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Abstract 
 

One way to define the structure of the stand is the achievement of models that link 
diameter and height (as individual variables). In even-aged stands these models depend on the 
age of the trees. So, the values of the parameters fitted in the models must be modified as time 
goes on. A common method to know the evolution of the parameters in high productivity 
species is the measurement of the variables (diameter and height) every five years. In this 
work, 15 linear functions with two and three parameters are tested to be used as height–
diameter curves. The annual evolution of the parameters of the height-diameter model 
showing the best shape and accuracy is analysed in two artificial stands of Pinus radiata in 
Lugo (Spain). There is not a remarkable variation of the parameters with the age of the stand 
in the considered range of ages.   
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1. Introduction 
 

In the usual practice of forest inventory, the aim is to know the timber volume in each 
of the plots installed in the stand. Timber volume in a plot is the sum of the volumes of the 
trees within it. If a suitable individual tree volume equation for the species and region is 
available, the required predictor variables can be measured for each tree and the estimated 
volumes individually computed for all trees. It is very frequent the use of volume equations 
such as v = f(d, h) with breast height diameter (d) and total height (h) as predictor variables. In 
many forest inventory situations, it is inefficient to measure all predictor variables for every 
tree in each plot because of the different measurement costs involved. The breast height 
diameter can be obtained at little expense in almost any timber type. Height measurements are 
considerably more expensive to collect and in tall dense stands the accurate measure of 
heights can be very difficult. As a result, plot volumes are generally obtained by measuring all 
trees on the plot for breast height diameter and subsampling for heights. Since both tree height 
and tree diameter are correlated with age, height appears to be correlated with diameter 
(HUSCH et al., 2003). In even-aged stands height and diameter are closely correlated, but this 
relationship varies with stand age. Data from the height sample trees can be used to establish 
a height/diameter regression relationship h = h(d). Such link between h and d are usually 
expressed by mathematical functions being obtained using regression analysis fitting or 
bivariant distributions of heights and diameters (GADOW et al., 2001).  
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According to CASTEDO DORADO (2003), more than 30 functions have been 
developed as height-diameter curves. Some of these functions are included in table 2. The 
fitting can be based on pairs of data (d, h) of individual trees or based on data of mean heights 
for every diameter class (PRODAN et al., 1997). After the regression coefficients have been 
estimated from the height sample tree data, the equation can be substituted by height in the 
volume equation v = f[d, h(d)] (CLUTTER et al., 1983; DÍAZ-MAROTO HIDALGO et al., 
2003). These models allow assigning mean heights to some diameters, individual height 
predictions and volume estimations (CASTEDO DORADO, 2003). 
 

The knowledge of breast height diameters and heights is very important in forest 
management, not only in stock estimation but also in modelling height and diameter growth 
(CAÑADAS et al., 1999). To describe properly the biological process of height growth of the 
tree, the h-d models must accomplish the next conditions (CASTEDO DORADO, 2003): 
 
- non-linear models because the relationship between h and d is curvilinear. However, 

non-linearity is not always detectable because the sample is too small or because of the 
random variability of tree heights within a given diameter class (CAÑADAS et al., 
1999; LAAR and AKÇA, 1997). 

- some equations forces the height curve through the point d = 0 and h = 1.3 m while 
other models forces through the coordinate origin, being desirable the first option  

- monotone increasing for all values of d where the model is defined (curve with 
positive slope) 

- upper asymptote with the estimated height converging to a constant as d tends to 
infinite (slope tending to be horizontal for high diameters). 

- inflexion point in the case of uneven-aged stands. 
 

There are also generalised equations, which also include stand variables in the model, 
empirically developed for some species and regions, where the above conditions are not 
accomplished (GADOW et al., 2001; PRODAN et al., 1997). 

 
The models do not yield accurate predictions of height for diameters beyond or in the 

tails of the diameter distribution because of the usual lack of data in those regions. Therefore, 
it is suitable to underline the diameter range where the model is valid (CAÑADAS et al., 
1999; CASTEDO DORADO, 2003; RONDEUX, 1993).  
 

Height-diameter models are usually fitted for pure even-aged stands, where the curves 
depend mainly on species, age, site index and crown class (CAÑADAS et al., 1999; PARDÉ 
and BOUCHON, 1988; RONDEUX, 1993). The shape of the curve changes with the age of 
the stand: the slope of the curves tends to reduce in the late stages of the rotation, the 
curvature tends to reduce and the curve raises, i. e., the trees of a specific diameter class 
increase their mean height with the age (PARDÉ and BOUCHON, 1988; PRODAN et al., 
1997). In stable uneven-aged stands the height-diameter curve does not change with age 
(PARDÉ and BOUCHON, 1988). 

