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Abstract

One of the main problems in celestial mechanics is the study of the shape
adopted by extended deformable celestial bodies in its equilibrium configura-
tion. In this paper, a new point of view about classical theories on equilibrium
figures in close binary systems is offered.

Classical methods are based on the evaluation of the self-gravitational, cen-
trifugal and tidal potentials. The most common technique used by classical
methods shows convergence problems. To solve this problem up to first order
in amplitudes two algorithms has been developed, the first one based in the
Laplace method to develop the inverse of the distance and the second one based
on the asymptotic properties of the numerical quadrature formulas.
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1. Introduction

The main aim of this work is to develop a consistent theory to determine
the self-gravitational potential at an arbitrary point of each component of a
detached close binary system in a state of slow rotation, when its equilibrium
configuration has been reached. This means that the binary system is observed
from a coordinate system rotating in association with the studied component,
once the hydrostatic equilibrium is reached. The configuration of hydrostatic
equilibrium is equivalent to a state of rigid rotation, which corresponds to the
minimum potential [4], [8], [7]. In accordance, among others [4], [9], [7], this
state implies the identification of equipotential, isobaric and isopycnic surfaces.

The mechanisms by which a close binary system reaches its equilibrium state
have been studied among others by [2], [3]. This process implies circularizing
the orbit and synchronizing the rotation and translation movements. Let M1
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and M2 be two masses and R the distance between the center of mass of its
components. The equilibrium state implies Kepler’s third law

ω2 = G
M1 +M2

R3
(1)

The state of the close binary system can be modeled by the equations:

−→∇P = ρ
−→∇Ψ (2)

△Ψ = −4πGρ+ 2ω2 (3)

where P is the pressure, ρ is the density, Ψ is the total potential, △ is the Laplace
operator, G is the constant of universal gravitation and −→ω is the angular velocity
of the system. To integrate these equations in a general case of mass distribution,
a state equation, P = P (ρ), relating pressure with density is required.

To assess the full potential is necessary to calculate the self-gravitational
potential Ω, the centrifugal potential Vc and the tidal potential Vt.

The physical effects produced by the disturbing potentials (centrifugal and
tidal) are deformations of the equipotential surfaces of the components with
respect to the spherical symmetry that stars at rest would possess.

To study the potential of a generic point of the close binary system, it is
convenient to define the coordinate system OXY Z. On it, O is the center of
mass of the primary component, OX is the axis rotating in the direction of the
secondary component, OZ is an axis in the direction of the angular velocity of
the system and OY is defined in a way that OXY Z may form a direct trihedral.
The value of Vc and Vt in this reference system is described by Finlay [4], Kopal
[8], [9] and López [10], [12].

The solution of the problem can be addressed on the basis of the well-known
equations determining the structure of a self-gravitatory fluid, initially isolated,
which leads to a solution with spherical symmetry.

From this initial solution, the general problem includes centrifugal forces
due to rotation and tidal forces generated by the secondary component. This
problem can be analyzed from the solution of an unperturbed problem using
the perturbation theory, successive approximations of the density, pressure and
temperature data, and the definition of the shape of the component as the lower
surface containing it.

An alternative treatment, due to Clairaut [7], is to consider that density,
pressure and temperature of each component are only function of the total
potential, so that the complete solution of the problem is equivalent to determine
the equipotential surfaces. An advantage of this procedure is that pressure does
not appear explicitly in the basic equations which determine the equipotential
surfaces. The equations depend on the density, remaining invariant with the
form it takes.

In the Clairaut method, the figure of each component is defined by the lower
equipotential surface containing the component. The study of the close binary
systems has been addressed using the Clairaut method by several authors [9],

2



[10], extending the technique used by Finlay and Kopal, among others, to the
problem of equilibrium figures for rotating isolated bodies. Kopal [9] studies the
amplitudes of the deformations with respect to the sphere by adding the terms
of rotation, tide and the rotation-tide interaction. On the other hand, Lopez
[10] studies the problem globally, up to the first order, using as a basis for the
developments of equipotential surfaces the spherical functions.

Unfortunately, the method used by these authors [9], [10] offers some prob-
lems regarding the convergence of the used developments and its solution de-
pends on the desideratum of Laplace, which has not been yet demonstrated. In
case of rotating figures, these problems have been studied by López [12]. The
study shows inconsistencies in Kopal’s approach. To overcome these disadvan-
tages, López [12] introduces two new algorithms which do not require compliance
with the desideratum of Laplace. López shows that, up to first order, the inner
and outer terms of the self-gravitational potential given by the Kopal theory
are wrong. However, the full potential up to the first order coincides with the
one obtained by Kopal. This demonstrates that the results of Kopal theory are
consistent because they do not depend on Laplace desideratum.

