PROPERTIES OF A MATRIX GROUP ASSOCIATED TO A $\{K, S+1\}$-POTENT MATRIX*

LEILA LEBTAHI ${ }^{\dagger}$ AND NÉSTOR THOME \ddagger

Abstract

In a previous paper, the authors introduced and characterized a new kind of matrices called $\{K, s+1\}$-potent. In this paper, an associated group to a $\{K, s+1\}$-potent matrix is explicitly constructed and its properties are studied. Moreover, it is shown that the group is a semidirect product of \mathbb{Z}_{2} acting on $\mathbb{Z}_{(s+1)^{2}-1}$. For some values of s, more specifications on the group are derived. In addition, some illustrative examples are given.

Key words. Involutory matrix, $\{K, s+1\}$-potent matrix, Group.

AMS subject classifications. 15A30, 15A24.

1. Introduction. Let $K \in \mathbb{C}^{n \times n}$ be an involutory matrix, that is $K^{2}=I_{n}$, where I_{n} denotes the $n \times n$ identity. In [5], the authors introduced and characterized a new kind of matrices called $\{K, s+1\}$-potent matrices where K is involutory. We recall that for an involutory matrix $K \in \mathbb{C}^{n \times n}$ and $s \in\{0,1,2,3, \ldots\}$, a matrix $A \in \mathbb{C}^{n \times n}$ is called $\{K, s+1\}$-potent if

$$
\begin{equation*}
K A^{s+1} K=A \tag{1.1}
\end{equation*}
$$

These matrices generalize all the following classes of matrices: k-potent matrices, idempotent matrices, periodic matrices, involutory matrices, centrosymmetric matrices, mirror symmetric matrices, circulant matrices, etc. Several applications of these matrices can be found in the literature [1, 9, 13. The class of $\{K, s+1\}$-potent matrices was linked to other kind of matrices (as $\{s+1\}$-generalized projectors, $\{K\}$ Hermitian matrices, normal matrices, etc.) in [6]. Throughout this paper, we consider $K \in \mathbb{C}^{n \times n}$ to be an involutory matrix.

Some results on a similar class of 2×2 matrices and $n \times n$ invertible matrices have been presented in [2]. On the other hand, matrices commuting with a permutation and $\{K\}$-centrosymmetric matrices (that correspond to $s=0$) have received increasing

[^0]interest in the last twenty years. Some of their properties can be found in [1, 8, 9, 13]. Furthermore, matrices with k-involutory symmetries have been studied in [11, 12]. Moreover, some spectral properties related to similar classes of matrices are given in [3, 5, 10].

Related to the group theory, we recall that if G is a finite group with identity element e and $a \in G$ then $a^{m}=e$ implies that the order of a divides to m for any natural power m.

Motivated by the fact that the definition of $\{K, s+1\}$-potent matrices involves products of the two matrices A and K, we wonder if there are any other relationships between products where these matrices appear. As a particular case, when s is the smallest positive integer such that $A^{s+1}=A$, it is clear that $\left\{A, A^{2}, A^{3}, \ldots, A^{s}\right\}$ is a cyclic group (and, therefore, commutative and normal) of order s. This leads to our main aim, which is to extend these results to $\{K, s+1\}$-potent matrices.

This paper is organized as follows. First, properties of a $\{K, s+1\}$-potent matrix A are studied in Section 2 involving products and powers of A and K. These properties are necessary to construct, in Section 3, a finite group G from a given $\{K, s+1\}$ potent matrix. As a consequence, this group is a semidirect product of \mathbb{Z}_{2} acting on $\mathbb{Z}_{(s+1)^{2}-1}$ where \mathbb{Z}_{r} is the group of integers modulo r. Moreover, the group G is calculated in some simple cases. The case $A^{k}=A$ for some $k<(s+1)^{2}$ is also analyzed in Section 4. Finally, in Section 5, some illustrative examples are given.
2. Basic properties of $\{K, s+1\}$-potent matrices. It is clear that for each $n \in\{1,2,3, \ldots\}$, there exists at least one matrix $A \in \mathbb{C}^{n \times n}$ such that A is $\{K, s+1\}$ potent for each involutory matrix K and for each $s \in\{1,2,3, \ldots\}$. It is also easy to see that such a matrix is not unique [5].