 
In good sites the slope is higher than in poor sites (PARDÉ and BOUCHON, 1988). 

The curve is also influenced by the stand density (number of trees per hectare). In large 
forests, if the stand density is not uniform the fitting of a unique curve for the whole stand is 
actually the grouped fitting of several different curves. A unique curve, with high variability 
on the regression model, can be not valid for the complete stand (CAÑADAS et al., 1999; 
PRODAN et al., 1997). 



3 3 

The parameters of the curves depend on age but also depend on other stand variables 
related with age as mean height, top height, mean diameter, basal area or stand density, as it 
was pointed out before. The evolution of the height-diameter curves with stand variables or 
even with the site index can be modelled using generalised h-d curves (CAÑADAS et al., 
1999; CASTEDO DORADO, 2003; PRODAN et al., 1997). According to LÓPEZ 
SÁNCHEZ et al. (2003), it is necessary to introduce mean or top height as predictor variables 
in the h-d equations for Pinus radiata to obtain acceptable predictions. 

 
For growth modelling, it might be advantageous to pool the height measurements of 

successive re-measurements and to relate the parameters of the function being used to age. 
When the nature of these relationships is known, age is introduced as an additional predictor 
variable, according to SADIQ et al. (1983), POLLANSCHÜTZ (1974) and LAAR (1986), 
cited in LAAR and AKÇA (1997). 
 

The age and the rest of stand variables can be explicit predictor variables in the model, 
as diameter is, but they can also be used to estimate by regression equations the parameters of 
the h-d model. 

 
2. Material and methods 

 
The sampled area is the forest of Traspenalba (47º70’N and 6º26´W, 550 m elevation), 

which is located in Lugo, in the eastern mountains of Galicia (Spain). 
 
The study has been performed in two Pinus radiata plantations that have been thinned 

and pruned along the rotation. The stands have NW orientation and present the next 
accompanying vegetation: Calluna vulgaris, Ulex europaeus, Erica arborea, Pteridium 
aquilinum, Rubus sp. and some individuals of Quercus robur and Pinus pinaster (VARELA 
VÁZQUEZ, 2001). The main characteristics of the stands are shown in table 1.  

 
To obtain the annual diameter distribution in each stand, every year along ten years the 

breast height diameter was measured in several plots, covering annually 4239 m2 on average 
in stand I and 3141 m2 in stand II. The minimum diameter considered was 7.5 cm. The 
number, location and size of the measured plots were not the same all years.  
 
 The fitting of the h-d curves was carried out using 753 heights measured along ten 
years in stand I (33 % of the trees in the plots were measured on average) and 424 heights in 
stand II (30 % of the trees in the plots). It means that nearly 60 heights per stand and year 
have been registered. It is assumed that this amount of data is enough for fitting purposes 
because 20-30 heights should be measured at least in each stand to obtain sufficiently accurate 
estimates (LAAR and AKÇA, 1997; RONDEUX, 1993). In spite of this measurement effort, 
it was not always possible to register 3-5 heights in each diameter class, as RONDEUX 
(1993) recommends. 

 
Normality of the height and diameter distribution was examined using the test of 

Kolmogorov-Smirnov with the significance correction due to Lilliefors for distributions of 
less than 30 trees and the Shapiro-Wilk test for distributions less than 50 trees. 

 
The site index of each stand was estimated using the Assmann top height definition 

and the yield tables for Pinus radiata in Galicia (SÁNCHEZ RODRÍGUEZ, 2001). In the 
estimation of the Assmann height, it was considered the correction by PARDÉ and 
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BOUCHON (1988) to avoid bias in small plots (under 5000 m2): to take one tree less in the 
selection of the 100 biggest trees per hectare to obtain their mean height. What is more, in 
some cases the height of the dominant trees was not directly measured and it was estimated 
with the obtained h-d curves (CAÑADAS et al., 1999). 

 
Both stands are very close but they exhibit different features. In stand I the slopes are 

moderate, stand density is intermediate and site index is 21 (the second best in a scale from 13 
to 25). However, the stand II is slightly younger, exhibits soft slopes, low densities and site 
index is 25, the best one for the species in Galicia.  
 
