Gauss-Bonnet formulae and rotational integrals in constant curvature spaces

S. Barahona ${ }^{\text {a }}$, X. Gual-Arnau ${ }^{\text {b }}$
${ }^{a}$ Departament de Matemàtiques, Universitat Jaume I. 12071-Castelló, Spain. barahona@uji.es
${ }^{b}$ Departament de Matemàtiques, Institute of New Imaging Technologies, Universitat Jaume I. 12071-Castelló, Spain. gual@uji.es

Abstract

We obtain generalizations of the main result in [18], and then provide geometric interpretations of linear combinations of the mean curvature integrals that appear in the Gauss-Bonnet formula for hypersurfaces in space forms M_{λ}^{n}. Then, we combine these results with classical Morse theory to obtain new rotational integral formulae for the k-th mean curvature integrals of a hypersurface in M_{λ}^{n}.

Keywords: Gauss-Bonnet formula, integral of mean curvature, intrinsic volume, rotational integral formulas, space form.
MSC Subject classification: 53C65.

1. Introduction

Let M_{λ}^{n} denote a simply connected Riemannian manifold of constant sectional curvature λ. Further, let L_{r}^{n} denote a r-plane, $(r \leq n)$, namely a totally geodesic submanifold of dimension r in M_{λ}^{n}, and let $\mathrm{d} L_{r}^{n}$ denote the corresponding density, invariant under the group of Euclidean and non Euclidean motions. A r-plane through a fixed point O in M_{λ}^{n}, and its invariant density, are denoted by $L_{r[0]}^{n}$ and $\mathrm{d} L_{r[0]}^{n}$, respectively [16].

In [8] a new expression for the density of r-planes in M_{λ}^{n} has been obtained in terms of the density $\mathrm{d} L_{r+1[0]}^{n}$, of the density $\mathrm{d} L_{r}^{r+1}$ of r-planes in $L_{r+1[0]}^{n}$ and the distance ρ from O to L_{r}^{r+1}. Thus, an invariant r-plane in M_{λ}^{n} may be generated by taking first an isotropic $(r+1)$-plane through a fixed point O and then an invariant r-plane within this $(r+1)$-plane, weighted
by a function of ρ.
This construction, called the invariator principle in M_{λ}^{n} ([19]), has opened the way to solve rotational integral equations for different quantities as the volume of a k-dimensional submanifold in M_{λ}^{n} [8], the k-th mean curvature integrals or $k-$ th intrinsic volumes ([10] and [1], and different curvature measures $([19]$ for $\lambda=0))$. The solutions of these equations allow to express these quantities as the integral of some functionals defined in sections produced by isotropic planes through a fixed point. Moreover, in [19], the authors, using classical Morse theory, rewrite the volume of compact submanifolds in \mathbb{R}^{n} of dimension $n-r$, in terms of critical values of the sectioned object with $(r+1)$-planes; and in [9] related generalizations valid for submanifolds in space forms of constant curvature are obtained.

On the other hand, in [18] it is proved that the Gauss-Bonnet defect of a hypersurface in M_{λ}^{n} is the measure of planes L_{n-2}^{n} meeting it, counted with multiplicity. From this result an integral-geometric proof of the GaussBonnet theorem for hypersurfaces in M_{λ}^{n} is given.

The purpose of this paper is twofold: to obtain generalizations of the main result in [18], following a completely different route; and to combine these results with classical Morse theory to obtain new rotational integral formulae for the k-th mean curvature integrals of a hypersurface in M_{λ}^{n}.

2. The Gauss-Bonnet theorem in M_{λ}^{n}

Let $Q \subset M_{\lambda}^{n}$ be a compact domain with smooth boundary $S=\partial Q$. Let V denote the volume of of Q, F the $(n-1)$-surface area of $S, \chi(Q)$ the Euler-Poincare characteristic of Q, and M_{i} the i-th integral of mean curvature of S. The Gauss-Bonnet formula for S states that [16]

$$
\begin{equation*}
c_{n-1} M_{n-1}+\lambda c_{n-3} M_{n-3}+\cdots+\lambda^{\frac{n-2}{2}} c_{1} M_{1}+\lambda^{\frac{n}{2}} V=\frac{1}{2} O_{n} \chi(Q), \tag{1}
\end{equation*}
$$

for n even, where $O_{k}=\operatorname{vol}\left(\mathbb{S}^{k}\right)$ (surface area of the k-dimensional unit sphere), and

$$
\begin{equation*}
c_{n-1} M_{n-1}+\lambda c_{n-3} M_{n-3}+\cdots+\lambda^{\frac{n-3}{2}} c_{2} M_{2}+\lambda^{\frac{n-1}{2}} c_{0} F=\frac{1}{2} O_{n} \chi(Q), \tag{2}
\end{equation*}
$$

for n odd, where

$$
\begin{equation*}
c_{h}=\binom{n-1}{h} \frac{O_{n}}{O_{h} O_{n-1-h}} . \tag{3}
\end{equation*}
$$

If n is odd, we can use the equality $2 \chi(Q)=\chi(S)$, and for $\lambda=0$, in any case, we obtain $M_{n-1}=O_{n-1} \chi(Q)$.

Let \mathcal{L}_{r} be the space of r-dimensional totally geodesic submanifolds of M_{λ}^{n}. Our first result is the following theorem, which is a generalization of the main result in [18].

