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David González Márquez

Directores:

Paulo Félix Lamas
Abraham Otero Quintana
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Resumen

Desde que en 1959 Pipberger digitalizó por primera vez el electrocardiograma
(ECG) y diseñó los primeros programas de ordenador para su análisis, la atención
que ha despertado desde múltiples disciplinas cient́ıficas ha sido extraordinaria.
El ECG pronto se convirtió en una prueba sencilla y de bajo coste recomendada
para el estudio de cardiopat́ıas, acaparando un gran interés debido a la mortalidad
de las enfermedades cardiovasculares, que se han situado como la primera causa
de muerte por enfermedad en el mundo.

Pero más allá de servir de instrumento al servicio del estudio de la patoloǵıa
cardiaca, el ECG se ha mostrado como una fuente todav́ıa inagotable de inves-
tigación médica al poner de manifiesto la compleja interacción entre distintos
procesos fisiológicos que concurren en las alteraciones del impulso eléctrico en
el miocardio. En este sentido, la aparición de nuevas aplicaciones médicas del
análisis del ECG es continua: encontramos algunos ejemplos en la estimación de
la salud fetal en obstetricia, el seguimiento de pacientes crónicos como en el caso
de la diabetes , la enfermedad pulmonar obstructiva crónica, o la apnea-hipopnea
del sueño, entre otras, o incluso en el diseño de nuevos fármacos.

El análisis automático de ECG requiere en primer lugar la elección de una
forma de representación del latido cardiaco. Una de las opciones más habituales
es utilizar una base de funciones, expresando cada latido como una combinación
lineal de estas funciones. Los coeficientes de la combinación lineal son utilizados
para representar el latido, consiguiendo una representación muy compacta. Una
de las base de funciones más utilizada por su calidad en la representación es la
compuesta por los polinomios de Hermite. La cantidad de polinomios utilizados
para representar cada latido cambia bastante entre los distintos autores, algunos
utilizan tan solo 3 polinomios por latido mientras que otros llegan a utilizar
hasta 20. Usualmente los autores justifican poco o nada la elección del número
de polinomios.

Este art́ıculo pretende analizar el impacto de elegir un cierto número de po-
linomios de Hermite en la exactitud de la representación del latido. Para ello se
ejecutó un cojunto de tests sobre la base de datos MIT-BIH Arrhythmia Data-
base variando el número de polinomios utilizados entre 2 y 20. Se utilizaron tres
diferentes estrategias para determinar la posición del latido y se aportan los da-
tos de error para cada uno de los test. Basándose en los resultados obtenidos se
proporcionan ciertas indicaciones acerca de cómo elegir un número de polinomios
adecuado para representar el latido según la aplicación.
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Abstract: Automatic ECG analysis requires choosing a representationfor heartbeats. A common approach is using
some basis of functions to represent the heartbeat as a linear combination of these functions. The coefficients
of the linear combination are used as the features that represent the heartbeat, providing a very compact
representation. The most used basis of functions is the one made up of the Hermite functions. Some authors
have used as few as 3 Hermite polynomials to represent each heartbeat, while others have used as many as 20.
Often little or no justification for the choice of the number of polynomials is given. This paper aims to analyze
the impact of using a certain number Hermite polynomials on the accuracy of heartbeat representation. Tests
were run fitting the heartbeats of the MIT-BIH arrhythmia database with a number of polynomials ranging
from 2 to 20. Three different strategies to determine the heartbeat’s position were used. The fitting errors are
reported here. Based on these results, some guidelines to choose a suitable number of Hermite polynomials
for different applications are given.

1 INTRODUCTION

The electrocardiogram is a simple and inexpensive
test for the diagnosis of multiple cardiovascular dis-
eases. Its main disadvantage is probably the large
amount of information that it generates; e.g., a 24-
hour Holter recording can contain up to 100,000
heartbeats. Thus, visual inspection of the recording
can be a tedious and time-consuming task. This is
the reason why the biomedical engineering commu-
nity has attempted to provide tools for the automatic
analysis of ECG recordings.

Automatic ECG analysis starts with the detection
and characterization of heartbeats. Errors in this task
can invalidate the rest of the analysis. The first step
in the characterization is to choose the features that
will represent the heartbeat. Then these features are
usually fed to an automatic classifier capable of rec-
ognizing the different morphological families of beats
(Braccini and Edenbrandt, 1997) (de Chazal et al.,
2004) (de Chazal and Reilly, 2006) (Osowski and
Stodolski, 2003) (Park et al., 2008) .

