Then, the Green’s function of problem (3 is

e positive on {(t,s), 0 < s <t} ifandonlyift € (0,1(a,b)),

 negative on {(t,s), t <s < 0} ifandonly ift € (—n(a,—b),0).
Ifa > 0, the Green’s function of problem (3 is

e positive on {(t,s), —t < s < O} ifandonlyift € (0,7 /Va2 — b2),

e positive on {(t,s), 0 < s < —t}ifandonlyift € (—m/Va2 — b2,0),
and, ifa < 0, the Green’s function of problem (3 is

e negative on {(t,s), —t < s < 0} ifandonlyift € (0,7 /Va? — b2),

e negative on {(t,s), 0 <s < —t}ifandonlyift € (—m/Va? — b2,0).

Proof. For 0 < b < a, the argument of the sin in (3.6.1c) is positive, so (3.6.1c) is positive for
t < 7 /w. On the other hand, it is easy to check that (3.6.1a) is positive as long as ¢ < 1(a, b).

The rest of the proof continues similarly. [
As a corollary of the previous result we obtain the following one:

Lemma 3.6.2. Assume a® > b2. Then,

e ifa > 0, the Green’s function of problem (3 is nonnegative on
[0,7(a,b)] x R,

e ifa < 0, the Green’s function of problem (3 is nonpositive on
[-7(a,-b),0] x R,

e the Green’s function of problem (3.5.5) changes sign in any other strip not a subset of the
aforementioned.

Proof. The proof follows from the previous result together with the fact that
n(a,b) < — < —

Remark 3.6.3. Realize that the strips defined in the previous Lemma are optimal in the sense
that G changes sign in a bigger rectangle. The same observation applies to the similar results we
will prove for the other cases. This factimplies that we cannot have maximum or anti-maximum
principles on bigger intervals for the solution, something that is widely known and which the
following results, together with Example[3.6.12] illustrate.
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Since G (¢,0) changes sign at¢ = 7(a,b). Itisimmediate to verify that, defining function
h.(s) = 1foralls € (—¢€,¢€) and A(s) = 0 otherwise, we have a solution u (¢) of problem
that takes the value ¢ for t = 7(a,b) + 6 (€¢) with 6 (¢) > 0 such that lin(} o(e) = 0.

Hence, the estimates are optimal for this case.

However, one can study problems with particular non homogeneous part A for which the
solution is positive for a bigger interval. This is shown in the following example.

Example 3.6.4. Consider the problem x’ (¢) — 5x(—¢) + 4x(¢) = cos? 3¢, x(0) = 0.

Clearly, we are in the case (C1). For this problem,

() = [ [cos(3(s —1) + %sin(3(s — t))] cos?3sds — g | sin3(s +1))ds

=1—18 (6cos 3t + 3cos6t +2sin3t + 2sin6t — 9) .

u(0) = 0, so & is the solution of our problem.

Studying &, we can arrive to the conclusion that & is nonnegative in the interval [0, ],
being zero at both ends of the interval and

3
- =% arccos (% [\/47215 — 5265V41 + i/5 (9448 + 105341 ) - 35])

=0.201824 ...

Also, 7(t) < Ofor¢ = y + ¢ with e € R sufficiently small. Furthermore, as Figure [3.6.1]
shows, the solution is periodic of period 277 /3.

0.2}

—0.4}

06+t

—-0.814

Figure 3.6.1: Graph of the function @& on the interval [0, 277/3]. Observe that « is positive on
(0, ) and negative on (7,27 /3).

If we use Lemma we have that, a priori, & is nonpositive on [—4/15, 0] which we
know is true by the study we have done of &, but this estimate is, as expected, far from the
interval [y — 1, 0] in which @ is nonpositive. This does not contradict the optimality of the a
priori estimates, as we have shown before, some other examples could be found for which the
interval where the solution has constant sign is arbitrarily close to the one given by the a priori
estimate.
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3.6.2 The case (C2)

We study here the case (C2). In this case, it is clear that

G(t,s) = [cosh(a)(s —1)) + gsinh(a)(s — t))] Xg(s) + %sinh(a)(s +t))X(_’t(s),

which we can rewrite as

G(t,s) = 1

coshw(s—1t) + %sinhw(s —1),
—coshw(s—t) — gsinhw(s—t),
gsinha)(s +1),

w

— gsinha)(s +1),
w

0,

otherwise.

(3.6.2a)

(3.6.2b)
(3.6.2¢)

(3.6.2d)
(3.6.2¢)

Studying the expression of G we can obtain maximum and antimaximum principles. With this
information, we can state the following lemma.

Lemma 3.6.5. Assume a? < b2 and define

Then,

o(a,b) := B arctanh
N,

b2 — g2

e ifa > 0, the Green’s function of problem (3.5.5) is positive on {(t,s), —t < s < 0} and
{(t,s), 0 <s < —t},

e ifa < 0, the Green’s function of problem (3.5.5) is negative on {(t,s), —t < s < 0}

and {(t,s),

0<s<—t},

e ifb > 0, the Green’s function of problem (3.5.5)) is negative on {(t,s), t < s < 0},

e ifb > 0, the Green’s function of problem (3.5.5) is positive on {(t,s), 0 < s < t} ifand
onlyift € (0,0 (a,b)),

e ifb < 0, the Green’s function of problem (3.5.5)) is positive on {(t,s), 0 < s < t},

e ifb < 0, the Green’s function of problem (3.5.5) is negative on { (¢,s), t < s < 0} ifand
onlyift € (c(a,b),0).

Proof. For 0 < a < b, he argument of the sinh in (3.6.2d) is negative, so (3.6.2d) is positive.
The argument of the sinh in (3.6.2) is positive, so (3.6.2d) is positive. It is easy to check that

(3.6.2a) is positive as long ast < o (a,b).
On the other hand, (3.6.2b) is always negative.

The rest of the proof continues similarly.
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As a corollary of the previous result we obtain the following one:

Lemma 3.6.6. Assume a® < b2. Then,

e if0 < a < b, the Green’s function of problem (3.5.5) is nonnegative on
[0,0(a,b)] x R,

e ifb < —a < 0, the Green’s function of problem (3.5.5) is nonnegative on
[0,+00) x R,

e ifb <a <0, the Green’s function of problem (3.5.5)) is nonpositive on
[0(a,b),0] xR,

e ifb > —a > 0, the Green’s function of problem (3.5.5) is nonpositive on
(_007 O] X R;

 the Green’s function of problem (3.5.5) changes sign in any other strip not a subset of the
aforementioned.

Example 3.6.7. Consider the problem

x' () + Ax(—t) + 2Ax(t) =€, x(1) =c (3.6.3)
with A > 0.
Clearly, we are in the case (C2).
1 1
c(A,21) = ——1In[7+ 4V3] = = - 1.52069 ...
A3 A

If A + 1/+/3, then
u(t) := JZ lcosh(/l\/g(s —-1)) + %sinh()m/g(s —t))] e‘ds
3

1 o
+ — sinh(w(s +t))e*ds
Ly

= 3/l2—1—1 [()L — 1) (V3sinh(V3At) — cosh(V3At)) + (21 — 1)ef — /le‘t] ,

u(t) = cosh(}L\/gt) — \/§sinh(}t\/§t).

With these equalities, it is straightforward to construct the unique solution w of problem
(3.6.3). For instance, inthecase A =c¢ =1,

u(t) = sinh(t),

and

w(t) = sinht + 1—sinh1 (cosh()t\/gt) - \/§sinh()u/§t)) .

cosh(Av3) — V3sinh(AV3)
Observe thatfor A = 1, ¢ = sinh 1, w(¢) = sinh¢. Lemma|3.6.6/guarantees the nonnega-
tivity of w on [0, 1.52069 ... ], but it is clear that the solution w () = sinh is positive on the
whole positive real line.
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3.6.3 The case (C3)

We study here the case (C3) fora = b. In this case, it is clear that
G(t,s) =[1+a(s—t)]1x5() +a(s+1)x°,(s),
which we can rewrite as

l+a(s—1t), 0<s<t,
—1l—a(s—1t), t<s<0,

G(t,s) =3a(s+1), —t<s<0,
—a(s+1t), 0<s< -t
0, otherwise.

Studying the expression of G we can obtain maximum and antimaximum principles. With this
information, we can prove the following Lemma as we did with the analogous ones for cases
(C1) and (C2).

Lemma 3.6.8. Assume a = b. Then, ifa > 0, the Green’s function of problem is
e positive on {(t,s), —t < s <0} and {(t,s), 0 < s < —t},
e negative on {(t,s), t < s < 0},
e positive on {(t,s), 0 <s < t}ifandonlyift € (0,1/a),
and, ifa < 0, the Green’s function of problem (3.5.5) is
e negative on {(t,s), -t <s < O0}and{(t,s), 0 <s < —t},
e positive on {(t,s), 0 < s < t}.
e negative on {(t,s), t <s <O} ifandonlyift € (1/a,0).
As a corollary of the previous result we obtain the following one:
Lemma 3.6.9. Assume a = b. Then,
e if0 < a, the Green’s function of problem is nonnegative on [0,1/a] x R,
e ifa < 0, the Green’s function of problem is nonpositive on [1/a,0] x R,

e the Green’s function of problem (3.5.5) changes sign in any other strip not a subset of the
aforementioned.

For this particular case we have another way of computing the solution to the problem.

Proposition 3.6.10. Let a = b and assume 2at, + 1. Let H(t) := fttoh(s) dsand H(t) :=
ft"; H (s) ds. Then problem (3.5.5) has a unique solution given by

20t —1

u(t) =H() —2aH,(t) + Sat, = 1c.
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Proof. The equation is satisfied, since

u' () +a(u(t) +u(—t)) =u' () + 2au,(t)

2ac 2ac
=h(t) —2aH (t) + ————— +2aH _(t) — ————— = h(?).
(B —2akl, &) + 55— H2®) — oy —7 =00
The initial condition is also satisfied for, clearly, u(f,) = c. The uniqueness of solution is
derived from the fact that 2at, # 1 and Lemma[3.5.6 |

Example 3.6.11. Consider the problemx’ (£) + A (x(¢) —x(—t)) = [t}°, x(0) = 1forA,p €
R,p > —1. Forp € (—1,0) we have a singularity at 0. We can arrive to the solution

1
t) = ——¢|tP + 1 — 274,
u(t) p+1||

where it (£) = ﬁtml’ and it () = 1 — 2\t

u is positive in (0, +o0) and negative in (—o0, 0) independently of A, so the solution has
better properties than the ones guaranteed by Lemma|3.6.9

The next example shows that the estimate is sharp.

Example 3.6.12. Consider the problem
u.(t) +u. @) +u(-t)=h.(&),teR; u.(0) =0, (3.6.4)

wheree € R, h () = 12t(e — t)X[O,e] (t) and X[0.e] IS the characteristic function of the
interval [0, €]. Observe that A, is continuous. By means of the expression of the Green’s
function for problem (3.6.4), we have that its unique solution is given by

—263t — €4, if < —e,
" (&) = —t* — 2¢t3, if —e<t<O,
¢ tt— (44+2e)t3 +66t?, if 0<t<e,
—263t + 263 + €, if t>e.

The a priory estimate on the solution tells us that u,. is nonnegative at least in [0, 1]. Studying
the functionu,, itiseasy tocheck thatu . is zeroat 0 and 1+€/2, positive in (—oo, 14+€/2) \{0}
and negative in (1 + €/2, +00).

The case (C3.2) is very similar,

1+a(t—s), 0<s<t,
—1—a(t—-s), t<s<0,

G(t,s) =3a(s+1), —t<s<0,
—a(s+1t), 0<s<-—t,
0, otherwise.

Lemma 3.6.13. Assume a = —b. Then, ifa > 0, the Green’s function of problem (3.5.5) is
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3.0¢ N

25; ' Y

2.0¢ ] .

-

~1.0 —0.5 0.5 1.0 13\ 2.0

Figure 3.6.2: Graph of the function u; and & (dashed). Observe that u becomes zero at ¢ =
1+¢€/2=3/2.

e positiveon {(t,s), —t <s <0}, {(t,s), 0<s<t}and{(t,s), 0 <s < —t},
e negative on {(t,s), t <s < O} ifandonlyift € (—1/a,0),

and, ifa > 0, the Green’s function of problem (3.5.5) is
e negative on {(t,s), -t <s <0}, {(t,s), t<s<O0}and{(t,s), 0 <s < —t},
e positive on {(t,s), 0 < s < t}ifandonlyift € (0,—1/a).
As a corollary of the previous result we obtain the following one:

Lemma 3.6.14. Assume a = —b. Then,
e ifa > 0,the Green’s function of problem is nonnegative on [0, +00) x R,
e ifa < 0 the Green’s function of problem is nonpositive on (—o0,0] x R,

e the Green’s function of problem (3.5.5) changes sign in any other strip not a subset of the
aforementioned.

Again, for this particular case we have another way of computing the solution to the prob-
lem.

Proposition 3.6.15. Leta = —b, H(t) := [ h(s) dsand H(t) := [} H (s) ds. Then prob-
lem (3.5.5)) has a unique solution given by

u(t) = H@) — H(ty) — 2a(H,(t) — H,(t,)) +c.

Proof. The equation is satisfied, since
W (t) +a() —u(—=t)) =u'(t) +2au,(t) =h(t) —2aH, (t) + 2aH,(t) = h(?).

The initial condition is also satisfied for, clearly, u (¢,) = c. [ |
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Example 3.6.16. Consider the problem

, CAE =24+ A _
2 (@) +A(x(=t) —x()) = W, x(0) =A

for A € R. We can apply the theory in order to get the solution

1

t) =
u(@) 1+1¢2

+ A(1+2At) arctant — A2In(1+t2) + A —1

where &t (t) = Tlﬂ + A(1+ 2A¢t) arctant — A21n(1 +¢2) — 1.
Observe that the real function

At?2 =2+ A

h(t) = (1+t2)2

is positive on R if A > 1 and negative on R for all A < —1. Therefore, Lemma|3.6.14|guaran-
tees that & will be positive on (0, o) for A > 1 andin (—o0,0) when A < —1.



4. The nonconstant case

In the previous chapter we dealt with order one differential equations with reflection, constant
coefficients and different boundary conditions. Now, following [41] we reduce a new, more
general problem containing nonconstant coefficients and arbitrary differentiable involutions,
to the one studied in Chapter[3] Aswe will see, we will do this in three steps. First we add a term
depending on x (¢) which does not change much with respect to the previous situations. Then,
moving from the reflection to a general involution is fairly simple using some of the knowledge
gathered in Chapter|[1]

The last step, changing from constant to nonconstant coefficients, is another matter. In
the nonconstant case computing the Green’s function gets trickier and it is only possible in
some situations. We use a special change of variable (only valid in some cases) that allows
the obtaining the Green’s function of problems with nonconstant coefficients from the Green’s
functions of constant-coefficient analogs.

4.1 Order one linear problems with involutions

Assume ¢ is a differentiable involution on a compact interval J; C R. Leta,b,c,d € Ll(J,)
and consider the following problem

d@®)x’' (&) +c@®)x’ (9 @)) +b@)x(t) +a@®)x(p () = h(t), x(infJ,) = x(supdJ,).
(4.1.1)

It would be interesting to know under what circumstances problem (4 is equivalent to
another problem of the same kind but with a different involution, in partlcular the reflection.
The following corollary of Lemma(1.2.14|will help us to clarify this situation.

Corollary4.1.1 (CHANGE OF INVOLUTION). Underthe hypothesis of Lemma|[1.2.14] problem (4.1.1)
is equivalent to

d(f(s) c(f(s))
b =h
) Y (s) + i Gs AT "(Pr(8)) +b(f())y(s) +a(f(s))y((s)) (f(s)),

y(infd,) = y(supdy).
(4.1.2)

Proof. Consider the change of variable t = f(s) and y(s) := x(¢) = x(f(s)). Then, using
Lemma|(l.2.14} it is clear that

4y o) _ 4z p 0y 4F 4y oy, o df
E(s)_dt(f(s))ds(s) and ds(lﬁ(S))—dt(so(f(S)))dS(lﬁ(S))-

Making the proper substitutions in problem (4 we get problem (4.1.2) and vice-versa. W
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This last results allows us to restrict our study of problem (4.1.1) to the case where ¢ is the
reflection ¢ (¢) = —t.

Now, take T' € R*, I := [-T,T]. Equation (4.1.1), for the case ¢ (¢) = —t, can be
reduced to the following system

A x:) _ ao_bo _ae_be Xo + he
x; B a, — be —a, — bo Xe h’o ’

c,+d, d,—c,
A= (co+do de—ce)'

where

To see this, just compute the even and odd parts of both sides of the equation taking into
account Corollary(1.1.7]
Now, if det (A (¢)) = d(t)d(—t) —c(t)c(—t) # Ofora.e.t €I, A(t) isinvertible a. e.

and
x(/) _ A-1[Qo— bo —Q, — be Xo -1 he
()= (& Zazn) () ()
So the general case where ¢=0 is reduced to the case ¢ = 0, taking

A—l (ao - bo —Q, — be)

a,—b, —a,—b,
as coefficient matrix.

Hence, in the following section we will further restrict our assumptions to the case where
¢ = 0in problem (4.1.1).

4.2 Study of the homogeneous equation

In this section we will study some different cases for the homogeneous equation
@) +a@®)x(—t) +b)x(t) =0,tel, (4.2.1)
where a,b € L (I). The solutions of equation (4.2.1) satisfy

x; _ ao - bo —ae _ be xo
(x;) B (ae -b, —a,— bo) (_xe) : (4.2.2)

Realize that, a priori, solutions of system (4.2.2) need not to be pairs of even and odd functions,
nor provide solutions of (4.2.1).
In order to solve this system, we will restrict problem (4.2.2) to those cases where the matrix
a,—b, —a,—b
M t — o o e e t
() (ae_be _ao_bo)()

satisfies that [M (¢t),M (s)] := M (t)M(s) — M (s)M(t) = 0 Vt,s € I, for in that case,
the solution of the system (4.2.2) is given by the exponential of the integral of M. To see this,
we have to present a definition and a related result [119].
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Definition 4.2.1. Let S C R be an interval. Define M C C*(R, M
every M € M,

(R)) such that for

nxn

e there exists P € C1 (R, M,,,., (R)) such that M (t) = P~ (¢)J (¢t)P(t) foreveryt €
S where P71 (¢)J (£)P(¢) is a Jordan decomposition of M (t);

e the superdiagonal elements of J are independent of ¢, as well as the dimensions of the
Jordan boxes associated to the different eigenvalues of M;

¢ two different Jordan boxes of JJ correspond to different eigenvalues;
* if two eigenvalues of M are ever equal, they are identical in the whole interval S.

Theorem 4.2.2 ([119]). Let M € M. Then, the following statements are equivalent.

e M commutes with its derivative.
e M commutes with its integral.

e M commutes functionally, thatis M (t)M (s) = M (s)M (¢t) forallt,s € S.

M = 22=0 ryk(t)CkforsomeC eM,,, (R)andy, € C'(S,R),k=1,..,r.

Furthermore, any of the last properties imply that M (t) has a set of constant eigenvectors, i.e.
a Jordan decomposition P~1J (¢) P where P is constant.

Even though the coefficients @ and b may in general not have enough regularity to apply
Theorem we will see that we can obtain a basis of constant eigenvectors whenever the
matrix M functionally commutes. That, as we will see, is enough for the solution of the system
to be given by the exponential of the integral of M.

Observe that,

_ a, ()b, (s)—a,(s)b, (1) a,(s)[a, (t)+b,(t)]—a,(t)[a,(s)+b,(s)]
[M (), M ()] = 2 (4, 010,645, 001 o) o r4ba0] e orbe (50D ).

Let A(¢) := [la(s)ds, B(t) := [{b(s)ds. Let M be a primitive (save possibly a constant
matrix) of M that is, the matrix,

Ae_Be _Ao_Bo
M= (Ao_Bo _Ae_Be) '

We study now the different cases where [M (¢),M (s)] = 0 Vt,s € I. We will always assume
a =0, since the case a = 0 is the well-known case of an ordinary differential equation. Let us
see the different possible cases.

(D1). b, =ka, k € R, |k| < 1. Inthiscase,a, =0 and M has the form

— B, —(1+k)A,
M‘((l—k)Ao -B, )
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M has two complex conjugate eigenvalues. What is more, both M and M functionally
commute, and they have a basis of constant eigenvectors given by the constant matrix

Y e i1 —Fk2 —j1—Fk2
' E—1 E—1 ’

We have that

Y"lﬂ(t)Y=Z(t) — (—Be—i\ll—kZAo 0 )

0 —B, +iVI—E2A,

Hence,

M -1
MO _oYZOY ™ _ yZtyy-1

-B (t)( COS(“l_kZA(t)) — = Sin(V1—k2A(t)))
—e Pe .

Tie
TR sin (VI RRA()) cos (VI— kA (1))

1+

Therefore, if a solution to equation (4.2.1) exists, it has to be of the form

u(t) = ae 8:® cos (\/1 - sz(t)) + ,6’6‘36(”11%];2 sin (\/1 - sz(t)) .

with @, 8 € R. Itis easy to check that all the solutions of equation (4.2.1) are of this form with
B =—a.
(D2). b, = ka, k € R, |k| > 1. This case is much similar to (D1) In this case M has again

the form A
v B, —(1+kR)A,
M= ((1—k)Ao -B, )

M has two real eigenvalues and a basis of constant eigenvectors given by the constant
matrix
Y .= VE2 —1 —yk2-1
' k-1 k-1 )°
We have that

YIM@®)Y =Z(@¢) := (_Be_ Vk® — 14, 0 )

0 —B, + VkZ2 - 1A,

And so,

M -1
M) _YZWOY ' _ yZt)y-1

_B <t>( cosh (VI—k2A(t))  —= sinh(\/l—k2A(t)))
=e e )

vk2-1

A sinh (VR2 —1A(#))  cosh (VI—2A (D))

1+k&

Therefore, it yields solutions of system (4.2.2) of the form

_ _ 1+ .
u(t) = ae Be® cosh (VE2 — 1A(t) ) + Be B ——"_sinh (VE2 —1A(¢) ),
(v ) g Sinh (3 )
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which are solutions of equation (4.2.1) when 5 = —

(D3). b, =a.
— (B, —(1+k)A,
M = ( 0 -B, ) :

Since the matrix is triangular, we can solve sequentially for x, and x,. In this case the solutions

of system (4 are of the form
u(t) = ae 8@ 4+ 2Be B DA (¢) (4.2.3)

which are solutions of equation (4.2.1) when 3 =

(D4). b, = —
— B, 0
M=((1—k)A —B)‘

We can solve sequentially for x, and x, and the solutlons of system (4 are the same as in
case (D3), but they are solutlons of equation (4.2.1) when 8 = 0.

(05). b, = a, = 0.
A,-B, 0
M = ( 0 " -A, —Be)

In this case the solutions of system (4.2.2)) are of the form
u(t) = aeA(t)—B(t) +/89—A(t)—B(t)’
which are solutions of equation (4.2.1) when @ = 0.

Remark 4.2.3. Observe that functional matrices appearing in cases (D1)—(D5) belong to M.

4.3 The cases (D1)—(D3) for the complete problem

In the more complicated setting of the following nonhomogeneous problem
xX@)+a@)x(=t) +b@)x@t) =h@), ae.t€l, x(=T)=x(T), (4.3.1)

we have still that, in the cases (D1)—(D3), it can be sorted out very easily. In fact, we get the
expression of the Green’s function for the operator. We remark that in the three considered
cases along this section the function @ must be even on I. We note also that a is allowed to
change its sign on 1.

First, we are going to prove a generalization of Proposition[3.2.2]
Consider problem (4.3.1) with @ and b constants.

xX'@t)+ax(—t) +bx@) =h@), tel, x(-T)=x(T). (4.3.2)

Considering the homogeneous case (h = 0), differentiating and making proper substitutions,
we arrive to the problem.

() + @ -0H)xt) =0, tel, x(-T)=x(T), x'(-T)=x(T). (43.3)
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Which, for b2 < a2, is the problem of the harmonic oscillator.

It was shown in Section [3.2]that, under uniqueness conditions, the Green’s function G for
problem (4.3:3) (that is, problem (3.2.2) satisfies the following properties in the case b2 < a?),
but they can be extended almost automatically to the case 62 > a?.

Lemma 4.3.1. The Green’s function G related to problem (4.3.3), satisfies the following prop-
erties.

(I) GecCU*R),

I 88—(: and a;: exist and are continuous in {(t,s) € I% |s + t},

(II1) ‘;—f(t, t7) and g—cj(t, t*) exist for allt € I and satisfy

G oG
—(@t)——@tH)=1Vtel
5 Bt — =@ el,

AV) Z8+ @ -G =0in{(t,s) €I|s +1},

V) (0) G(T,s)=G(-T,s) Vsel,
b)  ZHT,s) = Z(-T,s) Vs € (=T, 7).

VI) G(,s) =G(s,t),
(VII) G(t,s) = G(=t,—s),
(VIII)  Z2(t,5) = Z2(s,0),
IX) L(t,s) = -2 (=t,—s),

G G
(X) E(tys) =_E(tas)

With these properties, we can prove the following Theorem in the same way we proved
Theorem

Theorem 4.3.2. Suppose thata® —b? #+ n? (w/T)2% n =0,1,... Then problem (&.3.2) has a
unique solution given by the expression

u(t) := f_TTE(t,s)h(s) ds,
where
G(t,s) :=aG(t,—s) —bG(t,s) + aa—f(t,s)

is called the Green’s function related to problem (4.3.2).

This last theorem leads us to the question “Which is the Green’s function for the case (D3)
with a, b constants?”. The following Lemma answers that question.
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Lemma 4.3.3. Leta # O be a constant and let G4 be a real function defined as

—%+as ifls| < t,
—as ifls| < —t,
+a iflt| < s,

t
—at iflt < —s.

1
t_ —_—

Gps(t,s) := Ts —ast+1%
2

1
2

Then the following properties hold.
. %(t,s) +a(Gps(t,s) + Gps(—t,s)) =0fora.e. t,s € (—1,1).
o L4ty — Xma(t17) =1 VEE (-1,1).
e Gps(—1,s) =Gps(l,s) Vs e (—1,1).
These properties are straightforward to check. Consider the following problem
X)) +alx@) +x(=)] =h@®),te [-1,1]; x(1) =x(=1). (4.3.4)

In case of having a solution, it is unique, for if u, v are solutions, u — v is in the case (D3) for
equation (4.2.1), thatis, (v —v) (¢) = a(1—2at). Since (u—v) (-T) = (u—-v)(T),u =v.
With this and Lemma in mind, G5 is the Green'’s function for the problem (4.3.4), that
is, the Green’s function for the case (D3) with a, b constants and T' = 1. For other values of T,
it is enough to make a change of variables ¥ = T'¢,§ = T's.

Remark 4.3.4. The function G5 can be obtained from the Green'’s functions for the case (D1)
with a constant, b, = 0 and T' = 1 taking the limitk — 1~ for 7' = 1.

The following theorem shows how to obtain a Green’s function for non constant coefficients
of the equation using the Green’s function for constant coefficients. We can find the same
principle, that is, to compose a Green’s function with some other function in order to obtain a
new Green'’s function, in [29, Theorem 5.1, Remark 5.1] and also in [74, Section 2].

But first, we need to know how the Green’s function should be defined in Sl£h a case.
Theorem gives us the expression of the Green’s function for problem (4.3.2), G (t,s) :=
aG(t,—s) —bG(¢,s) + aa—C:(t,s). For instance, in the case (D1), if w = |a? — b2|, we have
that

20w sin(wT)G(t, s)

acos[w(s+t—T)] +bcos[w(s—t+T)] +wsin[w(s—t+T)], t>|s|,
acos[w(s+t—T)]+bcos[w(—s+t+T)] —wsin[w(—s+t+T)], s>|t,
acos[w(s+t+T)]+bcos[w(—s+t+T)] —wsin[w(—-s+t+T)], —t>]s|,
acos[w(s+t+T)] +bcos[w(s—t+T)] +wsin[w(s—t+T)], —s > |t].

Also, observe that G is continuous except at the diagonal, where

Gt,t7) — Gttt = 1.
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Similarly, we can obtain the explicit expression of the Green’s function G for the case (D2).
Taking again w = Vl|a2 — b2|,
w? (ezT“’2 — 1) E(t s)

ewz(t—s) ( wz(s+T) ) [ ( w?(T-t) _ 1) + 0)2]
—4qez®”+t+2D) ginh (la) [s — T]) sinh ( w?[t — ]) , sl <t

—sw? e® 2(s+T) -1

e

. [(1 (esw2 _ ew2(s+t+T)) + (602 _ b) etw2 + beTwz] : —s > [t,
= e—sa)2 (esa)2 _ eTa)2

. [a (—e“’z(s”)) + ae®’ 6+ 4 (w® =) e®” D) 4 b] , s > |tl,

—a (ewz(s+T) _ 1) (ew2(t+T) -1
+ (a)2 _ b) (ewz(t+T) _ewz(—s+t+2T)) +b ( o® 2(T- s)) +b, |s| < —t.

In any case, we have that the Green’s function for problem (4 can be expressed as

ki(t,8), t>|sl,
ko(t,s), s> |t,
ks(t,s), —t>|sl,
ky(t,8), —s>|[t,

G(t,s) :=

were the kj,j =1, ...,4 are analytic functions defined on R2.

In order to simplify the statement of the following Theorem, consider the following condi-
tions.

(D1%). (D1) is satisfied, (1 —k?*)A(T)2 # (nm)2foralln =0,1,...
(D2%). (D2) is satisfied and A (T") # 0.
(D3*). (D3) is satisfied and A (T") # 0.

Assume one of (D1*)—(D3*). In that case, by Theorem [4.3.2]and Lemma[4.3.3] we are
under uniqueness conditions for the solution for the following problem [39].

' (t) +x(=t) +kx@) =h(@), te [-JADLIAMDMI, xAT)) =x(-AT)).
(4.3.5)

The Green’s function G2 for problem (4 is just an specific case of G and can be ex-
pressed as
ki(t,s), t>|sl,
ky(t,s), s> |t,
ks(t,s), —t>ls|,
ky(t,s), —s>Itl.

52 (t,s) :=

Define now

ki (A@®),A(s)), t>lsl,
ky(A),A(s)), s>t
k3(A(2),A(s)), —t>Isl,
ky(A(2),A(s)), —s> It

Gy (t,s) = eBe@B-OH (¢ 5) = eBe®~Be® (4.3.6)
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Defined this way, G is continuous except at the diagonal, where G (¢,t7) — 51 (t,tT) = 1.
Now we can state the following Theorem.

Theorem 4.3.5. Assume one of (D1*)—(D3%). Let G, be defined as in (4.3.6). Assume
G, (t,-)h(-) € L1(I) foreveryt € I. Then problem (4.3.1) has a unique solution given by

u(t) = [ Gy (t,5)h(s)ds.

Proof. First realize that, since a is even, A is odd, so A(—t) = —A(¢). It is important to note
that if @ has not constant sign in I, then A may be not injective on I.

From the properties ofG_2 as a Green'’s function, it is clear that

oG, — —
a—tz(t,s) + Gy (—t,s) +kGy(t,s) =0 fora.e.t,s € A,

and so,

%—I;I(t,s) +a(t)H(—t,s) +ka(t)H(t,s) =0 fora.e.t,sel,

Hence
u'(t) +a(t) u(=t) + (b, (t) + ka(t)) u(t)
=% [1.Git.)hs) ds +a(@) [ Gy(=t,9)h(s)ds + (b, (2)
+ka®) [1 Gy(t,5)h(s)ds
=%f_tTeBe(s)—Be(t)H(t’s)h(s)ds+%LTeBe(s)—Be(t)H(t’s)h(s)ds
+a(t) [1 ePe®BOH (~t,5)h(s) ds

+ (b, (1) +ka@®)) [ eP @ BOH t,5)h(s)ds
_ _ T o OH
= [H (4,t7) —H(¢,1) k(@) +a@) eBe® [ el 4
—b,()ePe® [ PO H(t,5)h(s) ds +a@)e B 7 eP@H (~t,5)h(s) ds

+ (b, (1) +ka(t)e B [ B OH(t,5)h(s) ds

(t,8)h(s)ds

=h(t) + a(t)e B® f_TT ePe(® [%—If(t,s) +at)H (—t,s) +ka(t) H(t,s)] h(s)ds
=h(t).

The boundary conditions are also satisfied.
u(T) —u(=T) = e B® [1 Be® [H(T,s) — H(~T,s)]h(s) ds = 0.

In order to check the uniqueness of solution, let u and v be solutions of problem (4.3.5). Then
u — v satisfies equation and so is of the form given in Section[4.2] Also, (v —v) (T) —
(u—v)(=T) =2(u—v),(T) = 0, but this can only happen, by what has been imposed by
conditions (D1%)—(D3*), ifu — v = 0, thus proving the uniqueness of solution. [ |
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Example 4.3.6. Consider the problem

x'(t) = cos(mt)x(—t) + sinh(¢)x(¢) = cos(wt) + sinh(¢), x(3/2) = x(=3/2).

Clearly we are in the case (D1) with £ = 0. If we compute the Green’s function according to
Theorem[4.3.5/we obtain

2sin (sin(wT)) G4 (¢,8) = e®PE kDG (¢ ),

where
Gl (t,S)
sin (sin('irs) __sin(wt) _ sin(#@T) + cos (sin(ws) + sin(7t) sin(WT)) : |t| <s,
. in (7 in( t) sin(7r7TT) sin7(r7rs) sin7(r7rt) sin(ZrT)
sin (SRim) _ s o ) + cos ( + + )\l < s,
= . in( in(; t) sin(7r77'T) sin7(r7rs) sin7(r7rt) sin(777—rT)
sin (2272 SR 4 22D ) 4 cos ( e ), lsl <,
sin (sin(77's) __ sin(zt) sin(77'T)) + cos (sin(7rs) + sin(7t) + sin(7rT)) 7|3| < —¢
T T T T T

B(t)

0.5 1.0 %5

-1

Figure 4.3.1: Graphs of the kernel (left) and of the functions involved in the problem (right).
One of the most important direct consequences of Theorem [4.3.5]is the existence of maxi-
mum and antimaximum principles in the case b = (ﬂ

Corollary 4.3.7. Under the conditions of Theorem if a is nonnegative on I, we have the
following properties:

o IfA(T) € (0, %) then G is strictly positive on I2.
e IfA(T) (—%, 0) then G is strictly negative on I2.

o IfA(T) = % then G, vanishes on

P :={(-A(T),-A(T)), (0,0), (A(T),A(T)), (A(T),-A(T))}
and is strictly positive on (I2)\P.

"Note that this discards the case (D3), for which b = 0 implies a = 0, because we are assuming a=0.
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e IfA(T) = —% then G vanishes on P and is strictly negative on (I%)\P.

e IfA(T) € R\ —%, %] then G, is not positive nor negative on I,

Furthermore, the operator R, : F) (I) — L) defined as
R, (x(8)) =x"(t) +a(t)x(=1)
satisfies
e R is strongly inverse positive if and only if A(T') € (O, %] and A > 0,

e R, is strongly inverse negative if and only ifA(T') € [—%, 0)and A > 0.

The second part of this last corollary, drawn from positivity (or negativity) of the Green’s
function could have been obtained, as we show below, without having so much knowledge
about the Green’s function. In order to show this, consider the following proposition in the
line of the work of Torres [167, Theorem 2.1].

Proposition 4.3.8. Consider the homogeneous initial value problem
@) +a@)x(—t) +b@)x@) =0,a.e tel; x(t, =0. (4.3.7)

If problem (4.3.7) has a unique solution (x = 0) on I for all t, € I then, if the Green’s function
for (4.3.1) exists, it has constant sign.

What is more, if we further assume a + b has constant sign, the Green’s function has the
same sign asa + b.

Proof. Without lost of generality, consider a to be a 2T-periodic L-function defined on R (the
solution of will be considered in I). Let G be the Green’s function for problem (4.3.1).
Since G, (T',s) = G,(—T,s) foralls € I, and G, is continuous except at the diagonal, it is
enough to prove that G, (¢,s) # 0 Vi, s € I.

Assume, on the contrary, that there exists ¢;,5; € I such that G (¢;,s;) = 0. Letg
be the 2T -periodic extension of G, (-,s;). Let us assume ¢; > s, (the other case would be
analogous). Let f be the restriction of g to (s{,s; + 27'). f is absolutely continuous and
satisfies a.e. inI fort, = tq, hence, f = 0. This contradicts the fact of G, being a
Green’s function, therefore G has constant sign.

Realize now that x = 1 satisfies
@) +a@®)x(—=t) +bt)x@) =a@) +b@), x(=T) =x(T).

Hence, f_TT G, (t,s)(a(s)+b(s))ds = 1forallt € I. Since both G, and a+b have constant
sign, they have the same sign. n

The following corollaries are an straightforward application of this result to the cases (D1)
— (D3) respectively.
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Corollary 4.3.9. Assume a has constant sign in I. Under the assumptions of (D1) and Theorem

G has constant sign if

arccos (k)

A(T)| <
21 — k2

Furthermore, sign(G,) = sign(a).

Proof. The solutions of (4.2.1) for the case (D1), as seen before, are given by

u(t) = ae~Be® lcos (\/1 —sz(t)) - %sm (\/1 —k2A(t))]-
1—%2

Using a particular case of the phasor addition formulzﬂ—see Appendix—

— po-Be ,’L- g
u(t) = ae B® l_ksm( 1 k2A(t)+9),

where @ € [—, ) is the angle such that

sinf = \‘12;16 and cosl = — # (4.3.8)

Observe that this implies that € € (%, 77).

In order for the hypothesis of Proposition|4.3.8|to be satisfied, it is enough and sufficient to
ask for 02w (I') for some a + 0. Equivalently, that

V1—Fk2A@t) +0+7n Yne Z Vtel,

That is, 9
Aty + =L Vne % Viel.
v1 —Fk2
Since A is odd and injective and 0 € (%, 77), this is equivalent to
-0
AT < ==L (4.3.9)
v1—Fk2
Now, using the double angle formula for the sine and (4.3.8),
# =sin?20 = 1_#8(29), thisis, % = cos(20),

which implies, since 20 € (7, 27),

0= arccos (k)
=TTy

Yacosy + Bsiny = a2 + $2sin(y + ), where @ € [—m, 7) is the angle such that cos ] = '—a‘ﬁ-,BZ'

a

NrEveeh

sinf =
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where arccos is defined such that it’simage is [0, 7). Plugging this into inequality (4.3.9) yields

arccos (k)

oN1—k2

The sign of the Green’s function is given by Propositionand sign(G,) = sign(a+bd).
Now, we have that |k < 1anda + b = (k + 1)a + b,. Because of the continuity of G; with
respect to the parameters @ and b, G, has to have the same sign in the case b, = 0 — observe
that b, does not affect inequality (4.3.10)- so, actually, sign(G;) = sign((k + 1l)a) =
sign(a). |

A(T)| < o(k) := ke (-1,1). (4.3.10)

Remark 4.3.10. In the case a is a constant w and 2 = 0, A(I) = [—|w|T,|w|T], and the
condition can be written as |o|T' < %, which is consistent with Theoremw

Remark 4.3.11. Observe that ¢ is strictly decreasing on (—1,1) and

1

li k) = li k) ==.

Jim o®) = +eo, Jim o) = 5

Corollary 4.3.12. Under the conditions of (D3) and Theorem G has constant sign in I if
AT < .
2

Proof. This corollary is a direct consequence of equation (4.2.3)), Proposition and Theorem
4.3.5, Observe that the result is consistent with o (17) = 2 [

In order to prove the next corollary, we need the following «hyperbolic version» of the
phasor addition formula. It’s proof can be done without difficulty.

Lemma 4.3.13. Let @, 3,7 € R, then

cosh( “+’8|+fy) if a>10l,
—Cosh(11n|“+ﬂ|+v) if —a>1B),
acoshry+/851nh(y=m smh( a+'8|+’)') if B> lal,
—sinh (3In|<E| +v) i -B>lal,
foa=p,
ae”” if a=-0.

Corollary 4.3.14. Assume a has constant sign in 1. Under the assumptions of (D2) and Theorem
G has constant sign if k < —1 or

In(k — VEZ—1)
ovEZ—1

A(T)| < —

Furthermore, sign(G,) = sign(ka).

Proof. The solutions of (4.2.1) for the case (D2), as seen before, are given by

u(t) = e Be® lcosh (sz - ]A(t)) - ‘/% sinh (sz — ]A(t))] .
—1



94 4.3. The cases (D1)—(D3) for the complete problem

Ife>1,thenl < ‘/ﬂ so, using Lemma|4.3.13

u(t) = —ae

B, % sinh (%m k=R =1+ k2 - lA(t)) ,

In order for the hypothesis of Proposition|4.3.8|to be satisfied, it is enough and sufficient to ask
that 02u (I) for some a # 0. Equivalently, that

Ik —VEE D)+ VEE—1A(t) £0 Vi e,

2
That is,
_ 2 __
A £ -DE-VEE-D g
oVEZ — 1

Since A is odd and injective, this is equivalent to

In(k — VE2—1)
k-1

Now, if b < —1, then| Ltk ‘ < 1, so using Lemma}4.3.13

A(T)| < o(k) := — k>1.

B, )| 2k
k-1
forallt € I, a # 0, so the hypothesis of Proposition |4.3.8|are satisfied.
The sign of the Green'’s function is given by Proposition andsign(G;) = sign(a+b).
Now, we have that |k| > 1anda +b = (k="' + 1)b, + b,. Because of the continuity of G,

with respect to the parameters a and b, G, has to have the same sign in the case b, = 0 so,
actually, sign(G,) = sign((k~! + 1)b,) = sign(b,) = sign(ka). u

u(t) = ae cosh(%ln’k—\/k2—ll+\/kz—lA(t)) #0

Remark 4.3.15. If we consider o defined piecewise as in Corollaries[4.3.9/and [4.3.14]and con-
tinuously continued through 1/2, we get

arccos (k) . _
]?lﬁ if k S ( 1, 1),
o(k) =13 ifk=1,
_In(k—vk2-1) .
T ifk > 1.

This function is not only continuous (it is defined thus), but also analytic. In order to see this
it is enough to consider the extended definition of the logarithm and the square root to the
complex numbers. Remember that V=1 :=i and that the principal branch of the logarithm is
defined asIn, (z) = In|z| + i0 where @ € [—7,7) andz = Izle’ﬂ forallz € C\{0}. Clearly,
Ing | (g 4oy = In.

Now, for [k| < 1,Iny(k — V1 —k2i) = if with @ € [—m,7) such that cosf =
sinf = —V1 — k2, thatis, € [—7,0]. Hence, iIn, (k — V1 — k2i) = —0 € [0, 7]. Since
cos(—0) =k, sin(—0) = V1 — k2, itis clear that

arccos (k) = —0 = ilny(k — V1 — k2i).
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We thus extend arccos to C by
arccos(z) :=ilny(z — V1 — 22i),
which is clearly an analytic function. So, if & > 1,
_In(k - vk2 —1) _an(k —iv1l—Fk2)
2Vk2 -1 2ivV1 — k2
ilng(k —iv1—k?)  arccos(k)
V1 — 2 ovV1—k2

o is positive, strictly decreasing and

ok) =

kl_Er}+ o(k) = +o0, kl_l)IIIOOG(k) = 0.

In a similar way to Corollaries|4.3.9}[4.3.12|and [4.3.14] we can prove results not assuming
a to be a constant sign function. The result is the following.

Corollary 4.3.16. Under the assumptions of Theorem and conditions (D1), (D2) or (D3)
(let k be the constant involved in such conditions), G has constant sign if maxA(I) < o (k).

4.4 The cases (D4) and (D5)

Consider the following problem derived from the nonhomogeneous problem (4.3.1).

(x") = (a" RS be) (x") + (he) : (4.4.1)
xe ae - be _aO - bO xe hO
The following theorems tell us what happens when we impose the boundary conditions.
Theorem 4.4.1. If condition (D4) holds, then problem has solution if and only if

IOT eBe@p _(s)ds =0,
and in that case the solutions of are given by

u,(t) =e B0 [c + fot (eBe(s)h(s) + 2a,(s) fos eBeh (1) dr) ds] forc € R. (4.4.2)

Proof. We know that any solution of problem (4.3.1) has to satisfy (4.4.1). In the case (D4), the
matrix in (4.4.1) is lower triangular

x,\ _(-b, O x, h,
()= (o ) () () 423
so, the solutions of are given by

x,(t) = e B [5 + fot eBe®h_(s) ds] )
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x,(t) = e Be® [c + fot (eBe(S)ho (s) + 2a,(s) [5 + fos eBehn_ (r) dr]) ds] ,

wherec, ¢ € R.

x, is even independently of the value of c. Nevertheless, x, is odd only when ¢ = 0. Hence,
a solution of (4.3.1), if it exists, it has the form (4.4.2).

To show the other implication it is enough to check that u, is a solution of the problem
(4.3.1).

u.(t) =—2b,(t)e B [c + fot (eBe(s)h(s) + 2a,(s) fos eBeh (1) dr) ds]
+ e B® (eBe(t)h(t) + 2a, (t) f(: eBeh, (r) dr)

=h(t) —b,(Ou(t) +2a,(H)e B® [P Dh, (r) dr.

