A publication of the International Linear Algebra Society

Volume 24, pp. 34-44, February 2012

provided by Repositoria Objectes Digitals per a l'Eriscriya





# PROPERTIES OF A MATRIX GROUP ASSOCIATED TO A $\{K, S+1\}$ -POTENT MATRIX\*

LEILA LEBTAHI† AND NÉSTOR THOME‡

**Abstract.** In a previous paper, the authors introduced and characterized a new kind of matrices called  $\{K, s+1\}$ -potent. In this paper, an associated group to a  $\{K, s+1\}$ -potent matrix is explicitly constructed and its properties are studied. Moreover, it is shown that the group is a semidirect product of  $\mathbb{Z}_2$  acting on  $\mathbb{Z}_{(s+1)^2-1}$ . For some values of s, more specifications on the group are derived. In addition, some illustrative examples are given.

**Key words.** Involutory matrix,  $\{K, s+1\}$ -potent matrix, Group.

AMS subject classifications. 15A30, 15A24.

**1. Introduction.** Let  $K \in \mathbb{C}^{n \times n}$  be an involutory matrix, that is  $K^2 = I_n$ , where  $I_n$  denotes the  $n \times n$  identity. In [5], the authors introduced and characterized a new kind of matrices called  $\{K, s+1\}$ -potent matrices where K is involutory. We recall that for an involutory matrix  $K \in \mathbb{C}^{n \times n}$  and  $s \in \{0, 1, 2, 3, \ldots\}$ , a matrix  $A \in \mathbb{C}^{n \times n}$  is called  $\{K, s+1\}$ -potent if

These matrices generalize all the following classes of matrices: k-potent matrices, idempotent matrices, periodic matrices, involutory matrices, centrosymmetric matrices, mirror symmetric matrices, circulant matrices, etc. Several applications of these matrices can be found in the literature [1, 9, 13]. The class of  $\{K, s+1\}$ -potent matrices was linked to other kind of matrices (as  $\{s+1\}$ -generalized projectors,  $\{K\}$ -Hermitian matrices, normal matrices, etc.) in [6]. Throughout this paper, we consider  $K \in \mathbb{C}^{n \times n}$  to be an involutory matrix.

Some results on a similar class of  $2 \times 2$  matrices and  $n \times n$  invertible matrices have been presented in [2]. On the other hand, matrices commuting with a permutation and  $\{K\}$ -centrosymmetric matrices (that correspond to s=0) have received increasing

<sup>\*</sup>Received by the editors on July 28, 2011. Accepted for publication on January 30, 2012. Handling Editor: Carlos M. da Fonseca.

<sup>&</sup>lt;sup>†</sup>Instituto Universitario de Matemática Multidisciplinar. Universitat Politècnica de València. E–46022 Valencia, Spain. (leilebep@mat.upv.es). Supported by the Ministry of Education of Spain (Grant DGI MTM2010-18228).

<sup>&</sup>lt;sup>‡</sup>Instituto Universitario de Matemática Multidisciplinar. Universitat Politècnica de València. E–46022 Valencia, Spain. (njthome@mat.upv.es).

interest in the last twenty years. Some of their properties can be found in [1, 8, 9, 13]. Furthermore, matrices with k-involutory symmetries have been studied in [11, 12]. Moreover, some spectral properties related to similar classes of matrices are given in [3, 5, 10].

Related to the group theory, we recall that if G is a finite group with identity element e and  $a \in G$  then  $a^m = e$  implies that the order of a divides to m for any natural power m.

Motivated by the fact that the definition of  $\{K, s+1\}$ -potent matrices involves products of the two matrices A and K, we wonder if there are any other relationships between products where these matrices appear. As a particular case, when s is the smallest positive integer such that  $A^{s+1} = A$ , it is clear that  $\{A, A^2, A^3, \ldots, A^s\}$  is a cyclic group (and, therefore, commutative and normal) of order s. This leads to our main aim, which is to extend these results to  $\{K, s+1\}$ -potent matrices.

This paper is organized as follows. First, properties of a  $\{K, s+1\}$ -potent matrix A are studied in Section 2 involving products and powers of A and K. These properties are necessary to construct, in Section 3, a finite group G from a given  $\{K, s+1\}$ -potent matrix. As a consequence, this group is a semidirect product of  $\mathbb{Z}_2$  acting on  $\mathbb{Z}_{(s+1)^2-1}$  where  $\mathbb{Z}_r$  is the group of integers modulo r. Moreover, the group G is calculated in some simple cases. The case  $A^k = A$  for some  $k < (s+1)^2$  is also analyzed in Section 4. Finally, in Section 5, some illustrative examples are given.

