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We consider the X(3872) resonance as a JPC = 1++ DD̄∗ hadronic molecule. According

to heavy quark spin symmetry, there will exist a partner with quantum numbers 2++, X2,

which would be a D∗D̄∗ loosely bound state. The X2 is expected to decay dominantly

into DD̄, DD̄∗ and D̄D∗ in d-wave. In this work, we calculate the decay widths of the X2

resonance into the above channels, as well as those of its bottom partner, Xb2, the mass of

which comes from assuming heavy flavor symmetry for the contact terms. We find partial

widths of the X2 and Xb2 of the order of a few MeV. Finally, we also study the radiative

X2 → DD̄∗γ and Xb2 → B̄B∗γ decays. These decay modes are more sensitive to the

long-distance structure of the resonances and to the DD̄∗ or BB̄∗ final state interaction.
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I. INTRODUCTION

In the infinite quark mass limit, heavy quark spin-flavor symmetry (HQSFS) implies that the

dynamics involving heavy quarks are independent of their spin or flavor. In this way, charm and

bottom spectra can be related, up to corrections suppressed by 1/mQ with mQ the heavy quark

mass. It should also be possible, in a given heavy flavor sector, to relate states with different spins.

These relations are very useful in the study of composites that mix heavy and light quarks. In this

work, we focus on hadronic molecular states composed by a heavy-light meson and a heavy-light

antimeson (P (∗)P̄ (∗), P = D, B̄). These molecular states were predicted in the mid 70s [1, 2]. So

far, the best experimental candidate to fit this molecular description is the X(3872) resonance, first

observed by the Belle Collaboration in 2003 [3], that can be thought as a DD̄∗ bound state with

JPC = 1++ (quantum numbers confirmed later on in Ref. [4]). Since then, many other new XY Z

states which are good candidates to be exotic hadrons have been experimentally observed [5, 6].

Within the molecular description of the X(3872), the existence of a X2 [JPC = 2++] s-wave

D∗D̄∗ bound state was predicted in the effective field theory (EFT) approach of Refs. [7, 8]. As

a result of the heavy quark spin symmetry (HQSS), the binding energy of the X2 resonance was

found to be similar to that of the X(3872), i.e.,

MX2 −MX(3872) ≈MD∗ −MD ≈ 140 MeV. (1)

The existence of such a state was also suggested in Refs. [9–14]. Both the X(3872) and the X2, to

be denoted by X2(4013) in what follows, have partners in the bottom sector [15],1 which we will

call Xb and Xb2, respectively, with masses approximately related by

MXb2
−MXb

≈MB∗ −MB ≈ 46 MeV. (2)

It is worthwhile to mention that states with 2++ quantum numbers exist as well as spin partners

of the 1++ states in the spectra of the conventional heavy quarkonia and tetraquarks. However,

the mass splittings would only accidentally be the same as the fine splitting between the vector

and pseudoscalar charmed mesons, see Eq. (1).2 For instance, the mass splitting between the first

radially excited charmonia with 2++ and 1++ in the well-known Godfrey–Isgur quark model is

30 MeV [17], which is much smaller than the value in Eq. (1). In a quark model calculation with

screened potential, the 2++ − 1++ mass splitting for the 2P charmonia is around 40 MeV [18]. As

1 In Ref. [15], the bottom and charm sectors are connected by assuming the bare couplings in the interaction La-

grangian, see Eq. (A6), to be independent of the heavy quark mass. This assumption will also be used throughout

this work.
2 Were these states due to threshold cusps, the splittings would be the same as those of the hadronic molecules.

However, it was shown in Ref. [16] that narrow near threshold peaks in the elastic channel cannot be produced by

threshold cusps.
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for the tetraquark states, the corresponding mass splitting predicted in Ref. [19] is 70 MeV, which

is again much smaller than MD∗ −MD. Notice that it is generally believed that the χc2(2P ) has

been discovered [20, 21], and its mass is much lower than 2MD∗ . Therefore, we conclude that a

possible discovery of a 2++ charmonium-like state with a mass around 4013 MeV as a consequence

of HQSS [22] would provide a strong support for the interpretation that the X(3872) is dominantly

a DD̄∗ hadronic molecule. It is thus very important to search for such a tensor resonance, as well

as the bottom analogues, in various experiments and in lattice QCD (LQCD) simulations.

Some exotic hidden charm sectors on the lattice have been recently studied [23–27], and evidence

for the X(3872) from DD̄∗ scattering on the lattice has been found [24], while the quark mass

dependence of the X(3872) binding energy was discussed in Refs. [28, 29]. The 2++ sector has

not been exhaustively addressed yet in LQCD, though a state with these quantum numbers and

a mass of (mηc + 1041 ± 12) MeV= (4025 ± 12) MeV, close to the value predicted in Refs. [7, 8],

was reported in Ref. [23]. The simulation used dynamical fermions, novel computational techniques

and the variational method with a large basis of operators. The calculations were performed on

two lattice volumes with pion mass ≃ 400 MeV. There exists also a feasibility study [30] of future

LQCD simulations, where the EFT approach of Refs. [7, 8] was formulated in a finite box.

On the other hand, despite the theoretical predictions on their existence, none of these hypo-

thetical particles has been observed so far. Nevertheless, they are being and will be searched for

in current and future experiments such as BESIII, LHCb, CMS, Belle-II and PANDA. It is thus of

paramount importance to provide theoretical estimates on their production rates in various experi-

ments, as well as the dominant decay modes and widths.3 The production of these states in hadron

colliders and electron–positron collisions has been studied in Refs. [31, 32]. In this work, we will

investigate the dominant decay modes of the spin-2 partners of the X(3872), i.e. the X2(4013) and

Xb2, and provide an estimate of their decay widths.

Besides, we will also discuss the radiative X2 → DD̄∗γ and Xb2 → B̄B∗γ transitions. These

decay modes are more sensitive to the long-distance structure of the resonances and might provide

valuable details on their wave-functions. The situation is similar to that of the X(3872) → D0D̄0π0

decay studied in Refs. [33, 34]. Also here, the widths will be affected by the DD̄∗ or BB̄∗ final

state interaction (FSI). FSI effects are expected to be large because they should be enhanced

by the presence of the isovector Zc(3900) and Zb(10610) resonances located near the DD̄∗ and

B̄B∗ thresholds, respectively. Besides, FSI corrections will be also sensitive to the negative C-

parity isoscalar DD̄∗ or B̄B∗ interaction. Eventually, precise measurements of these radiative

3 If a resonance is too broad, say Γ & 200 MeV, it would be very difficult to be identified since it is highly nontrivial

to distinguish the signal for a broad resonance from various backgrounds.
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decay widths might provide valuable information on the interaction strength in this sector, which

would be important in understanding the P (∗)P̄ (∗) system and other exotic systems related to it

through heavy quark symmetries [15, 35].

The structure of the paper is as follows. First in Sect. II, we briefly discuss the relation of

the charm and bottom 2++ states with the X(3872) resonance, and in Sect. III we present our

predictions for the X2 → DD̄,DD̄∗ hadron decays and the Xb2 → BB̄,BB̄∗ ones in the bottom

sector. In Sect. IV, the X2 and Xb2 radiative decays are investigated, paying special attention to the

loop mechanisms responsible for the FSI contributions. The conclusions of this work are outlined

in Sect. V and in addition, there are three Appendices. In the first one (Appendix A), we collect

different heavy meson Lagrangians used through this work, while the validity of the perturbative

treatment of the DD̄ for the X2 is discussed in the second one (Appendix B). Finally, in Appendix C,

we give some details on the evaluation of different three-point loop functions that appear in the

computation of the hadronic and radiative decays.

II. HQSFS, THE X(3872) RESONANCE AND THE CHARM AND BOTTOM X2 STATES

A. X(3872)

As mentioned, we start assuming the X(3872) to be a positive C-parity DD̄∗ bound state, with

quantum numbers JPC = 1++. At very low energies, the leading order (LO) interaction between

pseudoscalar and vector charmed (D0,D+,D∗0,D∗+) and anti-charmed (D̄0,D−, D̄∗0,D∗−) mesons

can be described just in terms of a contact-range potential, which is constrained by HQSS [7, 8, 15].

Pion exchange and particle coupled-channel4 effects turn out to be sub-leading [7, 36]. For the case

of the X(3872), isospin breaking is important [37] as this bound state is especially shallow. The

energy gap between the D0D̄∗0 and D+D∗− channels is around 8 MeV, which is much larger than

the X(3872) binding energy with respect to the D0D̄∗0 threshold. As a consequence, the neutral

(D0D̄∗0) and charged (D+D∗−) channels should be treated independently. The coupled-channel5

contact potential in the 1++ sector is given by [8] (see also Appendix A 1)

VX(3872) =
1

2


 C0X + C1X C0X − C1X

C0X − C1X C0X + C1X


 , (3)

with C0X and C1X low energy constants (LECs) that need to be fixed from some input. This

interaction is used as kernel of the Lippmann–Schwinger equation (LSE) in the coupled channel

4 We do not refer to charge channels, but rather to the mixing among the DD̄, DD̄∗, D∗D̄∗ pairs in a given IJC

(isospin, spin and charge conjugation) sector.
5 Actually, positive C-parity combinations in both the neutral D0D̄∗0 and charged D+D̄∗− channels are being

considered.
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space in the 1++ sector,

T (E; ~p ′, ~p ) = V (~p ′, ~p ) +
∫

d3~q

(2π)3
V (~p ′, ~q )

1

E − ~q 2/2µ12 −M1 −M2 + iε
T (E; ~q, ~p ) , (4)

withM1 andM2 the masses of the involved mesons, µ−1
12 =M−1

1 +M−1
2 , E the center of mass (c.m.)

energy of the system and ~p (~p ′) the initial (final) relative three momentum of the DD̄∗ pair in the

c.m. frame. The used normalization is such that above threshold [E > (M1 +M2)], the single

channel elastic unitary condition is ImT−1(E) = µ12k/(2π) with k =
√

2µ12 (E −M1 −M2). The

discussion is similar for any other JPC sector. Due to the use of contact interactions, the LSE

shows an ill-defined ultraviolet (UV) behavior, and requires a regularization and renormalization

procedure. We employ a standard Gaussian regulator (see, e.g. [38])

〈
~p |V |~p ′〉 = CIX e−~p 2/Λ2

e−~p ′2/Λ2
, (5)

with CIX any of the LECs of Eq. (3) in the case of the X(3872), or the relevant ones for any other

JPC sector. We take cutoff values Λ = 0.5 − 1 GeV [7, 8], where the range is chosen such that Λ

will be bigger than the wave number of the states, but at the same time it will be small enough

to preserve HQSS and prevent that the theory might become sensitive to the specific details of

short-distance dynamics.6 The dependence of the results on the cutoff, when it varies within this

window, provides a rough estimate of the expected size of sub-leading corrections. Bound states

correspond to poles of the T -matrix below threshold on the real axis in the first Riemann sheet (RS)

of the complex energy, while the residues at the pole give the s-wave couplings of the state to each

channel (D0D̄∗0 and D+D∗− in the case of the X(3872) resonance7).

The LECs C0X and C1X can in principle be determined [8] from MX(3872) = (3871.69 ± 0.17)

MeV (mass average quoted by the PDG [5]) and the isospin violating ratio of the decay amplitudes

for the X(3872) → J/ψππ and X(3872) → J/ψπππ, RX(3872) = 0.26± 0.07 [39]. The ratio is given

by (see Eq. (80) of Ref. [8])

RX(3872) =
Ψ̂n − Ψ̂c

Ψ̂n + Ψ̂c

(6)

where Ψ̂n,c give the average of the neutral and charged wave function components in the vicinity of

the origin, and are related to the LECs introduced in Eq. (3) by [37]

Ψ̂n

Ψ̂c

=
1−G2 (C0X + C1X) /2

G2 (C0X − C1X) /2
=

G1 (C0X − C1X) /2

1−G1 (C0X + C1X) /2
(7)

6 However, as will be shown later on, the situation is more complicated in the two-body d-wave hadronic decays.
7 For instance, in the case of the X(3872), we have

(

gX0

)2

= lim
E→MX(3872)

[E −MX(3872)] × T11(E) ,

gX0 gXc = lim
E→MX(3872)

[E −MX(3872)] × T12(E) ,

where Tij are the matrix elements of the T -matrix solution of the UV regularized LSE.
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where the neutral and charged loop functions, G1 = GD0D̄∗0 = GD∗0D̄0 , G2 = GD+D∗− = GD∗+D− ,

are defined in Eq. (A12), and should be evaluated at the X(3872) pole mass. We use mD0 =

(1864.84 ± 0.07) MeV, mD+ = (1869.61 ± 0.10) MeV, mD∗0 = (2006.96 ± 0.10) MeV and mD∗+ =

(2010.26 ± 0.07) MeV [5]. Note that mD0 + mD∗0 = (3871.80 ± 0.12) MeV, and the uncertainty

in the value of this lowest threshold affects the precision of the X(3872) binding energy. We have

taken into account this effect by adding in quadratures the PDG error of the X(3872) mass and

that of the neutral channel threshold and assign this new error to the mass of the resonance, that

now reads MX(3872) = (3871.69 ± 0.21) MeV. For the LECs, we obtain:

C0X = −1.70+0.03
−0.07 (−0.731+0.006

−0.015) fm
2, C1X = −0.09+0.54

−0.41 (−0.38+0.12
−0.10) fm

2 , (8)

for Λ = 0.5(1.0) GeV. Errors, at the 68% confidence level (CL), have been obtained from a

Monte Carlo (MC) simulation assuming uncorrelated Gaussian distributions for the two inputs

(MX(3872), RX(3872)). In the simulation, we have rejected MC samples for which the X(3872)

turned out to be unbound, since the scheme of Ref. [8] only allows to determine the properties

of the resonance when it is bound.

