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Abstract 

Exploring changes in land use land cover (LULC) to understand the urban heat island (UHI) 
effect is valuable for both communities and local governments in cities in developing countries, 
where urbanization and industrialization often take place rapidly but where coherent planning 
and control policies have not been applied. This work aims at determining and analyzing the 
relationship between LULC change and land surface temperature (LST) patterns in the context 
of urbanization. We first explore the relationship between LST and vegetation, man-made 
features, and cropland using normalized vegetation, and built-up indices within each LULC 
type. Afterwards, we assess the impacts of LULC change and urbanization in UHI using hot 
spot analysis (Getis-Ord Gi* statistics) and urban landscape analysis. Finally, we propose a 
model applying non-parametric regression to estimate future urban climate patterns using 
predicted land cover and land use change. Results from this work provide an effective 
methodology for UHI characterization, showing that (a) LST depends on a nonlinear way of 
LULC types; (b) hotspot analysis using Getis Ord Gi* statistics allows to analyze the LST 
pattern change through time; (c) UHI is influenced by both urban landscape and urban 
development type; (d) LST pattern forecast and UHI effect examination can be done by the 
proposed model using nonlinear regression and simulated LULC change scenarios. We chose 
an inner city area of Hanoi  as a case-study, a small and flat plain area where LULC change is 
significant  due to urbanization and industrialization. The methodology presented in this paper 
can be broadly applied in other cities which exhibit a similar dynamic growth. Our findings can 
represent an useful tool for policy makers and the community awareness by providing a 
scientific basis for sustainable urban planning and management. 

Keywords: Urban heat island, Land use land cover change, Kernel ridge regression, 
Urbanization 
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1. Introduction 

 The increase in the heat storage capacity of urban surfaces creates so-called urban heat 
islands (UHI), in which built up areas are hotter than nearby rural areas (Oke, 1982; Taha, 
1997; Rizwan et al., 2008). This local difference in temperatures creates a negative impact on 
people and environment because it hampers air quality, increases energy consumption, loses 
biological control, and affects people's health (Kikegawa et al., 2003; Grimmond, 2007; 
Meineke et al., 2014; Plocoste et al., 2014). Advances in thermal remote sensing, geographical 
information systems (GIS), and statistical methods have enabled the research community to 
characterize and examine UHI versus landscape relationship. A great number of studies that 
deal with UHI analysis have been carried out, providing a significant feedback to policy 
makers and researchers (Quattrochi and Luvall, 1999; Yuan and Bauer, 2007; Rizwan et al., 
2008; Junxiang et al., 2011; Kumar et al., 2012; Radhi et al., 2013; Myint et al., 2013; Zhou et 
al., 2014; Adams and Smith, 2014; Coseo and Larsen, 2014; Song et al., 2014; Chun and 
Guldmann, 2014; Rotem-Mindali et al., 2015; Kourtidis et al., 2015). Besides air temperature, 
LST derived from remote sensing data is unique source of information in order to define 
surface urban heat islands and it has been widely used as indicator for UHI research (Weng and 
Schubring, 2004; Weng, 2009; Imhoff et al., 2010). With the introduction of thermal remote 
sensing, LST information is available from a series of satellite sensors (such as Landsat, 
MODIS, and ASTER) that cover a wide range of the earth surface. Compared to air 
temperatures collected from weather stations, thermal imagery provides full spatial coverage at 
various temporal scales (Myint et al., 2013). In addition, LST derived from remote sensing 
imagery might be better to show the hottest and coolest areas as compared to temperature 
collected from urban weather station, which is located in the tree park-like surroundings 
(Nichol and To, 2012). Surface temperature also has a direct interaction with LULC 
characteristics (Quattrochi and Luvall, 1999). Therefore, the analysis of the relationship 
between LULC and LST is crucial in order to understand the effects of LULC on UHI. 

 Exploring the spatial pattern of UHI is important in understanding how the distribution 
of LULC and changes in that distribution influence LST. However, using absolute LST values 
presents the main challenge. Absolute LST can be used to characterize UHI on a particular date 
but, in principle, it is not appropriate to use it to compare the UHI spatial patterns through time. 
Comparing absolute LST values acquired on different dates under different atmospheric 
conditions cannot properly quantify UHI trends from a spatio-temporal perspective. 
Walawender et al. (2013) proposed the use of normalized LST to investigate the LST spatial 
distribution in relation to LULC. This guarantees that LST values retrieved from different 
images are comparable. However, LST values of locations/pixels are not independent but are 
correlated with the LST of its neighboring pixels (Song et al., 2014). In this case, normalized 
LST cannot deal with spatial autocorrelation problems. Therefore, the effect of spatial 
autocorrelation must also be considered when comparing UHI patterns through time.   
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 Simulation of future surface temperatures based on LULC plays an important role in 
mitigating UHI effects. Such understanding can be used to adapt new strategies and policies in 
land use planning and urban design that reduces the UHI effect. Linear regression has been 
commonly used in many studies to gain insight into the landscape–UHI relationship (Yuan and 
Bauer, 2007; Adams and Smith, 2014; Rotem-Mindali et al., 2015; Huang et al., 2015) and has 
been applied to future LST prediction (Ahmed et al., 2013). However, this correlation is non-
linear due to the seasonal variability of land cover data (Owen et al., 1998; Zhou et al., 2014), 
the complex landscape structure (Guo et al., 2015), and urban morphology heterogeneity (Guo 
et al., 2016). In the case of the LST prediction, a non-linear regression method could be a better 
approach in order to achieve a greater insight into the LULC-UHI relationship.  