Now,
a, (8) (,(=1) —u (1)) +2a,@)e %@ [(eBOh,(r) dr
=a,(t)e B [c - f; (eBe(s)h(—s) —2a,(s) f; eBeh_(r) dr) ds]
—a,(t)e B [c + f(: (eBe(s)h(s) + 2a,(s) f; eBeh (1) dr) ds]
+ 2a, (t)e B ® fot eBeh (rydr
= —2a,(t)e Be® f; eBeMp (r)ds + 2a,(t)e 8@ f; eBe™p (rydr =0.
Hence,

u,(t) +a,Ou.(—t) + (—a, () +b,E))u.(t) =h(t), a.et €l
The boundary condition u,(=T') —u,(T) = 0is equivalent to (u,),(T) = 0, this is,

fOT eBe@h (s)ds =0

and the result is concluded. [ |

Theorem 4.4.2. [f condition (D5) holds, then problem has solution if and only if
fOT eB®-AG)p (s)ds =0, (4.4.4)
and in that case the solutions of are given by
u,(t) =eA®-BO fot eB@-AGp (s) ds4e AD-B® [c + fOteA(s)*B(s)ho (s) ds] (4.4.5)
foreveryc € R.
Proof. In the case (D5), b, = b and a, = a. Also, the matrix in is diagonal
(;) - (“o R bo) (’;Z) " (Zf,) . (4.4.6)

and the solutions of (4.4.6) are given by
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x,(t) = eAO-BO [5 + f(: eB&-AGp () ds] ,

x,(t) = e AD=BO [c + f; eAOFBEp (s) ds] ,
where ¢, ¢ € R. Since a and b are odd, A and B are even. So, x, is even independently of
the value of c. Nevertheless, x, is odd only when ¢ = 0. In such a case, since we need, as in

Theorem thatx, (T') = 0, we get condition (4.4.4), which allows us to deduce the first
implication of the Theorem.

Any solution u,, of (4.3.1) has the expression (4.4.5).

To show the second implication, it is enough to check that u is a solution of the problem
(4.3.1).

u,(t) =(a(t) —b(1))erV=BO [1PO-4Op (5)ds
— (a(®) +b(@)e™ OB [c 4 [[eAOBOL (5)ds| +h@).
Now,

a@u,(=t) +b(t)u,(t)
=a(t) (—eA“)_B(“ fot eBO-AGp (s)ds +eAO-BO [c + fOteA(s)*B(s)ho (s) ds])

+b(t) (eXO7BD [[BO-ADR (5) ds + e ADBD [o 4 [ADHEOR (5) ds])
= — (a () —b(1)eAOBO [1BO-AOp (5)ds

+ (@(®) +b()e A OB [ 4 [FADHEOR (5) ds].

So clearly,
u,(t) +a@u,(—t) +b(#)u,(t) =h(t) forae.tel.

which ends the proof. [

4.5 The other cases

When we are not on the cases (D1)-(D5), since the fundamental matrix of M is not given by its
exponential matrix, it is more difficult to precise when problem (4.3.1) has a solution. Here we
present some partial results.

Consider the following ordinary differential equation
@) +[a@) +b@)]x@) =h@), x(=T)=x(T). (4.5.1)
The following lemma gives us the explicit Green’s function for this problem. Let v = a + b.

Lemma 4.5.1. Let h, a, b in problem (4.5.1) be in L1 (I) and assume f_TT v(t)dt # 0. Then
problem (4.5.1) has a unique solution given by

u(t) = [ Gy(t,5)h(t) ds,
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where
[Fvmdr <t
G5 (t,s) = e o d 525 and 7= 1 . (4.5.2)
(T_l)eft v(r) r’ s>t 1_e—f_TTv(r)dr

Proof.

dG4 —Tu(t)elf v ar s<t

—2(t,s) = o T =—v(t)Ga(t,s).

ot (¢5) {—(T—l)v(t)eft vindr g > ¢, (0G5 (E,5)
Therefore,
W(t,s) +v(t)Gs(t,s) =0,s #t.

Hence,

u' @) +v(@Oud)
=% [, Gs(t.)h(s)ds + % [7Gst.9)h(s)ds +v@) [* Gy(t,s)h(s) ds
=[G (t,t7) — Gyt 1A (D) + [ l%(t,s) + U(t)GS(t,s)] h(t)ds
=h(t) a.e.t €I
The boundary conditions are also satisfied.

u(T) —u(-T) = f_TT [Tefis‘“(r) dr _ (7 — 1)el2rvm dr] h(s)ds

[7uv@)dr —f_T v(r)ydr [ v(@r)dr
=" | = >, o h(s)ds
-T l_e—f_Tv(r)dr l_e—f_Tv(r)dr
frv@dr Jruv@) dr
=" | 4 I~ 0 h(s)ds =0.
=T l_e—f_Tv(r)dr l_e—f_TU(r)dr
[
Lemma 4.5.2.
eVl
IG5 (t,8)| < F(v) := (4.5.3)

|e||U+||1 — e||U7||1 | '

Proof. Observe that
1 eIVl
]_ — e||U_||1—||U+||1 - e||U+||1 — e||U_||1 )

T =

Hence, B
el
T—1=—— .

elvtly — plvly

On the other hand,

vl

efzs v(r)dr < e t, s<lI,
s +

e, s> ¢,

which ends the proof. [ |
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The next result proves the existence and uniqueness of solution of (4.3.1) when v is ‘suffi-
ciently small’.

Theorem 4.5.3. Let h, a, b in problem (&.3.1) be in L' (I) and assume f_TT v()dt + 0. Let
1
W = {(2T) 7 (lall,: + 16l,:) } per1,+o0] wherep™t + (p*) 1 =1L If

F () lall; infW) < 1,
where F (v) is defined as in (4.5.3)), then problem (4.3.1) has a unique solution.

Proof. With some manipulation we get
h@) =x' () +a@) ([T x' () ds +x(®)) +b(®)x(t)
=x'(t) + v(t)x(t) +a(t) ft_t(h(S) —a(s)x(—s) —b(s)x(s)) ds.
Hence,
¥ (6) +v®)x@) = a®) [(a(s)x(=s) +b(s)x(s)) ds +a@) [* h(s)ds+h@).
Using G5 defined as in (4.5.2) and Lemma4.5.1] it is clear that

x(t) = [ Gs(t,8)a(s) [ (ama(=r) +b(r)x(r) drds
+[1.Gs(t,5) [a(e) [ h(r)dr+h(s)]ds,

this is, x is a fixed point of an operator of the form Hx (¢) + ,B(t), so, by Banach contraction
Theorem, it is enough to prove that ||H]| < 1 for some compatible norm of H.

Using Fubini’s Theorem,
Hx(t) = — f_TT,o(t,r) (a()x(=r) +b(r)x(r)) dr,

where p(¢,r) = [ l:—f__ql,r'] G4 (t,s)a(s) ds.

If f_TT v(t)dt = [lv*ll; — lvTll; > 0 then Gy is positive and

pt,r) < [ Gy(t,9)la(®)Ids < F@)lal,.

We have the same estimate for —p (¢,7).

If f_TT v(t) dt < 0 we proceed with an analogous argument and arrive to the conclusion
that G5 is negative and |p (¢,s)| < F (v)|lall;.

Hence,
|Hx ()| <F (v)llal, f_TT la(r)x(=r) +b(r)x(r)ldr
=F (V) lallla(r)x(=r) + b(r)x(r)l;.
Thus, it is clear that
\Hxl, < (2T)»F (W) llal; (lall,. + 161, Ixl,, p € [1,00],
which ends the proof. [ |
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Remark 4.5.4. In the hypothesis of Theorem realize that F' (v) > 1.

The following result will let us obtain some information on the sign of the solution of prob-
lem (4.3.1). In order to prove it, we will use a Theorem from Chapter[8-Theorem[8.4.11}- which
is demonstrated independently.

Consider an interval [w,d] C I, the cone

K={uecd): min u(t) =clul},

telw,d]

and the following problem
xX @) =ht,x@),x(=t),tel, x(-T)=x(T), (4.5.4)

where & is an L!-Carathéodory function. Consider the following conditions.

(I;’w) Thereexist p > 0and w € (O, %] such that£,”” < w where

f"" = sup

{h(t,u,v) + v, (t,u,v) € [-T,T] x [—p,p] x [—P,P]}'

(Ig,w) There exists p > 0 such that

P
w . S
I o0 tel[ILlufd] fw G(t,8)ds > 1,

where

w .
f(p,p/C) - 1nf{

Theorem 4.5.5 (Part of Theorem|8.4.11). Let w € (0, %T] Let [w,d] C I such thatw =
T —-d e (max{0,T — ﬁ}, %). Let

h(t,u,v) + wv

2 (¢,u,v) € [w,d] x [p,p/c] x [—p/c,p/c]}-

_ [1—tan(wd)][1 — tan(ww)]

c= [1+tan(wd)][1+ tan(ww)]’ (4.5.5)

Problem (4.5.4) has at least one nonzero solution in K if either of the following conditions
hold.

(S1) There exist pq, py € (0, 00) with p;/c < py such that (Igl,w) and (Ifl)z,w) hold.

(Sy) There exist py, py € (0, 00) with p; < py such that (I;l’w) and (122@) hold.

Theorem 4.5.6. Leth € L*(I), a,b € L'(I) besuchthat 0 < |b(t)| < a(t) < w < %T
fora.e. t € I and infh > 0. Then there exists a solution u of (4.3.1) such that, u > 0 in
(max{O,T — ﬁ},min{T, ﬁ )
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Proof. Problem can be rewritten as
X@®)=h@) —-b@®)x@t) —a@®)x(=t), tel, x(=T)=x(T).

With this formulation, we can apply Theorem Since 0 < a(t) — |b(t)| < w for a.e.
t €I, take p, € R* large enough such that 2 (t) < (a(t) —|b(t)|)p, fora.e. t € I. Hence,
h(t) < (a(t) —w)py, —1b(t)|py + paw fora.e. t € 1, in particular,

h(t) < (a@) —w)v—1b@)|lu+ pow < (a(t) —w)v +b(t) u+ pyw

fora.e.t €1; u,v € [—py, py]. Therefore,

{h(t) —-bu—a@)v + wv
sup

: (tyv) S [_T7T] X [_[O27[O2]} < w,
P2

and thus, (I},Z,w) is satisfied.

Let [w,d] C I be such that [w,d] C (T — ﬁ, %) Let ¢ be defined as in and
€= a)fb‘jG(t,s) ds.

Choose 6 € (0, 1) such that & (¢) > [(1 + %) w— (a(t) — Ib(t)l)] pybforae t el

and define p; := é\cpz. Therefore, h > [(a(t) — w)v +b(t) u(t)] %pl fora.e. t € 1,
u € [pq, pc—l] andv € [—%, %]. Thus,

inf{h(t) —b(t)u —a@)v + wv

: (t,U) e [wad] X [_,01/0,,01/0]} > Qa
P1 €

and hence, (Igl’w) is satisfied.
Finally, (S;) in Theorem is satisfied and we get the desired result. |

Remark 4.5.7. In the hypothesis of Theorem[4.5.6} if ® < %T, we cantake [w,d] = [-T,T]
and continue with the proof of Theorem|4.5.6/as done above. This guarantees that u is positive
in[=T,T1].







5. General linear equations

In this chapter we study differential problems in which the reflection operator and the Hilbert
transform are involved. We reduce these problems to ordinary differential equationsin order to
solve them. Also, we describe a general method for obtaining the Green’s function of reducible
functional differential equations and illustrate it with the case of homogeneous boundary value
problems with reflection and several specific examples.

It is important to point out that these transformations, necessary to reduce the problem to
an ordinary one, are of a purely algebraic nature. It is, in this sense, similar to the algebraic
analysis theory which, through the study of Ore algebras and modules, obtains important in-
formation about some functional problems, including explicit solutions [21,50]. Nevertheless,
the algebraic structures we deal with here are somewhat different, e. g., they are not in general
Ore algebrasﬂ

Among the reducible functional differential equations, those with reflection have gathered
great interest, some of it due to their applications to supersymmetric quantum mechanics [73,
147,/153] or to other areas of analysis like topological methods [34].

In this chapter, following [44] we put special emphasis in two operators appearing in the
equations: the reflection operator and the Hilbert transform. Both of them have exceptional
algebraic properties which make them fit for our approach.

5.1 Differential operators with reflection

In this Section we will study a particular family of operators, those that are combinations of
the differential operator D, the pullback operator of the reflection ¢ (£) = —¢, denoted by
@*(f)(t) = f(—t), and the identity operator, Id. In order to freely apply the operator D
without worrying too much about it’s domain of definition, we will consider that D acts on
the set of functions locally of bounded variation on R, BVlOC(R)Iﬂ Given a compact interval
K, the space BV(K) is defined astheset {f : I —» R |V (f) < 4o} where V(f) =
Ps;g{ Z:’j&l I (x;01) = F )L P =A{xp,...,%,,}, minK =x5 <x; < <x,,_1<%,, =
max K and Py is the set of partitions of K. BV, . (R) is the set

{f:R > R|flx € BV(K), forall K C R compact}.

It is well known that any function locally of bounded variation f € BV, . (R) can be ex-
pressed as

f@) =f@o) + [ g dy +h),

TWe refer the reader to [118},/149-151] for an algebraic approach to the abstract theory of boundary value
problems and its applications to symbolic computation.

*Since we will be working with R as a domain throughout this chapter, it will be in our interest to take the local
versions of the classical function spaces. By local version we mean that, if we restrict the function to a compact
set, the restriction belongs to the classical space defined with that compact set as domain for its functions.
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foranyx, € R, whereg € L*(R), and A is the function which is constant except for a count-
able number of discontinuities (cf. [37,(116]). This implies that the distributional derivative (we
will call it weak derivative as shorthand) of f is

=g+ Zhn&cn, (5.1.1)

neN

where 0, is the Dirac distribution at x, the x,, are the points at which A has discontinuities and
h,, is the magnitude of the discontinuity at x,,. In this way, we will define Df := g (we will
restate this definition in a more general way further on).

As we did in Section 2.2, we now consider the real abelian group R[D, ¢*] of generators
{D*, <p*Dk},:°=O. If we take the usual composition for operatorsin R[D, ¢*], we observe that
D¢* = —¢*D, so composition is closed in R[D, ¢*], which makes it a non commutative
algebra. In general, D* p* = (—1)k<p*Dk fork=0,1,...

The elements of R[D, ¢*] are of the form
L= Zai¢*Di + ijly' € R[D, ¢*1. (5.1.2)
i J

For convenience, we consider the sums on i and j such thati,j € {0, 1,... }, but taking into
account that the real coefficients a,, bj are zero for big enough indices — that is, we are dealing
with finite sums.

Despite the non commutativity of the composition in R [D, ¢*] there are interesting rela-
tions in this algebra.

First, notice that R[D, ¢*] is not a unique factorization domain. Take a polynomial P =
D? + 8D + a where @, 8 € R, and define the following operators.

If 32 — 4a >0,

Lo=p+ 1 (8- Fia).
R =D+~ (5+W),

L,=¢*'D—2D+ 1 (/5’ VB2 - 4cz)<p +(_B+ '82_4a)




5. Differential operators with reflection 105

(8+ (P =a)

R, := (/)*D+\/§D—%(,8+\/M)<p*+

G ’
B+ 52 —4a

L5:=¢*D+J§D+%(5+M)g)*+( 5 )

R, := 90*D+\/§D+%(—,8+\/,82—4a) »* + (IB_ 5);_4“).

If8=0anda <0,

Lg := ¢*D + {—ag*,
L, := ¢*D — J—agp".

If 3 =0anda >0,

Lg:=D + Jay*,
Ly:=D — \/E(,D*.

f8=0anda <1,
Liy:=¢*D—=V1—ap*+1,
Riy:i=—¢*D+ V1 —-ap*+1,
Liy:=¢"D+V1l—ap*+1,
Ri;'=—=¢"D =Vl —-ap*+1.

f3=0a+0anda <1,

Ly :=¢*D -1 —aD + «,
1 Vi—a

R12 = _ESD*D + p D+1,
Li3:=¢*D+ V1 —aD + «,
Ryi=—1oD-Y1=% 11
13 27 P

Then,
P=LR,=R,L=RyL,=R3L;=R,L,=R;L;,

and, when 3 =0,
P = _L?; = —L? = Lg = L§ =RqoLq9 = L1oR19 = R11L14
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= L11R11 = R12L12 = L12R12 = R13L13 = L13R13-

Observe that only L; and R, commute in the case of 5 # 0.

This rises the question on whether we can decompose every differential polynomial P in
the composition of two ‘order one’ (or degree (1,1), cf. page elements of R[D, ¢*], but
this is not the case in general. Just take @ = D? + D + 1 (observe that @ is not in any of the
aforementioned cases). Consider a decomposition of the kind

(@p*D +bD +co*+d)(ep*D +gD + ho* +j) =Q,

wherea, b,c,d,e,g,h andj are real coefficients to be determined. The resulting system

dh+¢ =0,

de —cg + bh +aj =0,
be —ag =0,

< —ae + bg =1,
ch +dj =1,
—ce+dg+ah+bj=1,

has no solution for real coefficients.

Let R[D] be the ring of polynomials with real coefficients on the variable D. The following
result states a very useful property of the algebra R[D, ¢*].

Theorem 5.1.1. Take L as defined in and take
R=)Y a,¢'D"+) (-1)"*'b,D' € R[D, p*]. (5.1.3)
% 1

Then RL = LR € R[D].

Proof.

RL=)Y (-D*a,q,D*" + Y ba,o'D** + Y (=) (-1)!*'a,b,¢*D™*!
ik ik i,

+ Z(—I)ZJ’lbjsz”l (5.1.4)
75l

= Z(—l)kaiakD”k + Z(—l)l+1bjle7+l.
ik Jil

Hence, RL € R[D].

Observe that, if we take R in the place of L in the hypothesis of the Theorem, we obtain L
in the place of R and so, by expression (5.1.4) LR € R[D]. [ |

Remark 5.1.2. Some interesting remarks on the coefficients of the operator S = RL defined
in Theorem[5.1.1]can be made.

If we have

S=)Y D' =RL=)Y (-Da,q,D** + ) (-1)"*1bp,D'*,
ik

k Jl
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then .
=) (=D (@ay, —bby,).

i=0
A closer inspection reveals that

0, k odd,

k
k_q1
Cr E:

N2 Y 1 @ - bibe ) + (<D (az —bz) . Eeven.
i=0 2 2

This has some important consequences. If L = Z:’;o a;9*D" + ZJ’;O bij witha, # O0or
b, # 0, we have thatc,, = (—1)"(a® — bi)ﬂand so, if @, = £b,, then cy; = 0. This shows
that composing two elements of R[D, ¢*] we can get another element which has simpler
terms in the sense of derivatives of less order. We illustrate this with two examples.

Example5.1.3. Taken > 3,L = ¢*D"+D"+D—IdandR = —¢*D" + (-1)"D" —D —1Id.
Then, RL = —2D*™ — D? + Id where a(n) = nifnisevenand a(n) = n + lifnis odd.

If we take n > 0, L = ¢*D*"*! + D?*"*1  Id and R = *D*'*! 4+ D?**! —1d. Then,
RL = —1d.

Example 5.1.4. Consider the equation
x® () +x® (=t) +x(¢) = sint.

Applying the operator 90*D3 + D3 —1d to both sides of the equation we obtain x(¢) = sint¢ +
2 cost. This is the unique solution of the equation, to which we had not imposed any extra
conditions.

5.2 Boundary Value Problems

In this section we obtain the Green’s function of n-th order boundary value problems with
reflection and constant coefficients. We point out that the same approach used in this section
is also valid for initial problems among other types of conditions.

Let] = [a,b] C R be an interval and f € L*(I). Consider now the following problem
with the usual derivative.

n

Su(t) =) aqu® @) =f®), tel,

k=0
n—1

Bu := Z a,u? (@) +B,u?®) =0,i=1,..,n.

J=0

(5.2.1)

The following Theorem from [31] states the cases where we can find a unique solution for

problem

"This is so because if i € {0, ...,n —1},then2i —i € {n + 1, ...,2n} and a; (respectively b,,) are nonzero
only forn € {0, ...,n}.

*In [31], this result is actually stated for nonconstant coefficients, but the case of constant coefficients is enough
for our purposes.
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Theorem 5.2.1. Assume the following homogeneous problem has a unique solution
Su(t)=0,tel,Bu=0,i=1,..n

Then there exists a unique function, called Green’s function, such that

(G1) G is defined on the square I

(G2) The partial derivatives 7G exist and are continuous onI? fork = 0, ... ,n — 2.

otk
(G3) o and == eXIst and are continuous on I2\{(t,t) : t € I}.
(G4) The lateral //mlts (t th) and 2—¢ T (t t7) exist foreveryt € (a,b) and
G a" 1G 1
- tLtt) = —
Simn B8 =~ S ) = o

(G5) Foreachs € (a,b) the function G (-, ) is a solution of the differential equation Su = 0
on I\{s}.

(G6) Foreachs € (a,b) the function G (-, s) satisfies the boundary conditions

Bu=0i=1,..,n

Furthemore, the function u(t) := fab G (t,8)f (s) ds is the unique solution of the problem
(5.2.1).

Using the properties (G1)-(G6) and Theorem one can prove Theorem The proof
of this result will be a direct consequence of Theorem|5.3.8

Definition 5.2.2. Given an operator L for functions of one variable, define the operator L,_ as
L, G(t,s) :=L(G(-,8s))l, for every s and any suitable function G.

Theorem 5.2.3. Letl = [T, T]. Consider the problem
Lu()=ht),tel,Bu=0,i=1,..,n, (5.2.2)

where L is defined as in (5.1.2), h € L* (I) and

n—1
Bu := Za u (=T) + B,;u? (T).
7=0
Then, there exists R € R[D, go*] - defined as in (5.1.3)- such that S := RL € R[D] and

the unique solution of problem (5 is given by fb R, G(t,s)h(s) dswhere G is the Green’s
function associated to the problem Su =0, B,Ru = O B,u=0,i=1,...,n, assuming that
the homogeneous problem Su = 0, B,Ru = O, Bu =0, i =1,...,n, has a unique solution.

"In most applications it is not necessary to define the Green’s function on the diagonal for we will be integrating
the expression f«f G(t,s)f (s) ds. Hence, the uniqueness mentioned in Theorem has to be understood
‘save for the values on the diagonal’.
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For the following example, let us explain some notations. Let 2,p € N. We denote by
W*%P (I the Sobolev Space defined by

WkP(I) = {u € LP(I) : D°u € LP(I) Va < k}.

Given a constant a € R we can consider the pullback by this constant as a functional a* :
C() - R suchthata®f = f (a) in the same way we defined it for functions.

Example 5.2.4. Consider the following problem.
u' @) +au(=t)+bu@t) =h@),tel, u(-T)=u(T),u'(-T)=u'(T). (5.2.3)

where h € W21 (I). Then, the operator we are consideringis L = D? +a »* + b. If we take
R:=D?—-a ¢* + b, we have that RL = D* 4+ 2bD? + b% — 2.

The boundary conditions are ((T*) — (=T)*)u = 0and ((T*) — (=T)*)Du = 0. Taking
this into account, we add the conditions

0= ((T*) — (-T))Ru = ((T*) = (-T)*) (D* —a ¢* + b)u = ((T*) — (-T)*)D?u,
0= ((T*)—(-T)*)RDu = ((T*) - (-T)*) (D*—a ¢*+b)Du = ((T*) — (-T)*)D?u.
That is, our new reduced problem is

u® @) +26u” @)+ B2 —aPHu@) =f@),tel, u®-T)=u®(T),k=0,..,3.
(5.2.4)
wheref(t) =Rh(t) =h"(t) —ah(—=t) +bh(2).

Observe that this problem is equivalent to the system of equations (a chain of two order
two problems)

@)+ b+a)u@) =v@),tel, u(-T)=ulT),u'(-T)=u' (T,
v+ b-—a)yv®) =f@),tel, v(-T)=v(T), v'(-T)=v(T).

Thus, it is clear that
u(t) = [ Gy (t,5)v(s)ds, v(®) = [ Gy(t,9)f (s) ds,

where, G, and G5, are the Green’s functions related to the previous second order problems.
Explicitly, in the case b > |a| (the study for other cases would be analogous cf. page(85),

) cosvb+a(T+s—t) if s<t,
2vb vb TG, (¢t =
tasin(vo +a1)G, (t,s) {cos\/b+a(T—s+t) if s>t

and

Vb—a(T+s—t) if s<t
2V —asin(Vo —aT)Gy(t,s) = { o oo St
a sin ( aT)Gy(t,s) {cos b—a(T —s+1t) if s>t

Hence, the Green'’s function G for problem (5.2.4) is given by
G(t,s) = [ Gy (t,)Gy(r,s) dr.
Therefore, using Theorem the Green’s function for problem (5.2.3) is
82

E(t,s) =R _G(t,s) = 8—g(t,s) —aG(—t,8) +bG(t,s).
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Remark 5.2.5. We can reduce the assumptions on the regularity of 4 to A € L (I) just taking
into account the density of W21 (I) in L1 ().

Remark 5.2.6. Example illustrates the importance of the existence and uniqueness of
solution of the problem Su = 0, B,Ru = 0, B,u = 0 in the hypothesis of Theorem m
In general, when we compose two linear ordinary differential equations, respectively of orders
m and n and a number m and n of conditions, we obtain a new problem of order m + n and
m + n conditions. As we see this is not the case in the reduction provided by Theorem[5.2.3]
In the case the order of the reduced problem is less than 2n anything is possible: we may
have an infinite number of solutions, no solution or uniqueness of solution being the problem
nonhomogeneous. The following example illustrates this last case.

Example 5.2.7. Consider the problem
Lu@) ==u® @) +u™® (=t) +u"(=t) =h(@), t € [-1,1], u(1) = u(-1) =0,

where h € W4 ([-1,1]).

For this case, Ru(t) := —u®(t) + u™ (=t) + u”(—t) and the reduced equation is
RLu = 2u® + u™® = Rh, which has order 6 < 2 - 4 = 8, so there is a reduction of the
order. Now we have to be careful with the new reduced boundary conditions.

Biu() =u(l) =0,

Bou(t) =u(-1) =0,
B,Ru(t) = —u® (1) +u™® (=1) +u"(=1) =0,
ByRu(t) = —u®(=1) +u™® (1) +u" (1) =0,
BLu(t) =u® Q) +u®(=1) +u"(-1) = h(1),
ByLu(t) =u®(=1) +u™® (1) +u" (1) = h(-1).

(5.2.5)

Being the two last conditions the obtained from applying the original boundary conditions to
the original equation.

(5.2.5) is a system of linear equations which can be solved for u and its derivatives as

u(l) =u(=1) =0,—u" () =u"(-1) = %(ha) —h(=1), u® (£1) = ’“31).
(5.2.6)
Consider now the reduced problem

u® ) +u® @) =Rh(t) = f@), t € [-1,1],

u(l) =u(-1) =0, —u" (1) =u"(-1) = %(h(l) —h(=1)), u®(£1) = h(gl),

and the change of variables v (¢) := u® (¢). Now we look the solution of

h(£1)

20"@) +v@®) =f@®), t € [-1,1], v(£]) = 5

Which is given by

v(t) = f_llG(t,S)f(s) ds — h(1) cscﬁsin (t— 1) + h(=1) csc\/§Sin (t+ 1) ,

2 V2 2 N
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where

~
—

[VA)

), —1<s<t<l1,

ez [ ()5 (
V2 sin(sé)sin(%), —1<t<s<l.

Now, it is left to solve the problem

5|

G(t,s) :=

=
+

u @) =v@), u(l) =u(=1) =0, —u"(1) =u"(-1) = %(h(l) —h(=1).

The solution is given by

1 h(1) —h(-1)
u@®) = [ K(t,s)v(s)ds - = t—1)(+1).
where
1 (+D)@E—-1) (s®+2s+t*—2t—2), —-1<s<t<1,
K(t,s) = —
12{(3—1)(t+1)(32—23+t2+2t—2), —1<t<s<Ll

Hence, taking J (¢,8) = f_llH(t,r)G(r,s) ds,

J(t,s) :=
V2sin(V2) (s + 1) (t = 1) [s(s + 2) + (£ — 2)t — 14]
+24cos(u)—24cos(s+t), —1<s<t<l1,
csc\/i< V2 V2
12v2 | V2sin(V2) (s = 1) ( + 1) [(s = 2)s + £(¢ + 2) — 14]
+24 cos (u)—%tcos (S—H), —1<t<s<l1.
V2 V2

Therefore,

u(t) = j_llJ(t,s)f(s) ds

_ (1) csc 2 ll(t— 5)(t — 1) (£ + 3) sin (\/5) +4sin (u)]
2 6 9
+ h(=D) cse V2 [1(t—3)(t+ 1)(t +5) sin(\/§) +4sin(ﬂ)]
2 6 9
h(l) —h(-1)
_ = tt—1) ¢ +1).

5.3 The reduced problem

The usefulness of a theorem of the kind of Theorem is clear, for it allows the obtaining of
the Green'’s function of any problem of differential equations with constant coefficients and in-
volutions. The proof of this Theorem relies heavily on the properties (G1) — (G6), so our main
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goal now is to consider abstractly these properties in order to apply them in a more general
context with different kinds of operators.

Let X be a vector subspace of Llloc(R), and (R, 7) the real line with its usual topology.
Define Xy := {fly : f € X} forevery U € 7 (observe that X;; is a vector space as well).
Assume that X satisfies the following property.

(P) For every partition of R, {S 1} ieg U {N'}, consisting of measurable sets where N has no
accumulation points and the S, are open, iff; € X, s, foreveryj € J, then there exists f € X
such thatflsj = f; foreveryj € J.

Example 5.3.1. The set of locally absolutely continuous functions AC, . (R) C Llloc(R) does
not satisfy (P). To see this just take the following partition of R: S; = (—o0,0), S, =
(0,+00), N = {0} and considerf; = 0,f; = 1. f;, € AC(R)Sj forj = 1,2, but any
function f such that f|sj = f;,»J = 1,2 has a discontinuity at 0, so it cannot be absolutely
continuous. That is, (P) is not satisfied.

Example 5.3.2. X = BV, (R) satisfies (P). Take a partition of R, {S;},c; U {IV}, with the
properties of (P) and a family of functions (f}) ;e such that f; € ij foreveryj € J. We
can further assume, without lost of generality, that the Sj are connected. Define a function f
such that f|sj := f; and |y = 0. Take a compact set K C R. Then, by Bolzano-Weierstrass’
and Heine-Borel’s Theorems, K N N s finite for N has no accumulation points. Therefore,
Jr={€J:S,NK # @} is finite as well. To see this denote by JS the boundary of a set
S and observe that N N K = UJEJB(SJ- U K) and that the sets 8(Sj NK)NJd(S,NK) are
finite for every j,k € oJ.

Thus, the variation of f in K is Vg (f) < ).

jedx Vsj (f) < oo since f is of bounded

variation on each S;. Hence, X satisfies (P).

Throughout this section we will consider a function space X satisfying (P) and two families
of linear operators L = {L;} 17, and R = {R; } <, that satisfy
Locality: Ly € £L(Xy, L (U)),Ry € LGAm(Ly),L{ (1)),

loc

Restriction: Ly, (flyy) = Ly (f)ly, Ry (fly) = Ry (f)ly forevery U,V € 7
suchthat V C

The following definition allows us to give an example of an space that satisfies the properties
of locality and restriction.

Definition 5.3.3. Letf : R — R and assume there exists a partition {SJ}JEJ U{N}of R
consisting of measurable sets where N is of zero Lebesgue measure satisfying that the weak
derivative g; exists for everyfISj, then a function g such thatglsj = g, is called the very weak

derivative (vw-derivative) of f.

Remark 5.3.4. The vw-derivative is uniquely defined save for a zero measure set and is equiv-
alent to the weak derivative for absolutely continuous functions.

"The definitions here presented of L and R are deeply related to Sheaf Theory. Since the authors want to
make this work as self-contained as possible, we will not deepen into that fact.
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Nevertheless, the vw-derivative is different from the derivative of distributions. For in-
stance, the derivative of the Heavyside function in the distributional sense is de Dirac delta
at 0, whereas its vw-derivative is zero. What is more, the kernel of the vw-derivative is the set
of functions which are constant on a family of open sets {Sj}jEJ such that R\(UJ-EJSJ) has
Lebesgue measure zero.

Example 5.3.5. Take X = BV, . (R) and L = D to be the very weak derivative. Then L
satisfies the locality and restriction hypotheses.

Remark 5.3.6. The vw-derivative, as defined here, is the D operator defined in (5.1.1) for func-
tions of bounded variation. In other words, the vw-derivative ignores the jumps and considers
only those parts with enough regularity.

Remark 5.3.7. The locality property allows us to treat the maps L and R as if they were just
linear operators in £(X,LL (R)) and £({im(L),LL (R)) respectively, although we must

loc loc
not forget their more complex structure.

Assume X;; Cim (L) Cim(Ryy) foreveryU € 7. B, € L(im(Rg),R),i=1,...,m
and 2 € im(Ly). Consider now the following problem

Lu=h,Bu=0,i=1,...,m. (5.3.1)
Let
Z:={G:R?2 > R|G(,-) €XN (R) and supp{G(Z,-)} is compact, s € R}.

Z is a vector space.

Letf € im(Ly) and consider the problem
RLv=f,Bv=0,B,Rv=0,i=1,..,m. (5.3.2)

Let G € Z and define the operator H such that H (h)], := fR G(t,s)h(s) ds. We have
now the following theorem relating problems (5.3.3) and (5.3.2). Recall that, by definition,
L G(t,s) :=L(G(,8))],

Theorem 5.3.8. Assume L and R are the aforementioned operators with the locality and re-
striction properties and let h € Dom (Rp). Assume L commutes with R and that there exists
G € Z such that
() (RL).G=0,
dIy B,,G=0,i=1,...,m,
1)y (BR).,G=0,i=1,...,m,
(IV) RLH:h = H(RL)FGh +h,
(V) LHRFGh = HLFRFGh + h.
(VI) B,H; = HB”G, i=1,..,m,
(VII) B,RH; = BiHRFG = H(BiR)FG, i=1,..,m,

Then, v := Hg(h) is a solution of problem (5.3.2) and u := HRFG(h) is a solution of
problem (5.3.1).
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Proof. (I) and (IV) imply that
RLv=RLHGh = H g, gh+h =Hyh+h =h.
On the other hand, (III) and (VII) imply that, foreveryi =1,...,m,
B,Rv =B,RHzh = H g g, gh = 0.
All the same, by (II) and (VI),
By =BHsh =Hg ch=0.

Therefore, v is a solution to problem (5.3.2).
Now, using (I) and (V) and the fact that LR = RL, we have that

Lu = LHR,_Gh’ = HL,_R,_Gh’ + h = H(LR),.Gh + h = H(RL),_Gh + h = h

Taking into account (III) and (VII),
Biu =B1HR|_G(h) =H(BLR)}_Gh - 0, l - 1,...,m.
Hence, u is a solution of problem (5.3.1). [ |

The following Corollary is proved in the same way as the previous Theorem.

Corollary 5.3.9. Assume G € Z satisfies
(1) L.G=0,
(2) B;;G=0,i=1,...,m,
(4) BLHGh - HBi ,_Gh'

Thenu = Hh is a solution of problem (5.3.1).

Proof of Theorem|[5.2.3| Originally, we would need to take A € Dom (R), but by a simple
density argument —C* (I) is dense in L (I)— we can take A € L*(I). If we prove that the
hypothesis of Theorem[5.3.8|are satisfied, then the existence of solution will be proved.

First, Theorem [5.1.1 guarantees the commutativity of L and R. Now, Theorem [5.2.1]im-
plies hypothesis (I) — (VII) of Theorem[5.3.8]in terms of the vw-derivative. Indeed, (I) is
straightforward from (G5). (II) and (III) are satisfied because (G1) — —(G6) hold and
B,u, B;Ru = 0. (G2) and (G4) imply (IV) and (V). (VI) and (VII) hold because of
(G2), (G5) and the fact that the boundary conditions commute with the integral.

On the other hand, the solution to problem (5.2.2) must be unique for, otherwise, the re-
duced problem Su = 0, B_Ru = 0, B,u = 0,i = 1,...,n would have several solutions,
contradicting the hypotheses. |

The following Lemma, in the line of Theorem [4.3.5] extends the application of Theorem
5.2.3|to the case of nonconstant coefficients with some restrictions for problems similar to the

one in Example|5.2.4
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Lemma 5.3.10. Consider the problem
@) +ra@u(=t)+b@®u@) =h@),u(=T) =u(T), (5.3.3)
wherea € leocl (R) is nonnegative and even,

// 5 al 2
b=ka+ - E(Z)’

for some constantk € R, k% + 1 and b is integrable.
Define A(t) := [; Ja(s) ds, consider
u' @) +u(=t) +ku®) =h@), u(-AT)) =uA))

and assume it has a Green’s function G.

Then
u(t) = j_TTH(t,s)h(s) ds

is a solution of problem (5.3.3) where

1/a(s)

a(t)
And H (t,-)h (+) is assumed to be integrable in [T, T1].

H(t,s) := G(A@),A(s)),

Proof. Let G be the Green’s function of the problem

u’ () +u(—t) +ku@) =h@), u(-AT)) =uAT)), u ewW> (R)

loc

Observe that, since |k| # 1, we are in the cases (D1) — (D2) in Chapter[4] Now, we show
that H satisfies the equation, that is,

’H

Sz —(t,8) +a(t)H (—t,s) +b(@)H (t,s) = 0fora.e. t,s € R.
PH ;o =2 1129 G A, Aes))
o2 -’ ot2 a(t) ’

_d [_“'(t) 28 aawm) . As)) + \/a(s)a(t (A(t) Acs ))]
ot 4 a®(t)

_a’@®) *fa(s) 5,9t als)
1 a5(t)G(A(t),A(s)) + 15 (@’ (t)) 1T )G(A(t) JA(s))

4 2
+ Vae@EOSEA®,AG)).

Therefore,

2
J H(t s) +a()H (—t,s) + b(t)H(¢,s)
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4 2 4
~Ya@a 05 A®.AG) +a0) [ 2D GEAD,AG)

14 /a(s)
a(t)

+ka(t) G(A(#),A(s))

2
=Va(s)a?(¢) (%—S(A(t),A(S)) + G(—A(1),A(s)) +kG(A(t),A(S))) = 0.
The boundary conditions are satisfied as well. |

The same construction of Lemma(5.3.10}is valid for the case of the initial value problem.
We illustrate this in the following example.

Example 5.3.11. Leta(¢) = |t[’, k£ > 1. Taking b as in Lemma|5.3.10

bit) = kigp - 2ELD,
consider problems
u () +at)u(—t) +b@E) u) =h(t), u) =u’(0) =0 (5.3.4)
and
u () +u(=t) +ku@) =h@®), u0) =u'(0) =0. (5.3.5)

Using an argument similar as the one in Example and considering R = D? — ¢* + k, we
can reduce problem (5.3.5) to

u® @) +2ku" @)+ R2—Du@) =f@), u”0)=0,j=0,...,3, (5.3.6)
which can be decomposed in

u @)+ k+Du@) =v@),tel, u) =u(0)=0,
vV @t)+ (k—-1Dv@) =f@®),tel, v(0) =v"(0) =0,

which have as Green’s functions, respectively,

sin(\/k +1 (t—s))

G, (t,s) = i Xo(8), t ER,
N sin(\/k—l(t—s)) .
Gy (t,s) = — Xo(s), t € R.

Then, the Green’s function for problem (5.3.6) is
G(t,s) = f: Gl (t,r)(~}2 (r,s)dr

:ml—l [\/k—lsin(\/k+1(s—t)) - \/k+1sin(\/k—1(s—t))]Xf)(s).
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Observe that
sin(\/k—l(s—t)) sin(\/k+1(s—t))
R, G(t,s) = — + Yo (S).
2Vvk -1 2Vk +1

Hence, considering
2 P
A(t) := ——|t|2¢,
() > +2| |

the Green’s function of problem (5.3.4) follows the expression

a(s)

H(t,s) := G(A(t),A(s)),
a(t)
This is,
. (2M(s|s|1”/2—t|tll’/2) ) . (Zw/k_-kl(slslp/z—tltlp/z) )
» | sin sin
Hts) =—|2 s e + i Xo(5).
t o2VE — 1 2VE + 1 °

5.4 The Hilbert transform and other algebras

In this section we devote our attention to new algebras to which we can apply the previous
results. To achieve this goal we recall the definition and remarkable properties of the Hilbert
transform [114].

We define the Hilbert transform H of a function f as

= L i [ £ gy 2 1= 1O

>

where the last integral is to be understood as the Cauchy principal value.

Among its properties, we would like to point out the following.

H:LP(R) — LP(R) is a linear bounded operator for every p € (1, +o0) and

ul 1,2
i to—, pEI[2,+),

in particular [H|l, = 1.

e His an anti-involution: H? = —1d.

let 0(t) = at + b fora,b € R. Then Ho* = sign(a)o*H (in particular, Hp* =
—@*H). Furthermore, if a linear bounded operator O : L?(R) — LP(R) satisfies this
property, O = SH where 3 € R.

e H commutes with the derivative: HD = DH.
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e H(f *g) =f = Hg = Hf % g where * denotes the convolution.

e His an isometry in L?(R): (Hf,Hg) = (f,g) where (, ) is the scalar product in
L2(R). In particular [Hf [l = [f 1l

Consider now the same construction we did for R [D, ¢*] changing ¢* by H and denote this
algebra as R[D, H]. In this case we are dealing with a commutative algebra. Actually, this
algebra is isomorphic to the complex polynomials C[D]. Just consider the isomorphism

R[D,H] — =% C[D]
Y (aH+b)D —— Y (a;i+b)D
J J

Observe that Elgp; = Id | p;-

We now state a result analogous to Theorem|5.1.1]

Theorem 5.4.1. Take
L= Z(aJH +b)D € R[D,H]
J

and define
R=) (@H-b)D.
J

Then LR = RL € R[D].

Remark 5.4.2. Theorem is clear from the point of view of C[D]. Since E(R) = —E (L),

RL =E"1'(-EW)EWL)) =E"(-IEDP.
Therefore, |5 (L)|? € R[D], implies RL € R[D].
Remark 5.4.3. Since R[D, H] is isomorphic to C[D], the Fundamental Theorem of Algebra
alsoappliesto R[D, H], which shows a clear classification of the decompositions of an element

of R[D,H] in contrast with those of R[D, ¢*] which, in page was shown not to be a
unique factorization domain.

In the following example we will use some properties of the Hilbert transform [114]:

H cos = sin,
Hsin = — cos,

HEf ) @) = tHF @) — = [~ F() ds,

where, as we have noted before, the integral is considered as the principal value.
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Example 5.4.4. Consider the problem
Lut) =u' (t) +aHu(t) = h(t) :=sinat, u(0) =0, (5.4.1)

where a > 0. Composing the operator L = D + aH with the operator R = D —aH we obtain
S = RL = D? +a?, the harmonic oscillator operator. The extra boundary conditions obtained
applying R are v’ (0) —aHu (0) = 0. The general solution to the problem u” (t) + a?u (t) =
Rh(t) = 2a cosat,u(0) = 0is given by

Rh(s)ds + asinat = (¢ + a) sinat,

v(t) = J‘t sin (a [t — s])

0
where « is a real constant. Hence,
Hu(t) = — (¢t + @) cosat.

If we impose the boundary conditions v’ (0) — aHv (0) = 0 then we get @ = 0. Hence, the
unique solution of problem (5.4.1) is

u(t) = tsinat.

Remark 5.4.5. It can be checked that the kernel of D + aH (a > 0) is spanned by sin¢ and
cost and, also, the kernel of D — aH is just 0. This defies, in the line of Remark the usual
relation between the degree of the operator and the dimension of the kernel which is held for
ordinary differential equations, that is, the operator of a linear ordinary differential equation
of order n has a kernel of dimension n. In this case we have the order one operator D + aH
with a dimension two kernel and the injective order one operator D — aH.

Now, we consider operators with reflection and Hilbert transforms, and denote the algebra
as R[D, H, ¢*]. We can again state a reduction Theorem.

Theorem 5.4.6. Take
L=) a¢*HD'+) bHD'+) ¢,¢'D'+ ) d,D' € R[D,H, "]
and define
R= ZaJ.(p*HDf + Z(—l)jijDf + chso*Df — Z(—l)jdej.
J J J J

Then LR = RL € R[D].

5.4.1 Hyperbolic numbers as operators

Finally, we use the same idea behind the isomorphism = to construct an operator algebra iso-
morphic to the algebra of polynomials on the hyperbolic numbers.

The hyperbolic numbersﬂare defined, in a similar way to the complex numbers, as follows,

D = {x+jy : x,y € R, jER, j* = 1}.

