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Image acquisition technology is improving very fast from a performance point of view.
However, there are physical restrictions that can only be solved using software pro-
cessing strategies. This is particularly true in the case of super resolution methodolo-
gies. Super-resolution techniques have found a fertile application field in airborne and
space optical acquisition platforms. Single-frame super resolution methods may be
advantageous for some remote sensing platforms and acquisition time conditions. The
contributions of this paper are basically two: (1) to present an overview of single-frame
super resolution methods, making a comparative analysis of their performance in dif-
ferent and challenging remote sensing scenarios, and (2) to propose a new single-frame
super-resolution taxonomy, and a common validation strategy. Finally, we should em-
phasize that, on the one hand, this is the first time, to the best of our knowledge, that
such a review and analysis of single super resolution methods is made in the framework
of remote sensing, and, on the other hand, that the new single-frame super-resolution
taxonomy is aimed at shedding some light when classifying some types of single-frame
super-resolution methods.
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1. Introduction

From early years, improving image resolution has been one of the important con-
cerns of the computer vision and remote sensing research communities in order
to deal with acquisition technology limitations. Despite the fact that image sen-
sors are constantly upgraded, there are several physical constraints which can be
only addressed by signal and image processing algorithms. Decreasing the physical
pixel size beyond a specific limit reduces the incoming light and generates more
diffraction effects in the sensor what eventually reduces the final image quality. Fur-
thermore, hardware costs are usually important constraints in many applications
because acquisition technology cost and complexity depends on sensor resolution.
Therefore, algorithmic-based approaches are sometimes more suitable because they
allow improving the image resolution beyond the sensor limits whatsoever.
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1.1. Super-Resolution in Remote Sensing

The general concept of Super-Resolution (SR) refers to those algorithms aimed at
increasing the image resolution, that is, increasing the number of pixels but provid-
ing fine details in the resulting image as if a sensor with a higher nominal resolution
would have been used. The increasing demand of aerial and satellite imagery appli-
cations motivates the development of new data products in order to cope with the
new challenges that are constantly appearing nowadays (Bioucas-Dias et al.|2013;
Li et al.[2015bja). Specifically, many of the most important commercial satellites
are currently working on providing new super-resolved products of data level-2, i.e.
images beyond the sensor limit resolution including all the level-0 pre-processing
as well as the radiometric and geometric corrections involved in level-1 data pro-
cessing.

Depending on the number of input images, two kinds of SR schemes can be
distinguished: single-frame and multi-frame. In the former type, only a single image
of the objective scene is used to obtain the super-resolved output. In the latter type,
several images of the same scene acquired at different positions are used to generate
the higher resolution result.

Multi-frame super-resolution methods have been widely applied in hyper-spectral
remote sensing, without or in combination with the multi-angular acquisition ca-
pability some of these sensors have (Bioucas-Dias et al.|2013; |Simoes et al. 2015).
For years, the data redundancy inherent in multiple images has caught the research
community attention to enhance aerial imagery. However, there are many applica-
tions where the existence of multiple images of the same scene is not possible or
difficult to obtain. There are two main situations in remote sensing where single-
frame super resolution methods can be advantageous in relation to the multi-frame
SR counterpart:

e In remote sensing airborne missions that use small platforms with low resolu-
tion cheap sensors, and where an on-board image processing may also be an
attractive possibility. These low resolution sensors usually have a low spatial
resolution capability associated to them.

e When super resolution is applied to satellites that have a long revisit time
(for a particular application). The revisit time is the time that a satellite
takes to make two consecutive observations of the same point on earth. Ac-
cording to the Committee of Earth Observations Satellites (CEOS) webpage
(http://database.eohandbook.com/database/missiontable.aspx), 49 out of the
140 satellites listed in that database has a revisit period of 7 days or less. A
revisit time of one week or more may be too long for some biophysical pro-
cesses in agriculture, for instance, during the peak growth period (Moreno
2004).

For these reasons, several works in the literature (Loncan et al.|2015; |(Chavez-
Roman and V.[2014; Demirel and G.2011) advocate the use of single-frame super-
resolution in remote sensing.

1.2. Limaitations in the current literature

We can find several papers in the literature that provide a good overview of the
existing SR algorithms, however few ones are specially aimed at remote sensing
and most of them only consider a rather limited number of methods. For instance,
a good up-to-date overview is presented in (Nasrollahi and B./2014) where most
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of the papers published on the SR topic up to 2012 are reviewed. Even though
the high quality of the work, the lack of an experimental part together with the
generality of the application domain makes it difficult to draw practical conclusions
in the remote sensing field. Other quality works, like (Yang, Ma, and Yang||2014),
provide a comprehensive experimental part but the description and categorisation
of methods sound unsatisfactory. Besides, experiments are conducted using only
standard test images what makes it difficult to extrapolate conclusions to remote
sensing. Other papers, like (Suganya, Mohanapriya, and Vanitha/2013} [Zhang et al.
2014; [Ramji, Punniakodi, and Praveen![2013)), are only focused on super-resolving
aerial imaging, however they show some shortcomings especially when it comes
to single-frame SR. In all these works, the number of tested methods and the
image diversity is rather reduced and often constrained just to multi-frame super-
resolution.

In a sense, the lack of aerial imagery benchmarking and standardized imple-
mentations of SR algorithms make it difficult to draw practical conclusions for
remote sensing. Some important questions like, what are the state-of-the-art SR
techniques? or, what are the practical differences among methods? remain still un-
clear in remote sensing. On the one hand, single-frame SR surveys tackle the SR
problem considering a general application despite the fact that the SR performance
highly depends on each specific field. On the other hand, remote sensing works tend
to neglect single-frame SR methodologies even though these techniques are highly
useful in remote sensing (Bioucas-Dias et al.|2013; [Yang et al.|2015)).

The evaluation criteria is another discussion point in SR (Reibman, Bell, and
Gray[2006). There is not an universal criteria to assess the quality of the resulting
images and this makes comparison among algorithms difficult. Some works use
an experimental validation protocol based on ground-reference images and others
include non-reference metrics. This variation of protocols and metrics makes the
cross-comparison among SR methods cumbersome, especially in the remote sensing
field where both spatial and spectral information are important.

1.3. Work Objectives and Paper Structure

Given the above described scenario about, the present work has the following aims:
(i) to study the rationale behind many of the state-of-the-art single-frame SR
techniques, (ii) to present a clear taxonomy to simplify the categorisation and
validation of single-frame SR methods, (iii) to conduct a comprehensive comparison
of single-frame SR techniques in remote sensing and (iv) to provide access to a
set of algorithms to the research community in order to make benchmarking and
evaluation easier in the future. In a sense, this paper pretends to shed light on the
single-frame SR research specially applied to remote sensing field.

The rest of the paper is organized as follows. Section [2] presents the background of
the work by introducing the concept of SR in remote sensing. Section [3| describes
the taxonomy used to classify all the considered methods. Section [4] defines the
validation protocol proposed to perform the quality assessment. Section [5] shows
and discusses the obtained SR results. Finally, Section[6]draws the main conclusions
arisen from the work.
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2. Image Super-Resolution to Remote Sensing

2.1. Imaging Model

In general, the image acquisition process can be understood as a sequential set of
degradations in which the continuous scene signal is converted by the sensor to
a discrete output image. In the context of single-frame SR, the imaging model is
typically defined as the concatenation of three operators: (i) Blurring (B), which
represents the blurring factor introduced by the optical system, i.e. a low pass
filter over the continuous scene, (ii) Decimation (D), that sub-samples the blurred
continuous space according to the resolution of the sensor, i.e. down-sampling the
high resolution scene, and (iii) Noise (N), which introduces a final perturbation to
the output image.

