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Abstract

We obtain generalizations of the main result in [18], and then provide geo-
metric interpretations of linear combinations of the mean curvature integrals
that appear in the Gauss-Bonnet formula for hypersurfaces in space forms
M. Then, we combine these results with classical Morse theory to obtain
new rotational integral formulae for the k—th mean curvature integrals of a
hypersurface in M7.
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1. Introduction

Let M7 denote a simply connected Riemannian manifold of constant sec-
tional curvature A. Further, let L denote a r—plane, (r < n), namely a
totally geodesic submanifold of dimension 7 in MY, and let dL} denote the
corresponding density, invariant under the group of Euclidean and non Eu-
clidean motions. A r—plane through a fixed point O in M7, and its invariant
density, are denoted by Ly, and dL7, respectively [16].

In [8] a new expression for the density of r—planes in M} has been ob-
tained in terms of the density dL o] of the density dL"*! of r—planes in
L (0] and the distance p from O to L™, Thus, an invariant r—plane in M3
may be generated by taking first an isotropic (r 4+ 1)—plane through a fixed

point O and then an invariant r—plane within this (r 4+ 1)—plane, weighted
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by a function of p.

This construction, called the invariator principle in MY ([19]), has opened
the way to solve rotational integral equations for different quantities as the
volume of a k—dimensional submanifold in M} [8], the k—th mean curvature
integrals or k—th intrinsic volumes ([10] and [1], and different curvature mea-
sures ([19] for A = 0)). The solutions of these equations allow to express these
quantities as the integral of some functionals defined in sections produced by
isotropic planes through a fixed point. Moreover, in [19], the authors, using
classical Morse theory, rewrite the volume of compact submanifolds in R™
of dimension n — r, in terms of critical values of the sectioned object with
(r + 1)—planes; and in [9] related generalizations valid for submanifolds in
space forms of constant curvature are obtained.

On the other hand, in [18] it is proved that the Gauss-Bonnet defect
of a hypersurface in M7 is the measure of planes L], meeting it, counted
with multiplicity. From this result an integral-geometric proof of the Gauss-
Bonnet theorem for hypersurfaces in M7 is given.

The purpose of this paper is twofold: to obtain generalizations of the
main result in [18], following a completely different route; and to combine
these results with classical Morse theory to obtain new rotational integral
formulae for the k—th mean curvature integrals of a hypersurface in M7}

2. The Gauss-Bonnet theorem in M}

Let @ C M} be a compact domain with smooth boundary S = 0Q.
Let V denote the volume of of @, F' the (n — 1)—surface area of S, x(Q)
the Euler-Poincaré characteristic of ), and M, the i—th integral of mean
curvature of S. The Gauss-Bonnet formula for S states that [16]

ne n 1
CnaMp_1 + Aep—sMp_g 4 -+ - + )\7201M1 + A2V = §OnX(Q)> (1)

for n even, where Oy = vol(S*) (surface area of the k—dimensional unit
sphere), and

n— n—1 1
Comt Mot + A s Mg o0+ N T My + AT oF = 50.x(Q), (2)
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for n odd, where

n—1 O,
o= ("0 ) aors @

If n is odd, we can use the equality 2x(Q) = x(5), and for A = 0, in any
case, we obtain M, = O,_1x(Q).

Let L, be the space of r—dimensional totally geodesic submanifolds of
M. Our first result is the following theorem, which is a generalization of
the main result in [18].

Theorem 2.1. For n and r even, or n and r odd, we have

1 n—r—2
§OnX(Q)_Cn—1Mn—1 - >\Cn—3Mn—3 —e =2 Cr+1Mr+1
4)
n—r O'I‘ o Ol (
=2 — N Ly )dL;.
2 On_l o On_T L:T X(Q ’r‘) r

Proof. We begin assuming that n and r are both even numbers. Given a
r—plane L of M}, ), = L} N is, in general, a domain of dimension r in
L. Applying Eq.(1) to @, we obtain

r— r 1
MLy + MM+ N M+ NV(Q) = 50x(@Q0), (5)

where M/ is the i—th integral of mean curvature of 9Q), and

r—1 @)
A - 6
K ( h ) 010,11 ©)
Eq.(14.69) for ¢ = n and Eq.(14.78) of [16], which are valid for M}, are
Op-1...05_,
V(Q)dL) = ———————V 7
[ vi@naz: = S5rSery (g ™)
and On-z-.. 040
M/ALr = 2R T et 8
. Or—2...000,_; (8)