Throughout this section, we consider $s \in\{1,2,3, \ldots\}$. It is well-known [5] that a matrix $A \in \mathbb{C}^{n \times n}$ is $\{K, s+1\}$-potent if and only if any of the following conditions are (trivially) equivalent: $K A K=A^{s+1}, K A=A^{s+1} K$, and $A K=K A^{s+1}$.

We now establish properties regarding $\{K, s+1\}$-potent matrices.
Lemma 2.1. If $A \in \mathbb{C}^{n \times n}$ is a $\{K, s+1\}$-potent matrix then the following properties hold
(a) $K A^{s+2}=A^{s+2} K$ and $K A^{s+2} K=A^{s+2}$.
(b) $A^{s+2}=(K A)^{2}=(A K)^{2}$.
(c) $A^{(s+1)^{2}}=A$.
(d) $\left(A^{(s+1)^{2}-1}\right)^{k}=A^{(s+1)^{2}-1}$ for every $k \in\{1,2,3, \ldots\}$.
(e) $\left(A^{s+2}\right)^{s+1}=A^{s+2}$.
(f) $(K A)^{2 s+1}=K A$ and $(A K)^{2 s+1}=A K$.
(g) $K A^{j} K=A^{j(s+1)}$ and $A^{j} K=K A^{j(s+1)}$ for every $j \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$.
(h) $\left(K A^{j}\right)^{2}=A^{j(s+2)}$ for all $j \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$.
(i) $A^{j} A^{(s+1)^{2}-1}=A^{(s+1)^{2}-1} A^{j}=A^{j}$ and $\left(K A^{j}\right) A^{(s+1)^{2}-1}=A^{(s+1)^{2}-1}\left(K A^{j}\right)=$ $K A^{j}$, for all $j \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$.
(j) For each $j \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$, one has $\left(K A^{j}\right)\left(K A^{k}\right)=A^{(s+1)^{2}-1}$, where k is the unique element of $\left\{1,2, \ldots,(s+1)^{2}-1\right\}$ such that $k \equiv-j(s+1)[\bmod ((s+$ $\left.1)^{2}-1\right)$].
(k) $K\left(K A^{j}\right)^{s+1} K=\left\{\begin{array}{ll}K A^{j \frac{s}{2}(s+4)+j} & \text { if } s \text { is even } \\ \left(A^{j(s+2)}\right)^{\frac{s+1}{2}} & \text { if } s \text { is odd }\end{array} \quad\right.$ for all $j \in\left\{1,2, \ldots,(s+1)^{2}-\right.$ $1\}$.

Proof. (a) One has $K A^{s+2}=K A^{s+1} A=A K A=A A^{s+1} K=A^{s+2} K$. The second equality can be deduced post-multiplying both sides by K.
(b) From (a) and the definition, we have $A^{s+2}=K A^{s+2} K=K A A^{s+1} K=$ $K A K A=(K A)^{2}$. The other equality in (b) can be similarly deduced.
(c) By definition we have $A^{(s+1)^{2}}=\left(A^{s+1}\right)^{s+1}=(K A K)^{s+1}=K A^{s+1} K=A$.
(d) Using Property (c) we get

$$
\left(A^{(s+1)^{2}-1}\right)^{2}=A^{(s+1)^{2}} A^{(s+1)^{2}-2}=A A^{(s+1)^{2}-2}=A^{(s+1)^{2}-1}
$$

and now Property (d) can be easily shown by induction.
(e) From (c) we get $\left(A^{s+2}\right)^{s+1}=\left(A^{s+1} A\right)^{s+1}=\left(A^{s+1}\right)^{s+1} A^{s+1}=A^{(s+1)^{2}} A^{s+1}=$ $A A^{s+1}=A^{s+2}$.
(f) From (b) and (c) the equalities $(K A)^{2 s+1}=K A(K A)^{2 s}=K A\left(A^{s+2}\right)^{s}=$ $K A^{s^{2}+2 s+1}=K A^{(s+1)^{2}}=K A$ hold, and in a similar way it can be shown the equality $(A K)^{2 s+1}=A K$.
(g) We proceed by recurrence. In fact, by definition we have

$$
\begin{equation*}
K A K=A^{s+1} \tag{2.1}
\end{equation*}
$$

Then Equality (2.1) yields $K A^{2} K=K A A K=A^{s+1} K A K=A^{s+1} A^{s+1}=A^{2(s+1)}$. Following a similar reasoning it can be proven that $K A^{j} K=A^{j(s+1)}$ for all $j \in$ $\{1,2, \ldots, s\}$. Now, by using the definition and $A^{(s+1)^{2}}=A$ we get the property for $j=s+1$ as follows: $K A^{s+1} K=A=A^{(s+1)^{2}}=A^{(s+1)(s+1)}$. From now on, following a similar reasoning as before it can be proven that $K A^{j} K=A^{j(s+1)}$ for all $j \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$, and the other equality in (g) is easily obtained from $K^{2}=I_{n}$.
(h) Using (g) one has