Equation ([1)) shows the imaging model considering the aforementioned operators.
The starting point is the High-Resolution (HR) image Igg corresponding to the
continuous scene. Note that the term continuous scene conveys the image at the
highest possible resolution. Then, Iy is affected by all the operators in an orderly
way to generate the final observed Low-Resolution (LR) image Irg.

Lr= D (B )+ LM (1)
decimation blurring noise

In the field of remote sensing, the blur operator is specified in the technical
description of the instrument as the Point Spread Function (PSF). This function
can be seen as a blurring mask which describes how a point of the HR domain is
blurred in the LR space during the acquisition process. The theoretical form of the
blur, corresponding to a diffraction-limited system, is given by a Bessel function.
However, due to some effects like lens aberration or atmospheric turbulence, the
blur is often adequately represented by a Gaussian distribution. In other words, it is
broadly accepted to approximate the PSF by a Gaussian function whose parameters
(1, 0) depend on the acquisition instrument characteristics. Another important
parameter appearing in the sensor technical specifications is the noise level and
type. In this case, it is common to consider an additive white Gaussian noise what
eventually makes that both PSF and noise are usually approximated by Gaussian
functions.

2.2. Super-Resolution as an inverse problem

The objective of SR consists in inverting the degradation process generated by the
imaging model in order to obtain a super-resolved high resolution output image
(Isg) from its corresponding low resolution image (Irr). This inverse problem has
an ill-posed nature because different HR images might obtain the same LR image
over a specific imaging model.

2.3. Super-Resolution vs. Interpolation

It is noteworthy that some authors refer to interpolation algorithms as SR even
though there are differences between both concepts. Let us clarify this point in these
lines. Interpolation methods project the initial LR image onto an HR grid and the
missing pixel values are estimated using an interpolation function. Although some
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of these functions effectively reduce the aliasing effect caused by the decimation
operator of the imaging model, they are not able to recover high-frequency details
unlike SR, methods.

2.4. Super-Resolution vs. Pansharpening

As it has been commented before, SR surveys hardly ever aim at remote sensing
imagery but at global applications. However, other remote sensing related topics
have been widely addressed in the literature and they can help us to adapt the
SR approach to remote sensing. This is the case of Pansharpening techniques. In
a nutshell, Pansharpening is a fusion problem in which a high spatial resolution
Panchromatic image (PAN) is combined with a lower spatial resolution Multi-
Spectral image (MS) in order to obtain a final result which integrates the spatial
resolution of PAN and the spectral resolution of MS. Although both Pansharpening
and SR have features in common, it is important to highlight their differences.
The Pansharpening objective lies on reconstructing just the spectral information
of the PAN image because all spatial details are available. Nonetheless, SR is a
more general problem in which both spatial and spectral information have to be
estimated from the LR image.

2.5. Super-Resolution of Multi-Spectral images

The standard SR algorithms are oriented to super-resolving gray scale images, that
is, they are focused on enhancing LR images with a single band. In the case of RGB
images, the typical super-resolving procedure is based on the transformation into
the uniform color space YCy,C,, where Y represents the luminance component, Cy,
the blue-difference chroma component and C, the red-difference chroma compo-
nent. Figure [I| shows the YCy,C, decomposition of an example RGB image. Input
multi-spectral images are initially converted to the YCy,C, color space. Then, the
luminance channel Y is super-resolved and both Cp and C, bands are interpo-
lated to the target resolution. Finally, the inverse YCy,C,; transformation is used
to generate the final super-resolved output.

Figure 1.: From left to right: RGB image, Y (luminance), Cy, (blue-difference) and
C, (red-difference) channels.

Satellites of general purpose like Geoeye-1 or IKONOS usually provide two kinds
of images: (i) PAN, a wide spectral bandwidth filtered monochromatic and high
resolution image and (ii) MS, a lower resolution multi-spectral image. The final
user has to decide whether to super-resolve the PAN image, the MS image or both.
In the case of super-resolving the PAN image, SR methods can be directly used
because PAN images are made up of a single-band. In the case of MS images, the
SR algorithms have to be applied to the luminance component once a false color
RGB has been created.
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3. A Simplified Taxonomy of Single-Frame Super-Resolution
Algorithms

There are different survey papers in the literature (Suganya, Mohanapriya, and
Vanitha| 2013; Nasrollahi and B. |2014; Yang, Ma, and Yang|[2014)) that classify
single-frame super-resolution methods according to multiple criteria. For instance,
the classification criteria may depend on the domain where the SR is performed
(e.g. frequency domain or spatial domain), the theoretical tools used to cope with
the SR problem (e.g. Gradient Profiles, Neighbourhood Embeddings, Neural Net-
works, Bayesian Mixture Models, etc.) or even on the knowledge of the process
parameters (e.g. blind or non-blind SR). However, many SR methods gather fea-
tures of several of those groups which eventually makes the definition of a particular
algorithm in terms of current taxonomies difficult to be proposed.

In this paper, we propose a relaxed taxonomy based on the functional properties
of SR methods inspired by the taxonomy usually applied in Pansharpening (Vivone
et al|2015). Therefore, instead of using a main division of methods based on
particular features about how they implement their solutions, we would rather
consider the functional definition of the rationale behind the algorithms considered
in this research. The following sections describe the three considered SR groups
in detail: (i) reconstruction-based methods, (ii) learning based methods and (iii)
hybrid methods.

3.1. Super-Resolution based on Image Reconstruction

The SR methods based on image REconstruction (RE) pursue to reproduce features
appearing in the LR image to a higher resolution level. In other words, they are
aimed at obtaining a final super-resolved image with the same perceptual properties
of the LR image but in a higher scale. Somehow, RE methods try to replicate the
quality of the LR domain after an initial interpolation in order to avoid the blurring
and aliasing effects caused by interpolation algorithms.

Figure [2| shows the general scheme related to RE methods. Specifically, this sort
of methods are made up of three main steps. In the first one (stage 1), the LR image
(ILr) is upscaled to the target resolution using a regular interpolation algorithm,
such us bicubic or lanczos interpolation. The second stage is based on extracting
certain physical properties from Ipg to figure out the quality of the details in the
LR domain. Finally, in the third step (stage 3) both the interpolated image Ir g1
and the extracted LR properties are aggregated to obtain the final super-resolved
result (Isg).

Stage 2

Feature extraction Stage 3

l Reconstruction

Stage 1

Interpolation
I Iiw — Isp

Figure 2.: Super-Resolution based on image reconstruction.

These methods upscale the LR image by a regular interpolation and then they
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do image reconstruction to provide the same level of details we can observe in
the input image. All the existing RE algorithms can be described in terms of the
three aforementioned stages, however each particular method proposes the use of a
particular set of tools to reconstruct the result. Specifically, we can highlight three
kinds of techniques as some of the most relevant ones inside the RE category:
(i) Iterative Back Projection, (ii) PSF Deconvolution and (iii) Gradient Profile.
The followings sections present a description of those techniques according to the
scheme proposed in Fig.

