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Across-subject calibration of an instrumented glove to measure hand 

movement for clinical purposes 

ABSTRACT 

Motion capture of all degrees of freedom of the hand collected during performance of 

daily living activities remains challenging. Instrumented gloves are an attractive 

option because of their higher ease of use. However, subject-specific calibration of 

gloves is lengthy and has limitations for individuals with disabilities. Here, a 

calibration procedure is presented, consisting in the recording of just a simple hand 

position so as to allow capture of the kinematics of 16 hand joints during daily life 

activities even in case of severe injured hands. ‘across-subject gains’ were obtained 

by averaging the gains obtained from a detailed subject-specific calibration involving 

44 registrations that was repeated three times on multiple days to 6 subjects. In 

additional 4 subjects, joint angles that resulted from applying the ‘across-subject 

calibration’ or the subject-specific calibration were compared. Global errors 

associated with the ‘across-subject calibration’ relative to the detailed, subject-

specific protocol were small (bias: 0.49º; precision: 4.45º) and comparable to those 

that resulted from repeating the detailed protocol with the same subject on multiple 

days (0.36º; 3.50º). Furthermore, in one subject, performance of the ‘across-subject 

calibration’ was directly compared to another fast calibration method, expressed 

relative to a videogrammetric protocol as a gold-standard, yielding better results.  

Keywords: Instrumented glove, across-subject calibration, fast calibration, hand 

movement, hand disabilities. 

INTRODUCTION 

The ability of the human hand to grasp and manipulate objects is a key factor determining 

an individual’s ability to complete a great number of activities of daily living (ADL) as 

well as of working life (Bullock et al. 2013; Vergara et al. 2014; Zheng, De La Rosa, and 

Dollar 2011). The versatility of the human hand is possible thanks to the complex 
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kinematics of the system: 25 degrees of freedom (DoFs) controlled by muscles, tendons and 

ligaments (Brand and Hollister 1999).  Measurement of complex hand movements is useful 

for numerous applications, including functional assessment of the pathological hand and its 

rehabilitation (Chiu et al. 2000; Nathan, Johnson, and McGuire 2009; Oess, Wanek, and 

Curt 2012),  analysis of sporting techniques and ergonomics of tools, the study of human 

motor control strategies, and robotics (Griffin et al. 2000; Grinyagin, Biryukova, and Maier 

2005; Sanchez-Margallo et al. 2010; Tripp et al. 2006). 

Different methods can be used to measure hand movement, but most of them fail when 

applied to the simultaneous measurement of all hand DoFs while performing functional 

ADL. Goniometers do not allow for the simultaneous measurement of all DoFs. 

Electromagnetic systems (Mitobe et al. 2006) are susceptible to magnetic and electrical 

interference from metallic objects in the environment. Marker-based optical systems 

provide high accuracy (Joaquin L Sancho-Bru et al. 2014), but they can be used only within 

the area covered by the cameras, require a substantial amount of time to setup the markers, 

and markers often become occluded during the recording of tasks. Markerless optical 

motion capture (Metcalf et al. 2013) and inertial systems (Kortier et al. 2014) are frequently 

adopted in virtual reality games, but even though great enhancements in accuracy are being 

done  (O ’flynn et al. 2015), no commercial devices are currently available according to our 

knowledge. At this point, instrumented gloves seem to be the most effective method for 

collecting data from all finger joints continuously, without occluding problems, and with no 

special environmental constraints (J. Buffi et al. 2014).  

Despite the relative strengths described above, the use of instrumented gloves is also 

problematic, primarily due to difficulties associated with the calibration processes needed 
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to obtain the gains for the individual sensors that record each DoF. On the one hand, gloves 

include a high number of sensors to be calibrated. Furthermore, although each individual 

sensor is linear, some of them do not have only a linear relationship with the anatomical 

angle to be measured (Eccarius, Bour, and Scheidt 2012), because they are affected by 

other movements of the same joint (e.g. the abduction sensors at metacarpophalangeal 

joints, affected by the relative flexion between adjacent joints) or because of their 

placement they do not measure directly the anatomical angle (e.g. abduction and roll of the 

thumb). In order to correct this effect, a subject-specific calibration obtained by positioning 

the fingers in specific angles of combined flexion/extension and abduction spanning the 

entire range of motion has been shown to provide good accuracy (Eccarius, Bour, and 

Scheidt 2012). However, this method requires subjects to pose in a large number of 

postures, along with recording controlled movements, limiting its feasibility for use in real, 

clinical applications and large-scale field studies. This issue is especially problematic when 

dealing with patients with disabilities that interfere with the capacity to achieve postures 

needed for the calibration. In contrast, optimization methods have been used in an attempt 

to minimize the number of postures/movements required for the calibration (Griffin et al. 

