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Investigating the nature of light scalar mesons with semileptonic decays of D mesons
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We study the semileptonic decays ofD+
s , D+, and D0 mesons into the light scalar mesons [f0(500),

K∗
0 (800), f0(980), and a0(980)] and the light vector mesons [ρ(770), ω(782), K∗(892), and φ(1020)].

With the help of a chiral unitarity approach in coupled channels, we compute the branching fractions
for scalar meson processes of the semileptonic D decays in a simple way. Using current known values
of the branching fractions, we make predictions for the branching fractions of the semileptonic decay
modes with other scalar and vector mesons. Furthermore, we calculate the π+π−, πη, πK, and
K+K− invariant mass distributions in the semileptonic decays of D mesons, which will help us
clarify the nature of the light scalar mesons.

PACS numbers: 13.20.Fc, 13.75.Lb

I. INTRODUCTION

The recent experimental situation in hadron physics
enables us to utilize huge amounts of data on heavy
hadrons, which contain charm or bottom quark(s), for
the investigation of hadron structures. Especially, de-
cay properties of heavy mesons can shed more light on
the nature of the light scalar mesons [f0(500), K

∗
0 (800),

f0(980), and a0(980)], which has been a hot topic in
hadron physics [1]. For instance, the decay B0

s →
J/ψπ+π− has been experimentally measured in Refs. [2–
6] for the study of the f0(500) and f0(980) resonances,
and they observed a pronounced peak for the f0(980)
while no evident signal was found for the f0(500). Then
a theoretical study [7] followed the experiments and re-
produced ratios of experimental branching fractions at a
quantitative level, pointing out that J/ψ + (ss̄) produc-
tion in the B0

s decay and a hadronization of ss̄ to KK̄ are
essential to understand the branching fractions of the B0

s

decay into J/ψf0(980). In the theoretical study, the final
state interaction between two pseudoscalar mesons is cal-
culated with the so-called chiral unitary approach [8–16],
in which the light scalar mesons are obtained as dynam-
ically generated resonances, and it is concluded that the
f0(980) has a substantial fraction of the strange quarks.
The same hadronization scheme has been employed in
theoretical studies in Refs. [7, 17–19].

In this paper, we consider the semileptonic decay of
D → hadron(s) + l+νl, extending a discussion for the
semileptonic B decays intoD∗

s0(2317) andD
∗
0(2400) reso-

nances in Ref. [19]. The semileptonic D decays have been
experimentally investigated in, e.g., BES [20, 21], FO-
CUS [22, 23], BaBar [24, 25], and CLEO [26–30]. Here,
in order to grasp how the semileptonic decay takes place,
let us consider the D+

s meson. Since the constituent

∗Electronic address: sekihara@rcnp.osaka-u.ac.jp
†Electronic address: oset@ific.uv.es

quark component of D+
s is cs̄, we expect a Cabibbo fa-

vored semileptonic decay of c → s l+ νl and hence the
decay D+

s → (ss̄) l+ νl with ss̄ being the vector meson
φ(1020), which is depicted in Fig. 1(a). Actually this
semileptonic decay mode has been observed in experi-
ments, and its branching fraction to the total decay width
is B[D+

s → φ(1020) e+ νe] = 2.49±0.14% [1] (see Table I,
in which we list branching fractions for the semileptonic
decays of D+

s , D
+, and D0 reported by the Particle Data

Group). On the other hand, we cannot straightforwardly
extend the discussion to the scalar meson productions
in the final state of the semileptonic decays, since the
structure of the scalar mesons, whether qq̄ or some ex-
otic one, is still controversial. In this study we consider
the production of the f0(980) or f0(500) as dynamically
generated resonances in the semileptonicD+

s decay, so we
have to introduce an extra q̄q pair to make a hadroniza-
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FIG. 1: (a) Semileptonic decay of D+
s into l+νl and a primary

ss̄ pair. (b) Semileptonic decay of D+
s into l+νl and two

pseudoscalar mesons P with a hadronization.
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TABLE I: Branching fractions for the semileptonic decays of
D+

s , D+, and D0 reported by the Particle Data Group [1]. In
this Table we only show decay modes relevant to this study.

D+
s

Mean life [s] (500 ± 7) × 10−15

B[φ(1020)e+νe] (2.49± 0.14) × 10−2

B[ω(782)e+νe] < 2.0× 10−3

B[K∗(892)0e+νe] (1.8± 0.7) × 10−3

B[f0(980)e
+νe, f0(980) → π+π−] (2.00± 0.32) × 10−3

D+

Mean life [s] (1040 ± 7)× 10−15

B[K̄∗(892)0e+νe, K̄
∗(892)0 → K−π+] (3.68± 0.10) × 10−2

B[(K−π+)s-wavee
+νe] (2.32± 0.10) × 10−3

B[K̄∗(892)0µ+νµ, K̄
∗(892)0 → K−π+] (3.52± 0.10) × 10−2

B[ρ(770)0e+νe] (2.18+0.17
−0.25)× 10−3

B[ρ(770)0µ+νµ] (2.4± 0.4) × 10−3

B[ω(782)e+νe] (1.82± 0.19) × 10−3

B[φ(1020)e+νe] < 9× 10−5

D0

Mean life [s] (410.1 ± 1.5) × 10−15

B[K∗(892)−e+νe] (2.16± 0.16) × 10−2

B[K∗(892)−µ+νµ] (1.90± 0.24) × 10−2

B[K−π0e+νe] (1.6+1.3
−0.5)× 10−2

B[K̄0π−e+νe] (2.7+0.9
−0.7)× 10−2

B[ρ(770)−e+νe] (1.9± 0.4) × 10−3

tion as shown in Fig. 1(b). The introduction of an ex-
tra q̄q pair to make a hadronization has been performed
in Refs. [7, 17–19]. In this study we apply the same
method of the hadronization to the semileptonic decays
of D mesons so as to investigate the nature of the light
scalar mesons.

Utilizing the semileptonic decay of a heavy hadron pro-
vides us with two advantages when we investigate the
internal structure of hadrons in the final state of the
semileptonic decay. First, Cabibbo favored and sup-
pressed processes enable us to specify flavors of quarks
contained in final state hadrons. Second, the semilep-
tonic decay of the heavy hadron to two light hadrons
+l+νl brings a suitable condition to measure effects of
the final state interaction of the two light hadrons, since
the leptons and hadrons in the final state interact with
each other only weakly.

Theoretical work on the issues of the semileptonic D
decays is already available. In Ref. [31], using QCD sum
rules, the D+

s and D+ semileptonic decays into f0(980)
are considered concluding that the importance of up and
down quarks in the f0(980) is not negligible. In Ref. [32]
the D+

s → f0(980)e
+νe reaction is analyzed from the

point of view of the f0(980) being a qq̄ state, concluding
that ss̄ component of the f0(980) may not be dominant.
In Ref. [33] the D+

s → π+π−e+νe reaction is studied con-
cluding that it supports the dominant four quark nature
of the f0(500) and f0(980). Similar conclusions about
the four quark nature of the scalar mesons are reached
in the work of [34, 35]. Research along the same line is
done in Ref. [36], looking for likely reasonable ratios that
would help distinguish between the two and four quark
structure of the scalar mesons.
Another line of research is done using light-cone sum

rules to evaluate the form factors appearing in the pro-
cess [37]. This line of research is applied in many related
processes, rare decays like Bs → π+π−l+l− in [38], Bs →
K(∗)lν̄ in [39], B0

(s) → J/ψπ+π− and Bs → π+π−µ+µ−

decays in [40], or semileptonic decays [41–43]. In some
cases the meson final state interaction is further imple-
mented using the Omnes representation [37, 42], while in
other cases Breit–Wigner or Flatte structures are imple-
mented and parametrized to account for the resonances
observed in the experiment.
In contrast to these pictures, in the present study we

treat the scalar mesons as dynamically generated reso-
nances from two pseudoscalar mesons in the so-called chi-
ral unitary approach. Then we describe the semileptonic
decays of D mesons in an economical way for hadroniza-
tion as done in Refs. [7, 17–19].
This paper is organized as follows. In Sec. II we for-

mulate the semileptonic decay widths of D+
s , D

+, and
D0 into the light scalar and vector mesons and give our
model of the hadronization. We also calculate meson–
meson scattering amplitudes to generate dynamically the
scalar mesons. In Sec. III we show our numerical results
of the semileptonic decay widths of D+

s , D
+, and D0.

We predict branching fractions which are not reported
by the Particle Data Group and show invariant mass dis-
tributions of the two pseudoscalar mesons from the scalar
and vector mesons. Section IV is devoted to drawing the
conclusion of this study.

