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Human skin acts as a biological active barrier to the external environment, including exposure 

to UV radiation – clearly the major risk factor for melanoma. Sex differences are well-known 

regarding melanoma, with females presenting lower incidences, less metastases and better 

survival rates than males [1]. 

 

Both genetics and sex hormones contribute to sexual differences in skin aging, pigmentation, 

UV-light sensitivity, and melanoma incidence and outcome [2]. Oestrogens accelerate wound 

healing, improve inflammatory disorders, increase skin thickness, protect from skin 

photoaging, and induce the activation and expression of genes involved in melanin synthesis 

[3]. 

 

Basal skin pigmentation, via melanin synthesis, darkens in response to sunlight, thus fulfilling 

its protective role against further irradiation-induced damage [2]. Therefore, sex disparity in 

melanoma epidemiology might be explained by sex differences in tanning ability and skin 

sensitivity to UV-light exposure. 

 

With the purpose of shedding some light on these questions, we evaluated a total of 1,112 

individuals (515 males and 597 females) of Spanish origin for pigmentary traits related to 

tanning ability and sun sensitivity – skin phototype, history of sunburns, presence of solar 

lentigo and number of naevi. A brief summary of the materials and methods used in this work 

is available in the Supplementary Material. 

 

When these phenotypic traits were analysed according to sex, the percentages of skin 

phototypes and naevus numbers appeared to be significantly different between the two sexes 

(Table S1). The percentage of phototypes I-II was notably higher in females than in males 

(48.06% vs. 38.17%, P=8.35x10-3). Regarding naevus number, the percentage of naevi was 



remarkably lower in females than in males (68.34% vs. 59.03%, P=1.25x10-3). No significant 

differences between the sexes were observed for history of sunburns and presence of lentigos. 

A meta-analysis was performed to compare our results to previously published data (Figure 1). 

The guidelines followed to perform the meta-analysis are briefly explained in the 

Supplementary Material. We searched for studies conducted in Caucasian populations 

presenting phenotypic data stratified by sex (Supplementary References S1-7). When all 

individuals included in these studies were analysed together, the difference between females 

and males was extremely significant for both skin phototype (OR=0.75, 95% CI: 0.68-0.83, 

P=1.90x10-9) and naevi (OR=1.42, 95% CI: 1.30-1.55, P=1.11x10-15). The results obtained in 

this Spanish study were concordant with the results of the meta-analysis. 

 

Our results are consistent with earlier anthropological studies indicating that females have less 

tanning ability, and therefore lower phototypes, than males in most populations, as males 

show greater pigmentation contrast between exposed and unexposed skin regions [4,5]. 

Furthermore, Jacobs and cols. (2015) showed that females presented a much higher 

prevalence of facial sun spots than males, suggesting that females are more severely affected 

by sun exposure than males independently of genotype [6]. These differences could be the 

result of socio-cultural reasons, as males tend to spend more time outdoors; physiological 

reasons, as males have thicker skin and increased number of blood vessels; differential 

tanning, as no sex difference in basal skin pigmentation has been shown; and hormonal 

factors, as oestrogens stimulate pigmentation while androgens have an inhibitory effect on 

melanocytes [4,5]. 

 

An elevated naevi number, a major predictor factor for melanoma occurrence, is directly 

correlated with high levels of sun exposure [7]. As expected, females present fewer naevi than 



males. These results might be in apparent conflict with those obtained for skin phototype, 

since naevus prevalence has been significantly associated with the propensity to burn slightly 

and tan lightly [8]. However, tanning degree – the difference between unexposed and exposed 

skin colour – has also been positively associated with naevus count [7]. This inconsistency 

might arise as a consequence of the individual perception of overall darkness of tan when self-

reported questionnaires are used to collect information on pigmentation characteristics. As a 

result, this naevus count sex-specific difference might be attributable to higher acquired sun 

exposure levels in males than females, and not to genetic effects. 

 

Previous studies have evidenced sex-differentiated genetic effects for anthropometric traits, 

serum metabolite concentrations, human pain inhibition, human pigmentation, and melanoma 

risk (Supplementary References S8-S14). 

 

Considering the importance of genetics in UV-light response, we focused on identifying a 

possible genetic cause explaining phenotypic differences between sexes. We genotyped five 

SNPs involved in human pigmentation pathways: rs12913832 (located in the HERC2/OCA2 

region), rs1800407 (OCA2 gene), rs16891982 (SLC45A2 gene), rs1393350 (TYR gene), and 

rs12203592 (IRF4 gene). The coding region of MC1R gene was also studied by direct 

sequencing, classifying MC1R functional variants as RHC (red hair colour) and non-RHC 

associated variants. 

 

Genotype association analyses were performed via logistic regression for each SNP as well as 

for sex. To assess for possible confounding effects, regression estimates were adjusted by 

executing a multivariate logistic regression. After adjustment, skin phototypes I-II were 

significantly associated with MC1R RHC variants at Bonferroni-corrected level (P=2.96x10-4), 

but were also moderately associated with female sex (P=2.11x10-2). No association was 



observed between naevi number and any of the genetic variants studied. However, being male 

remained significantly associated with having ≥25 naevi (P=1.12x10-2), meaning that male sex 

might be a factor contributing to high naevus count (Table 1A). 

