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PROPERTIES OF A MATRIX GROUP ASSOCIATED TO A
{K,S +1}-POTENT MATRIX*

LEILA LEBTAHIT AND NESTOR THOME#

Abstract. In a previous paper, the authors introduced and characterized a new kind of matrices
called { K, s+1}-potent. In this paper, an associated group to a {K, s+ 1}-potent matrix is explicitly
constructed and its properties are studied. Moreover, it is shown that the group is a semidirect
product of Zg acting on Z(S+1)2,1, For some values of s, more specifications on the group are
derived. In addition, some illustrative examples are given.
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1. Introduction. Let K € C™*" be an involutory matrix, that is K? = I,,,
where I,, denotes the n x n identity. In [5], the authors introduced and characterized
a new kind of matrices called {K, s + 1}-potent matrices where K is involutory. We
recall that for an involutory matrix K € C"*™ and s € {0,1,2,3,...}, a matrix
A e C"*™ is called {K, s + 1}-potent if

(1.1) KATIK = A

These matrices generalize all the following classes of matrices: k-potent matrices,
idempotent matrices, periodic matrices, involutory matrices, centrosymmetric matri-
ces, mirror symmetric matrices, circulant matrices, etc. Several applications of these
matrices can be found in the literature [II, [0, [13]. The class of {K,s + 1}-potent
matrices was linked to other kind of matrices (as {s+ 1}-generalized projectors, { K }-
Hermitian matrices, normal matrices, etc.) in [6]. Throughout this paper, we consider
K € C™"™*™ to be an involutory matrix.

Some results on a similar class of 2 x 2 matrices and n x n invertible matrices have
been presented in [2]. On the other hand, matrices commuting with a permutation and
{ K }-centrosymmetric matrices (that correspond to s = 0) have received increasing
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interest in the last twenty years. Some of their properties can be found in [ 8, 9] [13].
Furthermore, matrices with k-involutory symmetries have been studied in [IT] [12].
Moreover, some spectral properties related to similar classes of matrices are given in
3, 5, [10].

Related to the group theory, we recall that if G is a finite group with identity
element e and a € G then a™ = e implies that the order of a divides to m for any
natural power m.

Motivated by the fact that the definition of {K, s + 1}-potent matrices involves
products of the two matrices A and K, we wonder if there are any other relationships
between products where these matrices appear. As a particular case, when s is the
smallest positive integer such that AST1 = A, it is clear that {A, A%, A3,... A%} is a
cyclic group (and, therefore, commutative and normal) of order s. This leads to our
main aim, which is to extend these results to {K, s + 1}-potent matrices.

This paper is organized as follows. First, properties of a { K, s+ 1}-potent matrix
A are studied in Section 2 involving products and powers of A and K. These properties
are necessary to construct, in Section 3, a finite group G from a given {K,s + 1}-
potent matrix. As a consequence, this group is a semidirect product of Zs acting
on Zsy1)2—1 where Z, is the group of integers modulo r. Moreover, the group G
is calculated in some simple cases. The case A¥ = A for some k < (s + 1)? is also
analyzed in Section 4. Finally, in Section 5, some illustrative examples are given.

2. Basic properties of {K, s + 1}-potent matrices. It is clear that for each
n € {1,2,3,...}, there exists at least one matrix A € C"*" such that A is {K,s+1}-
potent for each involutory matrix K and for each s € {1,2,3,...}. It is also easy to
see that such a matrix is not unique [5].

Throughout this section, we consider s € {1,2,3,...}. It is well-known [5] that
a matrix A € C"*" is {K, s + 1}-potent if and only if any of the following conditions
are (trivially) equivalent: KAK = AT1 KA = At'K, and AK = KAsTL

We now establish properties regarding { K, s + 1}-potent matrices.

LEMMA 2.1. If A € C"" is a {K,s + 1}-potent matriz then the following
properties hold

(a) KAST2 = AST2K and KAST2K = A5+2,

(b) As+2? = (KA)? = (AK)?.

(c) AGTD* = 4.

(d) (AGHD* =)k — AGHD* =1 for cvery k € {1,2,3,...}.
(6) (As+2)s+1 — As+2'

(f) (KA)?>**1 = KA and (AK)?**! = AK.
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KAK = Ai(s and AIK = KA or every 7 € {1,2,...,(s+ 1) —1}.
(g) KATK = A7+ and A A5 for every j € { (s+1)2 - 1}
(h) (KAY)? = A1) for all j € {1,2,...,(s+ 1) —1}.