$$
\left(K A^{j}\right)^{2}=\left(A^{j(s+1)} K\right)^{2}=A^{j(s+1)}\left(K A^{j(s+1)} K\right)=A^{j(s+1)} A^{j}=A^{j(s+2)} .
$$

(i) Follows from (c) and (g).
(j) Let $k \geq 1$. One has $K A^{j} K A^{k}=A^{j(s+1)+k}$. The right hand side is $A^{(s+1)^{2}-1}$ if $k=-j(s+1)\left[\bmod \left((s+1)^{2}-1\right)\right]$.
(k) Case 1. s is even. Using Properties (g) and (c), we get

$$
\begin{aligned}
K\left(K A^{j}\right)^{s+1} K & =A^{j} A^{j(s+1) \frac{s}{2}} A^{j \frac{s}{2}} K=A^{j(s+2) \frac{s}{2}} A^{j} K=A^{j(s+2) \frac{s}{2}} K A^{j(s+1)} \\
& =K A^{(s+1)\left(j(s+2) \frac{s}{2}\right)} A^{j(s+1)}=K A^{j(s+1)\left((s+1) \frac{s}{2}+\frac{s}{2}\right)} A^{j(s+1)} \\
& =K\left(A^{(s+1)^{2}}\right)^{j \frac{s}{2}} A^{\left(\frac{s}{2}+1\right) j(s+1)}=K A^{j \frac{s}{2}(s+4)+j}
\end{aligned}
$$

Case 2. s is odd. Using Property (g), we get

$$
K\left(K A^{j}\right)^{s+1} K=A^{j} A^{j(s+1) \frac{s+1}{2}} A^{j \frac{s-1}{2}}=A^{j(s+1) \frac{s+1}{2}+j \frac{s+1}{2}}=\left(A^{j(s+2)}\right)^{\frac{s+1}{2}}
$$

3. Construction of a matrix group. Firstly, we note that, from a $\{K, s+1\}$ potent matrix, Lemma 2.1]allows us to construct a group containing a cyclic subgroup of $\{K, s+1\}$-potent matrices. Throughout this section we assume that $s \geq 1$.

Theorem 3.1. Let $A \in \mathbb{C}^{n \times n}$ be a $\{K, s+1\}$-potent matrix. If $A^{i} \neq A^{j}$ for all distinct $i, j \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$ then the set

$$
G=\left\{A, A^{2}, A^{3}, \ldots, A^{(s+1)^{2}-1}, K A, K A^{2}, K A^{3}, \ldots, K A^{(s+1)^{2}-1}\right\}
$$

is a group with respect to the matrix product satisfying the following properties:
(a) A is an element of order $(s+1)^{2}-1$, and then the set

$$
\begin{equation*}
S_{A}=\left\{A, A^{2}, A^{3}, \ldots, A^{(s+1)^{2}-1}\right\} \tag{3.1}
\end{equation*}
$$

is a cyclic subgroup of G.
(b) $K A^{s}$ and $K A^{(s+1)^{2}-1}$ are elements of order 2 of G.
(c) $\left(K A^{s}\right) A\left(K A^{s}\right)=A^{s+1}$.
(d) The set S_{A} is a normal subgroup of G and all its elements are $\{K, s+1\}$-potent matrices.
(e) The order of G is:

- $(s+1)^{2}-1$ if $K A=A^{j}$ for some $j \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$ and, in this case, the group G is commutative.
- $2\left((s+1)^{2}-1\right)$ if $K A \neq A^{j}$ for all $j \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$ and, in this case, the group G is noncommutative.
(f) For every $j \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$, the element $K A^{j}$ of the set $G \backslash S_{A}$ (when it is nonempty) is $\{K, s+1\}$-potent if and only if s is even and one of the following conditions $\left\{4\left|s, \frac{s}{2}+1\right| j\right\}$ or $\{4 \backslash s, s+2 \mid j\}$ holds.