This paper focuses on extending the results obtained for rotating deformable
bodies showing rotational symmetry to the most general case of the close binary
systems. In this case we show that the terms of the self-gravitational potential
calculated using classical methods are not correct. Despite this, it is shown
that the total potential, up to first order in the small amount ω2, coincides
with that obtained by classical methods. In the case we are treating, spherical
functions and their products are involved, which makes it far more complex than
the problem considering only rotation, because in this case only the Legendre
polynomials and their products must be considered.

In this section, the general backgrounds of the problem are explained. On
them, the inconsistency of the classical theory due to its reliance on the unproven
hypothesis known as the desideratum of Laplace is shown. It is also shown the
need to build new methods to solve the first order theory for the close binary
systems which are independent of the Laplace desideratum.

Section 2 describes further the classical method proposed by Finlay and
Kopal, based on the method of Clairaut as well as its extension for close binary
systems. In this section, difficulties offered by the classical theory due to the
dependence of this theory with the unproven desideratum of Laplace are also
shown.

In section 3, a new algorithm based on an extension of the method used
by López [12] for close binary systems is shown. This method is based on a
modified Laplace method for calculating the inverse of the distance between two
bodies moving in elliptical orbits. This method obviates the need of depending
on Laplace desideratum to evaluate, up to first order, the self-gravitational
potential in a point of a component of a close binary system.

Section 4 introduces a second algorithm that extends the technique devel-
oped by López [12], to close binary systems. This method, consisting on a gen-
eralization of the Wavre method, permits to obtain the rigorous calculation of
the different terms of the self-gravitational potential of each of the components.
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These terms do not coincide with those obtained by the classical theory but,
nevertheless, it is also shown that, up to first order in ω2, the self-gravitational
potential coincides with the one obtained by classical theory.

In section 5, the main conclusions of this work and its comparison with the
results obtained by the classical theory are discussed.

2. Classical theory of close binary systems

In this section, the classical theory about equilibrium figures in close binary
systems due to [4], [8], [9], [10] is presented. These theories are based in the use
of the Clairaut coordinates system. Let (r, θ, λ) be the spherical coordinates of
a point of the primary component. These coordinates are related to Cartesian
coordinates (x, y, z) by

x = r cosλ cos θ, y = r sinλ cos θ, z = r sin θ. (4)

The Clairaut coordinates system (a, θ, λ) is related to the spherical coordinates
system by r = r(a, θ, λ). The total potential Ψ depends only on the a coordinate
and then, for each constant a, the surface r = r(a, θ, λ) is an equipotential
surface.

The value of a is defined by the following condition: the mass of the com-
ponent enclosed by the equipotential surface r(a, θ, λ) coincides with the mass
contained in the sphere of center O and radius a. Obviously, in the case of
equilibrium, the density ρ depends only on the coordinate.

Figure 1: Sphere and equipotential surface

To assess the total potential at a point contained in the primary component,
it is necessary to obtain the self-gravitational potential Ω, the tidal potential Vt

and the centrifugal potential Vc.
Let P be a point in spherical coordinates (r, θ, λ) of the system primary

component. Let r1 be the smallest sphere centered at O containing the primary
component and dm′ the mass element of a point P ′ with coordinates (r′, θ′, λ′)
of the component.

The self-gravitational potential is given by

Ω = G

∫ r1

0

∫ π

2

−
π

2

∫ 2π

0

dm′

∆
. (5)

4



where ∆ is the distance between the points of coordinates (r, θ, λ) and (r′, θ′, λ′),
and dm′ = ρr′2 cos θ′dr′dθ′dλ′.

The inverse of the distance can be obtained through the classical develop-
ment

1

∆
=

1
√

r2 + r′2 − 2r r′ cos γ
=











1
r

∞
∑

n=0

(

r′

r

)n

Pn(cos γ), r′ < r

1
r′

∞
∑

n=0

(

r
r′

)n
Pn(cos γ), r < r′.

(6)

where γ is the angle between the vectors
−−→
OP and

−−→
OP ′.

By the theorem of addition of spherical harmonics in real form, we know

Pn(cos γ) =
4π

2n+ 1

n
∑

m=−n

Yn,m(θ, λ)Yn,m(θ′, λ′). (7)

The self-gravitational potential Ω is evaluated by

Ω = U + V (8)

where

U = G

∫ r1

r

∫ 2π

0

∫ π

2

−
π

2

ρ(r′, θ′, λ′)

∆
r′2 cos θ′dθ′dλ′dr′

V = G

∫ r

0

∫ 2π

0

∫ π

2

−
π

2

ρ(r′, θ′, λ′)

∆
r′2 cos θ′dθ′dλ′dr′ (9)

where U is the potential due to the outside part of the sphere of radius r and
V the potential due to the inside part of this sphere.