3.1.1.  Iterative Back Projection

The Iterative Back Projection (IBP) technique was first introduced in (Irani and
S.[[1991)) as a general multi-frame super-resolution algorithm being extended to the
single-frame approach afterwards becoming one of the most popular SR methods in
the literature. The idea behind single-image IBP (we just focus on the single-image
approach due to the scope of the work) is based on iteratively refining an initial
guess of the super-resolved image. Throughout this iterative process, the recon-
struction error between the LR image and the low-resolution version of the super-
resolved image is minimised in order to obtain the final result. Eq. provides
the reconstruction error at a specific iteration (&,) given the initial low-resolution

image (ILgr) and the super-resolved result of the previous iteration (I(STIL{I)).

& =Tig — DB M) (2)

where D and B are the decimation and blurring operators, respectively, as in Eq.
(). Three stages define the method: (i) initialisation, (i) down-sampling and (iii)
back-projection. In the initialisation stage (i), the super-resolved image is initialised
with an interpolated version of the low-resolution input. After that, stages (ii)
and (iii) are alternatively applied until a convergence condition is reached (e.g.
a maximum number of iterations or a threshold in the reconstruction error). In
the down-sampling stage (ii), the previous estimation of the super-resolved image
Igﬁ;l) is blurred (B) and decimated (D) according to the corresponding imaging
model to assess the reconstruction error &, using Eq. . In the back-projection

stage (iil), the current estimation of the super-resolved image I(SQ is obtained by
projecting the reconstruction error to the previous estimation Ién_l). Depending
on the desired properties on the resulting image, a back-projection kernel can be

applied over the projected error &, to obtain smoother or sharper images.

3.1.2. PSF Deconvolution

The super-resolution methods based on the PSF deconvolution tackle the upscaling
problem from a deblurring point of view. As it was introduced in Section [2| the
imaging model introduce a blurring effect in the acquisition process caused by
the operator B. Specifically, this operator can be seen as the convolution of the
sensor PSF with the HR scene. Using this approach, the super-resolution problem
becomes one of undoing the blurring kernel effect.

It is theoretically possible to deconvolve a blurred image if we have access to
the exact blurring kernel. However, the inherent noise that appears during any
acquisition process together with the lack of information about the kernel, hinder
that task. The instrument PSF may be unavailable or even it may not be completely
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precise making the recovery of the exact solution impossible to be made.

Super-resolution methods based on PSF deconvolution can be defined as the
concatenation of three phases: (i) interpolation, (ii) PSF estimation and (iii) de-
convolution. The objective of the first stage (i) is to interpolate the input image to
the same resolution as that of the output result. In the second stage (ii), the PSF
is estimated from the input image Iy g in order to infer the imaging model blurring
mask. Note that this phase can be omitted depending on the availability of the
PSF. Finally, the third stage is in charge of removing the interpolated image blur
according to the PSF in order to obtain the final super-resolved output Igg.

The deconvolution process is usually modelled by the following equation,

I* = I« (PSF) + NV (3)

where I* and I represent the convolved and deconvolved images respectively, *
is the convolution operator, (PSF) represents the point spread function and N
the additive noise. This deblurring problem has the same ill-posed nature as the
SR problem. Therefore, many of the techniques used in SR are suitable to tackle
the deconvolution problem as well. Non-blind approaches assume a specific model
for the PSF, such us a normal distribution or a low-pass filter in the frequency
domain, however blind approaches (Michaeli and M./2013)) are able to estimate the
PSF from the convolved image by assuming some prior knowledge.

3.1.8.  Gradient Profile

Gradient Profile (GP) SR methods take advantage of the fact that the gradient
profile shape tends to be invariant across scales. Briefly speaking, GP describes a 1-
D profile containing the gradient magnitude for each edge pixel along the gradient
direction. Specifically, the general SR algorithm based on GP can be divided into
three steps: (i) interpolation, (ii) GP extraction and (iii) reconstruction using a GP
prior. In the first step (i), a regular interpolation algorithm is used to upscale the
LR input image Iy r. The second step (ii) is in charge of calculating the GP of the
low-resolution image (VILr) as well as the interpolated image (VIpg1) in order to
obtain their sharpness. In the last step (iii), the GP of I gy is transformed according
to the sharpness of VILr and this transformed GP (VIj ;) is used to reconstruct
the super-resolved image. Eq. shows the expression used to minimise the energy
in both image domain (E;) and gradient domain (E,) with a control parameter £.

E(Isr|ILr, VI R1) = Ei(IsrILr) + BE(VIsR|VI{R1) (4)

3.2. Super-Resolution based on Image Learning

Super-resolution based on image LEarning (LE) is probably one the most relevant
research directions within the super-resolution field nowadays. The idea behind LE
methods is to learn the potential relationships between low-resolution and high-
resolution domains from an external training set and then to generate the final
super-resolved image using this a priori knowledge.

Figure |3| shows the three stages the general LE scheme can be divided into.
The first stage (learning) is aimed at learning the low-resolution to high-resolution
pair relationships from a specific training set. In the second stage (estimation),
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the LR input image is used to estimate those HR components that are related to
the low-resolution elements appearing in Iy r. Eventually, the third stage (image
generation) combines the estimated HR components of the input image to generate
the final super-resolved image. For the sake of clarity, we use the term generation
for LE methods and the term reconstruction for RE methods.

Stage 2 Estimation Stage 3
l Image generation

Stage 1 Learning

lig-TRA & lir-TRA ‘:> HR < LR ILR ] |j‘> ISR

Figure 3.: Super-Resolution based on image learning.

The learnt relationships between HR and LR training details set the quality of
the super-resolved images. Therefore, training data needs to be relevant enough
to learn useful structures for the kind of input LR image (IpLg). Authors usually
refer to the structure containing the relationship between low-resolution and high-
resolution information as dictionary although it does not necessarily have to be
implemented using an associative array. Somehow, it has to relate low-resolution
and high-resolution components using a specific image characterisation. The most
standard characterisation approach is the patch-based representation where pairs
of HR/LR training images are cropped in order to learn functions to link them.

Each LE method uses its own strategies to learn the dictionary as well as to
generate the final super-resolved output. Among the most popular techniques, the
following three kinds of learning methods can be considered: (i) sparse coding, (ii)
neighbourhood embedding and (iii) mapping.

3.2.1. Sparse Coding

Sparse Coding (SC) is a powerful image modelling technique which has been suc-
cessfully used in several image restoration applications, being SR one of the most
active domains. This kind of methods take advantage of the fact that natural
images tend to be intrinsically sparse when they are characterised as a linear com-
bination of small patches. In this way, SC algorithms pursue to obtain the sparse
representation corresponding to the low-resolution input image and to generate
the high-resolution output by means of the replacement of LR patches by their
corresponding HR counterparts. In SC algorithms, we can highlight the following
steps: (i) dictionary training, (ii) LR sparse code computation and (iii) SR output
generation.

The first step is based on learning dictionaries for high-resolution (Dy) and low-
resolution (D)) image patches. These dictionaries are learnt by forcing the high-
resolution training images (Iggrra) and their low-resolution counterparts (Ipgrra)
to share the same sparse codes. Equation shows the formulation to train both
dictionaries Dy, and D.

. 1 1 1 1
arng’n]%)nz EHIHRTRA — Dy ZH2 + 7HILRTRA — D ZHQ + A (h + l) HZ||1 (5)
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In Eq. , z represents the sparse codes shared by both dictionaries, h and [
are the dimensions of high-resolution and low-resolution patches respectively and A
represents the Lagrange multiplier to balance the sparsity of the solution. Note that
in the training step the sparse codes z are not useful by themselves because they are
only used to obtain the dictionaries. The first two terms in Eq. correspond to
the optimisation fitting part and the last term acts as a regulariser. Regarding the
norms appearing in Eq. , the #2-norm is typically used for the fitting terms and
the ¢!-norm, for the regularisation term but other norms may be used depending
on the particular SC method.