Table 1. Characteristics of the stands. 
 Stand I Stand II 
Plantation date 1971 1974 
Surface (ha) 20.26 19.16 
Mean slope (%) 17 8 
Density (ind./ha) at 30 years age 456 369  
Assmann top height (m) at 30 years age 28.7 32.3 
Site index 21 25 
 

The fitted models are shown in table 2. All of them are non-linear regression models 
but they can be transformed and converted to linear models by some transformation of 
variables. The selected model will be that with the best closeness of the observed 
measurements to the preedicted values and with the best shape, according to the requirements 
exposed in the Introduction.  
 

The comparison of the estimates for the different models was based on numerical and 
graphical analyses of the residuals. Three statistical criteria were examined: bias (E ), mean 
square error (MSE), coefficient of determination (R2) and adjusted coefficient of determination 
(Radj

2). Their expressions may be summarized as follows: 
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where  iy  is the measured height in the i th tree 

iŷ  is the predicted height in the i th tree 
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y  is the average value of the observed heights 
n is the total number of observations used to fit the model 
p is the number of model parameters. 

 
Table 2. Several linear functions to use in the fitting of height-diameter curves. 
N. Equation N. of parameters Source 

1 
h = A + Bd + Cd2 

 
3 PRODAN et al. (1997) 

2 
h = 1.3 + Ad + Bd2 

 
2 TROREY (1932) 

3 2d

B
Ah +=  2 PRODAN et al. (1997) 

4 
lnh = A + Blnd 

 
2 

STOFFELS and VAN SOEST (1953), 
cited in CASTEDO DORADO (2003) 

5 
h = A + Blnd 

 
2 HENDRICKSEN (1950) 

6 
d

B
Ah +=ln  2 MACKINNEY et al. (1937) 

7 
h = 1.3 + AdB 

 
2 HUI and GADOW (1999) 

8 
dB

Ad
h

+
=− 3.1  2 CAÑADAS et al. (1999) 

9 2

2

)(
3.1

BdA

d
h

+
=−  2 

PRODAN et al. (1997), called 
Näslund formula 

10 2

2

)( BdA

d
h

+
=  2 

Hossfeld I, cited in CASTEDO 
DORADO (2003) 

11 
2

2

3.1
CdBdA

d
h

++
=−  3 

PRODAN (1944), cited in DÍAZ-
MAROTO et al. (2003) 

12 
B

d

d
Ah 









+
=−

1
3.1  2 PRODAN et al. (1997) 

13 
d

B
Ah −=− )3.1ln(  2 PRODAN et al. (1997) 

14 
)(ln)ln( 2 dCdBAh −=  

 
2 PRODAN et al. (1997) 

15 
d

B
A

h
+=

− 4.0)3.1(

1
 2 PETERSON (1955) 

 
3. Results and discussion 
 

The diameter distribution (table 3) is significantly normal in eleven of the twenty cases 
(two stands and ten years in each stand) at a 10 % significance level. The deviation from 
normal distribution in diameter is due to frequencies higher than expected in the smallest 
diametric classes. As a result, the skewness is usually positive and the kurtosis is negative in 
most cases. So, the studied distributions are platykurtic.  
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The mean diameter exhibits an increasing and roughly sustained trend with stand age 
while other parameters in the distribution description (standard deviation, skewness and 
kurtosis) do not show a well defined trend with age. The mean diameter increases very 
significantly with age (R2 = 0.837** in stand I and R2 = 0.893** in stand II).  

 
Density decreases significantly with age (R2 = 0.507* in stand I and R2 = 0.767** in 

stand II). The stand density (number of trees per hectare, N) varies considerably within each 
stand, as indicated by the results of the yearly measured sampling plots.  
 

The height distributions are significantly normal just in eight cases for the same 
significance level (10 %), probably due to the reduced amount of height data comparing with 
the available amount of diameter data. 
 

The diameter reduction along the height in stem is 0.6 % - 0.9 %, similar to the values 
in the yield tables for the same age and site index (SÁNCHEZ RODRÍGUEZ, 2001). 
 

The adjusted R2 for the models with two parameters was obtained for the linear models 
with the transformed variables (table 4). The highest values of R2 were achieved in models 9, 
10 and 15. In these three cases R2 = 0.509 on average for the twenty fittings. The model 10 
was rejected because it does not comprise the condition that forces the height curve through 
the point d = 0 and h = 1.3 m. 
 