B. X2(4013): JPC = 2++, charm sector

HQSS predicts that the s-wave D∗D̄∗ interaction in the 2++ sector is, up to corrections sup-

pressed by the charm quark mass, identical to that in the X(3872) sector (1++) and given by Eq. (3)

[7, 8]. Thus, in the 2++ sector, the potential in the (D∗0D̄∗0), (D∗+D∗−) coupled channel space

reads (see also Appendix A1)

V2++ =
1

2


 C0X + C1X C0X − C1X

C0X − C1X C0X + C1X


+O(q/mc), (9)

with the same structure and involving the same LECs that in the X(3872) channel. Besides, in

the above equation mc ∼ 1.5 GeV is the charm quark mass and q ∼ ΛQCD, a scale related to the

light degrees of freedom. Taking ΛQCD ∼ 300 MeV [5], corrections of the order of 20% to the

interaction predicted by HQSS cannot be discarded8. Nevertheless, it seems natural to expect a

2++ D∗D̄∗ loosely bound state (X2), the HQSS partner of the X(3872), and located in the vicinity

of the D∗0D̄∗0 threshold (∼ 4014 MeV) [7, 8, 15]. This is illustrated in the X2 binding energy

distributions depicted in Fig. 1. Neglecting the O(q/mc) corrections to the LECs, and using those

8 The two type of uncertainties (HQSS subleading corrections and errors inherited from the inputs) affecting the

determination of the LECs in the 2++ sector are statistically uncorrelated, and should be accordingly added up.

To that end, we use MC techniques as explained in the caption of Fig. 1.
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obtained from the X(3872) resonance, we find a clear signal (blue histograms) of a weakly bound

state. However, the case is less robust when the latter corrections are taken into account. Thus,

because of the additional 20% HQSS uncertainty, the area below the red shaded Λ = 0.5 GeV (Λ = 1

GeV) histogram is only 0.77 (0.68). This means that approximately a 23% (32%) of X(3872) events

[(MX(3872), RX(3872)) MC samples] do not produce a X2 pole in the first RS, since the strength of

the resulting interaction in the 2++ sector would not be attractive enough to bind the state, though

a virtual state in the second RS will be generated instead. Given the existence of the X(3872) as

a DD̄∗ molecule, if the X2 resonance exists, we would expect its mass (binding energy) to lie most

likely in the interval [2mD∗0 , 4006 MeV] ([0, 8] MeV), as shown in Fig. 1. Note that the discussion in

Ref. [15] was simpler, because there we worked in the isospin symmetric limit and used the averaged

masses of the heavy mesons, which are larger than those of the physical D0 and D∗0 mesons.

D
is

tr
ib

u
ti

o
n

MX(4013) (MeV)

BX(4013) (MeV)

Λ = 0.5 GeV

w HQSS error

w/o HQSS error

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4006 4007 4008 4009 4010 4011 4012 4013 4014 4015

-101234567

D
is

tr
ib

u
ti

o
n

MX(4013) (MeV)

BX(4013) (MeV)

Λ = 1.0 GeV

w HQSS error

w/o HQSS error

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4002 4004 4006 4008 4010 4012 4014

0246810

FIG. 1. X2 binding energy histograms obtained from the interaction of Eq. (9) using LECs distributions

determined from the X(3872) resonance inputs (blue) or using LECs distributions additionally modified to

account for the HQSS systematic error (red). Left and right plots correspond to UV cutoffs of 0.5 and

1 GeV, respectively. MC sample (C0X + C1X , C0X − C1X) pairs fitted to the input (MX(3872), RX(3872))

distributions are first generated and are used to evaluate the X2 mass. X(3872) mass trials above threshold

are rejected. To evaluate the red shaded histogram, and to account for the HQSS 20% uncertainty in the

2++ interaction, each of the members of any MC sample (C0X + C1X , C0X − C1X) pair is multiplied by

independent N(µ = 1, σ = 0.2) Gaussian distributed random quantities r±.

For later use, we also need the couplings of the X2 to its neutral (D
∗0D̄∗0) and charged (D∗+D∗−)

components, gX2
0 and gX2

c , respectively. They turn out to be slightly different because the X2

resonance is an admixture of isospin 0 and 1, since its binding energy is much smaller than the
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energy difference between the two thresholds [8, 37]. Considering the HQSS uncertainties, we find:

102gX2
0 = 1.4+1.1

−0.4 (1.5+1.1
−0.4) MeV−1/2 , (10)

102gX2
c = 1.5+1.4

−0.2 (1.3+1.3
−0.3) MeV−1/2 , (11)

for Λ = 0.5(1.0) GeV.

C. Xb2: JPC = 2++, bottom sector

Owing to the heavy flavor symmetry, the LO 2++ B∗B̄∗ interaction is given by Eq. (9) as well,

and thus we should also expect a 2++ B∗B̄∗ bound state (Xb2), the HQSFS partner of the X(3872),

located close to the B∗B̄∗ threshold (∼ 10650 MeV) [15]. The Xb2 binding energy distributions are

shown in Fig. 2 for the two UV cutoffs employed in this work. We have used the same masses for

the neutral and charged mesons, mB = (mB0 +mB+)/2 = 5279.42 MeV and mB∗ = 5325.2 MeV.

Note that, according to the PDG [5], |(mB∗0 −mB0) − (mB∗+ −mB+)| < 6 MeV CL=95.0%, and

mB0 −mB+ = (0.32 ± 0.06) MeV, from where we might expect isospin breaking effects for the B∗

mesons to be significantly smaller than in the charm sector. In Ref. [15] we found that the binding

energy of the Xb2 state is significantly larger than that of its counterpart in the charm sector (X2),

around a few tens of MeV. Thus we do not expect any significant isospin breaking effects and the

Xb2 resonance would be a pure isoscalar (I = 0) state.

As can be seen in Fig. 2, in this case we have a robust prediction even when HQSS uncertainties

(20%) are taken into account. We obtain the mass and the coupling from the residue at the pole

for Λ = 0.5 (1.0) GeV:9

EXb2
= 10631+7

−8

(
10594+22

−26

)
MeV, 102gXb2 = 5.9+2.9

−1.9

(
6.4+2.8

−2.0

)
MeV−1/2. (12)

This bound state, being isoscalar, equally couples to the neutral and charged components and,

therefore: gXb2
0 = gXb2

c = 1√
2
gXb2 . Our predictions in Eq. (12), both for the mass and the B∗B̄∗

coupling of the resonance show some dependence on the UV cutoff, which is to some extent di-

minished when HQSS uncertainties are taken into account. Nevertheless, this Λ dependence might

hint to non-negligible sub-leading corrections (among others, pion exchange and coupled channel

effects [7], which can be larger here than in the charm sector due to the larger binding energy and

larger meson masses). We will compute the decay widths for both UV regulators, and the spread

of results will account for this source of uncertainty.

9 There appear small differences in the central value of the resonance mass with respect to value quoted in [15] due

to small differences in the used hadron masses.
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FIG. 2. Same as in Fig. 1 but in the bottom sector. To better appreciate the distribution details, the Λ =

0.5 (1) GeV red histogram, which includes the 20% HQSS error, has been multiplied by a factor of 5 (10).

III. THE HADRONIC X2 AND Xb2 DECAYS

The quantum numbers, JPC = 2++, of these resonances constrain their possible decay channels.

In this work, for hadronic decays we only consider the decays into two heavy hadrons: X2 → DD̄

and X2 → DD̄∗(D∗D̄), and the analogous processes Xb2 → BB̄ and Xb2 → BB̄∗(B∗B̄). We expect

that these d-wave decay modes should largely saturate the widths of these states. Because the DD̄

couples in a d-wave to the 2++ system, its contribution to the mass renormalization of the X2 is

of higher order (see Appendix B). We thus did not include the DD̄ as a coupled channel in the

T -matrix, but treat it perturbatively. This means that the transitions are mediated by the exchange

of a pion. The relevant πP (∗)P (∗) vertices are taken from the LO Lagrangian of heavy meson chiral

perturbation theory [40–43] (see Appendix A2). At LO, besides the pion decay constant, fπ = 92.2

MeV, there appears only one additional D∗Dπ coupling (g). We take g = 0.570± 0.006 as inferred

from the new value of Γ = (83.4 ± 1.8) keV for the D∗+ decay width quoted by the PDG [5]. This

is mostly determined by the recent BABAR Collaboration measurement [44] of this width, which

is approximately a factor 12 times more precise than the previous value, Γ = (96 ± 4± 22) keV by

the CLEO Collaboration [45]. Thus, we end up with an uncertainty of the order 1% for g. Though

the hadronic X2 and Xb2 widths evaluated in this section will be proportional to g4, this source of

error (∼ 4%) will be much smaller than others and it will be ignored in what follows.
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without pion-exchange FF with pion-exchange FF

Λ = 0.5 GeV Λ = 1 GeV Λ = 0.5 GeV Λ = 1 GeV

Γ(X2 → D+D−) [MeV] 3.3+3.4
−1.4 7.3+7.9

−2.1 0.5+0.5
−0.2 0.8+0.7

−0.2

Γ(X2 → D0D̄0) [MeV] 2.7+3.1
−1.2 5.7+7.8

−1.8 0.4+0.5
−0.2 0.6+0.7

−0.2

Γ(X2 → D+D∗−) [MeV] 2.4+2.1
−1.0 4.4+3.1

−1.2 0.7+0.6
−0.3 1.0+0.5

−0.2

Γ(X2 → D0D̄∗0) [MeV] 2.0+2.1
−0.9 3.5+3.5

−1.0 0.5+0.6
−0.2 0.7+0.5

−0.2

TABLE I. X2(4013) → DD̄,DD̄∗ decay widths using different UV Gaussian regulators for the D∗D̄∗X2

form factor and with/without including a pion-exchange vertex form factor (FF) in each of the D∗Dπ and

D∗D∗π vertices in the three-point loop function. The decay widths of the X2(4013) → D̄D∗ modes are the

same thanks to C-parity. Uncertainties are obtained from a Monte Carlo simulation using the X2 binding

energy histograms displayed in Fig. 1 (red shaded) and the gX2

0 and gX2
c couplings given in Eqs. (10) and

(11). Note that the procedure takes into account 20% HQSS uncertainties and the correlations between X2

masses (binding energies) and gX2

0 and gX2
c couplings. Errors on the widths provide 68% CL intervals.

A. Charm decays

1. X2(4013) → DD̄

We will first consider the X2(4013) → D+D−(D0D̄0) decay, which proceeds through the

Feynman diagrams depicted in Fig. 3. We treat charm mesons non-relativistically, and neglect

pD∗,D̄∗/mD∗ terms and the temporal components in the D∗, D̄∗ propagators. We obtain for the

X2(4013) → D+D− process, in the resonance rest frame and with q and k the 4-momenta of the D

and D̄ final mesons (~q = −~k, q0 + k0 =MX2),

−iT (λ)D+D−

= −Ng
2

f2π
ǫij(λ)

{
gX2
c

∫
d4l

(2π)4
li lj[

(l + q)2 −m2
D∗+ + iε

] [
(k − l)2 −m2

D∗− + iε
] (
l2 −m2

π0 + iε
)

+2gX2
0

∫
d4l

(2π)4
li lj

[
(l + q)2 −m2

D∗0 + iε
] [

(k − l)2 −m2
D̄∗0 + iε

] (
l2 −m2

π− + iε
)





= i
Ng2

f2π
ǫij(λ)

{
gX2
c Iij(mD∗+ ,mπ0 ;MX2 , q

µ ) + 2gX2
0 Iij(mD∗0 ,mπ− ;MX2 , q

µ )
}
, (13)

where ǫij(λ) is the symmetric spin-2 tensor with λ denoting the polarization of the X2 state10 and

N =
√

8MX2m
2
D∗

(√
mDmD∗

)2
accounts for the normalization of the heavy meson fields11 and some

10 For instance, it could be given by

ǫij(λ) =
∑

λ1,λ2

(1, 1, 2|λ1, λ2, λ)ǫ
i
λ1
ǫjλ2

with ǫi0 = (0, 0, 1), and ǫi±1 = ∓(1,±i, 0)/
√
2, and (j1, j2, j|m1,m2,m) a Clebsch-Gordan coefficient.

11 We use a non-relativistic normalization for the heavy mesons, which differs from the traditional relativistic one by

a factor
√
MH .
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additional factors needed when the couplings gX2
c,0 , as determined from the residues at the pole of

the EFT T -matrix, are used for the X2D
∗D̄∗ vertex. For the neutral and charged pion masses, we

have used the values quoted by the PDG [5] and heavy meson isospin averaged masses to compute

N . Besides, Iij is a three-point loop function, the detailed evaluation of which is relegated to the

Appendix C 1.12 The loop is seemingly logarithmically divergent. However, since theX2 polarization

is traceless, the divergent part which comes with a Kronecker delta does not contribute. This is

because the decay occurs in a d-wave, thus the loop momentum is converted to external momenta,

and the remaining part of the integral is convergent. Nevertheless, we will include two different

form factors in the computation of the three-point loop function. One is inherited from the UV

regularization/renormalization procedure sketched in Eq. (5) and employed to make the LSE T -

matrix finite. In addition, we will include a second form factor to account for the large virtuality

of the pion in the loop. We will discuss this at length below and in Appendix C 1.

X(4013)
D+

D−

D∗+

D∗−

π0

X(4013)
D+

D−

D∗0

D
∗0

π−

FIG. 3. Feynman diagrams for the X2(4013) → D+D− decay. Diagrams for the X2(4013) → D0D̄0 transition

are similar, with the appropriate changes of the exchanged pion charges.

Analogously, the X2(4013) → D0D̄0 amplitude is,

− iT (λ)D0D̄0 = i
Ng2

f2π
ǫij(λ)

{
2gX2

c Iij(mD∗+,mπ+ ;MX2 , q
µ ) + gX2

0 Iij(mD∗0 ,mπ0 ;MX2 , q
µ )

}
. (14)

The two-body decay width in the X2 rest-frame reads [5]:

dΓa

dΩ(q̂)
=

1

5

∑

λ

|T (λ)a|
2 |~q |
32π2M2

X2

, a = D+D−, D0D̄0 . (15)

The sum over the X2 polarizations can be easily done in the c.m. frame,

∑

λ

ǫmn(λ)ǫ
∗
ij(λ) =

1

2

[
δmiδnj + δniδmj −

2

3
δmnδij

]
, m, n, i, j = 1, 2, 3 . (16)

As discussed in Appendix C 1, the three-point loop function has a tensor structure of the type

Iij(~q ) = I0(~q
2) qiqj + I1(~q

2) δij |~q |2 . (17)

12 In the computation of Iij , we are consistent with the former approximations, and we use non-relativistic charm

meson propagators.
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The I1 term carries the UV divergence, which however does not contribute to the width, because

it vanishes after the contraction with the traceless spin-2 polarization tensor, as mentioned above.