The second step in SC algorithms is related to the computation of the low-
resolution input image sparse codes. The solution of Eq. @ is the a coefficients
from the trained dictionaries Dy, and D;.

angmin |5 &= |5l + Al (

In this expression, I’ represents the feature extraction operator typically imple-
mented by a high-pass filter, P is in charge of extracting the overlapping area
between the target patch and the previously reconstructed image, 5 controls de
compatibility of neighbouring patches and the fidelity to the initial low resolution
image and w contains the values of the previously reconstructed high-resolution
image on the corresponding overlapping area.

Finally, the high-resolution output is generated in the third step by using the
sparse codes of the input low-resolution image over the high-resolution dictionary
Dy. Eq. shows the expression to obtain this result.

ISR = Dh (8 (7)

Even though these three steps are the standard process of SC algorithms, an
extra post-processing stage is usually applied to enforce a global reconstruction
constraint. Due to the ill-posed nature of the problem, the generated solution Igy
is an approximation of the real high-resolution image Ipr. Therefore, the deci-
mated version of the solution may differ from the LR input image. Eq. allows
eliminating this discrepancy by projecting the input image Ir,g onto the solution
space.

Isg = arg I{lin ||D B Isg — ILrll2 + c|[Isr — Isgr, |2 (8)
SR

D and B are the decimating and blurring operators respectively, Isr, represents
the initial guess of the solution provided by Eq. and Igy is the final output
solution after the optimisation process which can be performed using a gradient
descent approach. In a sense, the main aim of this global optimisation is to balance
the fitting of the solution with the initial LR image and the solution with the initial
high-resolution estimation by a factor c.

10
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3.2.2.  Neighbourhood Embedding

Neighbourhood Embedding (NE) methods are inspired by recent manifold learn-
ing approaches which makes them also known as manifold-based methods. NE
techniques assume that small image patches from low-resolution images and their
high-resolution counterparts form low-dimensional non-linear manifolds with sim-
ilar local geometries. This means that as long as enough samples are available,
patches in the HR feature domain can be reconstructed as a weighted average
of local neighbours using the same weights as in the LR feature domain. As in
the case of any learning-based super-resolution algorithm, NE approaches can be
described in terms of three stages: (i) manifold learning, (ii) LR neighbourhood
reconstruction and (iii) SR output generation.

In the first step (manifold learning), both HR and LR manifolds are generated
from a specific training set by means of minimising their corresponding recon-
struction errors. Initially, a neighbourhood is found for each patch and then the
reconstruction weights are computed using its own neighbourhood. The Euclidean
distance is typically used to define the neighbourhood, however any other distance
function may be used. Eq. @ shows the reconstruction error for a patch p;,

E=1pi— Y =i pll (9)

p;EN;

where Nj represents the p; patch neighbourhood, p; is an element of this neigh-
bourhood and z; ; is the array of reconstruction weights. The following constraints:
> x;j =1and «; j = 0 for any p; ¢ N; apply to x; ;.

The second step (LR neighbourhood reconstruction) is based on using the same
idea but just on the LR input image. That is, this step is aimed at finding the LR
input image reconstruction weights in order to represent each of its patches as a
combination of neighbours in the LR manifold by minimising Eq. @

Finally, the high resolution embedding is computed in the third step (SR output
generation) using the low-resolution reconstruction weights over the high-resolution
patches, preserving the local geometry of the reconstruction weights. In other
words, the reconstruction weights x; ; of the LR input image are used to seek
patches h; in the HR manifold. Eq. @D shows the expression to achieve that goal.

hi = Z L j hj (10)

hj eN;

3.2.3. Mapping

Mapping (MP) based methods (also known as regression-based methods) consider
super-resolution as a regression problem between high-resolution and low-resolution
spaces. The underlying idea is to learn a mapping function from the input low-
resolution images to the target high-resolution images based on a specific training
set. Then, this learnt function can be used to generate the final super-resolved result
from the low-resolution input image. In particular, MP methods are made up by
three steps: (i) mapping function training, (ii) projecting the LR input image I
into the HR space and (iii) generating the final SR output.

In the literature, we can find all kind of techniques to perform the aforementioned
regression. Bayesian networks, kernel-based methods or even neural networks are

11



December 22, 2016 International Journal of Remote Sensing IJRS-SR-
FernandezBeltranLatorreCarmonaPla-Final-NoBlack-22-12-2016

some of the approaches which have been widely used to estimate the projection
between LR and HR images. Even though many of these approaches use different
theoretical tools to achieve this goal, the bottom line in the way the super-resolution
process is performed is mainly the same. Because of that, we have decided to include
all these methods in the same group despite the fact that other works may present
a different classification. Let us review in this Section some of the most important
mapping functions.

One of the first SR estimators appearing in the literature was the Nearest-
Neighbour (NN) function which works as follows. In the training stage, pairs of LR
and HR patches are collected. The input low-resolution image patches are compared
against the stored collection in order to select the corresponding high-resolution
version of the nearest ones. Finally, the super-resolved output is generated guar-
anteeing a certain spatial compatibility over the chosen HR patches.

Note the differences between a neighbourhood embedding approach (Section
and a SR method based on a NN mapping function. In the first case, there is
a reconstruction process of input low-resolution patches using a specific neighbour-
hood and then these reconstruction codes are used in the high-resolution domain to
generate the final super-resolved image. However, a NN-based mapping approach
does not have this reconstruction. The rationale behind MP methods lies on hav-
ing a function to directly connect low-resolution to high-resolution patches, and
this function may be based on an NN approach. Depending on the embedding re-
construction process, it is possible to obtain the same result obtained by an NN
mapping function but both approaches start from different assumptions.

Although NN-based methods are able to provide a reasonable good performance,
these estimators tend to suffer from over-fitting in SR due to the inherent prob-
lem complexity. In general, one of the most effective ways to avoid over-fitting in
machine learning is by regularisation. In a sense, regularising the estimator allow
us to discard those solutions which are not general enough to generate a suitable
output.

(Kim and Y.|2010) present a SR framework based on learning a mapping function
via Kernel Ridge Regression (KRR) which uses the £2-norm in both the fitting and
the regularisation terms. Despite the effectiveness of this approach, KRR is one of
the simplest mapping functions and more complex schemes have been developed
(He and W.-C./[2011)).

More recent works, such us (Yang and M.-H.[2013; [He and W.-C./2011)) train
several simple mapping functions instead of using a single complex one. Eventually,
SR is performed by applying the function associated to its closest cluster to each
patch. Other works use a different kind of non-linear mapping. For instance, (Dong
et al. 2015 Liu et al.2016) use deep convolutional neural networks as mapping
functions.

3.3. Hybrid Super-Resolution

Hybrid (HY) SR algorithms have features from both RE and LE methods in order
to address some of their shortcomings. In the case of RE methods, the unavoidable
blur generated by the initial interpolation together with the lack of important
high-frequency details in the low-resolution input image limits their effectiveness
to small magnification factors (Baker and T.[[2002)). In the case of LE methods, the
constraint is generated by the availability of a suitable training set. Even though
image learning-based methods may be able to learn spatial details impossible to
recover by a reconstruction approach, LE methods usually require a significant
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amount of relevant high-resolution images and this last requirement is not always
possible. Hybrid methods try to reach an agreement between avoiding the use of
external HR training images and performing a training process to learn LR/HR
relations.