Models 9 and 15 have horizontal asymptote. The values of the asymptotes were 
analysed in both models to check if the mathematical values for the asymptotes have also 
realistic meaning and physical validity (considering the value of the asymptote as the 
maximum achievable height for the species Pinus radiata). In this study, model 9 shows 
asymptotes over 50 m in five cases while model 15 shows asymptotes over 50 m just in three 
cases. Because of that model 15 is finally selected among the tested biparametric models.  

 
Model 11, with three parameters, is discarded because of the poor behaviour of its 

asymptotes; they are negative in two fittings, two more are very low asymptotes (under 15 m), 
five asymptotes are high (over 50 m) and three of them very high (over 100 m).  
 

The fitting of the complete parabolic model (model 1 in table 2) shows that the 
second-order polynomial is not acceptable because in nine of the 20 fittings it is found a 
decreasing portion of the curve in the range of diameters where the model would be defined. 
That is, the parabolic model has a maximum located inside the observed range of diameters. 
The parabolic model with the constant equal to 1.3 (model 2 in table 2) is not either 
acceptable because in eleven of the 20 fittings the obtained model shows a decreasing portion 
in the range of diameters where the model would be defined. 

 
With the selected model 15 (table 5), there is no significant relation between age and 

the parameters of the function. Parameter A shows very small variation and it is not related 
with age and parameter B is more variable but it is weakly related with age (R2 = 0.13). It 
must be underlined that the amount of data in these fittings is just n = 10 years and it is not 
easy to achieve significant results with so scarce data set, but the analysis of the plotted pairs 
age-parameter, which is not included in this work, allows to one to assume that there are no 
trends to remark. 
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Table 3. Characteristics of the diameter distributions in the stands. 
Stand age n Diametric 

rangeA 
(cm) 

Mean 
diameter 

(cm) 

Standard 
deviation 

(cm) 

Skewness Kurtosis N 
(ind./ha) 

24 783 09-42 20.5 8.1 -0.64 -0.17 1036 
25 154 14-42 26.1 7.0 -0.16 -0.73 0469 
26 048 20-41 27.2 6.9 -0.05 -0.43 0472 
27 280 13-46 27.4 8.2 -0.26 -0.77 0507 
28 153 13-53 27.3 8.9 -0.15 -0.48 0606 
29 233 16-43 28.2 6.8 -0.12 -0.82 0461 
30 147 15-48 29.8 7.5 -0.25 -0.54 0436 
31 143 15-45 31.9 6.9 -0.28 -0.60 0381 
32 280 19-52 32.6 7.8 -0.17 -0.49 0352 

 
 
 
 
I 

33 083 18-46 31.7 8.0 -0.29 -0.73 0351 
21 072 08-55 25.7 9.4 -0.67 -0.23 0576 
22 059 16-44 28.2 7.7 -0.34 -0.55 0472 
23 128 17-51 28.7 8.4 -0.19 -0.44 0504 
24 134 15-45 29.2 8.3 -0.23 -0.64 0536 
25 192 12-51 30.4 8.3 -0.01 -0.53 0512 
26 124 10-44 29.4 9.2 -0.17 -0.78 0496 
27 247 17-51 30.3 8.7 -0.16 -0.56 0440 
28 143 17-51 33.1 7.9 -0.12 -0.86 0381 
29 182 18-52 34.8 8.4 -0.23 -0.51 0364 

 
 
 
 

II 

30 121 16-57 36.4 9.2 -0.09 -0.84 0372 
A: referred to the subsample of heights. 
  

The bias for the model 15 is included for every stand and year in table 5. On average, 
the bias is 0.33 m in stand I and 0.32 m in stand II.    
 

The mean square error is 11.66 m2 in the stand I and 10.34 m2 in the stand II, on 
average for the complete series of ten years (table 5). In order to make comparisons with other 
results, the square root of the mean square error is 15.0 % of the average height in stand I and 
12.8 % of the average height in stand II. According to RONDEUX (1993), that percentage is 
usually under 15 % while NÄSLUND (cited by PRODAN et al., 1997) noted 7-12 % and 
KRENN (cited by PRODAN et al., 1997) noted 4.5-11.5 %. In this work, the precision of the 
fitted models is near or over the thresholds proposed by those authors. The explanation of that 
phenomenon can be found in the high variation in density between plots in each stand and 
year. As density affects the height-diameter relationships, it is expected a high dispersion of 
the observed values against the predicted ones. 
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Table 4. Adjusted R2 for the h = h(d) models with two parameters. 
ModelsA Stand age n 