Therefore, only the I0 term is relevant, which is free of UV divergences. Moreover, the contraction

of Iij(~q ) Imn(~q ) with
∑

λ ǫmn(λ)ǫ
∗
ij(λ) [Eq. (16)] leads to a factor of 2~q 4/3. Thus, the integration

over the solid angle dΩ(q̂) trivially gives 4π, and the width scales like |~q |5 as expected for a d-wave

process.

Our predictions for the X2(4013) → D+D−,D0D̄0 decays are compiled in Table I. If we look

at the first two columns of results in the table, we find widths of the order of a few MeV, with

asymmetric errors that favour larger values. This is mostly due to the similar asymmetry of the

uncertainties quoted for the gX2
0 and gX2

c couplings in Eqs. (10) and (11).

Our scheme is based on a low-energy EFT, in which the momenta should be smaller than a hard

scale which serves as a momentum cutoff [see Eq. (5)]. The high-momentum modes are out of control

in the low-energy EFT. Therefore in the computation of the width, we include a Gaussian regulator

at the D∗D̄∗X2 vertex, as discussed in Eq. (C6). The cutoff should be the same as the one used in

generating the X2 as it is related to the same unitary cut in the D∗D̄∗ system. In Fig. 4, we display,

as an example, the dependence of the I0(mD∗0 ,mπ0 ;MX2 , q
µ[mF1 = mF2 = mD0 ]) integrand [see

Eqs. (C5)-(C7)] on the pion loop momentum. In the left plot we see that in spite of including the

Gaussian X2 form factor, large momenta above 1 GeV provide a sizable contribution to the integral

(≃ 14%, 30% and 45% for Λ = 0.5 GeV, 1 GeV and ∞, respectively), which is an unwanted feature

within the low-energy EFT scheme and signals a sizeable short-distance contribution. Indeed, the

momentum of the exchanged pion, peaks at around 750 MeV, which is a somehow large value in the

sense that the hard scale for the chiral expansion which controls the pionic coupling is Λχ ∼ 1 GeV.

We see that below the peak, the curves for both cutoff values are very close to each other, and they

are also close to the curve corresponding to the case without any regulator. This is the region where

the low-energy expansion works and thus model-independent conclusions can be made. The curves

start deviating from each another after the peak, that is in the region with a pion momentum & Λχ.

Because the loop integrals are not completely dominated by momentum modes well below Λχ, the

widths of interest will bear an appreciable systematic uncertainty. This is reflected in the fact that

the widths in the second column in Table I are larger than those in the first column by a factor

around 2.13

On the other hand, the fact that the pion could be quite far off-shell should be reflected in the

D∗Dπ vertex, which should be corrected, similarly as it is done in the case of the NNπ one. Thus,

13 Note that the coupling constants obtained with both cutoffs are similar, see Eqs. (10) and (11), and thus the

difference should come mainly from the loop integration.
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to give an estimate of the hadronic decay widths, in the spirit of the Bonn potential [46], we have

included a monopole pion-exchange vertex form factor, with a hadron scale of the order of 1 GeV, in

each of the D∗Dπ vertices [Eq. (C7)]. Its effect on the internal pion momentum dependence of the

I0(mD∗0 ,mπ0 ;MX2 , q
µ[mF1 = mF2 = mD0 ]) integrand is shown in the right plot of Fig. 4. The large

pion momenta contribution (|~l | > 1 GeV), which is not reliable in a low-energy EFT calculation, is

reduced now to 6.5%, 13% and 16% for Λ = 0.5 GeV, 1 GeV and ∞, respectively. This makes also

more appropriate the non-relativistic treatment of the charmed mesons adopted here. Besides, the

dependence of the width on the UV Gaussian regulator is significantly softer, though the widths

are further reduced by almost an order of magnitude.

We believe that the most realistic estimates are those obtained with the inclusion of the pion-

exchange form factor and the spread of results compiled in Table I give a conservative estimate

of the systematic uncertainties, beyond the mere existence of the X2(4013) state, as discussed in

Sect. IIB. We remind here that because of the additional 20% HQSS uncertainty, approximately a

23% (32%) for Λ = 0.5 GeV (Λ = 1 GeV) of the X(3872) events [(MX(3872), RX(3872)) MC samples]

do not produce the X2 as a bound state pole, since the strength of the resulting interaction in the

2++ sector is not attractive enough to bind the D∗D̄∗.

Nevertheless, assuming the existence of the X2 state, and in view of the results given in Table I,

we estimate the X2 → DD̄ partial width (including both the charged and neutral channels) to be

Γ(X2 → DD̄) =
(
1.2 ± 0.3︸︷︷︸

sys (Λ)

+1.3
−0.4

)
MeV, (18)

where the first error accounts for the dependence on the UV Gaussian regulator used in the D∗D̄∗X2

vertex, while the second one is obtained from the uncertainties given in Table I. This latter error

includes both some additional systematic (HQSS violations) and statistical (X(3872) input used

to fix the properties of the X2 resonance) uncertainties. Notice that, as discussed above, the

calculation is probably already beyond the valid range of the EFT due to the large contribution

of high-momentum modes. We thus have adopted a more phenomenological strategy and used the

pion-exchange form factor with a cutoff of 1 GeV to make an estimate of the decay widths. The

values presented in Eq. (18) refer only to the last two columns in Table I that include the effect

of the pion-exchange form factor. Thus, and considering both sets of errors, we cover the range

0.5–2.8 MeV, which accounts for all values including errors quoted in the table.
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Λ = ∞

Λ = 1 GeV

Λ = 0.5 GeV

I0(mD∗0,mπ0;MX2, q
µ[mF1 = mF2 = mD0])

Without pion form-factor

l [GeV]

In
te
gr
an
d
[f
m
3 ]

21.510.50

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

Λ = ∞

Λ = 1 GeV

Λ = 0.5 GeV

I0(mD∗0,mπ0;MX2, q
µ[mF1 = mF2 = mD0])

With pion form-factor (Λπ ∼ 1 GeV)

l [GeV]

In
te
gr
an
d
[f
m
3 ]

21.510.50

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

FIG. 4. Dependence of the I0(mD∗0 ,mπ0 ;MX2
, qµ[mF1

= mF2
= mD0 ]) integrand [see Eqs. (C5)-(C7)] on the

pion loop momentum |~l |. For the X2 mass we have used 4013 MeV. Results with and without the inclusion

of the pion form factor [Eq. (C7)] squared are presented in the right and left plots, respectively. In both cases,

three different choices of the Gaussian regulator [Eq. (C6)] in the D∗D̄∗X2 vertex have been considered.

2. X2(4013) → DD̄∗(D∗D̄)

Here, we will study the D+D∗−, and D0D̄∗0 channels, which proceeds through the Feynman

diagrams depicted in Fig. 5. This is also a d-wave decay so that both angular momentum and parity

are conserved. The decay widths are expected to be comparable to those found for the X2(4013) →
DD̄ decays, despite the phase space is considerably more reduced. This extra enhancement is caused

by the extra multiplicity due to the spin of the final D∗(D̄∗) meson.

X(4013)
D+

D∗−

D∗+

D∗−

π0

X(4013)
D+

D∗−

D∗0

D
∗0

π−

FIG. 5. Feynman diagrams for the X2(4013) → D+D∗− decay. Diagrams for the X2(4013) → D0D̄∗0

transition are similar, with the appropriate changes of the exchanged pion charges.

As commented before, we treat charm mesons non-relativistically and obtain the decay amplitude

for the X2(4013) → D+D∗− process as

T (λ, λ∗)D+D∗− = i
N∗g2

f2π
ǫij(λ)ǫmnjǫ

∗n(λ∗)
{
gX2
c Iim(mD∗+ ,mπ0 ;MX2 , q

µ )

+2gX2
0 Iim(mD∗0 ,mπ− ;MX2 , q

µ )
}
, (19)

in the resonance rest frame. Here, q is the 4-momenta of theD+ meson, and ǫn(λ∗) is the polarization
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vector of the final D∗− meson with helicity λ∗, N∗ =
√

8MX2m
2
D∗

√
mDm

3
D∗ and ǫimn is the 3-

dimensional Levi-Civita antisymmetric tensor. Analogously, the X2(4013) → D0D̄∗0 amplitude

is,

T (λ, λ∗)D0D∗0 = i
N∗g2

f2π
ǫij(λ)ǫmnjǫ

∗n(λ∗)
{
2gX2

c Iim(mD∗+ ,mπ+ ;MX2 , q
µ )

+gX2
0 Iim(mD∗0 ,mπ0 ;MX2 , q

µ )
}
. (20)

The two-body decay width in the X2 rest-frame in this case reads [5]:

dΓa

dΩ(q̂)
=

1

5

∑

λ,λ∗

|T (λ, λ∗)a|
2 |~q |
32π2M2

X2

, a = D+D∗−,D0D̄∗0 . (21)

The sum over the D̄∗ and X2 polarizations can be easily done, and we get

∑

λ

ǫij(λ)ǫ
∗
rs(λ)

∑

λ∗

ǫ∗n(λ∗)ǫ
p(λ∗)ǫmnjǫlps =

1

6
[7δmlδir + 2δilδrm − 3δlrδmi] , i, l,m, r = 1, 2, 3 .

(22)

The above tensor structure should be contracted with Iim(~q ) Irl(~q ). We see that the sum over

polarizations of Eq. (22) is orthogonal to δim and δrl, which guarantees also here that only the UV

finite I0 term of the three-point loop function is relevant. The contraction leads to a ~q 4 factor,14

and thus the width scales like |~q |5, as expected for a d-wave decay.

Results for the X2 → DD̄∗ decay widths are also compiled in Table I. We only show predictions

for the X2(4013) → D+D∗−(D0D̄∗0) decays, because being the X2 an even C-parity state, its decay

modes into the charge conjugated final states have the same decay widths. In what respects to the

effect of the form factors, the discussion runs in parallel to that in the Sect. IIIA 1, though the

effect of the pion-exchange form factor is significantly smaller here (a factor 4 or 5 at most). As

expected, the widths are comparable to those found for the X2 → DD̄ decays. Finally, we estimate

the partial X2 → DD̄∗ (D∗D̄) width (including both the charged and neutral channels as well as

the charge-conjugated modes) to be

Γ(X2 → DD̄∗) + Γ(X2 → D∗D̄) =
(
2.9 ± 0.5︸︷︷︸

sys (Λ)

+2.0
−1.0) MeV, (24)

where the errors have been estimated as in Eq. (18). The above result, together with that obtained

previously for the DD̄ channel, leads to a total X2 width of the order of 2-8 MeV, assuming its

existence.

14 In the DD̄ mode, studied in Sect. IIIA 1 a factor of 2~q 4/3 is obtained instead. Thus, neglecting the D −D∗ mass

difference, because the loop integrals are the same, we would find

∣

∣TDD̄∗(D∗D̄)

∣

∣

2 ≃ 3

2
|TDD̄|2 (23)

This extra factor 3/2 due to the spin-1 polarization vector produces an enhancement of the DD̄∗ decay mode with

respect to the DD̄ one, which partially compensates the smaller available phase space.
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FFπ1 FFπ2 FFπ1 FFπ2 FFπ1 FFπ2 FFπ1 FFπ2

FFX2−G FFX2−G FFX2−L FFX2−L FFX2−G FFX2−G FFX2−L FFX2−L

Λ [GeV] 0.5 0.5 0.4 0.4 1 1 0.8 0.8

Γ(X2 → D+D−) 0.5+0.5
−0.2 0.6 0.5 0.6 0.8+0.7

−0.2 01.0 0.9 0.9

Γ(X2 → D0D̄0) 0.4+0.5
−0.2 0.5 0.4 0.4 0.6+0.7

−0.2 0.7 0.6 0.6

Γ(X2 → D+D∗−) 0.7+0.6
−0.3 0.9 (1.2) 0.7 0.8 (1.1) 1.0+0.5

−0.2 1.2 (1.6) 1.0 1.1 (1.5)

Γ(X2 → D0D̄∗0) 0.5+0.6
−0.2 0.7 (0.9) 0.5 0.6 (0.8) 0.7+0.5

−0.2 0.8 (1.2) 0.7 0.8 (1.1)

TABLE II. X2(4013) → DD̄,DD̄∗ decay widths (in MeV units) using different UV regularization schemes for

the D∗D̄∗X2 vertex and pion-exchange form factors. FFX2−G and FFX2−L stand for the results obtained

with Gaussian (Eq. (5)) and Lorentzian (Eq. (26)) regularized local interactions, respectively. On the other

hand, the widths in the columns FFπ1 and FFπ2 were obtained inserting the pion form factor of Eq. (C7) and

F (~l 2,Λπ) = e−
~l 2/Λ2

π in each of the two D∗D(∗)π vertices, respectively. In the latter case, we take Λπ = 1.2

GeV, as determined in the QCDSR calculation of Ref. [49] for the D∗Dπ coupling. In the DD̄∗ decay mode,

we also show results (in brackets) obtained when a larger cutoff, Λπ = 1.85 GeV, is used in the D∗D∗π

vertex, as obtained in the QCDSR study carried out in Ref. [50] for this coupling. The results presented in

Table I correspond to the [FFX2−G & FFπ1] columns and for the rest of choices we only provide central

values.

3. Charm decays: further analysis of uncertainties

The uncertainties on the results compiled in Table I account both for reasonable estimates of

HQSS corrections, as well as for the statistical errors on the inputs used to fix the LEC’s that

determine the properties (mass and D∗D̄∗ couplings) of the X2 resonance. Moreover we are using

an EFT to describe these decays, which means that there is an intrinsic uncertainty that can be

determined systematically. We indicated the size of this error in Eqs. (18) and (24). For obtaining

the EFT uncertainty we combined the predictions obtained for two different UV Gaussian cutoffs

(Λ = 0.5 and 1 GeV) in the D∗D̄∗X2 vertex, and used the spread of values to quantify this error.

The idea is that the residual dependence of the results on the cutoff should provide an insight into

the size of sub-leading corrections.