Now, having the preceding equalities in mind, we integrate Eq.(5) and we
obtain o, i
drferfl—F)\dT,ng,g + -+ )\leMl + )\ﬁdov

1

9
50 QAL ¥
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On—s...0,Op_y .
2 ;o1 =1,3,...,r—1;

d- - T — 1 Or
i i 0,0,-1-; Oy_5...000,_;
O, 1...0,_,
— ol e 11
do O, 1...0 1

We multiply Eq.(9) by Am;:m to obtain

P oMo gt N TR My £ ARV

Nk My AT
1 n:O, (12)
==-\z — A )AL,
5 2 ) . X(Q ) r
where 0.0 0
r—1 rUr—1Un—i
ki = . . 13
( t ) 0;0,-10,-;0,_;_1 (13)
If we compare the constants k; and ¢; in Eq.(1), using the equality (k—1)Oy =
010y,_o, we have that
ki = ci; (14)
then, Eq.(12) can be written as
AT A M AN T g My g+ + AT e My + ABV
(15)

1 n—r
— AT )AL,
5 7 ng(Q )dLy

and, from Eq.(1) we obtain the result for the case n and r even.
If we consider that n and r are both odd numbers the proof is similar to

the preceding one but considering, instead of Eq.(7), the following equality

(Eq.(14.69) of [16] with ¢ = n — 1):
Op...0pOp 4

F L= F 1
/ (0Q)dL; Or...000,1 (16)

T

where F(0Q),) is the (r — 1)—surface area of 0Q N L = 0(Q N L!). O

Remark. For r = n — 2, Theorem 2.1 gives Theorem 1 of [18] and, as a
result of Theorem 2.1, we obtain the following corollary which is equivalent

to Proposition 7 of [18].



Corollary 2.2. Let QQ be a compact domain in M} and L, € L,, we have

(n—r—1)0,...0

M= AL )AL
Opo...0p 1o /ﬁ . x(@Q@N L )AL, .
3 JOr2.- O QNI )AL (17)
OTL—2 e On_r Lr—l X r—1 r—1-

n—

Proof. When r is an even number, Eq.(15) divided by A2

o,
1S

- , 10,
Cr A Moy N s My g+ N T My £ NV = — -
2.do Jg,

X(Qr)dLy; (18)
and the corresponding equation to Eq.(15) divided by \“z" when r is an odd
number is

T T — ]_ O"’
Coa My + A s Mys 4+ AT oMy + AT oF = === [ x(Q,)dL™

2dy J,
(19)

If  is odd, subtracting each part of Eq.(18), with » — r 4 1, minus the
corresponding part of A multiplied by Eq.(18) with » — r — 1 we obtain the
result. If r is even, we proceed in the same way but using Eq.(19) instead of
the Eq.(18). O

Remark. For A =0, Eq.(17) coincides with Eq.(14.79) of [16].

r

3. Rotational integrals and Morse representations for M,

From rotational integral formulae we obtain quantitative properties (as
M,) of differential manifolds in MY, from the intersection of the manifold
with planes (totally geodesic submanifolds) through a fixed point O. In this
context, from Eq.(17), we will find measurement functions «, defined on

L a0 N () with rotational average equal to M, that is,

M, = ar (Lyly50) N Q)AL 510 (20)
L7 4210 Q@70

Theorem 3.1. Let ) C MY be a compact domain with smooth boundary
S = 0Q. The measurement functions «, corresponding to the r—th integral



of mean curvature of S, M,, can be expressed as

Oy 9...0
( (0] " Q) n 2 2 . Onf(;72
{m =100 [ M@ L) ML LR (o)

—Ar0,0 / X(((QN L) N LT[B]z) NLi_q))sy r(P)dL:—ldLT[B]Z

where, in both integrals, p is the distance from O to the planes L'13 r1 and Ly,
respectively; and

A~ 2sin(pV/N), A>0
(o) = p, A=0. (22)
IA|=Y2sinh(py/|A]), A <0
Proof. The idea of the proof consists in generating the planes L, ; and L} |,
which appear in Eq.(17), by taking first an isotropic plane through O and

then an invariant plane within this isotropic plane, weighted by a function
of p; that is, from Corollary 3.1 of [8] we have the identity

ALy, = 32 (p)d Ly ALY o (23)

and also
ALy ALy op) = 83" (p)d Ly ALy o d L), (24)
where dL, 5., denotes the density for (r+2)—planes about a about a r—plane

L7 (see page 202 of [16]).

