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ABSTRACT 

Advances in structural and biochemical properties of carmovirus movement proteins (MPs) have only 

been obtained in p7 and p9 from Carnation mottle virus (CarMV). Alignment of carmovirus MPs revealed a 

low conservation of amino acid identity but interestingly, similarity was elevated in regions associated with 

the functional secondary structure elements reported for CarMV which were conserved in all studied 

proteins. Nevertheless, some differential features in relation with CarMV MPs were identified in those from 

Melon necrotic virus (MNSV) (p7A and p7B). p7A was a soluble non-sequence specific RNA-binding protein, 

but unlike CarMV p7, its central region alone could not account for the RNA-binding properties of the entire 

protein. In fact, a 22-amino acid synthetic peptide whose sequence corresponds to this central region 

rendered an apparent dissociation constant (Kd) significantly higher than that of the corresponding entire 

protein (9 mM vs 0.83-25.7 µM). This p7A-derived peptide could be induced to fold into an alpha-helical 

structure as demonstrated for other carmovirus p7-like proteins. Additionally, in vitro fractionation of p7B 

transcription/translation mixtures in the presence of ER-derived microsomal membranes strongly suggested 

that p7B is an integral membrane protein. Both characteristics of these two small MPs forming the double 

gene block (DGB) of MNSV are discussed in the context of the intra- and inter- cellular movement of 

carmovirus. 
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INTRODUCTION 

Cell-to-cell movement of plant viruses requires specific viral factors (movement proteins, MP) that 

direct virus transport from the primary infection point to neighbouring cells by interacting with either entire 

viral particles (Pouwels et al., 2004) or nucleoprotein intermediates, including active replication complexes 

(Kawakami et al., 2004). These viral or subviral particles are commonly targeted by the machinery of the 

intracellular transport of macromolecules to the cell periphery where plant viruses overcome the rigid cell wall 

barrier by moving through modified intercellular channels (plasmodesmata), most likely by means of an 

internal membranous translocation system. Consequently, MPs have inevitably been found to associate with 

cytoskeletal elements or endoplasmic reticulum network as well as host factors in order to assist the 

movement process (Heinlein and Epel, 2004; Nelson and Citovsky, 2005, Lucas, 2006). Moreover, they are 

forced to adjust plasmodesmata dimensions to that of the viral mobile element by increasing their size 

exclusion limit (Waigmann et al., 2004). Alternatively, they can cause a drastic rearrangement of the original 

structure that is occasionally replaced by specialized MP-tubules (Kasteel et al., 1997). Given existing data, it 

is evident that MPs play a central role in the spread of infection by accomplishing several functions: 1) viral 

genome binding (Citovsky et al., 1990; Marcos et al, 1999; Herranz and Pallas, 2004); 2) association with the 

intracellular transport pathway and related host factors (Lucas, 2006); 3) interaction with additional MPs or 

with different viral factors such as coat protein (Sanchez-Navarro et al, 2005 Verchot-Lubicz, 2005); 4) 

plasmodesmata gating (Wolf et al., 1989), and 5) influencing RNA silencing suppression (Bayne et al, 2005; 

Genoves et al., 2006). It has been reported that an individual MP may mediate most of the above mentioned 

activities. Otherwise, a distribution of these functions among multiple viral proteins is also possible. In this 

sense, five different virus-specific systems for cell-to-cell movement have been described: 1) the extensively 

characterized “30K superfamily” present in a large number of plant viruses representing a unique MP that 

shows structural similarities to the 30 kDa MP of Tobacco mosaic virus, TMV (Melcher, 2000); 2) the 

tymovirus MP (Bozarth et al., 1992); 3) the two small MPs encoded by carmo-like viruses (Li et al., 1998; 

Vilar et al, 2001; Genoves et al., 2006) referred to as the double gene block proteins (DGBp; Hull, 2002) and 

the two MPs encoded by some geminiviruses (nuclear shuttle protein, NSP and movement protein, MP) 

(Noueiry et al., 1994; Sanderfoot and Lazarowitz, 1995); 4) the triple gene block of proteins from 

potexviruses (Morozov and Solovyev, 2003; Verchot-Lubicz, 2005); and 5), filamentous closteroviruses 

which require up to five proteins for cell-to-cell movement (CP, minor CP, and three MPs, namely the 6-kDa 

protein, the Hsp70 homolog, and the 64-kDa protein) (Prokhnevsky et al., 2002; Peremyslov et al., 2004). 



Coordination between two small proteins (smaller than 10kDa) encoded in the central region of the 

non-segmented plus stranded RNA genome of carmoviruses allows for the movement of both Turnip crinkle 

virus (TCV) as well as Melon necrotic spot virus (MNSV) genomes among adjacent cells (Hacker et al., 

1992; Li et al., 1998; Cohen et al., 2000; Genoves et al., 2006). However, structural and molecular properties 

involving this simple movement apparatus have only been studied for the homologous MP of Carnation 

mottle virus (CarMV). CarMV p7 presents three different putative domains. However, only the basic central 

region, which adopts an α-helical conformation in the presence of secondary structure inducers, is 

responsible for the RNA binding properties (Marcos et al, 1999; Vilar et al, 2001 and 2005). On the other 

hand, CarMV p9 contains two transmembrane domains (TM1 and TM2) (Vilar et al., 2002) that are in vitro 

targeted and inserted into ER-derived microsomes by means of a cotranslational/signal recognition particle 

(SRP)-dependent and translocon-assisted process (Sauri et al., 2005). Based on these data, a topological 

model has been proposed in which CarMV p9 is anchored to the membrane with its N- and C-terminal 

regions oriented to the cytoplasmic face and with its C-terminus interacting with the soluble, RNA-bound p7 

partner (Vilar et al., 2002). However, data involving both p7 and p9 proteins in CarMV cell-to-cell movement 

in vivo are lacking. 

Here we provide a structural study of homolog DGB proteins from all sequenced carmoviruses and 

demonstrate the in vitro RNA-binding capacity and membrane insertion ability of MNSV p7A and p7B, 

respectively. Characterized properties of both p7A and p7B demonstrate adaptation to their assigned role in 

MNSV cell-to-cell movement in vivo (Genoves et al., 2006), which represents a step forward towards 

definition of reliable molecular models for DGBp-mediated cell-to-cell movement of plant viruses. 