Theorem 2.1. For n and r even, or n and r odd, we have

$$
\begin{gather*}
\frac{1}{2} O_{n} \chi(Q)-c_{n-1} M_{n-1}-\lambda c_{n-3} M_{n-3}-\cdots-\lambda^{\frac{n-r-2}{2}} c_{r+1} M_{r+1} \\
=\lambda^{\frac{n-r}{2}} \frac{O_{r} \ldots O_{1}}{O_{n-1} \ldots O_{n-r}} \int_{\mathcal{L}_{r}} \chi\left(Q \cap L_{r}^{n}\right) \mathrm{d} L_{r}^{n} \tag{4}
\end{gather*}
$$

Proof. We begin assuming that n and r are both even numbers. Given a r-plane L_{r}^{n} of $M_{\lambda}^{n}, Q_{r}=L_{r}^{n} \cap Q$ is, in general, a domain of dimension r in L_{r}^{n}. Applying Eq.(1) to Q_{r} we obtain

$$
\begin{equation*}
c_{r-1}^{\prime} M_{r-1}^{\prime}+\lambda c_{r-3}^{\prime} M_{r-3}^{\prime}+\cdots+\lambda^{\frac{r-2}{2}} c_{1}^{\prime} M_{1}^{\prime}+\lambda^{\frac{r}{2}} V\left(Q_{r}\right)=\frac{1}{2} O_{r} \chi\left(Q_{r}\right), \tag{5}
\end{equation*}
$$

where M_{i}^{\prime} is the $i-$ th integral of mean curvature of ∂Q_{r} and

$$
\begin{equation*}
c_{h}^{\prime}=\binom{r-1}{h} \frac{O_{r}}{O_{h} O_{r-1-h}} . \tag{6}
\end{equation*}
$$

Eq.(14.69) for $q=n$ and Eq.(14.78) of [16], which are valid for M_{λ}^{n}, are

$$
\begin{equation*}
\int_{\mathcal{L}_{r}} V\left(Q_{r}\right) \mathrm{d} L_{r}^{n}=\frac{O_{n-1} \ldots O_{n-r}}{O_{r-1} \ldots O_{0}} V(Q) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathcal{L}_{r}} M_{i}^{\prime} \mathrm{d} L_{r}^{n}=\frac{O_{n-2} \ldots O_{n-r} O_{n-i}}{O_{r-2} \ldots O_{0} O_{r-i}} M_{i} . \tag{8}
\end{equation*}
$$

Now, having the preceding equalities in mind, we integrate Eq.(5) and we obtain

$$
\begin{align*}
d_{r-1} M_{r-1}+ & \lambda d_{r-3} M_{r-3}+\cdots+\lambda^{\frac{r-2}{2}} d_{1} M_{1}+\lambda^{\frac{r}{2}} d_{0} V \\
& =\frac{1}{2} O_{r} \int_{\mathcal{L}_{r}} \chi\left(Q_{r}\right) \mathrm{d} L_{r}^{n} \tag{9}
\end{align*}
$$

where

$$
\begin{gather*}
d_{i}=\binom{r-1}{i} \frac{O_{r}}{O_{i} O_{r-1-i}} \frac{O_{n-2} \ldots O_{n-r} O_{n-i}}{O_{r-2} \ldots O_{0} O_{r-i}} ; \quad i=1,3, \ldots, r-1 ; \tag{10}\\
d_{0}=\frac{O_{n-1} \ldots O_{n-r}}{O_{r-1} \ldots O_{0}} \tag{11}
\end{gather*}
$$

We multiply Eq.(9) by $\frac{\lambda^{(n-r) / 2}}{d_{0}}$ to obtain

$$
\begin{gather*}
\lambda^{\frac{n-r}{2} k_{r-1} M_{r-1}+\lambda^{\frac{n-r+2}{2}} k_{r-3} M_{r-3}+\cdots+\lambda^{\frac{n-2}{2}} k_{1} M_{1}+\lambda^{\frac{n}{2}} V} \\
=\frac{1}{2} \lambda^{\frac{n-r}{2}} \frac{O_{r}}{d_{0}} \int_{\mathcal{L}_{r}} \chi\left(Q_{r}\right) \mathrm{d} L_{r}^{n} \tag{12}
\end{gather*}
$$

where

$$
\begin{equation*}
k_{i}=\binom{r-1}{i} \frac{O_{r} O_{r-1} O_{n-i}}{O_{i} O_{n-1} O_{r-i} O_{r-i-1}} \tag{13}
\end{equation*}
$$

If we compare the constants k_{i} and c_{i} in Eq.(1), using the equality $(k-1) O_{k}=$ $O_{1} O_{k-2}$, we have that

$$
\begin{equation*}
k_{i}=c_{i} \tag{14}
\end{equation*}
$$

then, Eq.(12) can be written as

$$
\begin{gather*}
\lambda^{\frac{n-r}{2}} c_{r-1} M_{r-1}+\lambda^{\frac{n-r+2}{2}} c_{r-3} M_{r-3}+\cdots+\lambda^{\frac{n-2}{2}} c_{1} M_{1}+\lambda^{\frac{n}{2}} V \\
=\frac{1}{2} \lambda^{\frac{n-r}{2}} \frac{O_{r}}{d_{0}} \int_{\mathcal{L}_{r}} \chi\left(Q_{r}\right) \mathrm{d} L_{r}^{n} \tag{15}
\end{gather*}
$$

and, from Eq.(1) we obtain the result for the case n and r even.
If we consider that n and r are both odd numbers the proof is similar to the preceding one but considering, instead of Eq.(7), the following equality (Eq.(14.69) of [16] with $q=n-1$):

$$
\begin{equation*}
\int_{\mathcal{L}_{r}} F\left(\partial Q_{r}\right) \mathrm{d} L_{r}^{n}=\frac{O_{n} \ldots O_{n-r} O_{r-1}}{O_{r} \ldots O_{0} O_{n-1}} F \tag{16}
\end{equation*}
$$

where $F\left(\partial Q_{r}\right)$ is the $(r-1)$-surface area of $\partial Q \cap L_{r}^{n}=\partial\left(Q \cap L_{r}^{n}\right)$.
Remark. For $r=n-2$, Theorem 2.1 gives Theorem 1 of [18] and, as a result of Theorem 2.1, we obtain the following corollary which is equivalent to Proposition 7 of [18].