In the literature there are three main approaches
to represent beats: using the digitized signal (Hu

et al., 1993), extracting heartbeat interval features
(de Chazal and Reilly, 2006) and using some basis
of functions (Jane et al., 1993) . Using the digitized
signal prevents any loss of information, but this rep-
resentation is difficult to work with due to its large
size, and it is very sensitive to noise. Using heart-
beat interval features, such as QRS height and width,
QT segment, etc., is the closest representation to the
clinicians’ modus operandi when they interpret beats.
However, good interval features need to be selected
in order to achieve good classification results, and it
is difficult to obtain a robust extraction of these fea-
tures. The basis of functions have a good performance
under noisy conditions and can provide a very com-
pact representation of the beat (a number as low as 3-4
features per beat may be enough). The main disad-
vantage of this approach is the loss of interpretability
of the features.

The basis of functions most commonly used is the
one made up of the Hermite functions. This basis ex-
ploits the similarity of the shapes of these polynomi-
als with the QRS complexes (Sörnmo et al., 1981)
(Lagerholm et al., 2000). Hermite functions are or-
thonomal; thus each feature has independent informa-



tion and the signal can be accurately represented as a
linear combination of a low number of Hermite func-
tions. The coefficients of the linear combination are
used as the features that characterize the shape of the
beat.

When using this approach, a choice must be made
about the number of Hermite polynomials to be used
in the representation of the beats. As a general rule,
the more polynomials are used, the more accuracy is
achieved in the representation of the morphology of
the beat. But a high number of polynomials (features)
means a high dimensionality feature space, which can
cause problems when training the automatic beat clas-
sifier. Furthermore, the higher order Hermite func-
tions have high frequency components which could
model high frequency artifacts present in the signal,
rather than the beat. There are some authors that
use as few as 3 polynomials (Braccini and Eden-
brandt, 1997), and others use as many as 20 (Park
et al., 2008). Other authors have used, for example, 6
(Lagerholm et al., 2000), 11 (Haraldsson et al., 2004),
15 (Xu and Wunsch, 2005). Usually the different au-
thors provide no good justification for the number of
polynomials used in their work

This paper aims to analyze the impact of using a
certain number of Hermite polynomials in the rep-
resentation of a heartbeat. Section 2 describes the
database used in our analysis, the preprocessing ap-
plied to the ECG signal, and how the error between
the representation obtained from the Hermite basis
functions and the original signal was calculated. Sec-
tion 3 describes the results obtained when fitting the
beats with different numbers of Hermite polynomi-
als, and Section 4 discusses these results, providing
some guidelines to choose a suitable number of Her-
mite polynomials.

2 MATERIAL AND METHOD

2.1 ECG Database

The database most commonly used in the papers deal-
ing with automatic beat classification is the MIT-BIH
arrhythmia database (Osowski and Stodolski, 2003)
(de Chazal et al., 2004) (Braccini and Edenbrandt,
1997) (de Chazal and Reilly, 2006) (Park et al., 2008)
(Lagerholm et al., 2000) . Therefore, this will also
be the database we shall use in our study. The MIT-
BIH arrhythmia database (Moody and Mark, 2001)
is made up of 48 ECG recordings of two channels
among the modified limb lead II (MLII) and the mod-
ified leads V1,V2,V3,V4 and V5. The recordings are

Figure 1: Instability of the handmade beat annotations made
by the cardiologists in the MIT-BIH arrhythmia database

digitized at 360 Hz sampling rate. All beats in the
database were annotated by two or more cardiologist.

2.2 Preprocessing

To eliminate the baseline drift a wavelet based filter
was used. The filter was a low pass filter that passes
only the low frequencies corresponding with the base-
line drift. Then from the coefficients of the Discrete
Wavelet Transform (DWT) the baseline drift was re-
constructed. This reconstruction was subtracted from
the original signal, thus removing the baseline drift
(Blanco-Velasco et al., 2008). To remove the high
frequency noise a low-pass 4 order Butterworth fil-
ter with a cutoff frequency of 40 Hz was used. One of
the theoretical advantages of representing beats with
the Hermite polynomials is the robustness of the rep-
resentation in the presence of noise. To empirically
test this, we shall run our tests both directly on the
recordings, and over a filtered version of the record-
ings.

Theoretically, Hermite polynomials will provide a
better characterization of the beat if the point of max-
imum symmetry is selected as the center of the win-
dow of signal to be fitted. This point is usually the
peak of the QRS complex, the R wave. Furthermore,
setting the beat location in a stable position within the
QRS complex will lead to more reproducible results,
and therefore to features that will be more easily rec-
ognized by an automatic classifier. As it can be seen
in Figure 1, the annotations handmade by the cardiol-
ogists have inaccuracies due to the imprecision intro-
duced by the user interface.

