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We study the B̄0
s → D−

s (DK)+ weak decay, and look at the DK invariant mass distribution with
the aim of obtaining relevant information on the nature of the D∗+

s0 (2317) resonance. We make a
simulation of the experiment using the actual mass of the D∗+

s0 (2317) resonance and recent lattice
QCD relevant parameters of the KD scattering amplitude. We then solve the inverse problem
of obtaining the KD amplitude from these synthetic data, to which we have added a 5% or 10%
error. We prove that one can obtain from these ”data” the existence of a bound KD state, the
KD scattering length and effective range, and most importantly, the KD probability in the wave
function of the bound state obtained, which was found to be largely dominant from the lattice QCD
results. This means that one can obtain information on the nature of the D∗+

s0 (2317) resonance from
the implementation of this experiment, in the line of finding the structure of resonances, which is
one of the main aims in hadron spectroscopy.

PACS numbers:

I. INTRODUCTION

The very narrow charmed scalar meson D∗+
s0 (2317) was

first observed in the D+
s π0 channel by the BABAR Col-

laboration [1] and its existence was confirmed by CLEO
[2], BELLE [3] and FOCUS [4] Collaborations. Its mass
was commonly measured as 2317 MeV, which is approxi-
mately 160 MeV below the prediction of the very success-
ful quark model for the charmed mesons [5]. Due to its
low mass, the structure of the meson D∗±

s0 (2317) has been
extensively debated. It has been interpreted as a cs̄ state
[6–10], two-meson molecular state [11–18], K−D- mixing
[19], four-quark states [20–23] or a mixture between two-
meson and four-quark states [24]. Additional support to
the molecular interpretation came recently from lattice
QCD simulations [25–28]. In previous lattice studies of
the D∗

s0(2317), it was treated as a conventional quark-
antiquark state and no states with the correct mass (be-
low the KD threshold) were found. In Refs. [25, 27], with
the introduction of KD meson operators and using the ef-
fective range formula, a bound state is obtained about 40
MeV below the KD threshold. The fact that the bound
state appears with the KD interpolator may be inter-
preted as a possible KD molecular structure, but more
precise statements cannot be done. In Ref. [26] lattice
QCD results for the KD scattering length are extrapo-
lated to physical pion masses by means of unitarized chi-
ral perturbation theory, and by means of the Weinberg
compositeness condition [29, 30] the amount of KD con-
tent in the D∗

s0(2317) is determined, resulting in a sizable
fraction of the order of 70% within errors. A reanalyis of
the lattice spectra of Refs. [25, 27] has been recently done
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in Ref. [28], going beyond the effective range approxima-
tion and making use of the three levels of Refs. [25, 27].
As a consequence, one can be more quantitative about
the nature of the Ds0(2317), which appears with a KD
component of about 70%, within errors.

In addition to these lattice results, and more precise
ones that should be available in the future, it is very
important to have some experimental data that could be
used to test the internal structure of this exotic state.

Here we propose to use the experimental KD invariant
mass distribution of the weak decay of B̄0

s → D−
s (DK)+1

in order to obtain information about the internal struc-
ture of the D∗+

s0 (2317) state. There are not yet exper-
imental data for the decay B̄0

s → D−
s (DK)+. How-

ever, since the branching fractions for the decays B̄0
s →

D∗+
s D∗−

s and B̄0
s → D+

s D∗−
s + D∗+

s D−
s are respectively

1.85% and 1.28%, we believe that the branching frac-
tion for the B̄0

s → D−
s D∗+

s0 decay, should not be so dif-
ferent from that and it will be seen through the chan-
nel B̄0

s → D−
s (DK)+. This is why it is really impor-

tant to have theoretical predictions for the DK invari-
ant mass distribution that considers the formation of
the D∗+

s0 (2317) state. At this point, it is worth stress-
ing that recently, in the reactions B0 → D−D0K+ and
B+ → D̄0D0K+ studied by the BABAR Collaboration
[31], an enhancement in the invariant DK mass in the
range 2.35 − 2.50 GeV is observed, which could be asso-
ciated with this D∗+

s0 (2317) state. It is also interesting
to quote that in a different reaction, B0

s → D̄0K−π+,
the LHCb Collaboration also finds an enhancement close
to the KD threshold in the D̄0K− invariant mass dis-
tribution, which is partly associated to the D∗

s0(2317)
resonance [32].

1 Throughout this work, the notation (DK)+ refers to the isoscalar
combination D0K+ + D+K0.
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FIG. 1: Mechanism for the decay B̄0
s → D−

s (DK)+.