Corollary 2.2. Let Q be a compact domain in M_{λ}^{n} and $L_{r} \in \mathcal{L}_{r}$, we have

$$
\begin{align*}
M_{r} & =\frac{(n-r-1) O_{r} \ldots O_{0}}{O_{n-2} \ldots O_{n-r-2}} \int_{\mathcal{L}_{r+1}} \chi\left(Q \cap L_{r+1}^{n}\right) \mathrm{d} L_{r+1}^{n} \tag{17}\\
& -\lambda \frac{r O_{r-2} \ldots O_{0}}{O_{n-2} \ldots O_{n-r}} \int_{\mathcal{L}_{r-1}} \chi\left(Q \cap L_{r-1}^{n}\right) \mathrm{d} L_{r-1}^{n} .
\end{align*}
$$

Proof. When r is an even number, Eq.(15) divided by $\lambda^{\frac{n-r}{2}}$ is

$$
\begin{equation*}
c_{r-1} M_{r-1}+\lambda c_{r-3} M_{r-3}+\cdots+\lambda^{\frac{r-2}{2}} c_{1} M_{1}+\lambda^{\frac{r}{2}} V=\frac{1}{2} \frac{O_{r}}{d_{0}} \int_{\mathcal{L}_{r}} \chi\left(Q_{r}\right) \mathrm{d} L_{r}^{n} \tag{18}
\end{equation*}
$$

and the corresponding equation to Eq.(15) divided by $\lambda^{\frac{n-r}{2}}$ when r is an odd number is

$$
\begin{equation*}
c_{r-1} M_{r-1}+\lambda c_{r-3} M_{r-3}+\cdots+\lambda^{\frac{r-3}{2}} c_{2} M_{2}+\lambda^{\frac{r-1}{2}} c_{0} F=\frac{1}{2} \frac{O_{r}}{d_{0}} \int_{\mathcal{L}_{r}} \chi\left(Q_{r}\right) \mathrm{d} L_{r}^{n} \tag{19}
\end{equation*}
$$

If r is odd, subtracting each part of Eq.(18), with $r \longrightarrow r+1$, minus the corresponding part of λ multiplied by Eq.(18) with $r \longrightarrow r-1$ we obtain the result. If r is even, we proceed in the same way but using Eq.(19) instead of the Eq.(18).

Remark. For $\lambda=0$, Eq.(17) coincides with Eq.(14.79) of [16].

3. Rotational integrals and Morse representations for M_{r}

From rotational integral formulae we obtain quantitative properties (as M_{r}) of differential manifolds in M_{λ}^{n}, from the intersection of the manifold with planes (totally geodesic submanifolds) through a fixed point O. In this context, from Eq.(17), we will find measurement functions α_{r} defined on $L_{r+2[0]}^{n} \cap Q$ with rotational average equal to M_{r}, that is,

$$
\begin{equation*}
M_{r}=\int_{L_{r+2[0]}^{n} \cap Q \neq \emptyset} \alpha_{r}\left(L_{r+2[0]}^{n} \cap Q\right) \mathrm{d} L_{r+2[0]}^{n} . \tag{20}
\end{equation*}
$$

Theorem 3.1. Let $Q \subset M_{\lambda}^{n}$ be a compact domain with smooth boundary $S=\partial Q$. The measurement functions α_{r} corresponding to the $r-t$ integral
of mean curvature of S, M_{r}, can be expressed as

$$
\begin{align*}
& \alpha_{r}\left(L_{r+2[0]}^{n} \cap Q\right)=\frac{O_{r-2} \ldots O_{0}}{O_{n-2} \ldots O_{n-r-2}} \\
& {\left[(n-r-1) O_{r} O_{r-1} \int \chi\left(\left(Q \cap L_{r+2[0]}^{n}\right) \cap L_{r+1}^{r+2}\right) s_{\lambda}^{n-r-2}(\rho) \mathrm{d} L_{r+1}^{r+2}\right.} \tag{21}\\
& \left.\left.-\lambda r O_{1} O_{0} \int \chi\left(\left(\left(Q \cap L_{r+2[0]}^{n}\right) \cap L_{r[0]}^{r+2}\right) \cap L_{r-1}^{r}\right)\right) s_{\lambda}^{n-r}(\rho) \mathrm{d} L_{r-1}^{r} \mathrm{~d} L_{r[0]}^{r+2}\right]
\end{align*}
$$

where, in both integrals, ρ is the distance from O to the planes L_{r+1}^{r+2} and L_{r-1}^{r}, respectively; and

$$
s_{\lambda}(\rho)= \begin{cases}\lambda^{-1 / 2} \sin (\rho \sqrt{\lambda}), & \lambda>0 \tag{22}\\ \rho, & \lambda=0 . \\ |\lambda|^{-1 / 2} \sinh (\rho \sqrt{|\lambda|}), & \lambda<0\end{cases}
$$

Proof. The idea of the proof consists in generating the planes L_{r+1}^{n} and L_{r-1}^{n}, which appear in Eq.(17), by taking first an isotropic plane through O and then an invariant plane within this isotropic plane, weighted by a function of ρ; that is, from Corollary 3.1 of [8] we have the identity

$$
\begin{equation*}
\mathrm{d} L_{r+1}^{n}=s_{\lambda}^{n-r-2}(\rho) \mathrm{d} L_{r+1}^{r+2} \mathrm{~d} L_{r+2[0]}^{n}, \tag{23}
\end{equation*}
$$

and also

$$
\begin{equation*}
\mathrm{d} L_{r-1}^{n} \mathrm{~d} L_{r+2[r]}^{n}=s_{\lambda}^{n-r}(\rho) \mathrm{d} L_{r-1}^{r} \mathrm{~d} L_{r+2[r]}^{n} \mathrm{~d} L_{r[0]}^{n}, \tag{24}
\end{equation*}
$$

where $\mathrm{d} L_{r+2[r]}^{n}$ denotes the density for $(r+2)$-planes about a about a r-plane L_{r}^{n} (see page 202 of [16]).