**2.** Basic properties of  $\{K, s+1\}$ -potent matrices. It is clear that for each  $n \in \{1, 2, 3, ...\}$ , there exists at least one matrix  $A \in \mathbb{C}^{n \times n}$  such that A is  $\{K, s+1\}$ -potent for each involutory matrix K and for each  $s \in \{1, 2, 3, ...\}$ . It is also easy to see that such a matrix is not unique [5].

Throughout this section, we consider  $s \in \{1, 2, 3, ...\}$ . It is well-known [5] that a matrix  $A \in \mathbb{C}^{n \times n}$  is  $\{K, s+1\}$ -potent if and only if any of the following conditions are (trivially) equivalent:  $KAK = A^{s+1}$ ,  $KA = A^{s+1}K$ , and  $AK = KA^{s+1}$ .

We now establish properties regarding  $\{K, s+1\}$ -potent matrices.

LEMMA 2.1. If  $A \in \mathbb{C}^{n \times n}$  is a  $\{K, s+1\}$ -potent matrix then the following properties hold

- (a)  $KA^{s+2} = A^{s+2}K$  and  $KA^{s+2}K = A^{s+2}$ .
- (b)  $A^{s+2} = (KA)^2 = (AK)^2$ .
- (c)  $A^{(s+1)^2} = A$ .
- (d)  $(A^{(s+1)^2-1})^k = A^{(s+1)^2-1}$  for every  $k \in \{1, 2, 3, \dots\}$ .
- (e)  $(A^{s+2})^{s+1} = A^{s+2}$ .
- (f)  $(KA)^{2s+1} = KA$  and  $(AK)^{2s+1} = AK$ .

3

Properties of a matrix group associated to a  $\{K, s+1\}$ -potent matrix

- (g)  $KA^{j}K = A^{j(s+1)}$  and  $A^{j}K = KA^{j(s+1)}$  for every  $j \in \{1, 2, ..., (s+1)^{2} 1\}$ .
- (h)  $(KA^j)^2 = A^{j(s+2)}$  for all  $j \in \{1, 2, ..., (s+1)^2 1\}$ .
- (i)  $A^{j}A^{(s+1)^{2}-1} = A^{(s+1)^{2}-1}A^{j} = A^{j}$  and  $(KA^{j})A^{(s+1)^{2}-1} = A^{(s+1)^{2}-1}(KA^{j}) = KA^{j}$ , for all  $j \in \{1, 2, ..., (s+1)^{2}-1\}$ .
- (j) For each  $j \in \{1, 2, ..., (s+1)^2 1\}$ , one has  $(KA^j)(KA^k) = A^{(s+1)^2 1}$ , where k is the unique element of  $\{1, 2, ..., (s+1)^2 1\}$  such that  $k \equiv -j(s+1) \pmod ((s+1)^2 1)$ .
- $(k) \ K(KA^{j})^{s+1}K = \begin{cases} KA^{j\frac{s}{2}(s+4)+j} & \text{if s is even} \\ \left(A^{j(s+2)}\right)^{\frac{s+1}{2}} & \text{if s is odd} \end{cases} \text{ for all } j \in \{1, 2, \dots, (s+1)^{2} 1\}.$

*Proof.* (a) One has  $KA^{s+2} = KA^{s+1}A = AKA = AA^{s+1}K = A^{s+2}K$ . The second equality can be deduced post-multiplying both sides by K.

- (b) From (a) and the definition, we have  $A^{s+2} = KA^{s+2}K = KAA^{s+1}K = KAKA = (KA)^2$ . The other equality in (b) can be similarly deduced.
  - (c) By definition we have  $A^{(s+1)^2} = (A^{s+1})^{s+1} = (KAK)^{s+1} = KA^{s+1}K = A$ .
  - (d) Using Property (c) we get

$$(A^{(s+1)^2-1})^2 = A^{(s+1)^2}A^{(s+1)^2-2} = AA^{(s+1)^2-2} = A^{(s+1)^2-1}$$

and now Property (d) can be easily shown by induction.