2000): each finger and the thumb are repeatedly flexed and extended while maintaining 

digit tip contact (close loop method), and the gains are optimized such that the joint angles 

obtained from an underlying model best maintained digit tip contact throughout the task. 

However, when evaluated against a gold-standard, low accuracy was observed (J. Buffi et 

al. 2014). In a third approach, artificial neural networks (ANN) have been used to estimate 

sensor gains from an individual subject’s hand segment lengths (Zhou, Malric, and 

Shirmohammadi 2010). However, this approach requires a large number of previously 
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performed manual calibrations on many subjects, spanning a broad range of different 

segment lengths. In addition, as no angular errors were reported, it is unclear whether the 

lengths of hand segments are enough to yield high quality data (Zhou, Malric, and 

Shirmohammadi 2010). 

In brief, subject-specific instrumented glove calibration procedures are lengthy and not 

applicable to patients with some disabilities. In this work we test whether an ‘across-subject 

calibration’, defined via detailed, accurate, yet lengthy calibration from a small number of 

subjects, yields valid data when applied to additional subjects via registration of a single, 

simple reference posture. 

METHODS 

The experiment, approved by the University’s Ethical Committee, was developed in three 

phases. First, a very detailed calibration protocol was applied several times to 6 subjects. 

The gains obtained through this detailed calibration process were then used to define a 

‘across-subject calibration’. In a separate group of an additional 4 subjects, the joint angles 

that resulted from applying this ‘across-subject calibration’ were compared to those that 

resulted from transforming the identical set of sensor outputs to joint angles via the 

detailed, subject-specific calibration method. Finally, in one subject, the errors associated 

with the across-subject calibration were directly compared to those from another fast 

calibration method (J. Buffi et al. 2014). In this case, errors were expressed relative to a 

previously validated videogrammetric protocol (Joaquin L Sancho-Bru et al. 2014). All the 

errors and comparisons were made on the calculated angles of five different static postures. 

All the participants were right-handed, free of hand lesions or pathologies and gave 
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informed consent to participate. The instrumented glove used was a right-hand Cyberglove 

(Cyberglove Systems LLC; San Jose, CA), one sized, with 18 resistive flex sensors and 8-

bit digital signal output proportional to the underlying bending angle (Figure 1), technically 

described with more detail elsewhere (Eccarius, Bour, and Scheidt 2012). Only outputs 

from 16 sensors were used in this experiment, discarding the two sensors of the wrist. 

Insert Figure 1 here 

Calibration Protocols 

Detailed calibration protocol 

Our protocol combines procedures based on several previous works (J. H. Buffi, Crisco, 

and Murray 2013; Eccarius, Bour, and Scheidt 2012; Griffin et al. 2000), and consists in 

registering 44 different poses or guided movements (Figure 2). The first 20 calibration trials 

correspond to the calibration of 10 individual flexion sensors (two static postures per 

sensor, F1 to F10, see Fig. 1) to measure flexion at all metacarpophalangeal (MCP1 to 

MCP5; 1 to 5, thumb to little digit, respectively) and interphalangeal (IP1 and PIP2 to 

PIP5) joints (Figure 2.a). Gains of these flexion sensors (GF) assume a linear relationship 

between the flexion angle at these joints and the glove output signals (Eccarius, Bour, and 

Scheidt 2012; Kessler, Hodges, and Walker 1995; Zhou, Malric, and Shirmohammadi 

2010). Each MCP joint of the fingers and all IP joints were calibrated at 0º and 75º by 

pressing custom-made wood tools against the dorsal aspect of the digit. MCP1 was 

calibrated at 0º and 35º. 

Insert Figure 2 here 
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Trials 21 and 22 (Figure 2.b) were used to obtain the gains of A2 to A4 sensors (GA), 

corresponding to relative abduction of MCP2 to MCP5, also assuming a linear relationship. 

Both trials correspond to static postures with the hand resting flat on a table, the first with 

the fingers close together, defined to be 0º for the three abduction angles, and the second 

with custom-made wedge tools inserted firmly between the fingers that constrained the 

relative abduction angles to 25º, 16º and 17º for MCP2, MCP4 and MCP5, respectively.   