To evaluate these integrals it is convenient to replace 1
∆ by (6), and so we

have

U =

∞
∑

n=0

Unr
n, V =

∞
∑

n=0

Vnr
−n−1 (10)

where

Un = G

∫ r1

r

∫ 2π

0

∫ π

2

−
π

2

ρ(r′, θ′, λ′)r′1−nPn(cos γ) cos θ
′dθ′dλ′dr′

Vn = G

∫ r

0

∫ 2π

0

∫ π

2

−
π

2

ρ(r′, θ′, λ′)r′2+nPn(cos γ) cos θ
′dθ′dλ′dr′. (11)

Taking into account that the Jacobian of transformation between spherical and
Clairaut coordinates (a′, θ′, λ′) is ∂r′

∂a′
, we have

dm′ = ρ(a′)
∂ r′

∂ a′
r′

2

cos θ′ da′dθ′dλ′, (12)

5



and following [4], [9] we can write the last equations as:

Un =
G

2− n

∫ a1

a

∫ 2π

0

∫ π

2

−
π

2

ρ(a′)
∂r′2−n

∂a′
Pn(cos γ) cos θ

′dθ′dλ′da′, if n 6= 2

U2 = G

∫ 2π

0

∫ a1

a

∫ π

2

−
π

2

ρ(a′)
∂log r′

∂a′
P2(cos γ) cos θ

′dθ′dλ′da′,

Vn =
G

3 + n

∫ a

0

∫ 2π

0

∫ π

2

−
π

2

ρ(a′)
∂r′3+n

∂a′
Pn(cos γ) cos θ

′dθ′dλ′da′. (13)

where log denotes Naperian logarithms, and a(θ′, λ′) is the value of the pa-
rameter a corresponding to the equipotential surface containing the point of
spherical coordinates (r, θ′, λ′), and a1 the value of Clairaut coordinate a on the
equipotential surface determitated by the shape of the component.

Classical theory assumes that developments (11) and (13) are equivalent.
However, this assumption is not true because (11) is calculated on the sphere
and (13) over the equipotential surfaces.

To evaluate the last integrals, we consider [7] r = a(1 + ξ(a, θ, λ)) and r′ =
a′(1 + ξ(a′, θ′, λ′)), where ξ(a, θ, λ) is a small quantity. In the other hand, we
assume that the development for r converges:

r = a(1 +

∞
∑

n=0

n
∑

m=−n

fn,m(a)Yn,m(θ, λ)). (14)

The functions fn,m(a) are called amplitudes and the functions Yn,m(θ, λ) are
the spherical functions. The spherical functions are an orthogonal and complete
system on the sphere. To manage the products of spherical functions we van
see [1], [6], [5]. The absolute value amplitude functions |fn,m(a)| increases with
a [7], [13], [8].

In the case of an isolated body in rotation [8], [9], this development can be

reduced as r = a(1+
∞
∑

n=0
f2n(a)P2n(cos θ)). In the case of a close binary system

by symmetry reasons, we have fn,m(a) = 0 if m < 0 or n+m is odd.
To evaluate the integrals (13), it is convenient to approach r′k and log r′ up

to first order in amplitudes, and so:

r′k = a′k(1 + k

∞
∑

n=0

n
∑

m=0

fn,m(a′)(a)Yn,m(θ′, λ′))

log r′ = log a′ +

∞
∑

n=0

n
∑

m=0

fn,m(a′)Yn,m(θ′, λ′). (15)

Replacing (15) in (13) and taking into account (10), we obtain the develop-
ment [10]

Ω = 4πG
∞
∑

n=0

n
∑

m=0

1

2n+ 1

[

En,m(a) rn + Fn,m(a) r−n−1
]

Yn,m(θ, λ) (16)
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where, for n 6= 0,

En,m(a) =

∫ a1

a

ρ
∂

∂a′

{

a′
2−n

fn,m(a′)
}

da′, (17)

Fn,m(a) =

∫ a

0

ρ
∂

∂a′

{

a′
n+3

fn,m(a′)
}

da′ (18)

and

E0,0(a) =

∫ a1

a

ρ
∂

∂a′

{

a′
2 [√

π + f0,0(a
′)
]

}

da′ (19)

F0,0(a) =

∫ a

0

ρ
∂

∂a′

{

a′
3

[

2
√
π

3
+ f0,0(a

′)

]}

da′ (20)

On the other hand, the function V0

G represents the mass M(a) contained in
the sphere of radius a which coincides with the enclosed in the equipotential
surface r(a, θ, λ). In consequence

∫ a

0

ρ
∂

∂a

∫ π

2

−
π

2

∫ 2π

0

1

3
r3 cos θ dλdθda = M(a) (21)

Developing now r3 up to second order and replacing the product of spherical
harmonics by their developments, it is obtained

f0,0(a)[1 + f0,0(a)] +
1

2
√
π
f2
1,1(a) +

1

2
√
π
f2
2,0(a) +

1

2
√
π
f2
2,2(a) = 0 (22)

From this, we can deduce that the amplitude f0,0(a) is of second order for
amplitudes.