 Analyzing the impact of LULC change on UHI needs to consider urbanization effects. 
Urbanization leads to the expansion of built-up and impervious surface that intensify UHIs 
(Chun and Guldmann, 2014). Previous studies applied different methods such as diurnal 
temperature range (DTR) (Wang et al., 2007; Mohan and Kandya, 2015), land use change 
trajectories (Feng et al., 2013), or a surface urban heat island index (SUHI) (Dihkan et al., 
2015) to quantify the effects of urbanization on UHI. These studies were successful in 
demonstrating the contribution of urban growth to the UHI effect as well as investigating the 
differences in UHI between urban and rural areas. However, applying these methods could not 
provide insight into the effect of urban development types on UHI. Urban growth can occur in 
different ways, such as including infill, extension, or leapfrog development (Angel et al., 
2012). It is crucial to examine how UHI is affected by different spatial patterns of urban 
growth. For urban planners, understanding which kinds of urban expansion exacerbate or 
mitigate impacts on UHIs can contribute significantly to UHI mitigation strategy.  

The main contributions of the present work are directed to provide tools for a reliable 
analysis of LST patterns on the UHI effect and develop methodologies for predicting urban 
climate patterns in relation to LULC changes, exploiting the relationship between LULC and 
LST through time. Therefore, the objectives of this work are to (i) explore the relationship 
between LST and main LULC types (vegetation, man-made features, cropland) using 
normalized vegetation and built-up indices within each LULC type, (ii) assess the impact of 
LULC change and urbanization on UHI using hot spot analysis (Getis-Ord Gi* statistics) and 
urban landscape analysis, and (iii) apply non-parametric regression using kernel ridge regression 
(KRR) to estimate future urban climate patterns using the predicted changes in land cover and 
land use. An inner city area of Hanoi was selected to implement the proposed methodology 
because it has experienced fast LULC change and urbanization. The results from this study will 
support the effectiveness of the methodology in UHI characterization and providecrucial 
feedback to policy makers and urban planners in developingUHI mitigation strategies. 
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 The paper is structured as follows. Section 2 briefly describes the study area. Section 3 

explains the methodology and data used to infer the LST as a function of the LULC spatial 

distribution. Section 4 presents the main results and discussion about the LULC-UHI relation and 

LST prediction results for the Hanoi city. Conclusions are given in Section 5. 

 

Figure 1: Map of Vietnam, Hanoi, and Hanoi inner city 

2. Study area 

  The study area, Hanoi inner city, is a small and flat plain located in the center of the 
Red river delta, the second largest delta in Vietnam (Figure 1). Hanoi inner city covers 
approximately 304.3 km2 (HSO, 2013a) and has an average elevation of less than 10 m above 
sea level (Yonezawa, 2009). This area was selected as a case study because it is undergoing 
rapid LULC change and urbanization in addition to having extremely hot summers, which is 
strongly linked to the UHI effect. 

 Located within the warm humid subtropical climate zone, the city has a typical climate 
of northern Vietnam with hot, humid summers and cold, dry winters. The summer season starts 
in May and ends in August, during which the average temperature is 29 oC (NCHMF, 2015). 
As a low altitude area, combined with the impact of the Foeln (a type of dry, warm, down-
slope wind occurring on the leeward side of a mountain range), the city often experiences 
several hot periods during the summer time. This area has suffered unusual hot temperatures 
during the last few years. On 16 June 2010, the mean temperature in the city reached 34.6 oC (a 
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night temperature of 30.4 oC and a day temperature of 39.6 oC), which was the highest recorded 
value since 1961 (NCHMF, 2015). On 28 May 2015, the temperature exceeded 40 oC, which 
was the highest temperature since the beginning of historical records (NCHMF, 2015).  

 Urbanization was faster in and around Hanoi inner city than in other surrounding areas. 
While the study site covers only 9% of the total area of Hanoi city, this small area contains 
more than 40% (2.9 million people) of the city population and around 20% (140 km2) of the 
city urban land (HSO, 2013a, 2013b). Urbanization has led to the acquisition of agricultural 
land, which in turn has resulted in land use changes, subsequently increasing the built-up area. 
The transformation between different LULC types associated with urban expansion will 
crucially influence the LST pattern and the magnitude of UHI effect. According to socio-
economic planning from the Vietnamese government, urban area will occupy more than 60% 
of the city land use structure in 2030 (VGP, 2016). In accordance with negative climate change 
impacts (Niem et al., 2013), UHI will be one of the key challenges for the city development.  

3. Data sources and methods  

3.1. Data used 

Surface reflectance high level data products images including Landsat 5 Thematic 
Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational 
Land Imager (OLI) acquired on 5 May 2003, 24 May 2007 and 1 July 2015 are the main data 
sources in this research (Table 1). These freely accessible images are processed by NASA 
which generates radiometric calibration and atmospheric correction algorithms (level-1 
products http://earthexplorer.usgs.gov/). Satellite images were used to derive LULC 
classification and LST retrieval. A limitation of this image dataset is that the images were 
acquired at around 10:00 AM Hanoi time. At that time, LST values are low (approximately3-6 
oC lower than maximum LST, which occurs at 1:00 PM). However, this issue did not 
significantly affect the results because the research focused on the UHI pattern rather than the 
absolute value.  

In addition to satellite images, this research also incorporated information from institutions 
and organizations of the Vietnamese government, including the General Statistics Office (GSO), 
the Hanoi Statistics Office (HSO), the Ministry of Natural Resources and Environment (MONRE), 
and the National Centre for Hydro-Meteorological Forecasting (NCHMF). 

Table 1: Remote sensing data used in the study 

Sensors Dates Path/row Bands Resolution 
(meters) 

Source 

Landsat 7 ETM+  05/05/2003 127/45 3, 5, 7    30 earthexplorer.usgs.gov 6    60 × (30) 
Landsat 5 TM 24/05/2007 127/45 3,5, 7   30 

earthexplorer.usgs.gov    6   120 × (30) 
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Landsat 8 OLI 01/07/2015 127/45 4, 6, 7   30 
earthexplorer.usgs.gov    10   100 × (30) 

× Thermal band is acquired at different resolution, but products were resampled by NASA to 30-meter 
resolution pixels. 