- (e) From (c) we get  $(A^{s+2})^{s+1} = (A^{s+1}A)^{s+1} = (A^{s+1})^{s+1}A^{s+1} = A^{(s+1)^2}A^{s+1} = AA^{s+1} = A^{s+2}$ .
- (f) From (b) and (c) the equalities  $(KA)^{2s+1} = KA(KA)^{2s} = KA(A^{s+2})^s = KA^{s^2+2s+1} = KA^{(s+1)^2} = KA$  hold, and in a similar way it can be shown the equality  $(AK)^{2s+1} = AK$ .
  - (g) We proceed by recurrence. In fact, by definition we have

Then Equality (2.1) yields  $KA^2K = KAAK = A^{s+1}KAK = A^{s+1}A^{s+1} = A^{2(s+1)}$ . Following a similar reasoning it can be proven that  $KA^jK = A^{j(s+1)}$  for all  $j \in \{1,2,\ldots,s\}$ . Now, by using the definition and  $A^{(s+1)^2} = A$  we get the property for j=s+1 as follows:  $KA^{s+1}K = A = A^{(s+1)^2} = A^{(s+1)(s+1)}$ . From now on, following a similar reasoning as before it can be proven that  $KA^jK = A^{j(s+1)}$  for all  $j \in \{1,2,\ldots,(s+1)^2-1\}$ , and the other equality in (g) is easily obtained from  $K^2 = I_n$ .

(h) Using (g) one has

$$(KA^j)^2 = (A^{j(s+1)}K)^2 = A^{j(s+1)}(KA^{j(s+1)}K) = A^{j(s+1)}A^j = A^{j(s+2)}.$$



- (i) Follows from (c) and (g).
- (j) Let  $k \ge 1$ . One has  $KA^{j}KA^{k} = A^{j(s+1)+k}$ . The right hand side is  $A^{(s+1)^{2}-1}$  if  $k = -j(s+1)[\text{mod }((s+1)^{2}-1)]$ .
  - (k) Case 1. s is even. Using Properties (g) and (c), we get

$$\begin{split} K(KA^j)^{s+1}K &= A^jA^{j(s+1)\frac{s}{2}}A^{j\frac{s}{2}}K = A^{j(s+2)\frac{s}{2}}A^jK = A^{j(s+2)\frac{s}{2}}KA^{j(s+1)} \\ &= KA^{(s+1)\left(j(s+2)\frac{s}{2}\right)}A^{j(s+1)} = KA^{j(s+1)\left((s+1)\frac{s}{2}+\frac{s}{2}\right)}A^{j(s+1)} \\ &= K\left(A^{(s+1)^2}\right)^{j\frac{s}{2}}A^{\left(\frac{s}{2}+1\right)j(s+1)} = KA^{j\frac{s}{2}(s+4)+j}. \end{split}$$

Case 2. s is odd. Using Property (g), we get

$$K(KA^{j})^{s+1}K = A^{j}A^{j(s+1)\frac{s+1}{2}}A^{j\frac{s-1}{2}} = A^{j(s+1)\frac{s+1}{2}+j\frac{s+1}{2}} = \left(A^{j(s+2)}\right)^{\frac{s+1}{2}}.$$

**3.** Construction of a matrix group. Firstly, we note that, from a  $\{K, s+1\}$ -potent matrix, Lemma 2.1 allows us to construct a group containing a cyclic subgroup of  $\{K, s+1\}$ -potent matrices. Throughout this section we assume that  $s \geq 1$ .

THEOREM 3.1. Let  $A \in \mathbb{C}^{n \times n}$  be a  $\{K, s+1\}$ -potent matrix. If  $A^i \neq A^j$  for all distinct  $i, j \in \{1, 2, \dots, (s+1)^2 - 1\}$  then the set

$$G = \{A, A^2, A^3, \dots, A^{(s+1)^2 - 1}, KA, KA^2, KA^3, \dots, KA^{(s+1)^2 - 1}\}$$

is a group with respect to the matrix product satisfying the following properties:

(a) A is an element of order  $(s+1)^2 - 1$ , and then the set

(3.1) 
$$S_A = \{A, A^2, A^3, \dots, A^{(s+1)^2 - 1}\}$$

is a cyclic subgroup of G.