To try to achieve a more stable beat’s position
within the QRS complex, and to get as close as pos-
sible to the point of maximum symmetry, an algo-
rithm to improve the beats’ location provided in the
MIT-BIH arrhythmia database was used. The algo-
rithm calculates the mean in a 200 ms window around
the annotation provided in the database (the annota-
tion handmade by cardiologists). Usually, the R wave



peak is the farthest point from the mean value. This
point is selected and a new window of 200 ms around
it is extracted from the signal.

The correction to the beat’s position can be ap-
plied only to one channel or to both channels inde-
pendently. If it is only applied to one channel, the
position of the R wave peak is assumed to be equal
for both channels (this is not necessarily true in prac-
tice). Otherwise, the location of the R wave peak may
be slightly different for each channel.

We have run one test using the beat’s positions
provided by the MIT-BIH arrhythmia database, the
solution most commonly used in the literature. A sec-
ond test was performed applying the beat location cor-
rection algorithm over the first channel and using the
same beat location in the second channel. Finally, a
third test was run applying the beat location correction
algorithm over both channels independently. Each of
the three strategies was applied directly over the MIT-
BIH arrhythmia database signal recordings, and over
the filtered version of the recordings, yielding a total
of six different tests.

2.3 Hermite Functions

We will extract each heartbeat’s QRS by taking a 200
ms window of sampled ECG centered on the beat’s
position, being the beat’s position calculated by one
of the three strategies presented in the previous sec-
tion. This window is wide enough to encompass the
entire QRS complex of a normal beat, but narrow
enough not to include the P and T waves. The width of
this window is the one normally used in the literature
(Lagerholm et al., 2000) (Mugler and Clary, 2002).
All the Hermite functions converge to zero both in∞
and in -∞. Thus, we shall add 100 ms zeros on each
side of the 200 ms window containing the QRS. Let
us denote byx(t) the resulting 400 ms window.x(t)
can be represented as:

x(t) =
N−1

∑
n=0

cn(σ)φn(t,σ)+e(t) (1)

whereN is the number of Hermite polynomials used
in the representation of the beat,φn(t,σ) is then Her-
mite function, cn are the coefficients of the linear
combination,σ is a parameter that controls the width
of the polynomial, ande(t) is the error betweenx(t)
and the Hermite approximation. The Hermite func-
tionsφn(t,σ) , 0≤ n< N, are defined as:

φn(t,σ) =
1

√

σ2nn!
√

π
e−t2/2σ2

Hn(t/σ) (2)

whereσ is a parameter that controls the width of the
polynomial. The Hermite polynomialHn(t/σ) can be

N15
N12
N9
N6
N3
Original Beat

Figure 2: Original beat and hermite appoximations with
N=3,6,9,12 and 15 for a fixedσ

obtained recursively:

Hn(x) = 2xHn−1(x)−2(n−1)Hn−2(x) (3)

where H0(x) = 1 and H1(x) = 2x. For example
H2(x) = 4x2−2, H3(x) = 8x3−12x, and so on.

To adjust the width of the Hermite function to each
QRS complex, theσ value is used. Hence, each QRS
complex is represented by the N coefficients of the
linear combinationcn(σ), 0≤ n< N, and byσ. Fig-
ure 2 illustrates how the higher the order of the Her-
mite functions used, the more accurate the approxi-
mation of the beat is. However, using high degree
polynomials has the risk of modeling noise in the sig-
nal, and not the actual shape of the QRS complex (see
the wavy behavior just before the start of the QRS
complex in the approximation N=15 in Figure 2).

For a given value ofσ, the hermite functions form
an orthonormal basis:

∞

∑
t=−∞

φn(t,σ)φm(t,σ) = δmn. (4)

This permits an efficient calculation ofcn(σ) in Equa-
tion 1. Without an infinite window size, Equation 4
does not hold. However ifφn(σ) is close to zero on
the edges of the window, Equation 4 is still a good ap-
proximation. For a givenσ the coefficientscn(σ) are
calculated by minimizing the summed square error

∑
t
|e(t)|2 = ∑

t
|x(t)−∑

n
cn(σ)φn(t,σ)|2 (5)

The minimum of the square error is easily calculated
thanks to the orthogonality property:

cn(σ) =~x· ~φn(σ) (6)



where the vectors are defined as~x= {x(t)} and~φn =
{φn(t,σ)}.