II. FORMULATION

In this section we formulate the semileptonic decay
widths of D+

s , D
+, and D0 into light scalar and vector

mesons:

D+
s , D

+, D0 →
{

Sl+νl, S → PP,

V l+νl,
(1)

where S, V , and P represent the light scalar, vector, and
pseudoscalar mesons, respectively, and the lepton flavor
l can be e and µ. Explicit decay modes are listed in Ta-
ble II. In order to formulate the decay width, we consider
first the semileptonic decay amplitudes and widths in
Section IIA and next hadronizations into scalar and vec-
tor mesons in Section II B. Scattering amplitudes of two
pseudoscalar mesons are then constructed in the chiral
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TABLE II: Semileptonic decay modes ofD+
s , D+, andD0 con-

sidered in this study. The lepton flavor l is e and µ. We also
specify Cabibbo favored/suppressed process for each decay
mode; the semileptonic decay into two pseudoscalar mesons
is judged with the discussions given in Sec. II B.

D+
s

φ(1020) l+ νl favored

K∗(892)0 l+ νl suppressed

π+π− l+ νl favored

K+K− l+ νl favored

π−K+ l+ νl suppressed

D+

K̄∗(892)0 l+ νl favored

ρ(770)0 l+ νl suppressed

ω(782) l+ νl suppressed

π+π− l+ νl suppressed

π0η l+ νl suppressed

K+K− l+ νl suppressed

π+K− l+ νl favored

D0

K∗(892)− l+ νl favored

ρ(770)− l+ νl suppressed

π−η l+ νl suppressed

K0K− l+ νl suppressed

π−K̄0 l+ νl favored

unitary approach for the description of the scalar mesons
in Section II C. Throughout this study we assume isospin
symmetry for light hadrons.

A. Amplitudes and widths of semileptonic D

decays

In general, we can express the decay amplitude of D →
hadron(s) + l+νl, TD, by using the propagator of the W
boson and its couplings to leptons and quarks, which can
be replaced with the Fermi coupling constant GF. At this
stage we do not fix the number of the final state hadrons.
In a similar manner to the formulation in Ref. [19], the
explicit form of TD becomes

TD = −iGF√
2
LαQα × Vhad. (2)

The factor Vhad consists of the wave function of quarks in-
side the D meson, the hadronization contribution in the
final state, and the Cabibbo–Kobayashi–Maskawa ma-
trix element for the transition from the charm to a light
quark. The explicit form of Vhad will be determined in
the next subsection. The lepton and quark parts of the

W boson couplings are defined as.

Lα ≡ uνγ
α(1− γ5)vl, Qα ≡ uqγα(1− γ5)uc, (3)

respectively, where uν , vl, uq, and uc are the Dirac
spinors corresponding to the neutrino, lepton l+, light
quark q, and charm quark, respectively.
Let us now calculate the squared amplitude for the

semileptonic D decay widths, in which we average (sum)
the polarizations of the initial-state quarks (final state
leptons and quarks). Therefore, in terms of the ampli-
tude in Eq. (2), we can obtain the squared decay ampli-
tude as

1

2

∑

pol

|TD|2 =
|GFVhad|2

4

∑

pol

|LαQα|2 (4)

where the factor 1/2 comes from the average of the charm
quark polarization in the initial state. We can further
calculate the lepton and quark parts in the amplitude (3),
by using the conventions of the Dirac spinors and traces
of Dirac γ matrices summarized in Appendix A, which
lead to

∑

pol

LαL†β =tr

[

γα(1 − γ5)
/pl −ml

2ml
(1 + γ5)γ

β /pν +mν

2mν

]

=2
pαl p

β
ν + pαν p

β
l − pl · pνgαβ + iǫαβρσplρpνσ

mlmν
,

(5)

where pl and pν (ml and mν) are momenta (masses) of
the lepton l+ and neutrino, respectively, and

∑

pol

QαQ
†
β =tr

[

γα(1 − γ5)
/pc +mc

2mc
(1 + γ5)γβ

/pq +mq

2mq

]

=2
pcαpqβ + pqαpcβ − pc · pqgαβ + iǫαβρσp

ρ
cp

σ
q

mcmq
,

(6)

with the momenta (masses) of the charm and light
quarks, pc and pq (mc and mq), respectively.

1 Then with
a straightforward calculation we have

∑

pol

|LαQα|2 =
16(pl · pc)(pν · pq)
mlmνmcmq

. (7)

Now let us rewrite the momenta of quarks by using those
of hadrons in the following manner:

pµc
mc

=
pµD
mD

,
pµq
mq

=
pµR
mR

, (8)

1 The momentum pq is for a quark in the primary qq̄ pair after
the W boson emission, which means that the momentum pq is
carried by the constituent quark. Accordingly, mq is the mass of
the constituent quark rather than of the current quark. In this
sense, mq respects the flavor SU(3) symmetry.
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where we have neglected the relative internal momenta
of the quarks, which are typically small compared to the
masses of quarks. Here mD and mR (pD and pR) are
the masses (momenta) of the D and R = S, V mesons,
respectively. With these translations the square of LαQα

with polarization summation becomes

∑

pol

|LαQα|2 =
16(pl · pD)(pν · pR)
mlmνmDmR

. (9)

Therefore, we obtain the squared decay amplitude as:

1

2

∑

pol

|TD|2 =
4|GFVhad|2
mlmνmDmR

(pl · pD)(pν · pR). (10)

With the above squared amplitude we can compute
the decay width. We will be interested in two types
of decays: three-body decays for vector mesons such as
D+

s → φ(1020) e+ νe, and four-body decays for scalar
mesons constructed from two pseudoscalar mesons such
as D+

s → π+π− e+ νe. As it will be seen, both decay
types can be described by the amplitude TD with differ-

ent assumptions for Vhad: V
(v)
had and V

(s)
had respectively.

The formula for the three-body decay is given by [1]:

Γ3 =
mlmν

128π5m2
D

∫

dM
(lν)
inv Pcmp̃ν

∫

dΩ

∫

dΩ̃ν
1

2

∑

pol

|TD|2,

(11)
where Pcm is the momentum of the final state vector
meson in theD rest frame and p̃ν is the momentum of the
neutrino in the lν rest frame, both of which are evaluated
as

Pcm =
λ1/2(m2

D, [M
(lν)
inv ]2, m2

V )

2mD
, (12)

p̃ν =
λ1/2([M

(lν)
inv ]2, m2

l , m
2
ν)

2M
(lν)
inv

, (13)

with the Källen function λ(x, y, z) = x2 + y2 + z2 −
2xy − 2yz − 2zx and the vector meson mass mV . The
tilde on characters for leptons indicates that they are
evaluated in the lν rest frame. The solid angles Ω and
Ω̃ν are for the vector meson in the D rest frame and for

the neutrino in the lν rest frame, respectively, and M
(lν)
inv

is the lν invariant mass. The integral range of M
(lν)
inv is

[ml+mν, mD−mV ]. Substituting the squared amplitude
with that in Eq. (10), we obtain

Γ3 =
|GF|2

32π5m3
DmV

∫

dM
(lν)
inv Pcmp̃ν

∫

dΩ

∫

dΩ̃ν

×
∣

∣

∣V
(v)
had

∣

∣

∣

2

(pl · pD)(pν · pV ). (14)

In general, the hadronization part Vhad may depend on
the energy and scattering angles, and hence one cannot

put it out of the integral. In this study, however, V
(v)
had

will be simply constructed, so that this will not depend

on M
(lν)
inv nor the angle, as we will see in the next sub-

section. Furthermore, the integral of the solid angle Ω̃ν

is performed in the lν rest frame as [19]

∫

dΩ̃ν(pl · pD)(pν · pV )

=

∫

dΩ̃ν(ẼlẼD + p̃ν · p̃D)(ẼνẼV − p̃ν · p̃D)

= 4πẼlẼνẼDẼV − 4π

3
|p̃ν |2|p̃D|2

= π[M
(lν)
inv ]2

(

ẼDẼV − 1

3
|p̃D|2

)

, (15)

where Ẽ and p̃ are the energies and momenta in the lν
rest frame. At the first equality we have used relations
p̃l = −p̃ν and p̃V = p̃D, while at the third equality
we have used relations obtained by neglecting masses of
leptons:

Ẽl = Ẽν = |p̃ν | =
M

(lν)
inv

2
. (16)

The energies and momentum of hadrons in the lν rest
frame can be exactly evaluated as

ẼD =
m2

D + [M
(lν)
inv ]2 −m2

V

2M
(lν)
inv

, (17)