Proof. From the properties given in Lemma 2.1, it can be checked that $A^{(s+1)^{2}-1}$ is the identity element of the group G.
(a) G contains clearly a cyclic subgroup generated by the element A of order $(s+1)^{2}-1$.
(b) Using Property (h) of Lemma 2.1, one has $\left(K A^{s}\right)^{2}=A^{s(s+2)}=A^{(s+1)^{2}-1}$. Similarly, $\left(K A^{(s+1)^{2}-1}\right)^{2}=A^{(s+1)^{2}-1}$.
(c) Using the definition we get $\left(K A^{s}\right) A\left(K A^{s}\right)=K A^{s+1} K A^{s}=A A^{s}=A^{s+1}$.
(d) The set S_{A} is a subgroup of G of index 2. Then it is normal. As a direct consequence of Property (f) of Lemma 2.1 we obtain the second part of Property (d) since A^{j} are $\{K, s+1\}$-potent matrices for all $j \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$.
(e) Case 1. There exists $j \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$ such that $K A=A^{j}$. Then $K A^{i}=A^{j+i-1}$, that is, it is also one of the $(s+1)^{2}-1$ powers of A indicated in (3.1) for all $i \in\left\{2,3, \ldots,(s+1)^{2}-1\right\}$. Thus, the order of G is $(s+1)^{2}-1$ and then G is commutative.

Case 2. For every $j \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$ one has $K A \neq A^{j}$. It is clear that the order of G is $2\left((s+1)^{2}-1\right)$ because if $i, j \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$ such that $K A^{i}=K A^{j}$ with $i \neq j$ exist, then $A^{i}=K^{2} A^{i}=K^{2} A^{j}=A^{j}$, which is impossible. Assume that G is commutative. Then $(K A)\left(K A^{s+1}\right)=\left(K A^{s+1}\right)(K A)$, that implies $A^{2 s+1}=A$. We obtain a contradiction.
(f) Assume that $G \backslash S_{A} \neq \emptyset$ and $K A^{j} \in G \backslash S_{A}$. Then the fact that $K A^{j}$ is $\{K, s+1\}$-potent implies that s is even, by Property (k) of Lemma 2.1. This same property assures that, in this case, $K\left(K A^{j}\right)^{s+1} K=K A^{j \frac{s}{2}(s+4)+j}$. Then,

$$
\begin{gathered}
K A^{j} \text { is }\{K, s+1\}-\text { potent } \Longleftrightarrow K A^{j \frac{s}{2}(s+4)+j}=K A^{j} \Longleftrightarrow A^{j \frac{s}{2}(s+4)+j}=A^{j} \\
\Longleftrightarrow A^{j \frac{s}{2}(s+4)+j} A^{(s+1)^{2}-1-j}=A^{(s+1)^{2}-1} \Longleftrightarrow A^{j \frac{s}{2}(s+4)}=A^{(s+1)^{2}-1}
\end{gathered}
$$

and so, this is equivalent to the statement $(s+1)^{2}-1=s(s+2)$ divides $j \frac{s}{2}(s+4)$. Now, it can be checked that $s(s+2) \left\lvert\, j \frac{s}{2}(s+4)\right.$ is equivalent to $\left\{4\left|s, \frac{s}{2}+1\right| j\right\}$ or $\{4 \nmid s, s+2 \mid j\}$. In the first case, there are $2 s$ such j and in the second one, there are s such j.

Corollary 3.2. The group G is a semidirect product of \mathbb{Z}_{2} acting on $\mathbb{Z}_{(s+1)^{2}-1}$ when G has order $2\left((s+1)^{2}-1\right)$.

Proof. We consider a semidirect product of \mathbb{Z}_{2} acting on \mathbb{Z}_{r}. Then its presentation is in the form $\left\langle a, b \mid a^{2}=e, b^{r}=e, a b a=b^{m}\right\rangle$ where m, r are coprime. Here $r=$ $(s+1)^{2}-1, a=K A^{s}, b=A, m=s+1$.

Now, we need the following definition.

Definition 3.3 ([7]).
(i) The dihedral group, denoted by D_{m}, is generated by an element a of order m and another element b of order 2 such that $b^{-1} a b=a^{-1}$. It has order $2 m$.
(ii) The quasi-dihedral group, denoted by $Q_{2^{m}}$ for $m \geq 4$, is generated by an element a of order 2^{m-1} and another element b of order 2 such that $b^{-1} a b=a^{2^{m-2}-1}$. It has order 2^{m}.