As justified in [16], p. 309, before Eq. (17.55), from the expressions of the densities of planes in M_{λ}^{n} it follows that some density decompositions (such as [16], Eq. (12.53)) have the same form whatever the sign of λ. Then, from Eq.(12.53) of [16], Eq.(24), can be expressed as

$$
\begin{equation*}
\mathrm{d} L_{r-1}^{n} \mathrm{~d} L_{r+2[r]}^{n}=s_{\lambda}^{n-r}(\rho) \mathrm{d} L_{r-1}^{r} \mathrm{~d} L_{r[0]}^{r+2} \mathrm{~d} L_{r+2[0]}^{n} . \tag{25}
\end{equation*}
$$

Finally, substituting Eq.(23) and Eq.(25) in Eq.(17), having in mind that

$$
\begin{equation*}
\int \mathrm{d} L_{r+2[r]}^{n}=\frac{O_{n-r-1} O_{n-r-2}}{O_{1} O_{0}} \tag{26}
\end{equation*}
$$

we obtain the result.
Remark. For $\lambda=0$, Eq.(21) coincides, up to a constant factor, with Eq.(18) of [10].

3.1. Morse representations for M_{r}

In this section a geometric interpretation is given of Eq.(21) in terms of the critical points of height functions. In particular, and in order to simplify, we will give a geometric interpretation of the function

$$
\begin{equation*}
\beta_{r}=\int \chi\left(\left(Q \cap L_{r+1[0]}^{n}\right) \cap L_{r}^{r+1}\right) s_{\lambda}^{n-r-1}(\rho) \mathrm{d} L_{r}^{r+1} \tag{27}
\end{equation*}
$$

The density $\mathrm{d} L_{r}^{r+1}$ may be decomposed as follows,

$$
\begin{equation*}
\mathrm{d} L_{r}^{r+1}=c_{\lambda}^{r}(\rho) \mathrm{d} \rho \mathrm{~d} u_{r} \tag{28}
\end{equation*}
$$

where $\mathrm{d} u_{r}$ denotes the surface area element of the r-dimensional unit sphere and $c_{\lambda}(\rho)=\frac{\mathrm{d}}{\mathrm{d} \rho} s_{\lambda}(\rho)$. Note that $\rho \geq 0$ for the cases $\lambda=0$ (Euclidean) and $\lambda<0$ (hyperbolic); however, for the case $\lambda>0$ (spherical) ρ varies from 0 (which corresponds to the point O) to $\frac{\pi}{\sqrt{\lambda}}$ (which corresponds to the cut locus of O (i.e., the antipodal point of O).

Therefore, for the cases $\lambda=0$ (Euclidean) and $\lambda<0$ (hyperbolic), we may write,

$$
\begin{equation*}
\beta_{r}=\int_{\mathbb{S}^{r}} \mathrm{~d} u_{r} \int_{0}^{\infty} s_{\lambda}^{n-r-1}(\rho) c_{\lambda}^{r}(\rho) \chi\left(\left(Q \cap L_{r+1[0]}^{n}\right) \cap L_{r}^{r+1}\right) \mathrm{d} \rho, \tag{29}
\end{equation*}
$$

whereas, for the case $\lambda>0$ (spherical),

$$
\begin{equation*}
\beta_{r}=\int_{\mathbb{S}^{r}} \mathrm{~d} u_{r} \int_{0}^{\frac{\pi}{\sqrt{\lambda}}} s_{\lambda}^{n-r-1}(\rho) c_{\lambda}^{r}(\rho) \chi\left(\left(Q \cap L_{r+1[0]}^{n}\right) \cap L_{r}^{r+1}\right) \mathrm{d} \rho, \tag{30}
\end{equation*}
$$

where L_{r}^{r+1} is the r-plane expressed in terms of its distance ρ from the fixed point O, perpendicular to the geodesic defined from the direction u_{r} from O, and $\chi\left(\left(Q \cap L_{r+1[0]}^{n}\right) \cap L_{r}^{r+1}\right)=0$ whenever $\left(Q \cap L_{r+1[0]}^{n}\right) \cap L_{r}^{r+1}=\emptyset$.

Since we want to give a geometrical interpretation of β_{r}, based on critical points of height functions, from now on we will consider that ρ means signed distance and we will rewrite β_{r} as:

$$
\begin{align*}
& \beta_{r}=\frac{1}{2} \int_{\mathbb{S}^{r}} \mathrm{~d} u_{r} \int_{-\infty}^{\infty} s_{\lambda}^{n-r-1}(|\rho|) c_{\lambda}^{r}(\rho) \chi\left(\left(Q \cap L_{r+1[0]}^{n}\right) \cap L_{r}^{r+1}\right) \mathrm{d} \rho, \quad \lambda \leq 0 ; \tag{31}\\
& \beta_{r}=\frac{1}{2} \int_{\mathbb{S}^{r}} \mathrm{~d} u_{r} \int_{\frac{-\pi}{\sqrt{\lambda}}}^{\frac{\pi}{\sqrt{\lambda}}} s_{\lambda}^{n-r-1}(|\rho|) c_{\lambda}^{r}(\rho) \chi\left(\left(Q \cap L_{r+1[0]}^{n}\right) \cap L_{r}^{r+1}\right) \mathrm{d} \rho \quad \lambda>0 . \tag{32}
\end{align*}
$$