ẼV =
m2

D − [M
(lν)
inv ]2 −m2

V

2M
(lν)
inv

, (18)

and |p̃D|2 = Ẽ2
D −m2

D. As a consequence, we have

Γ3 =

∣

∣

∣GFV
(v)
had

∣

∣

∣

2

8π3m3
DmV

∫

dM
(lν)
inv Pcmp̃ν [M

(lν)
inv ]2

×
(

ẼDẼV − 1

3
|p̃D|2

)

, (19)

where we have performed the integral of the solid angle
Ω.
In a similar way, we can evaluate the decay width for

the four-body final state. The formula for the four-body
decay is given by

Γ4 =
mlmν

2048π8m2
D

∫

dM
(hh)
inv

∫

dM
(lν)
inv P

′
cmp̃hp̃ν

×
∫

dΩ′
∫

dΩ̃h

∫

dΩ̃ν
1

2

∑

pol

|TD|2, (20)

where M
(hh)
inv is the invariant mass of the two-meson sys-

tem (hh), P ′
cm is the center-of-mass momentum of the
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two-meson system in the D rest frame and p̃h is the mo-
mentum of a meson in the hh rest frame, both of which
are evaluated as

P ′
cm =

λ1/2(m2
D, [M

(hh)
inv ]2, [M

(lν)
inv ]2)

2mD
, (21)

p̃h =
λ1/2([M

(hh)
inv ]2, m2

h, m
′2
h )

2M
(hh)
inv

, (22)

with the meson masses mh and m′
h. The momentum of

the neutrino in the lν rest frame p̃ν is given in Eq. (13).

The solid angles Ω′ and Ω̃h are for the two-meson system
in the D rest frame and for a meson in the hh rest frame,
respectively. The tilde on characters for mesons indicates
that they are evaluated in the hh rest frame. Since we
are interested in the meson–meson invariant mass distri-
butions for the semileptonic D decay, we calculate the

differential decay width dΓ4/dM
(hh)
inv . Then in a similar

manner to the case of the three-body decay, we have

dΓ4

dM
(hh)
inv

=

∣

∣

∣GFV
(s)
had

∣

∣

∣

2

32π5m3
DM

(hh)
inv

∫

dM
(lν)
inv P

′
cmp̃hp̃ν [M

(lν)
inv ]2

×
(

ẼDẼS − 1

3
|p̃D|2

)

, (23)

where we have performed the integrals with respect to

the solid angles Ω′ and Ω̃h. We mention that V
(s)
had will

be simply constructed as well, so that this can be put
out of the integral, as we will see in the next subsection.

The two-meson invariant mass M
(hh)
inv can take a value

within [mh+m
′
h, mD−ml−mν ], while the integral range

of M
(lν)
inv is [ml + mν , mD −M

(hh)
inv ]. The energies and

momentum of hadrons in the parentheses can be exactly
evaluated as

ẼD =
m2

D + [M
(lν)
inv ]2 − [M

(hh)
inv ]2

2M
(lν)
inv

, (24)

ẼS =
m2

D − [M
(lν)
inv ]2 − [M

(hh)
inv ]2

2M
(lν)
inv

, (25)

and |p̃D|2 = Ẽ2
D −m2

D.

B. Hadronizations

Next we fix the mechanism for the appearance of the
scalar and vector mesons in the final state of the semilep-
tonic decay. We here note that, for the scalar and vec-
tor mesons in the final state, the hadronization processes
should be different from each other according to their

structure. For the scalar mesons, we employ the chi-
ral unitary approach [8–16], in which the scalar mesons
are dynamically generated from the interaction of two
pseudoscalar mesons governed by the chiral Lagrangians.
Therefore, in this picture the light quark–antiquark pair
after the W boson emission gets hadronized by adding
an extra q̄q with the quantum number of the vacuum,
ūu + d̄d + s̄s, which results in two pseudoscalar mesons
in the final state [see Fig. 1(b)]. Then the scalar mesons
are obtained as a consequence of the final state interac-
tion of the two pseudoscalar mesons as diagrammatically
shown in Fig. 2. For the vector mesons, on the other
hand, hadronization with an extra q̄q is unnecessary since
they are expected to consist genuinely of a light quark–
antiquark pair [see Fig. 1(a)].

1. Scalar mesons

First we consider processes with the scalar mesons in
the final state as the dynamically generated resonances.
The basic idea of the hadronization with an extra q̄q with
the quantum number of the vacuum has already shown
in Refs. [7, 17–19]. We start with the qq̄ matrix M :

M =







uū ud̄ us̄

dū dd̄ ds̄

sū sd̄ ss̄






. (26)

One can easily check that this matrix has the property

M ·M =M(ūu+ d̄d+ s̄s). (27)

With this property, a qf q̄f ′ pair after the W boson emis-
sion can be added by an extra q̄q to be

qf q̄f ′ → (M ·M)ff ′ , (28)

where f denotes the flavor of light quarks: q1 = u, q2 = d,
and q3 = s. Next we rewrite the matrix M in terms of
the matrix φ for pseudoscalar mesons

qf

qf ′

P

P

+
qf

qf ′

P

P

FIG. 2: Diagrammatic representation of the direct plus rescat-
tering processes for two pseudoscalar mesons. The solid and
dashed lines denote quarks and pseudoscalar mesons, respec-
tively. The shaded ellipses indicate the hadronization of a
quark–antiquark pair into two pseudoscalar mesons, while
the open circle indicates the rescattering of two pseudoscalar
mesons.
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φ =









1√
2
π0 + 1√

3
η + 1√

6
η′ π+ K+

π− − 1√
2
π0 + 1√

3
η + 1√

6
η′ K0

K− K̄0 − 1√
3
η +

√

2
3η

′









, (29)

where we have taken into account the η–η′ mixing in
a standard way [44]. In this scheme we can calculate
the weight of each pair of pseudoscalar mesons in the
hadronization. Namely, the ss̄ pair gets hadronized as
ss̄(ūu+ d̄d+ s̄s) ≡ (φ · φ)33, where

(φ · φ)33 = K−K+ + K̄0K0 +
1

3
ηη. (30)

Here and in the following we omit the η′ contribution
since η′ is irrelevant to the description of the scalar
mesons due to its large mass. In similar manners, the
ds̄, sd̄, dd̄, sū, and dū pairs get hadronized as

(φ · φ)23 = π−K+ − 1√
2
π0K0, (31)

(φ · φ)32 =K−π+ − 1√
2
K̄0π0, (32)

(φ · φ)22 = π−π+ +
1

2
π0π0 +

1

3
ηη −

√

2

3
π0η +K0K̄0,

(33)

(φ · φ)31 =
1√
2
π0K− + π−K̄0, (34)

and

(φ · φ)21 =
2√
3
π−η +K0K−, (35)

respectively.
By using these weights, we can express the hadroniza-

tion amplitude for the scalar mesons, V
(s)
had, in terms of

two pseudoscalar mesons. For instance, we want to recon-
struct f0(500) and f0(980) from the π+π− system in the
D+

s → π+π− l+ νl decay. Because of the quark configu-
ration in the parent particle D+

s , in this decay the π+π−

system should be obtained from the hadronization of the
ss̄ pair and the rescattering process for two pseudoscalar
mesons, as seen in Fig. 2, with the weight in Eq. (30).
Therefore, for the D+

s → π+π− l+ νl decay mode we can
express the hadronization amplitude with a prefactor C
and the Cabibbo–Kobayashi–Maskawa matrix elements
Vcs as

V
(s)
had[D

+
s , π

+π−] = CVcs

(

GK+K−TK+K−→π+π−

+GK0K̄0TK0K̄0→π+π− +
1

3
· 2 · 1

2
GηηTηη→π+π−

)

.