(i) ATAGTY’ =1 = AG+D’=147 = Ai gnd (KA)AGTY =1 = AG+D’—1(K A7) =
KAI, forall j €{1,2,...,(s+1)> —1}.

1) For each j € {1,2,...,(s+1)° —1}, one has J =AY —*, where
For each 2 has (K AT) (K AF) = AGTD*=1 where k
is the unique element of {1,2,...,(s+1)2—1} such that k = —j(s+1) [mod ((s+
1) - 1)].

(k) K(KAT$HEK = {

1.

Proof. (a) One has KA*™? = KAST'A = AKA = AASTIK = A*T2K. The
second equality can be deduced post-multiplying both sides by K.

KAIz6+94 if 5 s even

) st orall j €{1,2,...,(s4+1)% —
(AI(s+2)) 72 if s is odd i Jet ( )

(b) From (a) and the definition, we have A°t? = KAT2K = KAA*T'K =
KAKA = (KA)2 The other equality in (b) can be similarly deduced.

(¢) By definition we have AGTD” = (4s+1)s+l = (KAK)*t! = KASHIK = A.
(d) Using Property (c) we get
(A(s+l)2—l)2 _ A(s+1)2A(s+1)2—2 _ AA(s+1)2—2 _ A(s+1)2—1

and now Property (d) can be easily shown by induction.

(6) From (C) we get (As+2)s+1 _ (AerlA)erl _ (As+1)s+1As+1 _ A(5+1)2As+1 —
AASHL = A5H2,

(f) From (b) and (c) the equalities (KA)?*™1 = KA(KA)?» = KA(A*T?)s =
KAS+25+1 = K AGTD® = KA hold, and in a similar way it can be shown the
equality (AK)**! = AK.

(g) We proceed by recurrence. In fact, by definition we have

(2.1) KAK = AT,

Then Equality 1)) yields K A’K = KAAK = ASTTKAK = ASTTAsTL = A2(s+1),
Following a similar reasoning it can be proven that KA/K = A/G*D for all j €
{1,2,...,s}. Now, by using the definition and AGTD® = A we get the property
for j = s+ 1 as follows: KAtIK = A = AGHD® = AGHDGEH) - From now on,
following a similar reasoning as before it can be proven that KA/K = A/+D) for
all j € {1,2,...,(s+1)2 — 1}, and the other equality in (g) is easily obtained from
K?=1,.

(h) Using (g) one has
(KAj)2 _ (Aj(s+1)K)2 — Aj(s+1) (KAj(s-l-l)K) _ Aj(s+1)Aj — Aj(s+2).
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() Follows from (c) and (g).

(j) Let k > 1. One has KAJK A¥ = Ai(s+D+k_ The right hand side is A(T1)°~1
if k=—j(s+1)[mod ((s +1)? — 1)].

(k) Case 1. s is even. Using Properties (g) and (c), we get
K(KA)PTK = AAAGTUs A5 K = A6TD5 P = AI6+2)3 g AI6+D)
— KAGTD(E(+2)5) gi(s+1) — e gd (D ((s+1)5+5) gi(s+1)
K (A(erl)Q)j% A4 _ e gis (st

Case 2. s is odd. Using Property (g), we get

s+1
541

K(KA)HUK = AT AIGTD 55 gi55 = pi(sH) 455 (Aﬂ‘<s+2>) Yo

3. Construction of a matrix group. Firstly, we note that, from a {K,s+1}-
potent matrix, Lemma 2. allows us to construct a group containing a cyclic subgroup
of {K, s+ 1}-potent matrices. Throughout this section we assume that s > 1.

THEOREM 3.1. Let A € C"™*" be a {K, s+ 1}-potent matriz. If A # A7 for all
distinct i,j € {1,2,...,(s+ 1) — 1} then the set

G={A A2 A3, AT "L KA KA2 KA, ... KAGTD -1}
is a group with respect to the matriz product satisfying the following properties:

(a) A is an element of order (s +1)> — 1, and then the set
(3.1) Sa={A A2 A3, AGTD*-1)

is a cyclic subgroup of G.
(b) KA* and KACYY* =1 are elements of order 2 of G.
(c) (KA®)A(KA®) = AstL,
(d) The set Sa is a normal subgroup of G and all its elements are {K, s + 1}-potent
matrices.
(e) The order of G is:
o (s+1)2—14if KA= A for some j € {1,2,...,(s+ 1) — 1} and, in this
case, the group G is commutative.
e 2((s+1)2—1) if KA# AJ for all j € {1,2,...,(s+ 1) — 1} and, in this
case, the group G is noncommutative.
(f) For every j € {1,2,...,(s+1)?> — 1}, the element KAJ of the set G\ Sa (when it
is nonempty) is {K, s+ 1}-potent if and only if s is even and one of the following
conditions {4|s, 5 + 1|5} or {4} s,s+2|j} holds.
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Proof. From the properties given in Lemma 2] it can be checked that A(s+1)’~1
is the identity element of the group G.