Now, we try to further test the robustness of the systematic errors quoted in Eqs. (18) and (24).

To that end, we have examined:

• The dependence of our results on the functional form of the UV regulators, both in the

D∗D̄∗X2 and D∗D(∗)π vertices.

– We have a contact theory with a Gaussian regulator and a cutoff Λ between 0.5 and 1
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GeV. This theory, though very simple, is the LO of an EFT expansion describing the

low energy dynamics of heavy hadrons (see Ref. [36] for details). Within the EFT we

can expand observable quantities as a power series of the type

A =
∑

ν

Âν

(
p

ΛM

)ν

, (25)

where p is the momenta of the hadrons and ΛM the scale at which hadrons stop behaving

as point-like particles (about the ρ mass). A LO calculation only keeps the first term in

the series above. Hence it should have a relative error of order (p/ΛM ). We stress that

this is expected to be so regardless of the exact regulator employed (gaussian, lorentzian,

etc.), provided that the cutoff is at least of the order of ΛM . The reason for that is that

the calculations we show are renormalizable: once the counter-terms are fixed15, they

only contain negative powers of the cutoff Λ when we expand on the large cutoff limit.

Hence, the uncertainty in the calculation is of order (p/Λ). By taking Λ of the order

of ΛM , observables are guaranteed to have a cutoff uncertainty of the order (p/ΛM ),

equivalent to the EFT uncertainty.

There are several methods for making a more precise estimation of the EFT error: the

one we use in Table I is to vary the cutoff around values of the order of ΛM (hence

the choice of the 0.5− 1GeV cut-off window). EFT predictions for two different cutoffs

differ by a factor of (p/ΛM ) and that is why we chose this particular way of assessing

the errors.

Alternatively, one could use different regulators or form factors to assess the size of this

error. This idea also gives a cross-check of the previous error estimates based on varying

the cut-off. We have employed a different regulator to check that our former estimation

of the EFT errors is correct and to show that the particular regulator employed is not

important. We closely follow here the discussion of Sect. VII of Ref. [37] and consider

a Lorentz form for the regulator

〈
~p |V |~p ′〉 = CIX

[
Λ2

Λ2 + ~p 2

] [
Λ2

Λ2 + ~p ′ 2

]
, (26)

with two values of the cutoff, namely Λ = 0.4 and 0.8 GeV, which were obtained by

multiplying the Gaussian cutoffs by a factor of
√
2/π [37]. The resulting16 widths are

presented in Table II and turn out to be rather insensitive to the form of the regulator

(this is to be understood within the limits of the expected EFT uncertainty).

15 See for instance the discussion of Eqs. (23) and (24) of Ref. [37].
16 With the Lorentzian regularized local potential, we re-obtain the counter-terms C0X and C1X from the X(3872)

inputs, which are then used to find the mass of the X2 resonance and its couplings to the D∗0D̄∗0 and D∗−D∗+

meson pairs. These physical quantities hardly change, because the X2 is a very loosely bound state and its dynamics

is very little sensitive to the details of the D∗D̄∗ interaction at short distances.
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– Next we have studied the dependence of the widths on the pion form factor that accounts

for the off-shellness of the pion in the mechanisms depicted in Figs. 3 and 5. To that

end we used the results from the QCD sum rule (QCDSR) calculations performed in

Refs. [49, 50]. The first of these two works considers the D∗Dπ vertex: it was found the

form factor is harder if the off-shell meson is heavy, implying that the size of the vertex

depends on the exchanged meson. This means that a heavy meson will see the vertex as

point-like, whereas the pion will see its extension. The authors of Ref. [49] find an on-

shell value g = 0.48 ± 0.05 (note the different definition used in this reference), around

1-2 sigmas below the value of 0.57 used in this work. In addition, they adjust their

results for off-shell pions to a Gaussian form el
2/Λ2

π , with lµ the pion four momentum,

and find Λπ = 1.2 GeV. This form-factor17, in the region of interest for this work,

turns out to be in a good agreement with that used to obtain the results presented in

Table I. This can be seen in the new results showed in Table II and obtained with this

new pion off-shell form-factor (FFπ2). Deviations from our previous estimates of the

X2(4013) → DD̄,DD̄∗ decay widths are both much smaller than the (HQSS & exp)

uncertainties quoted in Table I, and well comprised within the systematic uncertainty

generated when the D∗D̄∗X2 cutoff varies in the 0.5-1 GeV window.

In the X2 → DD̄∗ decay, there also appears the D∗D∗π coupling in one of the vertices,

see Fig. 5. The off-shell behavior of this vertex might differ from that of the D∗Dπ

one. This coupling was studied using QCDSR in [50] where, translating the definition

used therein to the one used here, it was found an on-shell value g = 0.56 ± 0.07 in

good agreement with the HQSS expectations. The off-shell behavior was described by

a Gaussian, as in the case of the D∗Dπ vertex, but with a significantly larger cutoff,

Λπ= 1.85 GeV. This significant difference is somehow surprising from the HQSS point

of view, and we should note that the QCDSR actual calculations in [50] were carried

out for significantly larger values of l2 > 4 GeV2 than in the case of the D∗Dπ coupling

analyzed in Ref. [49]. Nevertheless, we used this softer dependence for the D∗D∗π

vertex and re-computed the DD̄∗ widths. Results are shown in brackets in Table II.

Changes are now larger, and in general are of the order of 50%, though they could be

still accommodated within the HQSS and EFT uncertainties already considered in our

original calculations. The large momenta of the external mesons, that can even exceed

17 To use the form factor of Ref. [49] in the computation of the widths, we have approximated the pion four momentum

squared by −~l 2, which is sufficiently accurate because the dominant part of the integration comes from regions where

the two virtual D∗ and D̄∗ mesons are almost on-shell. In this region, the energy of both heavy light vector mesons

is approximately MX2
/2 which coincides with that of the external heavy mesons, and hence l0 is much smaller than

|~l |.
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0.5 GeV, make it possible that the short distance details of the decay mechanisms could

be relevant. This is the weakest point in our scheme. The reason is that the EFT

uncertainty is expected to be 0.5 GeV/ΛM & 1/2, as the variations of the DD̄∗ widths

in Table II seem to confirm, and the calculation is really on the limit of validity of this

kind of description and should only be considered as a reasonable estimate.

• The contribution of decay mechanisms driven by the exchange of shorter range mesons (heav-

ier) than the pion.

Since the momenta of the external charmed mesons can exceed 0.5 GeV, one might think

that shorter range contributions such as the ρ and ω exchanges could be sizable, and even

comparable to those of the diagrams depicted in Figs. 3 and 5 for the exchange of a pion.

We will focus on the X2 → DD̄ decay mode, where the momenta of the external mesons is

the largest and we will begin by studying the effects of the exchange of a ρ meson. If we

use the phenomenological D∗Dρ Lagrangian given in Eq. (3e) of Ref. [51], we find that the

amplitudes of this new contribution can be obtained from those driven by pion exchange, and

given in Eqs. (13) and (14), by replacing mπ0 and mπ+ by mρ0 and mρ+ in the loop integrals

and

g2

f2π
→ − mD

mD∗
g2D∗Dρ (27)

where we have neglected |~q |2/m2
D(∗) terms, with ~q the c.m. three-momentum of the external

D and D̄ mesons. The coupling constant gD∗Dρ has been computed in various schemes [51–

55] (ordinary and light cone QCDSR, vector dominance model, SU(4), etc.) and it varies in

the range [2.8 ± 0.1, 4.3 ± 0.9] GeV−1 (see Table 5 of Ref. [55]). Taking gD∗Dρ ∼ 5 GeV−1,

in the highest part of the interval of calculated values, we would have g2D∗Dρ/(g
2/f2π) ∼ 2/3,

while a direct calculation of the loop integrals shows that those calculated using the ρ mass

instead of the pion mass are around a factor of two smaller. Altogether, this indicates that

the absolute values of the ρ-exchange amplitudes are about a factor of three smaller than

those driven by the pion exchange. If one uses gD∗Dρ ∼ 3 GeV−1, now in the lowest part

of the interval of values, the ρ contribution will be, at the level of amplitudes, around eight

times smaller than those considered in the present work. In any case, these effects are smaller

than the HQSS and EFT uncertainties quoted in Table I, and therefore it seems justified to

neglect them. On the other hand, the ω-exchange contributions are even smaller, around a

factor of three, because this meson is neutral, and it cannot generate mechanisms where a

light charged meson is exchanged.
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To estimate the size of the ρ exchange contribution in the X2 → DD̄∗ decay mode, in addition

to the D∗Dρ vertex, we have used the phenomenological D∗D∗ρ Lagrangian given in Eq. (1f)

of Ref. [51]. The amplitudes of this new mechanism can be obtained from those driven by

pion exchange, and given in Eqs. (19) and (20), by replacing mπ0 and mπ+ by mρ0 and mρ+ ,

and P2(x) → (P2(x) + x|~q |/l) in the computation of the loop integral I0 (see Eq. (C5) of

Appendix C 1) and using the appropriate coupling constants

g2

f2π
→

√
mD

mD∗
gD∗Dρ

gD∗D∗ρ

mD∗
(28)

where we have neglected as before the |~q |2/m2
D(∗) terms. (At this point, the phase in Eq. (28)

is arbitrary, because the phase convention used in [51] and in this work for the heavy meson

fields is different.) The gD∗D∗ρ coupling is set to 2.52 in [51], while it is estimated to be 4.7±0.2

in [53, 56] (QCDSR). On the other hand, there exist some partial cancellations in the loop

integral in this case, and it turns out to be at least a factor of 5 smaller than that calculated

for the pion driven contribution. Thus, and having in mind the previous discussion for the

expected range of values of the gD∗Dρ coupling, we conclude that the ρ−exchange contribution

can be safely neglected in the X2 → DD̄∗ decay mode.

In view of the results discussed in this subsection, we should acknowledge that as a result of

the contribution from highly virtual pions, which is certainly in the limit of applicability of the

low-energy EFT, the hadronic decay widths bear a large systematic uncertainty. Nevertheless, we

have given arguments to be reasonably convinced that the results quoted in Eqs. (18) and (24)

provide sensible estimates for the X2(4013) → DD̄,DD̄∗ widths.

In the next subsection, we will study these hadronic decays in the bottom sector. There, the

considerations are parallel to those discussed here for the charm sector.

B. Bottom decays

Thanks to the heavy flavor symmetry, the results of the previous subsection can be trivially

extended to the bottom sector. There, we have a robust prediction, even when HQSS uncertainties

(20%) are taken into account, for theXb2 resonance (see Fig. 2). Moreover, all sort of non-relativistic

approximations adopted in the current scheme are now more suited, since the range of variation of

the internal pion momentum in the loops is similar to that shown in Fig. 4 for the charm sector.

On the other hand, as discussed in Sect. IIC, we do not expect any significant isospin breaking

effects and the Xb2 resonance would be a pure I = 0 state, with equal coupling to its neutral and
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charged components. For simplicity, we will also neglect the tiny difference between B0 and B±

masses, and we will use a common mass mB = (mB0 +mB±)/2 = 5279.42 MeV. Yet, for the pion

mass that appears in the loop integral, we take the isospin averaged value mπ = (2mπ± +mπ0)/3.

Note that the relevant internal pion momentum is around 750 MeV. With all these approximations,

we find

Γ(Xb2 → BB̄) =
3g4(gXb2)2

5πf4π

m2
Bm

4
B∗

MXb2

|~q |5
(
I0(mB∗ ,mπ;MXb2

, qµ[mF1 = mF2 = mB ])
)2
, (29)

Γ(Xb2 → BB̄∗) =
9g4(gXb2)2

10πf4π

mBm
5
B∗

MXb2

|~q |5
(
I0(mB∗ ,mπ;MXb2

, qµ[mF1 = mB,mF2 = mB∗ ])
)2
, (30)

for any charge channel (B+B−, B0B̄0, B+B∗−, B0B̄∗0) or charge conjugation mode (B∗B̄). Our

results for these decay widths are presented in Table III. We notice in passing that following heavy

flavor symmetry we use the same value of g = 0.570 ± 0.006 in the charm and bottom decays.

It agrees very well with a recent lattice calculation with relativistic bottom quarks which gives

gb = 0.569 ± 0.076 [47] (we have added the systematic and statistic errors in quadrature). Yet,

lattice calculations with static heavy quarks tend to give smaller values, see Ref. [48] and references

therein. For instance, the ALPHA Collaboration presented a precise computation with the result

of g∞ = 0.492± 0.029 [48]. Thus we expect that the decay widths of Table III slightly overestimate

the real ones.

For the BB̄ mode we find a pronounced dependence on the Gaussian cutoff Λ employed in the

dynamical generation of the resonance. This is inherited from the strong dependence of the Xb2

mass on this UV cutoff, as discussed in Eq. (12), which affects the available phase space for the

decay. With all these shortcomings, we expect a partial width in the 1-10 MeV range, when both

charge modes are considered.

In the BB̄∗ decay mode, the impact of the Gaussian regulator is even larger, because it turns

out that for Λ = 1 GeV, the central value of the resonance mass MXb2
= 10594+22

−26 MeV is located

below the threshold mB +mB∗ ∼ 10604 MeV. Thus, in that case, the decay will be forbidden. For

Λ = 0.5 GeV, we estimate a width also in the 4-12 MeV range, when the four possible decay modes

(B+B∗−, B0B̄∗0, B−B∗+, B̄0B∗0) are considered.