All hybrid SR methods somehow exploit the redundancy property pervading nat-
ural images. This property refers to the fact that natural high-resolution images
tend to contain repetitive structures within the same scale and over different scales
as well. In general, HY algorithms can be summarised in the following three stages:
(i) patch redundancy search, (ii) HR patch extraction and (iii) SR output genera-
tion. The first step (patch redundancy search) is aimed at both generating several
lower scale images and extracting those patches which tend to appear across scales.
Each particular HY approach defines its own assumptions about the imaging model
to generate the lower scale images and about the criteria to seek repetitive patches
(Glasner, S., and M.|2009; Freedman and R./[2011)).

4. Super-resolution quality assessment

The effectiveness of super-resolution algorithms relies on the quality of the super-
resolved output images. Nevertheless, how to quantify the super-resolution result
remains an open issue. It was widely accepted in the past that the best way to
evaluate image quality was by the user’s opinion. However, this kind of evaluation
may be biased, slow and expensive, being often impractical in remote sensing.
Besides, many applications are not user-aimed, i.e. images are not used by users
but by programs in order to perform a specific task, for instance soil classification
from remote sensing imagery. As a result, over the past decades an important effort
has been made to develop automatic tools to perform such evaluation. Even though
there are several image quality metrics available in the literature, each one tends to
focus on a particular kind of visual features and therefore some metrics may become
more useful than others depending on the final application of the super-resolved
images.

In general, two kinds of quality metrics can be considered: (i) reference-based
metrics and (ii) no-reference-based metrics. The former group uses ground-reference
images to compare the super-resolved output against its true high-resolution image
SR algorithms aim at recovering. On the other hand, the latter group is able to
assess the super-resolved images without the use of any reference image. In the
following sections, we are going to review some of the most popular metrics of
both groups.

4.1. Image quality metrics with reference

Image quality metrics with reference compare the properties of a given image I
with respect to its distortion-free version R by measuring the deviation between
both images. In particular, the computation of these deviations can be focused
on two different aspects, namely spatial and spectral distortions. Whereas spatial
measures are more concerned about the similarity between geometric structures of
both images, the spectral indezxes try to detect radiometric differences.

One of the most well-known spectral indexes is the Spectral Angle Mapper (SAM)
(Yuhas, H., and W.||[1992)), which is widely used in pan-sharpening spectral assess-
ment (Vivone et al. 2015)). Specifically, SAM considers each spectral band as a
coordinate axis and then it computes the average angle between the pixels of I and

13



December 22, 2016 International Journal of Remote Sensing IJRS-SR-
FernandezBeltranLatorreCarmonaPla-Final-NoBlack-22-12-2016

R images. Eq. shows the expression defining this index.

i R

R € [0,m7] (11)

SAM(LLR) = arccos =
N Z HIzH |

where NN is the total number of pixels in each image. Note that the ideal value of
SAM is 0. Other indexes account for the spectral and spatial distortion simultane-
ous measurement. A classical error measure which has been widely used in image
quality assessment is the Root Mean Square Error (RMSE), defined as follows,

1 KN '
RMSE(I,R) = ﬂZZ(If—Rg)z e [0,00) (12)

where the index j is used to identify each one of the K image bands. However, the
main drawback of this index is based on the fact that it is very sensitive to outlier
values and other measures are usually preferred. Another widely used index is the
Peak Signal-to-Noise Ratio (PNSR) which is computed according to Eq. .

255

].DSI\I].{(I7 R) =20 loglo m

€ (0,00) (13)

A higher PSNR value represents a better image quality and its domain is all
positive real numbers greater than 0. Even though PSNR seems to be the standard
index in general purpose SR, it does not take into account the scaling factor to
evaluate the super-resolved image. However, other measures defined within the
Pansharpening context try to take advantage of this information. This is the case
of the Erreur Relative Globale Adimensionnelle de Synthese (ERGAS) measure
(Veganzones et al|2016)), defined in Eq. (14).

K . .
1 1 MSE(I/,RJ
ERGAS(LR) = 20 | =" (R & I(] R)

2
T\ % > € [0,00) (14)

In this expression, S is the SR scaling factor and the over-line operator is used to
represent the mean value of the band I7. The best ERGAS index value is 0 and an
increasing value means more distortion for I. Although RMSE-based measures are
appealing because of their simplicity, they are not able to capture the characteristics
of the Human Visual System (HVS) and hence other quality measures have been
developed. In particular, the Correlation Coefficient (CC) is one of them. Eq.
shows how it is computed.

NEJ TR —RJ
om = <ILI><R L
non SRR D) T (R - )

CC(LR) =

The CC index can be assessed computing the covariance matrix between both
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images and dividing it by their standard deviation. In a sense, this index measures
the linear relationship between two images normalising their range values. The best
CC value is 1, implying that both images are linearly correlated. In remote sensing,
it is common to use a particular case of CC which only takes edge information into
account. That is, the spatial Correlation Coefficient (sCC) computes the CC index
over the edges detected (Canny, Sobel or any other edge detector can be used to
that purpose) in both I and R images. Another popular metric is the so-called
Q-index (universal image Quality index) computed as follows.

b
k[ ———
o 2IR 2010

C

J

This index gathers three different properties in the image evaluation: (a) cor-
relation, (b) luminance and (c) contrast. The first term (a) corresponds to the
Correlation Coefficient expression and therefore it is in charge of measuring the
linear relation between both I and R images. The second term (b) and the third
one (c) aim at comparing luminance and contrast, respectively. Note that in the
case of multi-spectral images, the Q-index can be computed as the average value
among spectral bands. An extension of the Q-Index was proposed in (Wang et al.
2004) in order to avoid instability around null values. Eq. shows the expression
associated to the Structural SIMilarity (SSIM) metric.

K ( (2 Tﬁ+01)(2 UIR+CQ)
(

SSIM(I, R) — e
; U+ R +C) (02 + 0% +Cy)

) € [-1,1] (17)
J

According to (Wang et al.[[2004)), C1 and Cy constants should be set to (K7L)
and (K2L) respectively, where K; and Ky are values close to 0 and L represents
the image dynamic range. Similarly to the Q-index, the SSIM index range of values
is [—1,1] and it can be computed as the average over bands in the case of multi-
spectral images.

Even though the availability of ground truth images is the ideal scenario to
perform the image quality assessment, this is not possible in many real-life appli-
cations. However, alternative protocols have been developed to enable the use of
metrics with reference image when ground truth images are not available.

The reduced-resolution protocol (Wald, T., and M.|[1997) was initially defined
within the Pansharpening context but it can be easily extended to SR as well. In
particular, this protocol tests two properties: (a) consistency and (b) synthesis (see
Fig. . On the one hand, the consistency property is based on the fact that the
low-resolution version of the super-resolved image has to be as similar as possible
to the initial input image. In other words, the LR input image is the ground truth
of the super-resolved image after using the imaging model operators. On the other
hand, the synthesis property performs the evaluation at a lower scale. That is,
the initial LR image is reduced following the imaging model to generate a smaller
low-resolution image. Then, this smaller image is used to perform SR to the initial
LR scale having its corresponding reference image available.
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Figure 4.: Reduced-Reference assessing protocol.