Moreover, if we assume the condition that the center of coordinates is in the
center of mass of the main component, then

∫

M1

x dm =

∫

M1

y dm =

∫

M1

z dm = 0 (23)

Since

x =

√

4π

3
r Y1,1(θ, λ), y =

√

4π

3
r Y1,−1(θ, λ), z =

√

4π

3
r Y1,0(θ, λ). (24)

From the first equation of (23), we have

∫ r1

0

∫ π

2

−
π

2

∫ 2π

0

√

4π

3
r Y1,1(θ, λ)ρ(a)r

2 cos θdλdθdr = 0, (25)

and so

∫ a1

0

ρ(a)

∫ π

2

−
π

2

∫ 2π

0

√

4π

3

∂r4

∂a
Y1,1(θ, λ)ρ(a) cos θdλdθdr = 0, (26)
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∫ a1

0

ρ(a)
d
(

a4 f1,1(a)
)

d a
da = 0. (27)

As |f1,1(a)| is increasing, then f1,1(a) and
d f1,1(a)

d a
have the same sign. There-

fore,
d
(

a4 f1,1(a)
)

d a
has the same sign as f1,1(a). Furthermore, as ρ(a) > 0 ∀ a <

a1, we can deduce that, in first order, f1,1(a) =
d f1,1(a)

d a
= 0. That is to say,

order of f1,1(a) is of an order higher than the first.
Moreover, the centrifugal potential and the tidal potential in first order [11]

are expressed respectively by

Vc(a, θ, λ) = ω2

{[

2
√
π

3
a2 +

√
π

(

M2R

M1 +M2

)2
]

Y0,0(θ, λ)−

−2

√

π

3

M2R

M1 +M2
a Y1,1(θ, λ) −

2

3

√

π

5
a2 Y2,0(θ, λ)

}

(28)

Vt(a, θ, λ) =

√
πGM2

R3

{

2R2 Y0,0(θ, λ) +
2√
3
aRY1,1(θ, λ)−

− 1√
5
a2 Y2,0(θ, λ) +

√

3

5
a2 Y2,2(θ, λ)

}

(29)

Notice that up to first order in amplitudes the disturbing potential Vc + Vt due
to the third Kepler law, only contains terms in Y0,0, Y2,0, and Y2,2.

The total potential Ψ = Ω+ Vc + Vt is given by:

Ψ = Ψ(a) = Ψ0,0(a) +

∞
∑

n=1

∞
∑

m=0

Ψn,m(a)Yn,m(θ, λ). (30)

And so Ψ(a) = Ψ0,0(a) and Ψn,m(a) = 0 if n+m 6= 0. Following a similar way
as Kopal [8], [9] only the amplitudes f2,0(a) and f2,2(a) are of first order in ω2.

Unfortunately the classical method involves several inconsistencies. The
values of Un and Vn given by (11) and (13) are not the same as will be later
demonstrated, because in the first form the domain of integration they are
limited by sphere centred in O containing the point P and in the second form
this one is the region limited by the equipotential surface containing P .

An alternative method to solve this problem used by Liapunov [7] can be
describe as: let us define Va as the region limited by the equipotential surface
containing the point P with Clairaut coordinates (a, θ, λ) and be Ve the region of
the component of the equipotential surface of P . The self-gravitational potential
Ω can be decomposed as

Ω = G

∫

Va

dm′

∆
+G

∫

Ve

dm′

∆
(31)
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and replacing

1

∆
=

1
√

r2 + r′2 − 2r r′ cos γ
=











1
r

∞
∑

n=0

(

r′

r

)n

Pn(cos γ), r′ < r

1
r′

∞
∑

n=0

(

r
r′

)n
Pn(cos γ), r < r′,

(32)

we have

Ω =

∞
∑

n=0

[

Knr
n +Wnr

−n−1
]

(33)

where

Kn = G

∫ a1

a

∫ 2π

0

∫ π

2

−
π

2

ρ(a′)r′1−n ∂r
′

∂a′
Pn(cos γ) cos θ

′dθ′dλ′da′

Wn = G

∫ a

0

∫ 2π

0

∫ π

2

−
π

2

ρ(a′)r′2+n ∂r
′

∂a′
Pn(cos γ) cos θ

′dθ′dλ′da′. (34)

At this point it is important to mention the equivalence of equations (13)
and (34).