Let u_{r} denote a unit vector in $\mathbb{S}^{r} \subset T_{O} L_{r+1[0]}^{n}$. The geodesic $\gamma_{u_{r}}: \mathbb{R} \longrightarrow$ $L_{r+1[0]}^{n}$, with $\gamma_{u_{r}}(0)=O$ and $\gamma^{\prime}(0)=u_{r}$ is given by $\gamma_{u_{r}}(t)=c_{\lambda}(t) O+s_{\lambda}(t) u_{r}$, where $c_{\lambda}(t)=\frac{\mathrm{d}}{\mathrm{d} t} s_{\lambda}(t)$. Given u_{r}, let $h_{u_{r}}: L_{r+1[0]}^{n} \longrightarrow \mathbb{R}$ be the height function whose level hypersurfaces are just the r-planes L_{r}^{r+1} perpendicular to the geodesic $\gamma_{u_{r}}(t)$. Note that in the Euclidean case $(\lambda=0)$ this height function coincides with the standard height function considered in [19]. We suppose that the level hypersurface L_{r}^{r+1} is oriented in such a way that the unit vector $\nu(p)$, perpendicular to the level set $L_{r}^{r+1} \subset L_{r+1[0]}^{n}$ at p is given by $\nu(p)=\operatorname{grad}\left(h_{u_{r}}\right)(p) /\left\|\operatorname{grad}\left(h_{u_{r}}\right)(p)\right\|$.

Let us denote $Q_{r+1}=Q \cap L_{r+1[0]}^{n}$ which is, in general, a domain with boundary in $L_{r+1[0]}^{n}$ (see Appendix A of [10]). In Section 5 (Appendix) we show that in Euclidean and hyperbolic cases; and in the spherical case, if the domain Q is contained in the hemisphere of M_{λ}^{n} with pole $O,\left.h_{u_{r}}\right|_{Q_{r+1}}$ is a strong Morse function for almost all $u_{r} \in \mathbb{S}^{r}$, it means that all of the critical points in the direction u_{r} from O are non-degenerate, and no two of them lie on the same level hypersurface (i.e. they have different critical values). In particular, $\left.h_{u_{r}}\right|_{Q_{r+1}}$ has not critical points in Q_{r+1}. Let $p_{i} \in \operatorname{Crit}\left(h_{u_{r}} \mid \partial Q_{r+1}\right)$, $i=1, \ldots, m$, be the set of critical points, and

$$
\rho_{1}<\rho_{2}<\cdots<\rho_{m}, \quad\left(\text { with } \quad \frac{-\pi}{2 \sqrt{\lambda}} \leq \rho_{1}, \quad \rho_{m} \leq \frac{\pi}{2 \sqrt{\lambda}} \quad \text { for } \quad \lambda>0\right)
$$

the corresponding critical values $\left(h_{u_{r}}\left(p_{i}\right)=\rho_{i}\right)$. To each critical point p_{i} we assign an index

$$
\begin{equation*}
\epsilon_{i}=\chi\left(Q_{r+1} \cap L_{r}^{r+1}\left(\rho_{i}-\varepsilon\right)\right)-\chi\left(Q_{r+1} \cap L_{r}^{r+1}\left(\rho_{i}+\varepsilon\right)\right), \tag{33}
\end{equation*}
$$

where $L_{r}^{r+1}\left(\rho_{i}+\varepsilon\right)$ denotes the r-plane defined from the direction u_{r} at a signed distance $\rho_{i}+\varepsilon$ from O; and ε is small enough to ensure that there are no critical points of $\operatorname{Crit}\left(\left.h_{u_{r}}\right|_{\partial Q_{r+1}}\right)$ whose height function belongs to $\left(\rho_{i}-\varepsilon, \rho_{i}+\varepsilon\right)$.

For $r<n \in\{1,2, \ldots\}$, define:

$$
\begin{align*}
I_{n-r-1, r}(\rho) & =\int s_{\lambda}^{n-r-1}(|\rho|) c_{\lambda}^{r}(\rho) \mathrm{d} \rho \\
& =\left\{\begin{aligned}
\int s_{\lambda}^{n-r-1}(\rho) c_{\lambda}^{r}(\rho) \mathrm{d} \rho, & \rho \geq 0, \\
(-1)^{n-r-1} \int s_{\lambda}^{n-r-1}(\rho) c_{\lambda}^{r}(\rho) \mathrm{d} \rho, & \rho<0 .
\end{aligned}\right. \tag{34}
\end{align*}
$$

Then, for $\lambda=0$,

$$
I_{n-r-1, r}(\rho)=\int|\rho|^{n-r-1} \mathrm{~d} \rho=\left\{\begin{align*}
\frac{\rho^{n-r}}{n-r}, & \rho \geq 0, \tag{35}\\
(-1)^{n-r-1} \frac{\rho^{n-r}}{n-r}, & \rho<0 .
\end{align*}\right.
$$

For $\lambda \neq 0$, and for any given pair (n, r), the integral $I_{n-r-1, r}(\rho)$ may be evaluated explicitly from [13], pages 114 and 159, or with the aid of a mathematical software package such as Mathematica ${ }^{\circledR}$.

Theorem 3.2. Let O be a point in M_{λ}^{n} and $Q \subset M_{\lambda}^{n}$ a compact domain which is contained in the hemisphere of M_{λ}^{n} with pole O when $\lambda>0$. Let $Q_{r+1}=Q \cap L_{r+1[0]}^{n}$ be the domain with boundary in $L_{r+1[0]}^{n}$. Then, for $r \in$ $\{0,1, \ldots, n-2\}$,

$$
\begin{equation*}
\beta_{r}=\frac{1}{2} \int_{\mathbb{S}^{r}}\left(\sum_{k=1}^{m} \epsilon_{k} I_{n-r-1, r}\left(\rho_{k}\right)\right) \mathrm{d} u_{r}, \tag{36}
\end{equation*}
$$

where m represents the number of points $\operatorname{Crit}\left(h_{u_{r}} \mid \partial_{Q_{r+1}}\right)$ corresponding to the direction u_{r}.