3.2. Research methods 

3.2.1. LULC classification and land use change prediction  

 A mixture of Gaussian classification approaches (with a maximum likelihood final 
decision strategy) (Tempfli et al., 2009) was used to obtain the LULC distribution in the study 
area. Composite imagery with false color band combination of bands (7, 6, 4) in Landsat 8, (7, 
5, 3) in Landsat 5 TM and Landsat 7 ETM+ was used to obtain better visualization of the urban 
environments. Training samples for each LULC type were determined by comparing the false 
color composition images, Google Earth information and in-situ information. The classification 
included in eleven LULC classes within six categories: vegetation, agriculture (high-density 
cropland, low-density cropland, and wetland), urban (high-residential area, low-residential area, 
industrial and commercial land, and impervious surface), vacant land, water, and sandbars.  

 To improve the classification results, a two-stage classification strategy was 
implemented: (1) a majority filter was applied to remove misclassified pixels; and (2) more 
accurate water and sandbar data (acquired by other methods) was integrated into the filtered 
image. In particular, water areas were determined by using the normalized difference water 
index (NDWI; Xu, 2006) whereas sandbars were manually fixed. The accuracy of each 
classification was assessed by uploading 350 points taken from each classified image to Google 
Earth Pro to compare their similarity. The "view historical imagery" tool in Google Earth Pro 
was used to find the best possible referenced image for each year. Based on this, the overall 
accuracy (the percentage of correctly classified pixels out of all pixels sampled for all classes), 
producer’s accuracy (the percentage of a particular LULC type on the ground is correctly 
classified in the map), user’s accuracy (the percentage of a class on the map that matches the 
corresponding class on the ground) and kappa index (the degree of matching between reference 
data set and classification) were calculated to evaluate the accuracy of the classification. The 
classified images were then compiled by using the overlay tool in ArcGIS to assess land use 
change from 2003 to 2015. 

 In order to make LULC predictions, land change prediction was applied using the 
multi-layer perceptron (MLP) neural network (Palit and Popovic, 2006) and a Markov chain 
models (Baker, 1989). Future LULC was predicted using a process that included two main 
steps: (1) modeling the potential for change and (2) predicting change. First, five potential 
variables (distance to the main road, distance to the existing urban center, population, distance 
to water bodies, and elevation) were used to model the LULC transition from 2003 to 2015. 
The transition map was inferred by applying the MLP neural network, which is the most 
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widespread network structure for efficient time -series forecasting (Palit and Popovic, 2006). 
MLP neural network training is based on the backpropagation (BP) training strategy. Based on 
a set of LULC output values, the network learns to create a potential map from potential inputs 
for each transition. For instance, the areas closer to main roads, the urban center, water bodies, 
and with a higher elevation may be more suitable for urban growth than others. 

In a second stage, Markov chain analysis (Baker, 1989) was applied to model future 
LULC by specifying the prediction date. The Markov chain model determines the amount of 
change over a specific time period by comparing two land cover maps from two different 
times. The procedure results in a transition probability matrix that records the probability of 
each land cover category to change to every other category. In the simulation of future LULC 
change, two different scenarios were considered: slow (low) and fast (high) urban growth. In 
the low urban growth scenario, the urban expansion prediction is based on observations over 
the period 2003–2015 (which showed an expansion rate of 1.1% per year). In the high urban 
growth scenario, the simulation applied the prediction from the Vietnamese Government 
Planning office (VGP, 2016), which is higher than the current urbanization speed (1.5% per 
year). The constraint areas were set to avoid some unreasonable transformations, for example 
from water or sandbars to urban. Low land/wetland and vegetation areas were not used in order 
to obtain better prediction results. 

3.2.2 Land surface temperature retrieval  

Table 2 presents all the parameters introduced in this section. The thermal infrared 
bands of different types of Landsat images (band 6 of Landsat 5 TM, Landsat 7 ETM+ and 
band 10 of Landsat 8) were used to estimate the LST of Hanoi inner city. 

Table 2: The parameters in LST retrieval 

Parameters Definition 

/LTOA the spectral at-sensor radiance (top of the atmosphere) 

 the rescaled gain (the data product "gain" contained in the Level 1 product 
header or ancillary data record)  

 the rescaled bias (the data product "offset" contained in the Level 1 product 
header or ancillary data record )  

 the quantized calibrated pixel value  

 the spectral radiance scaled to QCALMIN  

 the spectral radiance scaled to QCALMAX  

 the minimum quantized calibrated pixel value (corresponding to  LMin,λ) 

 the maximum quantized calibrated pixel value (corresponding to LMaxλ) 

 the radiance multiplicative scaling factor for the band 
(RADIANCE_MULT_BAND_n  from the metadata) 

 the radiance additive scaling factor for the band (RADIANCE_ADD_BAND_n 
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from the metadata) 

τ the atmospheric transmission 

ε the emissivity of the surface 

 the radiance of a blackbody target of kinetic temperature T 

 the upwelling or atmospheric path radiance 

 the downwelling or atmospheric path radiance 

T the apparent surface temperature in Kelvin  

 the calibration constants  

LST retrieval involves the following steps (Landsat 7, 2011; Landsat 8, 2015). 