Let’s remember that in order to use (33), the assumption of the non-demons-
trate Laplace desideratum (can be found in [7] and [13]) is necessary to be able
to accept the convergence of the development (33). These hypotheses assume
that by replacing the first part of (32) in the first term of (31) and the second
part of (32) in the second term of (31), convergence is maintained.

3. First order analytical algorithm

In the classical method it is necessary to evaluate the potential through (33),
but unfortunately, the series defined by (6) do not converge in the layer defined
by r ∈ [rmin(a), rmax(a)] with

rmin(a) = min
{

r(a, θ, λ) : θ ∈
[

−π

2
,
π

2

]

; λ ∈ [0, π]
}

rmax(a) = max
{

r(a, θ, λ) : θ ∈
[

−π

2
,
π

2

]

; λ ∈ [0, π]
}

To solve this problem a method based on the Laplace development of the
inverse of the distance between two planets [13] will be used. López [12] apply
this technique to obtain the inverse of the distance between two points in the
rotational case, and we propose to extend this technique to the case of two
points of a component of a close binary system. To do that, we define

D(a, a′) =
1

√

a2 + a′
2 − 2aa′ cos γ

(35)
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The inverse of the distance ∆−1 = (r2 − r′2 − 2r r′ cos γ)−1/2 between dm

and dm′, ∆−1 = D(r, r′), can be obtained to first order in amplitudes by means
of a Taylor development up to first order in amplitudes:

1

∆
= D(a, a′) +

∂D(a, a′)

∂ a
(r − a) +

∂D(a, a′)

∂ a′
(r′ − a′) (36)

Denoting Σ as
∑

∞

n=0

∑n
m=−n fn,m(a)Yn,m(θ, λ), up to first order in amplitudes

we have:

r = a(1 + Σ) r′ = a′(1 + Σ′)

rk = ak(1 + kΣ) r′k = a′k(1 + kΣ′)

log r = log a+Σ log r′ = log a′ + Σ′ (37)

From (36) and (37) we obtain

1

∆
= D(a, a′) +Da(a, a

′) aΣ+Da′(a, a′) a′ Σ′ (38)

where Da(a, a
′) =

∂D(a, a′)

∂ a
and Da′(a, a′) =

∂D(a, a′)

∂ a′
.

The mass element dm′ is expressed by (12). From (37)

∂ r′

∂ a′
= 1 + Σ′ + a′ Σ′

a′

r′
2

= a′
2

(1 + 2Σ′)

∂ r′

∂ a′
r′

2

= a′
2

(1 + 3Σ′ + a′ Σ′

a′) (39)

From (12) and (39), the mass element dm′ expressed in first order terms is
obtained

dm′ = ρ(a′) a′
2

(1 + 3Σ′ + a′ Σ′

a′) cos θ′ da′dθ′dλ′ (40)

Inside the equipotential surface that contains dm′

D(a, a′) =
1

a

∞
∑

n=0

(

a′

a

)n

Pn(cos γ) (41)

Outside, we have:

D(a, a′) =
1

a′

∞
∑

n=0

( a

a′

)n

Pn(cos γ) (42)

The self-gravitational potential Ω is expressed as the sum of the external
potential and the internal potential

Ω = K +W (43)

10



where

K = G

∫ 2π

0

∫ π

2

−
π

2

∫ a1

a

ρ(a′) r′
2

∆

∂ r′

∂ a′
cos θ′ da′dθ′dλ′ (44)

W = G

∫ 2π

0

∫ π

2

−
π

2

∫ a

0

ρ(a′) r′
2

∆

∂ r′

∂ a′
cos θ′ da′dθ′dλ′ (45)

Now, we are going to develop the internal potential W up to first order. To
do that we will use the development in the interior of D(a, a′):

Da(a, a
′) = − 1

a2

∞
∑

n=0

(n+ 1)

(

a′

a

)n

Pn(cos γ)

Da′(a, a′) =
1

a2

∞
∑

n=0

n

(

a′

a

)n−1

Pn(cos γ)

Da(a, a
′) aΣ = −1

a

∞
∑

n=0

(n+ 1)

(

a′

a

)n

ΣPn(cos γ)

Da(a, a
′) a′ Σ =

1

a

∞
∑

n=0

n

(

a′

a

)n

Σ′ Pn(cos γ)

(46)

From (38) and (46)

1

∆
=

1

a

∑

n=0

(1− (n+ 1)Σ + nΣ′) Pn(cos γ) (47)

From (40), (45) and (47)

W =

∫ a

0

∫ 2π

0

∫ π

2

−
π

2

{

∞
∑

n=0

a′
n+2

an+1
g(Σ,Σ′)Pn(cos γ) cos θ

′ dθdλ

}

ρ(a′) da′ (48)

where g(Σ,Σ′) = 1− (n+ 1)Σ + (n+ 3)Σ′ + a′Σ′

a′ .
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From (69)