We now classify the group G defined in Theorem 3.1. It is clear that G depends on A, K, and s. That is why, for the following result, we will denote G by G_{s} and so we stress on the parameter s. We shall see a relation between the group G_{s} and dihedral and quasi-dihedral groups in the following result.

Proposition 3.4. Assume that G_{s} has order $2\left((s+1)^{2}-1\right)$. One has
(a) G_{s} is a dihedral group if and only if $s=1$. In this case, $G_{1} \simeq D_{3}$.
(b) Let $s>1$. Then G_{s} is a quasi-dihedral group if and only if $s=2$. In this case, $G_{2} \simeq Q_{16}$.

Proof. (a) If $s=1$, the proof for case (a) can be deduced from the fact that G_{s} is generated by the element A of order 3 , the element $K A$ of order 2 , and furthermore, the relation $(K A) A(K A)=A^{2}$ holds, where A^{2} is the inverse of A.

Let $s>1$. In this case, it is known that the group G_{s} has an element A of order $(s+1)^{2}-1$. On the other hand, we check that for any $\alpha \in\left\{1,2, \ldots,(s+1)^{2}-1\right\}$ the element $K A^{\alpha}$ has order 2 if and only if α is a multiple of s. Indeed,

$$
\begin{aligned}
A^{(s+1)^{2}-1}= & \left(K A^{\alpha}\right)^{2} \Longleftrightarrow A^{s(s+2)}=K A^{\alpha} K A^{\alpha}=A^{\alpha(s+1)} A^{\alpha}=A^{\alpha(s+2)} \\
& \Longleftrightarrow s(s+2) \text { divides } \alpha(s+2) \Longleftrightarrow s \text { divides } \alpha,
\end{aligned}
$$

and hence all the elements of order 2 of G_{s} have the form $K A^{s t}$. However, for any element of the form $K A^{s t}$, where

$$
t \in\left\{\frac{1}{s}, \frac{2}{s}, \ldots, \frac{(s+1)^{2}-1}{s}\right\} \cap \mathbb{N}=\{1,2,3, \ldots, s+2\}
$$

the equality $\left(K A^{s t}\right) A\left(K A^{s t}\right)=A^{(s+1)^{2}-2}$ is not satisfied since

$$
\left(K A^{s t}\right) A\left(K A^{s t}\right)=\left(K A^{s t+1} K\right) A^{s t}=A^{\left((s+1)^{2}-1\right) t+(s+1)}=\left(A^{(s+1)^{2}-1}\right)^{t} A^{s+1}=A^{s+1}
$$

Finally $s>1$ implies that $s+1<(s+1)^{2}-2$, a contradiction.
(b) It is necessary to take into account the fact that the properties of G_{s} for $s=2$ coincide with those of $Q_{2^{m}}$ for $m=4$. In fact, if $s=2$ then G_{s} has an element A of order $8=2^{4-1}$, another element $K A^{2}$ of order 2 and, moreover, by Property (c)
of Theorem 3.1] we have $\left(K A^{2}\right) A\left(K A^{2}\right)=A^{3}=A^{2^{4-2}-1}$ and therefore $G_{2} \simeq Q_{2^{4}}$. Conversely, if $G_{s} \simeq Q_{2^{m}}$ then we have $2^{m-1}=(s+1)^{2}-1=s(s+2)$. Thus s is a power of 2 and $s=2, m=4$. \square
4. What about the group when $A^{k}=A$ for $k<(s+1)^{2}$?. We can ask: what would happen if a power k of A less than $(s+1)^{2}$ and such that $A^{k}=A$ existed?

If $A \in \mathbb{C}^{n \times n}$ is a $\{K, s+1\}$-potent matrix then Property (b) of Lemma 2.1allows us to construct, by Theorem 3.1, the group G considering the subgroup S_{A} of order $(s+1)^{2}-1$ when all the powers of A are different. But, it may occur that there exists an integer k such that $A^{k}=A$ with $2 \leq k<(s+1)^{2}$. In this case, it is also possible to consider the group $G_{s, k}=\left\{A, A^{2}, \ldots, A^{k-1}, K A, K A^{2}, \ldots, K A^{k-1}\right\}$ associated to the matrix A. Therefore, the subset $S_{A}^{k}=\left\{A, A^{2}, \ldots, A^{k-1}\right\}$ is a (cyclic) subgroup of the group S_{A} and then $k-1$ has to divide $(s+1)^{2}-1=s(s+2)$.