*See [6,[166] for an introduction to hyperbolic numbers and some of their properties and applications.
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The arithmetic in D is that obtained assuming the commutative, associative and distributive
properties for the sum and product. In a parallel fashion to the complex numbers, ifw € D,
with w = x + jy, we can define

w:=x—jy, Rw):=x T(w):=y,

and, since ww = x% —y2 € R, we set

wl| := ywwl,

which is called the Minkowski norm. It is clear that |w w,| = |lw,|lw,]| for every w;,w, € D
and, if lw| # 0, thenw™! = E/lez. If we add the norm

lwll = y2(x2 + y2),

we have that (ID, ||-||) is a Banach algebra, so the exponential and the hyperbolic trigonometric
functions are well defined. Although, unlike C, D is not a division algebra (not every nonzero
element has an inverse), we can derive calculus (differentiation, integration, holomorphic func-
tions...) for D as well [6].

In this setting, we want to derive an operator JJ defined on a suitable space of functions
such that satisfies the same algebraic properties as the hyperbolic imaginary unity j. In other
words, we want the map

R[D,J] o > D[D]

Y (apd +b,)D) — Y (a,j + b,) D"
k k

to be an algebra isomorphism. This implies:

J is a linear operator,

JER[D].

J? = 1d, that is, J is an involution,

JD = DdJ.

There is a simple characterization of linear involutions on a vector space: every linear involution
oJ is of the form
J =+(2P —-1d)

where P is a projection operator, that is, P2 = P. It is clear that (2P — Id) is, indeed a
linear operator and an involution. On the other hand, it is simple to check that, if J is a linear
involution, P := (&< + Id) /2 is a projection, soJ = + (2P — Id).

Hence, it is sufficient to look for a projection P commuting with de derivative.
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Example 5.4.7. Consider the space W = L2 ([—, 7]) and define

Pf () := Z f_wwf(s) cos(2ns)ds cos(2nt) foreveryf € W,

neN

that s, take only the sum over the even coefficients of the Fourier series of f. Clearly PD = DP.
J := 2P — 1d satisfies the aforementioned properties.

The algebra R[D,J], being isomorphic to D [D], satisfies also very good algebraic prop-
erties (see, for instance, [146]). In order to get an analogous theorem to Theorem|5.1.1|for the
algebra R[D,J] it is enough to take, as in the case of R[D,J],R = 0 1 (O (L)).







6. An application to the ¢-Laplacian

This chapter is devoted to the study of the existence and periodicity of solutions of initial differ-
ential problems, paying special attention to the explicit computation of the period. These prob-
lems are also connected with some particular initial and boundary value problems with reflec-
tion, which allows us to prove existence of solutions of the latter using the existence of the
first.

Let us consider the problems (3.1.1) and (3.1.2) again for a differentiable involution ¢. Ob-
serve that, from problem (3.1.6), we have that

x”(t) ’ —1\7 ’ ” ’
0= - t t) = t t) — t t
1 ) fFx@)e @) = () @ @)x" (@) — fx@) e @)

=(f"tox) () = fx(@®) @ ().

So, clearly, problem (3.1.6) is equivalent to the problem

(Flex)' ) — ' Of (@) =0, x(@) =x(b), «(a)=f(x)). (6.0.1)

Which involves the f‘l—LapIacian (f_1 o x")’, although, contrary to most literature, the other
term in the equation does not involve =1 but f. As we will see, this is not more than a further
generalization in the line of the p-g-Laplacian.

Problems concerning the ¢-Laplacian (or, particularly, the p-Laplacian) have been studied
extensively in recent literature. Drabek, Manasevich and others study the eigenvalues of prob-
lems with the p-Laplacian in [15,61, 63,64,145] using variational methods. The existence of
positive solutions is treated in [62], the existence of an exact number of solutions in [154] and
topological existence results can be found in [55]. Anti-maximum principles and sign properties
of the solutions are studied in [32}36]. In [49] the authors study a variant of the p-Laplacian
equation with an approach based on variational methods, in [16] they study the eigenvalues
of the Dirichlet problem and in [60] they find some oscillation criteria for equations with the
p-Laplacian.

The ¢-Laplacian is studied from different points of view in several papers, e. g. [2,9-13,33,
38,48,|53}/54,/86,(110,/127,/136]. Actually, if we consider the problem with the f‘l—LapIacian

(Floxl) () +f(x, () =0, x.(a)=c, x.(a)=Ff(c), (6.0.2)

and we assume there existc;,cy € R, ¢; < cg, such that a unique solution of problem (6.0.2)
exists for every ¢ € [cq,C,] and (xgl(b) — El)(xgz(b) — ¢y) < 0, then problem (3.1.6)
must have at least a solution due to the continuity of x, on ¢ and Bolzano’s Theorem. For this
reason we will be interested in studying the properties of problem (6.0.2) and its solutions in
this chapter. In the sections to come we study this problem and more general versions of it.

In the following section we will study the existence, uniqueness and periodicity of solutions
of problem (6.1.1) and in Section [6.2) we will apply these results to the case of problems with
reflection. The results of this chapter can be found in [42].
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6.1 General solutions

First, we write in a general way the solutions of equations involving the g-f-Laplacian.

let 7,,0;, € [—oo,00], i =1,...,4, 71 < Ty, 07 < Og, T3 < Ty, O3 < 0,4. Let
f:(1,7y) = (04,05) and g : (75,74) — (03,0,) be invertible functions such that
f and g~! are continuous. Assume there is s, € (7, Ty) such that f(s,) = 0 and define
F@) := fstof(s) ds. Observe that F' is O at s, and of constant sign everywhere else. The
following Lemma is an straightforward application of the properties of the integral.

Lemma 6.1.1. Iff is continuous, invertible and increasing (decreasing) then F'_ = FI(_OO,SO] is
strictly decreasing (increasing) and F', = F |[80, ooy IS strictly increasing (decreasing). Further-
more, if Ty = —00, F(—00) = 400 (—o0) and if T, = +00, F(+00) = 400 (—00).

All the same, define G (¢) := fgf_ ~1(s) d s and consider the problem

1qop &
(gox) (t) + f(x(t)) =0, aeteR, x(a)=c;, x(a)=cy, (6.1.1)
for some fixed c¢,cy € R.

Definition 6.1.2. A solution x of problem (6.1.1) willbe x € C* (I), such that g ox’ is absolutely
continuous on I, where [ is an open interval with a € I. The solution must further satisfy that
the equation in problem (6.1.1) holds a. e. and the initial conditions are satisfied as well.

Theorem 6.1.3. Letf : (7,73) — (04,05) and g : (75,7,) — (0g,0,) be invertible
functions such that f and g~ are continuous and assume 0 € (71,T9) N (73,74),f(0) =0,
g(0) =0, f and g increasing, F'(c;) + G(g(cy)) < min{G(03),G(0,)}. Then there exists
a unique local solution of problem (6.1.1).

Furthermore, if F'(c;) + G(g(cy)) < min{F (74),F (75)}, then such solution is defined
on the whole real line and is periodic of smallest period

7o [Fr (G +F ) [ 1

FHGEEDHED) | g=1 o GLH(G(g(ey)) +F(cy) —F(r) (6.1.2)

1
— d
g1oG-1(G(g(cy) +F(cy —F(r))] r

Proof. For the first part of the Theorem and without loss of generality, we will prove the exis-
tence of solution in an interval of the kind [a,a + 0), § € R*. The proof would be analogous
for an interval of the kind (a — §,a].

Lety () = g(x’(¢)). Then problem is equivalent to
X)) =gtv®), Y@ =—-f@x@®),tER x(a) =cq, y(@) =g(cy).

Hence,
Fl@)x' ) +g @)y (t) =0, t €R,

so, integrating both sides from a to ¢,

Fx@®)+Gu@) =k, teR,
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where £ = F'(c;) + G(g(cy)). Thatis, undoing the change of variables,

GEg@ 1) = Gg(cy) +F(c;) —F(x(t)), t €R. (6.1.3)

If c; = ¢y = 0 itis clear that the only possible solution is x = O for, in that case,
Gg(x'(t))) + F(x(t)) = 0 and, since G and F are nonnegative and increasing, x' () =
x(t) = 0fort € R. Assume, without loss of generality, that ¢, is nonnegative and c; negative
(the other cases are similar). If ¢, = 0 then, integrating (6.1.1),

gox'(t) =— [[f(x(s))ds,

which implies &’ is positive in some interval [a,a + 0).

If ¢, is positive, then x” has to be positive at least in some neighborhood of a, so, in a right
neighborhood of a, we can solve for g o x" in (6.1.3) as

gox'(t) =G (F(cy) —F(x(t)) + G(g(cy))). (6.1.4)
In order to solve for x” in (6.1.4), we need F'(c;) + G(g(cy)) < G(a,). Then,
x'(t) =8 oG (F(cy) —F(x(t)) + G(g(cy))). (6.1.5)

Integrating between a and ¢,

t= " 2 (s) ds+a=H, (x(t)),
L g_1°GII(F(01) —F(x(s)) +G(g(cy))) "

where

. 1
H, (r):= dot
+() ng—lon(F(cl)—F(s)+G(g(c2>>> e

H _ is strictly increasing in its domain due to the positivity of the denominator in the integrand.
Hence, for ¢ sufficiently close to a,

x(t) = H; ().

Therefore, a solution of problem (6.1.1) exists and is unique (by construction) on an interval
[a,a + 0).

If we assume F'(c;) + G(g(cy)) < min{F (7,),F(75)}, ¢y > O (the casecy = Ois
similar), H_ is well defined on

I:= (F7X(F(cy) + G(g(cy))),FT (F(cy) + G(g(cy))) -

Now, we study the range of H .

g(x’(t)) is positive as long as x” (¢) is positive. Hence, consider
ty 1= sup{t € [a,+) : x'(s) > 0fora.e.s € [a,t)} € [a,+co].
G is positive on nonzero values, so equation (6.1.3) implies that

F(x(t)) <G(g(cy)) +F(cy)
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forallt € (a,t,).

Assume ¢, = +oo. Now, x'(t) > 0a.e.in [a,+o0) so there exists

x(+00) € (¢, F1(G(g(cy)) +F(cy))].

On the other hand, since x is increasing in [a, +o0) and ¢; < 0, by equation we
have that x” is increasing as long as x is negative. This means that, eventually (in finite time),
x will be positive and therefore, x” is decreasing in [@, +o0) for @ big enough, so there exists
x' (+00) > 0. If we assume x’ (+00) = € > 0, this implies that x(+00) = +o0, for there
would exist M € R such thatx’ (¢) > €/2 foreveryt > M, sox’ (+o0) = 0. Taking the limit
t — +oo in equation (6.1.3), x (+o0) = F;l (G(g(cy)) +F(cy)).

Now, take ¢ € (0,f (x(+0))). Since g o x'(+00) = 0 and g o x’ is continuous and
decreasing in [d, +0), there exists M € R™ such that |g(x"(My)) —g(x"(M;))| < € for
every M;, M, > M. Since f is continuous, there exits M > M such that f (x(M3)) > € for
every Mg > M. Take M in such a way. Then, integrating equation between Mg and
M, +1,

(gox) My +1) = (g ox) (M) = [}

f(x(s))ds >e,

a contradiction. Therefore, {, € R.

Observe that x" (¢,) = 0, so x attains its maximum at ¢, and x (¢,) = F;l (G(g(cy)) +
F (c,)) by equation (6.1.3), that is, x (¢,) = sup.. In order for this value to be well defined it
is necessary that G(g(cy)) + F'(cy) < F (7).

Now, we have that H__ is well defined at sup I (assuming it is defined continuous at that
point). Indeed,

to=limH, (x(t)) = H, (F:1(G(g(cy)) + F(cy))).

We prove now that there is a neighborhood (¢, %, + ¢) where x” is negative, which means that
we can take

t; :=sup{t € [ty,+o0) : x'(s) <Ofora.e.s € [t,,?)}.

Fix f such that 0 < f < f(x(ty)) and take € such that f (x(t)) > g in (¢y,ty + €). Take
t € (ty,ty + €), then, integrating equation (6.1.1) between ¢, and £,

g’ ®) =~ [} f(s)ds < £t —tg) <O0.

We deduce thatf; < +oo by the same kind of reasoning we used to prove , < +o0. Observe
thatx'(¢;) = Oandx(t,) = F~' (G(g(cy)) + F(cy)). This last equality comes from eval-
uating equation at ¢, and Rolle’s Theorem as we show now: the other possibility would
bex(t;) = F;l (G(g(cy)) + F(cqy)). Observe that, by equation (6.1.5), x” is continuous, so
X € Cl([a,tl)). Since x(¢,) = x(¢;), there would exist t e (29,%1) such that x'() =0,a
contradiction.

Now, we have thatx’ () = g1 o GZ1 (G(g(cy)) +F(cy) —F(x(t))), thatis,

1=x'()/(g ' G")(G(g(cy)) + F(c;) —F(x(1))).



6. General solutions 127

Thus,

oy _J‘tl x'(s)ds

0Tt gm10 GZ1(G(g(cy)) + Fcy) —F(x(s)))

=IF:1(G<g<c2>)+F<c1>) dr
FiH(G@E))+F 1) g=10 GZ1(G(g(cy)) + F(cy) —F(r))’
If we define
R dr
H_ (3) = J‘Fll(G(g(Cg))+F(Cl)) g—l ° G:I(G(g(CQ)) +F(Cl) —F(r)) + th

H_is strictly decreasing in its domain and x (¢) = H='(¢) fort € [¢,,%,].

We can again deduce that
ty 1= sup{t € [t;,+0) : x'(s) >O0fora.e.s € [t;,t)} < +oo.

Using the positivity and growth conditions of the functions involved, it is easy to check that
x(t;) = F71 (G(g(cy)) +F(cy)) < cy < F71(G(g(cy)) +F(cy)) = x(ty), so there
exists a unique b € (¢,,t,) such thatx(b) = c,. Now,
b—t1=fb = x'(s)ds
hg=loG 7 (G(g(eg)) +F(cy) —F(x(s)))

cq dr
= fF:l(G(g(Cz))+F(cl)) g—l & Gll(G(g(cz)) +F(Cl) —F(r)) .

Defining T' := b — a and extending x periodically in the following way (we have x already

definedin [a,a + T']),
t—a
x(t) =x(t—l T JT),
where |t| := sup{k € Z : k < t}, itis easy to check that x, extended in such a way, is a
global periodic solution of problem (6.1.1).

Takez(t) :=x(t —T),t € R, we show that z is a solution of the problemin [a + T,a +
2T1.

O=(gox)Y @) +f(x(®) =(@o2)Y t+T)+f(z(t+T)) fora.e.teR
This is equivalent to
(go2)Y @) +f(z@#)) =0 fora.et e R.

Also,
z(a+T) =x(a) =cq,
Z@+T)=x"(a) =c,.
|
Remark 6.1.4. A similar argument can be done for the case f and g have different growth type

(e.g. f increasing and g decreasing), but taking the negative branch of the inverse function
G~ tin (6.1.9).
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Remark 6.1.5. In the hypotheses of Theoreml[6.1.3} if instead of g (0) = f(0) = 0 we have that
g(sg) = f(so) = 0 define f (x) 1= f (x + s¢), g(x) = g(x +8,). Then f(0) = Z(0) =0
and problem (6 is equivalent to

@) ) +f®) =0, v(@) =c,—s¢, v(a)=cy,
withv (¢) = x(¢) — s,. Hence, we can apply Theorem|[6.1.3|to this case.

Remark 6.1.6. Using the notation of Theorem the explicit form of the solution of problem
(6.1.1) is given by

H (¢ - [t;“J T), t€la+2Tka+ (Zk+1T), kEZ,

-1 _ t—a _
H- (t [ - JT) tela+ 2k—1)T,a+2kT], k€ Z,
Remark 6.1.7. Consider the following particular case of problem (6.1.1) with f (0) = 0,g(0) =
0, f and g increasing and the hypothesis for a unique global solutlon of the following problem
are satisfied in Theorem[6.1.3

x(t) =

(gox)' () + f(x@®) =0, x(0)=0, «'(0)=1 (6.1.6)

It is clear that, in the case g(x) = f (x) = x, the unique solution of problem (6 is sin(¢),
which suggests the definition of the sin,  function as the unique solution of problem (6.1.6)
for general g and f. Correspondingly,

arcsm (r) =H_(r).

This function, defined as such, coincides with the arcsin,, function defined in [24,/115] for
the p-Laplacian f (x) = g(x) = |xf"~2x, the function arcsin, . defined in [14,65,108] for the
p-g-Laplacianf (x) = |x|272x, g (x) = |x[P~2x, which first appeared with a slightly different de-
finition in [64], and the hyperbolic version of this function, also in [14,108]], which corresponds
tothe case f (x) = leq_zx,g(x) = —|x]P 2. [164] derives generalized Jacobian functions in
a similar way, defining

1

arcsn, (k) —f ds,
0 3/(1—s9)(1—kasa)

of which the inverse (see [164, Proposition 3.2]) is precisely a solution of
(f, o2’ @) + I%fq (x(8)) (1 + k7 — 2K9x(£)|7) = 0,

where £, is the r-Laplacian for r = p,q and p*p = p* + p. Observe that this case is also
covered by our definition.

In all of the aforementioned works they are interested on the inverse of the arcsin,,  func-
tion, the sin, , function, which they extend to the whole real line by symmetry and per|0d|C|ty
Observe that m our case f and g need not to be odd functions, contrary to the above examples,
but we can still give the definition of the sin , ¢ function in the whole real line. Also, this lack
of symmetry gives rise to a richer set of right inverses of sin, ,, for instance,
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arcsinéjf (r):=H_(r).

In general, if we have a problem of the kind
D ((gox),x(#) =0; x(0)=0,x(0) =1,

and we know it has a unique solution in a neighborhood of 0, then we can define sin,, 4, as
such unique solution and its inverse, in a neighborhood of 0, arcsing .

6.1.1 A particular case

Having in mind problem (6.0.2), we now consider a particular case of problem (6.1.1) for the
rest of this section. Assume f is invertible and both f and f =1 are continuous. For convenience,
assume also that f is increasing and £ (0) = 0. Consider the following problem.

(Flox)'®) +Af(x@) =0, x(a)=c,x'(a) =f(c), (6.1.7)

where A € R™.
The following corollary is just the restatement of Theorem for this particular case.
Corollary 6.1.8. Letf : (7,,T9) — (0,05) be an invertible function such that f is con-

tinuous and assume 0 € (7,,75), f(0) = 0 and f increasing, A > 0, (1 + A)F(c) <
min{F' (7,),F (7,)}. Then there exists a unique local solution of problem (6.1.7).

Furthermore, if (1 + A"V F(¢) < min{F (7,),F (7,)}, then such solution is defined on
R and is periodic of first period

_ F;l((1+)u‘1)F(c))l 1
IFSHARATOFE@) | FFTN(A + A)F(e) = AF(r))) (6.1.8)
‘ 1.
CfF-N (1 + M)F(e) = AF(r)) ] y

There are some particular cases where the formula (6.1.8) can be simplified.

If f is odd then F' is even and, with the change of variablesr = |c| s, we have that expression

(6.1.8) becomes

F;lca+a"hHF )

r=f T dlcldr
0 FEL (L +A)F @) —AF(clr))’

Also, if we further assume that f is defined in R and that f (rt) = h(r)f (t) for every
r,t € R (see Remark|6.1.10|for a classification of such functions) and some function £, then

F(rt) = fo”f(s) ds = f;f(rs)rds =rh(r) f(ff(s) ds = rh(r)F (),

so F satisfies the same kind of property for 7z(r) =rh(r).
Clearly, fort > 0,

FY(h(mt) =rF71(@t), F7X(h(Mt) =rF71(@).
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Observethatiz(r) =F(r)/F(1),and therefore7z|(_oo,0],7z|[0,+oo) areinvertible. AIso,ﬁ;l(t) =
F;l (tF (1)) fort > 0. Hence,
F'(1+A™HF (@)  F'RMRTA+AT)F@©) AP A+AHFN(F ()
el B lel B lc|
=hA7 A+ A7YH =F L (A + AHF (D).
All the same, F=1 (1 + A™HF () /lcl = —F-* (1 + A"HF(1)).

Also,

FE(A+A)F () —AF(lelr)) = fF (A + VDR(DF 1) = AR(e)F (1))
=f(F11(7L(ICI) [(A+M)FQ) —AFT)D =f Ul FH((L+ M)F (1) —AF(r)))
=h(cDf (F;7H((L+ A)F (1) —AF(r)))
=(f e /[F)FEFE 1+ AV)F Q) =AF(1))).

With these considerations in mind, we have that we can further reduce expression (6.1.8)
to

T(,A) =

4lc|f (1) IF;1(<1+A—1>F<1)> dr
fch Jo FFEN(A+AM)FQ) —AF(r))

Example 6.1.9. Let f () := [tlP~%t,p > 1. Then
1
-1\p 1—
T(c,A.p) =4l [ 1+ A =A% dr.

1
Observe that with the change of variable 7 = (1 + A=) ?s we have that

T(c,A,p) = 41 [M(L+ A7 [+ 1) (A - )] 7 ds

= 41ePPATF A+ ) [H(1= )7 ds

()

T is increasing on |c| if p € (1,2) and decreasing on |c| if p > 2 and independent of |c]| if
p =2

If we take A =1,

= AP PATF (L4 A)r

pT(3)

We can also consider the dependence of T on A. We do this study for this particular ex-
ample and in the following section we develop a general theory.

4|c|2"’( 1),% 12p 1 1p
1+=)7 > (1 -1 1—sP) s .
) +3) A+ A+ @-DA) [[A-s7)7 ds <0

Therefore the period T' is decreasing on A.

T(c,1,p) = 2» " |c2

TN

In particular, T' (¢, 1,2) = 27 (independently of c).

T o
ﬁ(C,/l,p) -
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Remark 6.1.10. If a continuous function f satisfies that f (rt) = h(r)f(t), we can obtain
the explicit expression of f. Letc = f(1), g(t) := f(@)/f(1) and @ = Ing(e). Then
g(ts) = g(t)g(s). Also, fort + 0,1 = g(1) = g(t/t) = g(t)g(l/t) and therefore
g(t-l) =g@)” L1 ifn e N, gt = g(t)” so,fort > 0,g(¢) = g(t*) = g(t»)" and
g(t ) —g(t)n. Hence, g(tq) —g(t)q foreveryp,q € N, q # 0 and, by the density of @
in R and the continuity of f,g(t") = g(¢)" forallt > 0,r € R*.

Now, for¢ > 0, g(¢) = g(e!™?) = g(e)'? = eln8@ Int — ylngl©) — o Hence, f(t) =
,Bt“ fort > 0. On the other hand, 1 = g(1) = (g(—l))2, sog(—1) = 1. Also, f (—t) =
g(=1)f(t) and thus, f (—t) = £3t* fort > 0. In summary,

B if¢ >0,
F _{iﬂ(—t)“ if¢ < 0.

If we further ask for f to be injective, f (¢) = Blt|*~1¢, that is, f is an a-laplacian.

6.1.2 Dependenceof Ton A andc

Based on the approach used in Example we study now the dependence of T'on A and ¢
in a general way. For simplicity, we will assume ¢ > 0. For the case ¢ < 0, just do the change
of variable y (¢) = —x(t).

We continue to assume the hypotheses for (6.1.7) and further assume that [ is a differ-
ent'lable function. Let us divide the interval of integration in equation (6 in [F71((1 +

A™1HYF(¢)),0] and [0,F L@+ A Y F(c))]. Observe that F is |nject|ve restrlcted to any
of the two intervals. For the nonnegative interval, taking the change of variables

r=F'(A+AHF(cs)),

we have that

IF;1<(1+A—1>F<c)> 1

0 FE((L+AM)F(@)—AF(1)))

_ 1 ]dr
fE-1((1+AN)F(c) —AF(r)))

_r1 1 _ 1
_IO lf(F;l((1+/\)[F(c)—F(cs)]) fFEI((L+A)[F(c) — F(es)])
_ [1+ A7 Yef(cs)

fFF7(A+AHF(cs)))

All the same, with the change of variables

r=F1'((1+AHF(cs)),

0 1
.fF:l((1+/l—1)F(C)) lf(F;l((l + A)F(c) —AF(r)))
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1
TFEI(1+MF () —AF(r)) ] dr

_ [0 1 _ 1
_fl lf(F;l((1+}L)[F(c)—F(cs)]) f(le((1+/l)[F(c)—F(cs)])l
' [1+ A7 1]ef(cs) s

fFEL(A+ADHF(cs)))

Now let, for A € R* ands € [0, 1],

a(A,s,c) = (1L+ A YHef(es), g—f{(/l,s,c) =—-A"2cf(cs),

BiA,s,0) :=F (FH((L+ A HF(es))),

(FZ1 (14 AHF
9&(/\,8,0):_)“21,(08)10 (FI'(A+2A7H (08)))’
A f(FI' ((L+A-1H)F(cs)))
v.(A,s,¢) i =FFIN(L+A)[F(c) — F(es)])),

Iy, f(FZH((1+ M) [F(c) = F(es)]))
=(A,s,¢) = [F(c) = F(cs)] — :
A f(F;l((1+/l)[F(c)—F(cs)]))
Then
1 1 1 1
T /l’ = ' Aa ’ sy 9 d
( C) fO a( ’ C) lﬂ+(A,370) ,8_(/1,8,0)] |f'}ﬁ_(/\,8,C) (}I—(/\’S’C)" ’
(6.1.9)
Therefore,
oT 1| da 1 1 1 1
BTy /1'7 = BTy A/’ ) - -
a/l( ©) fO {a/\( ) l,8+()u,s,c) ,6’_(/1,8,0)] l%(/l,s,c’) 7_(/\,8,0)]
(2= (A,5,0)  Z=(),5,0) 1 1
+ a(A,s,c) — l —
B_(A,s,0)2  B.(A,s,0)2 | [y (A,s,0) v (A,s,0) |
_ Iy Iy }
—(A/,S,C) _(/\78)0)
+ a(A,s,c) 1 — 1 ] oA — 2 ds.
B, (A,s,0)  B_(A,s,0) || 7-(Ass,00% 9, (48,007
Observethat a, flo1y.f . F, F;*, B, (Z—i‘, Y a;;: are nonnegative, while g—;,FIl,,B_, aa_ﬂ;,

Y, % are nonpositive. In general we cannot tell the sign of T' (A, ¢) from this expression,
but making certain assumptions we can simplify it to derive information.

Assume now f is and odd function. Then F 1= —F;1, IB_ — —/8+ andy_ = —7,, 0
oT 1 1 da
BN A/,C =4 [_ A/,S,C
Om( ) 0 B, (A,s,0)y, (A,s,¢) 8/1( )

B, 994

_(/\,S,C) _(A/,S,C)
—a(A,s,¢) | -2 4+ 2 ds

B.(A,s,¢)  v4(A,s,0)
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Now, if we differentiate equation (6.1.9) with respect to c,

T _ (1) da
S, o =, {ac (A,s,¢) [

1 B 1 H 1 1 ]
,84_(/1,8,6) ,8_(/1,8,0) v (A,s,¢)  y_(A,s,c)

. '8a—ﬁc*(/l,s,c) 88—%(/1,8,0) 1 1

@(4,s,0) B_(A,s,c)2 - ﬁ+(}L,s,c)2} l’}’+(/1’3’c) - 7-(A;5,0) |

+ a(A,s,c) 1 B 1 ] %(A’s’c) B 387;(/%3’0) | }ds
B se T Bso ] |-usa? T v (so? ||

Observe that

%(/\,s,c) = (1+AY [fes) +esf'(es)],

"(FH(A+AHF
8Bi (/l,S,C) = (1+/l_1)3f(cs)f ( + (( + ) (CS)))

de fFFH(A+A-DF(cs)))’
. f(FN((A+A)[F(c) = Fes)]D)
=(A,s,¢) = (L+A)[f(c) =sf(cs)] — :
dc f(FZH((1+A)[F(c)— F(cs)]))
Hence, %, aﬁ; is positive and 88—’6;‘ negative for ¢ = 0. Assume now f is an odd function.
oT 1 1 da
S /\’: =4 . /1/7 ’
gc b =% B (A,8,0)7,(A,s,¢) [30( ¥

¢ B (A,s,0)  Zr(A,s,0) :
- 9 +
Oy B.(A,s,e) v+ (A,8,0) °

Example 6.1.11. letf : (=1,1) - R, f(x) := x/Vy1 —x2, x € R and consider problem
(6.1.7)'} Then

Fx)=1-+v1—x2, F;l(x) = V2x — x2.
In order for the conditions in Corollary[6.1.8|to be satisfied we need

(1+AM)F@) <1, (Q+AHF() <1,

that is

A+1 7 A+1

ol < mm{\/ﬂt(/\ +2) X1+ 1}

In Figure[6.1.1)we plot how the period varies as a function of ¢ and A. Observe how the period
is decreasing in both parameters and lim, , o T'(A,c¢) = +oco.

"The diffeomorphisms f in this example has been widely studied by Bereanu and Mawhin (see, for instance,
[8,/10]) and is a type of singular ¢-Laplacian known as the mean curvature operator of the Minkowski space. Its
inverse, the mean curvature operator of the Euclidean space, also studied in [8], appears in Example[6.1.12
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Figure 6.1.1: Graph of the period T function of c and A.

Example 6.1.12. Let f be the bounded ¢-Laplacian [8] given by f : R — (—1,1), f(x) :=

x/V1+x2, x € R and consider problem (6.1.7). f is effectively the inverse function of the
one in the previous example. Then

Fx) =vV1+x2-1, F7'(x) = V2x + «2.

The conditions in Corollary are satisfied without any further restrictions. In Figure[6.1.2
we plot how the period varies as a function of ¢ and A. Observe in this plot how the period is
decreasingin A, increasing inc and lim, 4 T'(¢c,A) =lim__,, T(c,A) = +oo.

0.0

Figure 6.1.2: Graph of the period T function of c and A.
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6.2 Problems with reflection

Let us consider again the problem that motivated this chapter, the obtaining of solutions of

problem (3 in the case ¢ (t) = —t. Hence, consider again the problems (3.1.1) and (3.1.2)
in the case so(t) = —

Observe that Lemma|3 (foIIowmg Remark[3.1.5) can be trivially extended to the follow-
ing lemma.

Lemma6.2.1. Letf : (74,7T9) — (04, 05) anlocally Lipschitz a. c. funct'ion With a. c. inverse.
Then x is a solution of the first order differential equation with involution 5) if and only if x
is a solution of the second order ordinary dlﬁ‘erent'/al equation .

As was previously shown, problem (3 is equivalent to problem (6.0.1). We can now
state the following corollary of Theorem regardmg the periodicity of problem (3.1.5) as
foreseen at the beginning of the chapter.

Corollary 6.2.2. Letf : (74,7T9) — (04, 09) anincreasing locally Lipschitz a. c. function with
a.c. inversesuchthat0 € (74,75), f(O) = 0andc > 0. Assume 2F (¢) < min{F(Tl) F(Tz)}.
Then, if x.(t) is a solution of problem (6.0.2) and we assume there exist c;,c5 € R, ¢; < ¢y,
such that2max{F(cl) F(cy)} < mln{F(Tl) F(7y,)} and (xz, (b) —cy) (xz, (b) —cy) <

0, then problem (3 must have at least a solution.

We now give an example in which there is no need to find ¢;,c, € R in the conditions of
Corollary because the function determining the period has a simple inverse.

Example 6.2.3. Take again f (¢) := |t|p_2t,p > 1, ¢ > 0 and consider the problem

(@) = x(=t)P2%x(-t), t € R, x(0) =c. (6.2.1)

By Corollaries|6.1.8|and|6.2.2|and Example we have that the solutions of are periodic for
everyc # 0 and
r(;)
P

2 () = lx(=t)P2x(-t), t € R, x(a) = x(b). (6.2.2)

T(c,1,p) = 21%+1 c%P

Consider now the problem

Thereis a unique solution for problem (6.2.2) for p € (2, +00). Just take the unique solution
of problem (6.2.1) with
1
2\ \ 25
b—a I (p)

p
()

Observe that for p € (0,2) the function f is not locally Lipschitz, and therefore we cannot
apply Lemmal6.2.1

C =






7. A Mathematica implementation

In this chapter we develop an algorithm implemented in Mathematica which allows the ob-
taining of the Green'’s function associated to a differential equation with constant coefficients,
reflection and boundary conditions. We also point out possible ways to improve the computa-
tional time of the algorithm based on particular decompositions of the problem. The results in
this chapter were sent for publication [165].

In order to establish a useful framework to work with these equations, we go back to the
notation in Chapter[5| We consider the differential operator D, the pullback operator of the
reflection ¢ () = —t, denoted by ¢* (v) (£) = u(—t), and the identity operator, Id.

LetT € R* and I := [T, T]. We consider again the algebra R[D, ¢*].

7.1 The algorithm

Theorem gives a way of computing the Green’s function of a problem with reflection via
reduction of the problem. The possibility of computing the Green’s function relies entirely on
whether the reduced problem has a unique solution or not.

Once we have reduced the problem, we check whether it has a unique solution and, in that
case, we use part of the algorithm described in Chapter 6 to derive its Green’s function. Then
it is left to compute the function R_G as expressed in Theorem which will be the Green'’s
function to our problem. Figure[7.1.1]shows the flow diagram of the algorithm.

7.1.1 Characteristics of the Mathematica notebook
We work with the following input variables:

* Coefficients a,_: The coefficients associated to the terms uP (t).
e Coefficients by : The coefficients associated to the terms u® (=t).
e T': A positive number, half of the length of the interval on which the solution is defined.

e Boundary conditions: A vector in Mathematica notation which specifies the boundary
conditions.

The input variables may be numbers or abstract symbols. The vectors of coefficents must be
introduced in Mathematica notation (there is a default example when the program starts so
to get an idea, see Figure[7.1.2). Furthermore, there is a checkbox which allows Mathematica
to consider the numbers in the input variables as numerical approximations, which greatly re-
duces the computation time.

While running, the steps of the computation will be shown in the ‘Progress’ frame. These
messages will be, in order, ‘Processing data..”, ‘Solving homogeneous equation..., ‘Computing
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Data

NO Correct?

Is the problem an ODE with
a change of variable?

Obtaining of the
reduced problem

Is the reduced problem of
order 2n?

General algorithm

Error message

Green’s function?

Parameters?

Show expression Show expression
and graph

Figure 7.1.1: Flow diagram of the algorithm.

fundamental matrix../, ‘Constructing Green’s function... (100 s max)’ and, finally ‘done’, right
before the graphical output appears (see Figure[7.1.3). Usually, the step that takes the longest
is the construction of the Green’s function. The ‘100 s max’ comment makes reference to the
total time limit set for those Mathematica commands during this process which can be aborted
after some time giving a valid result, like, for instance Simplify or FullSimplify . This does
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not mean that other operations on which no time limit can be placed cannot make the whole
process take longer.

Green’s Functions with Reflection

Alberto Cabada, José Angel Cid,
F. Adridan Ferndndez Tojo and Beatriz Mdquez-Villamarin

Last update: October 2014 on Mathematica 8.0.1.0

Program to compute the Green's function of the equation:
Yioa;u? (-t) + Ziobyu? (t) =o(t),  te[-T,T]

with boundary conditions:

yeonaul(-T) s yoisded(m) =0, i=1,....n

Coefficients a; {1, 0, 1}
Coefficients b; |{0, 0, 0}
T 1
Boundary conditions |{u[1], u[-1]}

Numerical Approximation

Enter

Progress: done

Result

Figure 7.1.2: The Mathematica Notebook after initialization.

7.1.2 Validation of the input variables and error messages

The fist step in the algorithm is to check whether the input data is correct. The order of the
equation will be computed automatically as the index of the highest nonzero coefficient in the
vectors (a;) and (b,). If the order is zero ((a,) = (b,) = 0), then an error message will
appear. The program will check as well whether the length of the vectors (a,) and (b;) is
consistent, if the boundary conditions are valid, if T' is a positive real number (in the case itis a
number) and so on. Most important, it will check as well if the condition a,, = %b,, is satisfied
for in that case we cannot use the algorithm to derive a Green’s function.

7.1.3 Computing the reduced problem

The program reads the input valuesin the variablesand vectorscl, c2, T, ccland Nap, which
correspond, respectively, to (a;), (b,), T, the boundary conditions and whether the ‘Numer-
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Enter

Progress: done

PROBLEM :
u’(-t) +u(-t) =0o[t], t e [-1,1]
with boundary conditions
{u[1] =0, u[-1] = 0}
The Green’s function is giving by:

e e (2SI i S = e =

G[t,s]= . .
[t,s] {—CSC(Z}SlI‘l(S+1)SlD(t+1) -1<s<1A-1<t<1As+t<0

Figure 7.1.3: Result of the default problem.

ical approximation’ checkbox is activated. If the ‘Numerical approximation’ checkbox is acti-
vated, the program will automatically transform the values of c1 and, c2 to numerical values if
possible:

If [Nap,
If [Element[c1,Reals ], cl= N[cl]];
If [Element[c2,Reals ], c2=N[c2]];
]

The program now separates the problem in three different cases. First, if there is no reflection
((a;) =0, If [TrueQ[Norm[c1]==0]) the Green’s function will be obtained by the algorithm de-
scribed in [31] for the nonhomogeneous case. If all of the terms depend on the reflection, that
is, ((b;) = 0, If [TrueQ[Norm[c2]==0]), we can apply the change of variable s = —¢ and turn it
into a problem with an ordinary differential equation and use the mentioned algorithm. Then
itis left to undo the change of variable for the Green’s function and so obtain it for our problem
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(here Gb is a variable where the Green’s function is stored before the change of variable):

G[t_,s_]=Chop[PiecewiseExpand[Gb[—s][t]/c[[ m+1]], TimeConstraint —> 15]];

Finally, there is the case where no shortcut is possible ( If [Not[TrueQ[Norm[c1]*Norm[c2
==0]]). In these circumstances, we define the operator L related to de equation as

L[f_][x_] := Sum[clb[[k + 1]] Derivative [k][ f][—x] + c2b[[k + 1]] Derivative [k][f
I[x], {k, 0, n}];

and the associated operator R as

R[f_1[x_] := Sum[clb[[k + 1]] Derivative [k][ f][—x] —(—1)*k c2b[[k + 1]] Derivative
[kI[F1lx], {k, O, n}];

Now we obtain the coefficients of the reduced equation:

Do[c[[j + 1]] = Sum[(—1)Ai*(clb[[i + 1]]*clb[[j —i + 1]] —c2b[[i + 1]]*c2b[[j —
b+ 1), {i, 0, j}, {j, 0, m}];

and the new boundary conditions:

aux2[u_J]:= Join[aux[u], Expand[aux[R[u ]]]];

which are the original conditions (stored in the vector aux) together with the ones obtained
composing such conditions with the operator R. Now we proceed as usual with the classical
algorithm and obtain the Green’s function composing with the operator R:

Gb1[t_,s_]=PiecewiseExpand[R[Gb[s]][t], TimeConstraint —> 15];

7.1.4 Final remarks

Although the algorithm allows the obtaining of the Green’s function for any order of the equa-
tion, the implementation in Mathematica suffers severe limitations in this regard. Often, for big
orders or several parameters, the computations are too long and convoluted for Mathematica
to obtain the result in a reasonable time and, when it succeeds, the output is frequently gar-
gantuan.

We can think of various possibilities in order to palliate the computational time problem.
One of them could be computing the Green’s function for the reduced problem using matrix
exponentiation. Another one could be the one we sketch next.

First observe that, from Remark[5.1.2] we know that the reduced equation has no deriv-
atives in odd indices. This allows to use the following Lemma. For convenience, if p is a real
(complex) polynomial, we will denote by p_ the polynomial with the same principal coefficient
and opposite eigenvalues.

Lemma 7.1.1. letn € Nandp(x) = ZZ:O anka a real polynomial of order 2n. Then
there is a complex polynomial q of order n such that p = a,,qq_. Furthermore, if p(x) =
Z:Z=O a2kxk has no negative eigenvalues, q is a real polynomial.

Proof. First observe that p is a polynomial on x2, and therefore, if A is an eigenvalue of p, so
has to be —A. Hence, using the Fundamental Theorem of Algebra the first part of the result
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can be derived by separating the monomials that compose p in two different polynomials with
opposite eigenvalues.

Let us do that explicitly to show how in the case p has no negative eigenvalues, q is a real
polynomial.

Take the change of variablesy = x2. Then, p (x) = p(y) and, by the Fundamental Theorem
of Algebra,

n

pWy) = Zazkyk :aznya(y_/l?) (y_/l’zn)(y-l_/lrzrwl)

k=0
@ HAD) O+ gy 0 o 07+ gy + ),

for someintegers o,m,m,land realnumbers A, ..., A5, V1, ..., ¥, iy, ... , 4y SUCh that A, >
0 and v;, > |u,|/2 for every & in the appropriate set of indicesﬂ Hence,

P(x) =g, 2?7 (x% — A2) o (x® — A2) (% + A2, )

o (6% A+ Ar) (8 4 g + V7)o (at + pa® + 7).

Now we have that

(2 —AD) = (x+Ap) (@—Ag), @2+ A7) = (x+ Ay0) (x — Ayi)

and  (x* + % + 7)) = (0% — 220, — g, + 1) (2 + 220, — py, + 1),
for any & in the appropriate set of indices. Define
q(x) =x7(x — Ag) - (X — Ay) (6 = Apyiqd) -+ (6 — Aid) (6% — 2y/204 — g + 7)

(% — 220 — 1)

and

q_ (@) =7 (X + A1) = (X4 L) (6 + Apyygd) = (2 + Amid) (% + x4/20; — g + 1)

e (% + 220, — 4+ ).

We have that p = a,,qq_. The nonzero eigenvalues of g are

Apyos A A, ...,Aﬁi,% (V2rs — o = iyf20 + 1)

,% (\/2ul — M £ i\/21/l + ,ul)

and those of q_ are precisely

— Ay s =A s =Apiqly oo s —Asii, —% (\/21/1 — My * i\/21/1 + ,ul) ,
,—% (\/2111 — My + iJle +,ul) .

Clearly, if p has no negative real eigenvalues, g and q_ are real polynomials. |

*Theyz + wpy + vg correspond to the pairs of complex roots of the polynomial. This means that the discrim-
inant A = ,u]% — 4y, <0, thatis, vy, > |upl/2.
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Remark 7.1.2. Descartes’ rule of signs establishes that the number of positive roots (with mul-
tiple roots of the same value counted separately) of a real polynomial on one variable is either
equal to the number of sign differences between consecutive nonzero coefficients, or less than
it by an even number, considering the case the terms of the polynomial are ordered by de-
scending variable exponent. This implies that a sufficient criterion for a polynomial p (x) to
have no negative roots is for p (—x) to have all coefficients with positive sign, that is, for p (x)
to have positive even coefficients and negative odd coefficients.

There exist algorithmic ways of determining the exact number of positive (or real) roots of
a polynomial. For more information on this issue see, for instance, [126/,190,(191].

The following Lemma establishes a relation between the coefficients of g and g _.

Lemma 7.1.3. Lletn € Nandq(x) = ZZ:O akxk be a complex polynomial. Then q_(x) =
n k+n k
Zk:o(_l) a,x”®.

Proof. We proceed byinductiorﬂ Forn =1,q(x) = a(x—A;). Clearly, g has the eigenvalue
Aiandg_(x) = a(x+ A;) = (=) tax + (=1)1ad, the eigenvalue — A ;.

Assume the result is true for some n > 1. Then, forn + 1, q is of the form g(x) =

(x — A, 1)r(x) wherer(x) = ZZ=O akxk is a polynomial of order n, that is,

n n
qx) = (x—A,.1) Z apxt = 2"t 4+ Z [@pq — Apsrar] o — A, a0
k=0 k=1

Now, g_(x) = (x + A, .1)r_(x). Since the formula is valid for n,
g (1) = @+ )P @) = @+ Aypy) Y (DF gt
k=0

=24 Y DRI g = A ] - ()™,
k=1

So the formula is valid for n + 1 as well. [ |

This last Lemma allows the computation of the polynomials g and g_ related to the polyno-
mial RL on the variable D using the formula given in Remark[5.1.2] We will assume that RL is of
order 2n, that s, aﬁ-bﬁ;{). Otherwise the problem of computing g and q_ would be the same
but these polynomials would be of less order. Also, assume RL, considered as a polynomial on
D?2, has no negative roots in order for g to be a real polynomial. If L = ZZ:o(ak p*+ bk)Dk
andg(D) = D"+ Y ' a,D*thenRL = Y ¢,D* = (=1)"(a2 — b2)q(D)q_(D).
This relation establishes the following system of quadratic equations:

k-1
Cop, =2 Z (=1 (@@gp—; — bibgsy) + (=1)F (a;ze - b;%)
1=0

"The result can be directly proven by considering the last statement in Remark If we take a polynomial
px) =a(x— Ay) - (x — A,,), the polynomial p (—x) has exactly opposite eigenvalues. Actually, p(—x) =
a(—x—Aq) - (=x—A,) = (=D a(x+ Aq) - (x + A,,). Itis easy to check that the coefficients of p (—x)
are precisely as described in the statement of Lemmasave for the factor (—1)".
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k-1

=@z -b2) [2) (D! (qag_) + (-D*a|,
=0

fork = 0,...,n where a,,b,,a, = 0if k&{0,...,n} and @, = 1. These are n equations
with n unknowns: «, ..., @,. We present here the case of n = 2 to illustrate the solution of
these equations.