- (b)  $KA^s$  and  $KA^{(s+1)^2-1}$  are elements of order 2 of G.
- (c)  $(KA^s)A(KA^s) = A^{s+1}$ .
- (d) The set  $S_A$  is a normal subgroup of G and all its elements are  $\{K, s+1\}$ -potent matrices.
- (e) The order of G is:
  - $(s+1)^2 1$  if  $KA = A^j$  for some  $j \in \{1, 2, ..., (s+1)^2 1\}$  and, in this case, the group G is commutative.
  - $2((s+1)^2-1)$  if  $KA \neq A^j$  for all  $j \in \{1, 2, ..., (s+1)^2-1\}$  and, in this case, the group G is noncommutative.
- (f) For every  $j \in \{1, 2, ..., (s+1)^2 1\}$ , the element  $KA^j$  of the set  $G \setminus S_A$  (when it is nonempty) is  $\{K, s+1\}$ -potent if and only if s is even and one of the following conditions  $\{4|s, \frac{s}{2} + 1|j\}$  or  $\{4/s, s + 2|j\}$  holds.

Properties of a matrix group associated to a  $\{K, s+1\}$ -potent matrix

*Proof.* From the properties given in Lemma 2.1, it can be checked that  $A^{(s+1)^2-1}$  is the identity element of the group G.

- (a) G contains clearly a cyclic subgroup generated by the element A of order  $(s+1)^2-1$ .
- (b) Using Property (h) of Lemma 2.1, one has  $(KA^s)^2 = A^{s(s+2)} = A^{(s+1)^2-1}$ . Similarly,  $(KA^{(s+1)^2-1})^2 = A^{(s+1)^2-1}$ .
  - (c) Using the definition we get  $(KA^s)A(KA^s) = KA^{s+1}KA^s = AA^s = A^{s+1}$ .
- (d) The set  $S_A$  is a subgroup of G of index 2. Then it is normal. As a direct consequence of Property (f) of Lemma 2.1 we obtain the second part of Property (d) since  $A^j$  are  $\{K, s+1\}$ -potent matrices for all  $j \in \{1, 2, ..., (s+1)^2 1\}$ .
- (e) Case 1. There exists  $j \in \{1, 2, ..., (s+1)^2 1\}$  such that  $KA = A^j$ . Then  $KA^i = A^{j+i-1}$ , that is, it is also one of the  $(s+1)^2 1$  powers of A indicated in (3.1) for all  $i \in \{2, 3, ..., (s+1)^2 1\}$ . Thus, the order of G is  $(s+1)^2 1$  and then G is commutative.
- Case 2. For every  $j \in \{1, 2, ..., (s+1)^2 1\}$  one has  $KA \neq A^j$ . It is clear that the order of G is  $2((s+1)^2 1)$  because if  $i, j \in \{1, 2, ..., (s+1)^2 1\}$  such that  $KA^i = KA^j$  with  $i \neq j$  exist, then  $A^i = K^2A^i = K^2A^j = A^j$ , which is impossible. Assume that G is commutative. Then  $(KA)(KA^{s+1}) = (KA^{s+1})(KA)$ , that implies  $A^{2s+1} = A$ . We obtain a contradiction.
- (f) Assume that  $G \setminus S_A \neq \emptyset$  and  $KA^j \in G \setminus S_A$ . Then the fact that  $KA^j$  is  $\{K, s+1\}$ -potent implies that s is even, by Property (k) of Lemma 2.1. This same property assures that, in this case,  $K(KA^j)^{s+1}K = KA^{j\frac{s}{2}(s+4)+j}$ . Then,

$$KA^j$$
 is  $\{K, s+1\}$  – potent  $\iff KA^{j\frac{s}{2}(s+4)+j} = KA^j \iff A^{j\frac{s}{2}(s+4)+j} = A^j$ 

$$\iff A^{j\frac{s}{2}(s+4)+j} A^{(s+1)^2-1-j} = A^{(s+1)^2-1} \iff A^{j\frac{s}{2}(s+4)} = A^{(s+1)^2-1}$$

and so, this is equivalent to the statement  $(s+1)^2-1=s(s+2)$  divides  $j\frac{s}{2}(s+4)$ . Now, it can be checked that  $s(s+2)|j\frac{s}{2}(s+4)$  is equivalent to  $\{4|s,\frac{s}{2}+1|j\}$  or  $\{4\not\mid s,s+2|j\}$ . In the first case, there are 2s such j and in the second one, there are s such j.  $\square$ 

COROLLARY 3.2. The group G is a semidirect product of  $\mathbb{Z}_2$  acting on  $\mathbb{Z}_{(s+1)^2-1}$  when G has order  $2((s+1)^2-1)$ .

