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Abstract 

This paper analyses the permanent deformation performance of an unbound granular material for 

base layers of low traffic roads. The material has been subjected to repeated triaxial loads. The 

shakedown theory was used to classify the structural response of the unbound granular material to 

the applications of load cycles. Three models were fitted to express the cumulative permanent 

strain as a function of the number of load cycles. In general, the predictions of two models 

previously studied by other researchers proved to be good but in the long-term, they tended to 

underestimate the measured values. In contrast, a third new model -the sum of two well known 

models- offered excellent predictions, which in the long term did not tend to either underestimate 

or overestimate the measured values. 
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1. Introduction 

Low-traffic roads are usually made with flexible pavements in which unbound granular materials 

provide the most important structural element. Accordingly, the structural design of these 

pavements requires the mathematical description of the permanent behaviour of unbound granular 

materials. The goal is to predict the development of rutting in granular base courses. The repeated 

load triaxial (RLT) permanent deformation test has been widely used to determine permanent 

deformation characteristics of granular materials. In the RLT test, under repeated load cycles the 

accumulation of permanent strain is a gradual process where each load application contributes to 

the accumulation of strain by a small increment. Therefore, the number of load cycles is an 

important factor to consider in the analysis of the long term behaviour of granular materials. 

In this sense, Pérez et al [1] carried out several analyses related to permanent deformation. In their 

conclusion they pointed out that mathematical models that predicted permanent deformation as a 

function of load cycles presented certain deficiencies. To be precise, in the long term these models 

underestimated or overestimated the observed values. In this paper additional work was done to 

improve the predictions. The objective was to examine the applicability of a non-linear model 

depending on the number of load cycles to predict the development of rutting in granular base 

courses of low traffic roads. The model is not found in the technical literature and consists of the 

combination of two well known models: the Sweere model and the Wolff model. 

2. Background information 

2.1. Permanent deformation behaviour using the shakedown concept 

The shakedown concept holds that the strain behaviour of unbound granular materials gradually 

stabilises as the number of load cycles increases, making it possible to define a limit value for the 

accumulation of permanent strain. This stabilisation is only achieved when the applied stresses are 

low, given that high stresses would result in the continuous increase of permanent strain and 

gradual deterioration [2,3]. This theory is very useful for describing the behaviour of unbound 



granular material under repeated load cycles. For example, the curves in Figure 1 [3] show the 

typical development of the permanent deformation of granular materials subjected to different 

stresses. When the curves are plotted on a log-log scale they may be separated into three distinctive 

phases. At the beginning, the samples compact an initial amount during the very first load cycles. 

Then they usually continue to compact gradually over many load cycles. Because this portion is 

plotted as a straight line on a log-log scale, it is also referred to as linear deformation. In this phase 

the material is considered to be in behavioural “range A”. This linear deformation will continue 

indefinitely and the material does not reach failure. However, when a higher stress is applied the 

permanent deformation is more elevated. In this phase the material is in “range B”, but with a 

greater number of load cycles, the material might enter into “range C” behaviour and, finally, reach 

failure. Lastly, if the applied stress is even higher, the permanent strain accumulates rapidly in a 

low number of load cycles. In this condition the material will reach failure and rutting will take 

place very quickly. In this phase the material is in behavioural “range C”. 

2.2. Permanent deformation models as a function of number of load cycles 

Sweere [4] modelled the relationship between the logarithm of the cumulative permanent axial 

strain and the logarithm of load repetitions (Equation 1, Table 1). In this model, 1p(%) is the 

cumulative permanent axial strain after N load cycles are attained by means of RLT tests, and A 

and B are non-linear regression parameters. Intercept A represents the permanent strain at N=1 on a 

log-log scale. Slope B corresponds to the rate of change of the 1p(%) logarithm as a function of the 

change in the logarithm of N. As can be seen, equation 1 predicts an infinite deformation for an 

infinite number of load cycles. Sweere [4] found a satisfactory linear relationship between the two 

factors on a log-log scale. However, Pérez et al [1] confirmed a satisfactory fit but observed that 

when the material is in “ranges A and B”, equation 1 tended to underestimate the measured values. 