(1) First, the pixel values were converted from digital number units to radiation values (Landsat 
5 TM and Landsat 7 ETM+): 

                 (1) 

which may also be expressed as: 

                (2) 

In the case of Landsat 8:  

                      (3) 

(2) Then, the TOA radiance was converted to surface-leaving radiance by removing the effects 
of the atmosphere in the thermal region (Barsi et al., 2005; Yuan and Bauer, 2007; McCarville 
et al., 2011):   

                   (4) 

where the atmospheric transmission (τ), and the upwelling ( ), and downwelling ( ) radiance 
values were assessed using the Atmospheric Correction Parameter Calculator online tool 
(http://atmcorr.gsfc.nasa.gov). This tool applies the National Centers for Environmental 
Prediction (NCEP) modeled atmospheric global profiles for a particular date, time, and location 
as the input data (Barsi et al., 2003). The surface emissivity ( ) was assessed using the method 
proposed by Sobrino et al. (2004). 

(3) Finally, the surface-leaving radiance was converted to apparent surface temperature using 
the Planck curve specific Landsat implementation: 

                    (5) 

3.2.3 Regression analysis 
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 Single and multiple linear regression analysis were initially applied to determine the 
correlation between LST and LULC. Normalized difference vegetation index (NDVI), 
normalized difference built-up index (NDBI), and LST values were extracted from each pixel 
in the study area for each point data type. These points were used as the input for the linear 
regression model. This model gives a general idea about the correlation/relationship between 
LST and LULC. 

However, in the case of LST prediction several LULC variables were considered that 
may generate a complex structure. Thus, a better and more flexible regression method is 
needed to determine the local variations in the LULC–LST correlation. Hence, a non-linear 
regression method using the KRR algorithm (Saunders et al., 1998) was applied to predict the 
future surface temperature. Ridge regression is a generalization of least squares regression. For 
instance, in the case of linear regression, assume that the aim is to fit the linear function 

 to the data. Linear regression aims at assessing  so that the following 
function is minimized: 

              (6) 

where  is the training set group of points. Ridge regression slightly 
modifies this equation to: 

            (7) 

where  is a fixed positive constant. 

There are different strategies to obtain the  parameters. One of them consists of 
applying constrained minimization methods to the so-called dual version of Eq. (7) (see 
Saunders etal., 1998 for further details). Under this framework, this estimation depends on the 
dot products of the  elements, i. e., . 

KRR is a modification of Eq. (7) in such a way that non-linear functions can be 
implicitly fitted. It can be shown (Saunders et al., 1998) that in this case the aim is related to 
the estimation of a function (mapping)  that “transforms” the training points to higher 
dimensional spaces  where the problem may be tackled as a linearization of the 
non-linear lower dimensional space where the  points lie. It can also be shown that the dot 
products of the  elements, i. e.,  are transformed into  and this group of 
products forms the so called transformation kernel. 

3.2.4 LST prediction model 

 The LST prediction process consists of the following stages (Figure 2). The first part is 
generation of a spatial model that allows inferring the LULC temporal dynamics (previously 
mentioned in the land use change prediction method). The result of this calculation is future 
LULC at different scenarios. 
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The second part is generation of an LULC–LST model. For the LULC variable, the 
percentage cover of five classified land use types (urban land, vegetation, cropland, water, and 
vacant land) was calculated using three different window sizes (5×5, 10×10, and 20×20 
meaning resolution of 150, 300, and 600 m, respectively). Previous works on topics related to 
appropriate resolution for measuring the LST-LULC relationships suggest that the suitable 
resolution is at 660-720 m (Song et al., 2014). However, the model was stopped at 600 m  
instead of reaching larger window size because the study area used in the experiments is quite 
small so a lower resolution would not be able to provide an appropriate result for practical 
purposes (such as urban planning). In addition, it was assumed that the lower resolution would 
lead to a too generalized result that would reduce the accuracy. For the LST variable, the mean 
surface temperature value for the same spatial resolution as was made for LULC was extracted. 
Then, KRR was trained to infer the relationship between LST and all five LULC variables at 
different spatial resolutions. 

The final stage consists of using LST data from 2003 and 2007, and LULC from 2015 
in window sizes of 5×5, 10×10, and 20×20 to predict LST in 2015. The mean surface 
temperature was extracted for the same spatial resolution as it was made for LULC. Then, we 
trained KRR to infer the relationship between LST and all five LULC variables at different 
spatial resolutions. The results were compared to choose which data and resolution provided 
the best LST input/training data results. After deciding the best-input time and resolution, the 
future LST prediction was performed, based on the simulation of future LULC scenarios. 

 

Figure 2: Diagram of the methodology used for LST prediction 

3.2.5. Hot spot analysis using Getis Ord Gi* statistic 

 The hot spot analysis (Getis-Ord Gi*) tool in the ArcGIS software, developed by 
Environmental Systems Research Institute (ESRI) was applied to explore the spatial cluster 
arrangements appearing in UHI data. This technique characterizes the presence of hot spots 
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(high clustered values) and cold spots (low clustered values) over an entire area by looking at 
each feature (LST value) within the context of its neighboring features (Ord and Getis, 1995; 
see Eq. (8), Eq. (9) and Eq. (10)). A feature with a high value is interesting but may not be a 
statistically significant hot spot. To be a statistically significant hot spot, a feature must have a 
high value and should also be surrounded by other features with high values. This method is a 
potential technique for characterization and quantification of spatial autocorrelation of 
remotely sensed imagery by providing a measure of spatial dependence for each pixel and 
indicating the relative magnitudes of the digital numbers in the neighborhood of the pixel 
(Wulder and Boots, 1998). The Getis-Ord Gi* local statistics is calculated using (ESRI, 2016): 

           (8) 

where xj is the attribute value for feature j, wi,j is the spatial weight between feature i and j n is 
equal to the total number of features and: 

          (9) 

and 

        (10) 