∫ 2π

0

∫ π

2

−
π

2

Pn(cos γ) cos θ
′ dθ′dλ′ =

{

0 if n 6= 0
4π if n = 0

∫ 2π

0

∫ π

2

−
π

2

ΣPn(cos γ) cos θ
′ dθ′dλ′ =

{

0 if n 6= 0
4πΣ if n = 0

∫ 2π

0

∫ π

2

−
π

2

Σ′ Pn(cos γ) cos θ
′ dθ′dλ′ =

4π

2n+ 1

n
∑

m=−n

fn,m(a′)Yn,m(θ, λ)

∫ 2π

0

∫ π

2

−
π

2

a′ Σ′

a′ Pn(cos γ) cos θ
′ dθ′dλ′ =

4π

2n+ 1
a′

n
∑

m=−n

d fn,m(a′)

d a′
Yn,m(θ, λ)

(49)
Then, from (48) and (49) we obtain

W =
4πG

a

∫ a

0

ρ(a′) a′
2

da′+

+4πG

∞
∑

n=1

∫ a

0

ρ(a′)

{(

n
∑

m=−n

a−n−1

2n+ 1

d

da′

(

a′
n+3

fn,m(a′)
)

)

Yn,m(θ, λ)

}

da′

(50)
Let us define

E0,0(a) =

∫ a1

a

ρ
d

d a

(√
πa2
)

da

F0,0(a) =

∫ a

0

ρ
d

d a

(

2
√
π

3
a3
)

da

En,m(a) =

∫ a1

a

ρ
d

d a

(

a2−nfn,m(a)
)

da if n 6= 0

Fn,m(a) =

∫ a

0

ρ
d

d a

(

an+3fn,m(a)
)

da if n 6= 0

(51)

Consequently, from (50) and (51)

W =
4πG

a
F0,0(a)Y0,0(θ, λ) + 4πG

∞
∑

n=1

n
∑

m=−n

a−n−1

2n+ 1
Fn,m(a)Yn,m(θ, λ) (52)

In the same way that W has been calculated, K development is obtained

K = 4πGE0,0(a)Y0,0(θ, λ) + 4πG

∞
∑

n=1

n
∑

m=−n

an

2n+ 1
En,m(a)Yn,m(θ, λ) (53)

12



Consequently, from (52) and (53) the development of the self-gravitational
potential Ω, in terms of first order, is obtained:

Ω = 4πG

{

(

E0,0(a) +
1

a
F0,0(a)

)

Y0,0(θ, λ)+

+

∞
∑

n=1

n
∑

m=−n

1

2n+ 1

(

anEn,m(a) + a−n−1Fn,m(a)
)

Yn,m(θ, λ)

}

(54)

which coincides with the classical expression of the self-gravitational potential.

4. First order numerical quadrature algorithm

The method we are going to use in this section lies in the direct calculation
of the self-gravitational potential (Ω).

Let’s be

r(a, θ, λ) = a[1 + Σ] with Σ =
∞
∑

p=0

p
∑

q=−p

fp,q(a)Yp,q(θ, λ) (55)

r′(a′, θ′, λ′) = a′[1 + Σ′] with Σ′ =

∞
∑

p=0

p
∑

q=−p

fp,q(a
′)Yp,q(θ

′, λ′) . (56)

A necessary condition for the point r′(a′, θ′, λ′) are contained in the sphere
that contains the point P of Clairaut coordinates (a, θ, λ) is

r′(a′, θ′, λ′) = r(a, θ, λ) (57)

a′ = a
1 + Σ

1 + Σ′
(58)

Developing 1
1+Σ′

in Σ′ power series

1

1 + Σ′
=

∞
∑

n=0

(−1)n Σ′n if |Σ′| < 1 (59)

From (55), (56), (58) and (59)

a′ = a (1 + Σ)

∞
∑

n=0

(−1)n Σ′n (60)

Developing (60) up to first order of Σ and Σ′ power, it is obtained

a′ = a [1 + Σ− Σ′] (61)

From (11) and (61)
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Vn = G

∫ r

0

∫ 2π

0

∫ π

2

−
π

2

ρ(r′, θ′, λ′)r′2+nPn(cos γ) cos θ
′dθ′dλ′dr′ =

=
G

3 + n

∫ 2π

0

∫ π

2

−
π

2

Pn(cos γ) cos θ
′

(

∫ a(1+Σ−Σ′)