How many groups $G_{s, k}$ can we construct in this way? One only: the group corresponding to the smallest power k such that $A^{k}=A$ (otherwise, we obtain exactly the same group $\left.G_{s, k}\right)$. Consequently, the only possibilities for the order of the group are: $(s+1)^{2}-1,2\left((s+1)^{2}-1\right), k-1$ or $2(k-1)$ (if such k exists).

For some values of s and k, more specifications on the group are given in the following result. In order to analyze these special cases we recall the following definition.

Definition 4.1. [4] The quaternion group, denoted by Q, is generated by three elements a, b, c of order 4 such that $a^{2}=b^{2}=c^{2}$ and $b a b^{-1}=a^{-1}$. It has order 8 .

Proposition 4.2. Assuming that $G_{s, k}$ has order $2(k-1)$, the following statements hold.
(a) Let $s=1$. Then $k=2$. In this case, $G_{1,2} \simeq \mathbb{Z}_{2}$.
(b) Let $s=2$. Then one of the following statements hold:
(i) $k=2$. In this case, $G_{2,2} \simeq \mathbb{Z}_{2}$.
(ii) $k=3$. In this case, $G_{2,3} \simeq D_{2}$.
(iii) $k=5$. In this case, $G_{2,5} \simeq D_{4}$ or $G_{2,5} \simeq Q$.
(c) Let $s>2$. Then
(i) $G_{s, s+1} \simeq \mathbb{Z}_{2 s}$ when s is prime.
(ii) $G_{s, s+3} \simeq D_{s+2}$.

Proof. (a) Let $s=1$. If k is an integer such that $2 \leq k \leq 3$ and $A^{k}=A$, it must be $k=2$ because $k-1$ divides 3 . Thus, $K A K=A^{2}=A$ and then the group $G_{1,2}=\left\{K A,(K A)^{2}=A\right\}$ is generated by the element $K A$ of order 2. Hence, $G_{1,2} \simeq \mathbb{Z}_{2}$.
(b) Let $s=2$. If k is an integer such that $2 \leq k \leq 8$ and $A^{k}=A$, it must be $k=2, k=3$ or $k=5$ because $k-1$ divides 8 . We now analyze these three cases:

- $k=2$: the same reasoning as in (a).
- $k=3$: in this case, $G_{2,3}=\left\{A, A^{2}, K A, K A^{2}\right\}$ where A and $K A^{2}$ have order 2 and $K A^{2} A K A^{2}=A$. Hence, $G_{2,3} \simeq D_{2}$.
- $k=5$: in this case, $G_{2,5}=\left\{A, A^{2}, A^{3}, A^{4}, K A, K A^{2}, K A^{3}, K A^{4}\right\}$ is a noncommutative group (for instance, $A\left(K A^{2}\right) \neq\left(K A^{2}\right) A$). Then, Proposition 6.3 in [4] assures that $G_{2,5} \simeq D_{4}$ or $G_{2,5} \simeq Q$.
(c) Let $s>2$. If k is an integer such that $2 \leq k \leq s(s+2)$ and $A^{k}=A$, we get $k=s+1$ or $k=s+3$ as particular values of k because $k-1$ divides $s(s+2)$. Now, we analyze these two cases:
- $k=s+1$: in this case, $G_{s, s+1}=\left\{A, A^{2}, \ldots, A^{s}, K A, K A^{2}, \ldots, K A^{s}\right\}$ is a commutative group of order 2 s . Then, Corollary 6.2 in [4] assures that $G_{s, s+1} \simeq \mathbb{Z}_{2 s}$.
- $k=s+3:$ in this case, $G_{s, s+3}=\left\{A, A^{2},, \ldots, A^{s+2}, K A, K A^{2}, \ldots, K A^{s+2}\right\}$ is a non-commutative group (for example, $A\left(K A^{s+1}\right) \neq\left(K A^{s+1}\right) A$). A is of order $s+2, K A^{s}$ of order 2 and $K A^{s} A K A^{s}=A^{s+1}$. Hence, $G_{s, s+3} \simeq D_{s+2}$. —

REmARK 4.3. If $G_{s, k}$ has order $2(k-1)$ then $G_{s, k}$ is a semidirect product of \mathbb{Z}_{2} acting on \mathbb{Z}_{k-1}, when $k-1, s+1$ are coprime. Its proof is similar to the proof of Corollary 3.2 where $a=K A^{k-1}, b=A, r=k-1, m=s+1$. The Property (h) of Lemma 2.1 allows us to show that $K A^{k-1}$ has order 2. In fact, $a^{2}=\left(K A^{k-1}\right)^{2}=$ $A^{(k-1)(s+2)}=A^{k-1}=e$. Moreover, $a b a=\left(K A^{k-1}\right) A\left(K A^{k-1}\right)=K A^{k} K A^{k-1}=$ $A^{s+1} A^{k-1}=A^{s+1}=b^{m}$.