Wolff et al [5] measured the accumulated permanent deformation produced in granular road bases 

using Heavy Vehicle Simulator (HVS) tests. They verified that for a large number of cycles (N > 

10
6
) the values predicted for equation 1 differed from the real values. Therefore, Wolff et al [5] 

suggested an improved model (Equation 2-Table1) with which they obtained a good fit. This model 

was also fitted by Theyse [6] with good results. Equation 2 predicts an infinite deformation for an 



infinite number of cycles, as well. Coefficients m, A and B are non-linear regression parameters 

and e is the base of the natural logarithm. Equation 2 consists of a linear and exponential 

component. The exponential component rapidly decays with an increasing number of load cycles. 

Hence, the permanent deformation tends to form a straight line  AN · m   at high numbers of load 

cycles. Parameters m and A are the slope and the intercept of the straight line (asymptote) 

respectively; B is a constant controlling the bend of the curve. With regard to this model the fit 

found by Pérez et al [1] may be considered quite satisfactory but it was observed that when the 

material is in “ranges A and B”, equation 2 tended to overestimate the measured values. 

Francken and Clauwaert [7] and Kaloush and Witczak [8] used a non-linear model composed of 

two components (Equation 3-Table1) to study the permanent deformation behaviour of asphalt 

mixtures subjected to RLT tests. The same model was also proposed by Huurman [9]. Later, 

Werkmeister [10] and Arnold [11] selected this model for the practical application of the 

shakedown concept to model the permanent deformation of unbound granular materials. In 

equation 3, the first component is the same power-law proposed by Sweere. According to 

Werkmeister [10], it is able to express the material phase in behavioural “range A”. The parameters 

A1 and B1 are similar to parameters A and B of equation 1. The second component is a function 

which represents an exponential increase of 1p (%) with N on the same log 1p(%) – log N. The 

second summand describes the material phases in “range B and C” behaviour [10]. Werkmeister 

[10] made the model stress dependent as long as A2 and B2 were equal to zero in “range A” stable 

behaviour. 

Theyse also measured the accumulated permanent deformation produced in granular road bases 

using HVS tests. He proposed several non-linear functions [12,13] to model the accumulated 

permanent deformation of granular materials, obtaining good results. Table 1 presents one of these 

models (Equation 4) used by this researcher for materials under stable conditions. The model in 

question comprises two phases. First, an initial exponential deformation phase and second, a long-

term linear increase rate in the permanent deformation. The model has an initial slope equal to the 

product of the two coefficients A2 and B2, a curvature determined by the value of coefficient B2, an 



eventual linear slope equal  to coefficient m, and, finally, an intercept with the Y-axis represented 

by  coefficient A2. 

3. Experimental methods and materials 

The unbound material tested was crushed granitic stone, frequently used as a base for road 

pavements in the region of Galicia (Spain). Its grading curve falls within the limits corresponding 

to the granular material designated as ZA25, defined in the “General technical specifications for 

works on roads and bridges” in Spain [1,14]. Laboratory samples measuring 100 mm in diameter 

and 200 mm in height were prepared using a special cylindrical mold. They were tested at the 

optimum moisture content and maximum dry density. Repeated load triaxial Constant Confining 

Pressure tests (CCP) were carried out with a dynamic apparatus [1]. Eleven samples were 

subjected to different stress paths of 2 x 10
5
 repeated load cycles with a sinusoidal wave frequency 

of 1 Hz (Figure 2). 

4. Verification of ranges of permanent deformation behaviour 

The stress paths were selected on the basis of the stresses supported by a well-designated, 

constructed section of pavement of low-traffic roads in use in Spain [1,15] (Figure 3). Therefore, 

according to the shakedown concept [2,3] if the section is well designated, its structural behaviour 

should be in stable conditions, i.e., it should be within “range A” or, at the most, in “range B”. 