(a) G contains clearly a cyclic subgroup generated by the element A of order
(s+1)2-1.

(b) Using Property (h) of Lemma 1] one has (K A%)? = A%(s+2) = Als+1)? =1
Similarly, (KAGTD*=1)2 = g(s+1D)*~1

(¢) Using the definition we get (K A%)A(KA%) = KASTIKAS = AAS = AsTL

(d) The set S4 is a subgroup of G of index 2. Then it is normal. As a direct
consequence of Property (f) of Lemma[ZT] we obtain the second part of Property (d)
since A7 are {K, s + 1}-potent matrices for all j € {1,2,...,(s+1)* —1}.

(e) Case 1. There exists j € {1,2,...,(s + 1)2 — 1} such that KA = AJ. Then
KA = A7+i=1 that is, it is also one of the (s+1)? — 1 powers of A indicated in (3.
for all i € {2,3,...,(s +1)? — 1}. Thus, the order of G is (s + 1)?> — 1 and then G is
commutative.

Case 2. For every j € {1,2,...,(s+ 1) — 1} one has KA # AJ. It is clear that
the order of G is 2((s + 1)? — 1) because if i,5 € {1,2,...,(s + 1) — 1} such that
KA = KAJ with i # j exist, then A? = K?A* = K2A7 = AJ, which is impossible.
Assume that G is commutative. Then (K A)(KA*t1) = (KA*T1)(KA), that implies
A%t = A, We obtain a contradiction.

(f) Assume that G\ S4 # 0 and KA/ € G\ Ss. Then the fact that KA7 is
{K, s + 1}-potent implies that s is even, by Property (k) of Lemma 2l This same
property assures that, in this case, K (K AJ)*t1 K = K A72(s+9+7 Then,

KA is {K,s+ 1} — potent <= KAIZGHIH = K AT e AT+ = 4

s AT gD =15 _ A+ =1 o fis(sH4) — g(s+1)* -1

and so, this is equivalent to the statement (s+1)*—1 = s(s+2) divides j5(s+4). Now,
it can be checked that s(s+2)|j5(s44) is equivalent to {4[s, 5+1[j} or {4 /s, 5s+2|j}.
In the first case, there are 2s such j and in the second one, there are s such j. O

COROLLARY 3.2. The group G is a semidirect product of Za acting on Z(s11)2—1
when G has order 2((s +1)% — 1).

Proof. We consider a semidirect product of Zs acting on Z,.. Then its presentation
is in the form (a,bla®? = e,b" = e,aba = b™) where m,r are coprime. Here r =
(s+1)2—1,a=KA*, b=A, m=s+1.0

Now, we need the following definition.
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DEFINITION 3.3 ([7]).

(i) The dihedral group, denoted by D, is generated by an element a of order m
and another element b of order 2 such that b=tab = a~!. It has order 2m.

(i) The quasi-dihedral group, denoted by Qam for m > 4, is generated by an element
a of order 271 and another element b of order 2 such that b~ 'ab = a?" 1,
It has order 2™.

We now classify the group G defined in Theorem 3.1l It is clear that G' depends
on A, K, and s. That is why, for the following result, we will denote G by G and
so we stress on the parameter s. We shall see a relation between the group G and
dihedral and quasi-dihedral groups in the following result.

PROPOSITION 3.4. Assume that G has order 2((s +1)2 — 1). One has

(a) Gy is a dihedral group if and only if s = 1. In this case, G1 ~ Ds.
(b) Let s > 1. Then Gy is a quasi-dihedral group if and only if s = 2. In this case,
G2 ~ Q6.

Proof. (a) If s = 1, the proof for case (a) can be deduced from the fact that G, is
generated by the element A of order 3, the element K A of order 2, and furthermore,
the relation (K A)A(K A) = A? holds, where A? is the inverse of A.