Example 7.1.4. For n = 2, we have that
(a3 —03) ¢(D)g_(D) = (a3 — b3) D* + (2¢9 — af) (a3 — b3) D* + ag (a5 — b3) ,
and the system of equations is
a5 —bg = (a3 —b3) ag,
9 9 > 2 9 (7.1.2)
_al + Zaoaz + bl b 2b0b2 = ((12 - b2) (2@0 _— (ll) .

Before computing the solutions let us state explicitly de limitations that the fact that RL, con-
sidered as an order 2 polynomial on D?, thatis RL (x) = ax? + bx + ¢, has no negative roots
implies. There are two options:

(1) There are two complex roots, that is, A = b2 — 4ac < 0. This is equivalent to ac >
0 A |b] < 2Vvac. Expressed in terms of the coefficients of RL:

(b2—a) (b2—a2) > 0,and |—a? + 2agay +b2 — 2boby| < 2y (b2 — a2) (b3 — a2).

(2) There are two nonnegative roots, thatis A = b% — 4ac > 0 and

(=b + Vb2 — 4ac)/(2a) < 0.

This is equivalent to (a,c = 0 A —=b > 2Vac) V (a,c < 0 A b > 2Vac). Expressed in
terms of the coefficients of RL:

[(bg —a2), (b3 —a3) =0 A —(—a? + 2a,a, + b2 — 2byb,) > 2\/(b3 —a2) (b5 — ag)]

OR

[(bg —a2), (b2 —a2) < O A —(=a? + 2agay + b2 — 2boby) = 2y (b2 —a?) (b% - ag)] :

Now, with these conditions, the solutions the system of equations (7.1.1) are:

Case (l). We have two solutions:

2 _ 2
_ by —a,
Qo= \|——=

2 27
b; —a;
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Y +\I2sign(a§ — bg)\/(bg — ag) (bg — ag) — (—a? + 2aya, + b? — 2byby)
1= .

- 2 _ 72
a; — b3
Case (ll). We have four solutions depending on whether we choose £ = 1 or £ = —

b2—a2

“0—5

a; ==+

\I2fsign(a§ - bg) \/(bg - a?)) (bg - ag) - (—a% + 2a,a4 + b? — 2byb,)
2 2 :
ay — b

These solution provide well defined real numbers by conditions (I) and (ll).

Now we could consider those cases where the problem can be decomposed easily. Consider
that the reduced problem given by Theorem|5.2.3, Su = Rh,B;Ru = 0,B;u =0,j = 1,...,n
can be expressed as an equivalent factored problem

Liu=y, Vu=0,j=1,...,n
Ly=Rh, Vy=0,=1,.

where the conditions V.u = 0, FV';Llu = 0,7 = 1,...,n are equivalent to the conditions
B,Ru =0,Bu =0,j =1,...,n. Thenthe Green’s function of problem Su = Rh, B,Ru =0,
Bju=0,j=1,...,n can be expressed as

G(t,) = [ Gy (t,1)Gy(r,9) dr,

where (G4 is the Green’s function associated to the problem Liu=y,Vu=0,j=1,..,n

and G, the one associated to the problem L,y = Rh, Vy 0,7 =1,...,n,in the case both
Green'’s functions exist. This procedure was already iIIustrated in Example

Computationally, this procedure poses a big advantage: it is always easier to obtain the
Green’s function two order n problems than to do so for one order 2n problem. Furthermore,
if the hypothesis of Lemmal(7.1.1|are satisfied and we are able to obtain a factorization of the
aforementioned kind using ¢ and g _ in the place of L, and L, we have an extra advantage: the
differential equation given by g _ is the adjoint equation of the one given by ¢ multiplied by the
factor (—1)". This fact, together with the following result (which can be found, although not
stated as in this work, in [28]), illustrates that in this case it may be possible to solve problem
(5.2.2) just computing the Green’s function of one order n problem.

Theorem 7.1.5. Consider an interval J = [a,b] C R, functions o,a; € L' (J),i =1,...,n,
real numbers aij,ﬁij,hi, i=1,...,n,j=0,...,n—1,D(L,) C WL (J) avector subspace,
the operator

Lou) =aqu™ @t)+a;&)u®™ P @) ++a,_ O ) +a,Out), t €J,u e DL,),
with aq = 1 and the problem

Lu@)=c@),ted, Uw)=h,i=1,..,n, (7.1.2)
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where
n—1

U,(u) := Z (au? (@) +B,uV b)), i=1,..,n.
7=0

Then, the associated adjoint problem is

Lv® =Y (-1Va, ;()u? @), t €J, v € DL}, (7.1.3)
J=0
where D(L!) =
n j-1
{v e W2(J) : (b* —a*) (Z Z(—l)(f‘i‘l) (an_jv)f“"lu(i)) =0,u€ D(Ln)}
j=1i=0

Furthermore, if G(t,s) is the Green’s function of problem (7.1.2), then the one associated to
problem (7.1.3) is G (s, t).

Hence, if we can decompose problem (5.2.2)) in two adjoint problems, its Green’s function
will be

Gt,9) = [ G (t,n)Gy(r9)dr = [ Gy(t,7)Gy(s,r) dr.

We note though, that unless the operator ¢g_ is the adjoint equation times (—1)", the bound-
ary conditions may be not the adjoint ones.
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We have so far studied differential equations with reflection finding, when possible, the
Green’s function in order to derive the solution in the case of uniqueness. Still, many situations,
in which nonlinearities are involved, escape the direct construction of solutions and different
methods become necessary.

Topological methods come handy in these situations, in particular those related to the fixed
point index. These tools permit to guarantee the existence and multiplicity of fixed points of
continuous maps through an index which counts them with sign. We have already used in Sub-
section [3.2.3|the celebrated cone contraction-expansion fixed point theorem of Krasnosel’skii.
Here we avoid its limitations using an approach developed by Infante and Webb [97] and used
in several publications [34,(35,/87-95//98-100}/175-184].

In the following four chapters we will use this method to solve four different kinds of prob-
lems increasing in complexity: a problem with reflection, a problem with deviated arguments
(applied to a thermostat model), a problem with nonlinear Neumann boundary conditions and
a problem with functional nonlinearities in both the equation and the boundary conditions.

The structure of the method is fairly consistent and is developed as follows.
(1) State the nature of the problem being studied and its specific characteristics.

(2) Elaborate a list of properties, of the elements involved in the problem, which is necessary
to ask for so we can grant that the existence / multiplicity / nonexistence results can be
applied. For instance, the operator F' of which its fixed points will be solutions for our
problem has to be continuous.

(3) Define an appropriate cone K in which we will localize the solutions of our problem. Here
we have to take an important decision: large cones allow the finding of more solutions
but, at the same time, they do not provide good localization results.

(4) Prove that the operator F' is compact, continuous and maps K to K.

(5) Find sufficient conditions for which the fixed point index of the operator F' is 0 and +1
respectively in (at least) two nested subsets of the cone. If we find n nested subsets for
which the index alternates from 0 to 1 we can guarantee the existence of at leastn — 1
different nontrivial solutions (cf. [123]).

By making the cone smaller, we trade solutions for simpler conditions. Also, we may
use conditions for the index related to the eigenvalues of the operators involved (see

Chapters[10]and[11).

(6) Finally, we can apply the results derived to a vast variety of problems and illustrate its
usefulness with some examples.

As we will see, the particularities of each problem make it impossible to take a common
approach to all of the problems studied. Still, there will be important similarities in the different
cases which will lead to comparable results. The results in Chapters [8] [9] and [10] have been
published in [34], [34] and [96] respectively. Those in Chapter [11] are ready to be sent for
publication soon.

Due to the bast amount of notation necessary to develop this theory, we will consider it
only valid for the chapter in question, so we can use the same symbols for similar (but different)
purposes.






8. A cone approximation to a problem with
reflection

We have studied previously (see Chapter , the first order operator u’ (¢) + wu(—t) cou-
pled with periodic boundary value conditions, describing the eigenvalues of the operator and
providing the expression of the associated Green’s function in the nonresonant case. We pro-
vide the range of values of the real parameter w for which the Green’s function has constant
sign and apply these results to prove the existence of constant sign solutions for the nonlinear
periodic problem with reflection of the argument (see page 55|

u@)=htu®),u(=t),te[-T,T], u(=T) =u(T). (8.0.1)

The methodology, analogous to the one used by Torres [167] in the case of ordinary differ-
ential equations, is to rewrite the problem (8.0.1) as an Hammerstein integral equation with
reflections of the type

u(t) = [ kt,5)[his,us),u(=s) +ou(-s)lds, te[-T,TI,

where the kernel £ has constant sign, and to make use of the well-known Guo-Krasnosel’skii
theorem on cone compression-expansion (see Theorem|3.2.19).

In this chapter we continue this study and we prove new results regarding the existence of
nontrivial solutions of Hammerstein integral equations with reflections of the form

u(t) = [ k(t,5)g®)f (s,u(s),u(=s))ds, te[-T,T],

where the kernel & is allowed to be not of constant sign. In order to do this, we extend the
results of [98], valid for Hammerstein integral equations without reflections, to the new con-
text. We make use of a cone of functions that are allowed to change signh combined with the
classical fixed point index for compact maps (we refer to [4] or [81] for further information).
As an application of our theory we prove the existence of nontrivial solutions of the periodic
problem with reflections (8.0.1). The results of this chapter were published in [34]

8.1 The case of kernels that change sign

We begin with the case of kernels that are allowed to change sign. We impose the following
conditions on &, f, g that occur in the integral equation

u(t) = [ k(t,9)g($)f (s,u(s),u(=9)) ds = Fu(®), (8.1.1)
where T is fixed in (0, 00).
(C,) The kernel & is measurable, and for every 7 € [T, T'] we have

lim |k(t,s) —k(7,s)| =0 foralmostevery(a.e.)s e [-T,T].
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(C;) There exist a subinterval [a,b] C [—T',T], a measurable function ® with ® > 0 a.e.
and a constantc = c(a,b) € (0,1] such that

k(t,s)| < ®(s) forallt € [-T,T] anda.e. s [-T,T1],
k(t,s) =c®P(s) forallt € [a,b] anda.e. s € [-T,T].

(C3) The function g is measurable and satisfies that g @ & LY([-T,T]),g®) = Oa.e.
te [-T,T]and [° P (s)g(s)ds > 0.

(C,) Thenonlinearityf : [-T,T] x R x R — [0, c0) satisfies the L*-Carathéodory condi-
tions, that is, f (-, u,v) is measurable for each fixed u and v and f (¢, -, -) is continuous
fora.e.t € [T, T1], and for eachr > 0, there exists ¢, € L= ([T, T1) such that

f(t,u,v) < ¢,.(t) forall (u,v) € [-r,r] x [-r,r], anda.e. t € [-T,T].

We recall the following definition.

Definition 8.1.1. Let X be a Banach Space. A cone on X is a closed, convex subset of X such
that \x e K forx e Kand A >0and K N (=K) = {0}.

Here we work in the space C[—T', T'], endowed with the usual supremum norm, and we
use the cone
K={uelC[-T,T]: milg u(t) =>clul}, (8.1.2)

t€la,b]

where ¢ and [a, b] are defined in (Cy). Note that K + {0}.

The cone K has been essentially introduced by Infante and Webb in [98] and later used in
[34,66,69,70,87,93,94,97,99,100,134]. K is similar to a type of cone of nonnegative functions
first used by Krasnosel’skii, see e.g. [121], and D. Guo, see e.g. [81]. Note that functions in K
are positive on the subset [a, b] but are allowed to change sign in [—T, T'].

We require some knowledge of the classical fixed point index for compact maps, see for
example [4] or [81] for fuLther information. If {) is a bounded open subset of K (in the relative

topology) we denote by ) and d{) the closure and the boundary relative to K. When D is an
open bounded subset of X we write D = D N K, an open subset of K.

Next Lemma is a direct consequence of classical results from degree theory [81].

Lemma 8.1.2. Let () be an open bounded set with 0 € () and ﬁK + K. Assume that

F : Qg — K is a continuous compact map such that x + Fx for allx € dQ . Then the fixed
point index iy (F', Q) has the following properties.

(1) If there existse € K\{0} such thatx + Fx + Ae forallx € dQx and all A > 0, then
lK(F, QK) == 0.

(2) If ux #+ Fx forallx € dQ g and forevery i > 1, thenigx (F, Qg ) = 1.
(3) Ifig (F,Qg) # 0, then F' has a fixed point in ().

(4) Let Q' be openinX with Q1 C Qg Ifig (F,Qg) = landig (F, Q}g) = 0, then F has
a fixed point in QK\Q}C The same result holds if iz (F, Q) = 0 and iy (F, QIE) =1
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Definition 8.1.3. We use the following sets:

K,=(ueK:ul<p},V,={uekK: min (@) < p}.

The set Vp was introduced in [100] and is equal to the set called QP/C in [97]. The notation VP
makes shows that choosing ¢ as large as possible yields a weaker condition to be satisfied by f
in Lemma|8.1.10 A key feature of these sets is that they can be nested, that is

K,CcV,CK,..

Lemma 8.1.4. The operator N, (u,v) (t) = fol k(t,s)g(s)f(s,u(s),v(s))dsmapsC(I) x
L) to C(I) and is compact and continuous.

Proof. Fix (u,v) € C(I) x L*(I) and let (¢,,),,cy C I besuchthat lim (¢,) =¢ € I. Take
r =|(u,v)]| = |lull + ||lv|l and consider

h,(s) :=k(,,s)8(s)f(s,u(s),v(s)), fora.e.s €1.
We have, by (C,), that

,{i_{?ohn(s) =h(s):=k(t,s)g(s)f(s,u(s),v(s)), forae.s 1.

On the other hand, |h,| < <I)g||¢r|| € L'{) so, by the Dominated Convergence Theorem,
we have lim N, (u,v) (¢,) = N, (u,v) (¢) and therefore N, (u,v) € C(I).

Now let’s see that N is compact, indeed, let (u Jneny € C(I) x L (I) be such that

I(w,,v,)I<R € R"*foralln € N.

Define y, (s) = f(s,u,(s),v,(s)). By Condition (C,) we know that |y, || < l¢xl €
L= ), therefore (y, (s)),cy is @ bounded sequence in R and by the Bolzano-Weierstrass
Theorem it has a convergent subsequence (ynk (8))ren- Take y(s) := %im Yo, (s).

n’Un

Now, since
B, )8y, I < P()gC)lggl, foralltel,

we can apply the Dominated Convergence Theorem and therefore
. 1
lim Ny (4, ,v,,) () = fo k(t,s)g(s)y(s)ds, forallt 1.

So we have proved that there exists the point-wise limit on I. To conclude the assertion of
compactness we verify that such convergence is uniformin I. To this end, we take into account
that for all t € I it is verified that

NG V) (8) = Np @, 0) D] < [ —(E,9) 8 ()1, (5) — ¥ ()]s
< [, 2®)8©®),, () —y(©)|ds.

Since the last expression on the right is independent of £ we have that such convergence is
uniform in I, and the assertion holds.

The continuity is proved in a similar manner. n
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Remark 8.1.5. If N, maps C(I) x C(I) to C(I) the proof works exactly the same.

Theorem 8.1.6. Assume that hypotheses (C,)—(C,) hold. Then F' maps I?, into K and is
compact and continuous. In particular F maps K into K.

Proof. Foru € I?rand t € [-T,T] we have,
Fu@) < [7 Ikt s)E6)f (s,u(s),u(-s)) ds

< [, P@g®f s,uls),u(=s)) ds,

and
min Fu(t) > +c [ ®($)g($)f (s,u(s),u(~9)) ds > clFul.

tela,b

Therefore we have that Fu € K for everyu € I?,

The compactness of F' follows from Lemma|(8.1.4 |

In the sequel, we give a condition that ensures that, for a suitable p > 0, the indexis 1 on

K,

Lemma 8.1.7. Assume that

(I;) there exists p > 0 such that

fPr sup [T ik(ts)lg(s)ds < 1

te[-T,T] "~

where

f‘—p,p = SHP{W : (t:u’v) b [_T’T] X [_IO’IO] X [_IO’IO]}

Then the fixed point index, iy (F,Kp), is equal to 1.

Proof. We show that uu # Fu for everyu € 8KP and for every u > 1. In fact, if this does
not happen, there exist u > 1 and u € JK, such that uu = Fu, that s

put) = 1 kt,9)g6)f (s,u(s),u(=s)) ds,

Taking the absolute value and then the supremum fort € [T, T'] gives

pp< sup [ Ik(t,9)e()f (s,u(s),u(-s)) ds

te[-T,T1"
Spf™”F- sup fT k(t,s)lg(s)ds < p.
te(-T,r1° T

This contradicts the fact that u > 1 and proves the result. n

For the next remark consider the following lemma.
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Lemma 8.1.8. Let w € L' ([0, 1]) and denote
wt(s) = max{w(s),0}, w (s) = max{—w(s),0}.
Then we have

Uol w(s) ds‘ < max {fol wt(s)ds, Iol w” (8) ds} < fol lw(s)|ds.
Proof. Observing that, sincew = 0™ — 0™,

J'Ol w(s)ds = fol wt(s)ds — fol w (8)ds < fol wt(s)ds,
— fol w(s)ds = fol w (s)ds — fol wt(s)ds < fol w”(s)ds,

we get the first inequality, the second comes from the fact that |w| = o™ + @™~ |

Remark 8.1.9. We point out that, as in [181], a stronger (but easier to check) condition than
(Ifl,) is given by the following.

fpr

m

<1,

where

1 1 1,_
7 = e {max{fo k (t9)g(9) ds, [ B (t,9)g(s) ds}},
which is finite since k*g < &g € LY([-T,T)).

Let us see now a condition that guarantees the index is equal to zero on V/O ={u eK:
min,.; 5 U(t) < p} for some appropriate p > 0.

Lemma 8.1.10. Assume that

(Ig) there exists p > 0 such that

fo.prer/M(a,b) > 1,

where
l,u,
f(p,p/c) = 1nf{f( ;;L U) : (t7uyv) € [a7b] X [/07/0/0] X [_/O/C,P/C]} ’

1 ' b
M@b) e |, k@,5)g(s) ds.

Theniyg (F, Vp) = 0.

Proof. Lete(t) = 1,thene € K. We prove that
u*Fu+ e forallu € 8Vpand/l > 0.

In fact, if not, there exist u € 8VP and A > O such thatu = Fu + Ae. Then we have

u(t) = [ k(t,9)g(s)f (s,u(s),u(=s)) ds + A.
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Thus, taking into account that k,g,f > 0in [a,b] x [T, T], we get, fort € [a, b],

u(t) = f_TTk(t,S)g(S)f(s,u(S),u(—S)) ds+ A = fabk(t,S)g(S)f(s,u(S),u(—S)) ds
2 pfp.pie) (fabk(t,S)g(S) dS) :

Taking the minimum over [a, b] gives p > p a contradiction. [ |

The above Lemmas can be combined to prove the following theorem. Here we deal with
the existence of at least one, two or three solutions. We stress that, by expanding the lists in
conditions (S5), (Sg) below, it is possible to state results for four or more solutions in K, see
for example the paper by Lan [123] for the type of results that might be stated.

We omit the proof which follows directly from the properties of the fixed point index stated
in Lemma (3). Init we would basically construct, using the Kp and Vp, an strictly increas-

ing —in the subset order sense— sequence of subsets of the cone K, A' C A% C ... satisfying

AJI'{ C Ajgl,j € N, and such the index alternates its value throughout the sequence, thus
guaranteeing the existence of solution in the intersection of every two consecutive sets in the
sequence. Since the sequence is strictly increasing, all the solutions found are different.

Theorem 8.1.11. The integral equation (8.1.1)) has at least one nonzero solution in K if either
of the following conditions hold.

(S1) There exist py, py € (0, 00) with p; [e < py, such that (121) and (Ifl)z) hold.

(Sy) There exist pq, py € (0, 00) with p; < pg such that (1/1,1) and (122) hold.

The integral equation (8.1.1) has at least two nonzero solutions in K if one of the following
conditions hold.

(S3) ;hze exist Py, Pa, p3 € (0, 00) with py /¢ < py < pg such that (I ), (I, ) and (1)
ola.

(S4) There exist py, ps, ps € (0,00) with p; < py and py/c < pg such that (1/1)1), (122)
and (1) hold.

The integral equation (8.1.1) has at least three nonzero solutions in K if one of the following
conditions hold.

(S5) There exist pq, Py, P3, P4 € (0,00) with py/c < py < pgand pg/c < py such that
(Igl), 1, (Igs) and (I},4)ho/d.

(Sg) There exist py, P, P3, s € (0,00) with p; < py and py/c < pg < p4 such that
(1/1)1), (122), (I3,) and (I3 ) hold.
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8.2 The case of nonnegative kernels

We now assume the functions &, f, g that occur in (8.1.1) satisfy the conditions (C;) — (C,)
in the previous section, where (C5) and (C,) are replaced with the following.

(C;) The kernel & is nonnegative fort € [-T,T] anda.e. s € [—T,T] and there exist a
subinterval [a,b] C [-T,T], a measurable function ®, and a constantc = c(a,b) €
(0, 1] such that

k(t,s) < P(s)fort € [-T,T] anda.e. s [-T,T],
k(t,s) = cP(s) fort € [a,b] anda.e. sE€ [-T,T].

(C;) The nonlinearity f : [—T,T] x [0,00) x [0,00) — [0, o) satisfies L.>*-Carathéodory
conditions, that is, f (-, u, v) is measurable for each fixed u and v and f (¢, -, -) is contin-
uous fora.e. t € [-T,T1], and for each r > 0, there exists ¢, € L= ([-T,T]) such
that

ft,u,v) < ¢, (t) forall (w,v) € [0,r] x[0,r], anda.e. t € [-T,T1.

These hypotheses enable us to work in the cone of nonnegative functions

K ={ueC[-T,T]:u>0o0n[-T, T],tn[lilg] u(t) = clul}, (8.2.1)
ela,

that is smaller than the cone (8.1.2). It is possible to show that F' is compact and leaves the
cone K’ invariant. The conditions on the index are given by the following Lemmas, the proofs
are omitted as they are similar to the ones in the previous section.

Lemma 8.2.1. Assume that
(1/1)) there exists p > 0 such that f%f < m, where

fOr = sup {w 2 (tu,v) € [-T,T] x [0, p] x [O,p]}.

Then iK(F,Kp) = 1.

Lemma 8.2.2. Assume that

(E) there exist p > 0 such thatf(p’p/c), > M, where

f(P,P/C)’ == lnf

{f_(t’;"”) t (t,u,v) € [a,b] x [p,p/e] [0,/0/01}-

Thenig (F,V,) = 0.

A result equivalent to Theorem|8.1.11|is valid in this case, with nontrivial solutions belong-
ing to the cone (8.2.1).
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8.3 The case of kernels with extra positivity

We now assume the functions &, f, g that occur in (8.1.1) satisfy the conditions (C,),(C5),
(C5) and (C:L) with [a,b] = [T, T]; in particular note that the kernel satisfies the stronger
positivity requirement

cP(s) <k(t,s) <P(s)forte [-T,T]anda.e. s [-T,T].
These hypotheses enable us to work in the cone

K'={u€C[-T.T]: min _u(t) > clul).

s

Remark 8.3.1. Note that a function in K” that possesses a nontrivial norm, has the useful
property that is strictly positive on [T, T'].

Once again F' is compact and leaves the cone K” invariant. The assumptions on the index
are as follows.

Lemma 8.3.2. Assume that
(I;) there exists p > 0 such that f°P < m, where

ftu,v)

ferr = sup{ 2 (tu,v) € [T,T] x [cp, p] x [cp,p]}.

Then iK(F,Kp) = 1.
Lemma 8.3.3. Assume that
(I;) there exist p > 0 such that f,, ,/cy” > M, where

L,u,
f(p,p/c)” = lnf{f¥ : (t’uyv) € [a,b] X [P:P/C] X [P,P/C]} .

Then iy (F, VP) =0.

A result similar to Theorem [8.1.11lholds in this case.
Remark 8.3.4. If f is defined only on [—-T',T'] x [uy,us] X [U{,V5] We can extend it, with
continuity, to [T, T] x R x R considering firstly
ftu,v), u<ug,
ftu,v) = ftu,v), u;<u<su,,
ftuyv), uy,<u,

and secondly

]E(t, u,vy), <Uq,
Ft,u,0) = {f (t,u,0), vy, <v<uv,,
f(t,u,vz), Uy < V.
Remark 8.3.5. Note that results similar to those presented so far in the chapter hold when the
kernel % is negative on a strip, negative and strictly negative. This gives nontrivial solutions that
are negative on an interval, negative and strictly negative respectively.
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8.4 An application

We now turn our attention to the first order functional periodic boundary value problem
u' () =htu®),u(-t),te[-T,T], (8.4.1)
u(=T) =u(T), (8.4.2)

We apply the shift argument of Subsection(3.2.3|—a similar idea has been used in [167,,184],—
by fixing @ € R™ and considering the equivalent expression

u' () + wu(—t) =ht,u@),u(-t)) + wu(-t) :=f¢u@),u(-t),te[-T,T],
(8.4.3)

u(=T) =u(T). (8.4.4)

Following the ideas developed in Subsection[3.2.3] we can conclude that the functional bound-
ary value problem (8.4.3)-(8.4.4) can be rewritten into a Hammerstein integral equation of the
type

u(t) = fTTk(t,s)f(s,u(s), u(—s))ds, (8.4.5)

Also, k (t,s) can be expressed in the following way (see page |50):

cosw(T —s—t) +sinw(T +s—t), t>]|s|,
2 sin(wT)k(,s) = cosw(T —s—t) — s%na)(T —s+1), |t<s, (8.4.6)
cosw(T +s+1t) +sinw(T +s—1t), |t < —s,

cosw(T +s+t) —sinw(T —s+1t), t<—|s|.

The results that follow are meant to prove that we are under the hypothesis of Theorem(8.1.6

Apart from Theorem Lemma and Theorem there are some things to
be said about the kernel 2 when { = T € R\[—%,%]. First, realize that, using the

trigonometric identities cos(a — b) * sin(a + b) = (cosa + sina) (cosb + sinb) and
cos(a) + sin(a) = V2 cos(a — %) and making the change of variablest = Tz, s = Ty, we
can express k as

cos[é’(l—z)—%]cos(é‘y—%), z >yl
cos({z+ ) cos[{(y—1) — 21, |2l <y,
cos(é’z+%)cos[é‘(1 +y) —%], -zl >y,
cos[é’(z+1)+%]cos(§y—§), z < =l

sin(O)k(z,y) = (8.4.7)

Lemma 8.4.1. The following properties hold:

(1) If¢ € (%, %), then k is strictly positive in
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2) If¢ € (_§7 —%), k is strictly negative in S.

Proof. By Lemma it is enough to prove that & is strictly positive in S for £ € (5, 3)- We

do here the proof for the connected component (1 4§, 4§) x [—1,1] of S. For the other

one the proof is analogous.

Ifz € (1— g E) then {z+ 7 € (§ ) C (%,g),and hence cos (§z+ %) > 0.

Also, ifz € (1 — 4—5, 45) then{(1—-2)-Z E ( — g,O) C (—%,O) and therefore
cos (é’(l —2z) — %) > 0.

Ify € (—ﬁ,%),then Cy — TE (—%,O) SO COS (é’ - —) > 0.

Ify € (1—%,1) then {(y — 1) -1 € (—— ——) socos(é‘(y—l) ——) > 0.

Ify € ( 1,472 1),then o+ +2€ (%,g) socos(é’(y—i—l) +%) > 0.

With these inequalities the result is straightforward from equation (8.4.7). |

Lemma 8.4.2. If{ € (%,%) then sin({)|k(z,y)| £ @ (y) := sin({) max,c;_; 1, k()
where ® admits the following expression:

cos [{(y—1) -], y € [6,1],
cos[é’(y—l)+ ]cos(é’y—%), yE |[1-3 ),
CID(y):<cos(y——) ye|B - 11_@)
cos(§y+ )cos[é‘(y+1)——], yel- 4§,,6’—1),
cos[ (y+1)——] ye[-1,- 45),

and ,6’ is the only solution of the equation
cos [é’(y -1)+ %] cos (é’y — %) — cos [é’(y -1) - %] =0 (8.4.8)
in the interval [%, 1].
Proof. First observe that, for convenience, we are redefining ® multiplying it by sin({). Let
v(y) = cos[é’(y—l) +%]cos(é’y—%) —cos[é’(y—l) —%],

then
V') = [sin(Co-1n-T)-sin(f@-D)].

Observe thaty € [%, 1] implies

T é’ T T 3m 7
Co-D-g€ l‘z‘z"z] |- 77
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and

£y —1) € (0,0 c (0,%),

therefore v’ (y) < 0 Vy € (%, 1). Furthermore, since £ € (%, %),

()=o) (i
oo () 8] o) ) 2

2 2
v(1) =g :l—cos(é’—%)] <0.

Hence, equation (8.4.8)) has a unique sqution,Bin [é, 1]. Besides, sincev(%) = ﬁsin(é’—

%) > 0, we have that ,3 > %. Furthermore, it can be checked that

1<-Z <cfB-1<Z _1<0<1-Z <™

4l 4l 4l "4t

<B<1

Now, realize that

sin({)k(z,y) < £(2,9)
cos[{ (1 —max{1l— &, yI}) = Flcos({y =), 2>,

_ Jeos(fmin{Z,y} — P eos[{y = 1) = 71, 2l <y, (8.4.9)
|eos(Emax{=F.x} + P eos[EA+y) =TI,  —kI>v,
gcos(é‘y—%), z < =l

while £(z,y) < ©(y).

We study now the different cases for the value of y.

elfy € [8,1], then

cos[é‘(y—l) —I—%] cos(é’y—%), z>y, (8.4.10a)
Ey) = cos|to-D-T], 2l <y,  (8.4.100)
g Cos (é’y — %) , z < —y. (8.4.10c)

IS

It is straightforward that cos[{'(y — 1) + Z1 > cos() =
our study of equation (8.4.8), we have that that

22, so 8.4.10ab> 8.4.10c). By

cos[é’(y—l)+%]cos(é‘y—%) Scos[é’(y—l)—%].
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Therefore 8.4.10a|)2 8.4.10b|) and ® (y) = cos [é‘(y -1) - %]

olfy € [%,,8), then fis asin (8.4.10) and 8.4.10a')> 8.4.10c¢), but in this case

cos[é’(y—l)+%]cos(é’y—%) Zcos:é’(y—l)—%],

s0 8.4.10a[)s 8.4.10b) and ® (y) = cos [{S(y ~1) + g] cos ({y — Z).

elfy € [1 - %, %),then
cos[é’(y—l) +%] cos(é’ —%), z>y, (8.4.11a)
E(z,y) = cos[é‘(y—l) —%] cos(é’y—%), Izl <y, (8.4.11b)
g cos (é’y - %) , z < —y. (8.4.11c)

We have that

cos[é‘(y—l) +%] —cos[é‘(y—l) —%] = V2sin[{(1—y)] >0,

therefore q8.4.11a[)2q&4.11b[) and ®(y) =cos[{(y —1) + %] cos(Cy — %).

elfy e [0,1 — 1),then

4¢
cos (é’y X %) ) z>y, (8.4.12a)
E(z,y) = cos[é‘(y—l) —%] cos(é’y—%), Izl <y, (8.4.12b)
g cos (é’y - %) , z < —y. (8.4.12¢)

cos [y -1 -Z] < g 50 8.4.12b])g 8.4.120)< 8.4.12a]) and @ (y) = cos ({y — 7).

elfy € [B —1,0), then

COS(ﬁy—%), z> -y,
£(z,y) =4¢08 (fy + %) cos [5(1 +y) — %] , —lkl >y, (8.4.13)
gcos(é‘y—%), z <y.

Lety =y — 1, then

cos Ly + T ) cos[ 1 +9) = T] <cos (- T)
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if and only if
coS [é‘@— 1) +%] cos(é‘y— %) Scos[é’@— 1) - %]

whichistrueasy € [[3,1) and our study of equation (8.4.8). Hence, ® (y) = cos (é’y - %)

olfy € [4—7; - 1,58- 1),then
£ is the same as in (8.4.13) but in this case

cos (§y+ %) cos [§(1 +y) — %] > cos (é‘ — %)

so ®(y) = cos ({,’y+ %) cos [é’(l +y) — %]

olfy € [—4—72, v 1),then

cos[é‘(l—y)—%]cos(é’y—%), z> -y,

E(z,y) = cos(é’y+%)cos[é‘(l+y)—%], —lzl >,

gcos(é’y—%), z<y.

cos (é‘y+ %) cos [f(l +y) — %] — cos [é‘(l -y) — %] cos (é’ - %)
= —sin {'sin(2{y) > 0,

then ® (y) = cos (é‘y-l— %) cos [é’(l +y) — %]

elfy € [—1, —%),then

cos[é’(l—y) —%] cos(é’y—z), z> —y,

4
£(z,9) = COS[§(1+3’)—%], —lzl >y,
gcos(é’y—%), z<y.
Since
cos[é’(l +y) —%] > cos (é’y+%) cos[é’(l +y) — %]
> 515~ EJon(5-5).

we have that ® (y) = cos [é’(l +y) — %]

It can be checked that, just studying the arguments of the cosines involved, that
. 1
—sin(Dk(zy) <5< P,

therefore sin({) |k (z,y)| < @ (y) forallz,y € [-1,1]. [ ]
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Lemma8.4.3. Let { € (%, %) andb > a > 0 such thata + b = 1. Then
sin({)k(z,y) =c(a)®(y) forz € [a,b],y € [-1,1],

where

:= inf '
c(a) 1n @ (y) [1+tan({a)][1+ tan({b)]

sin({) inf k(z,y) _ [1—tan({a)][1 - tan({b)]
ye[-1,1] B

Proof. We know by Lemma|8.4.1|that % is positive in S,. := [a,b] x [—1,1]. Furthermore, it
is proved in Proposition that

%(t,s) +wk(—t,s) =0 Vt,se [-T,T],

so, differentiating and doing the proper substitutions we get that

A%k 9
ﬁ(t,s) + w?k(t,s) =0 Vt,se [-T,T].

Therefore, % < 0in S,, which means that any minimum of &2 with respect to ¢ has to be in
the boundary of the differentiable regions of S,.. Thus, in S,,

sin($)k(z,y) = 1(z,5)

cos([max{|{a + 7,16 + ZIH) cos[{(y = 1) — 71, el <y, y € [b,1],
cos([max{|{a + 7,1y + T} cos[{(y = 1) — 71, 2l <y, y € [a,b),
cos[max{|{(1~y) — Z1,1§ (1 —b) = Zllcos(&y = 7), 2>yl y € [a,b),
i=qcos[max{|{(1-a) — 1§ (1-b) = Zllcos(Ey =), 2>l y € [-a,a),
cos[max{|{' (1 —y) — Z,1{(1 = b) — Z[Jeos(Ey = ), 2>, y € [-b,~a),
cos([max{|{a + 7|, 1{y + TI}) cos[{ (1 +y) — 71, —kl >y, y € [-b,—a),
cos([max{|{a + ZI,1{b + Z}) cos[{(1 +y) = 71, —kl>y,y € [-1,-b).

By definition, n(z,y) > \If(y) := sin({) inf rela.b] B (T,Y). Also, realize that the ar-
guments of the cosine in are affine functions and that the cosine function is strictly
decreasing in [0, 77] and symmetrlc with respect to zero. We can apply Lemma3.4.2]to get

cos(é’b+%) cos[é‘(y—l) _Z], Izl <y, y € [b,1], (8.4.14a)
cos(é’y+ )cos[é’(y—l) ——] Izl <y, y € [a,b), (8.4.14b)
N (2,y) = cos(é’(l b) ——) cos(é’y—%), z>yl,y € [-b,b), (8.4.14c)
cos (é’y + — ) cos [é‘ (1+y) — —] —z2| >y, y € [-b,—a),(8.4.14d)
cos(§b+ )cos[é‘(l +y) ——] —z| >y, y € [-1,-b).(8.4.14e)
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Finally, we have to compare the cases (8.4.14b) with (8.4.14c) fory € [a, b) and (8.4.14d)
with (8.4.14c) fory € [—b, —a). Using again Lemma(3.4.2} we obtain the following inequality.

cos(é‘(l—b)—%)cos(é‘y—%)—cos(§y+%)cos[§(y_1)__
s (£ 1-8) - ) o (28 ) o (254 s 011

=sin{ > 0.

Thus, (8.4.14c)>(8.4.14b) fory € [a,b).

To compare (8.4.14d) with (8.4.14c) for y € [—b,b) realize that & is continuous in the
diagonal z = —y (see Theorem[3.2.3). Hence, since the expressions of (8.4.14d) and (8.4.14c)
are already locally minimyzing (in their differentiable components) for the variable z, we have
that (8.4.14d)>(8.4.14¢) fory € [—b, —a). Therefore,

cos(§b+z)cos[§’(y—1)—z], € [b,1],
cos(é’y+ )cos[é’(y—l)——], € [a,b),

V (y) = 4 (8.4.15)
cos(é’(l—b)—z)cos(é’y—z), € [-b,a),
cos(é‘b+%)cos[§(l+y)—%], € [-1,-b).

It can be checked that the following order holds:
T T
—1<—4—§<—b<6—1<1—E<a<b</3<1.
Thus, we get the following expression ¥ (y) /P (y) =
cos(§b+%), ye[B.1], (8.4.16a)
b -1H)-=Z
03 (£6 +5) cos (F0 =) = 4), e [b,0), (8.4.16b)
cos(é‘y——)cos(é‘(y—l)+§)
_1y_=
cos (§y + §) eos (F0 -1 = F) y € [a,b), (8.4.16¢)
cos( y——)cos(é’(y—l)+%)
cos(é’(l—b)—%)
1- " a), 4.16d
3 cos(é‘(y_l)+%) ye[ 4§a) (8.4.16d)
cos(é’(l—b)—%), ye[/o’—l I_E)’ (8.4.16¢€)
1-p)—T _z
cos (£ )~ 3) cos (& 4), e[-b,8-1), (8.4.16f)
cos(é’y+z) cos(é’(l +y) %)
cos(é’b+%)
’ _L,—b ) L
cos(§y+%) ye[ 44 ) (8.4.168)
cos(§b+%), yE [—1,—%). (8.4.16h)
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To find the infimum of this function we will go through several steps in which we discard
different cases. First, it can be checked that the inequalities (8.4.16g)>(8.4.16h)= (8.4.16a)
and (8.4.16d)>(8.4.16€), so we need not to think about (8.4.16d), (8.4.16g) and (8.4.16h) any-
more.

Now, realize that |{ (1 —b) — %I <|¢b+ %I < . Since the cosine is decreasing in [0, 7]
and symmetric with respect to zero this implies that (8.4.16e)>(8.4.16a).

Note that (8.4.16c) can be written as

[1—tan({y)](1—tan[{(1—y)])
[1+tan({y)1(1+tan[{(1—y)])

g&1(y) =
Its derivative is
_4f1tan®({y) —tan® {(y — 1]
(tan {y + 1)2[tan {(y — 1)]2
which only vanishes aty = %fory € [a,b].

g1y =

>

162 tan (g) (tan2 g + 1)

" 1) _ 4
& (2 (tang+1)4

<0,

Thereforey = % is a maximum of the function. Since g is symmetric with respect to % anda
is the symmetric point of b with respect to %,g(a) = g(b) is the infimum of (8.4.16c) which
is contemplated in (8.4.16b) fory = b.

Making the change of variablesy =y — 1 we have that (8.4.16f) can be written as

cos ({(1—b) —T)cos ((G—-1) - %) _
cos ({y—Z)cos ({G-1) +7)

Since (8.4.16€)>(8.4.16a), now we have that (8.4.16f)>(8.4.16b) in [b, 5).
Let

€ [a,08). (8.4.16)

cos(é‘(y—l)—%)

() = :
g2 cos(é‘y—%)cos(é’(y—l)+%)

Then
¢ Sin[§(2—y) - %] +sin[§’(3y—2) — %] + 4 cos [é’y— %]
‘ o [£3+ oo [E0—3) 2] '

Since the argument in the cosine of the numerator is in the interval [—%, %] fory € [a,1],

we have that gé (y) > Ofory € [a,1], which implies that g, is increasing in that interval

and (8.4.16b)) and (8.4.16f) reach their infimum in the left extreme point of their intervals of
definition.

gy(y) =

We have then that

V()

c@= inf Fo)
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cos ({b+T)cos ({(b—1) — %) cos (—{b— %)}
7cos(é«b_%)cos(é‘(b—l)+%),COS(—§I)+%) .

The third element of the set is greater or equal than the first. The second element can be
simplified to cos (é’b + %)gz(b). Since g, is increasing in [a, 1],

=min{cos (é’b+ %)

7 s 7y cos (&)
cos (§b+ Z)g2(b) < cos (é‘b + Z)gz(l) = cos (§b+ Z) S (E)
Scos(§b+%),
Therefore,
c@) - cos (fb + %) cos (é’(b— 1) - %) _ [1—-tan({a)]1[1—tan({b)]

cos ((b—T)cos (Eb~1) +7)  [L+tan({a)][1+tan({b)]

Remark 8.4.4. Let us find an upper estimate of ¢(a). Just assumea = b = %

c 2 TN 2
l1—tan= l1—tan= _ 2
—2) S(—S) =%:0.17157...

1+tang 1+ tan ¢

c(a) <c(1/2) = (

We can do the same study for £ € (0, %]. The proofs are almost the same, but in this case
the calculations are much easier.

Lemma 8.4.5. If { € (0, %] then sin({) |k (z,y)| < P (y) := max,;_; ,;k(r,y) where ®
admits the following expression:

cos[é‘(y—l)+§]cos(é’ —%), y e [0,17,

PO = {cos (é’y+ %) oS [é’(y+ 1) — %], y € [-1,0).

Proof. This time, a simplified version of inequality (8.4.9) holds,

cos[{(1 -y — F1cos({y =), 2>,

_z T
SOk (ey) < EGey) = |Gy = PeoslE@ =D = F], el <y,

cos(&y + %) cos[{(1+y) — %], —lzl >y,
gcos(é‘y—?, 2 < -bl

so we only need to study two cases. If y > 0, we are in the same situation as in the casey €

[1-— id E) studied in Lemma8.4.2, Hence, ®(y) = cos [é’(y -1) + Z] oS (é‘y — Z)'
If y < O we are in the same situation as in the casey € [—4—7;, ﬁ — 1). Therefore, @ (y) =

cos(é’y+%)cos[§(y+l)—%]. [ |
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Lemma 8.4.6. Let £ € (0, %] andb > a > 0 suchthata + b = 1. Then

sin (§) k (2,5) 2c(@)® (y) forz € [a,b], y € [-1,1],

where

c(a) := inf
y€[-1,1]

sin(©)_Jnf k@D 11— tan(fa)11 - tan(£b)]
D (y) [1+tan({a)][1+tan({b)]

Proof. Let WV be asin (8.4.15). In this case we get the simpler expression

b+~ 1 -
cos(é‘ + )cos(é‘(y ) ), ye b,
cos( y——)cos(é’(y—l)+ )
cos(é’y+ )cos(é’(y—l) %) yeab),
cos( y——)cos(é’(y—l)+%)
v (y) _ 1 by -~
Dy) cos (£1=) ) y € [0,a),
cos(é’(y—l)+ )
cos( (1-— b)——)cos(é’y—%) € 1=b,0).
cos(é’y+ )cos(é’(1+y) %)
cos(é’b+z), y€[-1,-b).
By the same kind of arguments used in the proof of Lemma(8.4.3] we get the desired result.
[ |
Lemma 8.4.7.
sup f |k (t,s)|ds
te[-T,T]
1 T
57 éle (O’Z]’
= V2 cos 2T gin 748 4 ¢os T g(l—sinw)
1 3 12 3 T T
® 1+ sin ¢ ’ (E[Z,E].

Proof. Firstofall,if £ € [O, %], then |k (t,s)| = k(¢,s). The solution of the problem
X @) +wx(—t)=1,x(-T) =x(T)

isu(t) = %, but at the same time it has to be of the kind in equation (8.4.5), sou (t) =
fT k(t,s) ds. This proves the first part.

If¢ e [W W] then

. 1 .
[k snds = [L k@) ds+ [[ ko) ds==+2 [ k.9 ds.
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We make two observations here.

From equation (8.4.6), itcan be checked thatk (t + T,s + T') = k(t,s) andk (t + T,s) =
k (t,s+T) fora.e. t S E [—T,0]. Hence, for¢ € [-T,0] and a function £ : R — R, using
the change of variablesr = s + T', 7 = s — T, we have that

[LERE+T,s))ds= [ E(R(t+T,5))ds+ [ E(k(t+T,s))ds
= [0 EG(ts+T))ds+ [° E(R(E+T,7+T))dr

= [[E®RE)dr+ [T ERED)dT = [" £ (R(E9)ds.