RESULTS 

Sequence alignment and structural properties of homologous proteins from the carmovirus 

double gene block movement proteins (DGBp). Secondary structure prediction by computer-assisted 

methods and alignment of amino acid sequences were carried out with homologous DGBp from eleven 

carmoviruses as well as from the related Pelargonium line pattern virus (PLPV, Castano and Hernandez, 

2005) as a reevaluation of the studies previously performed (Marcos et al., 1999; Cañizares et al, 2001; Vilar 

et al, 2001, 2002). For the 5’ distal protein (referred here as DBGp1), the accuracy of prediction approaches 

were confirmed by a reasonable correlation between the consensus secondary structure of p7 CarMV 

obtained from data of six different computational prediction methods (PHDpsi, PROFsec, SSPro 2.01, 

Predator, YASPIN, JNet and PSIPred) by means of SYMPRED server 

(http://ibivu.cs.vu.nl/programs/sympredwww/) and that deduced experimentally by means of circular 

dichroism spectroscopy analyses (Vilar et al, 2001, 2002, 2005). Three different structured domains were 

assumed: an unordered N-terminus, an inducible α-helical central region and a C-terminus with potential β-

sheet folding. The presence of these secondary structure elements mapping in the homologous positions 

were predicted in all studied proteins (Figure 1a). Moreover, alignment of amino acid sequences computed 

by means of Clustal X (1.8) interface (Thompson et al., 1997) revealed low sequence identity among all 

proteins at the N-terminus. However, the central and Ct-domains exhibited a moderate and high degree of 

similarity respectively, concordant with the prediction of secondary structure elements. These data 

suggested a conservation of amino acid properties as well as primary sequence mainly when the protein 

structure was affected. The α-helical structure located at the central region was variable depending on the 

virus, but always included a 3’ distal α-helix similar to that characterized in the p7 CarMV segment 

29AKDAIRK35 (Vilar et al. 2001, 2005). This motif was also preceded by several conserved basic residues 

which confer a surrounding positive charge density distribution (Figure 1a). It has been demonstrated that 

this domain is responsible for the RNA binding properties of intact CarMV p7 by means of a RNA-protein 

adaptative interaction process modulated by the above mentioned secondary structure element (Marcos et 

al., 1999; Vilar et al, 2001 and 2005). Interestingly, most of the acidic residues are located at the N-terminus 

of the protein, resulting in a negative overall charge allocation, except for MNSV, PSNV, CPMoV, CCFV and 

PLPV, where positively-charged residues were found at the N-terminus and central region (Figure 1a). 

Finally, well-defined Ct β-sheet folding was predicted in all cases. 

The amino acid sequence from 3’ distal homolog proteins (DGBp2) were analyzed for possible 



transmembrane (TM) segments with the aid of TMHMM (Krogh et al., 2001), DAS (Cserzö et al., 1997), 

HMMTOP (Tusnady and Simon, 1998) and TopPredII (Claros and von Heijne, 1994). Consensus domains 

are presented in Figure 1b. Homologs DGBps2 show a high percentage of hydrophobic amino acids 

distributed along either one or two predicted TM α-helices (TMH), arranging the proteins into two different 

groups that we refer to as CarMV-like (Figure 1b, upper group) and MNSV-like (Figure 1b, lower group). A 

conserved β-sheet structure was predicted at the C-terminus of both groups, most likely involved in the 

interaction with the similar motif at the C-terminus of DGBp1 (Vilar et al, 2001). As previously observed with 

DGBp1, homologs of DGBp2 show an overall low sequence identity, although regions with moderate 

similarity are associated with the presence of TMH. Interestingly, both TMH from CarMV-like DGBp2 are 

separated by a polar region containing several proline residues (Figure 1b, up). The cyclic structure of this 

amino acid strongly restricts the conformational space of the peptide chain in protein structures and tends to 

inhibit both α-helical and β-sheet structure formation. This probably forces the proteins to fold as helical 

hairpins. In this sense, it has been recently shown that this short loop ensures that, after translation, both 

TMH fragments from CarMV p9 leave the translocon complex in a concerted fashion to become membrane 

embedded (Saurí et al., 2005). 

RNA-binding properties of MNSV p7A. A relationship between DGBps and carmovirus cell-to-cell 

movement cab be inferred by sequence similarity with DGBp from TCV and MNSV, the two carmoviruses 

where these proteins have been shown to be directly involved in in vivo cell-to-cell movement (Hacker et al., 

1992; Li et al., 1998; Cohen et al., 2000; Genoves et al., 2006). However, DGBp from MNSV have some 

different structural features compared with well-characterized CarMV DGBp: the 5’ distal protein (p7A) shows 

a different distribution of positive charge residues, and only one membrane spanning domain was predicted 

for DGBp2 (p7B). Therefore, to investigate whether the CarMV DGBp properties (Marcos et al., 1999; Vilar et 

al, 2001and 2002) are assumed by homolog MNSV proteins, studies on both in vitro p7A RNA binding 

properties as well as p7B membrane insertion were performed. 

The putative RNA-binding properties of the p7A movement protein were studied by in vitro EMSA 

(Herranz and Pallas, 2004) using increasing amounts of a recombinant protein expressed in bacteria 

consisting of the p7A fused at the N terminus with maltose binding protein (MBP-p7A), and a MNSV-specific 

DIG-labelled ssRNA (CP(+) RNA) (Figure 2a, left). RNA mobility shifts, suggesting the presence of an RNA-

protein interaction, became detectable when 400 ng of MBP-p7A protein was added to the reaction mixture. 

Maximal binding occurred using 6 µg of protein, as measured by disappearance of unbound RNA. 



Comparable concentrations of MBP-βgalα protein expressed in bacteria containing the empty pMal-c2x 

vector failed to bind CP(+) RNA, indicating that the shift observed in the EMSAs was specific for p7A (data 

not shown). Interestingly, the MBP-p7A:RNA complexes formed at higher protein amounts slightly increased 

the electrophoretical mobility of the ribonucleoprotein complex, which at lower protein amounts (between 0.4-

6 µg), migrated only slightly into the gel matrix. Similar results have been previously reported for Prunus 

necrotic ringspot virus MP indicating that the higher protein amounts the greater protein-protein interactions 

that result in a structural change of the ribonucleoprotein complex from rod-like to a globular form (Herranz 

and Pallas, 2004). Alternatively, a His-tagged p7A was used in in vitro EMSA. As expected from the previous 

experiments performed with the fusion protein MBP-p7A, RNA mobility shift was also detected although in 

this case, intermediate complexes were observed (supplementary figure 1a). 