An iterative stepwise increment ofσ was done by
recomputing Equation 6 and Equation 5 for each step
and selecting theσ that minimizes the error. Defin-
ing φn(σ) as being close enough to zero outside the
window

|φn(−t0,σ)|= |φn(t0,σ)|<
1
10

max
t∈[−t0,t0]

|φn(t,σ)|
(7)

and
|φn(t,σ)| ≤ |φn(t0,σ)| ∀|t|> t0 (8)

we can obtain the maximum values forσ. The value
of the increment in each step wasf recuency

1000 from 0 to
the maximum.

2.4 Error Measurement

(Lagerholm et al., 2000) used the following measure
to quantify the error of the approximation:

∈= ∑t |e(t)|2
∑t |x(t)|2

(9)

This measure will be calculated in our test, to be
able to compare our results with the ones of Lager-
holm et al. We shall also calculate another measure
that we believe is more easy to interpret: the normal-
ized root-mean-square error (NRMSE) between the
Hermite reconstruction and the sampled signal:

NRMSE=
RMSE

xmax− xmin
=

√

∑t |e(t)|2
N

xmax− xmin
(10)

whereN is the size of the window in samples. The
NRMSE can be interpreted as the average error ex-
pressed as a percentage of the range of values in the
signal fragment (xmax− xmin).

3 RESULTS

The algorithms described in the previous section were
implemented by the authors in the Java programming
language, with the exception of the wavelet-based fil-
ter and the high frequency filter. The filters were im-
plemented in Matlab. From Matlab we generated fil-
tered versions of the recordings of the MIT-BIH ar-
rhythmia database that were fed to the algorithms im-
plemented in Java. Tests were run for all the filtered
and the unfiltered recordings of the MIT-BIH arrhyth-
mia database. In each case three different runs were
performed: a first one uses the beat annotations pro-
vided in the database as center for the window of the
Hermite interpolation; a second one searching for the

point of maximum symmetry of the beat on the first
ECG channel and using this position also on the sec-
ond channel; and third one searching independently
in each channel for the point of maximum symmetry
of the beats.

The results of the average NRMSE (see Equation
10) through all recordings are shown in Figure 3. The
errors of each channel and the average error of the
two channels are shown. The results corresponding
with the beat’s positions provided in the database,
the beat’s position correction applied to the first ECG
channel, and the beat’s position correction applied to
both channels are marked with triangles, squares and
circles, respectively. The bar shows the standard de-
viation of each error. The graphs on the left are the
results for the unfiltered signal and the graphs on the
right are the results for the filtered signal.

Figure 4 shows Lagerholm’s error measure (see
Equation 9) when using the beat positions provided
in the database, and when the correction is applied to
both channels. Results are shown both for the filtered
and unfiltered signal.

During the tests our software measured the time
required for fitting each beat with the Hermite poly-
nomials. The average time required to fit each beat
with the Hermite approximation of degree N is shown
Figure 5. These test were executed in an Intel Core i5
CPU at 3.1 GHz with 4Gb of RAM running on Linux
(CentOS-6.1).

4 DISCUSSION

The results in the previous section show that even with
a small number of Hermite functions, beats can be
represented acceptably. This is not surprising at all;
there are authors in the literature that use as few as 3
functions to represent the beats (Braccini and Eden-
brandt, 1997). 7 polynomials may be a sweet spot;
between 6 and 7 we can still appreciate a significant
improvement in Figure 3 and Figure 4; but after 7 the
improvements are smaller. At least when the final
goal is to obtain a beat classification, it is question-
able whether it is worth using a number as high as 20
polynomials (Park et al., 2008), since the benefits ob-
tained from a slightly more accurate representation of
the beats may be overtaken by the disadvantages of
training classifiers in a higher dimension space: go-
ing from 12 functions to 20 produces a decrease of
approximately 0.005 in the total NRMSE both over
the filtered and the unfiltered signal (see Figure 3).

The beat’s position correction algorithm, espe-
cially when applied to both channels, provides no-
ticeable improvements of the results. These improve-
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Figure 3: NRMSE results for the unfiltered and filtered signalfor the three different strategies to determine the beat’s position

ments are more marked in the second channel, espe-
cially when using low numbers of Hermite functions.
The reason why the correction provides better results
on the second channel is probably because the MIT-
BIH arrhythmia database has been annotated over the
first channel (Moody and Mark, 2001). The reason
why more improvement is obtained for a low number
of polynomials is because when using a high number
of polynomials it is posible to represent the beat ac-
curately even if the point chosen as the center of the
fitting window is not the point of maximum symmetry
(see Figure 3).