Therefore,

sup f |k(t,s)|ds = sup f |k (t,s)|ds.

te[-T,T] te[-T,0]

The second observatlon is that, taking into account Lemma(8.4.1] k& (¢, s) is positive in

7TT x [-T,T], so
(- 1)

sup f lk(t,s)|ds = sup f_Tle(t,s)lds.

te[-T,0] te[-T,0\(-Z.1- %)

Using the same kind of arguments as in Lemma|8.4.1} it can be checked that & (¢, s) is negative

in
77 77 . 77
(_‘Z,_4_) X (t’_4_) |fte (_‘Z’_4_)

T . T
(5—1,0) (t 1—5) fte (5—1,0),

so it is enough to compute 7 (¢) := fB(t) k™ (t,s) ds where

andin

B @) ={s€[-T,T] : (¢s) €supp (k7)}.

We have that 2w sin({) 7 (t) =

{cos(a)t+é’+%)[1+sin(a)t—§)], te( -T,— w)

\/§cos(a)t+é‘+%)sinwt+cos(a}t+§) [l—sin(a)t+é’+%)] t e (——1 O)

With the change of variable t = 2T,

fze (-1,-2),
n

where

7, (2) =cos[é’(z+1) +%] [1+sin(§z—%)]

and

Ny (2) = ﬁcos[é’(z+1)+%]sin§’z+cos(é‘z+%) [1—sin(§’(z+1)+%)].
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It can be checked that
7y (=1) <0, 9] (—1) =0, 7] (2) 2 0forz € l—l,—%] ,
7y (=1) =14 (0),

4w
With these facts we conclude that there is a unique maximum of the function 7 (2) in the

interval (% - 1,0), precisely where 1)}, (2) = ¢ (cos [£(1+22)] —sin (% + zé‘)) =0,

thisis, forz = %(% — 1), and therefore the statement of the theorem holds. |

Ny (i_l) >0, 7, (0) <0, 7, (2) =0forz € 14_775_1’0]'

Lemma 8.4.8. let w € [%T, %T] and T — % <a<b=T-a< ﬁ. Then
2w sin(¢) inf fbk(t,s) ds = sinw (T — 2a) + cos £ — cos 2wa.
t€la,b] Ya

Proof. We can check that
2w sin (§) ijk(t,r) dr

sinw(T +s+t) —cosw(T +s—1t) —sinwt + cos wt, It < —s,
sinw(T +s+t) —cosw(T —s +t) — sinwt + cos wt, Is| < —t,
—sinw(T —s—t) —cosw (T +s—t) —sinwt + cos wt + 2sinwt, |s| <t,
—sinw(T —s—t) —cosw (T —s +t) —sinwt + coswt + 2sinwt, || <s.

Therefore ffk(t,s) ds = f_ka(t,s) ds — [, k(t,s) ds, thisis,
2w sin({) Lb k(t,s)ds
=sinw(T —a—t) —sinw(a—t) +cosw(T +a—t) —cosw(a +1t),t € [a,b].
Using similar arguments to the ones used in the proof of Lemma|8.4.3|we can show that

20 sin (&) t i[nf;] fbk(t,s) ds = sinw (T — 2a) + cos { — cos 2wa.
€la, a

With the same method, we can prove the following corollary.

Corollary 8.4.9. letw € (O, %T] and0<a<b=T—a < 1. Then
2w sin ({) t i[nfb] ‘[bk(t,s) ds = sinw (T — 2a) + cos £ — cos 2wa.
€la, a

Remark 8.4.10. If w € (O,%T],then

inf fprk(t,s) ds = é,

te[-T,T]

just because of the observation in the proof of Lemma(8.4.7
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Now we can state conditions (Ig) and (I;) for the special case of problem (8.4.1)—(8.4.2):

1
(Ip’w) Let

£PP . sup {h(t, u,v) + v

IO : (t,u,U) € [_TaT] X [_,0710] X [_P;P]} .
There exist p > 0and w € (O, %] such that£,”" < w,

or
there existp > 0and w € (%, g] such that

ﬁzcoszé‘isin’”—_“tgﬁ_cosﬂ (1_5111@)
—pP,p 3 12 3 3
fo 7|1+ < w.

sin {

(Ig’w) there exist p > 0 such that such that

w . b
T pie tel[g,f;] L k(t,s)ds>1,

where

w .
f(p,p/c) = 1nf{

Theorem 8.4.11. Assume (C;)—(C,) hold. Let w € (O, %T] Let [a,b] C [—T,T] such
thata =1 —b € (max{0,T — ﬁ}, g). Let

h(t,u,v) + wv

: (Lu,v) € [a,b] x [p,p/c] x [—p/c,p/C]}-

oo [1-tan(wa)][1— tan(wb)]
" [1+tan(wa)][1l + tan(wbd)]’

Problem (8.4.1)—(8.4.2) has at least one nonzero solution in K if either of the following
conditions hold.

(S1) There exist pq, py € (0, 00) with p;/c < py such that (Igl’w) and (Ifl;z,w) hold.

(Sy) There exist pq, py € (0, 00) with p; < py such that (I;l,w) and (122@) hold.

Problem (8.4.1)—(8.4.2) has at least two nonzero solutions in K if one of the following conditions
hold.

(S3) There exist py,py,p5 € (0,00) with pyfc < py < py such that (I ), (I}, )
and (Ip_ ) hold.

(Sy) Thereexistpy,py, ps € (0,00) withp, < pyandpy/c < pgsuchthat (15 ), (I )
and (I} ) hold.
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Problem (8.4.1)—(8.4.2) has at least three nonzero solutions in K if one of the following condi-
tions hold.

(S5) There exist py, pg, p3, P4 € (0,00) with p;/c < py, < pzand pz/c < p4 such that
I, ), @, ), @, ) and (I, ) hold.

P1,®
(Sg) There exist py, P, P3, s € (0,00) with p; < py and py/c < pg < p4 such that
I, ., @, ., @ ,)and (I3 ) hold.

P1,®

Example 8.4.12. Consider problem (8.4.1)—(8.4.2) with

h(tuv)=l ;+u—2+2lu|+ — v
o 4\5+@1@-1)2 5 3 + Tv? 2

Then, forw = 3/2,

1 1 u? 1
t) ) = = -—+ —+ 2 + .
ACLRY 4(5+(t—1)2 5 t2u 3+7v2)
letT =1, =3/2,a =12/25,b = 13/25,p, = 1/4, py = 2.2-105. Conditions (C)-(Cs)
are satisfied by the results proved before (in this case g = 1). (C;) is satisfied by equation

(8-4.6) and (C,) and (C3) by Lemmas|[8.4.2land[8.4.3] (C,) is implied in a straightforward
way from the expression of &, so we are in the hypothesis of Theorem|[8.4.11] Also,

¢ = 0.000353538....,

V2 cos 247 gin 4L - cos £ (1 — sin 247 ) =
rise : —1.2021 ...,
sin §
-1 i T -2 _ 2 -1
re: = ( inf fbk(t,S) ds) = (Smw( a) +.COS§ cos a)a)
rela.b] T 2w sin
= 10783.8....,
_ T, 0.,0
f,/ = FL000 _ o458,
P1
a, ) C
f(c;)’zypz/c) = f% = 11000.5...
2

We have that f,”*"* < r, and f(2,2/c) > ry, so condition (S,) in the previous theorem is

satisfied, and therefore problem (8.4.1)-(8.4.2) has at least one solution.



9. A thermostat model with deviated
arguments

The existence of solutions of boundary value problems with deviated arguments has been
investigated recently by a number of authors using the upper and lower solutions method
[68], monotone iterative methods [101,(106|/162, 163]|ﬂ the classic Avery-Peterson Theorem
[102H105] or, in the special case of reflections, the classical fixed point index as in Chapter [g|
One motivation for studying these problems is that they often arise when dealing with real
world problems, for example when modeling the stationary distribution of the temperature of
a wire of length one which is bent, see the recent paper by Figueroa and Pouso [68] for details.
Most of the works mentioned above are devoted to the study of positive solutions, while in this
chapter we focus our attention on the existence of nontrivial solutions. In particular we show
how the fixed point index theory can be used to develop a theory for the existence of multi-
ple nonzero solutions for a class of perturbed Hammerstein integral equations with deviated
arguments of the form

u(t) = y®alul + [ kt,986)f (5,u(),u(e(s)) ds, t€ [a,b],
where a[u] is a linear functional on C([a, b]) given by
afu] = [*u(s) dA(s), (9.0.1)

involving a Stieltjes integral with a signed measure, that is, A has bounded variation.

Here o is a continuous function such that o ([a,b]) C [a,b]. We point out that when
o (t) = a + b —t this type of perturbed Hammerstein integral equation is well-suited to treat
problems with reflections. We apply our theory to prove the existence of nontrivial solutions
of the first order functional periodic boundary value problem

@) =hiu®),u(=t),te[-T,T]; u(-T) —u(T) = alu],

which generalises the boundary conditions in Chapter[g|by adding a nonlocal term. The formu-
lation of the nonlocal boundary conditions in terms of linear functionals is fairly general and
includes, as special cases, multi-point and integral conditions, namely

alu] = Z aju(nj) or alu] = fol gﬁ(s)u(s) ds.
=1

J

where the «; and gb might change sign. The study of multi-point problems has been initiated
by 1908 by Picone [143]] and continued by a number of authors. For an introduction to nonlocal
problems we refer to the reviews of Whyburn [185], Conti [52], Ma [130], Ntouyas [135] and
Stikonas [158] and to the papers [109,112,/180].

The tight relationship between the monotone iterative method and the upper and lower solutions method
has been highlighted in [26]. Therefore, to make a difference between them is mostly a convention.
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We study as well the existence of nontrivial solutions of the boundary value problem
u”(t) +g®)f (t,u(t),u(o(t))) =0, t e (0,1), (9.0.2)
u' (0) +alu] =0, Bu' (1) +u(ny) =0, n € [0,1]. (9.0.3)

This type of problems arises when modeling the problem of a cooling or heating system con-
trolled by a thermostat, something that has been studied in several papers, for instance [20,
45|/72]. Nonlocal heat flow problems of the type (9.0.2)-(9.0.3) were studied, without the pres-
ence of deviated arguments, by Infante and Webb in [99], who were motivated by the previous
work of Guidotti and Merino [80]. This study continued in a series of papers, see [66,/88,/90,
100}[113}[139,/175/,176/,179] and references therein. The case of deviating arguments has been
the subject of a recent paper by Figueroa and Pouso, see [68]. In Section[9.3|we describe with
more details the physical interpretation of the boundary value problem (9.0.2)—(9.0.3).

We stress that the existence of nontrivial solutions of perturbed Hammerstein integral equa-
tions, without the presence of deviated arguments, namely

u(t) = y®alul + "k, 9f (s,u() ds,

where @[-] is an affine functional given by a positive measure, have been investigated by In-
fante and Webb in [100], also by means of fixed point index. We make use of ideas from [100]
paper, but our results are somewhat different and complementary in the case of undeviated
arguments.

We work in the space C([a,b]) of continuous functions endowed with the usual supre-
mum norm, and use the well-known classical fixed point index for compact maps, we refer to
the review of Amann [4] and to the book of Guo and Lakshmikantham [81] for further informa-
tion. The results in this chapter where published in [34]-

9.1 On aclass of perturbed Hammerstein integral equations

We impose the following conditions on &, f, g, v, @, o that occur in the integral equation
ul) =y@) alu] + fabk(t,s)g(s)f(s,u(s),u(O'(s))) ds =: Fu(t). (9.1.1)

(C,) The kernel k is measurable, and for every 7 € [a,b] we have
limlk(t,s) —k(7,8)| =0 fora.e.s € [a,b].
(C;) There exist a subinterval [d,?)] C [a,b], a measurable function ® with ® > 0 a.e. in
[a,b] and a constantc; = ¢, (a,b) € (0, 1] such that

k(t,s)| < ®(s) forallt € [a,b] and a.e. s € [a,b],
k(t,s) =c, ®(s) forallt € [4,b] anda.e. s € [a,b].

(C3) A is of bounded variation, K4 (s) := ffk(t,s) dA() > 0 fora.e. s € [a,b] and
K, €L ([a,b]).
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(C,) The function g is measurable and satisfies that
g®,gK, €L ([a,b]), g(t) >0a.e.t € [a,b] and fdb P (s)g(s)ds > 0.

(Cs) 0=y € C([a,b]),0 < a[vy] < 1andthereexistscy € (0,1] such that y () > c,llyll
forallt € [a,b].
(Cg) The nonlinearityf : [a,b] x R x R — [0, oo) satisfies L*™-Carathéodory conditions.

fu,v) < ¢ (t) forall (u,v) € [-r,r]1x[—r,r], anda.e. t € [a,b].
(C;) The function o : [a,b] — [a, b] is continuous.

Here we work in the cone

K ={u € C([a,b]) : min u(t) >clul, a[u] > 0},
tela,b]

where ¢ = min{c,,c,} and ¢; and ¢, are given in (C2) and (C5) respectively. Note that, from
(C5),K # {0} since 0 # vy € K.

The cone K is a modification of a cone of positive functions introduced in [181], that allows
the use of signed measures.

Theorem 9.1.1. Assume that hypotheses (C;)—(C;) hold. Then F maps K into K and is com-
pact and continuous.

Proof. Letu € K, t € [a,b] we have,
IFu@)| <ly®la[u] + fab k(£,5)18 (s)f (s,u(s),u(o(s))) ds
< alu]llyll + fab P (s)g(s)f (s,u(s),ulo(s))) ds.
Taking the supremum on ¢ € [a,b] we get
IFull < alulllyll + fab D (s)g(s)f (s,u(s),u(o(s)))ds
and, combining this fact with (C3) and (Cy),

min Fu(t) = coalulllyl +c; fab D (s)g(s)f (s,u(s),u(o(s)))ds = clFul.

tel[a,b]

Furthermore, by (C3), (C5) and (9.0.1),

a[Ful = al[ylalu] + fab Ky(8)g(s)f (s,u(s),u(a(s)))ds =>0.

Therefore we have Fu € K foreveryu € K.

The continuity and compactness of F' follows from Lemma(8.1.4 n

In the sequel, we give a condition that ensures that, for a suitable p > 0, the indexis 1 on
KP ={u €K : |ul <p}.



176 9.1. On a class of perturbed Hammerstein integral equations

Lemma 9.1.2. Assume that

(Ifl,) there exists p > 0 such that

t
frr - sup {% [P Kso)g)ds + [Tk, 9)1g(s) ds} <1
€la,
where
[P = sup {M L (t,u,0) € [a,b] x [—p, p] X [—p,p]}-

Then the fixed point index, iy (F,KP), is equal to 1.

Proof. We show that uu # Fu for everyu € 8Kp and for every u > 1. In fact, if this does
not happen, there exist w > 1andu € 8Kp such that uu = Fu, thatis

put) =y alul + [Pk 9)g©)f (5,u(s),u(o () ds.

Furthermore, applying @ to both sides of the equation,
palul = alylalu] + [ K4 ()8 ®f (5,u(9),u(o(5))) ds,
thus, from (C5), 0 — a[y] = 1 — a[vy] > 0, and we deduce that

alul = M_—ZML” K4 (©)g®)Ff (5,u(8),u(a () ds
and we get, substituting,
pu(®) =MZ(—:)['>'] fab Ka(s)g($)f (s,u(s),ulo(s)))ds

b
+ [Tk (t,)8()f (s,u(s),u(0(s))) ds.
Taking the absolute value, and then the supremum for ¢ € [a, b], gives

t
pp = sup {llzl(—azrly]fab Ky (s)g(s)f (s,uls),u(a(s)))ds

t€(a,b]

+ [V ©f (,u(s),u(o(6)) ds |

{ |y ()]

Spf_lo’p . sup 1 — a[ry]

te(a,b]

fab K, (s)g(s)ds + fa” Ik (t,8)lg (s) ds} < p.

This contradicts the fact that u > 1 and proves the result. n

Remark 9.1.3. We point out, in similar way as in [181], that a stronger (but easier to check)
condition than (I;) is given by the following.

frr (%ﬁ Kp(s)g(s)ds+ %) <1, (9.1.2)

where

L. sup [ 1k(t,9)g(s) ds.

m tela,b]
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Let’s see now a condition that guarantees that the index is equal to zero on
Vp i={u €K : min u(t) < p},
tela,bl
for some appropriate p > 0.
Lemma 9.1.4. Assume that
(Ig) there exists p > 0 such that
: v (@) b b
fopre tel[%,f;a] {m fa Ky(s)g(s)ds + f@ k(t,s)g(s) ds} > 1,
where
t7 ) ~ 7
fople = inf{f( wo) (¢, u,v) € [a,b] x [p,p/c] x [9,,0/0]},
and ~ ~
9 r_ /07 IfO-([dab]) g [d7b]7
‘ —p/c, otherwise.
Thenigx (F,V ) = 0.
Proof. Since 0=y € K we can choose e =  in Lemma|[8.1.2} so we now prove that
u# Fu+py forallu € dV, andeverypu > 0.
In fact, if not, there existu € JV, and v > 0 such that u = Fu + py. Then we have
u(t) = v @) afu] + fabk(t,S)g(S)f(s,u(S),u(cf(S))) ds + uy (@)
and {
alul = alylalul + [T Ka($)g()f (s,u(s),u(a(s))) ds + palyl,
and therefore
1 b paly]
alul] =— | K (8)gs)f(s,u(s),u(oc(s)))ds + ————.
] = 777 J. Ka()8(&)f (8,u(s),u(0 () 2]
Thus we get, fort € [d,?)],
u(®) =L ([* Ky (g0 (s,u(s),u(o(s))) ds + paly])
1—al[y] \Ja ™4 R
+ [Pkt 98 )f (5,u(9),u(c(5))) ds + py(®)
v@ b
szd Ky ()8 ($)f (s,u(s),u(o(s))) ds
+ [Pkt 92 )f (5,u(s),u(0 () ds
7Y@ b b
2pf . p/c (1_—“[’)’] f& Ky(s)g(s)ds + fa k(t,s)g(s) ds) .
Taking the minimum over [d,?)] gives p > p, a contradiction. [ |
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Remark 9.1.5. We point out, that a stronger condition than (Ig) is given by the following.

zllfyll 1 )
¢ K4(s)g(s)ds + YRR > 1, (9.1.3)
fp,p/ ( _ f als)8 (d b)

where

—— = inf f k(t,s)g(s) ds. (9.1.4)
M(G,b)  telabl

Remark 9.1.6. Depending on the nature of the nonllnearltyf and due to the way 9 is defined,
sometimes it could be useful to take a smaller [a, b] such that o ([a, b]) C [a, b] This fact
is illustrated in Section[9.3l

The above Lemmas can be combined to prove the following Theorem. Here we deal with
the existence of at least one, two or three solutions. We stress that, by expanding the lists in
conditions (S5), (Sg) below, it is possible to state results for four or more positive solutions.

Theorem 9.1.7. Assume (C;)-(C;) are satisfied. The integral equation (9.1.1) has at least
one nonzero solution in K if any of the following conditions hold.

(S1) There exist py, py € (0, 00) with p/c < py such that (Igl) and (I})Z) hold.

(Sy) There exist pq, py € (0, 00) with p; < py such that (Ifl,l) and (Igz) hold.

The integral equation (9.1.1) has at least two nonzero solutions in K if one of the following
conditions hold.

(S3) ;h;z;e exist p1, Ps, P3 € (0,00) with p1/e < py < ps such that (121)’ (I;Z) and (123)
old.

(Sy) There exist py, pg, p3 € (0,00) with p; < py and pyfc < pg such that (I; ), (ID)
and (I3 ) hold.

The integral equation (9.1.1) has at least three nonzero solutions in K if one of the following
conditions hold.

(S5) There exist py, pg, p3, P4 € (0,00) with p;/c < py, < pzand pz/c < p4 such that
(Igl), (1;2), (Igs) and (Iflu)hold.

(Sg) There exist py, pg, 3,4 € (0,00) with p; < pg and pyfc < pg < py such that
(I;I), (122), (I;S)and (124)hold.

Remark 9.1.8. A similar approach can be used, depending on the signs of £ and «y, to prove the
existence of solutions that are negative on sub-interval, nonpositive, strictly negative, nonneg-
ative and strictly positive the same way we did in the previous chapter.
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9.2 An application to a problem with reflection

We now turn our attention to the first order functional periodic boundary value problem
u @) =htu@),u(-t),tel :=[-T,T], (9.2.1)
u(-T) —u(T) = alu], (9.2.2)
where « is a linear functional on C (I) given by
alu] = JT u(s)dA(s)
-T ’

involving a Stieltjes integral with a signed measure.

We use again the shift argument of the Chapter (8] by fixing @ € R\{0} and considering
the equivalent expression

u () +ou(=t) =htu@),u(=t) +owu(=t) =fEu@),u(=t)),tel, (9.2.3)
with the boundary conditions

u(=T) —u(T) = alu]. (9.2.4)

Note that the Green’s function k& of the periodic problem only exists when wT' + [7 for

every l € Z. Hence, Corollary guarantees that problem (9.2.3)—(9.2.4) is equivalent to
the perturbed Hammerstein integral equation

u(t) =kt,-Talul + [ k(t,8)f (s,u(s),u(—s)) ds,

where £ is the associated Green’s function given by equation (8.4.6). Thus, we are working
with an equation of the type (9.1.1) where

v(@) =k(t,—T) = coswt — sinwt = V2 sin (% —a)t).

In order to apply Theorem we must verify conditions (C;)—(C;) and study when (Ig)
and (I}) are fulfilled.

Let  := wT. Then we have

_[V2sin(Z+¢), e (o,
Iyl = {\/Q, ¢e [%,

Also, using Lemma the constant ¢, is given by

v®, (e(0,7] or |a+Z|<[p+
7O = {fy(d), ¢ e (g%] and | + 4l;|§z 5+

),
).

SELIE

T

| ik

I7ley = inf A
tela, E| .
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The constant ¢; was given in Chapter Theorem[8.4.11} for the case @ + b = 1 and has the

following expression R

_ (1 —-tanwd) (1 —tanwbd)
(1 + tan wd) (1 + tan wd)

Observe that using the fact that k(¢,s) = k(¢ + T,s + T),k(t + T,s) = k(t,s + T) for
t,s € [-T,0] and formula for [a,b] = [0, T'] we get that

¢y (9.2.5)

1-tan{

C{ = =
' 1+tan?

T
cot (Z + é’) .
Consider now the set S := {(d,?)) eR?:4< ?), (C,) is satisfied for [d,?)]} and M(d,?))
defined as in (9.1.4) (with g = 1). Since a smaller constant M (a,b) relaxes the growth con-

ditions imposed on the nonlinearity f by the inequality (9.1.3), we turn our attention to the
guantity

Mopt ‘ (;:;I;S M(d,z)) '
A similar study has been done, in the case of second-order boundary value problems in [94,
175}/176] and for fourth order boundary value problems in [92,(144,/182].
Before computing this value, we need some relevant information about the kernel k.
First, observe that with the change of variablest = xT,s = yT, E(D_c,y) = k(t,s),
a=aT,b=bT we have

=T sup min f_bE(J_CJ) dy,
Mopt (E,Z) eS§ x€la,b]

where S := {(5,5) e R? : (ET,ET) e Sy.
Recall (see Lemma that there is a symmetry between the cases w and —w given by
the fact thatk,, (x,y) = —k_,, (—x, —y), so we can restrict our problem to the case w > 0.

We proved in the previous Chapter that % satisfies the equation % (x,y) +w%(—x,y) = 0.
Also, the strip S, defined in Lemma satisfies that, if (x,y) € S, then (—x,y) € S, so,
wherever k£ > 0, % < 0. Hence, we have

1
M(w)

=T sup ff%(g,y) dy.
@pes

Notice that, fixed 5, itis of our interest to take a as small as possible (as long as (C,,) is satisfied)
for we are integrating a positive function on the interval [a, b].

With these considerations in mind, we will prove that

cos £’ if ge[Z’E)’

by studying two cases: (A) and (B).
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(A)If £ € (0, %), % is positive and

=T sup f_glﬁ(g,y)dy.

oot Be[-11]
(A1) Ifb < 0, let
g, (b) :=2 smg‘fj(é,y) dy = fl [cosC(1+y+b) +siné(1+y—0b)]ds
:% [siné’(1+25) —sin§‘5+cosé‘5—cos§‘].

Then, taking into account that b e [-1,0]and ¢ € (O, %) and studying the range of the
arguments of the sines and cosines involved, we get

g'l(g) =2c0s§‘(1+25)—\/§sin(é’5+%) 22%—\@%: v2-1>0.
Therefore, the maximum of g4 in [—1, 0] is reached at 0.
(A2)If b = 0,
g.(b) =j_‘f[cos EQ1+y+b)+sinl@A+y—b)lds
+J‘_gg[cosé’(1—y—g) +sinl(1+y—5)]ds
=—l[cosé‘—cosé’b—2sin§+siné’b+siné’(l—Zb)].

q

Now, we have
g7 (b) = -2 [Scos £(1—2b) — V2sin (£b + %)] <.
Therefore, g'1 reaches its minimum in [0, 1] at O or 1.
g1(0) =2cos{—1, g4 (1) =cos{ —sin{ > 0.

Thus, g'l > 0in [0, 1], this is, the maximum of g; in [0, 1] is reached at 1. In conclusion, by
the continuity of g;, the maximum of g; in [—1, 1] is reached at 1 and so

1 17 g1 T 1
Mopt ‘[—1 (1,y) dy Zsjn; é’ w

Observe now that, since [a, 5] =[-1,1],c =c; =cy =cot (% + é‘)
(B) Now assume { € [%, g). kis positive on S.
Assume b > 0. Also, since /;(x,y) = E(—y, —x), fixed b € S, the smallest a that can be

icag=1— 7
takenisa =1 4§,so

8,() =2sin{ [*  k(b,y)dy
4



182 9.2. An application to a problem with reflection

=% [cos(%+(5—2)é’) + cos (%+5é‘) —cos§+sin((25—1)é’)].

Thus, we have
g’z”(g) =2 [sin (% + (b—2)é’) + sin (%+bé’) —8cos ((1—2b) é‘)]

> 2 (2 —Sg) < 0.

Therefore, g, reaches its minimumin Y := [1 ~ i E] at1l — 12 % ap

g5 (1—%) =2sin ¢, g (%) = 2(sin £ — cos? {) > 0.

Thus, g'2 > 0inY, this is, the maximum of g, in Y is reached at % and so

TITZ E(%,y)dy:ng(%) _Tcosé’:cosé’.

1-3F 2sinl ¢ w

Now, the_ case b < 0 can be reduced to the case b > Oi'ust taking into account that

l;(z,y) = k(z+ 1,y + 1) forz,y € [—1,0] (cf. Chapter|7) and making the change of
variablesy =y — 1, so

T 7 _q 7 _q
< k(l, )d = [* k(l,—+ 1) dy = [ k(1—1,—) dy.
fl‘r@ 4¢ Y)Y f‘fg 4¢ . ’ I_E 4¢ Y)Y

Hence we have

1 cos(
M,,, w

~

Consider again the case { € (0, %) and @1, byt € (@t Bopt), the values for which M,

is
pit
reached. In the following table we summarize these findings.

é’ dopt bopt Mopt C(dopﬂbopt) ”7”
(0,%) -1 1 w cot(§+§) \/Qsin(§+é’)

é’ dopt bopt Mopt ||ry||
[53) 137 3¢ | mr | V2
—ar |ap !
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We point out that in this second case we cannot take an interval [ @, B] at which Mop

because c; and ¢, tend to zero as we approach that interval, but we may take [@, B] as close

as possible to these values, in order to approximate Mopt.

With all these ingredients we can apply Theorem in order to solve (9.2.1)-(9.2.2) for
some given f and a.

. isreached

9.3 An application to a thermostat problem

9.3.1 The model

We work here with the model of a light bulb with a temperature regulating system (thermostat).
The model includes a bulb in which a metal filament, bended on itself, is inserted with only its
two extremes outside of the bulb. There is a sensor that allows to measure the temperature
of the filament at a point 7) (see Figure . The bulb is sealed with some gas in its interior.

Figure 9.3.1: Sketch of the light bulb model with a sensor at the point 7.

As variables, we take u for the temperature, t € [0, 1] for a point in the filament and x for
the time]

We control the light bulb via two thermopairs connected to the extremes of the filament.
This allows us to measure (and hence modify via a resistance or with some other heating or
cooling system) the variation of the temperature with respect to x. Also, we will be able to
measure the total light ouput of the light bulb.

The problem can then be stated as

du, g du o
T (t,x) =d, T (t,x) + Io u (y,x)v(s,t,uft,x)) ds —dyu®(t,x) (9.3.1)
+j(t,u(t,x)) + (ds + d4u(t,9c))I2 +ds(ug—u(tx)),

du 1 4 _ d_u _
= (0®) +dg jo u*(s,x)ds =0, ,Bdt (1,x) +u(n,x) =0, (9.3.2)

where dy, ..., d5 and u are physical (real) constants that can be determined either theoreti-
cally or experimentally; dg, I and /3 are real constants to be chosen; 77 € [0, 1] is the position

TWe use this unusual notation in order to be consistent with the rest of the section. Since we are looking for
stationary solutions of the model, the temporal variable will no longer appear after the model is set.
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of the sensor at the filament and v is some real continuous function. We explain now each
component of the equation.

The term dl% (t,x) comes from the traditional heat equation, Z—z = dl%. The integral
in the equation stands for the temperature (that is, power per space unit squared), in form
of blackbody radiation, absorbed by the point £ and emitted from every other point s of the
filament. The function v gives the rate of this absorption depending on £, s and also on u,
since the reflectivity of metals changes with temperature (see [168]). The equation behind the
fourth power in the integral comes from the Stefan-Boltzmann equation for blackbody power
emission, j* = ~ku4(t,x), where j* is the irradiance and % a constant. Observe that consid-
ering the power emission from the rest of the filament is important, since, as early as 1914
(see [51]), it has been observed that an interior and much brighter (90 to 100 percent) helix
appears in helical filaments of tungsten. Although a 200 °C difference would be necessary to
account for the extra brightness, experiments show that most of it is due to reflection, being
the difference in the temperature less than 5 °C.

The term —al2u4 (t,x) accounts again for the Stefan-Boltzmann equation, this time for
the irradiance of the point, j(¢,u (¢,x)) for the energy absorbed from the bulb (via reflec-
tion and/or blackbody emission) and (d5 + d,u (¢, x) )jz is the heat produced by the intensity
of the electrical current, f, going through the filament via Ohm’s law taking into account a first
order approximation of the variation of the resistivity of the metal with temperature. Finally,
ds(ug—u(t,x)) is the heat transfer from the filament to the gas due to Newton'’s law of cool-
ing, where u, is the temperature at the interior of the bulb which we may assume constant.

The first boundary condition controls the variation of the temperature at the left extreme
depending on the total irradiance of the bulb, while the second boundary condition controls
the variation of the temperature at the right end of the filament depending on the temperature
at 7.

Consider now the term
IMNul],x) := fol ut(s,x)v(s, t,u(t,x))ds.

For a fixed x, I' is an operator on C[0,1]. If we consider the wire to be bended on itself,
in such a way that every point of the filament touches one and only one other point of the
filament, by the continuity of the temperature on the filament, we may take the approximation
I'u](t,x) = d7u4(0'(t,x)) for some constant d; and a function o which maps every point
in the filament to the other point it is affected by. Now, ¢ is an involution.

With these ingredients, and looking for stationary solutions of problem (9.3.1)-(9.3.2), we
arrive to a boundary value problem of the form

u (@) +gMf tu®),u(a))) =0,te (0,1), (9.3.3)
u' (0) +alu] =0, Bu' (1) +u(ny) =0, n € [0,1]. (9.3.4)

Remark 9.3.1. In some other light bulb model it could happen that every point of the filament
is ‘within reach’ of more than one other point, which would mean we could have a multivalued
function o or just two functions o; and o, in the equation (9.3.3). Our theory can be extended
to the case of having more than one function o. A possible approach to the multivalued case
would require to extend the theory in [94].
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9.3.2 The associated perturbed integral equation

We now turn our attention to the second order boundary value problem (9.3.3)-(9.3.4).

In a similar way as in Chapter|[7] the solution of the boundary value problem (9.3.3)-(9.3.4)
can be expressed as

u(t) =y alul + [ k98 6)f (s,u(s),u(o () ds,

where y(t) = 8+ 5 —¢, and

n—s, S$<17 t—s, s<t
k(t,s) =58+ —
t.9) =8 {0, s> {0, s >t.

Here we focus on the case 8 > 0 and 0 < 8 + 7 < 1, that leads (in similar way to [100]) to
the existence of solutions that are positive on a subinterval. The constant ¢ for this problem
(see for example [94]) is

BIB+n), §<n,,6’+?7_2,
B+n=b)/(B+n, b>1n, B+n=3,

B+n=b)/A~B+m), b>n, f+n<3.

Also, we have

B+, ,6’+?7_2,

‘I"S)="V"={1—<B+m, B+n<i,

and R
collyll = B +n —b.

Theorem can be applied to this problem for given f, @ and g. We now setg = 1 and
recall (see [100])) that

sup [ Ik, s)lds-max{,@+2n WCRES ,6’+—(1 %) }.

te[0,1]

Furthermore, note that the solution of the problem
w'@) =-1, w(0) =0, Lw' (1) +w(n =0,
is given by w () = 5+ %(772 — t2), which implies that
_ 1 _ 1 2 _ 42
wt) = [ kts)ds =5+ 5 =),
Using this fact, equation (9.0.1) and Fubini’s Theorem we have
[i Kats)yds = [ folk(t,s) dA () ds
101 1
= [, [ kt,9)dsdA@®) = a [,6’+ 5(772 —t2)] .
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With all these facts, the conditions (9.1.2) and (9.1.3) can be rewritten, respectively, for prob-

lem (9.0.2)—(9.0.3) as

frr <m,, (1[1))
where
1 BEDXE B+ A-B-my ey B+ a[ ey t2)]
m, 1—a[B+n—t] 2"

+max{,3+ %772,,82 - B+ %(1 —772)},
XBis the characteristic function of the set B; and
%0
fp,p/c > Ma’ (Ip)

where

1 B+n—b 5 1
= : k(t,s)ds|+ ——.
M, " T—alf+7—1] ““d “:9) S] M@G,b)

Therefore, we can restate Theorem[9.1.7|as follows.

Theorem 9.3.2. Theorem|9.1.7|is satisfied if we change the conditions (Ig) and (Ifl)) by (Tg)
and (T})) respectively.

We now illustrate how the behavior of the deviated argument affects the allowed growth
of the nonlinearity f.

Example 9.3.3. Take n = 1/5, ,8 = 3/5. It was proven in [94] that the optimal interval for
such a choice of parametersis [a,b] = [0, 3/5], for which M,,,, = 5,m = 50/31,¢; = 1/4.

Consider o (t) = 11¢ — 101¢2 + 318t — 394¢* + 167¢°. o satisfies o ([0,1]) = [0, 1] and
o ([0,2/5]) C [0,2/5] as it is shown in Figure|9.3.2

1.0

0.8

” /

0.2

0.2 0.4 0.6 0.8 1.0

Figure 9.3.2: Plot of the function ¢ and the identity.
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Remember that the condition 1i is of the form

fp,p/c(d?g) (p(a)Q(d>B) +r(d,’6)) >1

where

iy = !

= 1_—“[’}’]’ q(@,b) =cy(d,b) f; Ky(s)g(s)ds and r(d,b) =

M@,b)

Now, picking up Rema[k the questions is: Is it worth it to take [d,i)] = [0,3/5] oritis
preferable to take [@,b] = [0,2/5]? Observe that, as mentioned, o ([0,2/5]) C [0,2/5]
but o ([0,3/5])£10, 3/5], which means that the value offp’p/c (@, b) can vary considerably

from one case to the other. It will be preferable to take [a@,b] = [0,2/5] if and only if

fop1c(0:2/5)  p(y,a)q(0,3/5) +r(0,3/5)
fre(0,8/5) ~ p(v,a)q(0,2/5) +1(0,2/5)

We can compute, a priori, ¢ (0,3/5), q(0,2/5),r(0,2/5) and r(0,3/5), butfp,p/c(0,2/5)
andfp’P/c(O, 3/5) willdepend on f and p (7, @) on @. As a simple example, if f is zero at a sub-

set of (2/3,5/3] of positive measure, we have that the choice to make is [a, ?)] = [0,2/5].

Example 9.3.4. Continuing with last example, assume now a[u] = A u(2/5) for some A €
(0,5/2). (C,) and (C,) are satisfied by the properties of the kernel and by the choice of
cy. We assume (Cy) is satisfied for the nonlinearity chosen. (C,) and (C;) are obviously
satisfied. K, (s) = k((21)/5,8) > 0 for every s € [0, 1] by the properties of the kernel, so
(Cy) is also satisfied. Last, 0 < a[4/5 —t] = (24)/5 < 1 and, by the choice of ¢,, (C;)
is satisfied as well. In this case we have m, = 25/26, and it is independent of the choice of
[d,@]. Let us compare the intervals [0,2/5] and [0, 3/5].

1 =4—5?;
M, 0,b) 1-2A

[PR(@A)/5,9)ds+ inf [Pkt,s)ds.

te(0,b]
It was proven in [94] that, for0 < 4 < b < B+,

inf [Pk(t,s)ds = [Ph(b,s)ds.

te(0,b]
Hence,

%}? if Ae[1,5/2),

M,(0,2/5) =1 “5ddan) if A& (0,1)
(T—27) (5+41) T
2159+540; if Aell1,5/2),

M.(0,8/5) =1 Bédtien i ) < (0.1
294201 —412 ’ .

Figure[9.3.3|shows how these two values vary depending on A.

If we take an specific value for A, say A = 1, we get M,(0,2/5) = M,(0,3/5) =
10/3, and so it is more convenient to take [@,b] = [0,2/5]. The reason for this is that
fp,p/c(O, 2/5) > f’o,p/C (0,3/5) independently of f, and so Ig is more easily satisfied.
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M, (0,2/5)

0.5 1.0 1.5 2.0 25
Figure 9.3.3: Plot of M, (0,2/5) and M, (0, 3/5) depending on A.

Observe in Figurethat the graphs of M, (0,2/5) (A) and M, (0,3/5) (L) cross at
A = 1. If fis continuous andfp,p/c(0,2/5) >fp’p/c(0,3/5), since M, (0,2/5) (1) is a better
choice than M ,(0,3/5) (1), by the continuity of f, so it will be in a neighborhood of 1. That
shows that the condition M ,(0,2/5) (A1) < M ,(0,3/5) (A) may help but is not deciding
when choosing the interval.



10. Nonlocal boundary conditions

In this chapter we discuss the existence, localization, multiplicity and nonexistence of nontrivial
solutions of the second order differential equation

u”(t) +h(t,u()) =0,te (0,1), (10.0.1)
subject to (local) Neumann boundary conditions
u' (0)=u'(1) =0, (10.0.2)
or to nonlocal boundary conditions of Neumann type
u'(0) =alu]l, uw@)=_pLul, (10.0.3)

where a[-], B[] are linear functionals given by Stieltjes integrals, namely

alu] = folu(s) dA(s), Plul = folu(s) dB(s).

The local boundary value problem (10.0.1)—(10.0.2) has been studied by Miciano and Shivaji
in [133], where the authors proved the existence of multiple positive solutions, by means of
the quadrature technique; using Morse theory, Li [124] proved the existence of positive so-
lutions and Li and co-authors [125] continued the study of [124] and proved the existence of
multiple solutions. Multiple positive solutions were also investigated by Boscaggin [19] via
shooting-type arguments.

Note that, since A = 0 is an eigenvalue of the associated linear problem
u @) +Au@) =0, u'(0)=u'(1)=0,

the corresponding Green’s function does not exist. Therefore we use a shift argument similar
to the ones in [85}/167,/184] and previous chapters and we study two related boundary value
problems for which the Green’s function can be constructed, namely

—u"(t) —0%u@) =ftu@) :=ht,ul)) —o?u@), uw (0)=u (1) =0, (10.0.4)
and (with an abuse of notation)

—u" () +0%u@) =ftu@) =ht,u®)) +w?u@), u(0)=u (1) =0.(10.0.5)

The boundary value problems (10.0.4) and (10.0.5) have been recently object of interest by
a number of authors, see for example [18,[59,|67,/159|/160,170-172,/194,(195,(197-199]; in
Section [10.4| we study in details the properties of the associated Green’s functions and we
improve and complement some estimates that occur in earlier papers, see Remark[10.4.2]

As we have mentioned in Chapter [9| The formulation of the nonlocal boundary conditions
in terms of linear functionals is fairly general and includes, as special cases, multi-point and
integral conditions, namely

alu] = Z aju(nj) or alu] = fol gb(s)u(s) ds.
j=1
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One motivation for studying nonlocal problems in the context of Neumann problems is that
they occur naturally when modeling heat-flow problems.

For example, the four point boundary value problem

u' @) +htu@) =0, u(0)=au(),u 1) =Lum, &nelo,1],

(an specific case of the one studied in Chapter[9) models a thermostat where two controllers
att = 0and ¢ = 1 add or remove heat according to the temperatures detected by two sensors
att = f and ¢ = 7. In particular Webb [179] studied the existence of positive solutions of the
boundary value problem

u’(t) +h(tu@) =0, u(0)=calu], v Q) =-FLul.

The methodology in [179] is somewhat different from ours and relies on a careful rewriting
of the associated Green’s function, due to the presence of the term —/3[«] in the boundary
conditions. The existence of solutions that change sign have been investigated by Fan and
Ma [66], in the case of the boundary value problem

u' () +h(@u@) =0, @ (0)=au(), u 1) =-Lul), &nel0,1],
and in [30,/94,(100] for the boundary value problem
u () +htu@) =0, u'(0)=-alul,u' (1) =—-Luln),nel0,1].

A common feature of the papers [30, /66,94, 100] is that a direct construction of a Green’s
function is possible due to the term —,Bu(n).

In Section we develop a fairly general theory for the existence and multiplicity of non-
trivial solutions of the perturbed Hammerstein integral equation of the form

u(t) = y®alul + S Blul + [ k(t,5)8E)f (s,u(s)) ds, (10.0.6)

that covers, as special cases, the boundary value problem (10.0.1)—(10.0.3) and the boundary
value problem (10.0.1)—(10.0.2) —in this last case, when @ and [3 are the trivial functionals. We
recall that the existence of positive solutions of this type of integral equations has been investi-
gated by Webb and Infante in [180], under a nonnegativity assumption on the terms «y, O, k, by
working on a suitable cone of positive functions that takes into account the functionals a,,@.

In Section [10.2|we provide some sufficient conditions on the nonlinearity f for the nonex-
istence of solutions of the equation (10.0.6), this is achieved via an associated Hammerstein
integral equation

u(t) = fol ks (t,5)8(s)f (s,u(s)) ds,

whose kernel kg is allowed to change sign and is constructed in the line of [180], where the
authors dealt with positive kernels.

In Section[10.3|we provide a number of results that link the existence of nontrivial solutions
of the equation with the spectral radius of some associated linear integral operators.
The main tool here is the celebrated Krein-Rutman Theorem, combined with some ideas from
the paper of Webb and Lan [183]); here due to the nonconstant sign of the Green’s function the
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situation is more delicate than the one in [183] and we introduce a number of different linear
operators that yield different growth restrictions on the nonlinearity f.

In Section we illustrate the applicability of our theory in three examples, two of which
deal with solutions that change sign. The third example is taken from an interesting paper
by Bonanno and Pizzimenti [18], where the authors proved the existence, with respect to the
parameter A, of positive solutions of the following boundary value problem

—u” (@) +u(t) = Ate*?D, uw'(0) =u'(1) =0.

The methodology used in [18] relies on a critical point Theorem of Bonanno [17]. Here we
enlarge the range of the parameters and provide a sharper localization result. We also prove a
nonexistence result for this boundary value problem.

Our results complement the ones of [180], focusing the attention on the existence of so-
lutions that are allowed to change sign, in the spirit of the earlier works [97,/98,(100]. The
approach that we use is topological, relies on classical fixed point index theory and we make
use of ideas from the papers [30,98,/178,/180,(183]. The results in this Chapter were published
in [96].

10.1 Nonzero solutions of perturbed Hammerstein integral equa-
tions

In this Section we study the existence of solutions of the perturbed Hammerstein equations of
the type

u) =y@)alu] + 3(t),8[u] + folk(t,s)g(s)f(s,u(s)) ds:=Tu(t), (10.1.2)

where

afu] = [ u(s) dA(s), Blul = [ u(s)dB(s),

and A and B are functions of bounded variation. If we set

Fu(t) := [T k(t,5)g(s)f (s,u(s)) ds

we can write
Tu(t) = y@®) alul + 6@)Blu] + Fu(t),
that is, we consider T as a perturbation of the simpler operator F'.

We work in the space C([0, 1]) of the continuous functions on [0, 1] endowed with the
usual supremum norm.

We make the following assumptions on the terms that occur in (10.1.1)).

(Cy) k:[0,1] x [0,1] — R is measurable, and for every 7 € [0, 1] we have

%im |k(t,s) —k(7,s)| =0 foralmosteverys € [0, 1].
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(C,) There exist a subinterval [a,b] C [0, 1], a function ® € L*([0,1]), and a constant
¢; € (0,1] such that

lk(t,s)| < P(s) fort € [0,1] and almost every s € [0,1],
k(t,s) = c;P(s) fort € [a,b] and almost every s € [0, 1].