In Fig. 1 we show the mechanism for the decay B̄0
s →

D−
s (DK)+. The idea is to take the dominant mechanism

for the weak decay of the B̄0
s into D−

s plus a primary cs̄
pair. The hadronization of the initial cs̄ pair is achieved
by inserting a qq̄ pair with the quantum numbers of the
vacuum: uū + dd̄ + ss̄ + cc̄, as shown in Fig. 1. There-
fore, the cs̄ pair is hadronized into a pair of pseudoscalar
mesons. This pair of pseudoscalar mesons is then allowed
to interact to produce the D∗+

s0 (2317) resonance, which is
considered here as mainly a DK molecule [15]. The idea
is similar to the one used in Ref. [33] for the formation of
the f0(980) and f0(500) scalar resonances in the decays
of B0 and B0

s .

The paper is organized as follows. In Section II we
settle the formalism for our study. Namely, in Subsec-
tion II A we study the (DK)+ elastic scattering ampli-
tude, and in Subsection II B we study the differential
decay width for the process B0

s → D−
s (DK)+. As said

before, there is not yet experimental information con-
cerning the differential decay width for this process. For
this reason, we will have to generate synthetic data for
this decay in order to explore if this reaction is suitable
for the study of the (DK)+ final state interactions and
the D∗+

s0 (2317) bound state. The generation and analy-
sis of these synthetic data, which constitutes the results
of the work, are done in Subsection III. Conclusions are
delivered in Section IV.

II. FORMALISM

In this work the influence of the presence of the
D∗+

s0 (2317) in the process B̄0
s → D−

s (DK)+ is investi-
gated. The D∗+

s0 (2317) is considered mainly as a bound
state of the DK system, so we address the elastic DK
scattering amplitude in Subsection II A. Then, the differ-
ential decay width for the B̄0

s → D−
s (DK)+ reaction in

terms of the DK invariant mass is considered in Subsec-
tion II B.

A. Elastic DK scattering amplitude

Let us start by discussing the S-wave amplitude for
the isospin I = 0 DK elastic scattering, which we denote
T . It can be written as

T −1(s) = V −1(s) − G(s) ⇒ T (s) = V (s)(1 + G(s)T (s)) ,
(1)

where G(s) is a loop function bearing the unitary or right
hand cut,

G(s) ≡ i

∫

d4l

(2π)4

1

l2 − m2
K + iǫ

1

(q − l)2 − m2
D + iǫ

, (2)

and s = q2 is the invariant mass squared of the DK
system. This function needs to be regularized, and this
is accomplished in this work by means of a subtraction
constant, a(µ). In this way, the G function can be written
as:

16π2G(s) = a(µ) + log
mDmK

µ2
+

∆

2s
log

m2
D

m2
K

+
ν

2s

(

log
s − ∆ + ν

−s + ∆ + ν
+ log

s + ∆ + ν

−s − ∆ + ν

)

, (3)

∆ = m2
D − m2

K , ν = λ1/2(s, m2
D, m2

K) ,

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx is the
Källen or triangle function. In Eq. (1), V (s) is the poten-
tial, typically extracted from some effective field theory,
although a different approach will be followed here (see
below).

The amplitude T (s) can also be written in terms of the
phase shift δ(s) and/or effective range expansion param-
eters,

T (s) = − 8π
√

s

pKctgδ − ipK
≃ − 8π

√
s

1

a
+

1

2
r0p2

K − ipK

, (4)

with

pK(s) =
λ1/2(s, M2

K , M2
D)

2
√

s
, (5)



3

the momentum of the K meson in the DK center of mass
system. Above, a and r0 are the scattering length and
the effective range, respectively.

In this channel and linked to it we find the D∗+
s0 (2317)

resonance, the object of study of this paper, below the
DK threshold, the latter being located roughly above
2360 MeV. This means that the amplitude has a pole at
the squared mass of this state, M2 ≡ s0, so that, around
the pole,

T (s) =
g2

s − s0

+ regular terms, (6)

being g the coupling of the state to the DK channel.
From Eqs. (1) and (6), we see that (the following deriva-
tives are meant to be calculated at s = s0):

1

g2
=

∂T −1(s)

∂s
=

∂V −1(s)

∂s
− ∂G(s)

∂s
. (7)

We have thus the following exact sum rule,

1 = g2

(

−∂G(s)

∂s
+

∂V −1(s)

∂s

)

. (8)

In Ref. [34] it has been shown, as a generalization of the
Weinberg compositeness condition [29] (see also Ref. [35]
and references therein), that the probability P of finding
the channel under study (in this case, DK) in the wave
function of the bound state is given by:

P = −g2 ∂G(s)

∂s
, (9)

while the rest of the r.h.s. of Eq. (8) represents the prob-
ability of other channels, and hence the probabilities add
up to 1. Finally, if one has an energy independent poten-
tial the second term of Eq. (8) vanishes, and then P = 1,
that is, the bound state is purely given by the channel
under consideration. In Ref. [34], these ideas are gener-
alized to the coupled channels case.