In this way, figure 4 shows that in the samples with stress paths P1, P2, P3 and P6, the material is 

in “range A”, since cumulative permanent axial strain undergoes a relatively minor increase, which 

would indicate that in practice, the stabilisation of the granular material has taken place. For stress 

path P11, the increase is a little more accentuated. It does not produce the stabilisation of 

permanent deformation, so the material exhibits a “range B” behaviour. As regards stress paths P4, 

P10, P7, P9 and P8, the material behaves as in “range B”. However, when N increases it gives rise 

to an increment in permanent deformation. It is possible that if a higher N were applied, the 

material might pass over to “range C”. At the beginning of the test stress path P5  is in “range C”, 

but, in the end, it exhibits the same behaviour as stress paths P4, P10, P7, P9 and P8. These results 

are considered quite acceptable since “range C” would only be reached after substantial 

applications of traffic loads and the pavement is designated for low-traffic roads. 



5. Proposed permanent deformation model 

As expressed by Pérez et al [1], equation 1 tends to underestimate the measured values while 

equation 2 tends to overestimate them, resulting in biased predictions. Therefore, for the purpose of 

improving the predictions, we decided to investigate the possibility of fitting another model. In this 

way, since equation 2 predicts underestimated values while equation 3 results in an overestimation, 

the objective was to join the two models in order to predict unbiased estimated values. The 

applicability of this model will be limited to low-traffic roads whose structural response behaviour, 

according to the shakedown concept, corresponds to “range A” and “range B”. The model in 

question (Equation 5, Table 1) also comprises two summands: The first summand is the Sweere 

model; the second is the Wolff model. As a result, it is made up of five parameters (Figure 5). 

However, as discussed earlier, the first term of equation 5 produces a linear increase of 1p(%) in 

relation to N on a log(1p)-log(N) scale. It has a slope equal to at N=0 and equal to the product of 

the two coefficients A1 and B1 at N=1. After a certain number of load cycles, the second summand 

of equation 5 reproduces a linear increase of 1p(%) with N on a 1p-N scale. This increase is 

asymptotic to  AN · m   at very high N values. It has a slope equal to the product of the two 

coefficients A2 and B2 at N=0. The model has a curvature determined by the value of coefficients 

B1 and B2 and an eventual linear slope equal to coefficient m. 

6. Results and discussion 

Equations 3, 4 and 5 were selected for fitting in order to compare the functioning of the different 

models. The parameters were obtained by means of the Levenberg-Marquardt method [16]. The 

Levenberg-Marquardt algorithm interpolates between the Gauss-Newton algorithm and the method 

of gradient descent. It is more robust than the Gauss-Newton algorithm, which means that in many 

cases it finds a solution even if it starts far from the final minimum. 

Table 2 shows all the values for the parameters of the eleven stress paths as well the determination 

coefficients R
2
 for equations 3, 4 and 5. Figure 6 reflects the values predicted for equation 3 and 

the measured data. The experimental data are very close to the continuous lines of the model. The 

adjustment is satisfactory, since the determination coefficients (R
2
) yield a result of over 97.50% in 

all cases. Figure 7 presents the values predicted for equation 4 and the measured data. The 



experimental data are not as close to the continuous lines of the model as in equation 3. The fit is 

not as good, as the R
2
 coefficients are only over 79.40% (Table 2). Figure 8 shows the values 

provided by equation 5 as well as the measured data. This fit is considered excellent, given that the 

R
2
 coefficients yield a result over 99.50% in all cases (Table 2). 

In addition, the graphical results of these three models for the particular stress paths P8 (maximum 

permanent deformation) are reflected in figure 9. The fit of E3 is quite satisfactory, although some 

of the measured data do not match the model completely. It can be seen that 1PE3 is an increasing 

line with a positive curvature, showing much higher predicted values than the measured data, while 

2PE3 is a decreasing line with a negative curvature until it stabilizes at N= 4 x 10 load cycles, 

predicting from this point a 1p constant value equal to -0.49 %. In other words, 2PE3 predicts 

negative values. This behaviour is similar in all of the other stress paths. Clearly, 2PE3 does not 

correctly describe the material response in “range B” as some researchers have argued [10,11]. 