 The output of the Gi* statistic returned for each feature in the dataset is a z-score. 
Higher positive z-score shows more intense clustering of high values (hot spot) and a smaller 
negative z-score represents more intense clusters of low values (cold spot). The z-score 
represents the statistical significance of clustering for a specified distance (90% significant: 
>1.65 or < -1.65; 95% significant: >1.96 or < -1.96; 99% significant: >2.58 or < -2.58; 99.9% 
significant: >3.29 or < -3.29). At a significance level of 0.05 (95%), a z-score would have to be 
less than -1.96 or greater than 1.96 to be statistically significant. From the statistical results, the 
LST pattern was divided into seven categories: very hot spot, hot spot, warm spot, not 
statistically significant, cool spot, cold spot, and very cold spot. In the final statistics of the hot 
spots and cold spots in our paper, values at 95% or higher confidence level were taken. To 
assess the impact of LULC change on the UHI effect, the hotspot pattern change was linked to 
LULC change through time. This method gives a better demonstration of the UHI effect, rather 
than focusing only on the high or low LST absolute values separately. 

3.2.6. Urban landscape analysis 
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 The urban landscape analysis tool (ULAT) developed by the Centre for Land use 
Education and Research (CLEAR) and the University of Connecticut (CLEAR, 2015) was 
employed to classify urbanized area into different classes and identify new urban development 
areas. This tool is based on the concept proposed by Burchfield et al. (2006) and Angel et al. 
(2012). The definition and calculation of these categories and types are defined as follows: 

 infill is all newly developed built-up areas that are surrounded by existing built-up areas 
 extension is all new built-up development intersecting with existing built-up areas  
 leapfrog development is all new construction that does not intersect with built-up areas 

(new built-up areas that are isolated from existing urban areas)  
 walking distance circle is a circle with a radius of 0.5 km  around a given built-up pixel 
 urban built-up pixels are pixels that have a majority of built-up pixels within their 

walking distance circle 
 suburban built-up pixels are pixels that have 10 - 50% built-up pixels within their 

walking distance circle 
 rural built-up pixels are pixels with less than 10% built-up pixels within their walking 

distance circle 
 fringe open space is all open space pixels within 100 meters of urban or suburban pixels 
 captured open space is all open space clusters that are fully surrounded by built-up and 

fringe open space pixels and are less than 200 hectares in area; exterior open space 
consists of all fringe open space pixels that are less than 100 meters from the open 
countryside; 

 urbanized open space consists of all fringe open space, captured open space and 
exterior open space pixels in the city 

 rural open space consists of all open spaces that area not urbanized open spaces 

The achieved results were then related to the mean LST of the extracted areas to determine 
how urbanization has impacted UHI in the study area. 

4. Results and Discussion 

4.1. LULC classification and LST distribution 

 A mixture of Gaussian classification approaches was applied following the strategy 
explained in Section 3.2.1 and the classification quality was assessed using the producer’s 
accuracy, user’s accuracy, overall classification accuracy, and kappa coefficient generated for 
the LULC classification accuracy assessment of the 2003, 2007, and 2015 data.  

 The overall classification accuracies for the 2003, 2007, and 2015 data were 93.8%, 
94.4%, and 92.3% respectively. Water and sandbar LULC types had the highest accuracy 
(higher than 97%) in all classified images. For the 2003 data, impervious surface and 
vegetation had the lowest user's accuracy (83.3% and 87.5%). For the 2007 data, 
industrial/commercial land was the least accurate (87.7%). For the 2015 data, all the LULC 
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types presented high accuracy ranging from 90% to 100%. The kappa coefficients of these 
classified images were 0.93, 0.94, and 0.91, respectively.  

 From the LULC classification results (see Appendices 1 to 3), it was found that urban 
and agriculture areas were the two main LULC types in the LULC structure of the city. Water 
also played an important role as it occupied more than 10% of the total land use structure. The 
study results showed that LULC in the study area changed significantly from 2003 to 2015. 
The main LULC change driver was transformation of agricultural land to urban area due to 
urbanization and industrialization. 

 Figure 3 shows the study area LST patterns in 2003, 2007, and 2015, respectively. LST 
ranged from 27.33 oC to 50.91 oC across the city in 2003, from 24.66 oC to 51.86 oC in 2007, 
and from 30.06 oC to 53.91 oC in 2015. Mean LST in the region was 36.52 oC, 37.47 oC, and 
40.38 oC respectively. The LST pattern is strongly correlated with LULC distribution. A small 
proportion of very high LST value (dark red color) is mainly distributed on the sandbars and 
rooftop of the industrial/commercial building. The high LST area (heavy yellow and red color) 
appears as a big island surrounded by low LST regions (represented in blue). This core is in the 
center where the highly urbanized zone is located. There is a small transition LST area marked 
in light yellow between these two LST patterns. In addition, there are some small cold islands 
inside the hot area where the water bodies or parks located.  

 

Figure 3: LST maps (degree Celsius) of Hanoi inner city in different dates (a: 5 May 2003, b:  
24 May 2007 and c: 1 July 2015) 

4.2. Study of the relationship between LULC and LST 

4.2.1. Correlation between LST and NDVI NDBI  

The first objective was to analyze the correlation between LST, NDVI, and NDBI for all 
LULC types in the study area. To assess this relationship, a multiple regression analysis between 
LST, NDVI and NDBI for all pixels in the study area except water (water area was excluded due 
to its special characteristics) was applied. The multiple regression model developed in the study 
is defined as: 
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where:  

 LST is the land surface temperature (degrees Celsius);                           
 NDBI is normalized difference built-up index                                              
 NDVI is normalized difference vegetation index 

 The results indicate a negative correlation between LST and NDVI and a positive 
correlation between LST and NDBI. This observation is very consistent with those reported by 
a number of previous studies (Zhang et al., 2009; Liu and Zhang, 2011; Ogashawara and Bastos, 
2012; Kumar and Shekhar, 2015; Guo et al., 2015). The negative NDVI coefficient and positive 
NDBI coefficient from the three dates imply that within the study area, vegetation contributes 
to a decrease in the UHI effect while the built-up area strengthens the UHI effect. In addition, 
the effect of NDVI tends to be weaker. As seen in the 2003–2015 time interval, the NDVI 
coefficient decreased from 4.13 to 1.13. This can be explained by analyzing the trend in the 
LULC change during this period. Urban area, indicated by high NDBI and low NDVI, has 
increased and occupied part of other low NDBI and high NDVI LULC types such as cropland, 
water, and vegetation.  