Binding kinetics analysis was performed using a Hill transformation of data from three independent 

experiments using both MBP-p7A and His-tagged p7A (Figure 2a, right and supplementary figure 1b, 

respectively). RNA-protein complex formation was measured as the disappearance of the band 

corresponding to unbound CP(+) RNA from each EMSA (Carey, 1991; Daros and Carrington, 1997). The 

apparent dissociation constants (Kd) for both MBP-p7A: RNA and His-tagged p7A: RNA complexes were 

calculated from linear regression as the p7A concentration at which half of the RNA is bound. These values 

(25.7 µM and 0.82 µM, respectively). were in the same order as those corresponding to homolog CarMV p7 

(2.4 µM) (Marcos et al., 1999; Vilar et al, 2001) as well as to other sequence non-specific RNA-binding 

proteins (Burd and Dreyfuss, 1994; Pata et al., 1995; Skuzeski and Morris, 1995; Daros and Carrington, 

1997; Herranz and Pallas, 2004). Additionally, Hill plot of the data provides a mathematical calculation of the 

degree of cooperativity in the binding event, which is provided by the gradient of the resulting line or Hill 

coefficient (c). The c values for MBP-p7A:RNA and His-tagged p7A binding kinetics were slightly higher than 

1 (c=1.1and 1.3, respectively). Therefore, a low degree of cooperativity could be assigned to the process 

(c=1 is indicative of no cooperativity) suggested by the presence of intermediates complexes in the EMSA 

performed with the His-tagged p7A (supplementary figure 1a) (Marcos et al, 1999). The size of MBP moiety 

present in the fusion protein MBP-p7A may affect p7A-p7A interactions so that decreasing the c value and 

perhaps, avoiding also the appearance of intermediate complexes. 

To challenge the forces that govern the MBP-p7A:RNA interaction, complex resistance was evaluated 

by increasing NaCl concentration of the incubation mixtures in the presence of a protein concentration (6 µg) 

that was sufficient to bind all CP (+) RNA molecules. The appearance of free RNA was quantified to evaluate 



complex dissociation and a 50% reduction of binding was observed at NaCl concentration of 435 mM (IC50) 

(Figure 2b, left). This remarkable salt tolerance was similar to that observed with homolog TCV p8 (Wobbe et 

al., 1998) suggesting that interactions other than electrostatics between the RNA and the MP are involved in 

binding (Herranz and Pallas, 2004). These results are in contrast with those obtained in similar assays but 

using a recombinant protein consisting of the MNSV p7B fused at the N terminus with MBP (MBP-p7B) 

(supplementary figure 2). Free RNA consistently disappeared only at a NaCl concentration of  50 mM. 

Putative interaction was unstable at any other salt concentration most likely indicating an artefactual RNA 

binding. 

Finally, competitive binding assays were performed to examine the selectivity of p7A to bind different 

nucleic acids (Figure 2b, right). Reaction mixtures containing the DiG-labelled CP(+) ssRNA were assembled 

in the presence of a 10-fold mass excess of unlabelled competitors. The ssRNA from a heterologous origin 

(Lettuce big vein virus; LBVV; Navarro et al., 2004) was able to compete at 10-fold excess (Figure 2b, lanes 

3 and 4), whereas the dsDNA weakly displaced the binding only at a 10-fold ratio (Figure 2b, lanes 9 and 

10). Both dsRNA and ssDNA had no effect on the electrophoretic retardation (Figure 2b, lanes 5 to 8). These 

results indicated that the p7A has a preference for ssRNA binding in a sequence non-specific manner. 

Characterization of the RNA-binding domain of p7A MP. Three deletion variants lacking each of 

the previously mentioned p7A structural regions (Figure 3a) were expressed as MBP fusion proteins to avoid 

incorrect conformation after denaturation and refolding (Citovsky et al., 1992; Vaquero et al., 1997) in 

Northwestern assay (Aparicio et al., 2003, Herranz and Pallas, 2004). Recombinant MBP-p7AΔ1-22 and MBP-

p7AΔ45-65, deficient in the N-terminal and C-terminal domains respectively, showed strong reduction of RNA 

binding activity when compared with full-length MBP-p7A (Figure 3b, compare lane 2 with 4 and 6). 

However, deletion of the basic α-helical predicted domain located in the central portion of the protein (mutant 

MBP-p7AΔ23-44) eliminated RNA:protein interaction (Figure 3b, lane 5). No binding of the riboprobe was 

observed with MBP-βgalα protein (Figure 3b, lane 3). This p7A RNA binding domain (RBD) fits well with the 

previously described RBD from p7 CarMV (Marcos et al., 1999; Vilar et al, 2001, 2005). To corroborate these 

results a 22-amino acid synthetic peptide covering p7A positions 23 to 44 was synthesized. This p7A derived 

peptide (p7A23-44) was randomly structured in aqueous solution as monitored through far-UV circular 

dichroism spectroscopy. However, increasing concentrations of secondary structure inducers, such as 

trifluorethanol (TFE) (Figure 4a, left panel) and SDS (Figure 4a, right panel) induced p7A23-44 to fold into an 

α-helical conformation. In vitro RNA-binding properties of p7A23-44 peptide were demonstrated by EMSA and 



the kinetics of the process was evaluated by the same approach used with the MBP-p7A protein (Figure 4b). 

Kd from p7A23-44 peptide was higher than that observed for the MBP-p7A protein (9 mM vs 25.7µM, 

respectively). 

p7B is an integral membrane protein. Computer analysis of the p7B amino acid sequence predicted 

that p7B is a membrane protein with a single transmembrane domain, roughly spans from residue 14 to 

residue 32. To test the computer predictions, in vitro p7B transcription/translation experiments were 

performed in the presence of ER-derived microsomal membranes. After centrifugation of  the translation 

reaction mixture, p7B was recovered from the 100.000 g pellet fraction (Figure 5a, untreated lanes) 

indicating that it could be either a membrane-associated (peripheral or integral) protein or a luminal protein 

(Figure 5b). To differentiate between these possibilities, translation reaction mixtures were either treated with 

8M urea or washed with sodium carbonate (pH 11.5). Urea was expected to dislodge proteins that are 

weakly or peripherally associated with membranes (Figure 5b, scheme 2) (Schaad et al., 1997) whereas 

sodium carbonate renders microsomes into membranous sheets, thus releasing the soluble luminal proteins 

(Figure 5b, scheme 1) (Peremyslov et al., 2004). After treatments with both agents, p7B appeared to be 

mainly associated with the membranous pellet fraction (Figure 5a), suggesting a tight association with 

microsomal membranes. To confirm this conclusion, p7B translation reaction mixtures were also treated with 

Triton X-114, a detergent that forms a separate organic phase to which the membrane lipids and 

hydrophobic proteins are segregated (Bordier, 1981). Because p7B was detected in the organic, but not the 

aqueous phase (Figure 5a), we concluded that p7B is an integral membrane protein. Further experiments will 

be needed to define its topology (Figure 5b, scheme 3). 