(36)

In this equation, the decay mode is abbreviated as
[D+

s , π
+π−], and G and T are the loop function and

scattering amplitude of two pseudoscalar mesons, respec-
tively, whose formulation are given in Sec. II C. We have
introduced extra factors 2 and 1/2 for the identical par-
ticles ηη. The former factor 2 comes from the two ways
of annihilating the ηη operator in Eq. (30) by the |ηη〉
state as in the usual manner for effective Lagrangians,
while the latter one 1/2 is the symmetry factor for the
ηη loop. The scalar mesons f0(500) and f0(980) appear
in the rescattering process and exist in the scattering am-
plitude T for two pseudoscalar mesons. It is important
that this is a Cabibbo favored process with Vcs. Further-
more, since the ss̄ pair is hadronized, this is sensitive to
the component of the strange quark in the scalar mesons.
In this study we assume that C is a constant, and hence

the hadronization amplitude V
(s)
had is a function only of

the invariant mass of two pseudoscalar mesons. Here we
emphasize that the prefactor C should be common to all
reactions for scalar meson productions, because in the
hadronization the SU(3) flavor symmetry is reasonable,
i.e., the light quark–antiquark pair qf q̄f ′ hadronizes in
the same way regardless of the quark flavor f . In this
sense we obtain

V
(s)
had[D

+
s , K

+K−] = CVcs

(

1 +GK+K−TK+K−→K+K−

+GK0K̄0TK0K̄0→K+K− +
1

3
· 2 · 1

2
GηηTηη→K+K−

)

,

(37)

for the D+
s → K+K− l+ νl decay. In this case we have

to take into account the direct production of the two
pseudoscalar mesons without rescattering (the first dia-
gram in Fig. 2), which results in the unity in the paren-
theses. On the other hand, for the D+

s → π−K+ l+ νl
decay mode the π−K+ system should be obtained from
the hadronization of ds̄ and hence this is a Cabibbo sup-
pressed decay mode. The hadronization amplitude is ex-
pressed as

V
(s)
had[D

+
s , π

−K+] = CVcd

(

1 +Gπ−K+Tπ−K+→π−K+

− 1√
2
Gπ0K0Tπ0K0→π−K+

)

. (38)

In a similar manner we can construct every hadroniza-
tion amplitude for the scalar meson. The resulting ex-
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pressions are as follows:

V
(s)
had[D

+, π+π−] = CVcd

(

1 +Gπ+π−Tπ+π−→π+π−

+
1

2
· 2 · 1

2
Gπ0π0Tπ0π0→π+π− +

1

3
· 2 · 1

2
GηηTηη→π+π−

+GK0K̄0TK0K̄0→π+π−

)

, (39)

V
(s)
had[D

+, π0η] = CVcd

(

−
√

2

3
−
√

2

3
Gπ0ηTπ0η→π0η

+GK0K̄0TK0K̄0→π0η

)

, (40)

V
(s)
had[D

+, K+K−] = CVcd

(

Gπ+π−Tπ+π−→K+K−

+
1

2
· 2 · 1

2
Gπ0π0Tπ0π0→K+K− +

1

3
· 2 · 1

2
GηηTηη→K+K−

−
√

2

3
Gπ0ηTπ0η→K+K− +GK0K̄0TK0K̄0→K+K−

)

,

(41)

V
(s)
had[D

+, π+K−] = CVcs

(

1 +Gπ+K−Tπ+K−→π+K−

− 1√
2
Gπ0K̄0Tπ0K̄0→π+K−

)

, (42)

V
(s)
had[D

0, π−η] = CVcd

(

2√
3
+

2√
3
Gπ−ηTπ−η→π−η

+GK0K−TK0K−→π−η

)

, (43)

V
(s)
had[D

0, K0K−] = CVcd

(

1 +
2√
3
Gπ−ηTπ−η→K0K−

+GK0K−TK0K−→K0K−

)

, (44)

V
(s)
had[D

0, π−K̄0] = CVcs

(

1 +
1√
2
Gπ0K−Tπ0K−→π−K̄0

+Gπ−K̄0Tπ−K̄0→π−K̄0

)

. (45)

The hadronization amplitudes V
(s)
had[D

+
s , π

−K+],

V
(s)
had[D

+, π+K−], and V
(s)
had[D

0, π−K̄0] are further
simplified by using the isospin symmetry as

V
(s)
had[D

+
s , π

−K+] = CVcdAπK , (46)

V
(s)
had[D

+, π+K−] = V
(s)
had[D

0, π−K̄0] = CVcsAπK , (47)

where AπK is a function of the invariant mass of two
pseudoscalar mesons and is defined with the scattering
amplitude in the isospin basis as

AπK ≡ 1 +GπKTπK(I=1/2)→πK(I=1/2). (48)

In a similar manner, we simplify the hadroniza-

tion amplitudes V
(s)
had[D

+, π0η], V
(s)
had[D

0, π−η], and

V
(s)
had[D

0, K0K−] as

V
(s)
had[D

+, π0η] = − 1√
2
V

(s)
had[D

0, π−η] = −
√

2

3
CVcdBπη,

(49)

V
(s)
had[D

0, K0K−] = CVcdBKK̄ , (50)

with

Bπη ≡ 1 +GπηTπη→πη −
√
3

2
GKK̄TKK̄(I=1)→πη. (51)

BKK̄ ≡1 +GKK̄TKK̄(I=1)→KK̄(I=1)

− 2√
3
GπηTπη→KK̄(I=1). (52)

From the above expressions one can easily spec-
ify Cabibbo favored and suppressed processes for the
semileptonic decays into two pseudoscalar mesons, which
are listed in Table II.
Finally we note that the use of a constant C factor in

our approach gets support from the work of Ref. [41]. The
evaluation of the matrix elements in these processes is
difficult and problematic. There are however some cases
where the calculations can be kept under control. For
the case of small recoil, namely when final pseudoscalars
move slow, it can be explored in the heavy meson chiral
perturbation theory [45]. Detailed calculations for the
case of semileptonic decay are done in [41]. There one
can see that for large values of the invariant mass of the
lepton system the form factors can be calculated and the
relevant ones in s wave that we need here are smooth in
the range of the invariant masses of the pairs of mesons
that we use here. To be able to use this behaviour we
should prove that in our case the invariant masses of the
lepton pair are large, but indeed, it was shown in the
study of the semileptonic B decays [19] (and can be done
also here) that the mass distribution of the lepton pair
accumulates at the upper end of the phase space. There
is also another limit, at large recoil, where an approach
that combines both hard-scattering and low-energy in-
teractions has been developed is also available [37], but
this is not the case here.

2. Vector mesons

Next we consider processes with the vector mesons
in the final state. As we have already mentioned,
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hadronization with an extra q̄q is unnecessary for the
vector mesons. As a consequence, we can formulate the

hadronization amplitude for vector mesons, V
(v)
had, in a

very simple way.
In order to see this, we consider the semileptonic de-

cay D+
s → φ(1020) l+ νl as an example. The decay pro-

cess is diagrammatically represented in Fig. 1(a), and the

hadronization amplitude V
(v)
had can be expressed with a

prefactor C′ and the Cabibbo–Kobayashi–Maskawa ma-
trix element Vcs as

V
(v)
had[D

+
s , φ] = C′Vcs, (53)

where the decay mode is abbreviated as [D+
s , φ] in the

equation. Here we emphasize that the prefactor C′

should be common to all reactions for vector meson pro-
ductions, as in the case of the scalar meson productions,
because the SU(3) flavor symmetry is reasonable in the
hadronization, i.e., the light quark–antiquark pair qf q̄f ′

hadronizes in the same way regardless of the quark flavor
f . We further assume that C′ is a constant again. This
formulation is straightforwardly applied to other vector
meson productions and we obtain the hadronization am-
plitude for vector mesons:

V
(v)
had[D

+
s , K

∗0] = C′Vcd, (54)

V
(v)
had[D

+, K̄∗0] = C′Vcs, (55)

V
(v)
had[D

+, ρ0] = − 1√
2
C′Vcd, (56)

V
(v)
had[D

+, ω] =
1√
2
C′Vcd, (57)

V
(v)
had[D

0, K∗−] = −C′Vcs, (58)

V
(v)
had[D

0, ρ−] = C′Vcd, (59)

where we have usedK∗, ρ and ω states in the isospin basis
summarized in Appendix A. We note that these equa-
tions clearly indicate Cabibbo favored and suppressed
processes with the Cabibbo–Kobayashi–Maskawa matrix
elements Vcs and Vcd, respectively.