 To better understand the detailed relationship between LST and LULC, a regression 
model for each LULC type was constructed. The correlation between NDVI, NDBI and LST 
within each LULC type showed some important results. First, a general trend was seen in urban 
LULC in the sense that all urban LULC types were negatively correlated with NDVI and 
positively correlated with NDBI. This highlighted an important conclusion about the 
incontrovertible role of vegetation in mitigating UHI. Urban design that considers vegetation 
partitions would help to regulate the thermal environment (Qiao et al., 2013). City planners and 
policy makers should take seriously into account the "greening strategy" as it may be the most 
effective solution for reducing the UHI effect within a city. Nevertheless, it was discovered that 
water had a positive effect in relation to both NDBI and NDVI. It means mixed water with 
more vegetation and built-up materials (sand, gravel, soil, or rubbish) will have higher LST. 
We assume that polluted water might negatively contribute to the UHI effect. Therefore, 
further study may be needed to quantify the relationship between water quality and UHI. . 

 However, the results are somewhat surprising in relation to the different trends 
observed considering the same LULC type. For example, NDVI negatively affected LST in 
vegetation areas in 2003 and 2007 but its effect was the opposite in 2015. Wetland and vacant 
land showed the same problem, i.e., the correlation was different between 2003 versus 2007 
and 2015. A possible reason for this might be that vegetation in the urban area had a higher 
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mean LST than vegetation areas located outside the urban area. This was strongly reflected in 
the 2015 data when the urban areas significantly expanded. Another possible explanation is 
that the NDVI data used in 2015 was acquired two months later in the year (acquired in July) 
than the 2007 and 2003 data (acquired in May). Thus, this might reflect seasonal variations of 
NDVI value depending on vegetation growth and human activities. Previous studies have 
reported that the correlation between LST and NDVI is subject to different NDVI value 
thresholds (Qiao et al., 2013; Guo et al., 2015). At a specific change of NDVI, it may generate 
a counterintuitive inverse trend in the model. 

 Therefore, it was concluded that the relationship between NDVI, NDBI, and LST is not 
always linear. It varies between each LULC type and changes based on geographic 
location/pattern and season. To obtain better insight into the LULC–LST correlation, these 
local differences need to be explained. We suggest that the linear regression model can be 
useful in discovering the general trend as well as providing the big picture of the relationship 
between LST and LULC. However, a linear relationship is not always the best choice when 
considering an analysis at a more local level.  

4.2.2. Impact of LULC change on UHI 

 Getis-Ord Gi* statistics has been widely applied in hot spot identification in research 
areas such as crime analysis (Craglia et al., 2000), incident management (Songchitruksa and 
Zeng, 2010), heat vulnerability assessment (Wolf and McGregor, 2013), and natural disaster 
examination (Gajović and Todorović, 2013). In our study, this method was used to assess the 
impact of LULC change on the UHI. By applying the Getis-Ord Gi* statistics, hotspot maps of 
the Hanoi inner city were created on three different dates (Figure 4). This may provide a better 
understanding of the city’s UHI effect. The identification of hot spot or cold spot areas by such 
method does not depend on whether the mean surface temperature is high or low. This implies 
that the effect of different LST values throughout time is reduced, and therefore the results can 
more confidently be compared.    
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Figure 4: Hotspot analysis of Hanoi inner city in different dates (a: 5 May 2003, b: 24 May 
2007 and c: 1 July 2015) 

 The maps show that hot regions are highly clustered in the urban center, along main roads 
and industrial zones. The cold regions correspond to areas of extensive vegetation, rivers, and 
lakes. Hot spot regions tend to expand through time. It is also recognized that when LST 
increases, some "not statistically significant" areas tend to become cold spots. This is represented 
by the transformation of many lakes and parks inside urban centers in 2015 to cold spots.  

 In general, hot spots occupy larger area than cold spots. More than 20% of the city is 
always warmer whereas less than 10% of the city is always colder than the mean zonal LST. The 
hottest land cover type is urban land while the coldest type is water. Water bodies make up the 
largest proportion of cold spots, contributing to more than 50% to the total cold spot area. 
Agriculture plays the second most significant role in supplying cold spots next to water bodies. 
Vegetation has a small contribution to the number of cold spots. Hot spots tend to increase (from 
27.95% in 2003 to 34.61% in 2015) whereas cold spots tend to decrease (from 13.48% in 2003 to 
12.21% in 2015) through time, but these trends differ between LULC types.  

 It is therefore concluded that LST spatial pattern is highly affected by the LULC 
structure. The transformation between different LULC types (especially urban expansion) has 
intensified the UHI effect by increasing and having a strong effect on the number and 
distribution of the hot spots. Land use planning and management therefore plays a key role in 
the UHI reduction. This was clearly demonstrated by Luyssaert et al. (2014) where they 
showed that both land management and land cover change have the same impacts on surface 
temperature. 