Let us now apply these ideas to the case of DK scat-
tering. From Eq. (1) it can be seen that the existence of
a pole implies

V −1(s) ≃ G(s0) + α(s − s0) + · · · , (10)

α ≡ ∂V −1(s)

∂s

∣

∣

∣

∣

s=s0

, (11)

in the neighbourhood of the pole. If we assume that the
energy dependence is smooth enough to allow us to retain
only the linear term in s, we can now write the amplitude
as

T −1(s) = G(s0) − G(s) + α(s − s0) , (12)

and the sum rule in Eq. (8) becomes:

PDK = 1 − αg2 . (13)

In this way, the quantity αg2 represents the probabil-
ity of finding other components beyond DK in the wave
function of D∗+

s0 (2317). The following relation can also
be deduced from Eqs. (13) and (9):

α = −1 − PDK

PDK

∂G(s)

∂s

∣

∣

∣

∣

s=s0

. (14)

We can now link this formalism with the results of
Ref. [28], where a reanalysis is done of the energy levels
found in the lattice simulations of Ref. [27]. In Ref. [28],
the following values for the effective range parameters are
found:

a0 = −1.4 ± 0.6 fm , r0 = −0.1 ± 0.2 fm . (15)

Also, in studying the D∗+
s0 (2317) bound state, a binding

energy B = MD +MK −MD∗+

s0

= 31±17 MeV is found in

Ref. [28]. The probability PDK is also studied, and the
value PDK = 0.72±0.12 is found. Hence, for our analysis,
in which synthetic data for the reaction B̄0

s → (DK)+D−
s

will be generated, we can start from the hypothesis that
a bound state exists in the DK channel, with a mass
MD∗+

s0

= 2317 MeV (the nominal one), and with a prob-

ability PDK = 0.75. This implies, from Eq. (14), the
value α = 2.06 · 10−3 GeV−2. Finally, for the subtraction
constant in the G function, Eq. (3), we shall take, as in
Ref. [15], the value a(µ) = −1.3 for µ = 1.5 GeV. Note
that ∂G(s)/∂s does not depend on µ or a(µ).

B. Decay amplitude and invariant DK mass
distribution in the B̄

0
s

→ D
−

s
(DK)+ decay

We now discuss the amplitude for the decay B0
s →

D−
s (DK)+ decay, and its relation to the DK elastic scat-

tering amplitude studied above. The basic mechanism for
this process is depicted in Fig. 1, where, from the s̄b ini-
tial pair constituting the B0

s , a c̄s pair and a s̄c pair are
created. The first pair produces the D−

s , and the DK
state arises from the hadronization of the second pair.
Let us consider in some more detail the hadronization
mechanism. To construct a two meson final state, the cs̄
pair has to combine with another q̄q pair created from
the vacuum. We introduce the following matrix,

M = vv̄ =







u
d
s
c







(

ū d̄ s̄ c̄
)

=









uū ud̄ us̄ uc̄
dū dd̄ ds̄ dc̄
sū sd̄ ss̄ sc̄
cū cd̄ cs̄ cc̄









, (16)

which fulfils:

M2 = (vv̄)(vv̄) = v(v̄v)v̄

=
(

ūu + d̄d + s̄s + c̄c
)

M . (17)
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The first factor in the last equality represents the q̄q cre-
ation. This matrix M is in correspondence with the me-
son matrix φ:

φ =













η√
3

+ π0

√
2

+ η′

√
6

π+ K+ D̄0

π− η√
3

− π0

√
2

+ η′

√
6

K0 D−

K− K̄0
√

2η′

√
3

− η√
3

D−
s

D0 D+ D+
s ηc













.

(18)
The hadronization of the cs̄ pair proceeds then through

the matrix element
(

M2
)

43
, which in terms of mesons

reads:

(φ2)43 = K+D0 + K0D+ + · · · , (19)

where only terms containing a KD pair are retained,
since coupled channels are not considered in this work.
We note that this KD combination has I = 0, as it
should, since it is produced from a cs̄, which has I = 0,
and the strong interaction hadronization which conserves
isospin (the q̄q with the quantum numbers of the vacuum
has I = 0).