C. Scattering amplitudes of two pseudoscalar

mesons in chiral unitary approach

For the scattering amplitude of two pseudoscalar
mesons, we employ the so-called chiral unitary ap-
proach [8–16], which we briefly explain in this subsection.
In this approach we solve a coupled-channels Bethe–
Salpeter equation in an algebraic form

Tij(s) = Vij(s) +
∑

k

Vik(s)Gk(s)Tkj(s), (60)

where i, j, and k are channel indices, s is the Mandelstam
variable of the scattering, V is the interaction kernel, and
G is the two-body loop function. For the hadronization in
the previous subsection we need three types of coupled-
channels systems: the (Q, S) = (0, 0) system, for which
we introduce six channels labeled by the indices i = 1,
. . ., 6 in the order π+π−, π0π0, K+K−, K0K̄0, ηη, and
π0η, the KK̄(I = 1)-πη system, and the πK(I = 1/2)-
ηK system.
In this study the interaction kernel Vij = Vji is taken

as the simplest one, that is, the leading-order s-wave in-
teraction obtained from the chiral perturbation theory.
The interaction kernel for (Q, S) = (0, 0) is summarized
as

V11 = 2V13 = 2V14 = 2
√
2V23 = 2

√
2V24

= V33 = 2V34 = V44 = − s

2f2
,

V12 = −s−m2
π√

2f2
,

V15 =

√
2

3
V22 =

√
2V25 =

1√
2
V66 = − m2

π

3
√
2f2

,

V16 = V26 = V56 = 0,

V35 = V45 = −
9s− 2m2

π − 6m2
η

12
√
2f2

,

V36 = −V46 = −
9s−m2

π − 8m2
K − 3m2

η

12
√
3f2

,

V55 =
7m2

π − 16m2
K

18f2
,

(61)

where f is the pion decay constant. One must remem-
ber that in the chiral unitary approach when calculat-
ing T = (1 − V G)−1V one uses the unitary normaliza-

tion (1/
√
2)|π0π0〉 and (1/

√
2)|ηη〉 for identical particles,

which allows to use the general formula in coupled chan-
nels. At the end the good normalization of the external
particles must be restored and these are the amplitudes
that appear to Eq. (38) and following ones.
For the KK̄(I = 1)-πη scattering, the interaction ker-

nel can be written in terms of the interaction kernel for
the (Q, S) = (0, 0) system shown above (see the isospin
basis summarized in Appendix A):

VKK̄(I=1)→KK̄(I=1) =
1

2
(V33 − 2V34 + V44) , (62)

VKK̄(I=1)↔πη = − 1√
2
(V36 − V46) , (63)

Vπη→πη = V66. (64)

For the πK(I = 1/2)-ηK scattering, the interaction ker-
nel is expressed as

VπK(I=1/2)→πK(I=1/2) =
1

8sf2

[

−5s2 + 2(m2
π +m2

K)s

+3(mπ −mK)2
]

, (65)
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VπK(I=1/2)↔ηK =
1

24sf2

[

9s2 − (7m2
π + 2m2

K + 3m2
η)s

−9(m2
π −m2

K)(m2
K −m2

η)
]

, (66)

VηK→ηK =
1

24sf2

[

9s2 + 2(2m2
π − 9m2

K − 3m2
η)s

+9(mK −mη)
2
]

. (67)

For the loop function G, on the other hand, we use the
following expression:

Gi(s) ≡ i

∫

d4q

(2π)4
1

q2 −m2
i + i0

1

(P − q)2 −m′2
i + i0

.

(68)
where Pµ = (

√
s, 0) and mi and m

′
i are masses of pseu-

doscalar mesons in channel i. In this study we employ a
three-dimensional cut-off qmax as

Gi(s) =

∫

d3q

(2π)3
ωi(q) + ω′

i(q)

2ωi(q)ω′
i(q)

θ(qmax − |q|)
s− [ωi(q) + ω′

i(q)]
2 + i0

,

(69)
In this expression we have performed the q0 integral and
ωi(q) ≡

√

m2
i + q2 and ω′

i(q) ≡
√

m′2
i + q2 are the on-

shell energies.
In this framework, with a small number of free pa-

rameters we can reproduce experimental observables of
meson–meson scatterings fairly well. In this study we
take the model parameters of the chiral unitary approach
as f = 93 MeV and qmax = 600 MeV, which dynamically
generates resonance poles in the complex energy plane:
453 − 253i MeV for f0(500), 982 − 5i MeV for f0(980),
and 721 − 236i MeV for K∗

0 (800). The a0(980) appears
as a cusp at the KK̄ threshold.

III. NUMERICAL RESULTS

Now let us calculate the semileptonic decay widths of
D mesons into scalar and vector mesons. As we have
formulated, we have only one model parameter for scalar
and vector meson productions, respectively. Namely one
can calculate the decay widths of the scalar meson pro-
ductions with one common parameter C, and similarly
C′ for the vector meson productions.
First we consider the scalar meson production in

Sec. III A, and then move to the vector meson production
in Sec. III B. Finally in Sec. III C we compare the two
contributions of the mass distributions from the scalar
and vector mesons.

A. Production of scalar mesons

In order to calculate the branching fractions of the
scalar meson productions, we first fix the prefactor con-
stant C so as to reproduce the experimental branching
fraction which has the smallest experimental error for the
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andK+K− mass distributions, which are Cabibbo suppressed
processes, by 10.

process with the s-wave two pseudoscalar mesons, that is,
B[D+ → (π+K−)s-wavee

+νe] = (2.32± 0.10)× 10−3. By
integrating the differential decay width, or mass distri-

bution, dΓ4/dM
(hh)
inv in an appropriate range, in the case

of π+K− [mπ+mK , 1 GeV], we find that C = 4.597 can
reproduce the branching fraction of (π+K−)s-wavee

+νe.
By using the common prefactor C = 4.597, we can cal-

culate the mass distributions of two pseudoscalar mesons
in s wave for all scalar meson modes, which are plotted
in Figs. 3, 4, and 5 for D+

s , D
+, and D0 semileptonic de-

cays, respectively. We show the mass distributions with
the lepton flavor l = e; the contribution from l = µ is
almost the same as that from l = e in each meson–meson
mode due to the small lepton masses. In each figure we
multiply the mass distributions which are Cabibbo sup-
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pressed processes by 10 so that we can easily compare
the shape of the mass distributions. As one can see, the

largest value of the mass distribution dΓ4/dM
(hh)
inv is ob-

tained in the D+
s → π+π−e+νe process, in which we can

see a clear f0(980) peak. It is interesting to note that
in the D+

s → π+π−e+νe process we find a clear f0(980)
signal while the f0(500) contribution is negligible, which
strongly indicates a substantial fraction of the strange
quarks in the f0(980) meson, as we will discuss later. For
the D+

s semileptonic decay we also observe a rapid en-
hancement of theK+K− mass distribution at the thresh-
old, as a tail of the f0(980) contribution, although its
height is much smaller than the π+π− peak. For the D+

and D0 semileptonic decays, we can see the π+K− and
π−K̄0 as Cabibbo favored processes, respectively. We
note that the π+K− and π−K̄0 mass distributions are
almost the same due to isospin symmetry. It is interest-
ing to see that the shape of the π+K− and π−K̄0 mass
distributions is determined by, in addition to theK∗

0 (800)
resonance, the kinetic factor of the squared decay ampli-
tude. Namely, we have the matrix element of Eq. (10)
that is roughly proportional to |pν |2 and this momentum
gets bigger the smaller the meson–meson invariant mass.
This kinetic factor of the squared decay amplitude affects
the π+π− distribution in the D+ semileptonic decay in a
similar manner, and also provides more weight at low in-
variant masses for the shape for πη in Figs. 4 and 5 than
the π0η distributions in the D0 → K̄0π0η decay evalu-
ated in Ref. [18]. The πη mass distributions in Figs. 4 and
5 of the D+ and D0 decays show peaks corresponding to
a0(980), but its peak is not high compared to the f0(980)
peak in the π+π− mass distribution of theD+

s decay since
they are obtained in Cabibbo suppressed processes. The
D+ → π+π−e+νe decay is Cabibbo suppressed and it
has a large contribution from the f0(500) formation and
a small one of the f0(980), similar to what is found in
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FIG. 6: π+π− invariant mass distribution for the semilep-
tonic decay D+

s → π+π−e+νe. The theoretical calculation is
folded with the size of experimental bins, 25 MeV. The exper-
imental data are taken from Ref. [27] and are scaled so that
the fitted Breit–Wigner distribution (dashed line) reproduces
the branching fraction of B[D+

s → f0(980)e
+νe, f0(980) →

π+π−] = 0.2% by the Particle Data Group (see Table I).

the B̄0 → J/ψπ+π− decay in Ref. [7]. A different way to
account for the PP distribution is by means of dispersion
relations, as used in Ref. [41] in the semileptonic decay
of B, where the π+π− s-wave distribution has a shape
similar to ours.