4.2. No-reference image quality metrics

The availability of ground truth images provides the ideal scenario to perform image
quality assessment, however several no-reference metrics have also been proposed
to automatically predict the image quality without any kind of ground truth image.
Broadly speaking, it is possible to summarise the existing no-reference metrics in
two different families (Nouri et al|2013): (1) distortion-based and (2) training-
based metrics. On the one hand, the metrics belonging to the first group use a
specific distortion model to quantify image peculiarities, such us blocking artifacts,
ringing or blur. On the other hand, training-based metrics require an initial training
process to learn high-quality image statistics and, using this information, they are
able to quantify the image quality.

Over the past years, several no-reference metrics belonging to both families have
been presented. However, training-based metrics have shown to provide results that
are more correlated to human judgements than distortion-based ones (A.C.|[2010)).

One of the most popular training-based metrics is Blind Referenceless Image
Spatial QUality Evaluator (BRISQUE) (Mittal, K., and C.[2012). This measure is
based on the observation that normalised luminance values tend to follow a unit
Gaussian distribution for distortion-free natural images. Specifically, BRISQUE
computes the normalized luminance values by local mean subtraction and contrast
normalisation, fitting these values to a Generalised Gaussian Distribution (GGD)
afterwards. This learnt GGD is finally used to predict the type of distortion as
well as the perceptual quality. The implementation provided by the authors uses a
Support Vector Regressor (SVR) to learn the quality scores from a given training
set but any other regressor could be used instead. Another similar popular training-
based metric is the Natural Image Quality Evaluator (NIQE). In this case, the
NIQE index uses a distortion-free training set to fit a multivariate Gaussian (MVG)
distribution. Then, image quality is computed as the distance between the input
image features and the MVG distribution previously learnt. Regarding the kind of
features, the NIQE metric uses features that are similar to those used by BRISQUE,
that is, normalised luminance values fitted to Gaussian distributions. The main
difference between BRISQUE and NIQE approaches lies on the fact that the second
one does not require any regressor calibration.
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5. Experiments

This section describes the experiments which have been carried out in order to
validate and compare SR algorithms performance in challenging remote sensing
scenarios. Specifically, the image databases used for the experiments are introduced
in subsection The SR methods are enumerated in subsection Finally, the
experimental protocol and the obtained results are shown in subsections and
5.4] respectively. Datasets and SR codes used in this work are publicly available in
http: / /www.vision.uji.es/srtoolbox/ .

5.1. Datasets

As outlined in the introduction, the main objective of this work is to provide a
practical overview about single-frame super-resolution algorithms performance in
typical remote sensing imagery. Hence, the perfect scenario to highlight practical
differences among methods is by super-resolving images of the same area captured
using different sensors resolution. Besides, the availability of ground truth images
is also important to enable a full-reference evaluation in order to quantify the
deviation between super-resolved images and the reference high-resolution ones.

Nevertheless, an important volume of the total amount of remote sensing images
currently acquired belongs or is available only through private companies rights,
which hinders the possibility to find public domain images containing the same
area and, at the same time, acquired by different sensors. Moreover, ground truth
images are often unavailable in the case of satellite images because of the own
sensor limitations. In fact, the lack of HR images is the main motivation behind
the use of SR methods in remote sensing.

Taking these reasons into account, we have simulated different databases from
a specific real set of high-resolution aerial images. Note that the difference among
sensors lies on their imaging models. Therefore, it is possible to generate several
databases from the same set of ground truth images by applying different imaging
models. This approach gives us three main advantages. First of all, ground-reference
images are available which allows us to apply both full-reference and no-reference
evaluation protocols. Second, we can easily generate as many databases as we need
by using different imaging models, for instance changing the noise level or the
down-sampling scale. Thirdly, imaging model features are controlled, which allows
us to analyse SR performance under acquisition model changes.

The reference images used in this work have been selected from the open-access
orthoimages of the National Aerial Ortophoto Program (PNOA) of the Spanish
Ministerio de Fomento (Arozarena, G., and N.[[2005). These RGB images have
a resolution of 0.25 mpp (meters per pixel), higher than those of satellites like
WorldView-3 (PAN: 0.31 mpp, MS: 1.24 mpp) or GeoEye-2 (PAN: 0.34 mpp, MS:
1.36 mpp), and they are publicly available from the National Geographic Institute
(IGN) website (http://pnoa.ign.es/)).

Specifically, we considered a total of 20 high-resolution 512 x 512 images from
Alicante (Valencian Community, Spain) belonging to four different area types: (i)
agricultural, (ii) industrial, (iii) urban and (iv) forest. Figure 5] shows the reference
images considered in the experiments.

From these HR images, we generated six different LR datasets by changing the
imaging model parameters used in each case. Datasets are described below.

e 01LR2xbd: In this case, low-resolution images have been obtained by using
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Figure 5.: High-Resolution reference images (RGB, 512 x 512, 0.25mpp). Five dif-
ferent image folds: from (a) to (e), of four different areas: from (i) to (iv).

a Gaussian PSF (u = 0,0 = 1) as a blurring operator (B), a 2x size reduction
in the decimation operator (D), with a zero noise level (N = 0). Note that
the resulting LR images are 256 x 256 and their resolution is 0.5mpp.
02LR4xbd: This database has been obtained using a similar configuration
as the previous one but using a 4x decimation. In particular, we have con-
secutively applied it (twice) the imaging model described in '01LR2xbd’ to
obtain LR images with a size of 128 x 128 and a resolution of 1mpp.
03LR2xbdn01: The generation of this database follows the same process
described in ’01LR2xbd’ but in this case we have used an additive white
Gaussian noise with ¢ = 0.01. The final images have a size of 256 x 256 and
a resolution of 0.5mpp

04LR4xbdn01: For this database, we have followed the process described
in ’02LR4xbd’ adding a ¢ = 0.01 white Gaussian noise to the final images. In
this case, the images of this database have a size of 128 x 128 and a resolution
of 1mpp.

05LR2xbdn05: This database has been generated following the procedure
described in ’03LR2xbdn01’ but using a ¢ = 0.05 additive white Gaussian
noise. The images belonging to this database are 256 x 256 and 0.5mpp.
06LR4xbdn05: The imaging model used for this database is the same that
one of ’04LR4xbdn01’ but considering a ¢ = 0.05 additive white Gaussian
noise, resulting 128 x 128 images with 1mpp.

It should be noted that the parameters to generate these databases have been

chosen following the most common scenarios in remote sensing imagery.
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5.2.

Super-Resolution Toolbox

This section provides a brief description of the SR methods considered in the ex-
perimental part of the work. Specifically, a total of 27 single-frame super-resolution
methods (see Table[1)) have been tested over the six aforementioned databases. Be-
sides, Lanczos-3 interpolation algorithm has been used as an up-scaling baseline.
All these methods have been selected for this comparative work mainly because
they are among the most popular single-frame SR methods in the literature and
besides their implementations are publicly available either on the Internet or from
the authors. Subsequently, we highlight the main features of the methods in terms
of the information provided in Section

Table 1.: Summary table that captures the SR approaches tested in this work.