0

ρ
∂ r′

n+3

∂a′
da′

)

dθ′dλ, (62)

and so

Vn =
G

3 + n

∫ 2π

0

∫ π

2

−
π

2

Pn(cos γ) cos θ
′

(

∫ a

0

ρ
∂ r′

n+3

∂a′
da′

)

dθ′dλ′+

+
G

3 + n

∫ 2π

0

∫ π

2

−
π

2

Pn(cos γ) cos θ
′

(

∫ a+aΣ−aΣ′

a

ρ
∂ r′

n+3

∂a′
da′

)

dθ′dλ′ =

= Wn +
G

3 + n

∫ 2π

0

∫ π

2

−
π

2

Pn(cos γ) cos θ
′

(

∫ a+aΣ−aΣ′

a

ρ
∂ r′

n+3

∂a′
da′

)

dθ′dλ′

(63)
On the one hand,

∫ a+aΣ−aΣ′

a

ρ
∂

∂a′

[

r′
n+3
]

da′ ≈ ρ(a)
∂

∂a′

[

r′
n+3
]

a′=a
(aΣ− aΣ′) =

= ρ(a)
∂

∂a′



a′
n+3

(

1 +

∞
∑

p=0

p
∑

q=−p

fp,q(a
′)Yp,q(θ

′, λ′)

)n+3




a′=a

·

·a
[

∞
∑

p=0

p
∑

q=−p

fp,q(a)Yp,q(θ, λ) −
∞
∑

p=0

p
∑

q=−p

fp,q(a
′)Yp,q(θ

′, λ′)

]

(64)

Developing (64) up to the first order in fp,q(a) and fp,q(a
′)

∫ a+aΣ−aΣ′

a

ρ
∂

∂a′

[

r′
n+3
]

da′ =

= (n+ 3) ρ(a) an+3
∞
∑

p=0

p
∑

q=−p

(fp,q(a)Yp,q(θ, λ) − fp,q(a
′)Yp,q(θ

′, λ′))
(65)

On the other hand

fp,q(a
′) = fp,q(a) +

∂fp,q(a
′)

∂a′

∣

∣

∣

∣

a

(a′ − a) +
1

2

∂2fp,q(a
′)

∂a′2

∣

∣

∣

∣

a

(a′ − a)2 + · · · (66)

Approximating (66) up to the first order in fp,q(a), it stays

fp,q(a
′) = fp,q(a) (67)
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From (65) and (67)

∫ a+aΣ−aΣ′

a

ρ
∂

∂a′

[

r′
n+3
]

da′ =

= (n+ 3) ρ(a) an+3
∞
∑

p=0

p
∑

q=−p

fp,q(a) (Yp,q(θ, λ) − Yp,q(θ
′, λ′))

(68)

On one hand, from the addition theorem of spherical harmonics in real form,

Pn(cos γ) =
4 π

2n+ 1

n
∑

m=−n

Yn,m(θ, λ)Yn,m(θ′, λ′)

and on the other, according to the orthonormality of spherical harmonics,

∫ 2π

λ=0

∫ π

2

θ=−
π

2

Yn,m(θ, λ)Yr,s(θ, λ) cos θ dθdλ = δn,r δm,s

we obtain

∫ 2π

λ′=0

∫ π

2

θ′=−
π

2

Pn(cos γ)Yr,m(θ′, λ′) cos θ′ dθ′dλ′ =
4 π

2n+ 1
Yn,m(θ, λ) δn,r (69)

where δi,j is Kronecker’s delta.

From (63), (68) and (69), and considering, in this work, q ≥ 0, m ≥ 0, it
stays

Vn(a, θ, λ) = 4 πGδn,0

[

∫ a

0

ρ a′
2

da′ + ρ(a) a3
∞
∑

p=0

p
∑

q=0

fp,q(a)Yp,q(θ, λ)

]

+

+
4 πG

2n+ 1

n
∑

m=0

[
∫ a

0

ρ
∂

∂a′

{

a′
n+3

fn,m(a′)
}

da′ − ρ(a) an+3 fn,m(a)

]

Yn,m(θ, λ)

(70)
In a similar way

Un(a, θ, λ) = 4 πGδn,0

[

∫ a1

a

ρ a′ da′ − ρ(a) a2
∞
∑

p=0

p
∑

q=0

fp,q(a)Yp,q(θ, λ)

]

+

+
4 πG

2n+ 1

n
∑

m=0

[
∫ a1

a

ρ
∂

∂a′

{

a′
2−n

fn,m(a′)
}

da′ + ρ(a) a2−n fn,m(a)

]

Yn,m(θ, λ)

(71)

U2(a, θ, λ) =
4 πG

5

2
∑

m=0

(
∫ a1

a

ρ
∂

∂a′
{f2,m(a′)} da′ − ρ(a) f2,m(a)

)

Y2,m(θ, λ)

(72)
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From (34) and taking into account (70), (71), (72) we obtain

U0(a, θ, λ) = K0(a, θ, λ)− 4πGρ(a)a2
∞
∑

p=0

p
∑

q=0

fp,q(a)Yp,q(θ, λ) (73)