Let t be the full amplitude for the process B0
s →

D−
s (DK)+, which already takes into account the final

state interaction of the DK pair. Also, let us denote by
v the bare vertex for the same reaction. To relate t and
v, that is, to take into account the final state interaction
of the DK pair, as sketched in Fig. 2, we write:

t = v + vG(s)T (s) = v(1 + G(s)T (s)) . (20)

From Eq. (1), the previous equation can also be written
as:

t = v
T (s)

V (s)
. (21)

Because of the presence of the bound state below thresh-
old, this process will depend strongly on s in the kinemat-
ical window ranging from threshold to 100 MeV above it,
so we can safely assume that t depends only on s. Hence,
the differential width for the process under consideration
is given by:

dΓ

d
√

s
=

1

32π2M2

B̄0
s

pD−

s

pK |t|2 = CpD−

s

pK

∣

∣

∣

∣

T (s)

V (s)

∣

∣

∣

∣

2

, (22)

where the bare vertex v has been absorbed in C, a global
(but otherwise not relevant) constant, and where pK is
given in Eq. (5) and pD−

s

is the momentum of the D−
s

meson in the rest frame of the decaying B̄0
s , given by:

pD−

s

=
λ1/2(M2

B̄0
s

, M2

D−

s

, s)

2MB̄0
s

. (23)

III. RESULTS

We want to investigate the presence of the D∗+
s0 (2317)

state in the (DK)+ scattering amplitude. In order to

Central Value 5 % 10 %

103 α (GeV−2) 2.06 +0.17

−0.40

+0.10

−1.09

MD∗

s0
(MeV) 2317 +14

−24

+21

−73

a(µ) −1.30 +0.15

−0.37

+0.27

−0.49

|g| (GeV) 11.0 +1.0

−0.6

+2.2

−1.1

a0 (fm) −1.0 +0.2

−0.2

+0.4

−0.5

r0 (fm) −0.14 +0.06

−0.03

+0.16

−0.04

PDK 0.75 +0.07

−0.06

+0.16

−0.11

TABLE I: Fitted parameters (α, M
D

∗+

s0

and a(µ)) and pre-

dicted quantities (|g|, a0, r0, PDK) for µ = 1.5 GeV. The
second column shows the central value of the fit, whereas the
third (fourth) column presents the errors (estimated by means
of MC simulation) when the experimental error is 5% (10%).

explore the sensitivity of the decay B̄0
s → (DK)+D−

s

to the presence of this bound state, we generate syn-
thetic data from our theory for the differential decay
width for the process with Eqs. (22) and (12). We gen-
erate 10 synthetic points in a range of 100 MeV start-
ing from threshold. To each centroid, we assign the
value obtained with the central values explained in Sub-
section II A (103α = 2.06 GeV−2, a(µ) = −1.3, and
MD∗+

s0

= 2317 MeV). We shall study two different cases,

in which each experimental point is given an error of a
5% or a 10% of the highest value of the differential de-
cay width. Taking these synthetic data as experiment-
given data, we perform the inverse problem of analysing
them with our theory. Obviously, the reproduction of
the data must be perfect, but we recall that the scope
here is to investigate the experimental accuracy that is
actually needed to obtain reliable values for the quanti-
ties fitted or predicted from our theory (MD∗+

s0
, a0, r0,

and PDK). The analysis of these synthetic data goes as
follows. We generate around 2 ·103 sets of random exper-
imental points, in which each centroid is varied around
its theoretical value according to a Gaussian distribution
with the error given to each point. For each of these sets
of random points, the parameters are fitted to the data.
After the whole run, a central range, containing a 68%
of the values of the considered quantities (the differential
decay width, the fitted parameters, and the predicted
values) is retained. It is worth stressing here that, since
the centroid of the experimental point in each set of ran-
dom experimental points is varied, a good reproduction
of the random synthetic data is quite natural but not
completely trivial.

The generated synthetic data are shown in Fig. 3. As
explained, they have two different error bars, the smaller
one corresponding to a 5% experimental error and the
larger one to a 10%. As commented above, they exactly
match the central curve (dash-dotted line) produced with
the central parameters of the theory. A solely phase space
distribution (i.e., a differential decay width proportional
to pD−

s

pK , but with no other kinematical dependence
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= +

D−
s D−

s D−
s

D

K

D D

K K

D

K

B̄0
s B̄0

s B̄0
s

t v v
G

T

FIG. 2: Diagrammatical interpretation of Eq. (20), in which DK final state interaction is taken into account for the decay
B̄0

s → D−
s (DK)+. The dark square represents the amplitude t for the process, in which the final state interaction is already

taken into account. The light square represents the bare vertex for the process, denoted by v. Finally, the circle represents the
hadronic amplitude for the elastic DK scattering.