The theoretical π+π− mass distribution of the semilep-
tonic decay Ds → π+π−e+νe is compared with the
experimental data [27] in Fig. 6. We note that we
plot the figure in unit of ns−1/GeV, not in arbitrary
units. The theoretical mass distribution is folded with
25 MeV spans since the experimental data are collected
in bins of 25 MeV. The experimental data, on the other
hand, are scaled so that the fitted Breit–Wigner distri-
bution reproduces the branching fraction of B[D+

s →
f0(980)e

+νe, f0(980) → π+π−] = 0.2% [1]. The mass
and width of the Breit–Wigner distribution are fixed as
M = 966 MeV and Γ = 89 MeV, respectively, taken
from Ref. [27]. In Fig. 6 we can see a qualitative cor-
respondence between the theoretical and experimental
signals of f0(980). We emphasize that, both in exper-
imental and theoretical results, the π+π− mass distri-
bution shows a clear f0(980) signal while the f0(500)
contribution is negligible. This strongly indicates that
the f0(980) has a substantial fraction of the strange
quarks while the f0(500) has a negligible strange quark
component. It is interesting to recall that the appear-
ance of the f0(980) in the case one has a hadronized
ss̄ component at the end, and no signal of the f0(500),
is also observed in B0

s and B0 decays in Refs. [2–6].
The explanation of this feature along the lines used in
the present work was given in Ref. [7]. However, al-
though the peak height of the f0(980) is very similar, the
Breit–Wigner fit would provide larger branching fraction
B[D+

s → f0(980)e
+νe] than the theoretical one. Actually,
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integrating the theoretical mass distribution in the range
[0.9 GeV, 1.0 GeV], we obtain the branching fraction
B[D+

s → f0(980)e
+νe; f0(980) → π+π−] = 5.10 × 10−4,

which is about four times smaller than the experimental
value 2.00× 10−3. Actually, in the experimental analysis
of Ref. [27] different sources of background are considered
that make up for the lower mass region of the distribu-
tion. The width of the f0(980) extracted in the analysis
of Ref. [27] is Γ = 91+30

−22 ± 3 MeV, which is large com-
pared to most experiments [1], including the LHCb ex-
periment of [46], although the admitted uncertainties are
also large. One should also take into account that, while
a Breit–Wigner distribution for the f0(980) is used in the
analysis of Ref. [27], the large coupling of the resonance
to KK̄ requires a Flatte form that brings down fast the
π+π− mass distribution above the KK̄ threshold. Our
normalization in Fig. 6 is done with the central value of
the B[D+ → (π+K−)s-wavee

+νe] and no extra uncertain-
ties from this branching fraction are considered. Yet, we
find instructive to do an exercise, adding to our results
a “background” of 10 ns−1/GeV from different sources
that our calculation does not take into account, and then
our signal for the f0(980) has a good agreement with the
peak of the experimental distribution.
As mentioned above, the value extracted in [27] for

the f0(980) signal is tied to the assumptions made, in-
cluding parts of the background that lead to a very
large width of the resonance, assuming a Breit–Wigner
shape, etc. Actually, in a more recent paper [47] the
same CLEO data of [27] are reanalyzed taking a band of
f0(980) masses within 60 MeV of 980 MeV and assuming
a Flatte form of the resonance and a rate for B[D+

s →
f0(980)e

+νe, f0(980) → ππ] = (0.13 ± 0.02 ± 0.01)% is
obtained. This value is about a factor of two smaller than
the one reported in [27] and more in agreement with our
results.
Next we consider the differential decay width with re-

spect to the squared momentum transfer q2, which coin-
cides with the squared invariant mass of the lepton pair:

q2 = [M
(lν)
inv ]2. The differential decay width for the scalar

meson production is expressed as

dΓ4

dq2
=

|GF|2
64π5m3

D

∫

dM
(hh)
inv

∣

∣

∣V
(s)
had

∣

∣

∣

2

P ′
cmp̃hp̃νM

(lν)
inv

M
(hh)
inv

×
(

ẼDẼS − 1

3
|p̃D|2

)

. (70)

This differential decay width was experimentally ob-
served in Ref. [27] for the D+

s → f0(980)e
+νe decay mode

followed by f0(980) → π+π−. In this study we compare
our theoretical value for this decay mode with the ex-
perimental data in Fig. 7. The range of the integral for

M
(hh)
inv is [0.9 GeV, 1.0 GeV]. As one can see, we can to

some extent reproduce the shape of the differential decay
width dΓ4/dq

2 in experiment, but the absolute value of
the theoretical calculation is several times smaller than
the experimental one. This can be, as we have explained,
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FIG. 7: Differential decay width of the D+
s → f0(980)e

+νe

decay mode followed by f0(980) → π+π−, with q2 = [M
(lν)
inv ]2.

The experimental data are taken from Ref. [27]. The exper-
imental points should be rescaled dividing by about a factor
of two if the absolute rate for the f0(980) production of the
reanalysis of Ref. [47] were used.

solved by introducing background contributions when ex-
tracting the amount of the f0(980) signal from experi-
mental data. Actually, as we have commented before,
the reanalysis of [47] leads to absolute values of the rate
for the f0(980) production about a factor of two smaller,
and again if we scale the q2 distribution of in Fig. 7 by
the factor the agreement is much better.
Moreover, integrating the mass distributions we cal-

TABLE III: Branching fractions of semileptonic D decays into
two pseudoscalar mesons in s wave. The branching fraction
of the D+

→ (π+K−)s-wavee
+νe mode is used as an input.

D+
s

Mode Range of M
(hh)
inv [GeV] l = e l = µ

π+π− [0.9, 1.0] 5.10× 10−4 4.71× 10−4

K+K− [2mK , 1.2] 1.42× 10−4 1.30× 10−4

π−K+ [mπ +mK , 1.0] 8.11× 10−5 7.63× 10−5

D+

Mode Range of M
(hh)
inv [GeV] l = e l = µ

π+π− [2mπ, 1.0] 5.11× 10−4 4.85× 10−4

π0η [mπ +mη, 1.1] 6.37× 10−5 5.86× 10−5

K+K− [2mK , 1.2] 2.24× 10−6 2.01× 10−6

π+K− [mπ +mK , 1.0] 2.32× 10−3 2.16× 10−3

D0

Mode Range of M
(hh)
inv [GeV] l = e l = µ

π−η [mπ +mη, 1.1] 4.93× 10−5 4.53× 10−5

K0K− [2mK , 1.2] 5.47× 10−6 4.88× 10−6

π−K̄0 [mπ +mK , 1.0] 8.99× 10−4 8.38× 10−4
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TABLE IV: Branching fractions of semileptonic D decays into
vector mesons.

D+
s

Mode l = e l = µ

φ(1020) 2.12× 10−2 1.94 × 10−2

K∗(892)0 2.02× 10−3 1.89 × 10−3

D+

Mode l = e l = µ

K̄∗(892)0 5.56× 10−2 5.12 × 10−2

ρ(770)0 2.54× 10−3 2.37 × 10−3

ω(782) 2.46× 10−3 2.29 × 10−3

D0

Mode l = e l = µ

K∗(892)− 2.15× 10−2 1.98 × 10−2

ρ(770)− 1.97× 10−3 1.84 × 10−3

culate the branching fractions of the semileptonic D
mesons into two pseudoscalar mesons in s wave, which
are listed in Table III. We note that the branching frac-
tion B[D+ → (π+K−)s-wavee

+νe] = 2.32 × 10−3 is used
as an input to fix the common constant, C = 4.597.
Among the listed values, we can compare the theoret-
ical and experimental values of the branching fraction
B[D+

s → (K+K−)s-wavee
+νe]. Namely, in Ref. [24] this

branching fraction is obtained as (0.22+0.12
−0.08 ± 0.03)% of

the total D+
s → K+K−e+νe, which is dominated by the

φ(1020) vector meson. This indicates, together with the
branching fraction D+

s → φ(1020)e+νe, we can estimate
B[D+

s → (K+K−)s-wavee
+νe] = (5.5+3.1

−2.1) × 10−5. Theo-

retically this is 1.42×10−4. Although our value overesti-
mates the mean value of the experimental data, it is still
in 3σ errors of the experimental value.

B. Production of vector mesons

Let us move to the vector meson productions in the
semileptonic D decays. For the vector mesons we fix the
common prefactor C′ so as to reproduce the 10 available
experimental branching fractions listed in Table I. From
the best fit we obtain the value C′ = 1.563 GeV, which
gives χ2/Nd.o.f. = 22.8/9 ≈ 2.53. The theoretical values
of the branching fractions are listed in Table IV and are
compared with the experimental data in Fig. 8, where we
plot the ratio of the experimental to theoretical branch-
ing fractions. We calculate the experimental branching
fraction of the D+ → K̄(892)0l+νl (l = e and µ) process
by dividing the value in Table I by the branching fraction
B[K̄∗(892)0 → K−π+] = 2/3, which is obtained with
isospin symmetry. As one can see from Fig. 8, the exper-
imental values are reproduced well solely by the model
parameter C′ with χ2/Nd.o.f. ≈ 2.53.
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FIG. 8: Ratio of the experimental to theoretical branching
fractions for the semileptonic D decays into vector mesons.