Single-image super-resolution families Tested methods #
Iterative back projection (IBP) | 01IBP (Irani and S. 1991}) 1

02FIU (Shan et al.|(2008))

. . 23DLU (Lucy|(1974))
Image reconstruction (RE) PSF deconvolution 4
24DRE (Gonzalez and Woods|(]2006})

25FSR (Zhao et al.{(2015))

Gradient profile (GP) 03GPP (Jian, Xu, and ShumNzoosp 1

06VSR (Yang et al.|(2010))
08SDS (Dong et al.|(2011))
13SIP (Yang et al.[(2008))

14818 (Zeyde, M., and 1\1@4)
20MDL (]Purkait and B.|(2013))
22BSR (Polatkan et al.(2015))
10ANR (Timofte, V., and L.|(2013))
15GLR qTimofte, V., and L.|(2013))
Image learning (LE) Neibourhood embedding (NE) | 16NELS qTimofte7 V., and L. 2013})_ 5
17NENNLS (Timofte, V., and ENEOB})
18NELLE (]H T., an(_lquQ()Oﬁll)
05SRP (Kim and Y.NZOlO_})_

09DSF (Yang and M.-H. (2013))

11GPR (He and W.-C.|(2011))

19JOR (Dai, R., and L. 92015})
21CNN (Dong et al.|(2014))

27SCN (Liu et a1.|(|2o16})

—

L=

Sparse coding (SP)

Mapping (MP)

04SRSI (Glasner, S., and hﬂ@ogf)
07LSE (IFreedman and Rl@ )
12BDB (Michaeli and M.|(2014))
26TSE (Huang, A., and N. 2015')

Hybrid methods (HY)

e 00IntL3 (Lanczos-3 Interpolation) (Turkowski 1990): In general,

Lanczos interpolation uses a normalised version of a windowed cardinal sine
function. In the particular case of Lanczos-3, this sinc function is made of 5
lobes and it has shown to offer one of the best compromises in terms of re-
duction of aliasing, sharpness and minimal ringing (Turkowski|{1990). Due to
these reasons, we have selected Lanczos-3 interpolation as the baseline func-
tion for the experiments. Specifically, we use the implementation provided in
Matlab R2013a Image Processing Toolbox.

01IBP (Iterative Back Projection) (Irani and S.[1991): This algorithm
follows the approach presented in Section [3.1.1} We used the implementation
provided in (Yang, C., and M.-H./|2014)) which uses a 5 x 5 Gaussian kernel
with o = 0.6 to perform the initial image interpolation and a total number
of 100 back-projection iterations.

02FIU (PSF Deconvolution) (Shan et al.|2008): This method integrates
the scheme introduced in Section [3.1.2] with a feedback-control framework to
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constrain the image up-sampling process. Initially, the LR input image is
interpolated to the desired resolution by a bi-cubic interpolation. Then, this
up-sampled image is deconvolved using the non-blind deconvolution method
proposed in (Shan, J., and Agarwala 2008). The implementation we use for
the experiments has been provided by (Shan et al.2008). In particular, this
code uses a total number of 10 iterations and the Gaussian PSF has the
following parameters, ¢ = 1.05 for a scaling factor of 2x and ¢ = 1.5 for a
scaling factor of 4x.

03GPP (Gradient Profile) (Jian, Xu, and Shum 2008): This algo-
rithm exploits the idea shown in Section [3.1.3] The implementation provided
by the authors has the following characteristics. First, it uses bi-cubic in-
terpolation to perform the initial image up-sampling process. Second, each
gradient profile distribution is fitted to a Generalized Gaussian Distribution
(GGD) which adds an extra shape control parameter to the normal distribu-
tion. Third, the transformation of the gradient is performed by multiplying
the gradient profile of the LR input image (VILr) by a ratio r which depends
on the scaling factor (see (Jian, Xu, and Shum|2008) for more details).
04SRSI (Hybrid) (Glasner, S., and M.| 2009): The idea behind this
method is based on the hybrid approach presented in Section [3.3] Specifically,
the code provided by the authors assumes a Gaussian PSF and it builds a 6-
level resolution pyramid by blurring and down-sampling the initial LR image
using a scaling factor of 1.25. Then, each patch of the input image is searched
within the scales from higher to lower resolution using the Nearest-Neighbour
algorithm.

05SRP (Mapping) (Kim and Y. 2010): This approach is a mapping-
based method with the following features. In the training stage, a Kernel
Ridge Regressor (KRR) is trained using a specific set of LR/HR patch pairs.
The implementation used for the experiments has been extracted from the
source code of (Yang, C., and M.-H./[2014).

06VSR (Sparse Coding) (Yang et al.[|2010): This method corresponds
to the procedure explained in Section The code provided by (Yang,
C., and M.-H./2014) uses 1% and 2"¢ order derivatives as a feature extractor
operator (F') to represent 5 x 5 patches. Besides, the patch overlapping is set
to 4 pixels and the sparsity factor § to 0.2. Finally, the B operator in the
post-processing step is considered as a 5 x 5 Gaussian blurring mask with
o=1.

07LSE (Hybrid) (Freedman and R. [2011)): This work is based on a
similar approach to the one detailed in 04SRSI. That is, it exploits the self-
similarity property but with a slight refinement to optimise the searching
process. The implementation provided by the authors uses a custom non-
dyadic filter bank as a blurring operator and the desired magnification factor
is upper approximated by small scaling steps compatible with that filter, 5/4,
4/3 and 3/2. Finally, a bi-cubic decimation is performed to achieve the target
resolution.

08SDS (Sparse Coding) (Dong et al. 2011): This work presents an
extension of the procedure explained in 06VSR. In particular, it introduces
two improvements: (i) an initial training data clustering process and (ii) an
adaptive regularisation in the generation step. In the code provided by the
authors the images are initially processed using a Gaussian high-pass filter,
patches are 7 x 7 sized with 5 pixels of overlapping and the number of clusters
as well as the number of Auto-Regressive functions per cluster is set to 200.
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09DSF (Mapping) (Yang and M.-H. 2013): This mapping method is
based on learning several simple functions, instead of a single complex one,
to relate high-resolution and low-resolution structures. Eventually, the super-
resolved image is obtained by using the mapping function associated to its
closest cluster, on each input LR patch. The implementation provided by the
authors considers a patch size of 7 x 7 and removes each patch mean in order
to characterise them.

10ANR (Neighbourhood Embedding) (Timofte, V., and L./ [2013):
This technique is an extension of the neighbourhood embedding idea pre-
sented in Section In fact, it aims at fusing both Neighbourhood Em-
bedding (NE) and Sparse Code (SC) approaches. The code provided by the
authors uses a patch characterisation based on 1% and 2"? order gradient and
besides it applies Principal Component Analysis (PCA) to reduce the data
dimensionality. The patch size is 3 with 1 pixel of overlapping.

11GPR (Mapping) (He and W.-C. |2011)): Even though we have clas-
sified this method as a mapping one because it uses a Gaussian Process Re-
gression (GPR) function to perform the SR task, it could also be considered
a reconstruction or even an hybrid method because it extends the mapping
approach in order to avoid the use of external training examples. The im-
plementation used in the experiments has been provided by the authors of
the method and it has the following features: a patch size of 20 with a 2/3
overlapping factor and a Gaussian PSF with ¢ = 0.6.

12BDB (Hybrid) (Michaeli and M./ 2014)): This method is a de-blurring
method that we have adapted to SR by carrying out an initial Lanczos-3
interpolation to the target resolution. We think it is important to test this
technique because it follows a similar hybrid approach to the one proposed by
(Michaeli and M./2013]) whose implementation is not available. In particular,
this de-blurring method takes advantage of the cross-scale patch recurrence
property presented in Section patches in sharp natural images tend to
co-occur across scales whereas patches in blurred images do not. The code
of this de-blurring method has been provided by the authors. Specifically,
it uses a 5 x 5 patch and a 13 x 13 kernel. The image scaling pyramid is
constructed using a 3/4 down-scaling factor and the sinc function until the
kernel is smaller than the patch size.