(C3) g is measurable, g® € L([0,1]), g(s) > O for almost every s € [0,1], and
JP D (s)g(s)ds > 0.

(C4) Thenonlinearityf : [0,1] x (—o0, 00) — [0, o0) satisfies L>-Carathéodory conditions,
that is, f(-,u) is measurable for each fixed u € (—o0,00) , f(%,-) is continuous for

almost every ¢ € [0, 1], and for each r > 0, there exists ¢, € L™ ([0, 1]) such that

f@u) < ¢, (t) forall u € [—r,r], andalmostevery ¢t € [0,1].

(C5) A, B are functions of bounded variation and X4 (s), Kz (s) = 0 for almost every s €
[0, 1], where

Ka(s) = [ k(t,5) dA(#) and K (s) i= [ k(t,5) dB(®).
(C¢) y€C[0,1], 0< a[yl <1, Blyl =0.
There exists ¢, € (0, 1] such that y(¢) = cyllyll for ¢ € [a, b].

(C;) §€C[0,1], 0<B[6]1 <1, a[é]=0.
There exists c5 € (0, 1] such that o@) > c3||8|| fort € [a,b].

(Cg) D:= (1—aly)(1-B[6]) —al[6]1Bly] > 0.
From (Cg)-(Cy) it follows that, for A > 1,

D, := (A —aly) (A = B[d]) = al[61B[yl =D > 0.
The assumptions above allow us to work in the cone

K :={u€C[0,1]: min u(®) = clul, alul,Blul = 0}

where ¢ = min{c;, ¢y, c3}.
The cone K allows the use of signed measures, taking into account two functionals.

We denote by P the cone of positive functions

P:={ueC[0,1]: u(t) >0,t € [0,1]}.

First of all we prove that T leaves K invariant and is compact and continuous.

Lemma 10.1.1. The operator (10.1.1) maps K into K and is compact and continuous.
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Proof. Let u € K. First of all, we observe that Tu(t) > 0 fort € [a,b]. We have, for
t € [0,1],

Tu@®)| < ly®lalu] +16@®)18[u] + fol Ik (2,9)Ig (s)f (s,u(s)) ds,
therefore, taking the supremumont € [0, 1], we get
ITull < lyllalu] + 181811l + [ ®()g(s)f (5,u(s)) ds,

and, combining this fact with (Cy), (Cg) and (C5),

min Tu(t) = collyllelu] + 3l 0181wl +cq fol D (s)g(s)f (s,u(s))ds

tela,b
> c|Tull.
Furthermore, by (C3) and (C5)-(C5),

a[Tu] = alylelu] + a[(S],B[u] + fol Ks(s)g(s)f(s,u(s))ds =0

and

BITul = Blylalu] + BI81BIu] + [} Ky(s)g(s)f (s,u(s)) ds 2 0.

Hence we have Tu € K.

The compactness and continuity are derived from Lemma|8.1.4] |

For p > 0 we recall the following open subsets of K:

K, ={uekK:lul<p}, V,:={uek: tér[li,%]u(t) < p}.

WehaveK, CV,CK,,.

We state now some useful facts concerning real 2 x 2 matrices.

Definition 10.1.2. [180] A 2 x 2 matrix Q is said to be order preserving (or nonnegative) if

P1 2P0, 91 = qo imply
D1 DPo
Q9 =>Q )
(ql) (qo)

We have the following property, as stated in [180], whose proof is straightforward.

o= (% 7)

witha,b,c,d > 0 and det Q > 0. Then Q™! is order preserving.

in the sense of components.

Lemma 10.1.3. Let
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Remark 10.1.4. It is a consequence of Lemma|10.1.3|that if
l—-a -b
N = ( — 1- d) ’
satisfies the hypotheses of Lemma|10.1.3, p > 0,q > 0 and u > 1 then
i (5) = (G)
k\e) ™ q)’
_(#—a —b
N, = ( 2 d).

We now give a sufficient condition on the growth of the nonlinearity that provides that the
index is 1 on Kp.

where

Lemma 10.1.5. Assume that

(Ifl,) there exists p > 0 such that

fore (ts[%ri]{(w()'a BI8D) + '8“)',6’[7])1 K4 ()g(s) ds
€10,

t
+ (LpRator+ B A=t ) [} ears o as

+max{fO R (t,9)g(s) ds, [ B (t,9)8(s) ds}}) <1. (10.1.2)

where

frr = ess sup{’% : (tw) € 10,11 x [—p, pl}.

Then we have iK(T,KP) = 1.

Proof. We showthatTu # AuforallA > 1whenu € QKP, which implies that iK(T,Kp) =
1. In fact, if this does not happen, then there exist u with |u] = p and A > 1 such that
Au@) = Tu(t), thatis

Au(t) = y@)alul + 6@)Blul + Fu(?). (10.1.3)
Therefore we obtain
Aalu] = alylalul + a[818[ul] + a[Fu]

and

ABIu] = Blylalul + B1618[u] + B[Ful.

A—alyl =—ald] ) (a[u]) B (a[Fu])
(—B['y] A=pB161) \Brul) ~ \BIFul )" (10.1.4)

Thus we have
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Note that the matrix that occurs in (10.1.4), due to (Cy)—(Cy), satisfies the hypothesis of
Lemma|10.1.3| so its inverse is order preserving. Then, applying its inverse matrix to both sides

of (T0.1.4), we have
(a[u]) ZL(A—B[S] al6] )(a[Fu])
Blul) D, \ Blyl A—alyl)\B[Ful)
By Remark[10.1.4] we obtain that
(Z’EZ}) <3 (1 Zi’[ffy[]g] 12 [cf[]v]) (EE?Z%) (10-1:5)
Hence, from (10.1.3) and (10.1.5) we get

I'}'( )|

AMu ()] <=—=—((1 - BLoDalFu] + a[618[Ful)

_'5“)'«1 ~ aly)BIFu) + BlylalFul) +IFu()l.

Taking the supremum over [0, 1] gives

Ap < pf PP (f?é‘i]{(wol(l ,8[8]>+'3“)'ﬂ[«y])f K, (9)g(s) ds
(S

t
+(w<)| DI w]))jolch(s)g(s)ds

+max {fo k (t,9)g(s) ds, [k (t,9)2(s) ds}}) :

From (10.1.2) we obtain that Ap < p, contradicting the fact that A > 1. [ |

Remark 10.1.6. In similar way as in [180] (where the positive case was studied) we point out
that a stronger (but easier to check) condition than (I/I,) is given by the following.

fre l("””u 5[8]>+”8”B[v])1 Ka®)g(s) ds
("7” [3]+@(1_ [ry]))fOIICB(s)g(s)ds+%] <1

where

1 = sup {max{f kt(t,s)g(s)ds, f k™ (t, s)g(s)ds}}

m te[0,1]

Note that, since max{k*,k~} < |k|, the constant m provides a better estimate on the
growth of the nonlinearity f than the constant

sup f Ik (t,s)lg(s) ds,

te[0,1]

used in [30,/34,66,69,70,87,93,194,97,99,/100, 134].
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Remark 10.1.7. If the functions vy, 0, k are nonnegative on [0, 1], we can work within the cone
K N P, regaining the condition given in [180], namely

For ((sup (B2 1 - 8181) + 2L 811) [ ey 91z (o) ds

te(o, 1]

e (LD 01514 2D 1 aly)) [} Kp (01 ds + [kt 0)g) ds}) < 1

where

for —esssup{ : (t,u) € [0,1] x [0, p]}

f,
p
Lemma 10.1.8. Assume that

(Ig) There exists p > 0 such that

fp’p/c ( inf {(ry( )(1 BLoD) + 8(t),é’[fy])f Ky(s)g(s)ds

tela,b]
- (7( Lars1+ 28 1 -« [fy])) [* kp©)g©) ds + [*kit,9)g(s) ds}) >1,

(10.1.6)

where

f@u)

fp,p/c = essinf{ : (t,u) € [a,b] x [p, ,o/c]}

Then we have i (T, Vp) = 0.

Proof. Lete(t) = folk(t,s) dsfort € [0, 1]. Then, according to (Cs), (C3) and (C;), we
havee € K\{0}. We show thatu + Tu + Aeforall A > 0andu € 8Vp which implies that
ig(T,V ) = 0. Infact, if this does not happen, there are u € BVP (andsofort € [a,b] we
have minu(t) = pand p < u(t) < p/c),and A > 0 with

u@) =Tu(t) + Ade(t) =y@)alu] + S)Blul + Fu(t) + Ae(t).

Applying & and ,6’ to both sides of the previous equation we get

(1—&[7] —a[0] ) (a[u]) _ (cz[Fu] +/\a[e]) - (a[Fu]) (10.17)
—-Blyl 1-p101) \ Blul BIFu] + ABlel ) = \ B[Ful ) -

Note that the matrix that occurs in (10.1.7), due to (Cg)-(Cg), satisfies the hypothesis of
Lemmas|10.1.3] so its inverse is order preserving. Then applying the inverse matrix to both
sides of (10.1.7)) we have

(a[u])> (1 B161  ald] )(a[Fu])
Blul Blyl  1—alyl) \BlFul)"
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Therefore, fort € [a, b], we obtain
u(t) 2 (7( L1 8181 + 3‘”6[71) alFu]
(7( L o187+ 28 8(” (1-a [ry]))B[Fu] + Fu(t) + Ae(?)
(W)u BL8D) + 3‘t)6[ry])f K4 (©)g(®)f (s,u(s)) ds

+ (7( ) ald0] + M(1— ['y])) fab Kp(s)g(s)f (s,u(s)) ds
+ fa k(t,5)g(s)f (s,u(s)) ds.
Taking the infimum for ¢t € [a, b] then gives

p = minu(t)

201 00 ( inf {(7( )(1 BLOD) + S(t)ﬁ[vl)f Ka(s)g(s)ds

t€la,b]

+ (7() al8] +M<1— [v])) ffICB<s>g(s)ds+ffk(t,s>g(s>ds}),

contradicting (10.1.6). |

Remark 10.1.9. We point out, in similar way as in [180], that a stronger (but easier to check)
condition than (Ig) is given by the following.

cslloll

fp,p/c ((#(1 _18[8])
(e

5—BLv1) [ENOEOLE
c3||8||

1
A-alyD) [ ICB<s>g(s>ds+M(a’b))>1,

where

1 —
M(Cl,b) tE[ab f k(t,s)g(s) ds.

We now combine the results above in order to prove a Theorem regarding the existence of
one, two or three nontrivial solutions. The proof is a direct consequence of the properties of
the fixed point index and is omitted. It is possible to state a result for the existence of four or
more solutions, we refer to Lan [123] for similar statements.

Theorem 10.1.10. Assume conditions (C)—(Cyg) are satisfied. The integral equation (10.1.1)
has at least one nonzero solution in K if any of the following conditions hold.

(S1) There exist pq, py € (0, 00) with p;/c < py such that (Igl) and (1/1,2) hold.

(Sy) There exist p1, py € (0, 00) with p; < py such that (I/%l) and (122) hold.
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The integral equation (10.1.1) has at least two nonzero solutions in K if one of the following
conditions hold.

(S3) ;hze exist Py, Pa, P3 € (0,00) with py /e < py < pg such that (121)' (Ifl,z) and (123)
old.

(Sy) There exist py, ps, p3 € (0,00) with p; < py and pyfe < pg such that (Ifl)l), (122)
and (I3.) hold.

The integral equation (10.1.1) has at least three nonzero solutions in K if one of the following
conditions hold.

(S5) There exist pq, Py, P3, P4 € (0,00) with py/c < py < pgand ps/c < py such that
(Igl), (I})z), (123) and (If1,4)hold.

(Sg) There exist py, P, P3, s € (0,00) with p; < py and py/c < pg < p4 such that
(1/1)1), (122), (I3,) and (124)ho/d.

f(t,u)

M mp,
P f(t,u)

Mp,

mp, mp,

N

0 1
»
[ 1 I, Iy, |

Py 0 Py 3 p.lc u Py 0 Py 3 p,/e P u

Figure 10.1.1: lllustration of conditions (S) (left) and (S3) (right).

10.2 Some nonexistence results

We now consider the auxiliary Hammerstein integral equation
1
u(t) = jo kg(t,s)g(s)f (s,u(s)) ds := Su(t), (10.2.1)

where the kernel kg is given by the formula

t
kg (t,s) =% [(l —,8[3])]CA(8) + “[8]]CB(S)]
+% [Bly1CA(s) + (1 — alyDKp(s) | +k(2,s).

The operator S shares a number of useful properties with T, firstly the cone invariance, conti-
nuity and compactness, the proof follows directly from (C;)-(Cyg) and is omitted.



10. Some nonexistence results 199

Lemma 10.2.1. The operator S defined in (10.2.1) maps K into K and is compact and contin-
uous.

A key property that is also useful is the one given by the following Theorem; the proof is
similar to the one in [180, Lemma 2.8 and Therem 2.9] and is omitted.
Lemma 10.2.2. Theoperators S and T have the same fixed pointsin K. Furthermoreifu + Tu

We define the constants

1 sup {max{folkg(t,S)g(S) ds,folkg(t,s)g(s)ds}},

mg ¢€[0,1]

1 1 ' b
Moal) ~ Mg = b Lo kst 908(s) ds,

and we prove the following nonexistence results.

Theorem 10.2.3. Assume that one of the following conditions holds:
(1) f(¢t,u) < mglul| foreveryt € [0,1] andu € R\{0},

(2) f(t,u) > Mgu foreveryt € [a,b] andu € R™.
Then the equations (10.1.1) and (10.2.1)) have no nontrivial solution in K.

Proof. In view of Lemma|10.2.2|we prove the Theorem using the operator S.

(1) Assume, on the contrary, that there exists © € K, u=0 such that u = Su and let
to € [0,1] such that [lu]| = |u(¢y)|. Then we have

lell =lu (to)| = Uol ks (to,8)8(S)f (s,u(s)) d8|
<max { [ k5 (to, )& (5)f (s,u(5)) ds, [, k5 (to, )8 ($)f (s,u(s)) ds}
<max { [ k% (o, $)8 (S)mglu(9)|ds, [\ kg (t, )8 ()ymlu(s)| d s |
<max { [ k% (0,98 (5) s, [ 5 (t,)8(s) ds} mgllull < Jul,

a contradiction.

(2) Assume, on the contrary, that there exists u € K, u=0 such that © = Su and let
n € [a,b] be such that u () = min,c, , u(?). Fort € [a,b] we have

u(t) = [ ks (t,9)g()f (s,u(s)) ds > [" kg (t,9)g(o)f (s,u(s)) ds
>Mg Lb kg(t,s)g(s)u(s)ds.
Taking the infimum for ¢ € [a, b], we have
. . b
tgg;g] u(t) > Mg tel[%,f;)] fa kg(t,s)g(s)u(s)ds.
Thus we obtain

u() >Mgu()) inf [Tk (t,5)g(s) ds = u ),

a contradiction. [ |
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Figure 10.2.1: Illustration of the conditions in Theorem[10.2.3| f cannot intersect one of the
shaded areas in each case.

10.3 Eigenvalue criteria for the existence of nontrivial solutions

In this Section we assume the additional hypothesis that the functionals a and 3 are given by
positive measures.

In order to state our eigenvalue comparison results, we consider the following operators
on C[0,1].
Lu(t) := fol kg (t,s)lg()uls)ds, Lu(t) = Lb kL (t,8)g(s)u(s) ds.
By similar proofs of [180, Lemma 2.6 and Theorem 2.7], we study the properties of those op-

erators.

Theorem 10.3.1. Assume properties (C,)—(Cg) hold. The operators L and L are compact
and continuous and map P into P N K.

Proof. Note that the operators L and L map P into P (because they have a positive integral
kernel) and are compact. We now show that they map P into P N K. We do this for the
operator L, a similar proof works for L.

Firstly we observe that

ks (¢, >|<'7()'<<1 BISHIK,(s) + al 1K (s )>+'3“)'(/5’w]1q4(s>
+<1—a[ry])/c3(s)>+|k<t,s)|
M 12 Bre e, (s) + LSy (s)) + 1O ZHBIYIKA )

+ (1 —alyD)Kp(s)) + |k (t,s)]
<T(s) + P(s) =: V(s),

where

1) =20 (1 - BN KA + al1K5(5))
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|5||

(,3[7]1CA( )+ (1—aly)Kg(s)).
Moreover, we have, fort € [a, b],

2||f)/||

ks (t,8)| =kg(t,8) = [(1=BI6D K, (s) + a[61Kp(s) ]

3|| I

[Bly1KA(s) + (1 — alyDKp(s) ] + ¢, P () =W (s),

and thus

tér[nn kg(t,s) =cW(s). (10.3.1)

Also we have g ¥ € L1 ([0, 1]) and we obtain that, foru € Pandt € [0, 1],
Lu(t) < [} ¥(s)g(s)u(s) ds,
in such a way that, taking the supremumont € [0, 1], we get
ILul < [ ¥ (s)g(s)u(s) ds.
On the other hand,

min Lu(t) 2 cfl W (s)g (s)u(s) ds = clLul.

tela,b]

Furthermore, since @ and 3 are given by positive measures,
11
a[Lu] = J‘o fo kg (t,8)lg(s)u(s)dsdA(t) =0

and

BlLul = [ [ kst 5)lg(s)u(s) dsdB(t) > 0.
Hence we have Lu € K. [ |

We recall that A is an eigenvalue of a linear operator I' with corresponding eigenfunction ¢
if o # 0and A = I'p. The reciprocals of nonzero eigenvalues are called characteristic values

of I'. We will denote the spectral radius of I' by r(I') := lim, IIF”IITIL and its principal
characteristic value (the reciprocal of the spectral radius) by w (I') = 1/r(I").

The following Theorem is analogous to the ones in [180}183] and is proven by using the facts
that the considered operators leave P invariant, that P is reproducing, thatisC(I) = P — P,
combined with the well-known Krein-Rutman Theorem. The condition (Cj) is used to show
thatr (L) > 0.

Theorem 10.3.2. The spectral radius of L is nonzero and is an eigenvalue of L with an eigen-
function in P. A similar result holds for L.

Remark 10.3.3. Asaconsequence of the two previous theorems, we have the above mentioned
eigenfunctionisin PN K.



202 10.3. Eigenvalue criteria for the existence of nontrivial solutions

We use the following operator on C ([a, b]) defined by, fort € [a, b],
Lu(t) = Lb kL(t,5)g(s)u(s) ds

and the cone Py, ,; of positive functions in C([a, b]).

In the recent papers [177,/178], Webb developed a theory valid for u-positive linear op-
erators relative to two cones. It turns out that our operator L fits within this setting and, in
particular, satisfies the assumptions of Theorem 3.4 of [178]. We state here a special case of
Theorem 3.4 of [178] that can be used for L.

Theorem 10.3.4. Suppose that there existu € P, ,;\{0} and A > 0 such that
Au(t) = Lu(t), fort € [a,b].

Then we have r(L) < A.

We define the following extended real numbers.

ess sup f(¢,u) ess inf f(¢,u)
0o T  te[0,1] . t€la,b]
f° =lim , [o= lim ,
u—0 |u| 0 u
u—-0+t
ess sup f(¢,u) ess inf f(t,u)
o T te[0,1] : t€la,b]
= lim , [oo = lim
lze]>+o00 || ¥y u

In order to prove the following Theorem, we adapt some of the proofs of [183, Theorems
3.2-3.5] to this new context.

Theorem 10.3.5. We have the following.
(D If 0<f° < (L), then there exists p, > 0 such that iK(T,KP) = 1 for each
p € (0,p0].
(2) If 0 < f* < u(L), then there exists R, > 0 such that ix (T,Kz) = 1 for each
R >R,.
(3) lf,u(fl) < fo < oo, then there exists p, > 0 such that iK(T,KP) = 0 foreach p €
(07 /00]
(4) If,u,(i) < fo < oo, then there exists Ry > 0 such that ix (T,Kp) = 0 for each
R>R,;.
Proof. We show the statements for the operator S instead of T', in view of Lemma|10.2.2

(1) Let 7 € R* be such that f° < (L) — 7. Then there exists p, € (0, 1) such that for
allu € [—py, pol and almost every ¢ € [0, 1] we have

ftu) < (u@) —7)lul.

Letp € (0, pyl. We provethatSu # Auforu € 8KP and A > 1, which implies iK(S,Kp) =
1. In fact, if we assume otherwise, then there exist u € 8Kp and A > 1suchthat Au = Su.
Therefore,

w1 SAu@®)] = 1Su®)] = [ [ ks t,9)g () (s,u(s)) ds
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< [ ks (t,9)lg (9)f (s,u(s)) ds
<(pu@) —7) fol ks (£,8)lg (s)lu(s)lds = (u(L) — 7)Llul(?).
Thus, we have, fort € [0, 1],

lul(¢) <(u(L) — 7)L[(w (L) — 7)Llul(#)]
=(u(L) — 7)2L2%ul@) < - < (L) — 7)"L " ul(?),
thus, taking the norms, 1 < (u (L) — 7)™|IL™|, and then

pw() —7

1
1< (u(L) —7) lim L= = <1,
(w(L) =) lm L") = =

a contradiction.

(2) Let 7 € R such that f* < (L) — 7. Then there exists R; > 0 such that for every
|u| > R, and almost every ¢ € [0, 1]

ftu) < (w@) —7)lul

Also, by (C,) there exists gle e L*([0,1]) such that f(¢t,u) < qSRl(t) forallu €
[-R,,R,] and almost every ¢t € [0, 1]. Hence,

f@u) < (@) —7)ul+ gle(t) forallu € R and almost every t € [0,1]. (10.3.2)

Denote by Id the identity operator and observe that Id —(w (L) — 7)L is invertible since
(u (L) — 7)L has spectral radius less than one. Furthermore, by the Neumann series expres-
sion,

[d—(u(@) =ML = ) [(w(@) - DL
k=0

therefore, [Id — (u (L) — 7)L]~! maps P into P, since L does.
Let

C:= Lb D (s)g(s) g, (s) dsand Ry := | [Id — (u(L) — T)L]'C].

Now we prove that for each R > R,, Su #+ Au forallu € dKgz and A > 1, which implies
ix (S,Kp) = 1. Assume otherwise: there exists u € JKp and A > 1 such that Au = Su.
Taking into account the inequality (10.3.2), we have for¢ € [0, 1]

@)1 < Mu()] =ISul = | [ ks (¢, )8 &)f (5,u()) ds| < [ ks (t,9) g (6)f (5,u(s)) ds
S(uIL) =) [J kst ®u(s)lds + C = (L) —)LIul@®) +C,

which implies
[Id —(u (L) — 7)L]lul () < C.

Since (Id —(u (L) — 7)L) ™! is nonnegative, we have

lul(t) < [Id—(u(L) —7)L]'C < R,,.
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Therefore, we have |ul| < R, < R, a contradiction.

(3) There exists p, > 0 such that forallu € [0, py] and allt € [a,b] we have

ft,u) = u@)u.

Let p € (0,p0]. Letus prove thatu # Su + Ay, forallu in JK, and A > 0, where

¢, € KNP isthe eigenfunction of L with lo1ll = 1 corresponding to the eigenvalue 1/u (f,).
This implies that iK(S,KP) = 0.

Assume, on the contrary, that there exist u € QKP and A > O such thatu = Su + /\901.
We distinguish two cases.

Firstly we discuss the case A > 0. We have, fort € [a,b],

u(t) = [T ks(t,9)g()f (5,u(s)) ds + Ao, (t)
> [ k% (5,98 (9)f (5,u()) ds + A, (1)
>u(L) [kt 9)gs)u(s) ds + Aoy (6) = p@)Lu ) + Ao, @)

Moreover, we have u (t) > A ¢, (¢) in [a,b] and then Lu@) > /U~L<pl(t) = @1 (t) in

[a,b] in such a way that we obtain b
u(t) = pL)Lu(t) + Aoy (t) =219, (t), fort € [a,b].
By iteration, we deduce that, for¢ € [a, b], we get
u(t) =2nle,(t) foreveryn € N,

a contradiction because |ull = p.
Now we consider the case A = 0. Let € > 0 be such that for allu € [0, p,] and almost
every t € [a,b] we have
ftu) = (ud) +e)u.
We have, fort € [a, b],
u(t) = [ ks(t,5)g($)f (5,u(s)) ds

> [P k5,98 )f (s,u() ds = (u(@D) + o) Lud).

Since Zgol(t) = r(i)¢1(t) fort € [0,1], we have, fort € [a, b],
Loy (t) =Lo; () =rL) 91 (1),
and we obtain 7 (L) = r(L). On the other hand, we have, fort € [a, b],
u®) 2 (wd) +e)Lu@) = (@) +e)Lu(),
where u(¢) > 0in [a, b]. Thus, using Theorem[10.3.4, we have

rL) < N; and, therefore, r(L) < %
(L) +e€ w(L) +e
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This gives /L(f;) +e< ,u(i), a contradiction.

(4) Let R, > O such that 3
ftuw >plu

forallu > cRq, casin (10.3.1), and all ¢ € [a, b].
let R > R,;. We prove thatu # Su + A¢, forallu in dK; and A > 0, which implies
ix (S,Kg) =0.

Assume now, on the contrary, that there exist u € JKp and A > 0 such thatu = Su +
A . Observe that for u € JKp, we have u(t) > cllull = cR > cR, fort € [a,b]. Hence,
we have f (t,u(t)) > ,LL(IL)u(t) fort € [a,b]. This implies, proceeding as in the proof of
the statement (3) for the case A > 0, that

u(t) = p@L)Lu(t) + Ao, (t) =219, (), fort € [a,b].

Then, fort € [a,b], we have u () > n/hpl(t) for every n € N, a contradiction because

lull = R. The proof in the case A = 0 is treated as in the proof of the statement (3). [ |
n(D)u
0 u

Figure 10.3.1: lllustration of conditions (1) and (4) of Theorem|10.3.5| being satisfied simul-
taneously.

The following Theorem, in the line of [180,/184], applies the index results in Lemmas|(10.1.5
and(10.1.8/and Theorem|10.3.5|in order to get some results on existence of multiple nontrivial
solutions for the equation (10.1.1).

Theorem 10.3.6. Assume that conditions (C1)-(C8) hold with a, [3 given by positive mea-
sures.

The integral equation has at least one nontrivial solution in K if one of the following
conditions holds.

(Hy) 0<f°<u(L)andu(L) <f., < oo.
(Hy) 0<f° < u(L)andu(l) <fy < oo.

The integral equation (10.1.1) has at least two nontrivial solutions in K if one of the following
conditions holds.
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(Z)) 0<f° <L), f,,. >Ms(a,b) forsomep >0,and 0 < f* < p(L).
(Zy) (L) <fy < oo, f7PP < mg for some p >0, and u(L) < f., < .

The integral equation (10.1.1) has at least three nontrivial solutions in K if one of the following
conditions holds.

(Ty) Thereexist0 < p; < py < 0o, such that

p(L) < fo < oo, fP1P1 < myg, >Mg(a,b), 0<f><u).

fP2aP2/C
(Ty) Thereexist 0 < p; < cpy < 00, such that

0<7°<ul, > Mg (a,b), P2 <mg, uw(l) <f, < oco.

fpl,pl/c

It is possible to give criteria for the existence of an arbitrary number of nontrivial solutions
by extending the list of conditions. We omit the routine statement of such results.

The following Lemma sheds some light on the relation between some of these constants.

Lemma 10.3.7. The following relations hold
Mg(a,b) > u(L) = u(L) = mg.

Proof. The fact that u (L) > mg essentially follows from Theorem 2.8 of L183]. The comment
that follows after Theorem 3.4 of [183] also applies in our case, giving u (L) > w(L).

We now prove Mg (a,b) > ,u(f,). Let ¢ € P N K be a corresponding eigenfunction
of norm 1 of 1/u (i) for the operator L, that is P = /L(1~L)1~L(<p) and [l¢ll = 1. Then, for
t € [a,b] we have

. (b = ) b
p@&) =pd) [ ks (t,98() p(s) ds 2 (L) min 9@ [ ks (t,9)g(s) ds.
Taking the infimum over [a, b], we obtain

min () = u(L) min ¢(&)/Ms(a,b),

tela,b]

that is Mg (a,b) > u(L). |

In order to present an index zero result of a different nature, we introduce the following
operator

1
L, u(t) := fo EL(t,9)g(s)u(s) ds,
for which a result similar to Theorems[10.3.1]and [10.3.2/hold.
In the next Theorem we use the following notation, with ¢ as in (10.3.1)),

S EY 1 i Esteee) ds
’ C te[0,1] f:kg(t,s)g(s)ds'

fo = lim

u—0 Iul
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Theorem 10.3.8. If i (L,) < fy—Cf°, thenthereexists p, > 0such thatforeach p € (0, p,],
ifu # Tu foru € JK , it is satisfied that iK(T,Kp) = 0.

Proof. Firstly, since u € K we have, fort € [0,1],
[ Est,9)8®)us)lds < [ k5 t,9)8()lulds <& [ kY (£, 9)g(s)clulds
<é [" k5t 9)g(s)lu(s)|ds < EL, Jul(t).

Observe that the hypothesis w (L, ) < fo —éf° impliesfo,f0 < oo. Let pg > 0 such that
ftw) 2 (uLy) +Ef)ul and f (¢,u) < (F° + (L) /2) lul

forallu € [—py, pol and almost all £ € [0, 1].
Let p < po. We will prove thatu # Su + A ¢, forallu in JK,and A > 0 where ¢, € K is
an eigenfunction of L related to the eigenvalue 1/u (L, ) such that [|¢_ || = 1.

Assume now, on the contrary, that there exist u € 8KP and A > O suchthatu(t) =
Su(t) + Ay, (t) forallt € [0,1]. Hence, we have

u(t) = — [ kg (t,9)gG)f (s,u(s)) ds + [ k5 (t,9)g()f (5,u(s)) ds + L, (B).
On one hand, we have
u(t) + [ k5 (t,9)8(S)f (s,u(s)) ds K@+ [f° + 2p @)1 [ k5 (¢,9)g()uls)|ds
<l (@] +E[f° + (L) 1L ful ).
On the other hand, we have
Ji kst 98 6)f (5,u(8)) ds+ Ao, (@) = ((Ly) +EFO)Lylul(t) + Ao, ().
Therefore, we obtain
(w(Ly) +EFO)L Iul(t) + Ao, <@+ & [F0 + 2p L) 1L, lul®),
or, equivalently,

S OLJul@) + Ao, (8) < lu(®)].
Hence we get

Ao, @) <lu@)l.
Reasoning as in the proof of (3) of Theorem|10.3.5| we obtain

u @ = A L)L, (1) + Ao, (&) = SAe, @),

By induction we deduce that [u (2)| > (% + 1) A g, (2) foreveryn € N, a contradiction since
lul = p. u

As in Theorem [10.3.6 results on existence of multiple nontrivial solutions can be estab-
lished. We omit the statement of such results.

Remark 10.3.9. The hypothesis in the Theorem imply that ¢ € (0,1). Also, iff0 =
f° = f, then the hypothesis in the Theorem is equivalent to u(L*) /(1 —¢) < fo <
oo. Furthermore, if [a,b] = [0,1],then L = LT = L and the growth condition becomes
w(L) < fy < oo, which is condition (3) in the Theoremforf0 < oo.
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10.4 Related boundary value problems

In this Section we study the properties of the Green’s function of the boundary value problem
eu” (t) + w?u(t) =y), u' (0)=u'(1) =0,

wherey € L1([0,1]), e = £1and w € R*. We discuss separately two cases.

10.4.1 CASEe = —1

The Green’s function k of boundary value problem

—u" () + @®*u®) =y@®), u(0)=u'(1)=0,
is given by (see for instance [170] or [195]),

coshw(l1—=t)coshws, 0<s<t<1,

inhwk(t,s) :=
@sinhwk(t,s) {cosha)(l—s)cosha)t, 0<t<s<l

Note that % is continuous, positive and satisfies some symmetry properties such as

k(t,s) =k(s,t) =k(1—¢,1—35).

Observe that g—]: (t,8) < Ofors < tand %(t,s) > (0 fors > t. Therefore we choose

D (s) := sup k(t,s) =k(s,s).

t€[0,1]
For a fixed [a,b] C [0, 1] we have

, E(t,s) min{coshwa,coshw(1l—2>)}
c(a,b) := min min A .
te€la,b]s€[0,1] P (8) coshw

The choice of g = 1 gives
1 = sup folk(t,s) ds,

m te[0,1]

and, by direct calculation, we obtain that m = w?.

The constant M can be computed as follows
1 b
—— = inf k(t,s)ds
M (a,b)  telapb] fa (¢,5)
sinh wa cosh w (1 —t) + sinh w (1 — b) cosh wt
=— — sup - .
W2 telab] w? sinh w

Let £, (¢) := sinhwacoshw (1l —¢) + sinhw (1 — b) coshwt. Then we have £7(¢) =
w?E(t) > 0. Therefore the supremum of £, must be attained in one of the endpoints of the
interval [a, b]. Thus we have

1 1 max{él(a); él(b)}

M (a,b) ~ w? w? sinh w
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Note that
£,(b) — £, (a) = —2sinh? (b%aa)) sinhw(a+b—-1),

and therefore, £, (b) > £, (a) ifand onlyifa + b < 1. Hence, we have that 1/M (a,b) =

1 1 sinh wa coshw (1 —b) + sinhw (1 —b) coshwb, a+b<1,
w?  w?sinhw

sinh wa coshw (1 —a) + sinhw(1 —b) coshwa, a+b > 1.

10.4.2 CASEe =1

The Green’s function & of the boundary value problem

u’(t) + 0’u(t) =y@®), u'(0)=u'(1) =0,
is given by
cosw(l—t)cosws, 0<s<t<l1,

wsinwk(t,s) :=
cosw(l—s)coswt, 0<t<s<l1.

In the following Lemma we describe the sign properties of this Green’s function with respect
to the parameter w. The proof is straightforward and is omitted.

Lemma 10.4.1. We have the following.

(1) k is positive for w € (0,7/2).
(2) k is positive for w = 7|2 except at the points (0,0) and (1, 1) where it is zero.
(3) k is positive on the strip (1 — 7/ (2w), 7]/ (2w)) X [0,1] ifw € (72, 7).

(4) if w > , there is no strip of the form (a,b) % [0, 1] where k is positive.

Consider w € (0,7). Fixs € [0,1] and note that %(t,s) never changes sign fort €

[0,s) norfort € (s,1]. Thus we can take

®(s) : = sup |k(¢,s)| = max{|k(0,s)],|k(1,s)l],|k(s,s)I}

te[0,1]
max{|cosw (1 —s)|,|cos ws|,|coswscosw (1 —s)|}

w Sin w
max{cos w (1l —s),cos ws}

w sin w

The last equality holds because cos(ws) = —cosw(l —s) > 0fors < 1 - 7/(2w) and
cos(l —ws) = —cosws = 0fors > 7/ (2w).
On the other hand, for [a,b] C (max{0,1 — 7/ (2w) }, min{1, 7/ (2w) }), we have

min {k(a,s),k(b,s)}, s € [0,1]\[a,b],

inf]k(t,s) - {min{k(a,s),k(s,s),k(b,s)}, s € [a,b].

tela,b
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Now, we study the three intervals [0,a), [a,b] and (b, 1] separately.
If s € [0,a), we have

) min{k(a,s),k(b,s)}
inf
s€[0,a) D (s)
min {cos (1 — a) cos ws, cos w (1 — b) cos ws}

= inf
s€[0,a) max{cos w (1l —s),cos ws}

COS ws

= inf min{cosa)(l —a),cosw(l—>b),cosw(l—a)——————,
cosw(l—23s)

s€[0,a)
COS WS
1-b —}
cos )cosa)(l—s)
=min {Cosw(l —a),cos (1 —b),cos wa,cosw(1l — b)M}
cosw(l—a)

=min {cosw (1l —a),cosw (1l —b),coswa},

COS ws

cosw(l—3s)
7/ (2w)}, 1] and the function cosine is decreasing in [0, 77 ].

where these equalities hold because is a decreasing functionfors € [max{0, 1—

If s € [a,b], we have

) min{k(a,s),k(s,s),k(b,s)}
inf
s€la,b] (13(3)
min {cos wa cos w (1 —s),cos wscosw (1l —s),cos (1l — b) cos ws}

= inf
s€la,b] max{cos w(1l — s),cos ws}
= inf min{cos wa,cos w(1l —b),cos ws,cosw (1 —s),cos waw
s€la,b] COS WS
1-b COS WS
cos )cosa)(l—s)}
=min {cos wa,cos w (1 — b),cos wb,cosw(l—a)}.
Ifs € (b, 1]), we have
) min{k(a,s),k(b,s)}
in
se(b,1] D (s)
nf min {cos wa cosw (1l —s),coswbcosw(l—s)}
= in
se(b,1] max{cos w (1l —s),cos ws}
. . cosw(l—s) cosw(l—239)
= inf min{ cos wa, cos wb,cos wa——— =, cos wWb————=
sE(b,1] COoS ws coS ws
. cosw(1l—-0>)
= min 4 cos wa, cos wb, cos wa————,cosw (1 — b)
cos wb

=min {cos wa, cos wb,cosw (1 —b)}.
Therefore, taking into account these three infima, we obtain that

by i= inf “letan G 1 b 1-b
c(a, )._861[1(1),1] D) = min {cos wa,cos w (1l —a),cos wb,cosw (1 —>b)}.
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In order to compute the constant m we use Lemma|10.4.1/and the fact that £ (¢,s) = k(s,t)
forallt,s € [0,1].
If o € (0,7/2), the function k& is positive and therefore

Ifw € [7/2,7), we have

fL o, kts)ds = — oS0t te[0,1— ),
1> w? sinw 2w
1 T T
L) = [k (ts) ds =1 —, tell-2, I,
e 1l cosw(l—1%) -
J‘OZ k(t,S) ds = EW, t e (%,1]
Since 1
0< i folk(t,s) ds = f01k+ (¢,8)ds — fol k™ (t,s)ds,
we obtain that fol kt(t,s)ds > fol k™ (t,8) ds, in such a way that
— — 02 a
m = 1/tr€r%81’>1(] {(t) = w? sinw.
Also we have
1 _ 1 cosw (1l —t) sinwa + coswt sinw (1 — b)
M(a,b) @? icfapb w2 sin w '
Denote by

E5(t) :=cosw (1l —t) sinwa + cos wtsinw(1 — b),
and observe that
E5(t) = w? sinw (folk(t,s) ds— fabk(t,s) ds) ,
and therefore we have £5(¢) = 0for¢ € [a,b]. Then, we have £;(a) £;(b) =
—4w? cos [%(2 —a+ b)] cos [%(a + b)] sin? [%(a - b)] sinw (1 — b) sin wa.
Now, Eé (a)fé(b) < Oifandonlyif2 —7/w < a + b < 7/w, which is always satisfied for

[a,b] C 1 —7/(2w),7/(2w)). In such a case, 53 has a maximum in [a, b], precisely at
the unique point ¢, satisfying

sin w sin wa
coswsinwa + sinw (1 — b)

sin wt, = cos wt.

Thus we obtain &5 (¢,) =

cos w cos wb cos wt, + cos w sin wa cos wt
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— cos w sin wb cos wt, + sin w sin wa sin wt,

. . (sin w sin wa)?
= | cos w cos wb + cos w sin wa — cos w sin wb +

coswsinwa + sinw (1 — b)
- COS wi,

(sin w sin wa)?
coswsinwa + sinw (1 — b)

\I( sin w sin wa )2+1
coswsinwa + sinw (1 — b)

Remark 10.4.2. In the particular case a + b = 1, we have f3 (t) = sinwal[cosw (1 —1t) +
cos wt]. In this case, observe that £5 (t) = £5(1—1) andrecall that £ (t) = —w?£5(¢) =0
(53 is not constantly zero in any open subinterval). Therefore the maximum is reached at the
only point wheret = 1 — ¢, thatis, t = 1/2. Hence we obtain

€oS w ¢cos wb + cos w sin wa — ¢os w sin wb +

1
M(a,b) w? sin w

w .
1—2cos§sma)a

Remark 10.4.3. The constants m, M (a,b), c(a, b) and the function ® improve and comple-
ment some of the ones used in [159-161,/170,(171/,1194,195].

10.5 Examples

In this Section we present some examples in order to illustrate some of the constants that occur
in our theory and the applicability of our theoretical results. Note that the constants that occur
are rounded to the third decimal place unless exact.

In the first example we study the existence of multiple nontrivial solutions of a (local) Neu-
mann boundary value problem.

Example 10.5.1. Consider the boundary value problem

2
u’ () + (71_7;)2u(t) B %ﬁi)e—”'w”', t€[0,1], u'(0) =u'(1) =0, (105.1)

where 74,75 > 0.

In this case @ = Z and, by Lemma|10.4.1} the Green’s function is positive on the strip
(1/7,6/7) x [0, 1]. We illustrate the Remark[10.4.2| by choosing [1/4,3/4] C (1/7,6/7)
and we prove, by means of Theorem the existence of two nontrivial solutions of the
boundary value problem (10.5.1) which are (strictly) positive on the interval [1/4, 3/4].

2

TU
In order to do this, note that in our case we havef (t,u) = ﬁe"“'u' andf? =f> =0.

Furthermore, using the results in the previous Section, we have

c(1/4,3/4) = cos (1—2) =% 2 V2 + V2 = 0.195, (105.2)
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and
M=M(1/4,3/4) = 7.029.

Henceforth we work in the cone

K={ueC[0,1]: < u(t) =clull},

with ¢ given by (10.5.2).

We set 1
€~ 2055 M = 10.289.
Inc

for=2

We now prove that if 7, /74 > fo, then the condition (Z,) is satisfied. Let

2

Tu? 1 ~
e ™" = Zr ue ", u € [0, +o0).

fw) = tel[%,fl] 1+41¢2 2

Note thatf’ only vanishes at 0 and 2/7‘2,fis strictly increasing in the interval (0, 73) and is
2
strictly decreasing in the interval (%, +00). Thus f assumes the maximum in the unique point
2
2/75 and, since f(0) = 0and lim f(x) = 0, the inverse image by f of any strictly positive
X—+00

real number different to f(%) has either 2 or no points. Let forx € [0, +o0)
2

[(x) :=f(x) — f(x]c).

Take e € (0, ?) and note that /(¢) < 0 in view of the strict monotonicity off. Moreover, if
2
n> 3, thenl(7n) > 0. Since the function [ is continuous, there exists a pointx € (¢, 1) such
T2
that/(x) = 0, thatis, f (x)=f (¥/c) = p. From the type of monotonicity of f, forx € [x,%/c]
we have p < f (x). Hence we have

2clne _ 2Inc

Foey — Fox = en2@loDglo o g = —2CMC gy SMC
F@ =f@e) =& =ent0ile > &= 22 8le = 7

Thus, if we impose p > M x, we obtain

2 2
M2 _ i <f@) =FGle) = 7 (ﬂ) ¢,
To(c—1) T

thatis, 7, /79 > fo.

We now present an example for a boundary value problem subject to two nonlocal bound-
ary conditions.

Example 10.5.2. Consider the boundary value problem

u” (t) + 0?u(t) =e O t € [0,1],
u (0) =u(0) +u(l), (10.5.3)
u' (1) = folu(t) sinrt d¢,
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where w € (7/2, 7). We rewrite the boundary value problem (10.5.3) in the integral form

Tu(t) =y alul + S®)Blul + [ kEt,9)f (s,u(s)) ds,
where

v(t) =cosw(l—1)/(wsinw), O(t) = cos(wt) /| (wsinw),

alu] =u(0) +u(l), Blu] = folu(t) sinwtdt.
In order to verify condition (S;) of Theorem[10.1.10} we take [a@,b] C (1-7/ (2w), 7/ (2w))
and let f (u) = e .

Note that the condition f*° = 0 implies that the condition (I;) is satisfied for p sufficiently
large (hence ix (T, Kg) = 1 for R big enough).

Now it is left to prove that i, (T, Vp) = 0 for p small enough (condition (Ig)).

We have
sin (%+a)) r cot (%)
aly] =a[d] = V2 osing 5[’}’] —6[8] = w3
D e Do) (7w — »?) sin(w/2) — (7 + 7 — w*) cos (%)
= w) =

(72w — w3) sin(w/2) ’
cos ws + cos(w[1 —s])

w Sin
7 cos ws cot (w/2) — w sin s + 7 sin ws

Ky(s) =

b

Kp(s) = 20 — w3

Observe that a[y], a[01, B[], BL01, K4 (s), Kg(s) = 0and a[y],B[0] < 1lforw €
(m]2,).
Also, we have D(w) > O for w € (7/2,7). In fact, D(w) is a strictly increasing function
(since D’ (w) > 0 forw € (0, 7)), (}i_)lgD(w) =—occandD(w) =1-— ﬁ > 0, so there is
a unique zero w, of D in (0, 7) but w, = 1.507 ... < 7/2.