As justified in [16], p. 309, before Eq. (17.55), from the expressions of the
densities of planes in M} it follows that some density decompositions (such
as [16], Eq. (12.53)) have the same form whatever the sign of A\. Then, from
Eq.(12.53) of [16], Eq.(24), can be expressed as

ALy ALY o) = 53" (p)d Ly 1dL:[J6]2dL?+2 (25)

Finally, substituting Eq.(23) and Eq.(25) in Eq.(17), having in mind that
n On—r—lOn—r—2

/dLT—l-Q[T'] — OlOO ) (26>

we obtain the result. [J

Remark. For A = 0, Eq.(21) coincides, up to a constant factor, with
Eq.(18) of [10].



3.1. Morse representations for M,

In this section a geometric interpretation is given of Eq.(21) in terms of
the critical points of height functions. In particular, and in order to simplify,
we will give a geometric interpretation of the function

5f:/’«QmLMmme+w”T1@mm“. (27)

The density dL"*! may be decomposed as follows,
AL = \(p)dp du,, (28)

where du, denotes the surface area element of the r—dimensional unit sphere
and cy(p) = dips,\(p). Note that p > 0 for the cases A = 0 (Euclidean) and
A < 0 (hyperbolic); however, for the case A > 0 (spherical) p varies from

™

0 (which corresponds to the point O) to iy (which corresponds to the cut

locus of O (i.e., the antipodal point of O).
Therefore, for the cases A = 0 (Euclidean) and A < 0 (hyperbolic), we
may write,

b= [ [T 0 SOMQO L) N I e, (29)

whereas, for the case A > 0 (spherical),

b= [ [T 0 SON@N L) 01, (30

where L' is the r—plane expressed in terms of its distance p from the fixed
point O, perpendicular to the geodesic defined from the direction u, from O,
and X((Q NLY ) N L) = 0 whenever (Q N Ly ) N LI+ = 0.

Since we want to give a geometrical interpretation of 3., based on critical

points of height functions, from now on we will consider that p means signed
distance and we will rewrite (3, as:

4fmr/’ S (|o]) (0) X(QN L)L )dp, A < 0; (31)

/}mh/”nrlnn () X(QNLE ) NEFdp A > 0. (32)
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Let u, denote a unit vector in 8" C TpL” 0] The geodesic v,, : R —
LY g With 7, (0) = O and v/(0) = w, is given by v, (t) = ex(t)O + sa(t)uy,
where ¢, (t) = $s\(t). Given u,, let h,, : L} g — R be the height func-
tion whose level hypersurfaces are just the r—planes L7+ perpendicular to
the geodesic 7,,(t). Note that in the Euclidean case (A = 0) this height
function coincides with the standard height function considered in [19]. We
suppose that the level hypersurface L' is oriented in such a way that the
unit vector v(p), perpendicular to the level set LIt C L” 10 &t p is given

by v(p) = grad(hu, )(p)/|lgrad(hu, ) (p)]]-

Let us denote Q.11 = QN L (0] which is, in general, a domain with
boundary in L7, (see Appendix A of [10]). In Section 5 (Appendix) we
show that in Euclidean and hyperbolic cases; and in the spherical case, if the
domain (@ is contained in the hemisphere of M} with pole O, h,, |qg,., is a
strong Morse function for almost all u, € S™, it means that all of the critical
points in the direction u, from O are non-degenerate, and no two of them lie
on the same level hypersurface (i.e. they have different critical values). In
particular, hy, |o,,, has not critical points in Q,+1. Let p; € Crit(hy, |ag,,,).
1=1,...,m, be the set of critical points, and

p1 < pos<--+<pm, (with i<p1, pmgi for A >0)

2/~ 2v/\

the corresponding critical values (hy, (p;) = p;). To each critical point p; we
assign an index