DISCUSSION 

Non-virion cell-to-cell movement of plant carmoviruses involves specific transport of replicated 

genomes by means of two small movement proteins (DGBp) and in some instances requiring coat protein 

(Hacker et al., 1992; Li et al., 1998; Cohen et al., 2000; Genoves et al., 2006). Although the alignment of 

carmovirus homolog DGB proteins revealed low identity, similarity of amino acid sequences was noted that 

mostly affected regions arranged as conserved secondary structure elements. These data suggest that the 

biological function of both proteins is dependent on the physical and chemical properties of the residues 

either by itself or by influencing the folding of the polypeptide backbone rather than primary structure. In vitro 

studies have shown that the proteins encoded by the DGB 5'-proximal genes from both TCV and CarMV are 

able to bind RNA in a sequence non-specificity fashion. However, only CarMV p7 RBD has been well-



characterized and localized to the basic central region of the protein (Wobbe et al., 1998; Marcos et al., 

1999; Vilar et al. 2001, 2005). CarMV p7 RBD consists of an α-helical inducible structure that also includes 

almost all basic residues of the protein. Both secondary structure and positively charged amino acids 

modulate RNA binding by means of an RNA:protein adaptative process (Vilar et al., 2001, 2005). Moreover, 

a lysine to glutamate mutation in amino acid position 25 of TCV p8 reduced RNA binding activity and 

virulence on Arabidopsis thaliana (Wobbe et al., 1998). The essential role of basic residues in RNA binding 

has been described for MPs such as TGBp1 (Morozov and Solovyev, 2003) and the 30K superfamily 

(Herranz et al., 2005) from other positive ssRNA virus. Despite the fact that the α-helix is predicted at nearly 

the same position in all homolog DGBp1, the distribution of basic residues varied considerably and was not 

always concentrated in the central region as was found for MNSV p7A. Gel-shift assays revealed that p7A 

can bind ssRNA non-specifically in a slightly cooperative manner as expected. However, when RNA complex 

formation by full-length p7A and three deletion mutants was tested by Northwestern assays, results revealed 

that although RNA binding was impaired when the central region was removed, deletion of either the Nt or Ct 

region also dramatically reduced binding. Unlike the negatively charged Nt from CarMV p7, the Nt from 

MNSV p7A contains a number of positively charged amino acids (five basic residues conferring an overall 

charge of +1 vs the +3 observed at the central domain). Therefore, the p7A Nt could also participate in RNA-

binding as an extension of the basic central RBD. Finally, the lack of the β-sheet Ct domain in the MBP-

p7AΔ45-65 mutant protein could hypothetically affect the cooperative binding of protein molecules prior to 

fixation onto a solid phase in Northwestern assays or it might influence the correct folding of the rest of the 

molecule; both of these possibilities could affect the RNA binding. These results are in accordance with the 

Kd values from gel shift assays using the p7A23-44 peptide and MBP-p7A protein (9 mM vs 25.7µM, 

respectively), which revealed that the central region alone could not account for the RNA-binding properties 

of the entire p7A protein unlike that observed with CarMV p7 and its RBD derived peptide (Kd values: 0,7 and 

1,1µM, respectively) (Marcos et al, 1999). 

Since nucleic acid binding associated with MPs seems to be a non-sequence specific process, MPs 

are possibly translated in close proximity to the genome replication complex to bind viral but not host plant 

RNA. Therefore, the ability of a virus to move is determined by interactions among the genome-MP complex 

and host proteins from cellular secretory pathways and the cytoskeleton (Nelson and Citovsky, 2005; 

Scholthof, 2005). In the TGB system, TGBp2 and TGBp3 play this role since they have been described as 

integral membrane proteins that are associated with the endoplasmic reticulum (ER) (Morozov and Solovyev, 



2003; Verchot-Lubicz, 2005). TGBp3 redirects TGBp2 and most likely TGBp1 from the ER network to the 

plasmodesmata (Haupt et al., 2005; Solovyev et al., 2000; Zamyatnin et al., 2004). In carmoviruses, in vitro 

experiments demonstrated that CarMV p9 is the responsible for the interaction with ER (Vilar et al, 2002 

Sauri et al., 2005). As with hordei-like and potex-like TGBp3, two- or single-spanning transmembrane 

domains are predicted for CarMV-like and MNSV-like DGBp2, respectively. Evidence is herein provided that 

MNSV p7B and most likely all single-spanning transmembrane DGBp2 also insert in vitro into the ER lipid 

bilayer as integral proteins. Therefore, MNSV-like DGBp2 like potex-TGBp3 may be functionally sufficient to 

direct the intracellular movement of the carmovirus complex DGBp1:RNA. Alternatively, a dimerization 

process could be involved. In this sense, several cysteine residues that are located at all homolog MNSV-like 

but not CarMV-like DGBp2 Nt can potentially generate intermolecular covalent disulfide bonds as occurs with 

the 6-kDa transmembrane protein from closteroviruses (Peremyslov et al., 2004). Cysteines are conserved 

among all sequenced isolates of MNSV except for the residue located at position 4, which was replaced by 

Tyrosine in five isolates (data not shown). Interestingly, anomalous Cys-Tyr covalent bonds involving protein 

interactions have been described (Diaz et al., 2004). 

To conclude, viral genome binding function seems to be accomplish by p7A whereas p7B could be 

involved in the association with the intracellular membrane system. Both functions have been described for a 

number of viral MPs. However, the molecular  mechanism used to target the MNSV ribonucleoprotein 

complex to plasmodesmata and then from cell-to-cell in a coat protein-independent process and linked to the 

p7B silencing suppression (Genoves et al., 2006) is still unknown. In this scenario, unlike the 30K family, 

TGB and other multicomponent transport systems, carmovirus movement based on DGB of MPs is energy-

dependent on host proteins. Therefore, this simple system converts such virus into a suitable model of study 

to advance into the knowledge of mechanisms involved in plant virus cell-to-cell movement and the 

interactions with host factors produced during the process. 

 

MATERIALS AND METHODS 

Expression in bacteria, purification and analysis of MNSV p7A and the deletion mutant forms. 