Let s > 1. In this case, it is known that the group Gy has an element A of order
(s+1)? — 1. On the other hand, we check that for any o € {1,2,...,(s+1)? — 1} the
element K A has order 2 if and only if « is a multiple of s. Indeed,

A(s+1)2—1 — (KAa)2 — As(s+2) — KAKA® = Aa(s+l)Aa — Aa(s+2)

< s(s+ 2) divides a(s + 2) <= s divides «,

and hence all the elements of order 2 of G have the form K A®*. However, for any
element of the form K A%, where

12 121
te{—,—,...,%}ﬁN_{1,2,3,...,s+2},

the equality (KA A(KAst) = AG+D*=2 ig not satisfied since
(KAst)A(KAst) _ (KAstJrlK)Ast — A((5+1)271)t+(s+1) _ (A(s+1)271)tAs+1 — AstL
Finally s > 1 implies that s + 1 < (s + 1)* — 2, a contradiction.

(b) Tt is necessary to take into account the fact that the properties of G for s = 2
coincide with those of Qom for m = 4. In fact, if s = 2 then G4 has an element A
of order 8 = 2471, another element K A2 of order 2 and, moreover, by Property (c)
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of Theorem 0] we have (KA2)A(KA?) = A3 = A2 =1 and therefore G ~ Q.
Conversely, if G5 ~ Qam then we have 2™~1 = (s +1)2 — 1 = s(s +2). Thus s is a
power of 2 and s =2, m = 4. 0

4. What about the group when A*¥ = A for k < (s + 1)??. We can ask:
what would happen if a power k of A less than (s+1)? and such that A* = A existed?

If Ae C""is a {K,s+1}-potent matrix then Property (b) of Lemma 2] allows
us to construct, by Theorem [BI] the group G considering the subgroup S of order
(s+1)%2 — 1 when all the powers of A are different. But, it may occur that there exists
an integer k such that A¥ = A with 2 < k < (s + 1)2. In this case, it is also possible
to consider the group G = {4, A42,..., AF=1 KA KA? ... KAF1} associated to
the matrix A. Therefore, the subset S§ = {A, A% ... A¥=11 is a (cyclic) subgroup
of the group S and then k — 1 has to divide (s +1)? — 1 = s(s + 2).

How many groups G, can we construct in this way? One only: the group
corresponding to the smallest power k such that A¥ = A (otherwise, we obtain exactly
the same group G, ). Consequently, the only possibilities for the order of the group
are: (s+1)2—1,2((s+1)2—=1), k— 1 or 2(k — 1) (if such k exists).

For some values of s and k, more specifications on the group are given in the fol-
lowing result. In order to analyze these special cases we recall the following definition.

DEFINITION 4.1. [J]] The quaternion group, denoted by Q, is generated by three
elements a,b, c of order 4 such that a®> = b = ¢® and bab~' = a~'. It has order 8.

PROPOSITION 4.2. Assuming that G has order 2(k — 1), the following state-
ments hold.

(a) Let s =1. Then k = 2. In this case, G123 ~ Zs.
(b) Let s =2. Then one of the following statements hold:
(i) k=2. In this case, Ga,2 ~ Zs.
(i1) k =3. In this case, Go.3 ~ Ds.
(i) k=5. In this case, Ga5 >~ Dy or Ga5 >~ Q).
(c) Let s > 2. Then
(i) Gs.s4+1 >~ Zas when s is prime.
(’LZ) GS75+3 >~ D5+2.

Proof. (a) Let s = 1. If k is an integer such that 2 < k < 3 and A* = A,
it must be £k = 2 because k — 1 divides 3. Thus, KAK = A? = A and then the
group G1 o = {KA, (KA)? = A} is generated by the element KA of order 2. Hence,
G172 ~ ZQ.
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(b) Let s = 2. If k is an integer such that 2 < k < 8 and A*¥ = A, it must be
k=2,k=3ork=>5 because k — 1 divides 8. We now analyze these three cases:

e k = 2: the same reasoning as in (a).

e k= 3: in this case, Go 3 = {4, A%, KA, K A?} where A and K A? have order
2 and KA2AK A? = A. Hence, Go3 >~ Ds.

e k = 5: in this case, Go 5 = {4, A%, A% A* KA, KA? KA? KA*} is a non-
commutative group (for instance, A(K A?) # (KA?)A). Then, Proposition
6.3 in [4] assures that Go 5 ~ Dy or G2 5 ~ Q.