*Proof.* We consider a semidirect product of  $\mathbb{Z}_2$  acting on  $\mathbb{Z}_r$ . Then its presentation is in the form  $\langle a,b | a^2 = e, b^r = e, aba = b^m \rangle$  where m,r are coprime. Here  $r = (s+1)^2 - 1, a = KA^s, b = A, m = s+1$ .  $\square$ 

Now, we need the following definition.

Definition 3.3 ([7]).

- (i) The dihedral group, denoted by  $D_m$ , is generated by an element a of order m and another element b of order 2 such that  $b^{-1}ab = a^{-1}$ . It has order 2m.
- (ii) The quasi-dihedral group, denoted by  $Q_{2^m}$  for  $m \ge 4$ , is generated by an element a of order  $2^{m-1}$  and another element b of order 2 such that  $b^{-1}ab = a^{2^{m-2}-1}$ . It has order  $2^m$ .

We now classify the group G defined in Theorem 3.1. It is clear that G depends on A, K, and s. That is why, for the following result, we will denote G by  $G_s$  and so we stress on the parameter s. We shall see a relation between the group  $G_s$  and dihedral and quasi-dihedral groups in the following result.

PROPOSITION 3.4. Assume that  $G_s$  has order  $2((s+1)^2-1)$ . One has

- (a)  $G_s$  is a dihedral group if and only if s=1. In this case,  $G_1 \simeq D_3$ .
- (b) Let s > 1. Then  $G_s$  is a quasi-dihedral group if and only if s = 2. In this case,  $G_2 \simeq Q_{16}$ .

*Proof.* (a) If s = 1, the proof for case (a) can be deduced from the fact that  $G_s$  is generated by the element A of order 3, the element KA of order 2, and furthermore, the relation  $(KA)A(KA) = A^2$  holds, where  $A^2$  is the inverse of A.

Let s > 1. In this case, it is known that the group  $G_s$  has an element A of order  $(s+1)^2 - 1$ . On the other hand, we check that for any  $\alpha \in \{1, 2, \dots, (s+1)^2 - 1\}$  the element  $KA^{\alpha}$  has order 2 if and only if  $\alpha$  is a multiple of s. Indeed,

$$A^{(s+1)^2-1} = (KA^\alpha)^2 \Longleftrightarrow A^{s(s+2)} = KA^\alpha KA^\alpha = A^{\alpha(s+1)}A^\alpha = A^{\alpha(s+2)}$$

$$\iff s(s+2) \text{ divides } \alpha(s+2) \iff s \text{ divides } \alpha,$$

and hence all the elements of order 2 of  $G_s$  have the form  $KA^{st}$ . However, for any element of the form  $KA^{st}$ , where

$$t \in \left\{ \frac{1}{s}, \frac{2}{s}, \dots, \frac{(s+1)^2 - 1}{s} \right\} \cap \mathbb{N} = \{1, 2, 3, \dots, s+2\},$$

the equality  $(KA^{st})A(KA^{st}) = A^{(s+1)^2-2}$  is not satisfied since

$$(KA^{st})A(KA^{st}) = (KA^{st+1}K)A^{st} = A^{((s+1)^2-1)t+(s+1)} = (A^{(s+1)^2-1})^tA^{s+1} = A^{s+1}.$$

Finally s > 1 implies that  $s + 1 < (s + 1)^2 - 2$ , a contradiction.

(b) It is necessary to take into account the fact that the properties of  $G_s$  for s=2 coincide with those of  $Q_{2^m}$  for m=4. In fact, if s=2 then  $G_s$  has an element A of order  $8=2^{4-1}$ , another element  $KA^2$  of order 2 and, moreover, by Property (c)

Properties of a matrix group associated to a  $\{K, s+1\}$ -potent matrix

of Theorem 3.1 we have  $(KA^2)A(KA^2)=A^3=A^{2^{4-2}-1}$  and therefore  $G_2\simeq Q_{2^4}$ . Conversely, if  $G_s\simeq Q_{2^m}$  then we have  $2^{m-1}=(s+1)^2-1=s(s+2)$ . Thus s is a power of 2 and  $s=2,\ m=4$ .  $\square$ 

**4. What about the group when**  $A^k = A$  for  $k < (s+1)^2$ ?. We can ask: what would happen if a power k of A less than  $(s+1)^2$  and such that  $A^k = A$  existed?