Previous studies have warned about the cross-coupling effect between abduction and 

flexion MCP angles: due to the physical configuration of the glove, the output signal of 

abduction sensors varies when the adjacent MCP joints flex, even with no variation of the 

abduction angle, so that the abduction angle needs a correction (Eccarius, Bour, and Scheidt 

2012; Zhou, Malric, and Shirmohammadi 2010). We confirmed that a second order 

polynomial of the flexion angles of adjacent MCP joints provides a good correction for 

abduction angles, in accordance with Eccarius et al. (Eccarius, Bour, and Scheidt 2012). 

The 5 polynomial coefficients of the correction term (C1, C2, C3, C4 and C5) at each sensor 

were obtained through an optimization process, by minimizing the root mean square error 

(RMSE) of the abduction angles measured during six motions with 0º of abduction. In the 

case of index-middle abduction, the subject performed three extension-flexion cycles of the 

index finger with no abduction, while the others three fingers were kept fixed at different 

MCP flexion angles: 0º, 40º and 80º, (Figure 2.c, trials 23 to 25) and then three extension-

flexion cycles of the middle, ring and little fingers together, while the index finger was 

fixed at the same three MCP angles (0º, 40º and 80º), with no abduction (trials 26 to 28). 

Analogous corrections have been considered for the abduction of MCP4 and MCP5, 

through trials 29 to 34, and 35 to 40, respectively (Figure 2.d).  
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The positions of A1 and Roll1 sensors do not correspond exactly to either flexion or 

abduction of the thumb carpometacarpal (CMC1) joint (Kramer 1996), making obtaining 

these joint angles difficult (Crasborn et al. 2006). For CMC1 flexion, we have considered a 

linear relationship (gain GF) with Roll1 plus an adjustment factor (AFF) with A1 sensor. 

The adjustment factor was obtained by minimizing the RMSE of the abduction angles, 

assumed to be zero, in trial 41, which consists in extending the thumb from neutral (Figure 

2.e) to maximal extension (Figure 2.f), and returning to neutral. Analogously, for CMC1 

abduction, a linear relationship (gain GA) with A1 plus an adjustment factor (AFA) with 

Roll1 sensor was considered. The adjustment factor was obtained by minimizing the RMSE 

of the flexion angles, assumed to be zero, in trial 42, which consists in abducting the thumb 

from neutral (Figure 2.e) to maximal abduction, then to the maximal adduction (Figure 

2.g), and returning to neutral abduction. Once the adjustment factors were calculated, the 

gains for both linear relationships (GF and GA) were obtained from trial 43, which consists 

in three consecutive closed loop motions made between index finger and the thumb, 

repeatedly flexing and extending both digits while maintaining tip contact (Figure 2.h). The 

gains were calculated so that the joint angles obtained from the underlying kinematic model 

(Joaquín L. Sancho-Bru et al. 2012) best maintained digit tip contact throughout the task. 

Index distal interphalangeal (DIP2) flexion angle, not provided by the Cyberglove used in 

this work, is required for computing the distance between the thumb and index finger tips. 

This angle was estimated from the PIP2 angle by using the linear regression experimentally 

obtained with the videogrammetric technique (Joaquin L Sancho-Bru et al. 2014) over 8 

subjects performing the same loop movements (𝐷𝐼𝑃2 = 0.87 · 𝑃𝐼𝑃2 − 25.27𝑜). 
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Finally, palmar arch is estimated from Roll2 assuming a linear relationship (gain GF) with 

two postures: previous trial number 21 (palm extended, 0º) and trial 44 (palm flexed). In 

this case, the angle between index-middle knuckles and ring-little knuckles was measured 

for each subject using a manual goniometer (Figure 2.i). 

Fast calibration protocol 

This protocol, based on a previous one (J. Buffi et al. 2014), consists in registering 12 

different poses or guided movements. Four trials consist in closed loop motions made 

between index, middle, ring and little fingers and the thumb, respectively, repeatedly 

flexing and extending both digits while maintaining tip contact; and they were used to 

adjust gains of all flexion angles (all GF) and the abduction of thumb CMC together with 

both adjustment factors (AF) so that the joint angles obtained from the underlying 

kinematic model (Joaquín L. Sancho-Bru et al. 2012) best maintained digit tip contact 

throughout the tasks. Again, DIP flexion angles were estimated from the fingers PIP angles 

by using linear regressions experimentally obtained as with DIP2 (𝐷𝐼𝑃3 = 0.79 · 𝑃𝐼𝑃3 −

18.33𝑜;  𝐷𝐼𝑃4 = 0.73 · 𝑃𝐼𝑃4 − 20.54𝑜;   𝐷𝐼𝑃5 = 0.84 · 𝑃𝐼𝑃5 − 12.42𝑜). 