IV. THE X2 AND Xb2 RADIATIVE DECAYS

In this section, we will study the X2 → DD̄∗γ and Xb2 → B̄B∗γ decays. The interaction of the

photon with the s-wave heavy mesons contains two contributions that correspond to the magnetic

couplings to the light and heavy quarks [57] (see also Appendix A 3). Both terms are needed

to understand the observed electromagnetic branching fractions of the D∗+ and D∗0 because a



22

without pion-exchange FF with pion-exchange FF

Λ = 0.5 GeV Λ = 1 GeV Λ = 0.5 GeV Λ = 1 GeV

Γ(Xb2 → BB̄) [MeV] 26.0+1.0
−3.3 8+15

−7 4.4+0.1
−0.4 0.7+1.4

−0.6

Γ(Xb2 → BB̄∗) [MeV] 7.1+3.4
−3.7 − 2.0+0.9

−1.0 −

TABLE III. Xb2 → BB̄,BB̄∗ decay widths (here BB̄(∗) refers to any of the neutral or charged modes, but it

is not the sum of both). The results are given for different treatments of the three-point loop function. The

errors have been obtained using the Monte Carlo analysis explained in Table I, but now considering the Xb2

mass histograms displayed in Fig. 2 and the coupling given in Eq. (12). The decay width of the Xb2 → B̄B∗

mode is the same because of charge conjugation symmetry.

cancellation between the two terms accounts for the very small width of the D∗+ relative to the

D∗0 [5]. Actually, one finds [57, 58]:

Γ(D∗0 → D0γ) =
α

3

mD0

mD∗0

(
β1 +

2

3mc

)2

E3
γ , β1 =

2

3
β − g2mK

8πf2K
− g2mπ

8πf2π
, (31)

Γ(D∗+ → D+γ) =
α

3

mD+

mD∗+

(
β2 +

2

3mc

)2

E3
γ , β2 = −1

3
β +

g2mπ

8πf2π
, (32)

where Eγ is the photon energy, mc the charm quark mass and α ∼ 1/137.036 the fine-structure

constant. In the non-relativistic constituent quark model β = 1/mq ∼ 1/330 MeV−1, where mq is

the light constituent quark mass. Heavy meson chiral perturbation theory allows one to improve

upon this approximation by including corrections from loops with light Goldstone bosons, which

give O(
√
mq) corrections [57].

Using isospin symmetry to relate Γ(D∗0 → D0π0) and Γ(D∗+ → D0π+), correcting by the

slightly different available p-wave phase space in each of the two decays, and taking into account

the experimental D∗0 and D∗+ widths and radiative branching fractions quoted by the PDG [5],

we find:

Γ(D∗0 → D0γ) = (22.7 ± 2.6) keV, Γ(D∗+ → D+γ) = (1.33 ± 0.33) keV. (33)

These values differ from those used in Ref. [58] because of the recent accurate BABAR measurement

of the D∗+ decay width, mentioned in Sect. III, which is around 10% smaller than the previous

CLEO one used in Ref. [58]. Fixing the charm quark mass to mc = 1.5 GeV, we fit the parameter

β to the above experimental values and find β−1 = (293± 11) MeV.

In what follows, we will study decays of the type X2 → PP̄ ∗γ, being P and P ∗ pseudoscalar and

vector heavy-light mesons, respectively. Let us define pµ1 , p
µ
2 and pµ3 as the four vectors of the final

photon, pseudoscalar and vector mesons, respectively. Besides, let us define the invariant masses
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m2
ij = p2ij = (pi + pj)

2, which satisfy

m2
12 +m2

13 +m2
23 =M2

X2
+m2

1 +m2
2 +m2

3 =M2
X2

+m2
P +m2

P ∗ . (34)

Since, as we will see, the Feynman amplitudes depend only on the invariant masses m2
12 and m2

23

of the final γP and PP̄ ∗ pairs, respectively, we can use the standard form for the Dalitz plot [5]

dΓ =
1

(2π)3
1

32M3
X2

|T |2dm2
23dm

2
12, (35)

with |T |2 the absolute value squared of the decay amplitude with the initial and final polarizations

being averaged and summed, respectively. Thus, we readily obtain

Γ =
1

(2π)3
1

32M3
X2

∫ M2
X2

(mP+mP∗)2
dm2

23

∫ (m2
12)max

(m2
12)min

dm2
12|T |2, (36)

where for a given value of m2
23, the range of m2

12 is determined by its values when ~pP is parallel or

anti-parallel to ~pγ [5]:

(m2
12)max = (E∗

γ + E∗
P )

2 − (p∗γ − p∗P )
2,

(m2
12)min = (E∗

γ + E∗
P )

2 − (p∗γ + p∗P )
2, (37)

with E∗
P = (m2

23 +m2
P −m2

P ∗)/2m23 and E∗
γ = (M2

X −m2
23)/2m23 the energies of the P meson and

photon in the m23 c.m. frame, respectively, and p∗P,γ the moduli of the corresponding 3-momenta.

Because of parity conservation, this is a p-wave decay and hence the photon momentum appears

always in the amplitudes. In the X2 rest frame, it is given by |~pγ | = Eγ =M2
X2

−m2
23/(2MX2).

A. X2(4013) → DD̄∗γ

We will first consider the X2(4013) → D0D̄∗0γ decay, which proceeds according to the Feynman

diagrams depicted in Fig. 6. This decay can take place directly through the radiative transition of

the constituent D∗0 as shown in Fig. 6(a), which is the tree level approximation. However, there are

other mechanisms driven by the DD̄∗ FSI. After emitting the photon, the vector meson D∗0 transits

into the D0, and it can interact with the other constituent in the X2 as shown in Fig. 6(b). There is

a third (c) mechanism in which the photon is emitted from the D̄∗0 meson, and the virtual D∗0D̄0

rescatter into D0D̄∗0. Finally, Fig. 6(d) and (e) present another possibility, namely the decay can

also occur through the charged D∗+D∗− component of the X2 resonance, and the virtual charged

D+D∗− and D∗+D− pairs then rescatter into D0D̄∗0. Because the X2 has a well defined charge

parity (+), the decay width into the charge conjugated mode D̄0D∗0γ is the same. The Feynman

diagrams contributing to the D+D∗−γ decay mode are similar with obvious replacements.
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(a)

(b) (c)

(d) (e)

D
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X(4013)

D∗0

D0

D
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γ

X(4013)

D∗−

D∗+
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γ
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γ
D∗0

D∗0
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D
∗0

D
0

D
∗0

D0

γ

D∗+
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D∗−

D−

D
∗0

D0

γ

FIG. 6. Feynman diagrams for the X2(4013) → D0D̄∗0γ decay. Diagrams for the D+D∗−γ transition are

similar.

One could also construct other FSI mechanisms by replacing the D∗Dγ vertices in Fig. 6 with

the D∗D∗γ ones. These contributions are small and will be discussed below.

1. Tree Level Approximation

The Feynman amplitude of the mechanism depicted in Fig. 6(a) reads (as in the previous sections,

we treat the charm mesons non-relativistically)

− iT (λ, λ∗, λγ)D0D̄∗0γ = gX2
0 (m12)

√
4παNγ

(
β1 +

2

3mc

)
ǫijmǫ

jn(λ)ǫ∗n(λ∗)ǫ∗iγ (λγ)p
m
γ

2mD∗0 (m12 −mD∗0 + iε)
, (38)

with m12 the invariant mass of the final γD0 pair. Besides, ǫi(λγ) is the polarization vector of the

final photon with helicity λγ , ~pγ is its three momentum and Nγ =
√

8MX2m
2
D∗

√
mDmD∗ accounts

for the normalization of the heavy meson fields and the X2D
∗0D̄∗0 coupling. Finally,

gX2
0 (m12) = gX2

0 × e−(~p 2
12−γ2)/Λ2

= gX2
0 × e−m

D∗0(mD∗0−m12)/Λ2
(39)

with ~p 2
12 ≃ mD∗0(MX2 −mD∗0 −m12) and γ

2 = mD∗0(MX2 −2mD∗0) < 0. The Gaussian form factor

is inherited from the D(∗)D̄(∗) EFT UV renormalization scheme.

We have neglected the D∗0 width in the above propagator because, since it is quite small, its

inclusion only leads to small numerical variations in the decay rate which are certainly smaller than

uncertainties induced by the errors in the coupling gX2
0 and the mass of the X2(4013) resonance.

Similarly, the use of the non-relativistic D∗0 propagator instead of
(
m2

12 −m2
D∗0 + iε

)−1
leads also
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to numerically negligible differences, as compared to the HQSS corrections. The sum over the D̄∗0,

γ and X2 polarizations can be easily done, and we get

|T |2D0D̄∗0 =
16παMX2mD∗mD

3

(
gX2
0 (m12)

)2

(
β1 +

2
3mc

)2

(m12 −mD∗0 + iε)2
~p 2
γ . (40)

The amplitude for D+D̄∗−γ decay is readily obtained from Eq. (38) making the obvious re-

placements: gX2
0 → gX2

c , β1 → β2 and (mD0 ,mD∗0) → (mD+ ,mD∗+). Performing the phase space

integration, we find at tree level (assuming the existence of the X2 state)

Γ(X2(4013) → D0D̄∗0γ)tree = 18+2
−6

(
16+2

−9

)
keV, (41)

Γ(X2(4013) → D+D∗−γ)tree = 0.10+0.10
−0.05

(
0.09+0.06

−0.03

)
keV, (42)

where the values outside and inside the parentheses are obtained with Λ = 0.5 and 1 GeV, respec-

tively. The errors account for the uncertainty, both in the mass of the X2 state and in its couplings

gX2
0,c , derived from the X(3872) input (MX(3872) and the ratio RX(3872) of the decay amplitudes for

the X(3872) → J/ψρ and X(3872) → J/ψω decays) and the HQSS corrections, as explained in the

the caption of Table I. We have neglected additional uncertainties stemming from the error on β

(≃ 3%), because it is totally uncorrelated to those discussed above, and it is much smaller than

those affecting for instance the gX2
0,c couplings. The neutral mode width is much larger than the

charged one, thanks to the bigger magnetic D∗Dγ coupling and a larger available phase space.

In analogy with the discussion of Eqs. (20) and (21) in Ref. [33] for theX(3872) → D0D̄0π0 decay,

in the X2 radiative processes the relative distance of the D∗D̄∗ pair can be as large as allowed by

the size of the X2(4013) resonance, since the final state is produced by the one body decay of the D̄∗

meson instead of by a strong two body transition. Thus, the radiative DD̄∗γ decays might provide

details on the long-distance part of the resonance wave function. For instance, the dΓ/d|~pD̄∗0 |
[dΓ/d|~pD∗− |] distribution is related to the X2(4013) wave-function Ψ(~pD̄∗0) [Ψ(~pD∗−)] [33]. This is

in sharp contrast to the DD̄ and DD̄∗ decay modes studied in the previous sections, which turned

out to be strongly sensitive to short distance dynamics of the resonance, as revealed by the notorious

dependence on the UV form factors.

However, all these considerations are affected by the DD̄∗ FSI effects to be discussed next.

2. DD̄∗ FSI Effects

To account for the FSI effects, we include in the analysis the DD̄∗ → DD̄∗ and D∗D̄ → DD̄∗ T -

matrices, which are obtained by solving the LSE [Eq. (A10)] in coupled channels with the VD(∗)D̄(∗)

potential given in Eq. (A8). Some isospin symmetry breaking effects are taken into account because



26

the physical masses of the neutral (DD̄∗) and charged (D+D∗−) channels are used in Eq. (A10).

The X2 → D0D̄∗0γ decay amplitude for the mechanisms depicted in Fig. 6(b) and (c) reads

− iT (λ, λ∗, λγ)
FSI (b+c)

D0D̄∗0γ
= gX2

0

√
4παNγ

(
β1 +

2

3mc

)
ǫijmǫ

jn(λ)ǫ∗n(λ∗)ǫ
∗i
γ (λγ)p

m
γ

× 4mDmD∗ T̂00→00(m23)J(mD∗0 ,mD∗0 ,mD0 , ~pγ) , (43)

where m23 is the invariant mass of the final D0D̄∗0 pair,

T̂00→00(m23) ≡ TD0D̄∗0→D0D̄∗0(m23) + TD∗0D̄0→D0D̄∗0(m23), (44)

and the three-point loop integral function J (M1,M2,M3, ~pγ) is given in the Appendix C 2. The

integral is convergent, however, for consistency it is evaluated using the same UV regularization

scheme as that employed in the D(∗)D̄(∗) EFT. In sharp contrast with the hadronic decays studied

above, the momenta involved in these integrals are rather low.

On the other hand, we see that in the (b)+(c) contribution there appears the combination

TD0D̄∗0→D0D̄∗0(m23)+TD∗0D̄0→D0D̄∗0(m23). In the isospin limit, when the mass differences between

the neutral (D0D̄∗0) and charged (D+D∗−) channels are neglected, we will find T̂00→00 = (T I=0
C=−1+

T I=1
C=−1)/2. From Eqs. (A8) and (A10), we find the C-parity odd isospin amplitudes,18

[
T I
C=−1

]−1
(m23) = C−1

IZ +GDD̄∗(m23), I = 0, 1 , (45)

with GDD̄∗ ≃ GD0D̄∗0 ≃ GD+D̄∗− a common loop function. Note that the kernel of this LSE is fixed

by the isoscalar (C0Z) and isovector (C1Z) C(charge conjugation) = −1 terms of VD(∗)D̄(∗) . This is

a trivial consequence of the conservation of this symmetry, taking into account that the X2 and the

photon are even and odd C-parity states, respectively.

The (d) and (e) FSI contributions of Fig. 6 are similar, with obvious replacements. We find

− iT (λ, λ∗, λγ)
FSI (d+e)

D0D̄∗0γ
= gX2

c

√
4παNγ

(
β2 +

2

3mc

)
ǫijmǫ

jn(λ)ǫ∗n(λ∗)ǫ
∗i
γ (λγ)p

m
γ

×
{
4mDmD∗ T̂+−→00(m23)

}
J(mD∗+ ,mD∗+ ,mD+ , ~pγ), (46)

where

T̂+−→00(m23) ≡ TD+D∗−→D0D̄∗0(m23) + TD∗+D−→D0D̄∗0(m23), (47)

and in the isospin limit, we would have T̂+−→00 = (T I=0
C=−1 − T I=1

C=−1)/2.

18 Here and for simplicity we do not explicitly write the on-shell UV Gaussian form factors [see Eqs.(A10) and (A13)].
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For the X2(4013) → D+D∗−γ decay, the FSI contribution is

− iT (λ, λ∗, λγ)
FSI
D+D̄∗−γ =

√
4παNγǫijmǫ

jn(λ)ǫ∗n(λ∗)ǫ
∗i
γ (λγ)p

m
γ

× 4mDmD∗

{
gX2
c

(
β2 +

2

3mc

)[
T̂+−→+−(m23)J(mD∗+ ,mD∗+ ,mD+ , ~pγ)

]

+ gX2
0

(
β1 +

2

3mc

)[
T̂00→+−(m23)J(mD∗0 ,mD∗0 ,mD0 , ~pγ)

]}
, (48)

with

T̂+−→+−(m23) = TD+D∗−→D+D∗−(m23) + TD∗+D−→D+D∗−(m23), (49)

T̂00→+−(m23) = TD0D̄∗0→D+D∗−(m23) + TD∗0D̄0→D+D∗−(m23) = T̂+−→00(m23). (50)

and T̂+−→+−(m23) = T̂00→00(m23) in the isospin limit.