Proof. The fact that Q_{r+1} will be a domain with boundary in $L_{r+1[0]}^{n}$, for a generic $(r+1)$-space $L_{r+1[0]}^{n}$, follows from Theorem A. 1 of [10], and the fact that $\left.h_{u_{r}}\right|_{Q_{r+1}}$ will in general be a strong Morse function for almost all $u_{r} \in \mathbb{S}^{r}$ follows from the appendix, having in mind that Q_{r+1} is contained in the hemisphere of $L_{r+1[0]}^{n}$ with pole O.

Then Eq.(31) and Eq.(32) may be written as follows,

$$
\begin{equation*}
\beta_{r}=\frac{1}{2} \int_{\mathbb{S}^{r}} \mathrm{~d} u_{r} \sum_{k=1}^{m-1} \int_{\rho_{k}}^{\rho_{k+1}} s_{\lambda}^{n-r-1}(|\rho|) c_{\lambda}^{r}(\rho) \chi\left(\left(Q \cap L_{r+1[0]}^{n}\right) \cap L_{r}^{r+1}\right) \mathrm{d} \rho, \tag{37}
\end{equation*}
$$

Thus,

$$
\begin{align*}
& \beta_{r}=\frac{1}{2} \int_{\mathbb{S}^{r}} \mathrm{~d} u_{r} \sum_{k=1}^{m-1}\left(I_{n-r-1, r}\left(\rho_{k+1}\right)-I_{n-r-1, r}\left(\rho_{k}\right)\right) \sum_{j=k+1}^{m} \epsilon_{j} \\
& =\frac{1}{2} \int_{\mathbb{S}^{r}}\left(\sum_{k=2}^{m} \epsilon_{k} I_{n-r-1, r}\left(\rho_{k}\right)-I_{n-r-1, r}\left(\rho_{1}\right) \sum_{k=2}^{m} \epsilon_{k}\right) \mathrm{d} u_{r} . \tag{38}
\end{align*}
$$

Finally, since $\sum_{k=1}^{m} \epsilon_{k}=0$, it means $\sum_{k=2}^{m} \epsilon_{k}=-\epsilon_{1}$, and the proposed result is obtained.

4. Applications

Let $Q \subset M_{\lambda}^{3}(\lambda \neq 0)$ be a compact domain with smooth boundary $S=$ ∂Q; then, from Theorem 2.1 with $n=3$ and $r=1$, we have

$$
\begin{equation*}
2 \pi \chi(S)-\int_{S} K(x) \mathrm{d} x=\frac{2 \lambda}{\pi} \int_{\mathcal{L}} \chi\left(Q \cap L_{1}^{3}\right) \mathrm{d} L_{1}^{3} \tag{39}
\end{equation*}
$$

where $K(x)$ is the Gauss curvature of S at x, and χ denotes Euler characteristic.
Now, from Eq.(23) and the definition of β_{1} (Eq.(27)), a rotational formula of the defect of the surface in $M^{3}(\lambda)$ is gven by

$$
\begin{equation*}
2 \pi \chi(S)-\int_{S} K(x) \mathrm{d} x=\frac{2 \lambda}{\pi} \int_{Q \cap L_{2[0]}^{3} \neq \emptyset} \beta_{1}\left(Q \cap L_{2[0]}^{3}\right) \mathrm{d} L_{2[0]}^{3} \tag{40}
\end{equation*}
$$

where, using Theorem 3.2,

$$
\begin{equation*}
\beta_{1}\left(Q \cap L_{2[0]}^{3}\right)=\frac{1}{2} \int_{\mathbb{S}^{2} \cap L_{2[0]}^{3}} \sum_{k=1}^{m} \epsilon_{k} I_{1,1}\left(\rho_{k}\right) \mathrm{d} u . \tag{41}
\end{equation*}
$$

Example. Let S be a geodesic sphere of radius ρ centered at O in $M^{3}(\lambda)$; then, $\chi(S)=2$, and $\int_{M^{2}} K(x) \mathrm{d} x=4 \pi c_{\lambda}^{2}(\rho)$.

On the other hand, $S \cap L_{2[0]}^{3}$ is a geodesic circle (boundary of a geodesic ball) in $L_{2[0]}^{3}$; that is, all the points in $S \cap L_{2[0]}^{3}$ are a distance ρ apart from O. Then, for all directions $u \in \mathbb{S}^{1}, m=2, \epsilon_{1}=1, \epsilon_{2}=-1, I_{1,1}\left(\rho_{1}\right)=$ $I_{1,1}(\rho)=\frac{1}{2} s_{\lambda}^{2}(\rho)$ and $I_{1,1}\left(\rho_{2}\right)=I_{1,1}(-\rho)=-\frac{1}{2} s_{\lambda}^{2}(\rho), \beta_{1}\left(S \cap L_{2[0]}^{3}\right)=\pi s_{\lambda}^{2}(\rho)$; and Eq.(40) is satisfied.

If we consider a domain Q in $\mathbb{R}^{3}(\lambda=0)$, Corollary 2.2, with $r=1$ and $n=3$, coincides with Eq.(12) of [6], Theorem 2.1 coincides with Eq.(12) of [6], and, since

$$
\begin{equation*}
2 \chi\left(Q_{2} \cap L_{1}^{2}\right)=N\left(\partial Q_{2} \cap L_{1}^{2}\right) \tag{42}
\end{equation*}
$$

where N denotes number, Theorem 3.2 coincides with the integrand of Eq.(50) in [6]; but now, for each axial direction $u \in[0,2 \pi)$ in the pivotal plane $L_{2[0]}^{3}$, the pivotal section is scanned entirely from top to bottom by a sweeping straight line parallel to the axis $O u$, in search of critical points.