In this figure it is also possible to observe that the values predicted by 1PE4 and 2PE4 are lower 

than the measured values. Moreover, 1PE4 is a straight line that intercepts the Y-axis in zero; while 

2PE4 has an initial curvature until it stabilizes, predicting a 1p constant value equal to 1.81 % 

starting at approximately 100 load cycles. It is evident that that E4 does not provide a very 

satisfactory fit to the model. This performance is similar in all the other stress paths. Obviously, 

and as contended by Theyse [12,13], E4 does not accurately describe the material response in 

“range A”. 

Figure 9 highlights a very close fit between the predicted values with equation 5 and the measured 

values. Undoubtedly, this model adjustment is much better than the fits of equation 3 and equation 

4. This figure also displays the values predicted for 1PE5 and 2PE5, separately. Both predictions 

are below the measured values. It can be seen that starting at approximately 1 x 10
3
 load cycles, the 

values predicted for the asymptote are the same as those predicted for 2PE5. In the figure it is also 

possible to see that the values predicted for 1PE5 are higher than those predicted for 2PE5. E5 

clearly provides an excellent fit as the measured values match the model almost perfectly.  It is 

only natural that the fit to the data would improve when the number of parameters in the model is 

increased. Actually, E5 includes Sweere´s and Wolff´s models as particular cases. However, the 



resulting accuracy proved to be remarkable even when this effect is taken into account, and it is 

well worth having to manipulate a few more parameters. By examining each term’s contribution to 

the fitting curves, it becomes apparent that Sweere´s power-like term governs the behaviour of the 

solution for relatively small values of N, while Woll´s perturbed linear term gradually acquires 

relevance as the number of load cycles increases, eventually giving the curve an asymptotic slope. 

Finally, if a rut depth is estimated as the product of 1p and the thickness of the granular material, 

then again, in figure 10 the rut predictions estimated by means of equations 3 and 4 are not close to 

the values calculated as the product of  the measured strain and 200 mm. It is also demonstrated 

that equations 3 and 4 tend to underestimate the calculated values for a large number of cycles, 

whereas equation 5 does not. On the contrary, equation 5 tends neither to underestimate or  

overestimate the values. 

8. Conclusion 

Equation 3 offers biased predictions since it tends to underestimate the measured values. Moreover, 

the second summand of this model does not provide a satisfactory description of the material 

behaviour in “range B” of the shakedown concept. 

Equation 4 offers biased predictions as it also underestimates the measured values. It has been 

demonstrated that this model does not accurately describe the material behaviour in “range A”. 

Equation 5 offers excellent predictions since it neither underestimates nor overestimates the 

measured values. Hence, equations 1 and 2 are models that work much better as a single unit than 

separately. It has been proven that this model offers an excellent description of the material 

behaviour in “range A and B” in a pavement section of low-traffic roads. 

Finally, it is important to clarify that this paper presents merely a preliminary approach to the 

problem. Hence, future research will require systematic procedures using a higher number of stress 

paths.  Also to be taken into account is that these results are based on repeated load triaxial (RLT) 

permanent deformation tests and not on tests with actual road pavements. 
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Figure 1. Typical vertical permanent strain versus number of load cycles (G n_m = Granodiorite at a cell 

pressure of n kPa and deviator stress of m kPa) [5] 
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Figure 2. Stress Paths. 
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Figure 3. Pavement section. 
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Figure 4. Permanent deformation measured versus  load cycles of stress paths. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure 5. Equation 5 parameters. 
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Figure 6. Permanent deformation versus load cycles (with equation 3) 

Standard error bars represent the 99% confidence interval of a mean 
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 Figure 7. Permanent deformation versus load cycles (with equation 4) 

Standard error bars represent the 99% confidence interval of a mean 
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Figure 8. Permanent deformation versus load cycles (with equation 5) 

Standard error bars represent the 99% confidence interval of a mean 
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Figure 9. Permanent deformation versus load cycles (stress path P8) 
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Figure 10. Prediction of rut depths 