For abduction of MCP joints of fingers the same procedure as in the detailed protocol was 

applied to obtain GA, using analogous postures to trials 21 and 22; but a shortened protocol 

was applied for the cross-coupling effect, as only the extension-flexion cycles 

corresponding to 0º in MCP flexion of the fixed digits (two trials per sensor) were used.  

Across-subject calibration protocol 
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The across-subject protocol involved calculating ‘across-subject gains’ by averaging the 

gains and coefficients that resulted from the Detailed calibration protocol implemented in a 

group of 6 subjects (see below, Experimental procedure and analysis, Phase 1). 

Joint angle calculation 

Joint angles were calculated using sensor outputs relative to the outputs of trial 21, 

which was defined as 0º for all joints. If 𝑆𝑠𝑒𝑛𝑠𝑜𝑟 is the relative output signal of sensor, then 

the angles at the different joints are calculated as follows. 

IP1, PIP2 to PIP5, and MCP1f to MCP5f, angles: 

𝐹𝑙𝑒𝑥𝑖𝑜𝑛 𝐴𝑛𝑔𝑙𝑒 = 𝐺𝐹 · 𝑆𝑠𝑒𝑛𝑠𝑜𝑟   (1) 

Palmar arch angle: 

𝑃𝑎𝑙𝑚𝑎𝑟 𝑎𝑟𝑐ℎ 𝐴𝑛𝑔𝑙𝑒= 𝐺𝑃𝑎𝑙𝑚𝑎𝑟·𝑅𝑜𝑙𝑙2   (2) 

MCP2 to MCP5 abduction angles: 

𝑀𝐶𝑃2𝐴 = 𝐺𝐴2 · 𝑆𝐴2 + (𝐶1𝑀𝐶𝑃2
· 𝑆𝐹3 + 𝐶2𝑀𝐶𝑃2

· 𝑆𝐹5 + 𝐶3𝑀𝐶𝑃2
· 𝑆𝐹3

2 + 

 𝐶4𝑀𝐶𝑃2
· 𝑆𝐹5

2 + 𝐶5𝑀𝐶𝑃2
· 𝑆𝐹3 · 𝑆𝐹5)  (3) 

MCP3A = 0   (4) 

𝑀𝐶𝑃4𝐴 = 𝐺𝐴3 · 𝑆𝐴3 + (𝐶1𝑀𝐶𝑃4
· 𝑆𝐹5 + 𝐶2𝑀𝐶𝑃4

· 𝑆𝐹7 + 𝐶3𝑀𝐶𝑃4
· 𝑆𝐹5

2 + 

 𝐶4𝑀𝐶𝑃4
· 𝑆𝐹7

2 + 𝐶5𝑀𝐶𝑃4
· 𝑆𝐹5 · 𝑆𝐹7)  (5) 

𝑀𝐶𝑃5𝐴 = 𝑀𝐶𝑃4𝐴 + 𝐺𝐴4 · 𝑆𝐴4 + (𝐶1𝑀𝐶𝑃5
· 𝑆𝐹7 + 𝐶2𝑀𝐶𝑃5

· 𝑆𝐹9 + 

 𝐶3𝑀𝐶𝑃5
· 𝑆𝐹7

2 + 𝐶4𝑀𝐶𝑃5
· 𝑆𝐹9

2 + 𝐶5𝑀𝐶𝑃5
· 𝑆𝐹7 · 𝑆𝐹9) (6) 

Thumb CMC flexion and abduction angles: 

𝐶𝑀𝐶1𝐹 = 𝐺𝐹𝐶𝑀𝐶1
· (𝑅𝑜𝑙𝑙1 + 𝐴𝐹𝐹 ·  𝐴1)   (7) 

𝐶𝑀𝐶1𝐴
= 𝐺𝐴𝐶𝑀𝐶1

· (𝐴1 + 𝐴𝐹𝐴 ·  𝑅𝑜𝑙𝑙1)  (8) 
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Experimental procedure and analysis 