3 4 5 6 7 8 9 10 12 13 14 15 
24 204 0.579 0.667 0.679 0.666 0.665 0.648 0.661 0.663 0.668 0.666 -0.603 0,663 
25 81 0.335 0.380 0.380 0.374 0.378 0.335 0.361 0.366 0.374 0.373 -0.203 0,365 
26 33 0.635 0.458 0.538 0.517 0.449 0.397 0.453 0.470 0.505 0.507 -0.032 0,464 
27 75 0.197 0.236 0.232 0.231 0.235 0.227 0.231 0.232 0.231 0.231 -0.459 0,232 
28 47 0.318 0.399 0.404 0.374 0.398 0.364 0.371 0.372 0.376 0.374 -0.322 0,372 
29 77 0.122 0.130 0.128 0.131 0.130 0.131 0.131 0.131 0.131 0.131 -0.714 0,131 
30 45 0.464 0.532 0.508 0.546 0.533 0.579 0.565 0.562 0.548 0.548 -0.413 0,561 
31 40 0.162 0.202 0.232 0.177 0.199 0.127 0.152 0.157 0.175 0.174 -0.308 0,157 
32 123 0.301 0.330 0.313 0.335 0.330 0.334 0.338 0.339 0.336 0.336 -0.418 0,338 

 
 
 
 
I 

33 28 0.512 0.519 0.491 0.556 0.520 0.592 0.578 0.575 0.557 0.558 -0.565 0,574 
21 35 0.477 0.712 0.678 0.726 0.713 0.814 0.780 0.769 0.737 0.734 -0.540 0,771 
22 7 0.737 0.977 0.953 0.916 0.978 0.960 0.942 0.937 0.923 0.920 -0.126 0,938 
23 50 0.114 0.137 0.107 0.155 0.139 0.178 0.173 0.170 0.158 0.158 -0.056 0,171 
24 17 0.502 0.519 0.566 0.510 0.512 0.397 0.456 0.469 0.504 0.503 -0.278 0,466 
25 35 0.586 0.614 0.593 0.677 0.614 0.706 0.700 0.696 0.679 0.680 -0.469 0,697 
26 47 0.706 0.811 0.817 0.874 0.807 0.877 0.887 0.887 0.876 0.877 -0.408 0,887 
27 86 0.463 0.585 0.542 0.579 0.586 0.603 0.599 0.597 0.582 0.582 -0.128 0,597 
28 38 0.588 0.610 0.609 0.627 0.610 0.627 0.628 0.628 0.627 0.627 -0.659 0,628 
29 58 0.421 0.411 0.400 0.441 0.412 0.459 0.451 0.449 0.441 0.442 -0.668 0,449 

 
 
 
 

II 

30 51 0.668 0.692 0.695 0.723 0.690 0.696 0.714 0.717 0.723 0.723 -0.531 0,717 
Mean I 75,3 0.363 0.385 0.391 0.391 0.384 0.373 0.384 0.387 0.390 0.390 -0.397 0.386 
Mean II 42,4 0.526 0.607 0.596 0.623 0.606 0.632 0.633 0.632 0.625 0.625 -0.361 0.632 
Mean I+II 58,9 0.444 0.496 0.493 0.507 0.495 0.503 0.509 0.509 0.508 0.507 -0.379 0.509 
A Model codes are described in table 2. 
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As it is supported by PARDÉ and BOUCHON (1988), the slope of the curves, 
considered here at d = 30 cm, is higher in the stand with the best site index (slope = 42 % in 
stand II and slope = 33 % in stand I) but the difference is not significant. The slope does not 
reduce significantly with age in the stands, probably due to the low range of years considered 
in the experimentation. 
 

The obtained curves are state curves and they are not stand height growth curves, as 
those in yield tables. Because of that, it makes no sense the comparison between both types of 
curves (PRODAN et al., 1997).  