Filtering provides significant improvements in the
results (see Figure 3 and Figure 4). We have per-
formed independent tests using only high frequency
filtering and only baseline drift removal. The re-
moval of baseline drift alone produced virtually iden-
tical results to working directly with the unfiltered
signal; almost all the improvements that can be seen
in Figures 3 and 4 when using the filtered signal arise
from the high frequency filtering. This suggests that
Hermite approximation is more affected by high fre-
quency noise than by baseline drift. For example,
a 2% of NRMSE can be achieved without filtering
with 11 polynomials but with filtering only 8 are re-
quired; and we cannot reach a 1% of NRMSE with-
out filtering, not even with 20 polynomials, while
with filtering is possible to reach this error with 13
(see Figure 3). It should be noted that many authors
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Figure 4: Lagerholm et al. error measure

that have used Hermite polynomials to represent beats
do not apply high-frequency filtering before the in-
terpolation (Hu et al., 1993) (Park et al., 2008) (Hu
et al., 1997) (Braccini and Edenbrandt, 1997) (Os-
owski et al., 2004) (Osowski and Stodolski, 2003)
(Lagerholm et al., 2000).

Among the papers we have reviewed only (Lager-
holm et al., 2000) reports error results for the Hermite
approximation. Lagerholm et al. calculated the error
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with Equation 9. They only report the values for 3,
4, 5 and 6 Hermite polynomials; the errors are 9.7%,
6.8% , 5.5% and 4.5%, respectively. These results are
slightly lower than the results we obtained with our
beat correction algorithm applied over both channels
with the unfiltered signal. However, when using the
filtered signal the errors we obtain are lower than the
results of Lagerholm et al., both when using the orig-
inal beat annotations from the database, and when us-
ing the beat position correction over both channels.
It should be noted that Lagerholm et al. applied no
high-frequency filtering.

CPU time used when calculating the Hermite rep-
resentation increases very fast with the number of
polynomials (see Figure 5). Our implementation of
the algorithms for order 20 cannot process an elec-
trocardiogram in real time on a modern computer (a
Intel Core i5 CPU at 3.1 GHz). If the algorithms
are going to be implemented in a device with low
computing power, such a cell phone of a microcon-
troller, using a low order representation over the high-
frequency filtered signal and applying beat position
correction would probably yield a good compromise
between accuracy in the representation and comput-
ing power requirements. Both filtering and beat’s po-
sition correction consume relatively little CPU time,
but provide significant improvements, especially for
low order representations. For example, a character-
ization with the annotations of the database and the
unfiltered signal and ordersN = 3,7,11 have errors
NRMSD of 0.0556 ,0.0303 and 0.0206, with aver-
age execution time per beat of 9.94ms, 34.5ms and
73.4ms respectively. If the signal is filtered, and beat
position correction is applied over both channels, the

execution times are almost identical but the NRMSD
fall to 0.0486, 0.0240, 0.0136, respectively.

5 CONCLUSIONS

We have analyzed the impact of using a certain num-
ber of Hermite polynomials on the accuracy of heart-
beat representation. Tests were run over the MIT-BIH
arrhythmia database with a number of polynomials
ranging from 2 to 20. Three different strategies to de-
termine the heartbeat’s position were used. Runs were
performed over the original signal, over the signal af-
ter removing baseline drift, and over the signal after
removing baseline drift and high frequency noise.

Our results suggest that using 7 polynomials is the
sweet spot that provides a better compromise between
accuracy of representation and working with a low
number of features. However, with a smaller num-
ber of polynomials fairly good approximations can be
obtained. Especially when using a smaller number
of polynomials, correcting the beats’ position and fil-
tering high frequency noise provides significant im-
provements in the accuracy of the representation. The
removal of baseline drift appears not to have a signif-
icant impact.

In this paper we have determined the accuracy of
the representation with a measure of the error between
the reconstruction obtained from the Hermite polyno-
mials and the original signal. However, if the final
goal of representing beats with Hermite polynomials
is to classify them in different morphological fami-
lies (instead of, for example, compression of the ECG
(Jane et al., 1993)), the features that minimize this
error need not to be those that provide the best sepa-
ration between the different classes of beats. It would
be interesting to study how the features obtained when
representing the beats with a different number of Her-
mite polynomials enable the different beat families to
be separated by an automatic classifier. This will be
one of our lines of future work.
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