5. Appendix

Let X be a smooth manifold with boundary. We say that a smooth function $f: X \rightarrow \mathbb{R}$ is a strong Morse function if

1. all critical points of $f: X \rightarrow \mathbb{R}$ are non-degenerate and are contained in the interior of X,
2. all critical points of the restriction $f: \partial X \rightarrow \mathbb{R}$ are also non-degenerate,
3. if $x, y \in X$ are distinct critical points of either $f: X \rightarrow \mathbb{R}$ or $f: \partial X \rightarrow$ \mathbb{R}, then $f(x) \neq f(y)$.

5.1. Preliminary results for the Euclidean case $(\lambda=0)$

Assume now that $X \subset \mathbb{R}^{n}$ is a submanifold with boundary and for each unit vector $v \in \mathbb{S}^{n-1}$, let us denote by $h_{v}: X \rightarrow \mathbb{R}$ the height function defined as $h_{v}(x)=\langle x, v\rangle$.

Theorem 5.1. Let $X \subset \mathbb{R}^{n}$ be a compact submanifold with boundary. For almost any $v \in S^{n-1}, h_{v}: X \rightarrow \mathbb{R}$ is a strong Morse function.

Proof. We consider $S=X$ or $S=\partial X$ which are compact spaces in \mathbb{R}^{n}. From Theorem 3 of [14], since $(1, p)$ is in the nice range for all $p=\operatorname{dim}(S)$, the linear map $h_{a}: S \rightarrow \mathbb{R}$ given by $h_{a}(x)=\sum_{i} a_{i} x_{i}$ is stable for almost any $a \in \mathbb{R}^{n} \backslash\{0\}$.

Let $W \subset \mathbb{R}^{n} \backslash\{0\}$ be the set of points a such that $h_{a}: S \rightarrow \mathbb{R}$ is not stable. Since W is a null set in $\mathbb{R}^{n} \backslash\{0\}, p(W)$ is a null set in \mathbb{S}^{n-1}, where $p: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{S}^{n-1}$ is the normalization map. Then, for any $v \in \mathbb{S}^{n-1} \backslash p(W)$, $h_{v}: S \rightarrow \mathbb{R}$ is stable.

In the case of functions, it is well known that stability is equivalent to that all critical points are non-degenerate with distinct critical values (see [4]). Therefore $h_{v}: X \rightarrow \mathbb{R}$ and $h_{v}: \partial X \rightarrow \mathbb{R}$ are Morse functions with distinct critical values for almost any $v \in \mathbb{S}^{n-1}$. Since $h_{v}: X \rightarrow \mathbb{R}$ has not critical points, critical values of $h_{v}: \partial X \rightarrow \mathbb{R}$ cannot coincide with critical values of $h_{v}: X \rightarrow \mathbb{R}$. Then, $h_{v}: X \rightarrow \mathbb{R}$ is a strong Morse function for almost any $v \in \mathbb{S}^{n-1}$.

Corollary 5.2. Let $Q \subset \mathbb{R}^{n}$ be a compact domain with boundary. For almost any $v \in \mathbb{S}^{n-1}$, $h_{v}: Q \rightarrow \mathbb{R}$ is a strong Morse function.

5.2. General case $M_{\lambda}^{n}(\lambda \neq 0)$

Lemma 5.3. Let $X \subset M_{\lambda}^{n}$ be a submanifold and let $\psi: I \rightarrow \mathbb{R}$ be a diffeomorphism, where I is an open interval in \mathbb{R}. If $f: X \rightarrow I$ is a strong Morse function, then $g:=\psi \circ f$ is a strong Morse function.

Proof. Since ψ is a diffeomorphism and f is a strong Morse function, it is deduced that g is also a strong Morse function. Note that the critical points of f coincide with the critical points of g.

Let $Q \subset M_{\lambda}^{n}$ be a compact domain with boundary, $O \in M_{\lambda}^{n}$ and v denote a unit vector in $\mathbb{S}^{n-1} \subset T_{O} Q$. The geodesic $\gamma_{v}: I \subset \mathbb{R} \rightarrow Q$ is given by $\gamma_{v}=c_{\lambda}(t) O+s_{\lambda}(t) v$, where $\left.I=\right]-\frac{\pi}{\sqrt{\lambda}}, \frac{\pi}{\sqrt{\lambda}}[$ for $\lambda>0$ and $I=\mathbb{R}$ for $\lambda<0$.

Then, given v, let $h_{v}: Q \subset M_{\lambda}^{n} \rightarrow \mathbb{R}$ be the height function in M_{λ}^{n}, whose level hypersurfaces are perpendicular to the geodesic γ_{v}.

Theorem 5.4. Let $Q \subset M_{\lambda}^{n}$ be a compact domain with boundary which, for $\lambda>0$, it is contained in the hemisphere of M_{λ}^{n} with pole O. Then, for almost any $v \in \mathbb{S}^{n-1}, h_{v}: Q \rightarrow \mathbb{R}$ is a strong Morse function.

Proof. It is useful to consider the embedding of the space form M_{λ}^{n} into $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle_{\lambda}\right)$ as follows:

$$
\begin{cases}x_{0}=1, & \lambda=0 \tag{43}\\ x_{0}^{2}+x_{1}^{2}+\ldots+x_{n}^{2}=\frac{1}{\lambda}, & \lambda>0 \\ -x_{0}^{2}+x_{1}^{2}+\ldots+x_{n}^{2}=\frac{1}{\lambda}, & x_{0}>0, \\ \lambda<0\end{cases}
$$

where $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ denote the coordinates of a point in \mathbb{R}^{n+1}, and $\langle\cdot, \cdot\rangle_{\lambda}$ is the appropriate metric to the embedding, which depends on the sign of λ.