MNSV p7A and p7B genes, and the deletion mutant forms p7AΔ1-22 and p7AΔ45-65, lacking the amino acid 

residues located between positions 1-22 (N-terminal region) and 45-65 (C-terminal region) respectively, were 

amplified from plasmid pMNSV-Al which contains the genomic sequence of the Spanish isolate MNSV-Al 

(DQ339157) (Gosalvez et al., 2004; Genoves et al., 2006). The PCR products were fused in frame after the 



coding sequence of maltose binding protein (MBP) into pMal-c2x expression vector (New England Biolabs 

Inc., MA, USA) to generate the recombinant constructs pMal-7A, pMal-7AΔ1-22 and pMal-7AΔ45-65. Moreover, 

the central region of p7A encoding residues 23-44 was deleted by reverse PCR of plasmid pMal-7A with 

phosphorylated oligonucleotides VP 461 and 462 (Table 1). The amplified product was self-ligated to 

generate plasmid pMal-7AΔ23-44. Alternatively, MNSV p7A gene was cloned into pETDuet-1 (Novagen) by 

deleting the second T7 promoter and fusing the p7A ORF after a sequence coding for a six histidine tag to 

generate pET-p7A construct. PCRs were carried out by using Vent DNA polymerase (New England Biolabs 

Inc., MA, USA) and indicated primer pairs (Table 1). All pMal-p7A constructions as well as pMal-c2x vector 

were introduced into the E. coli strain DH5α by electroporation (GenePulser Xcell™ electroporator system, 

Bio-Rad). E. coli strain BL21 was used in the case of pET-p7A. Next, all recombinant p7A proteins (His-

tagged p7A, MBP-p7A, MBP-p7AΔ1-22, MBP-p7AΔ23-44 and MBP-p7AΔ45-65) as well as fusion MBP-β-

galactosidase α fragment protein (MBP-βgalα) resulting from the pMal-c2x expression vector were purified 

as manufacturer protocol indicated. The purified proteins were quantified and analyzed by SDS-PAGE in 12 

% polyacrylamide gels after Coomassie brillant blue staining. 

Synthesis of the RBD-derived peptide and circular dichroism analysis. Synthetic peptide 

including the p7A amino acid sequence comprised between residues 23 to 44 (p7A23-44, Ac-

GGKQKNSMGRKIANDAISESKQ-NH2) was synthesized as previously described (Marcos et al, 1999 

Secondary structure was monitored by circular dichroism spectroscopy (Jasco J-810 CD spectropolarimeter). 

CD spectra were the average of a series of ten scans taken at 0.2 nm intervals. 

Nucleic acid binding assay. Protein RNA-binding studies were performed by means of 

electrophoretic mobility shift assay (EMSA) as previously described (Herranz et al., 2004). Briefly, 5 ng of a 

digoxigenin labelled plus-strand MNSV RNA (CP(+) RNA) located on the coat protein ORF (2841-3304 

positions) and generated by in vitro transcription from BamHI-linearized pMNSV-CP (Gosalvez et al., 2004) 

by using T3 RNA polymerase, was heat denatured for 5 min at 85ºC and then allowed to cool to room 

temperature for 15 min. CP (+) RNA was incubated for 30 min at room temperature with different amounts of 

MBP-βgalα,MBP-p7A, MBP-p7B and His-tagged p7A recombinant proteins as well as with several 

concentrations of synthetic peptide p7A23-44 in a 10 µl reaction mix also containing 10 mM Tris-HCl pH 8.0, 

100 mM NaCl, 50 % glycerol and 2 units of RNase inhibitor. Afterwards, samples were electrophoresed on a 

1% agarose gel in 1X TAE buffer (40 mM Tris-acetate, 1 mM EDTA, pH 8.0), capillary-transferred to 

positively-charged nylon membranes (Roche Diagnostics GmbH) in the presence of 10X SSC (1,5M NaCl, 



0,15M sodium citrate) and exposed to UV irradiation (700 x 100 µJ/cm2) to cross-link RNA. Riboprobe 

detection was conducted as previously described (Pallás et al., 1998). 

Nucleic acid binding assay in the presence of competitors was performed by mixing the CP(+) RNA 

with either equal or with ten-fold mass excess of different types of nucleic acids as well as with a constant 

amount (6 µg) of MBP-p7A recombinant protein. Competitors included: a 20nt-length single strand DNA 

(ssDNA) oligonucleotide (VP 51-1, TTTACCCACAGTGAAGCTTGC, viral positions 2841 to 2861); a double 

strand DNA (dsDNA) corresponding to CP(+) RNA sequence obtained by PCR using pMNSV-CP as 

template and primer pair VP 51-1 and VP 51-2 (TGGATCCGGTAGTAGGAATG, complementary sequence 

of coat protein positions 3285 to 3304); a 1238nt-length heterologous ssRNA consisting of the complete 

sequence of the coat protein from Lettuce big-vein associated virus (LBVaV) (Navarro et al., 2004) and 

finally, a dsRNA obtained by annealing of non-labelled CP(+) RNA and its complementary RNA sequence 

CP(-) RNA followed by RNase A/RNase T1 treatment in the presence of 2X SSC. 

Additionally, the RNA-binding activity dependence on salt was monitored by increasing the NaCl 

concentration in EMSA assay using 5ng of CP(+) RNA and 6 µg of MBP-p7A recombinant protein. 

Northwestern assays. Recombinant proteins MBP-βgalα, MBP-p7A, MBP-p7AΔ1-22, MBP-p7AΔ23-44 

and MBP-p7AΔ45-65 were electrophoresed through 12 % SDS-polyacrylamide gels and electroblotted to 

nitrocellulose membranes (Bio-Rad) in the presence of transfer buffer (25 mM Tris, 192 mM glycine and 20% 

methanol). Northwestern-blot assays were performed as described previously (Pallás et al., 1999). The 

membrane-attached proteins were renatured by four-fold shaking incubation for 30 min a room temperature 

in RN buffer (10 mM Tris-HCl pH7.5, 1 mM EDTA, 100 mM NaCl, 0.05 % Triton X-100, 1X Denhardt´s 

reagent). Digoxigenin-labelled CP(+) RNA was then added to RN buffer and incubation was continued over 

night. The membrane was washed three times (15 min each) in the same RN buffer lacking Triton X-100 and 

Denhardt´s reagent. Finally, bound RNA was detected as described (Pallás et al., 1998) but Tween 20 was 

omitted from washing solutions and NBT-BCIP colorimetric substrate was used. 