Standard error bars represent the 99% confidence interval of a mean 

 

 



 

 

 

 

 

 

Table 1. Permanent deformation models 

Models linking permanent deformation to the number of load cycles 

Equation Model Reference Regression 

parameters 

1   B
p1 N  · A%   

Sweere [4] 
A, B 

2      N·B
p1 e1  AN · m %   

Wolff et al [5] 
A, B, m 

3      121
211 

 N·BB
p e  A  N . A%  Francken et al [7], Kaloush 

et al [8], Huurman [9], 

Werkmeister [10], Arnold 

[11] 

A1, B1, A2, B2 

4        N·B
2p e  A N · m% 211


  Theyse [12,13] 

A2, B2, m 

5      N·BB
p e  AN · m   N . A% 21 1211


  ------ 

A1, B1, m, A2, 
B2 

 

 
 

 

 

 

 

 

 

 

 

 

 



 

Table 2. Model parameters 

Parameter A1 B1 m A2 B2 R2 

Equation Equation Equation Equation Equation Equation 

Stress Path q (kPa) p (kPa) 3 (kPa) 
3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 

P1 200.00 116.67 50.00 0.2028 ---- 0.210 0.0647 --- 0.041 --- 5.087 x 10-7 1.842 x 10-7 0.0433 0.320 0.025 0.0002061 -0.059 -0.018 99.51 86.03 99.70 

P2 227.00 125.66 50.00 0.2773 --- 0.275 0.0745 --- 0.045 --- 8.445 x 10-7 3.149 x 10-7 0.0800 0.469 0.071 0.0001327 -0.050 -0.017 99.57 87.50 99.97 

P3 250.00 133.33 50.00 0.4535 --- 0.465 0.0544 --- 0.026 --- 8.935 x 10-7 4.522 x 10-7 0.1025 0.636 0.062 0.0002870 -0.081 -0.031 99.25 89.46 99.83 

P4 275.00 141.66 50.00 0.3505 --- 0.472 0.1394 --- 0.054 --- 3.535 x 10-6 2.337 x 10-6 0.4546 0.871 0.142 0.0001295 -0.037 -0.006 98.63 94.02 99.94 

P5 300.00 150.00 50.00 0.4463 --- 0.446 0.1536 --- 0.153 --- 3.374 x 10-6 2.651 x 10-6 0.8665 1.392 0.753 0.00005067 -0.119 -0.004 98.52 98.03 99.96 

P6 324.00 180.00 72.00 0.2480 --- 0.258 0.0646 --- 0.037 --- 6.785 x 10-7 2.927 x 10-7 0.0493 0.389 0.041 0.0002081 -0.060 -0.013 98.52 86.99 99.73 

P7 273.00 128.00 37.00 0.8569 --- 1.036 0.0874 --- 0.028 --- 3.610 x 10-6 2.411 x 10-6 0.4498 1.459 0.025 0.0002135 -0.068 -0.005 97.60 92.49 99.94 

P8 245.00 112.00 30.00 1.1221 --- 1.375 0.0772 --- 0.019 --- 3.577 x 10-6 2.555 x 10-6 0.4890 1.811 0.071 0.0001785 -0.081 -0.004 97.52 92.69 99.80 

P9 217.00 99.00 27.00 1.0133 --- 1.224 0.0827 --- 0.024 --- 3.667 x 10-6 2.430 x 10-6 0.4794 1.709 0.062 0.0001645 -0.064 -0.005 98.16 90.62 99.91 

P10 191.00 91.00 27.00 0.7842 --- 0.957 0.0945 --- 0.042 --- 4.083 x 10-6 2.391 x 10-6 0.4532 1.375 0.142 0.0003417 -0.066 -0.002 98.29 92.68 99.95 

P11 165.00 85.00 30.00 0.4930 --- 0.509 0.0588 --- 0.046 --- 1.365 x 10-6 2.623 x 10-6 0.0341 0.763 0.753 0.0049900 -0.058 -0.000 99.86 79.42 99.96 

 

 

 