Phase 1. The Detailed calibration was applied to 6 subjects, selected to achieve a 

representative variation in hand size (Table 1, Sample 1, Subjects 1 through 6). After 

calibration, sensor outputs were recorded while each subject adopted five static postures 

(Figure 3), selected to represent different postures incorporating both flexion and abduction 

of fingers. Each subject repeated the entire process, including calibration and static 

postures, in three different sessions. The gains and coefficients were calculated from the 

detailed calibration protocol for each subject and session. The joint angles of the five static 

postures were estimated from the sensor outputs collected during a given session three 

times: first, using the gains and coefficients from the corresponding calibration (same 

session in which the posture was measured); then, from the distinct calibrations resulting 

from the other two repeated sessions. The differences in the angles that result from 

transforming the same sensor output with gains from the three repeated calibrations serves 

as an estimate of the error of using a subject-specific, detailed calibration obtained in a 

different experimental session and has implications for the need to replicate the calibration 

for a given subject if testing involves multiple sessions. Mean and standard deviation (SD) 

across postures and subjects of the paired differences were used as bias and precision 

errors, respectively. Errors were also evaluated by grouping some of the hand joint 

movements for a broader interpretation: flexion at all MCP joints, flexion at all IP joints, 

and abduction at all MCP joints. 

After completion of all testing (6 subjects x 3 sessions) and analysis in Phase 1, the ‘across-

subject gains’ for the across-subject calibration protocol were defined as the mean values of 

all the gains and coefficients.  
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Insert Table I here 

Insert Figure 3 here 

Phase 2. Four additional subjects (Table 1, Sample 2, Subjects 7 through 10) were tested in 

a single session, using the detailed calibration protocol and the same five static postures. 

The joint angles for each posture were calculated from the sensor output two times in Phase 

2: first, using the gains and coefficients resulting from the detailed calibration performed 

for the subject in the testing session; then, from the across-subject calibration that resulted 

from Phase 1. Differences between these angles (across-subject minus detailed) provide an 

estimate of the error of using the ‘across-subject calibration’ protocol compared to using a 

detailed subject-specific protocol. Again, mean and SD across postures and subjects of the 

differences were considered as bias and precision errors. Errors were also evaluated across 

the grouped hand movements described in Phase 1. 

To evaluate the dependence of errors associated with the across-subject calibration on 

hand-size, Pearson correlations of the precision errors with hand breadth (HB) and hand 

length (HL) were calculated for each joint angle. The global postures were also visualized 

using a kinematic hand model developed in previous work (J. H. Buffi, Crisco, and Murray 

2013; Holzbaur, Murray, and Delp 2005) comparing both calibrations for each posture and 

subject. 

Phase 3. For a single subject (Subject 9), the errors resulting from the across-subject 

calibration and the fast calibration protocol were calculated relative to a reference data set, 

quantified in a separate protocol, using a videogrammetric technique thoroughly detailed 

ina previous work (Joaquin L Sancho-Bru et al. 2014). Because the hand could not be 
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effectively instrumented with the markers needed for the videogrammetric method while 

simultaneously wearing the instrumented glove, two datasets were collected; the first 

dataset was collected while the subject was wearing the glove, the second dataset was 

collected without the glove. Each data set consisted of three trials of each of the five static 

postures described previously. For the across-subject and fast calibration protocols, joint 

angles were estimated from the first dataset, using the identical sensor output to calculate 

the joint angles according to the gains resulting from the respective calibration method. In 

all comparisons, the average joint postures across all three repetitions for a given posture 

were compared. The accuracies (bias and precision errors) of the across-subject and fast 

protocols were calculated as the differences between the angles measured using the 

respective calibration and the videogrammetric dataset. Notice that the ‘R’ American Sign 

Language (ASL) posture (Figure 3.e) was not included, as it couldn’t be measured with the 

videogrammetric technique because of markers and fingers overlapping. 

Phase 4. Finally the clinical utility of the across-subject calibration was tested on a subject 

with a severely injured hand (dominant hand) caused by an accident with a circular saw, in 

an advanced recovering stage (Figure 4). The protocol was used to measure the active range 

of motion (AROM) of his hand joints. His AROM values were compared to the normal 

values measured with the same protocol to a sample of 24 healthy subjects. 