Now, vy is increasing and 0 is decreasing, therefore cg = y(a)/y(1) = cos(w[l —al),
c3 = 6(b)/8(0) = cos wb. On the other hand, we have

fopre =F(ple) [ (ple) =e~Plc/p,
c(a,b) =min{cos wa,cosw (1l —a),coswb,cosw (1 —>b)},

fb Ky (s) ds =sina)b — sinwa + sir;a).(l —a) —sinw(1->5)
a w?sin w

w? (7% — Tw?) Lb Kg(s)ds =72 cot (%) (sin(bw) — sin(aw)) + 72 cos(aw)

K

— 72 cos(bw) — w? cos(ma) + w? cos(md).
Takinga + b = 1, we obtain

2csc (%) sin (%(w — 2aco))

wz

fab Ky(s)ds =

H
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2 (a)2 cos(7ma) — w2 cos(aw) + 72 cot (%) sin(aw))

K

fab Kg(s)ds =—

w? (m3 — mw?)
c = coswa.

Condition (Ig) is equivalent to

frpre dnf. {q(t,w,a) + fabk(t,s) ds} > 1,

tela,b

where q (¢, w,a) :=

2csc(w) (7rcsc (%) sin (%(a) — 2aw)) (meos(tw) + (m— w) (w + 7) cos(w — ta))))

T w2 ((77' —w)w(w+m7) — (—w?2+ 72+ 7) cot (%))
_ 2w csc(w) cos(ma) (sin(fw) — sin(w — tw) + w cos(tw))
Tw? ((77' —w)w(w+7) = (—02 + 72 + 7) cot (%))

Using Remark(10.1.9] it is enough to check

fp,p/c ) (tei[lg’fl;]q(taa)y a) +

1
— ) >1
M (a,b) )
It can be checked that infte[a’b] q(t,w,a) =q(a,w,a). Hence, we need

e Pl eoswa nog iy (q 7 1 — 2cos 2 sin wa
p 9 b

Since limp_>0 e Pl cos “%[p = +o0, the inequality is satisfied for p small enough and, hence,
we have proved that the boundary value problem (10.5.3) has at least a nontrivial solution in
the cone K.

w? sin w ) g 1

We now study an example that occurs in an earlier article by Bonanno and Pizzimenti [18].
Example 10.5.3. Consider the boundary value problem
—u" @) +u@) = Ate*?D,t € [0,1], u'(0) =u'(1) =0. (10.5.4)

In [18] the authors establish the existence of at least one positive solution such that |lu| < 2
for A € (0,2¢72).

The boundary value problem (10.5.4) is equivalent to the following integral problem

u(t) = [ k(t,9)g()f w(s)) ds,

where

g(s) =s, f(u) = Ae*

and
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k(t,s) :=

1 cosh(l —¢t)coshs, 0<s<t<]1,
sinh(1) |cosh(1 —s)cosht, 0<t<s<1.

The kernel % is positive and, by the results provided in this section, conditions (C;)-(Cg) are
satisfied with [a,b] = [0, 1]. Thus we work in the cone

K={ueC[0,1]: tg[lgrh u(t) = cllul},

where
c=1c¢(0,1) =1/cosh1 = 0.648.

We can compute the following constants

m =% "2’ 1 _ 1.859,
M©,1) =1 — 2163,
e—1

fO,p = p.plc = /lep/lo‘

Taking p, = 2 we have (1;2) is satisfied for A < (e + 1)e~2, and taking 0 < p1<c/2we
have (Igl) forA > [(e+1)/(e—1)]pe "L
Hence, the condition (S;) of Theorem[10.1.10]is satisfied whenever

e+1
ez

AE (0, ) D (0,2e72).

Furthermore, reasoning as in [95], when A = i the choice of p, = 0.16 and p; = 0.1
gives the following localization for the solution

0.064 <u(t) <0.16, ¢t € [0,1].

An application of Theorem|[10.2.3|gives that for

e+1

— =0.797
e(e—1) I,

there are no solutions in K (the trivial solution does not satisfy the differential equation). Fur-
thermore note that T' : P — K; this shows that there are no positive solutions for the bound-

ary value problem (10.5.4) when A > %.
e(e —



11. General nonlocal operators

In Chapters[8H10|we have dealt with linear conditions where in terms of Stieltjes integrals, which
are fairly general and include, as special cases, multi-point and integral conditions.

Webb and Infante [182] gave a unified method for establishing the existence of positive
solutions of a large class of ordinary differential equations of arbitrary order, subject to nonlocal
boundary conditions. The methodology in [182] involves the fixed point index and, in particular
deals with the integral equation

N
1
u(t) = Zryi(t)ai[u] + fo k(t,s)g(s)f(s,u(s))ds. (11.0.1)
i=1
Here the functions ry; are nonnegative and the linear functionals «,[ -] are of the type a[u] =
fol u(s) dA(s). The results of [182] are well suited for dealing with differential equations of
arbitrary order with many nonlocal terms. These results were applied to the study of fourth
order problems that model the deflection of an elastic beam.

An important feature of the integral equation is the fact that it is designed to deal
with boundary value problems where the boundary conditions involve at most affine func-
tionals. In physical models this corresponds to feedback controllers having a linear response.
Nevertheless, in a number of applications, the response of the feedback controller can be non-
linear; for example the nonlocal boundary value problem

u® () =gOf ¢,u()), u(0) =u'(0) =u"(1) =0, u” (1) + B () =0, (11.0.2)

describes a cantilever equation with a feedback mechanism, where a spring reacts (in a nonlin-
ear manner) to the displacement registered in a point 7 of the beam. Positive solutions of the
boundary value problem (11.0.2) were investigated by Infante and Pietramala in [92] by means
of the perturbed integral equation

u(t) = y®B@alul) + [ kt,)gs)f (s,u(s)) ds,

where B: R — R™ is a continuous, possibly nonlinear function.

Note that the idea of using perturbed Hammerstein integral equations in order to deal with
the existence of solutions of boundary value problems with nonlinear boundary conditions has
been used with success in a number of papers, see, for example, the manuscripts of Alves and
co-authors [3], Cabada [27], Franco et al. [71], Goodrich [[75H79], Infante [88]], Karakostas [[111],
Pietramala [144], Yang [192,/193] and references therein.

The existence of nontrivial solutions of the boundary value problem
—u"(t) =g®f w®),u’ (0) +B(a[u]) =0, Bu’'(1) +u(n) =0,

that models a heat-flow problem with a nonlinear controller, were discussed by Infante [89],
by means of the perturbed integral equation

u(t) = y®)B(@lul) + folk(t,S)g(S)f(u(S)) ds.
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In this chapter we generalize the previous ones insofar as we consider nonlinear boundary
conditions and functional terms. To be precise, we discuss the existence of multiple nontrivial
solutions of perturbed Hammerstein integral equations of the kind

u(®) = Bu(®) + [ k(t,5)8(5)f (s,u(s), Du(s)) ds,

where B : C(I) — C(I) isa compact and continuous map, D : C(I) — L* (), a continuous
map and f is a nonnegative LL-Carathéodory function. In our setting B and D are possibly
nonlinear. This type of integral equation arises naturally when dealing with a boundary value
problem where nonlocal terms occur in the differential equation and in the boundary condi-
tions. Here we prove the existence of multiple solutions that are allowed to change sign, in the
spirit of the earlier chapters.

At the end of the chapter we study, for illustrative purposes and in two examples, the non-
local differential equation

—u"(t) =f(@u®) +y@un)),
subject to the boundary conditions
u(0) =0, u(1) =0lulloru(0) =u’(1), ' (0) =u(l),

showing that the constants occurring in our theoretical results can be computed.

11.1 The integral operator

Let I := [0, 1]. In this section we obtain results for the fixed points of the integral operator

Tu(t) = Bu(t) + folk(t,s)g(s)f(s,u(s),Du (s)) ds, (11.1.1)

whereB : C(I) — C(I) is a continuous and compact map,D : C(I) — L* (), a continuous
map and f is a nonnegative L -Carathéodory function. B and D are not necessarily linear.

Recall that P be the cone of nonnegative functions in C(I). We make the following as-
sumptions.

(C,) k:IxI — Rismeasurable, and for every 7 € I we have

}fimlk(t,s) —k(7,8)| =0 fora.e.s el.

(Cy) There exist a subinterval [a,b] C I, a function ® € L' (I), and a constantc; € (0, 1]
such that
|k(t,s)] < P(s) fort €1 and almost every s € I,
k(t,s) = c;P(s) fort € [a,b] and almost every s € I.

(C3) g,8P € L), g(t) =0forae.t €1,and [> D (s)g(s)ds > 0.



11. The integral operator 219

(C,) Consider functionsf; : I x R — [0,00), 7, : I - R,j = 1,...,m,, 51‘] : I - R,
J = 1,...,n; and continuous functionals ¢;; : C(I) — R,j = 1,...,m; and ,BU :
Cd)-R,j=1,...,n,,i=1,2,aconstantc € (0,c;] and a cone

K:={uecCd) : ,nin u(®) = clul, a;ul,B,;[u] = 0}

such that, for all u € K, the following inequalities hold:

271J(t)a1J[u] +f1(tau(t)) Sf(tau(t)aDu(t))y foreveryt E [aab]a
i=1

Z 81j(t)ﬁ1j[u] < Bu(t), foreveryt € [a,b],

=1

fu@),Du(t)) < Z Vo () ag;[u] +fo(t,u(t)), foreveryt € 1

j=1
and

Bu(t) < Z 09;(8) Bo;[u], foreveryt €1.
i=1

(C5) The nonlinearities f : I x R2 = [0,400),f; :IxR = [0,400) andf, : I x R —
[0, +00) satisfy L*°-Carathéodory conditions, that is f (-, u,v), f; (-,u) are measurable
for each fixed u,v € R; f(t,,), f;(t,+) are continuous for a.e. ¢t € I, and for each
r > 0, there exists ¢, € L* (I such that

ftu,v),f;¢t,u) < ¢, @) forall u,v € [-r,r], anda.e. t 1.

(Co) v; €ECAU). LetF,;(t) := fol Rkt (¢,5)8(s)7,;;(s) ds. Assume the families of functions
{¥:s5 (Sij}w belong to K\{0}.

(C7) Define @; = (@y15ees Cips Bits o> Bin )s Wi = (Fits e s Fimys 015+ » O3) and de-
note by ¢,; and wij the j-th element of ¢, and 301- respectively. We have the following

inequalities.
P lTiu + 79v] = Ty [u] + 7o, V], (11.1.2)
T, T, ERY, u,veK,j=1,...,m;+n,;,i=1,2, o
7w + 7ov] S ATllpg [ull + |75l l@y [V ]I,
PoilTy 2 111Pg; 2l 12 (11.1.3)

T, 79 ER, u,veEK,j=1,...,my + n,.

Let K, (5) := @[k (,8)] =0, K, (s) = @9, [kT(-,8)] = 0fora.e. s € I, and
assume IC%J_ e L¥{) foreveryj=1,...,m;+n,,i=1,2.

oy [ [P RC.98f () ds| = [* oy k(.92 6)f; (s,u()) ds,
u EK’J = 19-'-:m1 +n1,

(11.1.4)
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P | [J B 98 @) fa(s,u(5) ds| < [y, IR () llg ()12 (s,u(9)) ds,

uekK,j=1,..,my +n,,
(11.1.5)

(Cg) Define M, = (goki[w,bkj]):';’;ﬁnk € M,,, ., (R), k = 1,2. Assume that their respec-

tive spectral radii r satisfy that r(M;) < 1/c; andr(M,) < 1.

(Cy) Letcand K be givenin (C,). Then

Y 8, By ul =) 118,18, ul forevery t € [a,b] and u € K.
j=1 j=1

(C10) ¢q;[ul = ¢y [v]foreveryu,v € K suchthatu(¢) > v(¢) forallt € [a,b], py;[u] =
@g;[v] foreveryu,v € K such thatu(¢) = v(¢) forallZ € I 'and ¢,;[u] = O for every
u€P.

Also, ¢ [Tul, p;;[Fiul, ¢ [Foul, ¢,;[Liu] = 0 for every u € K where, fort €
[0, 1],

Fou@) = [T k(t,9)8(s)f (5,u(9) ds,
Fou(t) := f01k+(t,8)g(8)f2 (s,u(s)) ds,
Lu(t) := fa”k+(t,s)g(s)u(s) ds.
Remark 11.1.1. Observe that from conditions (Cg) and (Cg) we know that v,; € K and M,

has positive entries for £ = 1, 2. Also, if the ¢,; are linear functionals defined as integrals with
respect to a measure of bounded variation, properties (11.1.2)—(11.1.5) hold.

Remark 11.1.2. Condition (11.1.3) is some sort of triangle inequality. In particular, it implies a
kind of second triangle inequality. Indeed, let u,v € K, Then we have

Po;lu] = o[ (w +v) —v] < pg;[u +v]l + |9y, [V]I.

Hence we obtain

Poilul —lpg; V]l < lpg;[u + v]I.
Interchanging u and v we get

Po;[V] — lpg;[u]l < g, [u + v]l,
which implies, in particular,

lpg; [u] — @o;[V]l < |y, [u + v]I.

Therefore we obtain

lpg;[u] — @y;[v]l < g [u —v]l.
Remark 11.1.3. By (C,y), ifu € K, thenu™*, |u| € K.
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Remark 11.1.4. Let K = {uljgp; : w€K}and:C([a,b]) - C() suchthat ([u] (t) =
u(t) fort € [a,b], t[u](t) = u(a) fort € [0,a] and ¢[u](t) = u(b) fort € [b,1]. The
first part of condition (Cy,) implies that, if u,v € K satisfy ulj, 51 = Ul 5, then ¢, [u] =
¢1;[v]. Hence, there exists ¢; : K — R such that Piilk = Pyjo ¢

Lemma 11.1.5. The operator T defined in (11.1.1) maps K into K and is continuous and com-
pact.

Proof. Takeu € K. Then, by (C,), (C,) and (C;), we have
Tu(t) =Bu(t) + jolk(t,s)g(s)f(s,u(s),Du(s)) ds

<) 8y 1By [ul + [ D(9)g(9)f (s,u(s),Du(s)) ds.
j=1

Hence, we obtain

ITul < ) 185185 [wl + [ ©()g()f (s,u(s),Du(s)) ds.

Jj=1

Combining this fact with (C,), (C5), (Cg) and (Cy), fort € [a, b], we get

Tu(t) 2 ) 8, By[ul +¢; [ D(©)gs)f (s,u(s),Du(s)) ds

J=1

2¢ Y 18,18y Tul + ¢ [ ®()8(s)f (5,u(s), Dus)) ds = clTul.
J=1

Furthermore, by (C1(), ¢;;[Tu] = 0. Hence we have Tu € K.
Now, we have that the operator N, : C(I) x L= (I) — C(I) such that N, (u,v) (¢) =
folk(t,s)g(s)f(s, u(s),v(s)) dsis compact.

Since D is continuous, Id xD is also continuous so N¢o (Id xD) is compact. Since T is the
sum of two compact operators, it is compact. The continuity is proved in a similar way. n

Remark 11.1.6. Similarly, from condition (C,), we observe here that F';, Fy and L, map K to
K. To see this, observe that for allt € [a,b] and u € K the following properties hold:

Fiu@) = fabk(t,S)g(S)fl (s,u(s))ds =c fab D (s)g($)f1(s,u(s)) ds = cllFyull,
Fou(t) = [k (t,9)g(8)fa(s,u(s)) ds > ¢ [| @ (s)g(s)fs(s,u(s)) ds > clFyul,
L) = ["k* (¢, 9)g)u(s) ds > ¢ [ D(s)g(s)u(s) ds > elLqull

Also, ¢, [Fiul, ¢ ;[Foul, ¢,;[Liu] = 0by (Cyy).
On the other hand, L; maps P to P, but also maps P to K. The proof goes as above.
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11.2 Fixed point index calculations

Let us define, in a similar way to the previous times,

K,={u€kK:ul<p}, V,={uek: tér[lé’rg]u(t) < p}.

If u, v are vectors, we denote by [u]j the j-th component of u and if we write u < v the
inequality is to be interpreted component-wise. Also, we denote by IC%_ = (IC(pij)m"M" , L=

j=1
1,2 (IC%_J_ as defined in (C,)).

Lemma 11.2.1. Assume that

(I;;) there exists p > 0 such that

Mmo+no
£ Sup( Y i @)l [(Id -M,)7' [Nk, (s)Lg(s)ds]j + a(t)) <1,

tel \ =

(11.2.2)
where

—pP . _
fo 7" ==ess sup{

@ : (tw) €1x [=p,pl)

and
o(t) := max{fo1 kt(t,s)g(s)ds, fol k™ (t,8)g(s) ds} .

Then we have iK(T,Kp) = 1.

Proof. We show that Tu # AuforallA > 1whenu € BKP, which implies that iK(T,Kp) =
1. In fact, if this does not happen, then there exist u with |lu| = p and A > 1 such that
Au(t) = Tu(t). Therefore, by (C,) and (Cy),

mo+no

Au(t) < Yo (t) oo, [ul + Fou(t), t €1, (11.2.2)

j=1

so, from (Cy), and Remark|11.1.6, we have that both sides of the inequality are in K. As a
consequence, from (11.1.3), we deduce

mgo +7’L2

Ay lul < Poi [ Vroilgi[u] + |y, [Faull,

Jj=1

which, expressed in matrix notation, is

Apolu]l < Mygyul + o [Foull.
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Hence, we have
(Id—My) ps[u] < (A1d—My) pyul < @, [Foull.

Since r(M,) < 1, Id —M, is invertible and (Id —M2)_1 = ZZ":OM’;, so (Id —Mz)_1 is
positive and thus

olul < Id—My) ey [Foull. (11.2.3)
Therefore, from (11.1.5), (11.2.2) and we obtain, forallt € I,
mo+tng
Mu®I< Y g, )y, (] + 1Fou )]

-
< Y Wy OI[(Ad=My) g [Foull], + Fau #)]

j=1

mo+ng
—p, _1 (1

Spfzp”s;g}o( ; ey 1| Ad=Mp)~ [T, ()l () ds]j + a(t)) .

Taking the supremumont € I,
~ mo+ng X
Ap < pfy, 7" sup ( Yy @ [(Id —My) 7" [CIK,, ()2 (s) ds]j + O'(t)) :
j=1
From we obtain Ap < p, contradicting the fact that A > 1. [ |

Remark 11.2.2. We point out, in similar way as in Chapter [10} that a stronger (but easier to
check) condition than (Ifl)) is given by the following.

mo+ng
fs P”’( ) gl [ Ad=My) I, ()]gs) ds | + %) .
j=1
where

1. sup o (). (11.2.4)
m tel

Lemma 11.2.3. Assume that

(Ig) There exists p > 0 such that

m1+n1
. 1 (b
fl,p,p/c-telgg]( JZI Vo) [ e, M7 [P K, ()g () ds]|

+ Lbk(t,s)g(s)ds) >1,

where

: (Gu) € [a,b] x [p,,o/c]}-

fl,P,p/c := @ss lnf{fl (2 U)
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Then we have ig (T, VP) = 0.

Proof. Takee € K\{0}. We will show thatu # Tu + Aeforall A > O0andu € 8Vp which
implies that ix (T, Vp) = 0. In fact, if this does not happen, there are u € BVP (and so we
have min,c, ,;u(t) = pand p < u(t) < p/cforallt € [a,b]), and A = 0 with

u@) =Tu(t) + Ae.
Therefore, for t € [a,b], by (Cy), (Cy), (Cg) and Remark[11.1.6] we have

mqi+nq

u(t) > Z Yy @y lul + Fiu@) + Ae@) €K. (11.2.5)
=1

J

Thus we obtain, using (11.1.2),

mqi+nq

oy lul = Z (loli[/lplj] P1;[ul + o1 [Frul + Apy;lel
=1

=>Cy ( P leylul + ¢y [Flu]) ;
=1

J
which, expressed in matrix notation, is

p1lul 2 ¢4 (M1$01[u] + 901[F1u]) c

Hence we get

(dd —c; M) @, [u]l = o [Fiu].
Since r(M,) < 1/cy, Id —c; My is invertible and (Id —c; M)~ = Y % ' (c; M;)*, so
(Id —c, M)~ is positive and hence

@1[u] = (Id—c; My) o [Fiu]. (11.2.6)
Therefore, from (11.1.2), (11.2.5) and we obtain, fort € [a,b],

m1+n1
u) 2 Y @ gy, lul + Fru)
J=1

mq+nq

> ) Y, @ [Ad—e; M) Ly [Frul], + Fru()
j=1

Ztei[%ﬂ]( ; Yy, (@) [(Id—clMl)‘lLb /c%(s)g(s)ds]j+ fabk(t,s)g(s)ds)

: pfl,p,p/c'
Taking the infimumon ¢t € [a, b], gives

mq+nq
p> inf ( Y A, [(Id—clMl)—lJ‘abjcsol(s)g(s)ds] +Lbk(t,s)g(s)d8)
J=1

t€la,b] J

/Ofl,p,p/c’
which contradicts the hypothesis. [ |
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Remark 11.2.4. Again, a stronger condition than (Ig) is given by the following.
. T 1 b 1
f1p.p0c (tel[%,f;] J:Zl Yy (0 [(Id —cyMy)” fa K, (s)g(s) ds]j + m) > 1,
where

1

W = inf Lbk(t,s)g(s) ds. (11.2.7)

€la,b]

The results above can be used in order to prove the existence of at least one, two or three
nontrivial solutions.

Theorem 11.2.5. Assume conditions (C,) — (C,) are satisfied. The integral equation (11.1.1)
has at least one nonzero solution in K if any of the following conditions hold.

(S1) There exist py, py € (0, 00) with p/c < py such that (121) and (I'})z) hold.
(Sy) There exist py, py € (0, 00) with py < p, such that (1/191) and (122) hold.

The integral equation (11.1.1) has at least two nonzero solutions in K if one of the following
conditions hold.

(S3) ;hicge exist p1, Ps, P3 € (0, 00) with pqfc < py < ps such that (Igl), (1;2) and (Igs)
old.

(S4) There exist py, ps, ps € (0, 00) with p; < p, and py/c < pg such that (Ifl,l), (122)
and (1) hold.

The integral equation (11.1.1)) has at least three nonzero solutions in K if one of the following
conditions hold.

(S5) There exist pq, pg, P3, P4 € (0,00) with p;/c < py, < p3and pz/c < p4 such that
15, (1), (I)) and (I ) hold.

(Sg) There exist py, pg, P3,p4 € (0,00) with p; < pg and pyfc < ps < py such that
1 0 1 0
(L), ), ;) and (I;) hold.
11.2.1 Nonexistence results
For this epigraph we will assume that the operators ¢,; are linearly bounded.

Definition 11.2.6. An operatorA : X — Y between two normed spaces (X, ||-]|) and (Y, ||-||)|f]
is linearly bounded if there exists M € R ™ such that ||Ax|| < M||x|| for everyx € X. We then
define the norm of A as

Al := inf{M € R" : ||Ax|l < M|lul, x € X}.

*Although they may be different, we use the same notation for the norms in X and Y to simplify the notation.
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Observe that for linear operators this is the usual norm. We denote by LB(X, Y) the space
of linearly bounded operators from X to Y (and by LB(X) if X = Y). For operators A €

LB (X) we can define the spectral radius of A asr(A) = lim IIA”II%. We define the principal
characteristic value as u(A) := 1/r(A).

For more properties on this generalized spectral value we refer the reader to [22}200].

We now offer some nonexistence results for the integral equation (11.1.1).

Theorem 11.2.7. Let m and M (a, b) be defined in (11.2.4) and (11.2.7) respectively and the
®,; be linearly bounded. If one of the following conditions holds,

(1) f(tu) <m (1=Y 72" g lllpgl) lul, foreveryt € I andu € R\{0},

J

(2) f1(t,u) > M(a,b) u foreveryt € [a,b] andu € R”,
then there is no nontrivial solution of the problem (11.1.1)) in K.

Proof. (1) Assume, on the contrary, that there exists u € K, u=0 such that u = T'u and let
to € I such that |lu]l = |u(¢,)|. Then, arguing as in the proof of Lemma(11.2.1

lell = fu(to)]

m2+n2

< Y Iy llgylul
Jj=1

+max { [ k* (tg,9)g (9)fa(s,u(5)) ds, [ k™ (b, )8 (&) f(s,u(s)) ds |

mgo +n2

< Y Iyl
j=1
mo+ng
+maX{f01k+(to,8)g(8)ds, folk‘(to,S)g(S)dS}m (1— Z II%J~||||<,02JII) ]

j=1
mo+ng mg+tng
=) ||¢2j||||go2j||||u||+(1— Y. ||¢2j||||<,ozj||)||u||=||u||,
J=1 Jj=1

a contradiction, thus there is no nontrivial solution of problem (11.1.1) in K.

(2) Assume, on the contrary, that there exists u € K, u=0 such that u = Tu and let
ty € [a,b] suchthatu(ty) = min,c, »; 4 (¢). Then, as in the proof of Lemma|11.2.3

m2+n2

u(ty) =Tulto) = Y Yyt pylul + [ kte,9)8()f1 (5,u(s)) ds
j=1

> [Pk (to,5)8(5)M (a,b)u(s) ds
2M (a,b)uty) [ kto,9)g(s) ds 2 uty),

a contradiction, thus there is no nontrivial solution of problem (11.1.1) in K. |
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11.3 The spectral radius and the existence of multiple solutions

In order to prove the results to come we will need different requirements on the functionals
¢, ; than being linearly bounded. We introduce now some definitions [57,58]. Let X,Y be
two real normed spaces. Let Lip(X,Y) be the set of operators between X and Y such that
satisfy the Lipschitz property, that is,

LipX,) V) ={N: X ->Y : dM € R*,|INx — Ny| < M|x —y|l, Vx,y € X}.
Define the function
INII* :=inf{M € R* : |[Nx — Nyl < M|lx —yll, Vx,y € X}, N € Lip(X,Y).

We denote by Lip (X) = Lip(X,X). Lip(X, Y) is areal vector space and || -||* is a seminorm
on Lip(X,Y) (in fact, (|| - |*) 1 ({0}) = R). Also, observe that

ING) —NOI _ IN(x) =N

IN —N(0)| = sup < = [N,
xeX, [locl xyeX, lle — i
x#0 xFy

so in particular N — N (0) is linearly bounded for every N € Lip(X,Y). On the other hand if
N (0) # 0, N is not linearly bounded, for the definition of linearly bounded operators implies
that they vanish at zero. With these considerations we can define then

Lip,(X,Y) := Lip(X,Y) NLB(X,Y) = {N € Lip(X,Y) : N(0) = 0}.

[ - II* isa norm on Lip, (X,Y).
The following Theorem from [58] characterizes invertibility of the operators between X and
Y.

Theorem 11.3.1. [58, Theorem 2] Let X a real normed space and Y a real Banach space. Let
N : X — Y beanoperator. Then N is invertible if and only if there exists an invertible operator
J:Y — X such that (N —J)J ! € Lip(Y) and |(N —J)J1|* < 1.

In such a case, IN7HI* < Il 7"/ (1 = |(N = ) H*).

The following consequence (in the line of [57, Corollary 2]) can be obtained by taking X =
Y,N=1d-Q,J =1d.

Corollary 11.3.2. Let X be a real Banach space and @ € Lip(X) such that |Q|* < 1. Then
Id —Q is an invertible operator and ||(Id —Q) ~Y||* < 1/(1 — QI*).

Remark 11.3.3. Assume @ € Lip(X), @ (X) closed for the sum, |Q|* < 1. Then
(Id _Q)_llQ(X) ' QX) - QX).
To see this take x € X and definey = (Id —Q) ~1Qx. Theny = Qx + Qy € Q@ (X).

We now present a result which is an straightforward generalization to the case of linearly
bounded operators of a classical result on linear operators. Let us define the following opera-
tors and constants.
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my+n,
Hiu@) := Z }Dlj(t)sl)lj[u],
j=1
mo+ng
Hyu(t) i= Y Wy (Ollpg[ull
j=1
Lou(t) := fol k(t,s)lg(s)u(s) ds,
. f2(t,u) . . fl(t,u)
f20 = }E»% ess sup,¢; T, fio 3=u1:_1(1; essinf,c(, ) ~u
- t t
£ = |llim ess sup,¢; %, f1,0 :=1im essinf,c, w

Uu—0o00

Lemma 11.3.4. Assume that condition holds foreveryu,v € C(I) andH, € LB(C (1)),
then H, € Lipy, (C)).

Proof. Letu,v € C(I). Using inequality (11.1.3) and Remark|11.1.2

Mmo+ng motng
Hyu —Hyvl =| ) 1y @1y lul = ) g (0)lpy, 0]
s
=| Y Wy @1 (pg[u] = gy [0])
J=1

m2+n2 m2+n2
< ) Woallpylul = 9yl < ) Iyl oy~ ]|
j=1 J=1

m2+n2

< Y Iyl il = vl

J=1

Hence, Hy € Lip(C(I)) and [HylI* < Y72 [4ry,llllg,ll. Also, since H, € LB(C(I)),
H,(0) =0,s0H, € Lip, (C(I)).

We recall now the following Theorem and Remark from [178], applied to our particular
setting.

Theorem 11.3.5. [178, Theorem 2.4] Let K, be a cone in a Banach space X, and let < denote
the partial order in K. Suppose that a bounded linear operator N : X — X maps K; to K;.
Let there exist A, > 0 and u € X such that Nu > Ay u where —u&K; andu = u; — uq with
ui,uy € K. Then, ifr(N) < A, there exist A > Ay and v € K;\{0} such that Nv = Av.

Remark 11.3.6. [178, Remark 2.5] If K, is a total cone, thatis, K; — K; = X, N is compact
and continuous and 7 (IN) > 0, then (V) is an eigenvalue of N with an eigenvector in K;.

Corollary 11.3.7. The spectral radius of L, is an eigenvalue of L, with an eigenfunction in
PNK.
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Proof. Recall that L; maps P to PN K (see Remark|11.1.6). Choose, for the previous Theorem
and Remark K; = Pand N = L,. Itis not difficult to verify that L is compact and continuous
andr(L;) > 0. Also, P is a total cone.

Letu = 1. Thenu € P and we have by (Cj3) that
Lut) = [kt 9)g6)uE) ds > c [" D(s)gs)ds =c [ P(s)g(s) dsu(t),t €1,
thatisLju > AquforA, =c f;’ P (s)g (s) ds. Therefore, the hypothesis of Theorem|11.3.5

are satisfied and therefore there is v € P such that Lyv = r(L;)v. Since L, : P - PN K,
vePNK. [ |

In order to prove the next result, we use the following operator on C ([a,b]) defined by
- b +
Lu(t) := L kT (t,s)g(s)u(s)ds, t € [a,b]

and the cone P[a,b] of positive functions in C([a, b]).

Theorem 11.3.8. We have the following.

(1) If Hy, € Lipy(CI)), |[Holl* < 1, (Id —H,) 'L, € LB(C)), (Id—H,)"': PN
K — P N K order preserving, (1d —Hz)_l(/lu) < Add —H2)_1ufor everyA € RT
andu € KNP,and 0 < f20 < w((dd —H,)~'L,), then there exists Po € R such
that

iK(T,Kp) =1 foreach p € (0,p,].

(2) If w(Ly) <f10 < oo, then there exists p, € R™ such that for each p € (0, py]

ix(T,K,) = 0.
(3) If w(Ly) <[ < oo, then there exists Ry such that for each R > R,

Proof. (1)
Let f = n((Id —Hz)_le). By the hypotheses, there exist p,, 7 € (0, 1) such that

fat,u) < (£ —7)lul

forallu € [—py, pol and almost every t € I.

Let p € (0,pq], we prove that Tu # Au foru € QKP and A > 1, which implies the
result by Lemma In fact, if we assume otherwise, then there exists u € QKP and A >1
such that Au = Tu. Observe thatifu € K, [ul € K NP andfort € 1,

@) SAMu )] = Tu@®)| < Hyu @) + [ k¢, 9)E6)f(5,u(s)) ds
<H,Jul(t) + (£ = T) Lalul(t).
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Now,
lul(t) < dd—Hy) "' (& — T)Lylul(t) < (£ —7) (Id —Hy) "' Lylul(?).

Iterating, that is, substituting the left hand side into the right hand side, forn € N,

ul(@®) < ... < [(£ —7)Ad—Hy) Ly ]" lul(?).

So, taking norms,

lull < 11 [(§ = 7) (Ad —Hy) "Ly " lull,

which implies

1< I[(§ =7 Ad=Hy) " 'Ly]"

or

1< (=l [(1d=Hy) Ly ]" I,

Taking the limit on both sides we arrive to a contradiction,

T
1<——<1.

(2) There exists p, > 0 such that f (£,u) > u(Ly)u forallu € [0, p,] and almost all
tel.

Let p € [0, pg] and let us prove thatu # Tu + Av, forallu in o'?Kp and A > 0, where
v; € K is the eigenfunction (cf. Corollary|11.3.7) of L; with [lv4|| = 1 corresponding to the
eigenvalue 1/u (L), which would imply the result.

We distinguish now two cases, A € R and A = 0. Assume, on the contrary, that there
existu € 8Kp and A € R* such thatu = Tu + Av;. Since Tu > 0in [a,b], this implies
u>Avyinla,b]andLiu > AL v; = [A/u(Ly)]v; in [a@,b]. Using this and the previous
estimate for f we have, by (C,) and (Cy),

u> L) Liu+ Avy 2 Au(Ly)Liv; + Avy = 2Av4, in [a,b].

Through induction we deduce that p > u > nAv, in [a,b] for everyn € N, a contradiction
because v; € K.

Now we consider the case A = 0. Let ¢ > 0 be such that for allu € [0, p,] and almost
everyt € [a,b] we have
fit,uw) = (u(Ly) +e)u.

Arguing as in the previous cases, we have, fort € [a, b],
u(t) = (w(ly) +e)Liu(t).
Since Lyv, (¢) = r(L;)v,(¢) fort € [0,1], we have, fort € [a, b],
Lv,(t) = Lyv,(t) = r(L;)v, (@),
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and we obtain r(L) > r(Ly). On the other hand, we have, fort € [a, b],

u(t) =Tu = Bu(t) + folk(t,s)g(s)f(s,u(s),Du(s)) ds
>(u(Ly) +6) fabk(t,S)g(S)u(S) ds = (u(Ly) +e)Lyu(t) = (u(Ly) +e)Lu(t).

where u(t) > 0in [a,b]. Thus, using Theorem we have r(L) < 1/(uw(Ly) +¢) and
thereforer(L;) < 1/(u(Ly) + ¢€). This gives u (L) + € < u (L), a contradiction.

(3) Take v, asin part (2). Let Ry € R* such thatf; (¢,u) > u(Ly)uforallu > cRy,cas
in (C,), and almost allt € I. We will prove thatu # Tu + Av, foralluin Kz and A € R*
when R > R;. Observe that for u € JKj, we have u(t) > cllull = cR, forallt € [a,b], so
fit,u) > u(Ly)uonla,b].

Assume now, on the contrary, that there existu € dKz and A € R™ (the proof in the case
A = 0O is treated as in the proof of the statement (2)) such that u = T'u + Av,. This implies
u>Avyin[a,b] andLiu > ALjv; = [A/u(Ly)]v;y in [a@,b]. Using this and the previous
estimate for f we have

u> L) Liu+ Avy 2 Apu(Ly)Livy + Avy = 2Av4, in [a,b].

Through induction we deduce that R > u > nAv, forevery n € N, a contradiction because
v, EK. [

Remark 11.3.9. In the previous Theorem, in point (1), it is enough to ask for L, € LB(C (1))
in order to have (Id —H,) 'L, € LB(C()) since (Id—H,)~! € Lip(C()).

Remark 11.3.10. It can be checked that the spectral radius of a linearly bounded operator is
bounded from above by the norm || - ||. Hence, in the previous Theorem, in point (1) the con-
dition 0 < f20 < w((1d —Hz)_le) can be strengthened to 0 < /"2O < 1/IIdd —Hz)‘lell*,
and even further, through CoroIIary to0 < f20 < (1 — [[H,lI*) /Lo ]I

Remark 11.3.11. In the previous Theorem, the conditions (L) < fl,O < ocoand u(Ly) <
f1,00 < 00 in (2) and (3) respectively can be strengthen in order to avoid the computation of
the spectral value of L;. As it is shown in [183], the new conditions would be

, b
l/tel[%,fl] L k(t,s)g(s)ds <fjo< o0

and

. b
1/, inf_ [ k@,9)g(s)ds < fi . < oo.

11.4 An applicaton

In order to prove the usefulness of our theory, we present a simple but yet fairly general appli-
cation in this Section. Consider the boundary value problem

—u" () =f(tu®) +y®Oun@), t € [0,11 u(0) =0,u(l) =0Olul. (11.4.1)
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where f satisfies the L™-Carathéodory conditions (see (C5)),y € CI), vy = 0, 0 e (0,1)
and p : I — I is a measurable function such that for a fixed [a,b] C (0, 1) such that
n([a,b]) C [a,b]. Note that u o 5 isin L™ (]).

We could consider more complex boundary conditions or nonlinearities, but for the sake of
simplicity and insight we will keep it this way. Observe that this problem is equivalent to

u(t) = folk(t,S) [f (s,u(s)) + y(s)u(n(s))]ds + Otlull,

where
hts = [fA—0, 0Ss<t<l,
T lt(l—s), 0<t<s<l.

Observe that k& is nonnegative. Take ® (s) = sup,; £ (¢,8) = s(1 — s). By direct calculation
we obtain

®(s) := inf Ek(4s) =

tela,b]

s(1-b6), 0<s<
a(l—s), 2

Thus, inf,; &D(s)/qb(s) = min{a, 1 — b}, so we have to take ¢ < min{a,1 — b}. Fix
¢ = min{a,1 — b}. Observe that, foru € K,

fGu@)+y@uni)) <fEu@) +y@lul, t €1,
ftu@)+y@) tg[lgrg]u(t) <ftu@®) +y@u@n@)),t € [a,b].

Hence takeg = Lf; =f,m; =n; = 1,0 =1,2, ¢, [u] =minygqy u(), p,[ul = lul,
F1(t) = F2(80) = §(@) = [ k(t,8)y(s) ds + Ot

Observe that, with these definitions, conditions (C;)—(C5), (C;), (Cy) and (Cy,) are
satisfied. Assume now that 4 (¢) > c||y|l for¢ € [a,b] and ||7]l < 1. Then we have that (Cy)
and (Cyg) are also satisfied.

If we write condition (I;) in terms of the choices we have made, we get

_ & 1 )
PP —— __+t(1l-t) | <1
Frtse (6(1—||'7||) 217

Of course, a sufficient condition in order for (I;) to be satisfied, which is easier to check, is

i 17 1)
po [ —2 4 )<
f (6(1—||a7u>+8 <

If we write condition (Ig) in terms of the choices we have made, we get

17l a(1-0)[2-(b-a)] , . b
fopr (1— T - Gl et de B ds) >

Example 11.4.1. Let us now consider a particular case. Takef (t,u) = tu?, v(t) =t(1-t) +i,
@ = 1/2 in the boundary value problem (I1.4.1). Fix p; = 5/2, py = 4,a = 1/4,b = 3/4.

With this data, we have ¢ = 1/4, f~P1P1 = p? = 25/4, Fogpate =4
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Also, (t) = o=t (17 — 3t — 4> + 2¢%), |l = 1/2 and

7 (@) 1 )
—— + —t(1 -1t
p=1 (6(1 —im T2t Y

1 ( 1 3 (1 3
== 1+5\/§c0s(—cot1( ))—5\/Es1n(—cot1( )))
2 3 V31241 3 V31241
—=0.540002 ...

Hence, condition (I;l) is satisfied.

Also,

I a(1-0)[2—(b—-a)] . . K
(1 — Il T 2e[1-(b—0a)] + tel[%’f;)] fa k(t,s) ds) =5

so condition (Igz) is satisfied. Therefore (Sy) in Theorem |11.2.5is satisfied and problem
(11.4.1) has at least a solution which is positive in [1/4, 3/4].

We now apply Theorem [11.3.8|to the boundary value problem
—u" (@) =f@tu®) +y@®un@)), u(0) =u' (1),u' (0) =u(l), (11.4.2)

rewriting sufficient conditions according to Remarks[11.3.9H11.3.11] for the points (1) — (3)
to be satisfied. First, let us bound ||L,]| from above.

1+ (1-s)t, 0<s<t<l1,

k(t,s) =
B {1—s+(2—s)t, O<t<s<l,

Lou(t) = [ Ik(t,9)u(s) ds < [, 1k(t,5)|dslul.

Hence we obtain

1 3
L,|| < su k(t,s)|ds = =
IL; < sup Jo kt)lds =2

Also, assuming |7l < 1, take Hou (t) = ||¥llllull V€ 1.

In this case Ho (K N P) = {r|¥ll : r € [0,4+00)} is a cone and therefore closed for the
sum, which means, by Remark|11.3.3} that (Id —Hz)_1 maps K N P to itself. Furthermore,
we have that

(Id —Hy) " 'u(t) = u(®) + ﬂllull,

-1l

for ||7ll < 1/2, which satisfies (Id —Hy) ~'u < (Id —H,) v, (Id —H,) "' (Au) < A(Id—H,) 'u
foreveryu <v,u,v €ePNK,A € R*.

On the other hand, we have

inf Lbk(t,s) ds = %(b—a)(2—a—b).

te[0,1]

With these values, we have
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(D) 171 < 3,0 <f) <2 =19,
2) 171 <L,0<2/[(b—a)@—a—b)]<fi,< o,
3) II<L,0<2/[(b-—a)(2—a—-0)] <[] < .

Example 11.4.2. Consider again f (t,u) = tu?, vy(@&) =t(1—-1¢) + i, 0 =1/2,a = 1/4,
b = 3/4; this time in the boundary value problem ([I1.4.2). We have that f; = f, = 0 and
[ = f, = +o0. Hence, the conditions (1) and (3) in Theoremare satisfied and
therefore, by Lemma(8.1.2} the boundary value problem has at least a solution.



A. A Hyperbolic Analog of the Phasor Addi-
tion Formula

A.1 Introduction

The idea for this chapter was born when the author was confronted with the need of sim-
plifying linear combinations of hyperbolic sines and cosines with the same argument into a
single trigonometric expression in order to solve for that argument (see Section [4.3). In the
usual euclidean case, there are very well know formulae for the sum of linear combinations of
sines and cosines. In particular, we have the phasor addition formula (equations (A.3.1)—(A.3.2)
are some of its incarnations) which, somehow, is a generalization of the standard formula
cosx + sinx = \/§sin(x + 7/4). Nevertheless, similar formulae for the hyperbolic case
seem to be absent from the literature, thus the results of this Chapter were published in [166].

It is interesting to note that something that seems so trivial as a mere algebraic manipu-
lation has profound (and very well studied) roots in physics, where these linear combinations
(in the euclidean case) occur naturally when studying phasors. This chapter is written with the
intention of introducing the reader to the usual phasor formalism used in physics and the mo-
tivation behind it, containing all the rigor expected by a mathematician. It will also generalize
the formulae previously derived for the hyperbolic case with the hope they may eventually
become handy for the reader.

A.2 Phasors in physics

To be more precise, phasors appear in Physics from the need of establishing some kind of arith-
metic for the set of functions

F:={f:R->R:f() =acos(wt+ ¢),a €R, ¢ € R|_},

for some fixed w € R\{0} and where ¢, ~ ¢, ifand only if ¢, — @y € 27Z for any
¥1, P2 € R. The parameters present in the functions of F are called, respectively, amplitude
(a), frequency (w) and phase (). The functions in F occur mostly in problems related to Me-
chanics and Electronics (see, for instance, [56,/107,/140]), but their origin is rooted in arguably
the most important problem in Physics: the harmonic oscillator.

If we consider one space variable x and a time variable ¢, the Euler-Lagrange equation of
motion (a fundamental principle of Dynamics) implies that the equation of motion of a free
particle is given by

mx” (@) +V'(x()) =0, (A.2.1)

where m is the mass of the particleand V : R — R is a given potential. Equation (A.2.1) is,
basically, Newton’s second Law of motion for the potential V.
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In many problems of Physics it is common to chose as potential a quadratic function of the
kind V(x) = 1k %2 with £ > 0. This is the case, for instance, of Hook’s Law on the force
of a spring, but this kind of potential also occurs in problems concerning pendula (when the
angle of displacement is considered to be small), RLC circuits, or acoustical systems. If fact, this
potential appears naturally when taking a ‘first order’ approximation for small perturbations
on a mass in a stable equilibrium with respect to the forces it is subject to.

Hence, considering V (x) = %k x2, and defining w = \/k/m, we have that equation (A.2.1]
can be expressed as
x"(t) + w?x(t) =0,

which is known as the equation of the harmonic oscillator.

The set of solutions of this equation is precisely
{acoswt + bcos (wt +7/2) : a,b € R}

(observe that — cos (wt + 7/2) = sinwt). Therefore, the need for adding functions in F
appears in a natural way, because they are the solutions of one or more harmonic oscillators
with the same constant &.