 

The protein encoded by the MC1R gene functions as a receptor for α-MSH, a hormone 

produced in the pituitary gland that depends on oestrogen levels. Interestingly, MC1R RHC 

variants presented differences in genetic effects by sex, with greater effects in skin phototype 

in females than in males (Table 1B). That is, females carrying an RHC variant tended to exhibit 

significant lower phototypes than males with the same MC1R genotypes (OR=2.20, P=0.029). 

In a previous study, MC1R genotype revealed a significant greater influence on analgesia from 

pentazocine in females than in males [9]. Furthermore, mutations in another gene of the 

melanocortin receptor family, MC4R, presented about twice as stronger effect on body mass 

index in females than in males [10]. 

 

In summary, this study supports previous evidence that sex might be a factor explaining 

variations in tanning ability and sensitivity to sunlight between females and males in Caucasian 

populations. Additionally, we suggest that MC1R genetic effects might contribute to these 

sexspecific differences in skin phototype. 
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Table 1  

A) Genotypic association with phenotypic traits 

  
  Skin Phototype I/II  Naevus number ≥25 

  
  Non-adjusted Adjusteda Non-adjusted Adjusteda 

Gene SNP ID Allele/Factor P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) 

HERC2 rs12913832 C 0.89 
1.02 (0.81-

1.27) 
0.57 

1.07 (0.84-
1.37) 

0.44 
1.07 (0.89-

1.28) 
0.76 

1.03 (0.85-
1.25) 

OCA2 rs1800407 T 0.24 
1.23 (0.87-

1.73) 
0.59 

1.11 (0.76-
1.63) 

0.47 
0.90 (0.68-

1.19) 
0.54 

0.91 (0.67-
1.24) 

TYR rs1393350 T 3.32E-02 
1.32 (1.02-

1.69) 
0.06 

1.29 (0.98-
1.68) 

0.34 
0.90 (0.73-

1.12) 
0.31 

0.89 (0.72-
1.11) 

SLC45A2 rs16891982 C 0.16 
1.31 (0.90-

1.90) 
0.35 

1.21 (0.81-
1.78) 

0.41 
1.13 (0.85-

1.50) 
0.33 

1.15 (0.89-
1.54) 

IRF4 rs12203592 A 0.82 
0.97 (0.72-

1.30) 
0.75 

1.05 (0.76-
1.46) 

0.72 
1.05 (0.81-

1.35) 
0.89 

0.98 (0.75-
1.28) 

MC1R RHC variants RHC 3.00E-06* 
2.00 (1.49-

2.69) 
2.96E-04* 

1.89 (1.34-
2.69) 

0.61 
1.07 (0.83-

1.38) 
0.34 

1.14 (0.87-
1.48) 

 
Sex Male 8.57E-03 

0.67 (0.49-
0.90) 

2.11E-02 
0.65 (0.45-

0.94) 
1.28E-03* 

1.37 (1.05-
1.78) 

1.21E-02 
1.45 (1.08-

1.93) 

 
Skin Colour Fair/Pale 6.11E-07* 

2.20 (1.61-
3.00)  

1.36E-04* 
2.03 (1.41-

2.96) 
5.98E-03 

1.42 (1.11-
1.83)  

2.33E-02 
1.40 (1.05-

1.88) 

 
Sunburn History Yes 5.12E-07* 

 2.32 (1.67-
3.22)  

5.10E-05* 
2.20 (1.50-

3.24) 
4.32E-13* 

 2.67 (2.05-
3.48)  

1.46E-12* 
2.94 (2.18-

3.97) 

 

B) Sex differences in skin phototype within MC1R genotype 

  MC1R Wild-type MC1R RHC variants 

  Skin phototypeb 

 
  Skin phototypeb 

  

Sex III-IV I-II OR P-valuec III-IV I-II OR P-valuec 

Male 65.70 % 34.30 % reference 
 

51.20 % 48.80 % reference 
 

Female 58.00 % 42.00 % 1.39 (0.97-1.98) 0.071  34.80 % 65.20 % 2.20 (1.13-4.29) 0.029 

Abbreviations: SNP, single nucleotide polymorphisms; OR, Odds Ratio; CI, Confidence Interval; RHC, red hair colour 
RHC variants include both homozygotes and heterozygotes 
Bold indicates statistically significant results 

* P-value significant at Bonferroni-corrected threshold of 0.05/9 = 0.0055 
a
 Multivariate logistic regression analysis. Results adjusted by including all the potential risk factors in the model, considering as risk factors all 

six SNPs, sex, skin colour and history of sunburns 
b 

Percentages of the all individuals in each subgroup 
c 
P-values for Fisher’s exact test, estimating sex differences in skin phototype within each MC1R genotype 

 

  



 

Figure 1. Sex-specific meta-analysis of (a) skin phototype and (b) naevus number in different 

Caucasian populations. Since femaleness was set as the reference, the results show male ORs. 

Diamond shapes represent odds ratio in each study and in the pooled analysis (Total). 

Diamond size is proportional to the number of individuals, and error bars represent 95% 

confidence intervals. Bold on P-values denotes statistically significant results. N refers to the 

total individuals analysed in each study. Total: results attained by taking into account all 

populations. 