Insert Figure 4 here 

RESULTS 

Phase 1. Global bias and precision errors associated with transforming the same sensor 

output with gains obtained from three, distinct, detailed subject-specific calibrations 
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obtained in repeated sessions are small (0.36º and 3.50º, respectively; Table 2). Highest 

bias (3.19º) corresponded to abduction of little MCP joint, and highest precision error 

(12.66º) to flexion of thumb CMC joint, followed by palmar arch. Very low precision error 

is observed for IP and MCP flexion angles (2.71º and 1.62º, respectively), and slightly 

higher for MCP abduction angles (3.52º).  

Insert Table II here 

Phase 2. Global bias and precision errors associated with using the ‘across-subject 

calibration’ protocol compared to using a detailed subject-specific protocol are similar to 

those obtained in Phase 1 (0.49º and 4.45º, respectively; Table 2). Again, highest bias 

corresponded to abduction of little MCP joint (4.86º), highest precision errors to CMC joint 

angles and abduction of little MCP joint (about 10º). Precision errors for IP and MCP 

flexion angles are very small (1.70º and 2.67º, respectively). Precision errors associated 

with abduction of MCP joints are somewhat larger. The differences for the worst case are 

graphically visualized in Figure 5. 

Insert Figure 5 here 

Joint angle errors were significantly correlated with hand size, especially for PIP and MCP 

flexion angles (cf., Fig. 6, shaded cells indicate significant Pearson correlations). In general, 

we observed stronger correlations with measures of hand length compared to breadth. 

Insert Figure 6 here 

Phase 3. When the across-subject calibration protocol developed here was compared to a 

second “fast” calibration protocol, adapted from a previous method (J. H. Buffi et al. 2014), 



15 

 

the mean precision errors from the across-subject calibration were approximately 3.3º 

smaller than those from the fast calibration (Table 3). More specifically, mean precision 

errors of IP and MCP joints from the across-subject calibration were smaller than those 

from the fast calibration. Highest bias and precision errors using the across-subject 

calibration corresponded to PIP5 flexion (-10.30º) and MCP5 flexion (13.45º), respectively. 

Highest bias and precision errors using the fast calibration correspond to MCP5 abduction 

(24.45º) and MCP3 flexion (22.46º), respectively.  

Insert Table III here 

Phase 4. AROM obtained for the pathologic subject were in accordance with the 

rehabilitation assessment performed by clinicians. The AROM were out of the normal 

range for CMC1 extension and abduction, IP1 flexion and extension, DIP2 to DIP5 flexion 

and extension, and in particular for MCP2 to MCP4 flexion the AROM was out of the 

range of the calibration (70º, 60º and 59º respectively, all of them lower than the 75º 

required). These limitations would disable the subject for performing the static postures of 

the Detailed calibration protocol, and obviously the cycles needed to account for the cross-

coupling effect. 

DISCUSSION 

The results of this work demonstrate promising approaches with strong potential to 

overcome critical problems associated with effective calibration of instrumented gloves. 

Such potential solutions are needed to advance technical capabilities for quantitative data 

collection during complex hand motions. First of all, we show that using a single, detailed 

calibration session for data collection from a single subject over multiple experimental 
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sessions introduces only minimal error (mean precision error 3.50º), enabling data 

collection from the same subject over multiple days, without repeating a tedious, time-

consuming calibration procedure. Furthermore, we propose that the small errors associated 

with using our across-subject calibration protocol (mean precision error 4.45º) are 

acceptable for many purposes. In addition to the reduction in time and effort associated 

with glove calibration, in the scenarios in which the error levels are permissible, this 

approach also has the potential to improve the accuracy with which hand kinematics can be 

quantified when the subject has a severe disability that interferes with the capacity to 

achieve subsets of hand postures essential for completion of the detailed, individualized 

calibration. Specifically, in this case, the results of our study suggest that the across-subject 

calibration would give better results than a detailed calibration in which some sensors could 

not be properly calibrated.  

When comparing the difference between the joint angles that resulted when the same sensor 

outputs were transformed with both the across-subject calibration and the detailed subject-

specific calibration, only three degrees of freedom (abduction of the little MCP joint and 

flexion and abduction of CMC1 joint) yielded errors greater than 10º. Due to the 

complexity of the base joint of the thumb and the location of the sensors, it is not surprising 

that errors associated with CMC1 were relatively large. The larger error associated with 

abduction of the little finger can be explained because it represents an accumulated error. 