Now, the question that almost any mathematician would ask is, ‘what happens when & <
0?’ This situation has to do with the theory of critical phenomena [157]. Briefly speaking, the
potential has a critical point at £ = 0 and for £ < 0 the physical laws change qualitatively. This
is the case of phase transitions in matter, for instance, the change from liquid to vapor or from
being a normal conductor to being a superconductor.

In this new scenario, we can define w = \/ —k/m and the equation derived from equation

is
x” () — wx(t) =0, (A.2.2)

which has
{acoshwt + bsinhwt : a,b € R}

as set of solutions. Now, can we develop a hyperbolic version of the phasor understanding
of equation (A.2.2)? Section|A.4 will answer this question and in Section[A.3|we establish the
basics of the phasor formalism. Finally, Section[A.5|is a brief note on the possible extensions of
the phasor addition formula and a new way of obtaining it.

A.3 The phasor addition formula

Fix w € R. First of all, we will show that Fis a group using some basic group algebra. Let
Fei={f:R—>C : f(t) =z, z € C}.

The functions in F are called phasors. Observe that the map P : C(R,C) — C(R, C) such
that Pf (t) = f(¢) [e'“" is a group isomorphism with respect to the sum. We have that Fis a
subset of C(R, C) and (C, +), identified with the set of constant functions of C(R, C), is a
subgroup of C(R, C). Furthermore, Plf’c : Fo — Cis bijective. Hence, (Fg, +) is a group.
To see this it suffices to see that x +y € F for any givenx,y € F. P(x),P(y) € C and,
since (C, +) isagroup, P(x) + P(y) € C. Thus, P"1(P(x) + P(y)) =x +y € F¢.
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On the other hand, consider the real part operator R : C(R,C) - C(R,R). Risa
surjective homomorphism and i)‘{lrc : Fo — Fisasurjective function. Thus, Fis also a group.
Toseethis, letx,y € Fandx',y” € Fgsuchthat R (x") = x, R(y’) =y. Hence,x'+y’" € F¢
and R(x" +y’) = x+y € F. Due to these homomorphisms between the considered groups,
to study the sum in F, it is enough to study the sum in C.

Let ae'?, be'V € C\{0}. Then ae'? + be'¥ = ce? forsomec € R* and 0 € R|_.
Observe that

ae'? =acosp +iasing, be'V =bcosy +ibsiny,
S0
ae'” +be' =acosp +bcosy +i(asing +bsiny).

Therefore, using the law of cosines,

c=lae'? +beV| = \/(acos<,0 + bcosYr)? + (asin ¢ + bsinyr)?
= a2 + b2 + 2abcos(p — V).

In order to get 8, we consider the principal argument function ar such that, for every z =

x+1iy € C,arg(z) = a where a is the only angle in [—7r, 77) satisfying sin a = y/\/x2 + y2

and cos a = x/\/xz + y2.

Therefore, ! = arg(a cos ¢ + b cos ¥ +i(asin ¢ + b sin1)). So we can conclude that

ae'? + beiw — \/&2 + b2 + 2abcos(<p _] ,‘#)ei arg(a cos @+b cos Yr+i(a sin @+b sin 1#)).
(A.3.1)

Equation (A.3.1) is called the phasor addition formula.

If we want to write equation in terms of the elements of 7, we just have to take the
real part on both sides of the equation:

acos(wt + ¢) + bcos(wt + ) = \/a2 + b2+ 2abcos(p — )
-cos[wt + arg(acos ¢ + bcosyr +i(asing + bsiny))].
In particular,
acos(wt) + bsin(wt) = acos(wt) — b cos(wt + 7/2)
=\/mcos[a)t +arg(a —ib)] = \/msin[wt + arg(b +ia)].

From this last formula, we can recover the phasor addition formula just by observing the clas-
sical trigonometric identities sin(a + ) = sinacos 3 + cos a sin 3 and cos(a + 3) =
cos @ cos 3 F sin a sin 3.

(A.3.2)

There is an straightforward geometrical representation of the phasor addition formula in
the euclidean case as Figure 1 shows. The key to this graphical representation is that, on 7,

The principal argument function is basically the atan2 function common to the math libraries of many com-
puter languages such as FORTRAN [138, p. 42], C, Java, Python, Ruby or Pearl. The principal advantage of having
two arguments instead of one, unlike in the traditional definition of the arctan function, is that it returns the
appropriate quadrant of the angle, something that cannot be achieved with the arctan. Some more basic infor-
mation on the atan?2 function and its usage can be found athttp://en.wikipedia.org/wiki/Atan2|
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—

bsin @

a sin 6 { 0 \

T~
acosf bcosp

Figure A.3.1: Graphical representation of @ cos & + b cos panda sin@ + bsin ¥

the sum is the sum of vectors on the plane. Then we just have to take the real part of this sum,
that is, the projection onto the OX axis, to obtain the desired result.

A.4 The hyperbolic version of the phasor addition formula

We now obtain a hyperbolic counterpart of the phasor addition formula as expressed in equa-
tion (A.3.2).

Let
G={f:R->R : f(t) =acoshwt+ bsinhwt; a,b € R}.

It is straightforward to check that (G, +) is a group (and a 2-dimensional real vector space).
Taking into account the identities

cosh(x +y) = sinhx sinhy + coshx coshy,
sinh (x + y) = coshx sinhy + sinhx coshy,

itis clear that

a cosh(wt + ¢) + b sinh(wt + V)
= (a cosh ¢ + b sinh V) cosh wt + (a sinh ¢ + b cosh ) sinh wt € C.

It is also clear that

a cosh(wt + ¢) + b cosh(wt + V)
= (a cosh ¢ + b cosh ) cosh wt + (a cosh ¢ + b cosh ) sinhwt € G,

and

asinh(wt + ¢) + bsinh(wt + )
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=(a sinh ¢ + b sinh V) cosh wt + (a sinh ¢ + b sinh ) sinhwt € G.

So we can reduce the general sums a cosh(wt + ¢) + bsinh(wt + V), a cosh(wt +
¢) + bcosh(wt + ) and a sinh(wt + ¢) + bsinh(wt + V) to the more simple case of
@ cosh wt + 3 sinh wt.

Now we prove the following hyperbolic version of the phasor addition formula.

LemmaA.4.1. leta, b,t € R. Then

\/Mcosh(iln|a+b|+wt) if a>|bl,

—Vla2 = b2| cosh ( ln|“+b| + a)t) if —a>|bl,

J MSinh(;ln|“+b|+a)t) if b>lal,
—Msinh( 1n|“+b|+a)t) if —b>lal,

ae®t if a=0»,

ae if a=-b.

a cosh wt + b sinh wt = (A.4.1)

Proof. For convenience, let ¢ = e®’. We prove the case a > |b|. The rest of the cases are
proved in an analogous fashion.

Observe that, ifa > |b|, thena + b,a — b > 0. Thus,

a cosh wt + b sinh wt

—(c+c1)+b —cly = a+b +a_bc‘1

2 ’ ’ — 2 at at
b ( a + a _1) o b (eln ‘fﬁc +e In ﬁc—l)
a —

" 1 a+b 1 a+b
T (ei NaTbe +e” 2 Wgs, -bC 1)

2 _ h2 1 a+ 1 a+
_va? —b* (651 shrot Lo (3Ing b+‘“t)) — Va2 — b2 cosh (%lna+z+wt).

a_
|

Remark A.4.2. One of the crucial differences between the hyperbolic and euclidean cases is
that in the hyperbolic case there is not periodicityﬂ what is more, we cannot relate the hyper-
bolic sine and cosine by a phase displacement, which implies that we may or may not be able
to express an element of G in the form of a hyperbolic cosine depending on the values of a@ and

b, as Lemma shows.

Also, comparing it with formula (A.3.2), we observe two common elements. First, the ar-
gument of the function (euclidean or hyperbolic) involved is wt plus a displacement depending
on the parameters a and b. The second similitude is that, multiplying such function, there is
a metric applied to the vector (a, b). In the euclidean case case, it is just the euclidean norm
(a,b)|l = Va2 + b2, that is, the square root of the metric u(a,b) = a? + b2 on R2. Inthe

1LNot, at least, when we consider those functions as defined on the real numbers. Hyperbolic functions are
periodic when defined on the complex plane.



240 A.4. The hyperbolic version of the phasor addition formula

hyperbolic case, however, we have what is called the Minkowski norm || (a,b)|l;; = v (a,b)|
where v(a,b) = a® — b? is the Minkowski metric on R? of signature (1, —1). The Minkowski
norm is not a norm in the usual sense (it is not subadditive), but it provides a useful general-
ization of the concept of ‘length’ in the Minkowski plandﬂ

The vectors w = (a, b) are called timelike when v (w,w) < 0, spacelike when v (w,w) >
0 and null, or lightlike when v (w,w) = 0. Observe that the two first cases of equation (A.4.1)
are for spacelike vectors, the two following ones for timelike vectors, and the two last ones for
lightlike vectors.

It is also possible to give a geometrical representation of linear combinations of hyperbolic
sines and cosines but, due to the euclidean nature of the plane, it is not as straightforward
as in the euclidean case. In Figure 2 we illustrate how a coshu + b sinh u can be computed
graphically.

y((cosh u, sinh )

Figure A.4.1: Graphical representation of a coshu + b sinhu

Considera, b,u > 0. The graph of the hyperbola y2 —x? = 1 satisfies that its points are of
the form (coshu, sinhu). Furthermore, the area between the vector (coshu, sinhu), the
hyperbola and the OX axis is half the hyperbolic angle u. Now, if we draw the vector (—b,a)
and consider the parallelogram formed by the vectors (cosh u, sinhu) and (=b, a), the area
of this parallelogram is precisely a cosh u + b sinh u. The reason for this is given by the cross
product formula for the area of the parallelogram and the fact that u > O:

|[(coshu,sinhu,0) x (=b,a,0)| =1((0,0,acoshu + bsinhu)]|
=|a coshu + b sinhu| = acoshu + bsinhu.

For more information on this topic, the book [47] has a whole chapter on the trigonometry of the Minkowski
plane.
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A.5 A final note: extending the formula

If there is anything powerful behind the concept of exponential, hyperbolic sine, hyperbolic
cosine, and other trigonometric functions, it is their wide range of definition. By this, we mean
that they are defined in any Banach algebra with unityﬂ Let A be a Banach algebraandx € A.
We define, as usual,

® Lk
X ._ X
o=y 2
k=0
x+e—x b x2k
hx =% —
coshix 2 )3 ek
k=0
x —x b 2k+1
inhx:=% —€¢  _ r
Snax 2 k;(zk+1)!

Clearly, cosh is just the even part of the exponential and sinh its odd part, so ¢* = coshx +
sinh x. If we go back to the proof of LemmalA.4.1, we observe that it relies only on these kind of
definitions, so it is valid for everya,b € R and any y = wt in a real Banach algebra with unity
A, in particular for y € C. This is consistent with the euclidean phasor addition formula as we
show next. Leta,b,x € R, assume, for instance, @ > |b| and consider a coshix + b sinhix.
Then, using LemmalA.4.7]

a coshix + bsinhix = va2 — b2 cosh (%lna +b + ix)

a—>b
\/az—bQ(\[a+bix \[a—b_,-x)
e + e

2 a—>b a+b

=% [(@+b)(cosx +isinx) + (@ —b) (cosx —isinx)] = acosx + ibsinx

which is expected from the known fact that coshix = cosx, sinhix = i sinx.

This observation relating the generality of the definitions of the trigonometric functions
suggests yet another question. Is there a way to derive the hyperbolic phasor addition formula
in the same way we derived it for the euclidean case? Or, to be more precise, is there a Ba-
nach algebra which would fulfill the role C played in the euclidean case? The answer is yes.
Remember the traditional definition of the complex numbers:

C={x+iy : x,y €R, ieR, i2 = -1}.
In the same way, we can define the hyperbolic numberﬂ:

D = {x+jy : x,y € R, jeR, jZ=1}.

A Banach algebra A is just an algebra endowed with a norm | - || that makes it a Banach space such that
lcyll < llxllllyll for every x,y € A.

*See [6,147] for an extended description on hyperbolic number arithmetic, calculus and geometry. It is also
interesting to point out that hyperbolic numbers are a natural setting for the Theory of Relativity.
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We introduced the the hyperbolic numbers in Section[5.4.1] Here we recall that, as in the case
of the complex numbers, the arithmetic in D is the natural extension assuming the distributive,
associative, and commutative properties for the sum and product. Several definitions appear
in a natural way, parallel to the case of C.

Letw € D, withw = x +jy. Hence
wi=x—jy, Rw):=x, Tw):=y,
and since ww = x2 — y? € R, we can define

wl| := y|wwl,

which is precisely the Minkowski norm. It follows that [w;w,| = |lw,|lw,| for every w;,w, €
D and, if lw| # 0, then w™! = w/|w|?. If we define

lwl = {22 + y2),

we have that || - || is a norm and (ID, || - ||) is a Banach algebra, so the exponential and the
hyperbolic trigonometric functions are well defined. Also, it is clear from the definitions that

¢’“ = coshw + jsinhw,

and |¢*| = 1 forx € R.

The only important difference with respect to C is that ID is not a division algebra (not every
nonzero element has an inverse).

Now, leta,b € R and y = 7y + jy, € D with /1,9, € R. Observe that
R([a +jble”) = acoshy + bsinhyy.

We try, as we do with complex numbers, to rewrite (a +jb)e’” as rejg, wherer € [0, +o0)
and 0 € R. Assume |a + jb| # 0. Then

r=|(a+jb)e"| = |a +jble"z,
and

(a +jb)e’” =e?2[acoshry; + bsinhy; +j(asinhry; + bcoshry;)]
=la + jble”2 cosh 0 + jla + jble”2 sinh 0 = re/’.

Therefore,
acoshry, + bsinhy; = |a +jblcoshf and bcoshry, +asinhy; = |a +jb|sinh 0.

That is, assuming a > |b| and defining o = arctanh(b/a),

beoshy, +asinhy, s + tanh vy,

tanh @ = =
an acoshy, +bsinhy; 14+ %tanh V1

= tanh(G + "yl),
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SO

b 1, 1432 1, a+b
(9=arctanh5+ryl =-In—>+vy,=3In

2 1792 a—-b
Hence,

acoshy + bsinhy =la + jble”2R (ef(g In %wl))

. 1 a+ b
— 72 =1 .
la +jble”2 cosh ( n + '}’1)

For v € R, we recover the first case of Lemma m
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B. A Mathematica Implementation

Now we present the complete code of the program introduced in Chapter[7] The reader may
download the Mathematica notebook and a brief user’s guide from the Wolfram Library Archive
athttp://library.wolfram.com/infocenter/MathSource/9087/.

Clear["Global ™ *"];
mess="done";
result="";

CLength[x_] := Module[{y}, y = x;
While[y[[Length[y]]] == 0, y = y[[1 ;; Lengthly] - 111];
Length[y]]

NFill[x_, n_] := If[TrueQ[n > Length[x]], Join[x, Table[0, {n - Length[x]}]], x
1;

Start[cl_,c2_,T_,ccl_]:= Modulel[
{asdf,aa,n,bb,bcn,rango2,m, Graphic,opred,Opp,cadenatexto,equation, ecuacion,
condcont, condcont2, ecinicial, ecu, eqaux,VialLibre,c,lc,clb,c2b},
0ff[];

ecu=0;
aa=-T;
bb=T;

mess="Processing data...";

n=Max [CLength[c1],CLength[c2]]~-1;

If[TrueQ[cl \[Element] Reals && c2 \[Element] Reals &% T \[Element] Reals],
Graphic = True, Graphic = Falsel];

VialLibre = True;

If [Not[n \[Element] Integers &% n > 0], MessageDialog["Order must be_a,
positive_integer"];
VialLibre = False;

1;

If [Not[T > 0] && ViaLibre,
MessageDialog["T must be_a positive_ real number"];
ViaLibre = False;

1;

If [Not[n + 1 == Length[cl] && n + 1 == Length[c2]] && Vialibre,
MessageDialog[
"Vector of coefficients: LENGTH,,INCORRECT"];
VialLibre = False;

1;

L[f 1[x_] := Sum[cib[[k + 1]] Derivativel[k] [f][-x] + c2b[[k + 1]] Derivativel[
k] [£f] [x], {k, 0, n}];

R[f _1[x_] := Sum[cib[[k + 1]] Derivativel[k] [f]1[-x] -(-1)"k c2b[[k + 1]]
Derivative[k] [f][x], {k, O, n}];


http://library.wolfram.com/infocenter/MathSource/9087/
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Clear [aux] ;
Opp=1;
If [Opp==1, auxl[var_]:= ccl /.u->var,aux[var_]:= ccl /.{u->var,T->-T}];
EG=False;
If [Not [TrueQ[Norm[c1]*Norm[c2]==0]],
m=2 n;
c1b=NFill[cl,m+1];
c2b=NFill[c2,m+1];
bcn=2*CLength[ccl];
c=Table[0,{m+13}];
Do[c[[j + 1]] = Sum[(-1)"i*(cib[[i + 1]11*cib[[j - i + 111 - c2b[[i + 1]]*
c2bll[j - 1 + 111D, {i, 0, j}1, {j, 0, m}];
aux2[u_J]:= Join[aux[u], Expand[aux[R[ull]];

m=n;
c1b=NFill[cl,m+1];
c2b=NFill[c2,m+1];
EG=True;
bcen=CLength[ccl];
aux2[var_]:= aux[var];
If [TrueQ[Norm[c1]==0],
c=c2;
1;
If [TrueQ[Norm[c2]==0],
c=cl;
Opp=-1;
1;
1;
lc = CLength[c]-1;
If [TrueQ[c[[m+1]1]1==0],
MessageDialog["The reduced problem is of jorder less than 2 n"];
G[t_, s_1 = "Undetermined";
If [ViaLibre == True,
Do[alfal[i, j] = Coefficient[aux2[u] [[i]], Derivative[j] [u]l [-T]1], {j, O, m
- 1}, {i, 1, becn}];
Do[betali, j] = Coefficient[aux2[u] [[i]], Derivative[j] [u]l [T]1], {j, O, m
- 1}, {i, 1, ben}];
Do[U[i] [u_J]= Sum[alfal[i, jl*Derivative[j][u] [-T] + betali, jl*Derivative[
jl1[ul [T, {j, 0, m - 1}], {i, 1, bcn}];
condcont2 = Sort[Table[Expand[U[i] [u]] == 0, {i, 1, bcn}]];
condcont = Sort[Table[Expand[aux2[u] [[1]]] == 0, {i, 1, ben}]];
If [TrueQ[Chop[condcont] == Chopl[condcont2]],
opred[u_] [t_]:=Sum([c[[k+1]]Derivative[k] [u] [t], {k,0, 1lc}];
DO[k_] [u_]:=Derivativelk] [u] [0];
equation=Join[{opred[y] [t] == 0}, Table[DO[i] [y] == 0, {i, 0, lc - 2}],
{DO[1c-1][y] == 1}];
mess="Solving homogeneous equation...";
ecinicial = DSolvel[equation, y, t];



79
80
81
82
83
84

85
86
87
88
89
90
91
92
93

94
95
96
97

98
99
100
101

102
103
104
105

106
107
108
109
110
111
112
113
114
115

116

117

118

APPENDIX B. A MATHEMATICA IMPLEMENTATION 247

cadenatexto = ToStringl[eciniciall;
If [Not[StringMatchQ[cadenatexto, "*Rootx*"]],
Result=Style[Column [{
Style[".", Bold],
Style["PROBLEM: ", Bold]l, Style[",", Boldl,
Row[{TraditionalForm[L[u] [t]] == \[Sigma] [t], ", uuutu\[Element] ["
L -T, nn, T, M1,
Style[",", Bold],
Style["with_ boundary conditions", Bold],
Style[",", Bold], Tablelaux[u]l [[i]] == 0, {i, 1,Lengthl[aux[ull}],
Style[",", Bold],
Style["The Green\.b4s function is_ giving by: ", Bold],
r = ComplexExpand[Rely /. eciniciall[1]1]1]];,
mess="Computing ,fundamental matrix...";
If[TrueQ[c \[Element] Reals && T \[Element] Reals],
Do[soluci[k] = DSolve[Join[{opred[y] [t] == 0}, Table[DO[i] [y] ==
0, {i, 0, k-2}], {DO[k-1][y] == 1}, Table[DO[i][yl== 0, {i, k, 1lc-1}]1, y[t
1, t1;
yk[k] [t_]=FullSimplify[ComplexExpand[y[t]/.solucilk][[1]1]1]1];
, {k, 1, 1c}];
Dol[yk([k][t_] = Sum[c[[lc + 1 - jl] Derivativel[j - k][r][t], {j,
k, 1lc}l;, {k, 1, 1c}];
1;
rango2=MatrixRank[Table [U[i] [yk[j1], {i, 1, ben}, {j, 1, 1c}]1]1;
If [TrueQ[Not [rango2 == 1lcll],
MessageDialog["There is no Green's function, for jthe reduced
problem"];
Graphic = False;
G[t_, s_] = "There,is no unique solution";
eqaux=Table[Sum[betal[i, jl*Derivative[j][r][T - sl , {j, 0, 1lc -
1}] + Sum([d[j][s] U[i][yk[j11,{j, 1, 1c}]1==0, {i, 1, becn}];
ecuacion =Solve[eqaux , Table[d[jl[s], {j, 1, 1lc}1];
If[ecuacion == {7},
MessageDialog["There is no Green's function"];
Graphic = False;
G[t_, s_] = "There_ is no unique solution";

ecu = 1;
mess="Constructing Green's function... (100, s max)";
asdf=ecuacion/.Rulela_,b_]:>b;

Dole[jl[s_1= dl[jlls] /. {d[jl[s]->asdf[[111[[j11}, {j, 1, 1c}]

hit_, s_] = Simplify[Sum[e[i] [s]*yk([i][t], {i, 1, 1c}],
TimeConstraint->15];

Gi[t_, s_] = Simplify[TrigFactor[Chop[r[t - s]] + h[t, sl],
TimeConstraint->15] ;
G2[t_, s_] = Simplify[TrigFactor[h[t, s]],TimeConstraint->15];
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Gb[s_][t_] = Piecewise[{{G1[t, s], -T <= s<=T&&-T <= t<=T&&s <=
t},{G2[t, s], -T <= s<=T&&-T <= t<=T&&t<s},{0, -T>s||-T>t||T<s||T<t}}];
If [Not[EG],
Gbl[t_,s_]=PiecewiseExpand[R[Gb[s]] [t], TimeConstraint ->
151;
G[t_,s_]=Piecewise [{{Simplify[Gbl[t,s],-T<=s<=T\[And]-T<=t<=T
\ [And] s-t<=0\ [And] s+t<=0] ,-T<=s<=T\ [And] -T<=t<=T\ [And] s-t<=0\ [And] s+t<=0}, {
Simplify[Gbl[t,s],-T<=s<=T\[And]-T<=t<=T\ [And]s-t>0\ [And]s+t<=0],-T<=s<=T\[
And] -T<=t<=T\ [And] s-t>0\ [And] s+t<=0},{Simplify[Gbl[t,s],-T<=s<=T\ [And]-T<=t
<=T\ [And] s-t<=0\ [And] s+t>0] ,-T<=s<=T\ [And] -T<=t<=T\ [And] s-t<=0\ [And] s+t
>0},{Simplify[Gbl[t,s],-T<=s<=T\[And]-T<=t<=T\ [And]s-t>0\ [And]s+t>0] ,-T<=s
<=T\ [And] -T<=t<=T\ [And] s-t>0\ [And] s+t>0}}];
G[t_,s_]=Chop[PiecewiseExpand[G[t,s]/c[[m+1]], TimeConstraint
-> 15]11;
If [Opp==1,
G[t_,s_]=Chop[PiecewiseExpand[Gb[s] [t]/c[[m+1]],
TimeConstraint -> 15]];
G[t_,s_]=Chop[PiecewiseExpand[Gb[-s] [t]/c[[m+1]],
TimeConstraint -> 15]];
1;
1;
1;
1;
Row[{Style["G[t,s]=_", Bold], TraditionalForm[G[t, s]]1}],
Style[",", Bold],
Style[",", Bold],
Style[",", Bold],
If [TrueQ[Graphic],
If[ecu == 1,
Plot3D[G[t, s], {s, aa, bb}, {t, aa, bb}]
Print ["Cannot,show the graphic"]]]
},{Frame->True,Alignment->Center}]]

b

MessageDialog["Green's Function_ with a complex expression"];

1;
MessageDialog["The boundary ,conditions are not valid"];
15
1;
1;
mess="done";

1;

F[]:=(c1={1, 0, 1};c2={0, 0, O0};lim=1;ccl={ul1],ul-1]}; Nap=False;Framed[Column
[{

Style["Program to ,compute the Green's  function of jthe equation: ", Bold],
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Style[Row[{TraditionalForm[Sum[Subscript[a, j] Derivativel[j] [ul [-t], {j, O, n}]
+ Sum[Subscript[b, j] Derivativel[j][ul [t] , {j, O, n}] == \[Sigma] [t]],",
uuuut\ [Element] [-T,T]1"}], Bold],
Style [(Column [{" LLuLLuLLLLLLLLLLLLLLLLLLLLLLLLLLULLLL ' Y, Center], Bold],
Style["with_ boundary conditions: ", Bold],
Style[Row[{TraditionalForm[Subscript [U,i] [u]l=Sum[Subsuperscript [\ [Alpha],i,j]
Superscript[u, (j)]1[-T],{j,0,n-1}]+Sum[Subsuperscript [\ [Betal ,i,j]
Superscript[u, (j)1[T],{j,0,n-1}]1==0],", ,Luui=1,...,n"}], Bold]l,
Style[",", Bold],
Column [{Panel [Grid[{
{"Coefficients \!\(\*SubscriptBox[\(a\), \(i\)I\)", InputField[Dynamic[cl
11},
{"Coefficients \!\(\*SubscriptBox[\(b\), ,\(i\)I\)", InputField[Dynamic[c2
11},
{"T", InputField[Dynamic[lim]]},
{"Boundary ,conditions", InputField[Dynamic[cc1]]},
{"Numerical Approximation", Checkbox[Dynamic[Nap],Appearance->Large]}
},Alignment -> {{Right, Left}}]],
Button["Enter", If[Nap,
If [Element[c1,Reals],cl= N[ci1]l];
If [Element [c2,Reals],c2=N[c2]];
1;Start[cl, c2, lim, ccl],ImageSize->150,Method -> "Queued"]},Alignment->
Center],
Column [{Framed[Style[Row[{"Progress: ,",Dynamic [mess]}] ,Bold]] ,Dynamic[Result]},
Alignment->Left]}]])

F[]






C. Resumen en castellano

La presente Tesis contiene la mayoria del trabajo llevado a cabo por el autor en los ultimos
afios. Es, de hecho, una aventura investigadora en el ambito de las soluciones de ecuaciones
diferenciales, de ahi el titulo «Existencia y Multiplicidad de Soluciones de Ecuaciones diferencia-
les Funcionales». Sin embargo, écémo aproximarse al estudio de un area tan amplia? En tanto
a lo que las soluciones son a las ecuaciones diferenciales, podemos optar por una aproxima-
cion bastante sencilla: existen dos posibilidades, o bien hay soluciones o no las hay vy, si las hay,
puede haber una o muchas. De este simple hecho surge este trabajo y las publicaciones que se
han realizado durante la elaboracién del mismo [34,35,(39-44),96,165,(166].

C.1 Primera Parte

Que queramos demostrar que hay una —unicidad de solucién— o muchas —multiplicidad de
solucién—es lo que determina gue usemos un método u otro a la hora de tratar cada problema
considerado. La existencia se ha obtenido tradicionalmente en una de dos maneras: o bien
a través de la construccién directa de la solucién, o bien usando métodos topoldgicos, estos
ultimos, en la mayoria de los casos, concerniendo contracciones globales como el teorema de
contraccion de Banach.

En la primera parte de esta memoria nos ocuparemos de la unicidad por medio de la cons-
truccion directa usando lo que se conoce como funcion de Green, esto es, la obtencion de la
solucion de un problema del tipo Lu = h, u € H, donde H es un espacio de funciones, L un
operador lineal definidoen H y h € L (H), expresandola, de ser posible, de la forma

u(t) = f G(t,s)h(s)ds,

con los extremos de integracién adecuados para el problema. Se entiende entonces que esta
expresion proporciona los gue se conocen como principios del maximo y del anti-maximo, los
cuales, en pocas palabras, recogen la idea de que, si GG es positiva y h es positiva entonces u
es positiva —principio del anti-maximo—y que si G es negativa y A es positiva entonces u es
negativa —principio del maximo—.

Estas son sdlo algunas de las notables propiedades de las funciones de Green pero, como
suele suceder con las estructuras matematicas mas utiles, estas son a menudo también las
mas dificiles de obtener. El caso de las ecuaciones funcionales no es una excepcion a esta regla
y a través de los siete primeros capitulos de esta memoria exploraremos la construcciéon de
estas funciones y sus diferentes aplicaciones. Centraremos nuestra atencion en el caso de las
ecuaciones con involuciones, un campo particular de las ecuaciones diferenciales funcionales
donde podemos reducir —de una manera especifica que detallaremos en su momento— el pro-
blema estudiado a un problema con ecuaciones diferenciales ordinarias. Ademas escribiremos
un programa de ordenador en Mathematica que nos permitira calcular automaticamente las
funciones de Green para el caso de coeficientes constantes y condiciones de contorno de dos
puntos.
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Pero, ¢qué son las involuciones? Este tipo particular de funciones ha constituido un area
de investigacion de interés desde que Rothe calculé por primera vez, en 1800, el numero de
involuciones diferentes que es posible encontrar sobre conjuntos finitos [152]. Después de eso,
Babbage publicé en 1815 [7] el trabajo fundacional en el cual las ecuaciones funcionales se
consideraban por primera vez, en particular aquellas de la forma f o f = Id, cuyas soluciones
distintas de la identidad son, precisamente, lo que llamamos involucionesﬂ

A pesar de los progresos en el estudio de las ecuaciones funcionales, tenemos que esperar
hasta 1940, cuando Silberstein [156] resolvid por primera vez una ecuacién diferencial con in-
volucion. El interés por las ecuaciones diferenciales con involuciones es retomado por Wiener
en 1969 [186]. Wiener, junto con Watkins, lideraran los descubrimientos en esta direccion en
las décadas venideras [1},/155}/173}(174}[186-189]. Muchos autores han llevado a cabo una gran
cantidad de trabajo desde entonces en este campo. Hacemos una breve resefa al respecto en
el Capitulo[2] En el afio 2013 aparecieron de la mano del autor y su director de Tesis los prime-
ros resultados sobre funciones de Green para ecuaciones diferenciales [39] y estos estudios se
contindan en [40,41//43||44]. La primera parte de la Tesis recoge estos descubrimientos relacio-
nados con funciones de Green. En el primer capitulo repasamos algunos resultados generales
sobre involuciones que nos ayudaran a entender sus sorprendentes propiedades analiticas y
algebraicas.

El Capitulo [2| como ya hemos dicho, esta dedicado a aquellos resultados con involucién
no directamente asociados a funciones de Green. Las demostraciones de esos resultados se
pueden encontrar en la bibliografia citada en cada caso. No se profundiza en los mismos, pero
se resumen a conveniencia del lector, quien puede consultar asimismo el libro de Wiener [187]
que, a pesar de haber sido escrito hace mas de veinte afos, sigue siendo un buen punto de
partida en lo que a este tipo de resultados generales se refiere. En este capitulo, es interesante
observar la progresion y los distintos tipos de resultados recogidos con aquellos relacionados
con funciones de Green que aparecen en los capitulos posteriores.

En el siguiente capitulo, el [3, empezamos a trabajar con la teoria de funciones de Green
para ecuaciones diferenciales funcionales con involuciones en aquellos casos mas sencillos:
problemas de orden uno con coeficientes constantes y reflexion. En él resolvemos el problema
asociado al operador x’ (¢) + mx(—t) y describimos sus autovalores, obteniendo la funcién
de Green en el caso no resonante y el rango de valores del parametro real m para el cual el
nucleo integral —la funciéon de Green—, que proporciona la Unica solucidn, tiene signo constan-
te. Esto nos permite derivar de manera automatica principios del maximo y del anti-mdaximo.
Este estudio se lleva a cabo con diferentes condiciones de contorno, analizando las caracteris-
ticas especificas que aparecen cuando consideramos condiciones periddicas, anti-periddicas,
iniciales o lineales arbitrarias. Ademas aplicamos algunas técnicas muy conocidas —sub y so-
bresoluciones, el teorema de contraccidn-expansion de Krasnosel’skil...— para obtener nuevos
resultados que son ilustrados con diversos ejemplos.

Calcular las funciones de Green de manera explicita en el caso de un problema con coe-
ficientes no constantes no es sencillo, ni siquiera cuando estamos tratando con ecuaciones

J'Babbage, en el prefacio de su trabajo [7], describié muy bien la importancia de las involuciones: «Muchos
de los cdlculos con los que estamos familiarizados consisten de dos partes, una directa y su inversa; asi, cuando
consideramos el exponente de una cantidad, esto es, elevarla a una potencia, esa es la operacion directa; cuando
tomamos la raiz de una cantidad, ese es el método inverso [...] En todos los casos el método inverso es con diferencia
el mds dificil y también podriamos afiadir que el mds util».
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diferenciales ordinarias. Siguiendo los resultados publicados en [41], nos enfrentamos a es-
tos obstaculos en el Capitulo[d}, donde reducimos un nuevo problema general con coeficientes
no constantes e involuciones diferenciables arbitrarias al caso estudiado en el Capitulo|3| Pa-
ra poner esto en practica llevamos a cabo un triple artificio tomando como punto de partida
los conocimientos del capitulo anterior. Primero afiadimos un término que depende de x ()
que hace que la situacién no cambie demasiado con respecto a la estudiada en el Capitulo [3]
para luego reducir el caso de una involucion general al caso de la reflexion usando algo del
conocimiento adquirido en el Capitulo[l]. El Ultimo paso, ir del caso constante al no constante,
es un tema aparte. Tenemos que usar un cambio especial de variable —sélo valido en deter-
minados casos— que nos permitird obtener la funcién de Green para aquellos problemas con
coeficientes no constantes a partir de la funcién de Green de problemas analogos con coefi-
cientes constantes. En este mismo capitulo estudiamos ademas aquellos casos en los que dicho
cambio de variable no es posible, demostrando que, cuando se presentan, puede ocurrir que
exista solucidn Unica, multiple o que no exista solucion.

Para terminar esta parte del trabajo mas tedrica, tenemos el Capitulo[5] en el que profundi-
zamos en la naturaleza algebraica de las reflexiones y extrapolamos estas propiedades a otras
algebras. De esta manera, no sélo generalizamos los resultados del capitulo[3]al caso de proble-
mas de orden n y condiciones de contorno de dos puntos generales, sino que ademas resolve-
mos problemas diferenciales funcionales en los que participa la transformada de Hilberty / u
otros operadores adecuados, escogidos por sus propiedades algebraicas. En este capitulo redu-
cimos los problemas en cuestion a ecuaciones diferenciales ordinarias para poder resolverlos
y describimos un método general para obtener funciones de Green de problemas funcionales
(diferenciales o no) generales. La utilidad de este método se ilustra con el caso de problemas
con condiciones de contorno homogéneas con reflexion y varios ejemplos especificos.

Es necesario apuntar que las transformaciones necesarias en este proceso en el que re-
ducimos un problema funcional a uno ordinario son de naturaleza puramente algebraica. Esta
teoria, publicada en [44], es por tanto, y en ese sentido, similar a lo que se conoce como and-
lisis algebraico, una teoria con la cual, a través del estudio de algebras y médulos de Ore, se
obtiene informacién importante acerca de algunos problemas funcionales, incluyendo solucio-
nes explicitas [21},/50]. Sin embargo, las estructuras algebraicas con las que lidiamos aqui son
en cierto modo diferentes, es decir, en general no son algebras de Ortﬂ

Cabe destacar que de entre las ecuaciones diferenciales funcionales reducibles, aquellas
con reflexién han generado un interés mas alla del mero formalismo matematico. Algunas por
sus aplicaciones a la mecdnica cuantica supersimétrica [73,147,[153] y otras por su uso en otras
areas de las matematicas, como son los métodos topoldgicos de los que tratamos en la segunda
parte de la Tesis.

El final de la primera parte de la memoria coincide con dos capitulos dedicados a aplicar
los resultados obtenidos anteriormente a algunos problemas relacionados. Para empezar, en el
Capitulo[]obtenemos algunos resultados relativos a la periodicidad de las soluciones de aquel
primer problema con reflexién. Esto se hace recogiendo de nuevo una interesante relacion
entre una ecuacion con reflexion y una ecuacion con un ¢-laplaciano expuesta en el Capitulo
Blque nos permite deducir la existencia de solucién en un caso partiendo del otro y viceversa.
El estudio de esta periodicidad de problemas de valor inicial se lleva a cabo poniendo el foco

TRemitimos al lector a [118,149H151] para una aproximacion algebraica a la teoria abstracta de problemas de
contorno y sus aplicaciones a la computacion simbdlica.
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sobre el calculo explicito del periodo, lo que resulta interesante ya que nos permitird estudiar
su variacién en funcién de varios pardmetros.

El dltimo capitulo de la primera parte, el Capitulo[7] nos devuelve a una situacién mas prac-
tica para poder aplicar, en situaciones concretas, el método desarrollado en el Capitulo[5] para
obtener funciones de Green asociadas a ecuaciones diferenciales con reflexion, coeficientes
constantes y condiciones de contorno de dos puntos. Es del maximo interés poder disponer de
programas de ordenador adecuados que nos permitan obtener las funciones de Green men-
cionadas dado que, en general, los calculos necesarios para derivarlas son muy complicados.
Siendo asi, presentamos en este capitulo un algoritmo para el caso implementado en Mathe-
matica. Ademas anadimos algunas consideraciones que nos podrian ayudar a simplificar los
calculos a realizar, y por lo tanto el tiempo necesario para ejecutar el programa, en un futuro.
El lector puede encontrar en el Apéndice B el cddigo exacto del programa en cuestion.

C.2 Segunda Parte

La fortaleza del método de las funciones de Green reside en que estas son los nucleos in-
tegrales del operador inverso que nos proporciona la Unica solucién del problema en cuestién
pero, por supuesto, este no es el camino a tomar cuando lo esperable es que existan varias
soluciones. En la segunda parte de la memoria exploramos un tipo particular de métodos topo-
légicos que nos permiten demostrar la existencia de multiples soluciones e incluso localizarlas
dentro de un cono meticulosamente definido. Los problemas a los que vamos a aplicar esta téc-
nica contendran una no-linealidad, esto es, una relacion funcional no lineal entre las derivadas
de la solucion y la propia solucidn. El punto clave de este método se encuentra en un perfeccio-
namiento del teorema clasico de Guo-Krasnosel’skii para la contraccion / expansion en conos.
La no linealidad, que toma valores reales, oscilard de una determinada manera, sobrepasando
y quedando por debajo, alternativamente, de ciertos valores dependientes de las variables y
estas ondas causaran, precisamente, la existencia de muchas soluciones. Esta situacion es si-
milar a la que ocurre cuando agitamos un cubo con agua. Si hacemos una pequeiia marca un
poco por encima del nivel del agua y agitamos el cubo, empiezan a aparecer ondas sobre la
superficie y, cuando llegan a una altura suficiente, alcanzan la linea que habiamos marcado.
Cuantas mas ondas hay, tantas mas veces el agua alcanza el nivel marcado.

Sencillo como pueda parecer, las condiciones que se tienen que satisfacer para poder apli-
car esta técnica pueden llegar a ser, como se puede apreciar en esta parte, muy complicadas.
Ademas, esta complejidad crece a medida que los problemas a estudiar aumentan en genera-
lidad.

Como deciamos, antes de llegar a esta parte se habian estudiado, eminentemente, las situa-
ciones de unicidad de solucién en casos lineales pero, cuando hay no-linealidades involucradas,
los problemas se escapan a la construccién directa de soluciones y otros métodos diferentes
se hacen necesarios.

Los métodos topoldgicos se vuelven Utiles en estas situaciones, en particular aquellos rela-
cionados con el indice de punto fijo. En los cuatro capitulos de esta parte usamos esta técnica
para resolver cuatro problemas crecientes en dificultad. La estructura del método es bastante
consistente y se desarrolla como sigue.
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(1) Se establece la naturaleza del problema a ser estudiado y sus caracteristicas especificas.

(2) Se elabora una lista de propiedades, a tener por parte de los elementos considerados en
el problema, que son necesarias para poder garantizar que los resultados de existencia /
multiplicidad / no existencia de soluciones se pueden aplicar. Por ejemplo el operador F'
del cual los puntos fijos serdn las soluciones a nuestro problema tiene que ser continuo
y compacto.

(3) Sedefine un cono apropiado K en el cual localizaremos las soluciones del problema. Aqui
tenemos que tomar una importante decision: los conos grandes permiten encontrar mas
soluciones pero, al mismo tiempo, no proporcionan buenos resultados de localizacion.

(4) Se demuestra que el operador F' es compacto, continuo, y lleva K en K.

(5) Se encuentran condiciones suficientes para las cuales el indice de punto fijo del opera-
dor F' es 0 y +1 respectivamente en —al menos— dos subconjuntos del cono anidados.
Si encontramos n subconjuntos del cono anidados para los cuales el indice alterna el va-
lor O con los valores +1, entonces podemos garantizar la existencia de al menosn — 1
soluciones no triviales diferentes (cf. [123]).

Haciendo el cono mas pequefio trocamos un mayor numero de soluciones por condi-
ciones mas simples. Por otra parte, también podemos usar condiciones para el indice
relacionadas con los autovalores de algunos de los operadores involucrados —véanse los

Capitulos[10]y[11}-.

(6) Finalmente, podemos aplicar los resultados obtenidos a una enorme variedad de proble-
mas e ilustrar asi su aplicacion con algunos ejemplos.

Como se puede observar, las particularidades de cada problema hacen que sea imposible tomar
una aproximacién comun a todos. Sin embargo, se presentan importantes similitudes que nos
llevaran a la obtencién de resultados comparables. Los resultados presentados en los Capitulos
[8,9]y[10]han sido publicados, respectivamente, en [34], [34] y [96]. Los del Capitulo[11]ya estan
listos para ser enviados pronto para publicacion.

En el Capitulo[8] se prueban nuevos resultados relativos a la existencia de soluciones no
triviales de una ecuacion integral de Hammerstein —que nos sirve como modelo para los si-
guientes capitulos— que incluye una reflexion, con la particularidad de que al ndcleo integral
en cuestion le es permitido cambiar de signo fuera de un intervalo del dominio. Resolver este
problema nos permitird aplicar los resultados obtenidos a una ecuacién diferencial con refle-
xion estudiada en el Capitulo[3] Ademads, realizamos el estudio en diferentes conos, observando
como los resultados van variando segun el contexto.

El Capitulo[8|abre la puerta a modelos mas generales. En el Capitulo[9]cambiamos la refle-
xién por una funcién continua cualquiera, lo que nos permite estudiar el modelo de un termos-
tato con argumento desviado. Este modelo tiene en cuenta todos los efectos fisicos relevantes
que pueden darse en el mundo real, lo cual lo hace demasiado complicado para estudiarlo
mediante un método convencional. Ademas, anadimos al problema la presencia, en las con-
diciones de contorno, de un funcional lineal arbitrario, lo cual permite adaptar el modelo a
sistemas de control muy variados.
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El hecho de haber contribuido con la presencia de un funcional en las condiciones de con-
torno hace que en el Capitulo [10| se estudie otra vez el problema integral de Hammerstein,
pero en este caso con la peculiaridad de estar sometido a dos funcionales lineales distintos en
las condiciones de contorno que, por otra parte, son de tipo Neumann. A mayores se ofrecen
por primera vez resultados para el calculo del indice de punto fijo relacionados con el radio
espectral de los operadores asociados lo cual, en muchos casos, resulta ventajoso a la hora de
obtener resultados sin realizar demasiados calculos.

Finalmente, corona la segunda parte de esta memoria el Capitulo [11] Este destaca sobre
los anteriores en tanto a que la complejidad del problema estudiado es muy superior. Esto se
debe a la presencia de funcionales y operadores no lineales, tanto en la ecuacién como en las
condiciones de contorno. Tal generalidad obliga a la aparicion de una gran profusion de condi-
ciones a ser satisfechas y resultados muy interesantes. En particular, se aplica la generalizacidn
de la definicidn del radio espectral a operadores acotados para poder obtener resultados de
indice de punto fijo sencillos.

Mas alla de las dos partes que constituyen el nucleo del trabajo realizado, encontramos dos
apéndices. El primero profundiza en un tema que se menciond en el Capitulo[5} la obtencién de
una version hiperbdlica de la férmula para la suma de fasores. La obtencién de dicha férmula
da lugar a un capitulo muy didactico —publicado en [166]— en el cual se desgrana, desde el
punto de vista matematico, el formalismo de fasores tan cominmente utilizado en el ambito
de la fisica y la ingenieria eléctrica. El segundo apéndice contiene el codigo del programa de
Mathematica desarrollado en el Capitulo[7]y una referencia a la biblioteca electrénica Wolfram
Library Archive desde el cual se puede descargar.
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