Using this embedding, $Q \subset M_{\lambda}^{n} \subset \mathbb{R}^{n+1}$ can be considered as a compact submanifold with boundary in \mathbb{R}^{n+1}. Then, the height function of \mathbb{R}^{n+1} with respect to the direction v, restricted to Q is:

$$
\begin{array}{ll}
h_{v, \lambda}^{\mathbb{R}^{n+1}}: \quad & Q \longrightarrow \mathbb{R} \tag{44}\\
& x \longrightarrow\langle x, v\rangle_{\lambda}
\end{array}
$$

From Theorem 5.1, $h_{v, \lambda}^{\mathbb{R}^{n+1}}$ is a strong Morse function for almost any $v \in S_{+}^{n-1}$. Moreover, we note $h_{v, \lambda}^{\mathbb{R}^{n+1}}(Q) \subset \bar{I}$.

Since $\langle v, O\rangle_{\lambda}=0$, we have that,

$$
h_{v, \lambda}^{\mathbb{R}^{n+1}}\left(\gamma_{v}(\rho)\right)=\left\langle\gamma_{v}(\rho), v\right\rangle_{\lambda}=s_{\lambda}(\rho)= \begin{cases}\lambda^{-1 / 2} \sin (\rho \sqrt{\lambda}), & \lambda>0 \tag{45}\\ |\lambda|^{-1 / 2} \sinh (\rho \sqrt{|\lambda|}), & \lambda<0\end{cases}
$$

Eq.(45) gives a relation between the height function $h_{v}\left(\gamma_{v}(\rho)\right)=\rho$ of Q in M_{λ}^{n} and the height function $h_{v, \lambda}^{\mathbb{R}^{n+1}}$ of Q in \mathbb{R}^{n+1}. That is,

$$
h_{v}(x)=\psi\left(h_{v, \lambda}^{\mathbb{R}^{n+1}}(x)\right)= \begin{cases}\frac{1}{\sqrt{\lambda}} \arcsin \left(\sqrt{\lambda} h_{v, \lambda}^{\mathbb{R}^{n+1}}(x)\right), & \lambda>0, \tag{46}\\ \frac{1}{\sqrt{-\lambda}} \operatorname{arcsinh}\left(\sqrt{-\lambda} h_{v, \lambda}^{\mathbb{R}^{n+1}}(x)\right), & \lambda<0 .\end{cases}
$$

Finally, since Q is contained in the hemisphere of M_{λ}^{n} with pole O for $\lambda>0$, we have that ψ is a diffeomorphism from I to \mathbb{R} when $I=]-\frac{\pi}{\sqrt{\lambda}}, \frac{\pi}{\sqrt{\lambda}}[$ for $\lambda>0$ and when $I=\mathbb{R}$ for $\lambda<0$; therefore from Lemma 5.3 we obtain the result.

Acknowledgements. Work supported by the PROMETEOII/2014/062 project, the Spanish Ministry of Science and Innovation Project DPI2013-47279-C2-1-R, and the UJI project P11B2012-24.
[1] J. Auneau, E. Jensen. Expressing intrinsic volumes as rotational integrals. Adv. Appl. Math. 45 (2010) 1-11.
[2] W. Blaschke. Integralgeometrie 1. Ermittung der Dichten fur lineare Unterraume in Em. Actualités Scientifiques et Industrielles, 252, Hermann, Paris, 1935.
[3] E. Cartan. Le principe de dualité et certaines integrales multiples de l'espace tangentiel et de l'espace régle. Bull. de la Soc. Math. de France. 24 (1896) 140-177.
[4] M. Golubitsky; V. Guillemin, Stable mappings and their singularities. Graduate Texts in Mathematics, Vol. 14. Springer-Verlag, New YorkHeidelberg, 1973.
[5] M.W. Crofton. On the theory of local probability. Phil. Trans. Roy. Soc. London 158 (1968) 181-199.
[6] L.M. Cruz-Orive, X. Gual-Arnau The invariator design: an update. Accepted in Image Analysis \& Stereology. (2015)
[7] R. De-lin. Topics in Integral Geometry. World Scientific, Singapore, 1994.
[8] X. Gual-Arnau, L.M. Cruz-Orive. A new expression for the density of totally geodesic submanifolds in space forms, with stereological applications. Diff. Geom. Appl. 27 (2009) 124-128.
[9] X. Gual-Arnau, L.M. Cruz-Orive. New rotational integrals in spece forms, with an application to surface area estimation. Accepted in Applications of Mathematics (2015)
[10] X. Gual-Arnau, L.M. Cruz-Orive, J.J. Nuño-Ballesteros. A new rotational integral formulae for intrinsic volumes in space forms. Adv. Appl. Math. 44 (2010) 298-308.
[11] M.W. Hirsch. Differential Topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994.
[12] E. Gutkin. Curvatures, volumes and norms of derivatives for curve in Riemannian manifolds. Journal of Geometry and Physics. 61(2011) 21472161.
[13] I.S. Gradshteyn, I.M. Ryzhik Table of integrals, series, and products, Daniel Zwillinger and Victor Moll (eds.), Academic Press, Amsterdam, 2014.
[14] J.N. Mather, Generic projections. Ann. Maths., 98 (1973), 226-245.
[15] B. Petkantschin. Zusammenhange zwischen den Dichten der linearen Unterraume im n-dimensionalen Raum. Abh Math Sem Hamburg 11 (1936) 249-310.
[16] L. A. Santaló. Integral Geometry and Geometric Probability, AddisonWesley Publishing Company Inc., London, 1976.
[17] R. Schneider, W. Weil, Stochastic and Integral Geometry, Springer, Heidelberg, 2008.
[18] G. Solanes. Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces. Trans. Amer. Math. Soc. 358 (2005) 1105-1115.
[19] Ó. Thórisdóttir, M. Kiderlen. The invariator principle in convex geometry. Adv. Appl. Math. 58 (2014) 63-87.
[20] Ó. Thórisdóttir, A.H. Rafati, M. Kiderlen. Estimating the surface area of nonconvex particles from central planar sections. J. Micrsoc. 255 (2014) 49-64.