= X(Qr1 N LI (ps — €)) = x(Qrsa N LI (pi +€)), (33)

where L' (p; 4+ ) denotes the r—plane defined from the direction u, at a
signed distance p; + € from O; and ¢ is small enough to ensure that there
are no critical points of Crit(hy, |ag,,,) whose height function belongs to

(pi —.pite).
For r <n € {1,2,...}, define:

Lo (p) = / mr1(p]) () dp

B sy Hp)eslp)dp,  p >0, (34)
N "”fS”” ()dp, p<0.
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Then, for A =0,

n—r

P > O
Ly, ( nrldp = noo P g

n—r’

For A # 0, and for any given pair (n,r), the integral I,,_,_1,.(p) may be
evaluated explicitly from [13], pages 114 and 159, or with the aid of a math-
ematical software package such as Mathematica®.

Theorem 3.2. Let O be a point in MY and Q C M} a compact domain
which is contained in the hemisphere of MY with pole O when A > 0. Let
Qi1 =0QnN L:}H[O] be the domain with boundary in LfH[O]. Then, forr €

0,1,....n—2},
5r = %/T (Z €k In—r—l,r(pkz)) dur> (36)

k=1

where m represents the number of points Crit(hy, |aq,,,) corresponding to the
direction u,.

Proof. The fact that ),4; will be a domain with boundary in L 1] for
a generic (r + 1)—space L" r+10)> follows from Theorem A.1 of [10], and the
fact that hy,|o,., will in general be a strong Morse function for almost all
u, € S” follows from the appendix, having in mind that (), is contained in
the hemisphere of L 1[0] with pole O.

Then Eq.(31) and Eq.(32) may be written as follows,

By = / du,

Thus,

m—1

/Pk+1 n—r— 1 |p|) ( ) ((QQL:}+1[O])QL:+1)dp, (37>

k=1 Y Pk

m—1 n
1
b= [ dur S (rsspren) = Lirmralp) 3 6
ST

k=1 Jj=k+1

/ (Z €k [nfrfl,r<pk) n r—1,r pl Z@c) dur-
8" \ k=2

k=2

(38)
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m m
Finally, since Z €r = 0, it means Zek = —¢1, and the proposed result is

k=1 k=2
obtained. I

4. Applications

Let Q@ C M} (XA # 0) be a compact domain with smooth boundary S =
0Q); then, from Theorem 2.1 with n = 3 and r = 1, we have

27x(S) — / K@) = 2 [ venipar (39)

where K (z) is the Gauss curvature of S at x, and y denotes Euler charac-
teristic.

Now, from Eq.(23) and the definition of 5; (Eq.(27)), a rotational formula of
the defect of the surface in M?3()\) is gven by

2\
2mx(5) - [ Klahde =22 BQNLigHdLy, (40
S T JonLiy#0
where, using Theorem 3.2,
1 m
BIQN L) = / S 6 I (pr)du. (41)
S2 L3 k=1

Example. Let S be a geodesic sphere of radius p centered at O in M3(\);
then, x(S) =2, and [,,, K(z)dz = 47wc3(p).

On the other hand, SN Lg[o] is a geodesic circle (boundary of a geodesic
ball) in L;’[O]; that is, all the points in S N L%[o} are a distance p apart from
O. Then, for all directions u € S', m = 2, ¢; = 1, &g = =1, I11(p1) =
Lia(p) = §53(p) and L11(ps) = Lia(=p) = —383(p), Bi(S N L) = 7s3(p);
and Eq.(40) is satisfied.

If we consider a domain @ in R* (A = 0), Corollary 2.2, with r = 1 and

n = 3, coincides with Eq.(12) of [6], Theorem 2.1 coincides with Eq.(12) of
6], and, since

2x(Q2 N L) = N(0Q2 N L7), (42)
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where N denotes number, Theorem 3.2 coincides with the integrand of Eq.(50)
in [6]; but now, for each axial direction u € [0, 27) in the pivotal plane Lg[o]’
the pivotal section is scanned entirely from top to bottom by a sweeping
straight line parallel to the axis Ou, in search of critical points.