 

Table 5. Parameter estimates of the model 
d

B
A

h
+=

− 4.0)3.1(

1
. Significance level is under 

0.007 in all coefficients. 
Confidence interval for the 

coefficient at 95 % 

S
ta

nd
 age 

A B 

asymptote 
(m) 

Slope 
for  

d = 30 cm 

Bias 
(m) 

MSE 

24 0.249 ± 0.010 1.351 ± 0.172 33.6 0.27 -0.28 05.79 
25 0.235 ± 0.022 1.870 ± 0.546 38.7 0.36 -0.55 13.53 
26 0.181 ± 0.056 3.948 ± 1.472 73.0 0.64 -0.20 08.18 
27 0.268 ± 0.018 1.205 ± 0.500 28.2 0.21 -0.56 13.69 
28 0.251 ± 0.024 1.635 ± 0.614 33.0 0.29 -0.60 17.63 
29 0.261 ± 0.014 0.633 ± 0.358 30.0 0.15 -0.69 07.55 
30 0.221 ± 0.016 1.870 ± 0.494 44.9 0.43 -0.34 09.71 
31 0.247 ± 0.030 1.335 ± 0.930 34.3 0.28 -0.79 20.97 
32 0.237 ± 0.014 1.609 ± 0.404 37.9 0.34 -0.36 11.51 

 
 
 
 
I 

33 0.226 ± 0.018 1.683 ± 0.550 42.5 0.39 -0.27 08.02 
21 0.229 ± 0.014 1.683 ± 0.312 41.1 0.38 -0.30 09.98 
22 0.215 ± 0.024 3.073 ± 0.640 48.0 0.47 -0.16 01.33 
23 0.228 ± 0.050 2.408 ± 1.446 41.6 0.41 -1.14 33.32 
24 0.238 ± 0.040 1.922 ± 0.994 37.5 0.35 -0.43 10.48 
25 0.234 ± 0.016 1.911 ± 0.430 39.1 0.37 -0.24 08.01 
26 0.211 ± 0.008 2.111 ± 0.222 50.2 0.50 -0.10 05.26 
27 0.211 ± 0.016 2.537 ± 0.450 50.2 0.50 -0.39 15.06 
28 0.227 ± 0.014 1.618 ± 0.406 42.0 0.38 -0.07 05.19 
29 0.236 ± 0.012 1.384 ± 0.388 38.3 0.32 -0.30 07.03 

 
 
 
 

II 

30 0.209 ± 0.012 2.039 ± 0.360 51.4 0.51 -0.08 07.78 
 
 The figures 1 and 2 show the graphic presentation of model 15 being fitted every year 
in each stand. Curves are all fairly close and even the fitted curves for the extreme years of the 
interval (24 and 33 years in stand I, 21 and 30 in stand II), drawn with the thickest lines, are 
not in the lower and upper part of the collection of curves and their respective parameters are 
not significantly different at 95 % level of confidence (table 5). Therefore, the use of an h-d 
model without modifications during, at least, ten years is completely assumable in this species 
in the second half of the usual rotation. In this type of stands, with high site index, where 
good height growth must be expected, the h-d curves are not easily to distinguish in a range of 
10 years. So, in stands with lower growth it is completely reasonable the use of a unique h-d 
model without modifications during, at least, ten years. 
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Figure 1. Stand I. Fitted curves with the model 15 at ten successive years. The thickest curves 
correspond to the extreme ages (24 and 33 years).  
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Figure 2. Stand II. Fitted curves with the model 15 at ten successive years. The thickest 
curves correspond to the extreme ages (21 and 30 years).  
 

Two curves in stand I (figure 1) have somewhat different shape comparing with the 
rest of the curves in the group. Obtained curve at age 29 yields slow height increasing with 
diameter while predicted heights for the thinnest trees are slightly high. On the other hand, the 
curve at age 26 has very high slope and defective height predictions for small diameters. It is 
worth mentioning that those fittings have a reduced diametric range and low dispersion of the 
diameter sample. Probably, that is the reason for the anomalous fitting of those groups of data. 
In stand II (figure 2) the tendency of the ten fittings is more regular.         
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4. Conclusions 
 

The importance of the use of tree height in forest inventories and the occasional 
difficulties to obtain this variable by means of single and accurate procedures aims to develop 
models for the prediction of individual heights with breast height diameter as predictor 
variable. The local h-d models, being fitted for even-aged stands, tend to change with time 
and successive fittings are necessary to refresh the parameters of the model if the h-d curve 
must be used repeatedly as an effective tool in forest management. Nevertheless, in high 
productivity stands of Pinus radiata, in the second half of the usual rotation, the use of an h-d 
model without modifications during, at least, ten years is fully assumable. Because of that, in 
stands with lower growth it is completely reasonable the use of a unique h-d model without 
modifications during a decade. With a methodological approach, the h-d curve fittings need a 
wide diametric range of available data to yield accurate height predictions.         
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