Taking into account isospin corrections, induced by the meson mass differences, all the needed

T -matrices (T̂00→00, T̂+−→00 and T̂+−→+−) can be calculated by solving the coupled channel LSE,

Eq. (A10), with the VD(∗)D̄(∗) potentials of Eq. (A8), as mentioned above. Thanks to the conservation

of C-parity, the FSI corrections will depend only on C0Z and C1Z . Indeed, one finds


 T̂00→00 T̂+−→00

T̂00→+− T̂+−→+−




−1

= F̂−1
Λ (E)·








C0Z+C1Z
2

C0Z−C1Z
2

C0Z−C1Z
2

C0Z+C1Z
2




−1

−


GD0D̄∗0 0

0 GD+D̄∗−







·F̂−1

Λ (E) ,

(51)

with F̂Λ(E) = Diag
(
fneuΛ (E), f chΛ (E)

)
, where the Gaussian form factors are defined after Eq. (A13).

The Zb(10610) observed in Ref. [59] carries electric charge, and its neutral partner was also

reported by the Belle Collaboration [60]. It lies within a few MeV of the BB̄∗ threshold and it is

tempting to speculate about it as a hadronic molecule. Belle also reported the discovery of a second

exotic electrically charged bottomonium state [59], Zb(10650) in the vicinity of the B∗B̄∗ threshold.

For both the Zb(10610) and Zb(10650) states, J
P = 1+ are favored from angular analyses.

Within our scheme, we assume that the Zb(10610) resonance is an isovector
(
BB̄∗ +B∗B̄

)
/
√
2

s-wave bound state with JPC = 1+− [15]. Note, HQSS predicts the interaction of the B∗B̄∗ system

with I = 1, JPC = 1+ quantum numbers to be identical to that of the BB̄∗ pair in the Zb(10610)

sector. Thus, HQSS naturally explains [61] the approximate degeneracy of the Zb(10610) and

Zb(10650). Taking for the Zb(10610) binding energy (2.0±2.0) MeV [62], we could fix a third linear

combination of the LECs that appear in the LO Lagrangian of Eq. (A6)

C1Z ≡ C1A − C1B = −0.75+0.10
−0.17 (−0.30+0.02

−0.04) fm
2 (52)

for Λ = 0.5(1.0) GeV. Errors have been obtained with a procedure similar to that described in the

discussion of Eq. (8) and used in the case of the X(3872). Assuming heavy quark flavor symmetry,
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the above value of C1Z could be also used in the charm sector, subject to corrections of the order of

O(ΛQCD/mc) ≃ 20% that we take into account. Therefore, we predict the existence of the isovector

charmonium partners of the Zb(10610) and the Zb(10650), though as virtual states in the second

Riemann sheet [15], which probably correspond to the recently observed charged charmonium-like19

Zc(3900) and Zc(4025) states [63–67]. These resonances lie close to the DD̄∗ and D∗D̄∗ thresholds,

respectively, while JP = 1+ quantum numbers are favored from some angular analyses.

Due to the presence of the Zc(3900) close to threshold, one should expect the loop (FSI) mech-

anisms depicted in Fig. 6 to be important since T I=1
C=−1 must have a pole. However, the value of

C0Z = (C0A −C0B) is still unknown. It is not determined by the inputs deduced from the X(3872)

and Zb(10610) states used in the present analysis. Depending on the value of C0Z , there can be

an isoscalar JPC = 1+− DD̄∗ s-wave bound state or not. For instance, considering the case for

Λ = 0.5 GeV and taking the central value for C0Z ∼ −2.5 fm2 one finds a bound state pole in the

DD̄∗ system bound by around 10 MeV; if C0Z ∼ −1.5 fm2, there will be a DD̄∗ bound state almost

at threshold; if the value of C0Z is larger, there will be no bound state pole any more. Therefore,

the information of C0Z will be crucial in understanding the DD̄∗ system and other exotic systems

related to it through heavy quark symmetries [15, 35]. Conversely, as we will see, the X2 radiative

decay width could be used to extract information on the fourth LEC, C0Z , thanks to the FSI effects.

To investigate the impact of the FSI, in Fig. 7 we show the dependence of the partial X2(4013) →
DD̄∗γ decay widths on C0Z . For comparison, the tree-level results are also shown in the same plots.

As expected, for the decay into the D0D̄∗0γ channel, the FSI effects turn out to be important,

and for some values of C0Z , they dominate the decay width. The maximum effects of the FSI

mechanisms approximately occur for values of C0Z which give rise to an isoscalar 1+− DD̄∗ bound

or virtual state close to threshold. One can see an apparent deviation from the tree-level results in

this region. When C0Z takes smaller values, the binding energy of the bound state increases and

moves apart from threshold; when C0Z takes larger values, the pole moves deeper into a non-physical

RS and becomes a virtual state further from the threshold. In both situations, the FSI corrections

turn out to be less important. On the other hand, the FSI corrections are always important in the

D+D∗−γ channel. This is because the tree level amplitude involves only the D∗±D±γ magnetic

coupling, while FSI brings in the neutral magnetic coupling, which is much larger than the former

one. This is also the reason, besides phase space, why the tree level width is much larger in the

19 The simple EFT scheme employed in this work does not allow for finite width resonances, only for virtual or bound

states. The merit of that EFT is actually making a connection between the Zb(10610/10650) and Zc(3900/4025)

resonances on the basis of heavy flavor symmetry, not so much predicting the exact location. In that simple theory,

we treat the Zb(10610) as a stable bound state and that is the reason why Zc’s are predicted to be virtual states.

Had we used a more complete EFT that takes into account the finite width of the Zb(10610) and includes next-to-

leading corrections, then we would have predicted the Zc’s as resonances and located them more accurately in the

complex plane.
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neutral mode than in the charged one, as commented above.

Notice that in the above calculations, we did not include the contribution from the coupled-

channel FSI D∗D̄∗ → DD̄∗ which can come from replacing the D∗Dγ vertices in Fig. 6 by the

D∗D∗γ ones20. We have checked that this is a good approximation when the re-summation of

the charmed meson scattering is switched off. This is partly because the loop integral defined in

Eq. (C8) takes a much larger absolute value for the considered diagrams than for those with the

D∗D∗γ vertices in most regions of the phase space. The only exception is when the photon has a very

low energy so that the D∗D̄∗ are almost on-shell. However, after integrating over the phase space,

this region provides a small contribution to the partial decay width because of the p3γ suppression

due to relative p-wave between the photon and the 1+− DD̄∗ system. The re-summation would

introduce a further complication because of the presence of the Zc(4025) which couples dominantly

to the D∗D̄∗ in the 1+− channel. It contributes mainly to the region close to the pole position of

the Zc(4025). Again, this corresponds to the region with the very low-energy photon and thus it is

suppressed due to phase space. Therefore, we expect that the neglected contribution discussed here

has little impact, and its numerical effects should be safely covered by the sizable HQSS uncertainty

exhibited in the results.

To better understand the dependence of the X2(4013) → DD̄∗γ decay widths on C0Z in the

bottom panel of Fig. 8 we show the pole positions of the odd C-parity DD̄∗ → DD̄∗ T -matrix as

functions of this LEC and for an UV cutoff of 0.5 GeV. There are two coupled channels, the neutral

one which has the lowest threshold, and the charged channel. As a consequence, there are three

relevant RS’s (among four). The first of them [(++)] is the physical one, while the two non-physical

RS’s are reached by changing the sign of the imaginary part of the momentum inside of the loop

functions G in Eq. (51) of the first channel [(−+)] or the momenta of both channels [(−−)]. Each

of these non-physical RS’s are continuously connected with the physical one on the real axis above

the relevant thresholds. The solid red and dashed blue curves stand for poles in the (++) and (−+)

RS’s, respectively. For sufficiently large negative values of C0Z , there is a bound state (a pole below

threshold and located in the physical RS), which becomes less bound when |C0Z | decreases. For a

value of this LEC around −1.5 fm2, marked in Fig. 8 with a vertical black line, this state reaches

the threshold. When C0Z is further increased, the pole jumps into the (−+) RS, becoming thus a

virtual state (a pole below threshold and located in an non-physical RS) and it moves away from

the threshold. In the medium panel we show the central values of the X2(4013) radiative widths for

both decay modes as a function of C0Z , which were already presented in Fig. 7. As can be seen, it

20 The electric part of the D∗D∗γ vertex does not contribute to the FSI X2 decay width amplitude when the quantum

numbers of the final D∗D̄∗ pair are 1+−, with the two heavy mesons in relative s−wave. Thus, we are left with the

contribution from the magnetic coupling, as in the D∗Dγ case.
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FIG. 7. Dependence of the X2(4013) → D0D̄∗0γ and the X2(4013) → D+D∗−γ partial decay widths on

the low-energy constant C0Z . The UV cutoff is set to Λ = 0.5 GeV (1 GeV) in the top (bottom) panels.

The red error bands contain the DD̄∗ FSI effects, while the three horizontal blue lines stand for the tree

level predictions of Eqs. (41) and (42). Besides the uncertainties on the mass and the couplings of the X2

resonance, the errors on C1Z quoted in Eq. (52), together with the expected 20% heavy quark flavor symmetry

corrections when it is used in the charm sector, are also accounted in the 68% CL bands displayed in the

panels. The red dash-dotted (full calculation) and solid blue (tree level) lines stand for the results obtained

with the central values of the parameters.

is around this critical value C0Z = −1.5 fm2, when the FSI effects are larger for both decays, due

to the vicinity of the pole to the threshold. This happens regardless of whether it is a bound or a

virtual state, since the presence of the pole in both situations greatly enhances the odd C-parity

DD̄∗ → DD̄∗ T -matrix near threshold. This can be appreciated in the top panel of Fig. 8, where

the dependence of the T̂00→00 and T̂+−→+− scattering lengths on C0Z is shown.

Thus we have understood why in the region of values of C0Z around −1.5 fm2, FSI corrections

strongly affect the D0D̄∗0γ decay width: this channel has the lowest threshold and the bound or

virtual state is located on or nearby it. For the charged decay mode, the width exhibits a maximum

for values of C0Z also in this region, followed by a clear minimum placed now in the vicinity of

C0Z ∼ C1Z . Notice that when C0Z = C1Z , T̂00→+− vanishes (see Eq. (51)) and therefore the

contribution due to the neutral mesons, driven by the largest magnetic coupling (β1), in the FSI

loops disappears. The exact position of the minimum is modulated by the further interference
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Λ = 0.5 GeV is employed in the Gaussian regulator. Top: T̂00→00 and T̂+−→+− scattering lengths aN

(red solid curve) and aC (blue dashed and green dash-dotted curves), respectively. They are defined as

ai = µiT̂i(E = M1i + M2i)/2π, with µi the corresponding reduced mass and (M1i,M2i) = (mD0 ,mD∗0)

and (mD± ,mD∗±) for the neutral and charged channels, respectively. The scattering length aC is complex

because the neutral threshold is lower than the charged one, and therefore it is open. Middle: Central values

of the X2(4013) → D0D̄∗0γ (solid curve) and X2(4013) → D+D∗−γ (dashed curve) partial decay widths

including FSI effects. Bottom: Position of the poles of the odd C-parity DD̄∗ → DD̄∗ T -matrix, with respect

to the neutral (mD0 +mD∗0) threshold. Poles found in the various RS’s are shown (see the text for details).

The red solid curve shows the evolution of the bound state with C0Z , while the dashed and the dash-dotted

curves show that of the virtual ones. The vertical black line marks the value of C0Z for which a DD̄∗ bound

state is generated at the D0D̄∗0 threshold.

between the tree level and the FSI charged loops, which are comparable.

In the bottom panel, we also observe a virtual state pole, the position of which is rather insensi-

tive21 to C0Z . It is originated by the interaction in the I = 1 sector, C1Z , and it should be related to

21 The situation is more complicated, as can be seen in the plot. There is a narrow region of values of C0Z around

[−0.4,−0.2] fm2, where the virtual state moves quickly away from threshold, shortly reappearing again (orange dash-

dotted line) in a position similar to the one that it had at the left of C0Z = −0.4 fm2. More in detail, in a narrow

region included in the above interval of values of C0Z , two poles (virtual) in the (−−) RS coexist. Among these two

poles, the decay width should be influenced only by the one closest to threshold, since it overshadows the second

one placed deeper in the real axis. On the other hand, for C0Z = −0.75 fm2 the (−−) RS virtual state (magenta, B)

coincides with the one located in the (−+) RS (blue). This is easy to understand since at this point C0Z = C1Z ≡ CZ

and then according to Eq. (51) the off-diagonal interaction term vanishes. In this situation, neutral and charged

channels decouple, the scattering length aC is real, and the determinant (1 − CZGD0D̄∗0)(1− CZGD+D̄∗−) would
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the Zc(3900) exotic charmonium-like state reported by the BESIII and Belle collaborations. Within

our LO EFT scheme, we do not find a DD̄∗ bound state, but instead a pole located near threshold

in a non-physical RS [15].

vanish when either of the two factors in brackets is zero. It turns out that the factor (1 − CZGD0D̄∗0) vanishes

at the same energy both in the (−+) and (−−) RS’s, since by construction the GD0D̄∗0 loop function is identical

in both unphysical sheets. However, the charged factor (1 − CZGD+D̄∗−) does not lead to any further pole for

C0Z = C1Z = −0.75 fm2 and Λ = 0.5 GeV. In the Λ = 1 GeV case, not shown in Fig. 8, it happens that for

C0Z = C1Z = −0.3 fm2, there exist identical poles in the (−+) and (−−), and (+−) and (−−) RS’s, respectively,

whose origin can be traced to the above discussion having in mind that now both terms in the decomposition of

the determinant lead to poles.
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B. Xb2 → B̄B∗γ

The expressions found in the charm sector can be readily used here, having in mind the following

correspondence: D0 ↔ B−, D+ ↔ B̄0, D̄0 ↔ B̄+, and D− ↔ B0. Since the heavy quark flavor

symmetry ensures that g and β1,2 are the same in the b and c systems (up to corrections of the

order ΛQCD/mc), the expressions of Eqs. (31) and (32) can be used to predict the widths for the

B∗ radiative decays [57],

Γ(B∗− → B−γ) =
α

3

mB

mB∗

(
β1 −

1

3mb

)2

E3
γ = (0.49 ± 0.05) keV, (53)

Γ(B̄∗0 → B̄0γ) =
α

3

mB

mB∗

(
β2 −

1

3mb

)2

E3
γ = (0.23 ± 0.02) keV, (54)

where we have taken the value mb = 4.8 GeV for the bottom quark mass.