5. Appendix

Let X be a smooth manifold with boundary. We say that a smooth
function f : X — R is a strong Morse function if

1. all critical points of f : X — R are non-degenerate and are contained
in the interior of X,

2. all critical points of the restriction f : 90X — R are also non-degenerate,

3. if z,y € X are distinct critical points of either f: X — Ror f:0X —

R, then f(z) # f(y)-

5.1. Preliminary results for the Euclidean case (A =0)

Assume now that X C R” is a submanifold with boundary and for each
unit vector v € S !, let us denote by h, : X — R the height function defined
as h,(x) = (x,v).

Theorem 5.1. Let X C R" be a compact submanifold with boundary. For
almost any v € S" 1, h, : X — R is a strong Morse function.

Proof. We consider S = X or § = 0X which are compact spaces in R".
From Theorem 3 of [14], since (1, p) is in the nice range for all p = dim(S),
the linear map h, : S — R given by hq(x) = ), a;z; is stable for almost any
a € R\ {0}.

Let W C R™\ {0} be the set of points a such that h, : S — R is not
stable. Since W is a null set in R™ \ {0}, p(W) is a null set in S"~!, where
p: R"\ {0} — S"! is the normalization map. Then, for any v € S"~ !\ p(IW),
h, : S — R is stable.

In the case of functions, it is well known that stability is equivalent to
that all critical points are non-degenerate with distinct critical values (see
[4]). Therefore h, : X — R and h, : 0X — R are Morse functions with
distinct critical values for almost any v € S*~!. Since h, : X — R has not
critical points, critical values of h, : 9X — R cannot coincide with critical
values of h, : X — R. Then, h, : X — R is a strong Morse function for
almost any v € S"~ 1. O

11



Corollary 5.2. Let () C R" be a compact domain with boundary. For almost
any v € S"1, h, : Q — R is a strong Morse function.

5.2. General case MY (A #0)

Lemma 5.3. Let X C MY be a submanifold and let ¢ : I — R be a diffeo-
morphism, where I is an open interval in R. If f : X — I is a strong Morse
function, then g :=1 o f is a strong Morse function.

Proof. Since 1) is a diffeomorphism and f is a strong Morse function, it is
deduced that g is also a strong Morse function. Note that the critical points
of f coincide with the critical points of ¢g. [J

Let @ C My be a compact domain with boundary, O € M} and v denote
a unit vector in S"! C TpQ. The geodesic v, : I C R — @ is given by
Yo = cA(t)O + sx(t)v, where I =| — T %[ for A\ >0 and I =R for A <0.

Then, given v, let h, : ) C M — R be the height function in M}, whose
level hypersurfaces are perpendicular to the geodesic 7,.

Theorem 5.4. Let () C MY be a compact domain with boundary which, for
A > 0, it is contained in the hemisphere of MY with pole O. Then, for almost
any v € S*1, h, : Q — R is a strong Morse function.

Proof. 1t is useful to consider the embedding of the space form MY into
(R™L, (-, -)5) as follows:

Ty = 1, A= O,
g+ai+. 4al=1, A>0, (43)
—x%—l—xf—k...%—x%:%, 9 >0, A<O0,

where (zg,1,...,2,) denote the coordinates of a point in R*™! and (-, -)y

is the appropriate metric to the embedding, which depends on the sign of .
Using this embedding, @ C M} C R™™! can be considered as a compact

submanifold with boundary in R"*!. Then, the height function of R**! with
respect to the direction v, restricted to @ is:

12



B Q—R (44)
r— <JI, U)A

From Theorem 5.1, h]ff,’j\ﬂ is a strong Morse function for almost any
v € S"~!. Moreover, we note hlff\“(Q) c I

Since (v, 0), = 0, we have that,

R () = (rulp), ) = (45)

() \1/2 sin(p\/X), >0,
S —
MW A2 sinh(o /), A <0,

Eq.(45) gives a relation between the height function h,(v,(p)) = p of @
in M} and the height function A%\ of @ in R™*!'. That is,

ho(2) = B(HF (2)) = {% arcsin(VAREY (2)), A0,
v = v, — )

46
Faresinh(v—A hE (@), A <o (46)

Finally, since () is contained in the hemisphere of M} with pole O for
A > 0, we have that v is a diffeomorphism from 7 to R when [ =| — %, %[
for A > 0 and when I = R for A < 0; therefore from Lemma 5.3 we obtain
the result. [J
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