If  $A \in \mathbb{C}^{n \times n}$  is a  $\{K, s+1\}$ -potent matrix then Property (b) of Lemma 2.1 allows us to construct, by Theorem 3.1, the group G considering the subgroup  $S_A$  of order  $(s+1)^2-1$  when all the powers of A are different. But, it may occur that there exists an integer k such that  $A^k = A$  with  $2 \le k < (s+1)^2$ . In this case, it is also possible to consider the group  $G_{s,k} = \{A, A^2, \ldots, A^{k-1}, KA, KA^2, \ldots, KA^{k-1}\}$  associated to the matrix A. Therefore, the subset  $S_A^k = \{A, A^2, \ldots, A^{k-1}\}$  is a (cyclic) subgroup of the group  $S_A$  and then k-1 has to divide  $(s+1)^2-1=s(s+2)$ .

How many groups  $G_{s,k}$  can we construct in this way? One only: the group corresponding to the smallest power k such that  $A^k = A$  (otherwise, we obtain exactly the same group  $G_{s,k}$ ). Consequently, the only possibilities for the order of the group are:  $(s+1)^2 - 1$ ,  $2((s+1)^2 - 1)$ , k-1 or 2(k-1) (if such k exists).

For some values of s and k, more specifications on the group are given in the following result. In order to analyze these special cases we recall the following definition.

DEFINITION 4.1. [4] The quaternion group, denoted by Q, is generated by three elements a, b, c of order 4 such that  $a^2 = b^2 = c^2$  and  $bab^{-1} = a^{-1}$ . It has order 8.

Proposition 4.2. Assuming that  $G_{s,k}$  has order 2(k-1), the following statements hold.

- (a) Let s = 1. Then k = 2. In this case,  $G_{1,2} \simeq \mathbb{Z}_2$ .
- (b) Let s = 2. Then one of the following statements hold:
  - (i) k=2. In this case,  $G_{2,2} \simeq \mathbb{Z}_2$ .
  - (ii) k = 3. In this case,  $G_{2,3} \simeq D_2$ .
  - (iii) k = 5. In this case,  $G_{2,5} \simeq D_4$  or  $G_{2,5} \simeq Q$ .
- (c) Let s > 2. Then
  - (i)  $G_{s,s+1} \simeq \mathbb{Z}_{2s}$  when s is prime.
  - (ii)  $G_{s,s+3} \simeq D_{s+2}$ .

*Proof.* (a) Let s=1. If k is an integer such that  $2 \le k \le 3$  and  $A^k=A$ , it must be k=2 because k-1 divides 3. Thus,  $KAK=A^2=A$  and then the group  $G_{1,2}=\{KA,(KA)^2=A\}$  is generated by the element KA of order 2. Hence,  $G_{1,2}\simeq \mathbb{Z}_2$ .