REMARK 4.4. We observe that $G_{2,5}$ is isomorphic to D_{4} or Q because there are (up to isomorphism) exactly two distinct non-commutative groups of order 8 . We will see, in Example 2, that these two possibilities can be realized.

Remark 4.5. We observe that if $s>2$ and $k=s+1$, then A satisfies $K A=A K$ since $A^{s+1}=A$. Such a matrix is said to be $\{K\}$-centrosymmetric [9]. In this case, the group associated to such a matrix A has order $2 s$, commutative and then isomorphic to $\mathbb{Z}_{2 s}$ if s is prime.

We close this section with the following remark.
REmARK 4.6. (The case $s=0$). It corresponds to $\{K\}$-centrosymmetric matrices. It is sometimes also possible to construct a similar group as before. Observe that the condition $A^{(s+1)^{2}}=A$ does not give any information for $s=0$. So, if we assume that $A^{t}=A$ for some positive integer t (where $A^{l} \neq A^{m}$ for all $\left.l, m<t, l \neq m\right)$,
then $G=\left\{A, A^{2}, \ldots, A^{t-1}, K A, K A^{2}, \ldots, K A^{t-1}\right\}$ is a group with the same features mentioned before.

However, when the assumption is not fulfilled, since the powers of A cannot be the identity element, the group does not exist. An example will clarify this situation. For the matrices

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \quad \text { and } \quad K=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

it is impossible to construct such a group because

$$
A^{m+1}=\left[\begin{array}{ccc}
2^{m} & 0 & 2^{m} \\
0 & 1 & 0 \\
2^{m} & 0 & 2^{m}
\end{array}\right] \quad \text { for every } m \geq 1
$$

5. Examples. Now we present some more examples illustrating the results we have obtained.

Example 5.1. Let

$$
A=\left[\begin{array}{rrr}
0 & 0 & -i \\
i & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad \text { and } \quad K=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

A is $\{K, 2\}$-potent as the authors showed in [5]. $G=\left\{A, A^{2}, A^{3}, K A, K A^{2}, K A^{3}\right\}$ is a group of order 6 because $A^{3}=I_{3}$ and, in this case, $G \simeq D_{3}$ by Proposition 3.4.

Example 5.2.
(1) Let

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] \quad \text { and } \quad K=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

A is $\{K, 3\}$-potent and $A^{2}=-I_{2}$. This example shows a matrix of the class considered in Section 4. For this matrix, $A^{5}=A$ holds and so it is possible to construct a group with similar features as in Proposition 4.2. Since $s=2, k=5$, $G_{2,5}$ has order 4 or 8 . In this example, the group is $G_{2,5}=\left\{ \pm I_{2}, \pm A, \pm K, \pm K A\right\}$ and, in this case, A is an element of order $4, K A^{2}=-K$ is an element of order 2, and $\left(K A^{2}\right) A\left(K A^{2}\right)=A^{3}$. So $G_{2,5}$ is isomorphic to D_{4}.
(2) Let A be a $\{K, 3\}$-potent matrix given by
$A=\frac{1}{2}\left[\begin{array}{cccc}0 & 0 & 1+i & 1-i \\ 0 & 0 & 1-i & 1+i \\ 1+i & 1-i & 0 & 0 \\ 1-i & 1+i & 0 & 0\end{array}\right] \quad$ and $\quad K=\frac{1}{8}\left[\begin{array}{rrrr}9 & -1 & 3 & -3 \\ -1 & 9 & -3 & 3 \\ -3 & 3 & -1 & 9 \\ 3 & -3 & 9 & -1\end{array}\right]$.
$A^{4}=I_{4}$ and the associated matrix group (of order 8) is

$$
G_{2,5}=\left\{A, A^{2}, A^{3}, I_{4}, K A, K A^{2}, K A^{3}, K\right\}
$$

$G_{2,5}$ is generated by the three elements $A^{2}, K A, K A^{3}$ of order 4 such that $\left(A^{2}\right)^{2}=$ $(K A)^{2}=\left(K A^{3}\right)^{2}$ and $(K A)\left(A^{2}\right)(K A)^{3}=A^{2}$. So $G_{2,5}$ is isomorphic to Q.