Specifically, flexion of little MCP joint is calculated as the sum of the relative abduction 

between little and ring fingers and the relative abduction between ring and middle fingers, 

yielding an accumulated error of a magnitude of approximately twice the error of similar 

joints.  
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The results of our correlation analysis suggest that, when using the across-subject 

calibration, several joint angles are sensitive to hand size. This result is consistent with the 

motivation of a previous study that used hand segment lengths as an input to ANN as an 

algorithm to transform sensor output to joint angles (Zhou, Malric, and Shirmohammadi 

2010); although the success of this previous technique was not evaluated in terms of joint 

angle errors. We observed less sensitivity to hand breadth than hand length (e.g., only 4 

degrees of freedom yielded significant correlations with hand breadth vs. 7 with hand 

length, Fig. 5). For MCP flexion, we note that 3 out of 5 MCP joints were negatively 

correlated to either hand length or breadth. Thus, using the across-subject calibration 

instead of using the detailed calibration generally yielded greater MCP flexion angles for 

smaller hands and smaller MCP flexion angles for larger hands. Overall, our correlation 

analysis suggests that the degree of variability in hand sizes across a group of subjects 

should be considered when implementing the across-subject calibration approach, 

especially if the application requires data of high precision. 

When a single subject adopted five static postures and the joint angles estimated using the 

across-subject calibration were compared to the photogrammetric technique, we observed a 

small, negative bias error across all joints (e.g., on average, the joint angles were smaller 

for the across-subject data). In contrast, we note a small, positive bias error for the fast 

calibration. While our interpretation is limited by the fact that the videogrammetric data had 

to be taken separately, we postulate that the result of a negative bias (e.g., smaller joint 

excursions from the neutral posture) is consistent with the fact that the individuals were 

wearing a glove, increasing joint stiffness. In addition, another source of bias in the across-
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subject approach is that abduction angles of fingers were obtained assuming no abduction 

for the middle finger, which may affect the recorded values for the other abduction angles.  

Given the benefits of instrumented gloves for quantification of complex hand movements 

discussed previously, our analysis suggests that the across-subject calibration approach is a 

feasible methodology for many applications in which the measurement of joint angles is 

required (ranging from clinical diagnosis, rehabilitation or functional assessment, to 

robotics). Because we observed smaller differences relative to a reference data set (Table 

3), we conclude the across-subject calibration methodology performed more effectively 

than the fast calibration protocol (grand mean precision errors 7.08º and 10.31º, 

respectively). While this analysis was completed with an 18-sensor Cyberglove, it is 

extendable to a 22-sensor Cyberglove, which registers also fingers distal IP joint flexion. In 

order to use it, an analogous procedure to that presented for the rest of IP joints could be 

used.  
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NOMENCLATURE 

ADL Activities of daily living 

ANN Artificial neural networks 

AROM Active range of motion 

ASL American sign language  

CMC1 Carpometacarpal joint of thumb  

DIP2 to DIP5 Distal interphalangeal joints (2 to 5, index to little digits) 

DoF Degree of freedom 

HB Hand breadth 

HL Hand length 

IP Interphalangeal joint 

IP1 Thumb interphalangeal joint 

MCP Metacarpophalangeal joint 

MCP1 to MCP5 Metacarpophalangeal joints (1 to 5, thumb to little digits) 

PIP2 to PIP5 Proximal interphalangeal joints (2 to 5, index to little digits) 

RMSE Root mean square error 

SD Standard deviation 
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Figure Captions List 

Fig. 1 18-sensor Cyberglove sensor location (the two sensors related to the wrist are 

not sketched as they are not used) 

Fig. 2 Postures and guided movements used for the calibration protocol: (a) 

Examples of calibration trials 1 to 20; (b) Trials 21 and 22; (c) Starting 

postures of trials 23 to 25; (d) Examples of trials 23 to 40; (e) Neutral 

extension and abduction for trials 41 and 42; (f) Maximal extension during trial 

41; (g) Maximal abduction (left) and adduction (right) during trial 42; (h) 

closed loop movement during trial 43; (i) Measurement of little CMC flexion 

in trials 21 (left) and 44 (right) 

Fig. 3 Static postures used to evaluate the errors of the method proposed: (a) 

Maximal abduction of all fingers with hand in a plane; (b) All fingers in 90° 

MCP flexion while thumb in maximal extension; (c) Grasping a ball; (d) Letter 

‘Y’ from American Sign Language (ASL); (e) Letter ‘R’ from ASL 

Fig. 4 Right hand of the injured subject. 