V0(a, θ, λ) = W0(a, θ, λ) + 4πGρ(a)a3
∞
∑

p=0

p
∑

q=0

fp,q(a)Yp,q(θ, λ) (74)

and for n 6= 0

Un(a, θ, λ) = Kn(a, θ, λ) +
4πG

2n+ 1
ρ(a)a2−n

n
∑

q=0

fn,q(a)Yn,q(θ, λ)

Vn(a, θ, λ) = Wn(a, θ, λ) −
4πG

2n+ 1
ρ(a)an+3

n
∑

q=0

fn,q(a)Yn,q(θ, λ) (75)

In short, we have come to show that both, the development of the outer
potential (Un) and the development of the inner potential (Vn), are formed by
adding up the development of the outer potential of classical theory (Kn) plus
others terms (75) and by adding up the term of the inner potential of classical
theory (Wn) plus other terms (75), respectively.

Given a N ∈ Z
+

Ω = K0 +W0r
−1 +

∞
∑

n=1

[

Knr
n +Wnr

−n−1
]

+

+4πG
(

a3r−1 − a2
)

ρ(a)

N
∑

p=1

p
∑

q=0

fp,q(a)Yp,q(θ, λ)+

+4πG

∞
∑

n=1

[

1

2n+ 1

(

n
∑

m=0

(

a2−nrn − an+3r−n−1
)

ρ(a)fn,m(a)Yn,m(θ, λ)

)]

(76)
Moreover

a3r−1 − a2 = −a2
N
∑

p=0

p
∑

q=0

fp,q(a)Yp,q(θ, λ) (77)

a2−nrn − an+3r−n−1 = (2n+ 1)a2
N
∑

p=0

p
∑

q=0

fp,q(a)Yp,q(θ, λ) (78)

From (76), (77) and (78), and approximating fn,m(a) up to the first order
in amplitudes, we obtain

Ω = K0 +W0r
−1 +

∞
∑

n=1

[

Knr
n +Wnr

−n−1
]

(79)

which is the expression of the self-gravitational potential in its classical form.
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5. Concluding Remarks

This research proves that Finlay and Kopal method used by the classical
theory reveals inconsistencies already in the first order. These inconsistencies
are derived from the assumption, relying on Laplace desideratum, that the de-
velopments (11) and (13) are equivalent.

In order to avoid confusions, in this work we have redefined the name of the
developments displayed in (13), so that Un and Vn are renamed as Kn and Wn,
respectively (34).

By using a method that does not presuppose the Laplace desideratum and
from the developments displayed in (11), Un is proved to be different from Kn

and Vn is proved to be different from Wn, as is brought to light in (75).
Moreover, the method used by Liapunov to solve this problem depends on

the desideratum of Laplace, which has not been demonstrated.
López [12] obtained a solution in first order in ω2 for the case of rotating bod-

ies. This solution was achieved by using two independent algorithms: one based
on the development of Laplace for calculating the inverse of the distance and an-
other based on the calculation of the inner and outer terms of self-gravitational
potential by approximation up to the first order, using the asymptotic properties
of a numerical quadrature formula.

To extend these algorithms to the more complex case of close binary sys-
tems, a package of codes allowing the formal manipulation of the product of
spherical harmonics to obtain the result as a linear combination of them has
been developed. The source codes of this package are accessible under GPL
version 4 conditions.

In section 3, the self-gravitational potential at an arbitrary point P of the
primary component is calculated as the sum of the potentials created by the
mass of the portion of the inner and outer component to the equipotential
surface containing that point. This calculation is made by approximation, up
to the first order, of the inverse of the distance between the point P and two
points, one inside and one outside the equipotential surface passing through P .
This approach up to the first order, which coincides with the one developed
by the classical theory, is achieved using the package codes created to obtain
the product of spherical harmonics as a linear combination of them and making
use of the orthogonality properties of the product of spherical harmonics. It
must be emphasized that the method used for calculating the self-gravitational
potential is independent of Laplace’s desideratum.

In section 4, the values of the terms Un and Vn of the self-gravitational
potential are obtained by an approximation, up to the first order, of the sphere
containing the point P in Clairaut coordinates. These values have been obtained
as the sum of Kn, Wn and the value of the integral in the small region between
the sphere and the equipotential surface passing through the point P . The
above integral has been obtained by exact numerical quadrature up to the first
order. All of these elements permit showing that the values of Un and Vn given
by the classical theory are incorrect. However, the approximation up to the
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first order of the self-gravitational potential Ω coincides with that obtained in
classical theory.

Consequently, in this work the results, up to the first order, of the classical
theory about close binary systems are consistently demonstrated, that is to say,
without turning to Laplace desideratum.

Finally, we propose to extend the obtained results to higher orders than the
first one, both in the case of only rotation as in the case of the close binary
systems.
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