In vitro transcription and translation of p7B in reticulocyte lysate. Plasmid pGEM-p7B was 

created by subcloning p7B sequence into NcoI/NdeI restriction sites in the pGEM-Lep vector (Nilsson and 

von Heijne, 1993). In vitro transcription was performed as previously reported (Vilar et al., 2002). Briefly, the 

reaction mixtures were incubated at 37 °C for 2 h. The mRNAs were purified using a Qiagen RNeasy clean 

up kit and verified on 1% agarose gel. In vitro translation of the synthesized mRNA was done in the presence 

of reticulocyte lysate, [35S]Met, and dog pancreas microsomes as described previously (Nilsson and von 



Heijne, 1993; Vilar et al., 2002). After translation, the samples were analyzed by 20% SDS-PAGE. 

Membrane sedimentation, urea treatment, alkaline wash and triton X-114 partitioning. The 

translation reaction mixture was diluted in either 8 volumes of buffer A (35 mM Tris-HCl at pH 7.4 and 140 

mM NaCl) for the untreated samples, 4 volumes of buffer A containing 8 M urea for the urea treated 

samples, or 4 volumes of buffer A containing 100 mM Na2CO3 (pH 11.5) for the alkaline extraction, as 

previously described (Garcia-Saez et al., 2004). The samples were incubated on ice for 30 min, and then 

clarified by centrifugation at 10.000 g and 4 °C for 10 min. Subsequently membranes were collected by 

layering the supernatant onto a 50 µl sucrose cushion and centrifugation at 100.000 g for 20 min at 4 °C in a 

Beckman tabletop ultracentrifuge with a TLA-45 rotor. Finally, pellets and supernatants were analyzed by 

20% SDS-PAGE. 

The Triton X-114 partitioning experiments were performed according to (Schaad et al., 1997). A total 

of 10 µL of hydrated Triton X-114 were added to 55 µL of the translation reactions containing microsomes, 

and the mixtures were incubated for 30 min on ice. The incubated Triton X-114 samples were equilibrated at 

37 °C for 10 min to allow for the development of aqueous and organic phases (Bordier, 1981). These phases 

were then separated by centrifugation at 10.000 g at room temperature. Subsequently, the lower, detergent-

rich fraction was washed twice by adding 10 volumes of fresh detergent-free buffer, followed by vortexing, 

incubation on ice for 30 min, and phase separation as before. The proteins present in the aqueous and 

detergent-rich fractions were finally precipitated in acetone and analyzed by 20% SDS-PAGE. 
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TABLE 1. Sequences and genome positions of each primer pair used for p7A , the corresponding deletion mutant forms and 

p7B amplification 

Product/Vector Primer Primer sequence in 5’-3’ orientation† Primer position+ 

p7A/pMalc2x 
VP 204 

VP 235 

ATGCGGATCCATGGACTCTCAACGAACTG (BamHI)  

ATGGAAGCTTTAAAAATTAAAGTTAATAG (HindIII) 

2442-2460 

2620-2638 

p7A/pETDuet-1 
VP 963 

VP 964 

ACGTTGGATCCGATGGACTCTCAACGAACTG (BamHI) 

ACGTTGTCGAGCTAAAAATTAAAGTTAATAG (XhoI) 

2442-2460 

2620-2638 

p7A-Δ1-22 /pMalc2x 
VP 531 

VP 235 

ACGTGGATCCGGGGGAAAACAGAAGAACTC (BamHI) 

ATGGAAGCTTTAAAAATTAAAGTTAATAG (HindIII) 

2508-2527 

2620-2638 

p7A-Δ23-44 /pMalc2x 
VP 204 

VP 532 

ATGCGGATCCATGGACTCTCAACGAACTG (BamHI) 

ACGTAAGCTTCTATTGCTTCGATTCAGAGATAG (HindIII) 

2442-2460 

2555-2574 

p7A-Δ45-65 /pMalc2x 
VP 461 

VP 462 

P-GCTGTCACCACGTTCTTTAC 

P-GGAGTTATGGGTGCCAGCAC 

2488-2507 

2574-2593 

p7B/pMalc2x 
VP 216 

VP 236 

ATGCGGATCCATGGCTTGTTGCCGTTGTG (BamHI) 

ATGCAAGCTTTTAACCATCGCCATTTGTAG (HindIII) 

2643-2661 

2809-2828 

+ Primer position was numbered after the GenBank of the National Center for Biotechnology Information (DQ339157) for 
MNSV-Al sequence. 
† The underlined sequences are restriction sites indicated at the end of primer sequence. Boldface sequence corresponds to an 
introduced stop codon. 

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. (a) Amino acid alignment of the sequences from eleven Carmovirus and related Pelargonium 

line pattern virus (PLPV) DGBp1, CarMV-like (b, up) and MNSV-like (b, down) DGBp2. Consensus residues 

predicted to be involved in α-helix or transmembrane fragments are boxed in (a) and (b), respectively, 

whereas β-sheet structured domains are underlined. Amino acid similitude is indicated by grey boxes and 

basic (K or R) or proline (P) residues are in bold in (a) and (b), respectively. Symbols + and - in consensus 

sequence represent basic (K or R) and acid residues (D or E), respectively. A diagrammatic representation 

of deduced secondary structure of DGBps is displayed below each alignment. Boxes represent α-helix or 

transmembrane fragments in (a) and (b), respectively and broken lines correspond to β-sheets structures. 

CarMV, Carnation mottle virus (X02986); SCV, Saguaro cactus virus (U72332); JINRV, Japanese iris 

necrotic ring virus (D86123); PFBV, Pelargonium flower break virus (AJ514833); TCV, Turnip crinkle virus 

(M22445); GaMV, Galinsoga mosaic virus (Y13463); HCRV, Hibiscus chlorotic ringspot virus (X86448); 

MNSV, Melon necrotic spot virus (DQ339157); PSNV, Pea stem necrosis virus (AB086951); CPMoV, 

Cowpea mottle virus (U20976); CCFV, Cardamine chlorotic fleck virus (L16015) 

 