Next for the D+
s → φ(1020)e+νe decay mode we con-

sider the differential decay width with respect to the
squared momentum transfer q2, which coincides with the

squared invariant mass of the lepton pair: q2 = [M
(lν)
inv ]2.

This differential decay width was already measured in an
experiment [27] for the D+

s → φ(1020)e+νe decay mode.
In a similar manner to the previous case, the differential
decay width for the vector meson production is expressed
as

dΓ3

dq2
=

∣

∣

∣GFV
(v)
had

∣

∣

∣

2

16π3m3
DmV

Pcmp̃νM
(lν)
inv

(

ẼDẼV − 1

3
|p̃D|2

)

.

(71)
In Fig. 9 we compare our result for this reaction with
the experimental one. As one can see, our theoretical
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FIG. 9: Differential decay width of the D+
s → φ(1020)e+νe

decay mode followed by φ(1020) → K+K−, with q2 =

[M
(lν)
inv ]2. The experimental data are taken from Ref. [27]. The

theoretical value is multiplied by the branching fraction of the
φ(1020) meson to K+K−, B[φ(1020) → K+K−] = 48.9% [1].
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result reproduces the experimental value of the differen-
tial decay width quantitatively well. This means that our
method to calculate the semileptonic decays of D mesons
is good enough to describe the decays into vector mesons.
In this study we have not evaluated the D+ →

φ(1020)e+νe decay. This decay proceeds like the D+ →
ω(782)e+νe decay that we have evaluated and one has a
dd̄ at the end. Since the φ is ss̄ then this is forbidden
in our approach, at the tree level that we have consid-
ered for the vector production. Experimentally, this rate
is < 9 × 10−5. This is an upper bound about 30 times
smaller than the rate of the omega production that we
have evaluated. We do not want to go beyond, but can
give some idea on how a finite rate could be obtained in
our approach. For this one would have to hadronize the
dd̄ into a K0K̄0, then have a loop for K0K̄0 propagation
in p-wave and finally have the K0K̄0 couple to the φ.
Some technical details could be borrowed from the study
of φ→ ππ decay studied in [48] but one can get an indica-
tion that the rate should be rather small by simply noting
that the hadronization to meson–meson pairs has a re-
duction factor, as one can see by comparing for instance
f0(500) production with ρ production [49]. On the other
hand, the coupling of φ to K0K̄0 is intrinsically small, as
one can see from the 1.5 MeV partial decay width of this
channel [comparatively the ∆(1232) partial decay width
to the πN channel would be about 15 MeV for a pion
with the same momentum as the kaon in the φ decay].
There are other factors to consider, but this can give us
a feeling that the rate could be some orders of magnitude
smaller than for omega production.

C. Comparison between scalar and vector meson

contributions

Finally we compare the mass distributions of the two
pseudoscalar mesons in s- and p-wave contributions. In
the present approach the s-wave part comes from the
rescattering of two pseudoscalar mesons including the
scalar meson contribution, while the p-wave one from the
decay of a vector meson. In this study we consider three
decay modes: D+

s → π+π−e+νe, D
+
s → K+K−e+νe,

and D+ → π+K−e+νe. The D+ → π+π−e+νe de-
cay mode would have a large p-wave contribution from
ρ(770), but we do not consider this decay mode since it
is a Cabibbo suppressed process.
First we consider the D+

s → π+π−e+νe decay mode.
This is a specially clean mode, since it does not have
vector meson contributions and is dominated by the s-
wave part. Namely, while the π+π− can come from a
scalar meson, the primary quark–antiquark pair in the
semileptonic D+

s decay is ss̄, which is isospin I = 0 and
hence the ρ(770) cannot contribute to the π+π− mass
distribution. The primary ss̄ can be φ(1020), but it de-
cays dominantly to KK̄ and the φ(1020) → π+π− decay
is negligible. This fact enables us to observe the scalar
meson peak without a contamination from vector meson
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FIG. 10: K+K− invariant mass distribution for the semilep-
tonic decay D+

s → K+K−e+νe both in s and p waves.

decays and discuss the quark configuration in the f0(980)
resonance as in Sec. III A.
Next let us consider the D+

s → K+K−e+νe decay
mode. As we have seen, the K+K− mass distribution
in s wave is a consequence of the f0(980) tail. However,
its contribution should be largely contaminated by the
φ(1020) → K+K− in p wave, which has a larger branch-
ing fraction than the (K+K−)s-wave in the semileptonic
decay. In order to see this, we calculate the p-wave
K+K− mass distribution for D+

s → K+K−e+νe, which
can be formulated as

dΓ3

dM
(hh)
inv

= −2mV

π
Im

Γ3 × B[V → hh]

[M
(hh)
inv ]2 −m2

V + imV ΓV (M
(hh)
inv )

,

(72)
where mV is the vector meson mass and the energy de-

pendent decay width ΓV (M
(hh)
inv ) is defined as

ΓV (M
(hh)
inv ) ≡ Γ̄V

(

poff(M
(hh)
inv )

pon

)3

, (73)

poff(M
(hh)
inv ) ≡ λ1/2([M

(hh)
inv ]2, m2

h, m
′2
h )

2M
(hh)
inv

, (74)

pon ≡ λ1/2(m2
V , m

2
h, m

′2
h )

2mV
. (75)

For the φ(1020) meson we take Γ̄φ = 4.27 MeV and
B[φ → K+K−] = 0.489 [1]. The numerical result
for the (K+K−)p-wave mass distribution is shown in
Fig. 10 together with the (K+K−)s-wave. From the
figure, compared to the (K+K−)p-wave contribution we
cannot find any significant (K+K−)s-wave contribution,
which was already noted in the experimental mass dis-
tribution in Ref. [24]. Nevertheless, we emphasize that
the (K+K−)s-wave fraction of the semileptonic D+

s de-
cay is large enough to be extracted [24]. Actually in
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FIG. 11: π+K− invariant mass distribution for the semilep-
tonic decay D+

→ π+K−e+νe both in s and p waves.

Ref. [24] they extracted the (K+K−)s-wave fraction by
analysing the interference between the s- and p-wave
contributions. This fact, and the qualitative reproduc-
tion of the branching fractions in our model, implies that
the f0(980) resonance couples to the KK̄ channel with
a certain strength, which can be translated into the KK̄
component in f0(980), in a similar manner to the KD
component in D∗

s0(2317) [19, 50], in terms of the compos-
iteness [51]. Anyway, in order to conclude the structure
of the f0(980) more clearly, it is important to reduce the
experimental errors on the (K+K−)s-wave.

Finally we consider theD+ → π+K−e+νe decay mode.
In this mode the (π+K−)s-wave from theK∗

0 (800) and the
(π+K−)p-wave from theK∗(892) are competing with each
other. In a similar manner to the D+

s → K+K−e+νe
case, we calculate the mass distribution also for the

p-wave π+K− contribution dΓ3/dM
(hh)
inv with Γ̄K∗ =

49.1 MeV [1], and the result is shown in Fig. 11. As
one can see, thanks to the width of ∼ 50 MeV for the
K∗(892), the s-wave component can dominate the mass
distribution below 0.8 GeV. We note that we would ob-
tain an almost similar result for the D0 → π−K̄0e+νe
decay mode due to isospin symmetry.

As to the theoretical uncertainties, we can play a bit
with the cut-offs used to regularize the loops, such that
the masses of the states do not change appreciably. This
exercise has been done a number of times and given us
the feeling that within our models the uncertainties are
below 10%. For the case of scalar production where we
have a range of invariant masses and rely upon a constant
production vertex C, the changes with the invariant mass
in the primary form factors, prior to the final state inter-
action of the mesons, as found in [41], would add some
extra uncertainty. In total it would be fair to accept
about 20% uncertainties in this case in the limited range
of energies that we move.

IV. CONCLUSION

In this study we have discussed the semileptonic de-
cays of D mesons into light scalar and vector mesons.
For the scalar meson production, we have formulated the
semileptonic decay as the combination of two parts. One
is the weak decay of the charm quark and the emission
of a lepton pair via the W boson. The other is a sim-
ple hadronization of light qq̄ pair plus an extra q̄q from
vacuum into two pseudoscalar mesons after the W boson
emission, so as to generate the scalar mesons dynami-
cally in the meson–meson final state interaction. The
hadronization naturally gives the weight of each pair of
pseudoscalar mesons in the decay process, which governs
which scalar meson appears in the decay mode. For the
vector mesons, on the other hand, we have not consid-
ered the hadronization with an extra q̄q and have directly
used the light qq̄ pair after the W boson emission as a
weight for the vector mesons, which are expected to be
genuinely qq̄ states. We note that we can specify flavors
of quarks contained in the final state scalar and vector
mesons by considering Cabibbo favored and suppressed
processes. In addition, since the leptons interact only
weakly, the semileptonic decay of the heavy meson to
two light mesons +l+νl brings a suitable condition to
measure effects of the final state interaction of the two
light mesons.