- (b) Let s=2. If k is an integer such that  $2 \le k \le 8$  and  $A^k=A$ , it must be k=2, k=3 or k=5 because k-1 divides 8. We now analyze these three cases:
  - k = 2: the same reasoning as in (a).
  - k=3: in this case,  $G_{2,3}=\{A,A^2,KA,KA^2\}$  where A and  $KA^2$  have order 2 and  $KA^2AKA^2=A$ . Hence,  $G_{2,3}\simeq D_2$ .
  - k = 5: in this case,  $G_{2,5} = \{A, A^2, A^3, A^4, KA, KA^2, KA^3, KA^4\}$  is a non-commutative group (for instance,  $A(KA^2) \neq (KA^2)A$ ). Then, Proposition 6.3 in [4] assures that  $G_{2,5} \simeq D_4$  or  $G_{2,5} \simeq Q$ .
- (c) Let s > 2. If k is an integer such that  $2 \le k \le s(s+2)$  and  $A^k = A$ , we get k = s+1 or k = s+3 as particular values of k because k-1 divides s(s+2). Now, we analyze these two cases:
  - k = s + 1: in this case,  $G_{s,s+1} = \{A, A^2, \dots, A^s, KA, KA^2, \dots, KA^s\}$  is a commutative group of order 2s. Then, Corollary 6.2 in [4] assures that  $G_{s,s+1} \simeq \mathbb{Z}_{2s}$ .
  - k=s+3: in this case,  $G_{s,s+3}=\{A,A^2,\ldots,A^{s+2},KA,KA^2,\ldots,KA^{s+2}\}$  is a non-commutative group (for example,  $A(KA^{s+1})\neq (KA^{s+1})A$ ). A is of order s+2,  $KA^s$  of order 2 and  $KA^sAKA^s=A^{s+1}$ . Hence,  $G_{s,s+3}\simeq D_{s+2}$ .
- Remark 4.3. If  $G_{s,k}$  has order 2(k-1) then  $G_{s,k}$  is a semidirect product of  $\mathbb{Z}_2$  acting on  $\mathbb{Z}_{k-1}$ , when k-1,s+1 are coprime. Its proof is similar to the proof of Corollary 3.2 where  $a=KA^{k-1}$ , b=A, r=k-1, m=s+1. The Property (h) of Lemma 2.1 allows us to show that  $KA^{k-1}$  has order 2. In fact,  $a^2=(KA^{k-1})^2=A^{(k-1)(s+2)}=A^{k-1}=e$ . Moreover,  $aba=(KA^{k-1})A(KA^{k-1})=KA^kKA^{k-1}=A^{s+1}A^{k-1}=A^{s+1}=b^m$ .
- REMARK 4.4. We observe that  $G_{2,5}$  is isomorphic to  $D_4$  or Q because there are (up to isomorphism) exactly two distinct non-commutative groups of order 8. We will see, in Example 2, that these two possibilities can be realized.
- Remark 4.5. We observe that if s > 2 and k = s+1, then A satisfies KA = AK since  $A^{s+1} = A$ . Such a matrix is said to be  $\{K\}$ -centrosymmetric [9]. In this case, the group associated to such a matrix A has order 2s, commutative and then isomorphic to  $\mathbb{Z}_{2s}$  if s is prime.

We close this section with the following remark.

Remark 4.6. (The case s = 0). It corresponds to  $\{K\}$ -centrosymmetric matrices. It is sometimes also possible to construct a similar group as before. Observe that the condition  $A^{(s+1)^2} = A$  does not give any information for s = 0. So, if we assume that  $A^t = A$  for some positive integer t (where  $A^l \neq A^m$  for all  $l, m < t, l \neq m$ ),

9

Properties of a matrix group associated to a  $\{K, s+1\}$ -potent matrix

then  $G = \{A, A^2, \dots, A^{t-1}, KA, KA^2, \dots, KA^{t-1}\}$  is a group with the same features mentioned before.

However, when the assumption is not fulfilled, since the powers of A cannot be the identity element, the group does not exist. An example will clarify this situation. For the matrices

$$A = \left[ \begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right] \qquad and \qquad K = \left[ \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right],$$

it is impossible to construct such a group because

$$A^{m+1} = \begin{bmatrix} 2^m & 0 & 2^m \\ 0 & 1 & 0 \\ 2^m & 0 & 2^m \end{bmatrix} \quad \text{for every } m \ge 1.$$

**5. Examples.** Now we present some more examples illustrating the results we have obtained.

Example 5.1. Let

$$A = \begin{bmatrix} 0 & 0 & -i \\ i & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad and \quad K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

A is  $\{K,2\}$ -potent as the authors showed in [5].  $G = \{A,A^2,A^3,KA,KA^2,KA^3\}$  is a group of order 6 because  $A^3 = I_3$  and, in this case,  $G \simeq D_3$  by Proposition 3.4.

Example 5.2.

(1) Let

$$A = \left[ \begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] \quad and \quad K = \left[ \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right].$$

A is  $\{K,3\}$ -potent and  $A^2 = -I_2$ . This example shows a matrix of the class considered in Section 4. For this matrix,  $A^5 = A$  holds and so it is possible to construct a group with similar features as in Proposition 4.2. Since s = 2, k = 5,  $G_{2,5}$  has order 4 or 8. In this example, the group is  $G_{2,5} = \{\pm I_2, \pm A, \pm K, \pm KA\}$  and, in this case, A is an element of order 4,  $KA^2 = -K$  is an element of order 2, and  $(KA^2)A(KA^2) = A^3$ . So  $G_{2,5}$  is isomorphic to  $D_4$ .