(c) Let s > 2. If k is an integer such that 2 < k < s(s + 2) and A% = A, we get
k=s+1or k= s+ 3 as particular values of k because k — 1 divides s(s + 2). Now,
we analyze these two cases:

e k = s+ 1: in this case, G511 = {A, A% ... A5 KA KA?, ... KA®} is
a commutative group of order 2s. Then, Corollary 6.2 in [4] assures that
Gs,s-l—l =~ ZQS'

e k= s+ 3: in this case, G5 543 = {A, A% ..., AT2 KA KA? ... | KA"?}
is a non-commutative group (for example, A(KA*Tt) # (KAST1)A). Ais of
order s + 2, KA® of order 2 and KA*AK A® = AsT1. Hence, Gs 513 =~ Ds 2.
a

REMARK 4.3. If G, has order 2(k — 1) then Gy is a semidirect product of Zs
acting on Zx—_1, when k — 1,s + 1 are coprime. Its proof is similar to the proof of
Corollary [ where a = KA*', b= A, r =k —1, m = s+ 1. The Property (Hl) of
Lemma 2] allows us to show that K A¥=1 has order 2. In fact, a®> = (KA¥1)% =
AR=D(+2) — Ak=1 — ¢ Moreover, aba = (KAF"1D)A(KA* 1) = KAFK AR =
As-l-lAk—l — As-i-l =pm,

REMARK 4.4. We observe that Ga 5 is isomorphic to Dy or ) because there are
(up to isomorphism) exactly two distinct non-commutative groups of order 8. We will
see, in BExample 2, that these two possibilities can be realized.

REMARK 4.5. We observe that if s > 2 and k = s+1, then A satisfies KA = AK
since ATt = A. Such a matriz is said to be {K }-centrosymmetric [9]. In this
case, the group associated to such a matrix A has order 2s, commutative and then
isomorphic to Zas if s is prime.

We close this section with the following remark.

REMARK 4.6. (The case s =0). It corresponds to { K }-centrosymmetric matri-
ces. It is sometimes also possible to construct a similar group as before. Observe that
the condition ASTD* = A does not give any information for s = 0. So, if we assume
that At = A for some positive integer t (where A # A™ for all l,m < t, | # m),
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then G = {A,A?,.. AL KA KA? ... KA1} is a group with the same features
mentioned before.

However, when the assumption is not fulfilled, since the powers of A cannot be
the identity element, the group does mot exist. An example will clarify this situation.
For the matrices

1 0 1 0 0 1
A=10 1 0 and K=|01 0/{,
1 0 1 1 00
it is impossible to construct such a group because
2m 0 2m
A™Th =10 1 0 for every m > 1.
2m 0 2™

5. Examples. Now we present some more examples illustrating the results we
have obtained.

EXAMPLE 5.1. Let
0 0 —i 1 00
i 0 0 and K=|0 0 1
01 0 01 0
A is {K,2}-potent as the authors showed in [5]. G = {A, A%, A3, KA, KA?, K A%} is
a group of order 6 because A = I3 and, in this case, G ~ D3 by Proposition 3}

A:

EXAMPLE 5.2.

(1) Let
0 1 1 0
A—{_l 0] and K—{O _1].
A is {K,3}-potent and A* = —I,. This example shows a matriz of the class

considered in Section 4. For this matriz, A> = A holds and so it is possible to
construct a group with similar features as in Proposition[{-3 Since s =2, k =5,
Ga 5 has order 4 or 8. In this example, the group is Ga 5 = {£I2,+A, £K, £ KA}
and, in this case, A is an element of order 4, KA? = —K is an element of order
2, and (KA?)A(K A?) = A3. So Go5 is isomorphic to Dy.

(2) Let A be a {K,3}-potent matriz given by

0 0 14i 1—i 9 -1 3 -3
1] o 0 1—i 1+i 1l-1 9 -3 3
A=31140 120 o 0 and - K=g1 3 3 1 o

1—¢ 144 0 0 3 -3 9 -1
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A* = I, and the associated matriz group (of order 8) is
Gays ={A, A% A I, KA, KA* KA® K}.

Ga 5 is generated by the three elements A%, KA, K A3 of order 4 such that (A?)? =
(KA)? = (KA3)? and (KA)(A%)(KA)? = A%. So Ga5 is isomorphic to Q.
EXAMPLE 5.3. Let

V51 1 V51

A= 2 1 and K = 2
-1 0 0 -1

A is {K,4}-potent and A® = I5. The associated group (of order 10) is
G={A A% A3 A" I,, KA, KA?, KA3, KA* K}.

G is generated by A of order 5, KA? of order 2, and (KA?)A(KA?) = A*. Then G

is isomorphic to Ds.

EXAMPLE 5.4. Let A be a {K,5}-potent matriz given by

-1 1 1 -1
A—[_l O} and K—{O _1].

The associated group (of order 6) is G = {A, A%, I, KA, KA? K} since A3 = I5. As
G is generated by A of order 3, KA? of order 2 and (K A?)A(K A?) = A2, then G is

isomorphic to Ds.

6. Acknowledgements. The authors would like to thank the referees for their
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of the paper.
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