4.2.3. UHIs and urban growth 

In general, a quick analysis of the mean LST of the corresponding LULC areas 
extracted by the urban landscape analysis shows that urban built-up is the hottest area whereas 
rural open land is the coldest area (Table 3). Thus, the LST spatial pattern is directly correlated 
to the transition of different zones. LST decreases from the hottest urban core area to the 
suburban area, then the rural built-up area, and reaches the lowest mean LST at the rural open 
land. Within the urban zone, the urbanized open land has lower LST compared to urban and 
suburban built-up areas. This shows the important role of open areas such as parks, public 
spaces, and other non-built-up areas in reducing UHI effects. 

Table 3: Mean LST in different urban landscape (oC) 

Urban landscape  2003 2007 2015 
Urban built-up 42.58 44.57 45.61 
Suburban built-up 40.27 41.43 42.80 
Rural built-up 38.86 38.69 40.13 
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Urbanized open land 39.02 40.10 41.43 
Rural open land 35.73 35.64 38.19 

Regarding new urban development types, infill development has the highest mean 
temperature while leapfrog development has the lowest temperature (Table 4). This can be 
explained in two ways. First, urban infill areas are surrounded by high LST land use type such 
as built-up areas, which positively influences the infill area's LST. In contrast, leapfrog urban 
areas are surrounded by other land use types with lower LST such as agriculture land. This 
helps to reduce the leapfrog area mean LST. In addition, leapfrog urban areas often have good 
planning policies that incorporate an appropriate percentage of public areas like parks and 
lakes. This "good" LULC structure contributes to the decrease in LST. An urban area under 
extension often has higher LST than a leapfrog area and lower LST than infill area because its 
surrounding areas include both built-up areas and other LULC types. The correspondence of 
differences in mean LST to urban development types provides important feedback. Process of 
filling up the open land in a city has many negative impacts. It critically increases the urban 
warming effect within the city and reduces living conditions by decreasing public space. In 
such a situation, UHI cannot be avoided, but its effect can be reduced by applying more 
appropriate urban development types. Constructing new urban areas with proper LULC 
structure instead of filling up the existing urban space is an efficient solution for reducing the 
UHI effect.  

Table 4: LST in different urban development types (oC) 

 2003 - 2007 2007-2015 2003 - 2015 
Infill 42.98 44.58 45.14 
Extension 40.93 42.69 43.41 
Leapfrog 38.34 40.21 40.94 

To initially analyze the relationship between urban cover and mean area LST, a zonal 
statistics tool in ArcGIS was used to estimate the mean LST at each percentage of urban area 
(from 0 to 100%). A linear regression was then applied to explore the correlation between LST 
and urban cover (Figure 5).  
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Figure 5: Linear regression analysis between 
percent urban area and surface temperature in 
a: 2003, b: 2007, and c: 2015 

 

 

The regression models for the three dates (Figure 5) show a strong linear relationship 
(R2 around 0.97 to 0.99). The results reveal that every increase of 1% in urban area will 
increase surface temperature between 0.075 and 0.108 oC. In total, urban area can contribute to 
an increase of 7.5 to 10.8 oC in LST within the study area. This observation is crucial in the 
sense that decreasing urban density is also an effective UHI mitigation solution. Urban planners 
should consider configurations of urban landscape structure with lower urban density and more 
green space. 

4.3. LST prediction and future LST patterns 

LST prediction validation 

 One of the main contributions of this work is the proposed methodology to use 
temperature prediction to estimate future LST patterns to model and estimate UHI according to 
different LULC change scenarios, in order to use it as an analysis tool for urban and landscape 
planning to try to avoid the UHI disruptive effects in local climate and human welfare. 

 To this end, KRR-based method introduced in section 3.2.3 was applied to predict LST 
and validate the proposed technique with real data. Therefore, in order to predict absolute LST 
in 2015, KRR-based method was trained using the data corresponding to 2003 and 2007. LST 
was predicted using window sizes of 5×5, 10×10, and 20×20. These window sizes were chosen 
in order to obtain mean LST analysis areas multiples of the 600 m resolution.  
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 In order to assess the prediction quality, the level and percentage of matched LST pixels 
between predicted value and test value in the study area (Table 5) were compared.  

Table 5: Assessment of the difference between predicted LST and test LST (area percentage) 

 2003 predict 2015           2007 predict 2015 
Window size < 2 oC 2–3 oC >3 oC         <2 oC   2–3 oC   >3 oC 
5x5 71.60 17.23  11.17 76.70 14.30 9.00 
10x10 79.33 13.73 6.94 83.70 11.40 4.90 
20x20 83.38 12.72 3.90 90.05 7.63 2.32 

 

Table 5 shows that using 2007 data as the training data and a 20×20 window size had 
the best performance, generating a large area with a difference of < 2 oC in the predicted versus 
actual LST.  

The root mean square error (RMSE) was also used to analyze the performance of the 
developed models. Table 6 shows the RMSE for the LST prediction using 2003 and 2007 data 
at different window sizes. 

Table 6: Assessment of the difference between predicted LST and test LST 

  RMSE  
Window size 2003 predict 2015 2007 predict 2015 
5×5 2.08 1.78 
10×10 1.72 1.50 
20×20 1.56 1.25 

From the observed results it was found that the RMSE decreases when the window size 
increases. When the 2003 data was used as the training data, the RMSE varied from 2.08 to 
1.56, whereas it ranged from 1.78 to 1.25 when the 2007 data was used as the training data. It 
was concluded that the LST prediction for 2015 using the 2007 data (as the training set) gave 
better results compared to using the 2003 data (as the training set) as a simulation scenario for 
coming years. It also demonstrates that the predicted LST using data with a resolution of 600 m 
gave a very good forecast in which most of the area had the same LST pattern and value. 