Fig. 5 Visual comparison of the five static postures for the subject 9, the one with the 

highest differences (detailed subject-specific calibration versus across-subject 

calibration). (a) Maximal abduction of all fingers; (b) All fingers in 90° MCP 

flexion while thumb in maximal extension; (c) Grasping a ball; (d) Letter ‘Y’ 

from American Sign Language (ASL); (e) Letter ‘R’ from ASL 

Fig. 6 Pearson correlations of the precision errors with hand breadth (HB) and hand 

length (HL): darker shadowed cells for p < 0.01, lighter shadowed cells for p < 

0.05. The sign of the correlations is also shown 
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Table Caption List 

Table 1 Descriptive data of all the subjects participating in the experiments 

Table 2 Mean bias and precision errors, in degrees, of using gains and coefficients 

obtained with the detailed calibration in a different session for subjects of 

sample 1 (phase 1), and of using the across-subject calibration versus the 

detailed subject-specific calibration (phase 2) 

Table 3 Mean values for bias and precision errors of using the across-subject 

calibration and the subject-specific fast calibration compared to using the 

videogrammetric technique 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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TABLES 

Table I 

  Gender HL (mm)
a
 HB (mm)

b
 

Sample 1 Subject 1 Male 183 88 

Subject 2 Female 169 76 

Subject 3 Male 176 81 

Subject 4 Female 160 69 

Subject 5 Male 196 83 

Subject 6 Female 179 76 

Sample 2 Subject 7 Male 171 86 

Subject 8 Female 166 73 

Subject 9 Male 204 82 

Subject 10 Female 176 74 
a
 HL: hand length, measured from the proximal palmar crease to the tip of the middle 

finger) 
b
 HB: hand breath, measured at the metacarpal heads 
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Table II 

Phase 1 Phase 2 

Joint 
Bias (º) 

Precision 

(º) 

Mean Precision of 

group of joints (º) 
Bias (º) 

Precision 

(º) 

Mean Precision of 

group of joints (º) 

IP1f 0.01 1.33 

2.71 

-0.03 1.72 

1.74 

 

PIP2f -0.02 2.88 0.04 2.47 

PIP3f 0.02 3.76 -0.41 1.34 

PIP4f 0.01 4.00 0.72 1.70 

PIP5f 1.32 1.59 -0.35 1.48 

MCP1f 0.00 0.92 

1.62 

0.84 4.90 

2.67 

 

MCP2f -0.05 2.21 -0.23 2.10 

MCP3f 0.00 2.15 2.26 3.00 

MCP4f -0.01 1.76 0.19 1.44 

MCP5f 0.92 1.04 -1.51 1.91 

MCP2a -0.25 4.77 

3.52 

0.2 5.34 
7.90 

 
MCP4a 0.00 3.31 -0.4 8.19 

MCP5a 3.19 2.47 4.86 10.16 

CMC1f -1.26 12.66  1.78 10.26 
 

CMC1

a 

0.08 2.88  2.18 10.39  

Palmar 

arch 

1.79 8.19  -0.18 4.85  

Grand 

Mean 

0.36 3.50   0.49 4.45   
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Table III 

 Across-subject calibration Subject-specific fast calibration 

Joint 
Bias (º) 

Precision 

(º) 

Mean Precision of 

group of joints (º) 
Bias (º) 

Precision 

(º) 

Mean Precision of 

group of joints (º) 

IP1f -0.65 1.50 

6.26 

-2.20 9.13 

9.13 

PIP2f -3.09 5.56 -12.51 11.25 

PIP3f -4.86 9.40 -4.56 9.25 

PIP4f -3.77 4.68 -5.19 5.87 

PIP5f -10.30 10.19 -9.80 10.12 

MCP1f 5.62 6.00 

7.29 

-4.66 2.20 

13.32 

MCP2f -2.28 6.64 8.31 13.20 

MCP3f -0.60 8.20 14.78 22.46 

MCP4f -9.87 2.17 5.34 16.93 

MCP5f 7.92 13.45 3.95 11.83 

MCP2a 1.76 7.26 

8.08 

1.19 10.29 

11.47 MCP4a -0.05 8.18 5.68 10.00 

MCP5a 4.01 8.80 24.45 14.11 

CMC1f -3.63 5.76  6.62 7.43 
 

CMC1a -1.73 6.81  -4.70 3.18 
 

Palmar 

arch 
-0.41 8.69  -2.71 7.66 

 

Grand 

Mean 
-1.37 7.08  1.50 10.31 

 

 

 