As in the study of its hadronic decays, we assume the Xb2 be a pure I = 0 state, with equal

coupling to its neutral and charged components, gXb2
0 = gXb2

c = 1√
2
gXb2 . The isospin breaking effects

for the B∗ mesons are expected to be small and the tiny difference between the B0 and B± masses

can safely be neglected as well. In this limit we find at tree level

− iT (λ, λ∗, λγ)B̄B∗γ =
gXb2(m12)√

2

√
4παN b

γ

(
βa −

1

3mb

)
ǫijmǫ

jn(λ)ǫ∗n(λ∗)ǫ∗iγ (λγ)p
m
γ

2mB∗ (m12 −mB∗ + iε)
, (55)

where βa = β1(β2) for the B
−B∗+γ(B̄0B∗0γ) mode, N b

γ =
√

8MXb2
m2

B∗
√
mBmB∗ , and m12 is the

invariant mass of the final γB̄ pair. These amplitudes lead to

Γ(Xb2 → B−B∗+γ)tree = 13+23
−10 eV, Γ(Xb2 → B̄0B∗0γ)tree = 6+10

−5 eV, (56)

where the values have been obtained with Λ = 0.5 GeV. We remind that for Λ = 1 GeV, the central

value of the resonance massMXb2
is located below the threshold (mB+mB∗) ∼ 10604 MeV and the

decay is forbidden. The errors reflect the uncertainty in the inputs from the X(3872) and the HQSS

breaking corrections, as outlined in the caption of Table III; they are quite large and are dominated

by those quoted for gXb2 in Eq. (12). The widths are of the order of a few eV, significantly smaller

than those of the radiative decays of the B∗0 and B∗− meson because of the quite reduced phase

space available (∼ 20 MeV) for this p-wave decay. They are also orders of magnitude smaller than

Γ(X2 → D0D̄∗0γ) as a result of Γ(D∗0 → D0γ) ≫ Γ(B∗ → Bγ).
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FIG. 9. Dependence of the Xb2 → B−B∗+γ and Xb2 → B̄0B∗0γ partial decay widths on the low-energy

constant C0Z . The red error bands contain the B̄B∗ FSI effects, while the three horizontal blue lines stand

for the tree level predictions of Eq. (56).

The amplitude for the FSI mechanisms is readily evaluated and we find

− iT (λ, λ∗, λγ)
FSI
B̄B∗γ =

√
4παN b

γ

gXb2

√
2
ǫijmǫ

jn(λ)ǫ∗n(λ∗)ǫ
∗i
γ (λγ)p

m
γ J(mB∗ ,mB∗ ,mB , ~pγ)

× 4mBmB∗

{(
β1 −

1

3mb

)[
T I=0
C=−1(m23)± T I=1

C=−1(m23)

2

]

B̄B∗

+

(
β2 −

1

3mb

)[
T I=0
C=−1(m23)∓ T I=1

C=−1(m23)

2

]

B̄B∗

}
, (57)

where the +− (−+) combination stands for the B−B∗+γ (B̄0B∗0γ) decay mode and m23 is now

the invariant mass of the B̄B∗ pair. The C-parity odd isospin amplitudes are obtained by solving

Eq. (45) using the bottom sector loop function GB̄B∗ .

FSI corrections turn out to be important, as can be appreciated in Fig. 9. This is because we are

generating in the T I=1
C=−1 amplitude a bound state [Zb(10610)], almost at threshold (binding energy

(2.0±2.0) MeV [62]), that enhances the loop mechanisms, as we discussed in the charm sector. If we

pay attention for instance to the charged B−B∗+γ mode, we could appreciate a distinctive feature:

there appears a destructive interference pattern between the tree level and the FSI amplitudes.

Thanks to our MC procedure where correlations are consistently propagated, we also observe a

reduction of the size in the uncertainties. Besides the uncertainties on the mass and the couplings

of the Xb2 resonance, the errors on C1Z quoted in Eq. (52) are also accounted for in the 68% CL

bands displayed in the panels. Actually, these latter uncertainties should have also an important

impact on the total CL bands. This is because variations of C1Z allow for situations where the

pole is located precisely at threshold (zero binding energy) or bound by about 4 MeV. In the first

case the FSI contribution should be larger than that obtained with the central value of C1Z , which

correspond to a binding energy of 2 MeV. These big 68% CL bands makes hard to disentangle any
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further dependence on C0Z , which in this case turns out to be quite mild.

V. CONCLUSIONS

In this work we have studied the hadronic and radiative decays of a molecular P ∗P̄ ∗ state with

quantum numbers JPC = 2++ in the charm (X2) and bottom (Xb2) sectors using an EFT approach.

We have considered the X(3872) resonance as a JPC = 1++ DD̄∗ hadronic molecule. The X2 and

the Xb2 states will be HQSFS partners of the X(3872) with masses and couplings to the P ∗P̄ ∗

heavy meson pair determined by the properties of the X(3872) resonance.

The hadronic d-wave X2 → DD̄ and X2 → DD̄∗ two-body decays are driven via one pion

exchange. We observed that as a result of the contribution from highly virtual pions, which is out

of control in the low-energy EFT, these hadronic decay widths (hence the total width of the X2

as well) bear a large systematic uncertainty. Even though the momenta involved in these decays

probably lie outside the range of applicability of EFT the calculations are still valuable as a way

to find reasonable estimates of these partial decay widths, which we expect to almost saturate the

X2 decay width. To this end and in analogy to the Bonn potential, we have included a monopole

pion-exchange form factor, with a cutoff around 1 GeV, in each of the D∗Dπ and D∗D∗π vertices

to suppress the contribution of large momenta. We finally estimate the partial widths of both

processes to be of the order of a few MeV. The analysis runs in parallel in the bottom sector with

the assumption that the bare contact terms in the Lagrangian are independent of the heavy flavor.

In this sector, we also find widths of the order of a few MeV.

We discussed the radiative X2 → DD̄∗γ and Xb2 → B̄B∗γ decays as well. The widths are small,

of the order of keV’s (eV’s) in the charm (bottom) sectors. Furthermore, they are affected by the

DD̄∗ or BB̄∗ FSI mechanisms. FSI effects are large because they are enhanced by the presence

of the isovector Zc(3900) and Zb(10610) resonances located near the D0D̄∗0 and B̄B∗ thresholds,

respectively. In the charm sector, FSI corrections turn out to be also sensitive to the negative C-

parity isoscalar DD̄∗ interaction (C0Z). Thus, future precise measurements of these radiative decay

widths might provide valuable information on this LEC, which cannot be in principle determined

from the properties of the X(3872), Zb(10610) and Zb(10650) resonances. Constraints on this latter

LEC are important in order to understand the dynamics of the P (∗)P̄ (∗) system.
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Appendix A: Heavy meson Lagrangians: s-wave interactions and pionic and electromagnetic

decays

We collect in this appendix the Lagrangians used in this work. We use the matrix field H(Q)

[H(Q̄)] to describe the combined isospin doublet of pseudoscalar heavy-mesons P
(Q)
a = (Qū,Qd̄)

[P
(Q̄)
a = (uQ̄, dQ̄)] fields and their vector HQSS partners P

∗(Q)
a [P

∗(Q̄)
a ] (see for example [40]),

H(Q)
a =

1 + /v

2

(
P ∗(Q)
aµ γµ − P (Q)

a γ5

)
, v · P ∗(Q)

a = 0,

H(Q̄)
a =

(
P ∗(Q̄)
aµ γµ − P (Q̄)

a γ5

) 1− /v

2
, v · P ∗(Q̄)

a = 0. (A1)

The matrix field Hc [H c̄] annihilates P [P̄ ] and P ∗ [P̄ ∗] mesons with a definite velocity v. The field

H
(Q)
a [H

(Q̄)
a ] transforms as a (2, 2̄) [(2̄, 2)] under the heavy spin ⊗ SU(2)V isospin symmetry [40],

this is to say:

H(Q)
a → S

(
H(Q)U †

)
a
, H(Q̄)a →

(
UH(Q̄)

)a
S†. (A2)

Their hermitian conjugate fields are defined by:

H̄(Q)a = γ0H(Q)†
a γ0, H̄(Q̄)

a = γ0H̄(Q̄)a†γ0, (A3)

and transform as [40]:

H̄(Q)a →
(
UH̄(Q)

)a
S†, H̄(Q̄)

a → S
(
H̄(Q̄)U †

)
a
. (A4)
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The definition for H
(Q̄)
a also specifies our convention for charge conjugation, which is CP (Q)

a C−1 =

P (Q̄)a and CP ∗(Q)
aµ C−1 = −P ∗(Q̄)a

µ , and thus it follows

CH(Q)
a C−1 = cH(Q̄)aT c−1, CH̄(Q)aC−1 = c H̄(Q̄)T

a c−1 (A5)

with c the Dirac space charge conjugation matrix satisfying cγµc
−1 = −γTµ .

1. Quadruple-heavy-meson contact interaction

At very low energies, the interaction between a heavy and anti-heavy meson can be accurately

described just in terms of a contact-range potential. The LO Lagrangian respecting HQSS reads [68]

L4H = CATr
[
H̄(Q)aH(Q)

a γµ

]
Tr

[
H(Q̄)aH̄(Q̄)

a γµ
]

+ Cτ
ATr

[
H̄(Q)a~τ b

aH
(Q)
b γµ

]
Tr

[
H(Q̄)c~τ d

c H̄
(Q̄)
d γµ

]

+ CB Tr
[
H̄(Q)aH(Q)

a γµγ5

]
Tr

[
H(Q̄)aH̄(Q̄)

a γµγ5

]

+ Cτ
B Tr

[
H̄(Q)a~τ b

aH
(Q)
b γµγ5

]
Tr

[
H(Q̄)c~τ d

c H̄
(Q̄)
d γµγ5

]
(A6)

with ~τ the Pauli matrices in isospin space, and C
(τ)
A,B light flavor independent LECs, which are also

assumed to be heavy flavor independent. Note that in our normalization the heavy or anti-heavy

meson fields, H(Q) or H(Q̄), have dimensions of E3/2 (see [69] for details). This is because we use

a non-relativistic normalization for the heavy mesons, which differs from the traditional relativistic

one by a factor
√
MH . For later use, the four LECs that appear above are rewritten into C0A, C0B

and C1A, C1B which stand for the LECs in the isospin I = 0 and I = 1 channels, respectively. The

relations read

C0φ = Cφ + 3Cτ
φ , C1φ = Cφ − Cτ

φ , for φ = A,B . (A7)

The LO Lagrangian determines the contact interaction potential V = −L/4, which is then used as

kernel of the two body elastic LSE (see Eq. (4) and the related discussion).

The LECs that appear in the JPC = 1++ and 2++ sectors [Eqs. (3) and (9)] turn out to be

C0X ≡ C0A + C0B and C1X ≡ C1A + C1B . The contact interaction in the Zb(10610) sector (I = 1,

JPC = 1+−) is C1Z ≡ C1A − C1B.



38

On the other hand, the interaction in the
{
D0D̄∗0,D∗0D̄0,D+D∗−,D∗+D−} space reads:22

VD(∗)D̄(∗) = AT ×Diag(C0Z , C0X , C1Z , C1X)×A

=
1

2




C0A +C1A −C0B − C1B C0A − C1A C1B − C0B

−C0B − C1B C0A + C1A C1B − C0B C0A − C1A

C0A −C1A C1B − C0B C0A + C1A −C0B − C1B

C1B −C0B C0A − C1A −C0B − C1B C0A + C1A



, (A8)

with C0Z = C0A − C0B and the orthogonal matrix A given by:

A =
1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



. (A9)

Equation (A8) trivially follows from the fact that the L4H interaction of Eq. (A6) is diagonal in the

isospin basis and the charge conjugation is well defined.23 The interaction given in Eq. (A8) can be

used as the kernel of an UV finite LSE to obtain the T -matrix that we use to account for the FSI

in the radiative decays studied in Section IV,

[TD(∗)D̄(∗)(E)]−1 = F−1
Λ (E) ·

{
[VD(∗)D̄(∗) ]

−1 − Ĝ(E)
}
· F−1

Λ (E), (A10)

with the two particle regularized matrix propagator defined as

Ĝ(E) = Diag (GD0D̄∗0 , GD∗0D̄0 , GD+D∗− , GD∗+D−) , (A11)

Gij(E) =

∫
d3~q

(2π)3
e−2~q 2/Λ2

E − ~q 2/2µij −Mi −Mj + iε
, (A12)

where trivially GD0D̄∗0 = GD∗0D̄0 and GD+D∗− = GD∗+D− . In addition, the on-shell UV Gaussian

form factor matrix reads

FΛ(E) = Diag
(
fneuΛ (E), fneuΛ (E), f chΛ (E), f chΛ (E)

)
(A13)

with f
(a)
Λ (E) = exp(−~k2a/Λ2) and ~k2a = 2µa(E −M1a −M2a), with a = (neu), (ch).