In our model of the semileptonic decay, the produc-
tion yields of the scalar and vector mesons are respec-
tively determined solely by constant prefactors C and C′

as model parameters. Fixing C from the branching frac-
tion of the D+ → (π+K−)s-wavee

+νe decay, we have cal-
culated branching fractions of scalar meson productions.
We have qualitatively reproduced the experimental value
of the branching fractions of D+

s → (π+π−)s-wavee
+νe

and (K+K−)s-wavee
+νe decay modes. Some deviations of

these branching fractions compared to the experimental
values can be explained by taking into account the back-
ground of the mass distribution for the π+π− case and by
the large experimental error for the K+K− case. For the
vector mesons, we have determined the constant C′ so as
to fit our numerical values to the available experimental
values of the branching fractions, and we have reproduced
the experimental values at a quantitative level. We also
compared the mass distributions of the two pseudoscalar
mesons in s- and p-wave contributions, which come from
decays of the scalar and vector mesons, respectively.

We have found that the Cabibbo favored decay mode
D+

s → f0(980)l
+νl followed by f0(980) → π+π− and

K+K− is of special interest. For the f0(980) → π+π−

mode, we have found that there is no p-wave contami-
nation from ρ(770) decay and hence it should be dom-
inated by the s-wave part. Then, we have confirmed
the experimental fact that the π+π− mass distribution
shows a clear f0(980) signal while the f0(500) contribu-
tion is negligible. This strongly indicates that the f0(980)
has a substantial fraction of the strange quarks while the
f0(500) has a negligible strange quark component. For
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the f0(980) → K+K− mode, on the other hand, the
(K+K−)s-wave contribution is highly contaminated by
the φ(1020) → K+K− decay in p wave. Nevertheless,
the (K+K−)s-wave fraction of the semileptonic D+

s decay
is large enough to be extracted experimentally, which im-
plies that the f0(980) resonance couples to the KK̄ chan-
nel with a certain strength and hence implies a certain
amount of the KK̄ component in f0(980).

Acknowledgments

We appreciate information from S. Stone and
X. W. Kang. We acknowledge the support by Open
Partnership Joint Projects of JSPS Bilateral Joint Re-
search Projects. This work is partly supported by
Grants-in-Aid for Scientific Research from MEXT and
JSPS (No. 15K17649 and No. 15J06538), the Span-
ish Ministerio de Economia y Competitividad and
European FEDER funds under the contract number
FIS2011-28853-C02-01 and FIS2011-28853-C02-02, and
the Generalitat Valenciana in the program Prometeo II-
2014/068. We acknowledge the support of the European
Community-Research Infrastructure Integrating Activity
Study of Strongly Interacting Matter (acronym Hadron-
Physics3, Grant Agreement n. 283286) under the Seventh
Framework Program of the EU. We are deeply grateful to
the Yukawa Institute for Theoretical Physics, Kyoto Uni-
versity, where this work was initiated during the YITP
workshop YITP-T-14-03 on “Hadrons and hadron inter-
actions in QCD”.

Appendix A: Conventions

In this Appendix we summarize conventions used in
this study.

1. Metric and Lorentz indices

In this article the metric in four-dimensional
Minkowski space is gµν = gµν = diag(1, −1, −1, −1)
and the Einstein summation convention is used unless
explicitly mentioned. The scalar product of two vectors
aµ and bµ is represented as a · b = aµb

µ = a0b0 − a · b.

2. Dirac spinors and matrices

As the positive and negative energy solutions of the
Dirac equation, we express the Dirac spinors respectively
as u(p, s) and v(p, s), where p is three-momentum of
the field and s represents its spin. The Dirac spinors are
normalized as follows:

u(p, s)u(p, s′) = δss′ , v(p, s)v(p, s′) = −δss′ , (A1)

with u ≡ u†γ0 and v ≡ v†γ0, and hence we have

∑

s

u(p, s)u(p, s) =
/p+m

2m
,

∑

s

v(p, s)v(p, s) =
/p−m

2m
,

(A2)

where m is the mass of the field, /p ≡ γµpµ with γµ being

the Dirac γ matrices, and pµ ≡
(

√

p2 +m2, p
)

is the

on-shell four-momentum of the solution.
The identities for the Dirac matrices used in this study

are summarized as follows:

γ0(γµ)†γ0 = γµ, (γ5)
† = γ5, (A3)

tr [γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ), (A4)

tr [γ5γ
µγνγργσ] = −4iǫµνρσ, (A5)

tr [γµγνγρ] = tr [γ5γ
µγνγρ] = 0, (A6)

where γ5 ≡ iγ0γ1γ2γ3 and ǫµνρσ is the Levi-Civita sym-
bol with the normalization ǫ0123 = 1. The Levi-Civita
symbol satisfies the following identity

ǫαβµνǫαβρσ = −2(gµρ g
ν
σ − gµσg

ν
ρ). (A7)

3. Isospin basis

In terms of the isospin states |I, I3〉, the phase conven-
tion for pseudoscalar mesons is given by

|π+〉 = −|1, 1〉, |K−〉 = −|1/2, −1/2〉, (A8)

while other pseudoscalar mesons are represented without
phase factors. As a result, we can translate the physi-
cal two-pseudoscalar meson states into the isospin basis,
which we specify as (I, I3), as

|KK̄(0, 0)〉 = − 1√
2
|K+K−〉 − 1√

2
|K0K̄0〉, (A9)

|ηη(0, 0)〉 = |ηη〉, (A10)

|KK̄(1, 0)〉 = − 1√
2
|K+K−〉+ 1√

2
|K0K̄0〉, (A11)

|KK̄(1, −1)〉 = −|K0K−〉, (A12)

|πη(1, 0)〉 = |π0η〉, (A13)

|πη(1, −1)〉 = |π−η〉, (A14)
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|πK(1/2, −1/2)〉 = 1√
3
|π0K0〉 −

√

2

3
|π−K+〉, (A15)

|πK̄(1/2, 1/2)〉 =
√

2

3
|π+K−〉 − 1√

3
|π0K̄0〉, (A16)

|πK̄(1/2, −1/2)〉 = − 1√
3
|π0K−〉 −

√

2

3
|π−K̄0〉, (A17)

Furthermore, the vector meson states are represented
in terms of quarks as

|ρ0〉 = 1√
2
|uū〉 − 1√

2
|dd̄〉, |ρ−〉 = |dū〉, (A18)

|ω〉 = 1√
2
|uū〉+ 1√

2
|dd̄〉, (A19)

|K∗0〉 = |ds̄〉, |K̄∗0〉 = |sd̄〉, |K̄∗−〉 = −|sū〉. (A20)

4. Feynman rules

The Wνl coupling is expressed as

−iV µ
Wνl = i

gW√
2
γµ

1− γ5
2

, (A21)

with gW being the coupling constant of the weak inter-
action, and the Wcq coupling as

−iV µ
Wcq = i

gWVcq√
2

γµ
1− γ5

2
, (A22)

where Vcq is the Cabibbo–Kobayashi–Maskawa matrix
elements for the transition from the charm to light quark
q. The W boson propagator with four-momentum pµ is
written as

iPµν
W (p) =

−igµν
p2 −M2

W + i0
, (A23)

with the mass of the W boson MW . The coupling con-
stant gW and the mass of the W boson MW are related
to the Fermi coupling constant GF as

GF =
g2W

4
√
2M2

W

. (A24)

5. Physical constants

In this article we use the following values for phys-
ical constants. The Fermi coupling constant: GF ≈
1.166×10−5 GeV−2. The Cabibbo–Kobayashi–Maskawa
matrix elements: |Vcs| ≈ 0.986 and |Vcd| ≈ 0.225.
The masses of heavy mesons: mD+

s

= 1968.30 MeV,
mD+ = 1869.61 MeV, and mD0 = 1864.84 MeV. Isospin
symmetric masses are used for the light mesons: mπ =
138.04 MeV, mK = 495.67 MeV, and mη = 547.85 MeV
for the pseudoscalar mesons, and mρ = 775.19 MeV,
mω = 782.65 MeV, mK∗ = 893.74 MeV, and mφ =
1019.46 MeV for the vector mesons. The masses of the
leptons: me = 0.511 MeV, mµ = 105.66 MeV, and
mνe = mνµ = 0 MeV.
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