CarMV  MDIEPEVPVV....EKQMLAG.......NSGKQKTRRSVAKDAIRKPASDSTN......GGNWVNVADK..IEVHIHFNF
SCV    MDVP.VDTEL....MVKPAGK........RGKTKAKVDIAKDAVRKQAPSTTN......GGNWVVVADK..VEVHIAFNF
JINRV  MDSASETTTYELDPPGEELPTVKREIQNARGSQATKRAVARDAALSTVRSVASREVV..GGVWVQVGET..FTTTNHFHF
PFBV   MASKVIVPDLGSDNEIDVSVGGR....GNRGKQKGKISVAKDAVSKRTSDGGN......GGSWVVVAET..VSVNIHFNF
TCV    MDPERIPYNSLS..DSDATGKRK....KGGEKSAKKRLVASHAASSVLNKKRNEGSASHGGTWVIVADK..VEVSINFNF
GaMV MNSHDDGNNSDPSPGNYSRNRGVR....NKGMSGVKEQAVGQEIQKQHQGRGN.......STMVNVADTQTITVTNNFNF
HCRV   MASPQSNDSFIELNPHNTGDSKG....AGKGNRQAKKEVALQAVHKANKHDEAVS....GGSFVFVADK..VEVTININF
MNSV   MDSQRTVEQTNPRGRIKERGDSG.....GKQKNSMGRKIANDAISESKQG.......VMGAS.TYIADK..IKVTINFNF
PSNV   MSSPEIKVNLKERSRSVESKERT.....GKQ..SMGRKVANDAISAKNQG.......MMGAS.VYYADE..IVVNINFNF
CPMoV MDQTTEVRGRSRSRQRSGSSDSR......KPKNNKQVQVASEAVQRRNDKPLRGHH...GGDFVIVAHT..VTLNINFNI 
CCFV   MDNQSESDNSVKRRSGKKVNKQV....RGSEKSATKRSVASHAARSFSQRPSG.DSA..GGNWVLVADK..IEVSISFNF
PLPV   MDIQSKDSNL....SVKEAGKSA.....KRGSTKNKLDVAHSGVSKGTSRDLV......GANFVTVADK..VEFVVHLNF
cons m-s                          +g+   ++ va –av +             gg wv va-+  v-v infnf

CarMV  MDIEPEVPVV....EKQMLAG.......NSGKQKTRRSVAKDAIRKPASDSTN......GGNWVNVADK..IEVHIHFNF
SCV    MDVP.VDTEL....MVKPAGK........RGKTKAKVDIAKDAVRKQAPSTTN......GGNWVVVADK..VEVHIAFNF
JINRV  MDSASETTTYELDPPGEELPTVKREIQNARGSQATKRAVARDAALSTVRSVASREVV..GGVWVQVGET..FTTTNHFHF
PFBV   MASKVIVPDLGSDNEIDVSVGGR....GNRGKQKGKISVAKDAVSKRTSDGGN......GGSWVVVAET..VSVNIHFNF

CarMV  MDIEPEVPVV....EKQMLAG.......NSGKQKTRRSVAKDAIRKPASDSTN......GGNWVNVADK..IEVHIHFNF
SCV    MDVP.VDTEL....MVKPAGK........RGKTKAKVDIAKDAVRKQAPSTTN......GGNWVVVADK..VEVHIAFNF
JINRV  MDSASETTTYELDPPGEELPTVKREIQNARGSQATKRAVARDAALSTVRSVASREVV..GGVWVQVGET..FTTTNHFHF
PFBV   MASKVIVPDLGSDNEIDVSVGGR....GNRGKQKGKISVAKDAVSKRTSDGGN......GGSWVVVAET..VSVNIHFNF
TCV    MDPERIPYNSLS..DSDATGKRK....KGGEKSAKKRLVASHAASSVLNKKRNEGSASHGGTWVIVADK..VEVSINFNF
GaMV MNSHDDGNNSDPSPGNYSRNRGVR....NKGMSGVKEQAVGQEIQKQHQGRGN.......STMVNVADTQTITVTNNFNF
HCRV   MASPQSNDSFIELNPHNTGDSKG....AGKGNRQAKKEVALQAVHKANKHDEAVS....GGSFVFVADK..VEVTININF
MNSV   MDSQRTVEQTNPRGRIKERGDSG.....GKQKNSMGRKIANDAISESKQG.......VMGAS.TYIADK..IKVTINFNF

TCV    MDPERIPYNSLS..DSDATGKRK....KGGEKSAKKRLVASHAASSVLNKKRNEGSASHGGTWVIVADK..VEVSINFNF
GaMV MNSHDDGNNSDPSPGNYSRNRGVR....NKGMSGVKEQAVGQEIQKQHQGRGN.......STMVNVADTQTITVTNNFNF
HCRV   MASPQSNDSFIELNPHNTGDSKG....AGKGNRQAKKEVALQAVHKANKHDEAVS....GGSFVFVADK..VEVTININF
MNSV   MDSQRTVEQTNPRGRIKERGDSG.....GKQKNSMGRKIANDAISESKQG.......VMGAS.TYIADK..IKVTINFNF
PSNV   MSSPEIKVNLKERSRSVESKERT.....GKQ..SMGRKVANDAISAKNQG.......MMGAS.VYYADE..IVVNINFNF
CPMoV MDQTTEVRGRSRSRQRSGSSDSR......KPKNNKQVQVASEAVQRRNDKPLRGHH...GGDFVIVAHT..VTLNINFNI 
CCFV   MDNQSESDNSVKRRSGKKVNKQV....RGSEKSATKRSVASHAARSFSQRPSG.DSA..GGNWVLVADK..IEVSISFNF
PLPV   MDIQSKDSNL....SVKEAGKSA.....KRGSTKNKLDVAHSGVSKGTSRDLV......GANFVTVADK..VEFVV

PSNV   MSSPEIKVNLKERSRSVESKERT.....GKQ..SMGRKVANDAISAKNQG.......MMGAS.VYYADE..IVVNINFNF
CPMoV MDQTTEVRGRSRSRQRSGSSDSR......KPKNNKQVQVASEAVQRRNDKPLRGHH...GGDFVIVAHT..VTLNINFNI 
CCFV   MDNQSESDNSVKRRSGKKVNKQV....RGSEKSATKRSVASHAARSFSQRPSG.DSA..GGNWVLVADK..IEVSISFNF
PLPV   MDIQSKDSNL....SVKEAGKSA.....KRGSTKNKLDVAHSGVSKGTSRDLV......GANFVTVADK..VEFVVHLNF
cons m-s                          +g+   ++ va –av +             gg wv va-+  v-v infnf

CarMV  ........................MPSVNLHLIVLTGVIGLMLL.TRLRCT....FTSTFSLPPLVTLNQIIA....LSFCGLLLNSISRAERACYYNYSVDSSKQQHISISTPNGK........
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Figure 2. Determination of the in vitro RNA binding properties of the recombinant MBP-p7A. a) 

Analysis of MBP-p7A binding to ssRNA (CP (+) RNA) by electrophoretic mobility shift assays (EMSA) (left) 

and study of binding kinetics by means of a Hill transformation of data from three independent EMSA (right). 