Example 5.3. Let

$$
A=\left[\begin{array}{cc}
\frac{\sqrt{5}-1}{2} & 1 \\
-1 & 0
\end{array}\right] \quad \text { and } \quad K=\left[\begin{array}{cc}
1 & \frac{\sqrt{5}-1}{2} \\
0 & -1
\end{array}\right]
$$

A is $\{K, 4\}$-potent and $A^{5}=I_{2}$. The associated group (of order 10) is

$$
G=\left\{A, A^{2}, A^{3}, A^{4}, I_{2}, K A, K A^{2}, K A^{3}, K A^{4}, K\right\} .
$$

G is generated by A of order 5, $K A^{2}$ of order 2, and $\left(K A^{2}\right) A\left(K A^{2}\right)=A^{4}$. Then G is isomorphic to D_{5}.

Example 5.4. Let A be a $\{K, 5\}$-potent matrix given by

$$
A=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right] \quad \text { and } \quad K=\left[\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right]
$$

The associated group (of order 6) is $G=\left\{A, A^{2}, I_{2}, K A, K A^{2}, K\right\}$ since $A^{3}=I_{2}$. As G is generated by A of order 3, $K A^{2}$ of order 2 and $\left(K A^{2}\right) A\left(K A^{2}\right)=A^{2}$, then G is isomorphic to D_{3}
6. Acknowledgements. The authors would like to thank the referees for their valuable comments and suggestions, which allowed improving considerably the writing of the paper.

REFERENCES

[1] A. Andrew. Centrosymmetric matrices. SIAM Review, 40:697-698, 1998.
[2] G. Bourgeois. Algebraic matrix equations in two unknowns. arXiv:1103.4203v3 [math.RA], 2011.
[3] H. K. Du and Y. Li. The spectral characterization of generalized projections. Linear Algebra and its Applications, 400:313-318, 2005.
[4] T.W. Hungerford. Algebra. Springer-Verlag, Berlin, 1989
[5] L. Lebtahi, O. Romero, and N. Thome. Characterizations of $\{K, s+1\}$-potent matrices and applications. Linear Algebra and its Applications, 436:293-306, 2012.
[6] L. Lebtahi, O. Romero, and N. Thome. Relations between $\{K, s+1\}$-potent matrices and different classes of complex matrices. Linear Algebra and its Applications, doi:10.1016/j.laa.2011.10.042.
[7] J.S. Rose. A Course on Group Theory. Cambridge, 1978.
[8] J.L. Stuart and J.R. Weaver. Matrices that commute with a permutation matrix. Linear Algebra and its Applications, 150:255-265, 1991.
[9] D. Tao and M. Yasuda. A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices. SIAM J. Matrix Analysis Applications, 23:885-895, 2002.
[10] W.F. Trench. Characterization and properties of matrices with generalized symmetry or skew symmetry. Linear Algebra and its Applications, 377:207-218, 2004.
[11] W.F. Trench. Characterization and properties of matrices with k-involutory symmetries. Linear Algebra and its Applications, 429:2278-2290, 2008.
[12] W.F. Trench. Characterization and properties of matrices with k-involutory symmetries II. Linear Algebra and its Applications, 432:2782-2797, 2010.
[13] J. Weaver. Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors. American Mathematical Monthly, 92:711-717, 1985.
[14] Hans Schneider. Theorems on M-splittings of a singular M-matrix which depend on graph structure. Linear Algebra and its Applications, 58:407-424, 1984.
[15] Richard S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
[16] S. Friedland and H. Schneider. Spectra of expansion graphs. Electronic Journal of Linear Algebra, 6:2-10, 1999.

[^0]: *Received by the editors on July 28, 2011. Accepted for publication on January 30, 2012. Handling Editor: Carlos M. da Fonseca.
 ${ }^{\dagger}$ Instituto Universitario de Matemática Multidisciplinar. Universitat Politècnica de València. E46022 Valencia, Spain. (leilebep@mat.upv.es). Supported by the Ministry of Education of Spain (Grant DGI MTM2010-18228).
 ${ }^{\ddagger}$ Instituto Universitario de Matemática Multidisciplinar. Universitat Politècnica de València. E-46022 Valencia, Spain. (njthome@mat.upv.es).