2. P (∗)P̄ (∗)π interactions

The relevant term in the LO Lagrangian of the heavy meson chiral perturbation theory [40–43]

that provides the D∗Dπ and D∗D∗π couplings is

LπHH = − g

2fπ

(
Tr

[
H̄(Q)bH(Q)

a γµγ5

]
+Tr

[
H(Q̄)bH̄(Q̄)

a γµγ5

])
(~τ∂µ~φ)

a
b + · · · , (A14)

22 In the bottom sector, the corresponding basis is:
{

B−B∗+, B∗−B+, B̄0B∗0, B̄∗0B0
}

.
23 For instance in the charm sector, the C-parity states are [DD̄∗]1,2 = DD̄∗±D∗D̄√

2
(1 ↔ +, 2 ↔ −). In our convention,

the C-parity of these states is independent of the isospin and it is equal to ∓1.
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with ~φ a relativistic field that describes the pion,24 g is the heavy flavor independent PP ∗π coupling

and fπ = 92.2MeV the pion decay constant. Note that in our normalization, the pion field has a

dimension of energy, while the heavy meson or antimeson fields H(Q) or H(Q̄) have dimensions of

E3/2, as we already mentioned.

3. HHγ interactions

The magnetic coupling of the photon to the s-wave heavy mesons is described by the La-

grangian [57, 58]

LγHH =
eβ

4
Qa

b

(
Tr

[
H̄(Q)bH(Q)

a σµν
]
+Tr

[
H(Q̄)bH̄(Q̄)

a σµν
])
Fµν

+
eQ′

4mQ

(
Tr

[
H̄(Q)aσµνH(Q)

a

]
+Tr

[
H(Q̄)aσµνH̄(Q̄)

a

])
Fµν + · · · (A15)

where Fµν = ∂µAν − ∂νAµ, with Aµ the photon field (CAµ(x)C−1 = −Aµ(x)), Q = Diag(2/3,−1/3)

is the light quark charge matrix, and Q′ is the heavy quark electric charge (in units of the proton

charge e =
√
4πα). For charm (bottom) Q′ = 2/3 (Q′ = −1/3). Besides, mQ is the heavy quark

mass and β is the parameter introduced in Ref. [57]. These two terms describe the magnetic

coupling due to the light (preserves HQSS) and heavy quarks (suppressed by 1/mQ), respectively.

Both terms are needed to understand the observed electromagnetic branching fractions of the D∗+

and D∗0 because a cancellation between the two terms accounts for the very small width of the D∗+

relative to the D∗0 [5].

In the non-relativistic constituent quark model β = 1/mq ∼ 1/330 MeV−1, where mq is the

light constituent quark mass. Heavy meson chiral perturbation theory provides contributions from

Goldstone boson loops, which give O(
√
mq) corrections to the decay rates [57]. If these loop

corrections are evaluated in an approximation where heavy hadron mass differences are neglected,

the correction to the above formulas can be incorporated by making the following replacements [57]

βQ11 → βQ11 −
g2mK

8πf2K
− g2mπ

8πf2π
, (A16)

βQ22 → βQ22 +
g2mπ

8πf2π
, (A17)

with fK ∼ 1.2fπ.

24 We use a convention such that φ =
φx−iφy√

2
creates a π− from the vacuum or annihilates a π+, and the φz field

creates or annihilates a π0. We adopt the usual convention C(~τ · ~φ)C−1 = (~τ · ~φ)T .
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D

D̄

X2

gS gS

D∗

D̄∗

X2

gD gD

FIG. 10. The X2 self-energy diagrams from the s-wave D∗D̄∗ and d-wave DD̄, respectively.

Appendix B: Validity of the perturbative treatment of the DD̄ for the X2

In this appendix, we will argue that the d-wave DD̄ may be treated perturbatively in the 2++

system. Even though this was already discussed in Ref. [7], we have included here a new argument

grounded on a different EFT to make a more compelling case on the smallness of this contribution

to the X2 mass. We will compare the power counting of the self-energy diagrams of the X2 from

the d-wave DD̄ and the s-wave D∗D̄∗ two-point loops, see Fig. 10. If the DD̄ loop is suppressed

in comparison with the D∗D̄∗ one, it will validate the perturbative treatment of the DD̄. Because

in our case the heavy mesons are non-relativistic, we can apply a velocity counting for the loops

analogous to the power counting of the heavy meson loops in heavy quarkonium transitions [70, 71].

For the D∗D̄∗ loop, the velocity counting of the self-energy reads as

ΣD∗D̄∗ ∼ g2S
v5

(v2)2
= g2S v, (B1)

where gS denotes the value of the s-wave coupling of the X2 to the D∗D̄∗, v denotes the velocity

of the D∗ meson, v5 is for the loop integral measure since the non-relativistic energy is counted as

O(v2), and 1/(v2)2 accounts for the two non-relativistic propagators.

Similarly, for the DD̄ loop, denoting the velocity of the D meson by w, the velocity counting is

given by

ΣDD̄ ∼ g2D
w5w4

(w2)2
= g2D w

5, (B2)

where gD is the d-wave coupling constant normalized to have the same dimension as gS , and the

factor of w4 in the denominator comes from the two d-wave vertices.

Therefore, we obtain the ratio

rD/S ≡ ΣDD̄

ΣD∗D̄∗
=
g2D
g2S

w5

v
. (B3)

The question is now how gD compares with gS . We can estimate gD by considering the one-pion

exchange diagram considered in this work as illustrated in Fig. 11. Because the X2 is very close to
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D

D̄

X2

gD gS

D∗

D̄∗

X2

D

gD

D̄

π∼

FIG. 11. The contact term of the d-wave coupling of the X2 to the DD̄ may be estimated by the one-pion

exchange diagram.

the D∗D̄∗ threshold, we should count each of the D∗(D̄∗) propagators as 1/v2. This is equivalent

to affirm that the cut due to the D∗D̄∗ in the triangle diagram in Fig. 11 is the same as that in the

D∗D̄∗ bubble diagram of the X2 self-energy. Thus, we can count the D∗ in both diagrams in the

same way. But the pion propagator should be counted differently. The reason is that because the

X2 couples to the DD̄ in a d-wave, the momenta in the D∗Dπ vertices of the one-pion exchange

diagram should become the momenta of the D and D̄, qD = mDw, and the pion momentum is

of the same order as we discussed in Sect. IIIA 1. This is to say that the pion propagator should

be counted as 1/w2 rather than 1/v2. Thus, expressing the content of Fig. 11 in terms of power

counting gives

gDw
2 ∼ gS

v5

(v2)2w2

(
g

Λχ

)2

(mDw)
2 =

[
gSg

2 v

w2

(
mD

Λχ

)2
]
w2, (B4)

where g is the axial coupling constant in Eq. (A14), and Λχ = 4πfπ is the hard scale for the chiral

expansion.

Numerically, for the case of the X2, we have w ≃
√

(MX2 − 2mD)/mD ≃ 0.38, and v ≃
√
(MX2 − 2mD∗)/mD∗ ∼ 0.06 if we take 7 MeV as the binding energy (recall that we have the

charged D∗D̄∗ channel explicitly whose threshold is around 7 MeV above the neutral one). With

these values, we use Eqs. (B3) and (B4), which leads to gD ∼ 0.6 gS , to obtain an estimate of the

contribution of the d-wave DD̄ to the X2 self-energy relative to the s-wave D∗D̄∗,

rD/S ∼ 0.05. (B5)

The above value suggests a high suppression of the d-wave DD̄ in comparison with the s-wave

D∗D̄∗. We notice that the power counting of Ref. [7] indicates that the size of the DD̄ loop

is N4LO (next-to-next-to-next-to-next-to-leading order), in line with the velocity power counting

arguments.
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Appendix C: Three-point loop functions

1. Hadron decays

In this section we address the tensor three-point loop function that appears in the hadron

decay amplitudes studied in the Sect. III. It is composed by a pion, and two heavy meson (P ∗P̄ ∗)

propagators. The integral reads (~q = −~k, q0 + k0 =MX2)

Iij(M,m;MX2 , q
µ ) = i

∫
d4l

(2π)4
li lj

[(l + q)2 −M2 + iε] [(k − l)2 −M2 + iε] (l2 −m2 + iε)

≃ i

4M2

∫
d4l

(2π)4
li lj

(l0 + q0 − ωh + iε) (k0 − l0 − ωh + iε) (l2 −m2 + iε)
, (C1)

where M is the mass of the heavy particles in the loop, m is the mass for the light intermediate

particle, MX2 is the total c.m. energy, and q and k are the external 4-momenta of the two particles

in the final state of masses mF1 and mF2 , respectively. In addition,

q0 =
M2

X2
+m2

F1
−m2

F2

2MX2

, k0 =
M2

X2
+m2

F2
−m2

F1

2MX2

, (C2)

and ωh = M + (~q + ~l ) 2/2M is the non-relativistic energy of the virtual heavy mesons. Using

Cauchy’s theorem to integrate over the virtual pion energy l0, we obtain:25

Iij(M,m;MX2 , q
µ ) ≃ 1

4M2

∫
d3l

(2π)3
lilj

MX2 − 2ωh − 2ω

2ω(k0 − ω − ωh)(q0 − ω − ωh)(MX2 − 2ωh)
, (C3)

for |m2
F1

−m2
F2
| < 2mMX2 < 4Mm to guarantee that the integral in Eq. (C1) is real, and ω(~l ) =

√
m2 +~l 2. The loop integral Iij presents a logarithmic UV divergence. Indeed, Iij admits a tensor

decomposition

Iij(~q ) = I0(~q
2) qiqj + I1(~q

2) δij |~q |2 . (C4)

The I1 term presents an UV divergence, but it does not contribute to the amplitude because it

annihilates the traceless spin-2 polarization tensor. This means that only the I0 term is relevant.

It can be computed as:

I0(M,m;MX2 , ~q
2)

≃ 1

32M2π2~q 2

∫ +∞

0

dl l4

ω

∫ +1

−1
dxP2(x)

MX2 − 2ωh(l, x) − 2ω

(k0 − ω − ωh(l, x))(q0 − ω − ωh(l, x))(MX2 − 2ωh(l, x))
, (C5)

with ωh(l, x) =M+(~l 2+~q 2+2|~l||~q |x)/2M , and P2 the Legendre’s polynomial of order 2. This term

is not UV divergent because in the limit l → +∞ all dependence on x, besides P2(x), disappears and

25 If mF1
= mF2

, k0 = q0 = MX2
/2 and the loop function now reads,

Iij(M,m;MX2
, ~q ) ≃ 1

8M2

∫

d3l

(2π)3
lilj

ω(MX2
/2− ω − ωh)(MX2

/2− ωh)
, MX2

< 2M .
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the integration over x gives zero. The convergence of the integral is greatly enhanced because P2(x) is

orthogonal to x as well. Moreover, the same type of arguments guarantees that I0(M,m;MX2 , ~q
2) ∼

const. in the ~q 2 → 0 limit. Numerically, we use non-relativistic kinematics to compute |~q | in the

evaluation of I0(M,m;MX2 , ~q
2) in Eq. (C5), i.e., ~q 2 ≃ 2µF1F2(MX2 − mF1 − mF2). However, to

guarantee the appropriate d-wave phase space, we use relativistic kinematics to evaluate qiqj in

Eq. (C4) and the |~q | phase-space factor that appears in Eqs. (15) and (21).

For consistency with the scheme adopted in Eq. (5), we include a Gaussian regulator in the

P ∗P̄ ∗X2 vertex by multiplying the integrand in Eq. (C5) by the exponential factor,

e−(~q+
~l )

2
/Λ2

e−γ2/Λ2 =
e−(

~l 2+~q 2+2|~l ||~q |x)/Λ2

e−γ2/Λ2 (C6)

with 0 > γ2 =M(MX2 − 2M). We divide by the factor e−γ2/Λ2
, because it was incorporated in the

P ∗P̄ ∗X2 coupling.

In addition, the exchanged pion is highly virtual, and one might include a vertex form factor of

the form

F (~l 2,Λπ) =
Λ2
π

~l 2 + Λ2
π

, Λπ ∼ 1 GeV, (C7)

in each of the two πP (∗)P (∗) vertices.

2. Radiative decays

In the computation of the FSI effects on the radiative decays of the X2 and Xb2 resonances in

the Sect. IV, the following three-point loop function appeared

J (M1,M2,M3, ~pγ) = i

∫
d4q

(2π)4
1

q2 −M2
1 + iε

1

(P − q)2 −M2
2 + iε

1

(q − pγ)
2 −M2

3 + iε
(C8)

≃ i

8M1M2M3

∫
d4q

(2π)4
1

q0 −M1 − ~q 2/2M1 + iε

1

MX2 − q0 −M2 − ~q 2/2M2 + iε

× 1

q0 − Eγ −M3 − (~q − ~pγ)2/2M3 + iε

=
µ12µ23

2M1M2M3

∫
d3q

(2π)3
1

(~q 2 + c− iε)

1

(~q 2 − 2µ23 ~q · ~pγ/M3 + c′ − iε)
, (C9)

with Pµ = (MX2 ,~0) in the rest frame of the X2 and µ−1
ij = (M−1

i +M−1
j ). In addition, b12 =

M1 +M2 −MX2 , b23 = M2 +M3 + Eγ −MX2 , c = 2µ12b12 and c′ = 2µ23b23 + µ23~p
2
γ /M3. Since

all the intermediate mesons in the present case are non-relativistic, the three point loop has been

treated non-relativistically. This loop integral is convergent and its analytic expression can be found

in Eq. (A2) of Ref. [71]. However, for consistency, despite the three-point loop function in Eq. (C8)
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being finite, it should be evaluated using the same UV renormalization scheme as that employed in

the D(∗)D̄(∗) EFT. This is accomplished by including in the integrand of Eq. (C8) a Gaussian form

factor, FΛ(~q ) defined as

FΛ(~q ) = e−(~q
2−γ2)/Λ2

e−(~q
2
cm−~q 2

on shell)/Λ
2
. (C10)

Here γ2 = 2µ12(MX2 − M1 − M2), ~q
2
on shell = 2µ23(m23 − M2 − M3), with m2

23 = (P − pγ)
2 =

M2
X2

− 2MX2Eγ , and

~q 2cm =
M2(~q − ~pγ)

2 +M3~q
2

M2 +M3
. (C11)

Note that the first exponential factor accounts for the off-shellness in the X2D
∗0D̄∗0 coupling, as in

Eq. (39), while the second one accounts for the virtuality of the incoming mesons in theDD̄∗ → DD̄∗

and D∗D̄ → DD̄∗ T -matrices. Note that, after the inclusion of this factors, an analytical expression

for the integral cannot be easily obtained, and it needs to be computed numerically.
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