Equation of linear regression and the corresponding r coefficient are indicated into the graphic 

representation. b) Dependence of MBP-p7A RNA-binding activity on salt concentration represented as the 

fraction of bound RNA against NaCl concentration (left) and ssRNA binding specificity (right) measured by 

EMSA in the absence (lane 2) and presence (lanes 3 to 10) of either equal (odd lanes) or ten-fold (even 

lanes) mass excess of different classes of competitors: heterologous ssRNA (lanes 3 and 4) and 

homologous dsRNA (lanes 5 and 6), ssDNA (lanes 7 and 8) and dsDNA (lanes 9 and 10). Lane 1 

corresponds to electrophoretic mobility of the ssRNA probe in the absence of MBP-p7A.The position of free 

and protein bound RNA on EMSA are marked. 
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Figure 3. Characterization of the RNA binding domain (RBD) of p7B a) Diagrammatic representation of 

the pMal-7A and its mutant forms pMal-7A∆1-22, pMal-7A∆23-44 and pMal-7A∆45-65. Numbers in the construct 

name and discontinuous lines in diagram refer to the amino acid residue position deleted from wild-type 

protein. Grey boxes and broken line represent α-helix and β-sheets structures, respectively. Symbols + 

indicated the position of basic residues (K or R). b) SDS-PAGE analysis of the purified MBP-βgalα, MBP–

p7A and its deleted forms in a 12 % gel stained with Coomassie blue (up) and the corresponding ssRNA 

binding analysis by Northwestern blot assay (down). The positions of the molecular mass markers are 

indicated on the left. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. a) Far UV CD spectra of RBD-derived peptide p7A23-44 in the presence of increasing concentrations 

of two different secondary structure inductors, TFE (20, 40 60 and 70%, as the arrow indicates) and SDS (1, 

5 and 10 mM). Peptide concentration was 30 µM in 5 mM MOPS/NaOH buffer, pH 7.0 at 25ºC. b) RNA-

binding analysis of different amount of peptide p7A23-44 by EMSA (left) and Hill transformation of data (right). 

Equation of linear regression and the corresponding r coefficient are indicated. 

 

190 200 210 220 230 240 250

-15000

-10000

-5000

0

5000

10000

15000

20000
[θ

] (
de

g 
cm

 
-2
 d

m
ol 

-1
)

λ (nm)

TFE

free RNA

peptide:RNA

a

190 200 210 220 230 240 250

-15000

-10000

-5000

0

5000

10000

15000

20000

[θ
] (

de
g 

cm
 

-2
 m

ol 
-1
)

λ (nm)

SDS

y = 0,4806x - 1,9026
r = 0,9052

log [peptide 7A23-44]
-1,1

-1

-0,9

-0,8

-0,7

-0,6

-0,5
2,1 2,3 2,5 2,7

lo
g(

(1
-x

)/x
)

b peptide (mM)

80 12
0

16
0

50
0

20
0

28
0

32
0

0

190 200 210 220 230 240 250

-15000

-10000

-5000

0

5000

10000

15000

20000
[θ

] (
de

g 
cm

 
-2
 d

m
ol 

-1
)

λ (nm)

TFE

free RNA

peptide:RNA

a

190 200 210 220 230 240 250

-15000

-10000

-5000

0

5000

10000

15000

20000

[θ
] (

de
g 

cm
 

-2
 m

ol 
-1
)

λ (nm)

SDS

y = 0,4806x - 1,9026
r = 0,9052

log [peptide 7A23-44]
-1,1

-1

-0,9

-0,8

-0,7

-0,6

-0,5
2,1 2,3 2,5 2,7

lo
g(

(1
-x

)/x
)

b peptide (mM)

80 12
0

16
0

50
0

20
0

28
0

32
0

0



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Location in dog pancreas microsomes of p7B protein transcribed/translated in vitro a) 

Segregation of [35S]Met labelled p7B into membranous fraction after urea treatment, alkaline wash (sodium 

carbonate buffer) and triton X-114 partitioning. P and S, pellet and supernatant, respectively; OP and AP, 

organic and aqueous phases, respectively. b) Representation of the different membrane association 

possibilities of p7B with microsomes as luminal (1) and either peripheral (2) or integral (3) membrane-

anchored protein.  
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TABLE 1. Sequences and genome positions of each primer pair used for p7A and the corresponding deletion mutant 

forms amplification 

Product Primer Primer sequence in 5’-3’ orientation† Primer position+ 

p7A 
VP 204 

VP 235 

ATGCGGATCCATGGACTCTCAACGAACTG (BamHI)  

ATGGAAGCTTTAAAAATTAAAGTTAATAG (HindIII) 

2442-2460 

2620-2638 

p7A-∆1-22 
VP 531 

VP 235 

ACGTGGATCCGGGGGAAAACAGAAGAACTC (BamHI) 

ATGGAAGCTTTAAAAATTAAAGTTAATAG (HindIII) 

2508-2527 

2620-2638 

p7A-∆23-44 
VP 204 

VP 532 

ATGCGGATCCATGGACTCTCAACGAACTG (BamHI) 

ACGTAAGCTTCTATTGCTTCGATTCAGAGATAG (HindIII) 

2442-2460 

2555-2574 

p7A-∆45-65 
VP 461 

VP 462 

P-GCTGTCACCACGTTCTTTAC 

P-GGAGTTATGGGTGCCAGCAC 

2488-2507 

2574-2593 

+ Primer position was numbered after the GenBank of the National Center for Biotechnology Information (DQ339157 
for MNSV-Al sequence) 
† The underlined sequences are restriction sites indicated at the end of primer sequence. Boldface sequence corresponds 
to an introduced stop codon. 
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Supplementary figure 1. Determination of the in vitro RNA binding properties of the recombinant His-p7A.
Analysis of His-p7A binding to ssRNA (CP (+) RNA) by electrophoretic mobility shift assays (EMSA) (a) and
binding kinetics determined by Hill transformation of data from three independent EMSA (b). The position of
free and protein bound RNA on EMSA are marked. Equation of linear regression and the corresponding r
coefficient are indicated into the graphic representation.



Supplementary figure 2. Mobility shift assays of CP (+) RNA in the presence of MBP-p7B using different NaCl
concentrations. The position of free RNA and gel wells on EMSA are marked.
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