(2) Let A be a  $\{K,3\}$ -potent matrix given by

$$A = \frac{1}{2} \begin{bmatrix} 0 & 0 & 1+i & 1-i \\ 0 & 0 & 1-i & 1+i \\ 1+i & 1-i & 0 & 0 \\ 1-i & 1+i & 0 & 0 \end{bmatrix} \quad and \quad K = \frac{1}{8} \begin{bmatrix} 9 & -1 & 3 & -3 \\ -1 & 9 & -3 & 3 \\ -3 & 3 & -1 & 9 \\ 3 & -3 & 9 & -1 \end{bmatrix}.$$



 $A^4 = I_4$  and the associated matrix group (of order 8) is

$$G_{2.5} = \{A, A^2, A^3, I_4, KA, KA^2, KA^3, K\}.$$

 $G_{2,5}$  is generated by the three elements  $A^2$ , KA,  $KA^3$  of order 4 such that  $(A^2)^2 = (KA)^2 = (KA)^2$  and  $(KA)(A^2)(KA)^3 = A^2$ . So  $G_{2,5}$  is isomorphic to Q.

Example 5.3. Let

$$A = \begin{bmatrix} \frac{\sqrt{5}-1}{2} & 1\\ -1 & 0 \end{bmatrix} \quad and \quad K = \begin{bmatrix} 1 & \frac{\sqrt{5}-1}{2}\\ 0 & -1 \end{bmatrix}.$$

A is  $\{K,4\}$ -potent and  $A^5 = I_2$ . The associated group (of order 10) is

$$G = \{A, A^2, A^3, A^4, I_2, KA, KA^2, KA^3, KA^4, K\}.$$

G is generated by A of order 5,  $KA^2$  of order 2, and  $(KA^2)A(KA^2) = A^4$ . Then G is isomorphic to  $D_5$ .

Example 5.4. Let A be a  $\{K, 5\}$ -potent matrix given by

$$A = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \quad and \quad K = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}.$$

The associated group (of order 6) is  $G = \{A, A^2, I_2, KA, KA^2, K\}$  since  $A^3 = I_2$ . As G is generated by A of order 3,  $KA^2$  of order 2 and  $(KA^2)A(KA^2) = A^2$ , then G is isomorphic to  $D_3$ .

**6. Acknowledgements.** The authors would like to thank the referees for their valuable comments and suggestions, which allowed improving considerably the writing of the paper.

## REFERENCES

- [1] A. Andrew. Centrosymmetric matrices. SIAM Review, 40:697-698, 1998.
- [2] G. Bourgeois. Algebraic matrix equations in two unknowns. arXiv:1103.4203v3 [math.RA], 2011.
- [3] H. K. Du and Y. Li. The spectral characterization of generalized projections. *Linear Algebra and its Applications*, 400:313–318, 2005.
- [4] T.W. Hungerford. Algebra. Springer-Verlag, Berlin, 1989.
- [5] L. Lebtahi, O. Romero, and N. Thome. Characterizations of  $\{K, s+1\}$ -potent matrices and applications. Linear Algebra and its Applications, 436:293–306, 2012.
- [6] L. Lebtahi, O. Romero, and N. Thome. Relations between  $\{K, s+1\}$ -potent matrices and different classes of complex matrices. Linear Algebra and its Applications, doi:10.1016/j.laa.2011.10.042.
- [7] J.S. Rose. A Course on Group Theory. Cambridge, 1978.



Properties of a matrix group associated to a  $\{K,s+1\}$ -potent matrix

- [8] J.L. Stuart and J.R. Weaver. Matrices that commute with a permutation matrix. *Linear Algebra and its Applications*, 150:255–265, 1991.
- [9] D. Tao and M. Yasuda. A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices. SIAM J. Matrix Analysis Applications, 23:885–895, 2002.
- [10] W.F. Trench. Characterization and properties of matrices with generalized symmetry or skew symmetry. Linear Algebra and its Applications, 377:207–218, 2004.
- [11] W.F. Trench. Characterization and properties of matrices with k-involutory symmetries. Linear Algebra and its Applications, 429:2278–2290, 2008.
- [12] W.F. Trench. Characterization and properties of matrices with k-involutory symmetries II. Linear Algebra and its Applications, 432:2782–2797, 2010.
- [13] J. Weaver. Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors. American Mathematical Monthly, 92:711-717, 1985.
- [14] Hans Schneider. Theorems on M-splittings of a singular M-matrix which depend on graph structure. Linear Algebra and its Applications, 58:407–424, 1984.
- [15] Richard S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
- [16] S. Friedland and H. Schneider. Spectra of expansion graphs. Electronic Journal of Linear Algebra, 6:2–10, 1999.