d
Γ
/d

√
s

√
s (MeV)

B̄
0
s
→ D

−
s
(DK)+

phase space

10 %
5 %

central fit
synthetic data

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

2360 2380 2400 2420 2440 2460

FIG. 3: Differential decay width for the reaction B̄0
s →

D−
s (DK)+. The synthetic data (generated as explained in the

text) are shown with black points. The smaller (larger) error
bars correspond to a 5% (10%) experimental error. The dash-
dotted line represents the theoretical prediction obtained with
the central values of the fit. The light (dark) bands corre-
spond to the estimation of the error (by means of a MC sim-
ulation) when fitting the data with 5% (10%) experimental
error. The dashed line corresponds to a phase space distribu-
tion normalized to the same area in the range examined.

of dynamical origin) is also shown in the figure (dashed
line). The first important information to be extracted
from the figure is that the data are clearly incompatible
with this phase space distribution. This points to the
presence of a resonant or bound state or, at least, to
some strong final state interactions. Two error bands
are shown in the same figure, the lighter and smaller
(darker and larger) one corresponding to a 5% (10%)
experimental error. The fitted parameters (a(µ), MD∗+

s0

,

and α) are shown in Table I, together with their errors.2

Note that, with a 5% experimental error, we get MD∗+

s0
=

2 To avoid unphysical values of the fitted parameters a(µ) and
α, which could numerically reproduce each set of the randomly
generated experimental points, they are restricted to vary within
a sensible range, but making sure that this range is larger than
the error obtained for these two parameters and shown in Table I.

2317+14
−24 MeV, and if the error is increased to 10%, the

value is MD∗+

s0

= 2317+21
−73 MeV. Here we are mainly

concerned with the upper error, in the sense that it is the
one that defines if the bound state is clearly below the
DK threshold (which is slightly above 2360 MeV) or not.
Considering this error, we see that the mass obtained is
well below the threshold, at the level of 2σ (3σ) for the
case of a 5% (10%) experimental error. This is a good
information: experimental data with a 10% error, which
is clearly feasible with nowadays experimental facilities,
can clearly determine the presence of this below threshold
state D∗+

s0 (2317).

We can also determine PDK , the probability of finding
the DK channel in the D∗+

s0 (2317) wave function. It is
shown in the last row of Table I. As stated, the central
value PDK = 0.75 is the same as the initial one, but we
are here interested in the errors, which are small enough
even in the case of a 10% experimental error. This means
that with the analysis of such an experiment one could
address with enough accuracy the question of the molec-
ular nature of the state (D∗+

s0 (2317), in this case).

Finally, it is also possible to determine other parame-
ters related with DK scattering, such as the scattering
length (a0) and the effective range (r0). They are also
shown in Table I. They are compatible with the lattice
QCD studies presented in Refs. [27, 28]. Namely, the
results from Ref. [28] are shown in Eqs. (15), and their
mutual compatibility is clear.

IV. CONCLUSIONS

In the present work we have selected a reaction which
is both Cabbibo and color favored, the B̄0

s → D−
s (DK)+

weak decay, and have looked at the DK invariant mass
distribution from where we expect to obtain relevant
information on the nature of the D∗+

s0 (2317) resonance
when actual data are available. For this purpose we have
performed a simulation of the experiment taking informa-
tion from experiment about the mass of the D∗+

s0 (2317)
resonance and from a recent QCD lattice analysis on
an analytical representation of the KD scattering ampli-
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tude. This information has served us to make predictions
on the shape of the KD invariant mass distribution close
to the KD threshold. After that we have taken these
results and we have assumed they are actual ”experimen-
tal data”, associating to them an ”experimental error” of
5% or 10%. Then we have made a fit to these ”synthetic
data” in order to extract from there the KD scattering
amplitude, above and below threshold. We prove that
with both errors, typical of present experimental data of
spectra in B decays, one can obtain the KD scattering
amplitude with enough precision to predict that there
is a KD bound state. We also predict the scattering
lenght and effective range of the KD interaction and,
very important, we show that we can predict, with rel-
atively small error, the probability of the mesonic KD
component in the wave function of the D∗+

s0 (2317) reso-
nance. From the QCD lattice results one induces about
70% probability and we show that this number can be
obtained from the analysis of the B decay spectra with
sufficient precission to make the number significative of
the main nature of the D∗+

s0 (2317) resonance as a basi-
cally KD molecular state with a smaller mixture of other
components.

The study done here should stimulate the implementa-

tion of the experiment, for which we have made estimates
of a relatively large branching fraction.
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