LST pattern estimation from absolute LST prediction 

As ultimate objective, LST prediction results described in previous sections will be 
used to simulate future LST patterns according to different LULC change scenarios, in order to 
show the features and information the method can provide for urban and territory planners. 
From the findings in LST prediction validation, we performed the future LST prediction for 
2023 using the 20×20 window size (600 m resolution) and the 2007 data as the training set. 
The map in Figure 6 shows the LST pattern in low and high growth development scenarios for 
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2023. All these maps demonstrate a general LST pattern with a high hot area concentration in 
the center and cold areas along the river and the northeastern and southeastern sections. 
However, the hot pattern tends to expand to the northwestern and southwestern parts of the 
city. These changes mirror the trend in urban expansion. In general, the LST pattern in the 
period 2015–2023 is characterized by decreases in cold and cool LST areas and increases in hot 
and very hot areas. Warm LST areas do not substantially change as such areas increase or 
decrease in a reduced number of zones. According to the LULC change scenarios and LST 
prediction, high urban growth makes the largest contribution to the increase in the very hot 
LST area.  

 

Figure 6: Map of predicted LST in 2023 at different simulation scenarios (a: LST in 2023 in 
low growth scenario, b: LST in 2023 in high growth scenario). 

 The absolute predicted LST was then classified into different zones of 2.0 oC interval 
(Table 7). A clear trend of change was found from 2015 to 2023 in the sense that the hotter 
LST zones (40.5 oC–42.5 oC and >42.5 oC) tend to increase and the colder LST zones (<36.5 
oC and 36.5 oC–38.5 oC) tend to decrease. The same trend occurs from low to high growth 
scenarios in 2023, although with less intensity in the low growth scenario. 

Table 7: Area of different LST zones in 2015 and 2023 in and around the study area (hectares) 

LST zone 
2015 

 

2023  
Low growth 

scenario 
High growth 

scenario 
<36.5 oC 6732 5148 5760 
36.5–38.5 oC 10440 8604 7380 
38.5–40.5 oC 10800 11484 9540 
40.5–42.5 oC 8676 9936 11124 
>42.5 oC 15012 16488 17856 

 The changes in LST patterns through urbanization assessment in the study area show 
that urban growth severely impacts UHI. This process reduces the agricultural land and non-
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built-up space. Consequently, urbanization leads to the loss of cold and cool areas and the gain 
of hot and very hot areas. Hence, it is necessary to consider appropriate proportions of green 
space and open land in cities to mitigate the UHI effect. 

5. Conclusions 

 This study presents a comprehensive approach combining linear regression, nonlinear 
regression, urban landscape analysis using ULAT, hotspot analysis using Getis Ord Gi* 
statistics to investigate the relationship between LULC change and urbanization and UHI 
effects. Results from this work provide an effective methodology for characterizing UHI and 
have significant implications for policy makers and communities by providing a scientific basis 
for sustainable urban planning and management. 

 By examining the relationship between LST and NDVI, NDBI within each LULC type, 
we discovered that the correlation is not always linear since it may vary between each LULC 
type as well as being subject to the geographic location and season. This finding is consistent 
with previous UHI studies (Owen et al., 1998; Zhou et al., 2014; Guo et al., 2015). We 
suggested that local differences need to be concerned to have appropriate conclusion in LULC-
LST relationship examination.   

 The analysis of the data showed a nonlinear relationship between LULC and LST, 
therefore we applied nonlinear regression using KRR and LULC type variables to predict 
future LST. This method exhibits a promising performance in UHI forecast. The predicted LST 
confirms that urban growth has severely influenced UHI pattern through expanding the hot 
area. Our study confirmed that LST prediction performance is strongly depended on the 
resolution. Our line of research tries to shed some light on the effect of resolution in the 
capability for regression algorithms to predict LST (Ghosh and Joshi, 2014). In addition, the 
most suitable is 600 m that is similar to what was reported in Song et al. (2014). 

 We found that hotspot analysis using Getis Ord Gi* statistics is an appropriate method 
to examine changes in LST patterns through time. The identification of hot spot or cold spot 
areas by such method does not depend on whether the mean surface temperature is high or low 
so the effect of different LST values throughout time is reduced. In general, more than 20% of 
the city area is always warmer whereas less than 10% of the city area is always colder than the 
mean zonal LST. Hot spots tend to increase through time (from 27.95% in 2003 to 34.61% in 
2015) and strongly correlate with urban expansion. 

 We suggested that urban landscape analysis using ULAT is an innovative method for 
investigating the impact of urbanization on UHI. The method is quite simple to implement but 
brings the crucial conclusion that UHI is severely influenced by urban landscape composition. 
From the perspective of land use planning and urban management, it is recommend that 
planners and policy makers should pay serious attention to future land use policies that 
maintain a relevant proportion of public space, green areas, and water in city LULC structures. 
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Similar findings have been reported by Onishi et al. (2010), Oliveira et al. (2011), Nichol and 
To. (2012), Feyisa et al. (2014), Di Leo et al. (2016). Interestingly, we found that the UHI 
effect is also strongly affected by the type of urban development. This conclusion is remained 
as one of the early finding in relation to UHI- spatial pattern of urbanization relationship. 

 Our study has provided a comprehensive methodology to characterize UHI in a tropical 
city in the context of urbanization.  However, we suggested that the following limitations 
should be considered in future research. Using higher resolution imagery for LULC 
classification may give a better explanation of LULC composition-LST correlation, as well as 
results that are more practical for urban planners. To have deeper insight into the nonlinear 
correlation between LULC and LST in urban area, further study needs to include urban 
morphology as an important indicator. Other nonlinear regression methods and potential 
window sizes may also need to be tested for LST prediction to obtain more comprehensive and 
concluding results. 
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Appendix 1: LULC map of Hanoi inner city in 2003 
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Appendix 2: LULC map of Hanoi inner city in 2007 

 

 

 

Appendix 3: LULC map of Hanoi inner city in 2015 
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