13SIP (Sparse Coding) (Yang et al./[2008): This algorithm follows the
sparse coding approach presented in Section but simplifying the dic-
tionary training step. In particular, this technique corresponds to an initial
version of 06VSR. The main difference between 06 VSR and 13SIP lies on the
fact that each method learns the dictionaries in a different way. The imple-
mentation provided by the authors considers a patch size of 3 with 1 pixel
of overlapping. The kind of extracted features, the sparsity factor and the
blurring mask in the post-processing step are the same to those considered
in 06VSR.

14SIS (Sparse Coding) (Zeyde, M., and M.||2012): This sparse coding
method is an extension of the method explained in 06VSR. Specifically, the
most important improvements are the use of PCA in the image characterisa-
tion process and the use of an optimised dictionary training step. The code
provided by the authors have the same configuration to the one of 13SIP.
15GLR (Neighbourhood Embedding) (Timofte, V., and L.|[2013):
This approach is essentially the same to the one described in 10ANR but using
different neighbourhood constraints. In particular, this variant uses a global
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neighbourhood to represent each element of the dictionary as a combination
of neighbours. The regularisation type and the method parameters are the
same to those described for 10ANR.

16NELS (Neighbourhood Embedding) (Timofte, V., and L. 2013):
This method is another variant of 10ANR. In this case, the regression, where
each dictionary atom is represented as a linear combination of neighbours, is
tackled as a Least-Squares (LS) problem without any kind of regularisation
operator. The kind of neighbourhood and method parameters are those of
10ANR.

17NENNLS (Neighbourhood Embedding) (Timofte, V., and L.
2013)): This NE method is a variant of 16NELS where the LS problem is
constrained to positive values. The rest of the parameters are the same to
those explained in 16NELS.

18NELLE (Neighbourhood Embedding) (H., T., and Y./|2004): This
algorithm is based on the most classical NE approach introduced in Section
This method does not train any dictionary to perform the embedding,
that is, the dictionary consists of training patches themselves. The rest of the
parameters and settings of this method are the same as those of 10ANR.
19JOR (Mapping) (Dai, R., and L.[2015): The idea behind this mapping
approach is similar to that one described in 09DSF. Specifically, this method
is made up of two stages: (i) jointly-optimized regressor learning and (ii)
adaptively HR generation. The implementation provided by the authors uses
1%t and 2"? order derivatives as features, 3 x 3 patches with overlapping and
20 Expectation-Maximisation iterations to cluster the training data.
20MDL (Sparse Coding) (Purkait and B./[2013): This method presents
an extension of the classical SC approach introduced in Section [3.2.1] The
rationale behind this algorithm is similar to that of 19JOR but from a sparse
coding point of view. The code used for the experiments was given by the
authors. It uses a 7 x 7 patch encoded using a Bag-of-Words (BoW) approach
over 1°¢ and 2" order derivatives. The number of dictionaries is set to 20 by
default and the scaling factor is a constant value of 1.25 which has to be used
several times to reach higher up-scaling ratios. Finally, the super-resolved
output is post-processed considering a 3 x 3 Gaussian PSF with ¢ = 0.2.
21CNN (Mapping) (Dong et al.|2014)): This SR technique is inspired by
the mapping approach explained in Section[3.2.3] In this case, a Convolutional
Neural Network (CNN) is used to relate low-resolution structures to high-
resolution ones. In the training stage, the method up-scales the LR input
images by a bi-cubic interpolation, and then a 3-layer CNN is trained to
learn a end-to-end mapping between these interpolated versions and their
ground-reference counterparts.

22BSR (Sparse Coding) (Polatkan et al. 2015): This approach de-
fines a probabilistic graphical model to perform the super-resolution task.
Specifically, this Bayesian SR method can be summarised in four main steps:
(1) coupled dictionary training, where high-resolution and low-resolution dic-
tionaries are learned, (2) sparse low-resolution factor estimation, (3) super-
resolved image generation, and (4) a final post-processing step following Eq.
. The code provided by the authors uses an 8 x 8 patch size and a Gaussian
PSF for the post-processing step.

23DLU (PSF Deconvolution) (Lucy|1974): In this method, we use the
Richardson-Lucy (RL) deconvolution algorithm presented in (Lucy|(1974) to
tackle the SR problem from a de-blurring point of view (Section . For
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the experiments, we use Lanczos-3 interpolation (00IntL3) to up-scale the
initial LR image It to Iy rr and a Gaussian PSF with ¢ = 1 to run the RL
deconvolution function available in Matlab R2013a.

e 24DRE (PSF Deconvolution) (Gonzalez and Woods| 2006)): This
method follows a similar approach to 23DLU but using a different deconvo-
lution algorithm. In this case, we use the regularised deconvolution function
provided in Matlab R2013a. This deconvolution technique is a linear method
which uses a least-squares solution with a Laplacian regularization to pre-
serve image smoothness. This kind of regularisation aims at eliminating noise
artifacts. The configuration used for the experimentation is the same than
one described in 23DLU.

e 25FSR (PSF Deconvolution) (Zhao et al. [2015): This SR method is
an extension of the classical deconvolution approach (Section where
the decimation (D) and blurring (B) operators in Eq. (imaging model)
are unified. In (Zhao et al.|2015)), three different regularisation strategies are
tested with the proposed technique: (a) #2-norm (Tikhonov regularization),
(b) £2-norm (Total Variation) and (c) £!-norm in the Wavelet domain. We
tested the code provided by the authors using the Total Variation regulari-
sation (b) because it provides one of the best results in (Zhao et al.|2015).

e 26TSE (Hybrid) (Huang, A., and N.|2015): The idea of this method
is essentially the same to that presented in Section but extending the
self-similarity assumption. The implementation provided by the authors uses
a 5 x 5 patch size and 20 post-processing iterations with a Gaussian PSF
(¢ = 1.2). The number of levels to achieve a scaling ratio of 2x and 4x are 3
and 6, respectively.

e 27SCN (Mapping) (Liu et al. 2016): This technique is an extension
of 21CNN in order to combine the strengths of deep neural network and
sparse coding. In particular, this approach defines a Convolutional Neural
Network (CNN) layer structure similar to that described in 21CNN for patch
extraction and reconstruction. The key difference is based on the kind of unit
used to learn the non-linear mapping between interpolated LR patches and
their HR counterparts. The code available in the authors’ website normalises
patches by their mean and variance and uses a HR patch size of 5 x 5.

5.3. FExperimental Protocol

This section provides the details about how images described in Section have
been super-resolved using the SR methods appearing in and assessed using
metrics in Section [4l For the experiments, a total of 6 simulated databases have
been generated using 6 different imaging models (described in Section over
the ground-reference images showed in Fig. [5l Note that each database contains
20 high-resolution ground-reference images (512 x 512) and their low-resolution
counterparts (256 x 256 or 128 x 128 depending on the database). Each database has
been split into 5 folds, columns from (a) to (e) in Fig. [5} in order to follow a cross-
validation protocol for the results. That is, low-resolution images of a specific fold
have been super-resolved using the rest of the folds as training and besides image
quality metrics have been averaged over folds. Logically, only those SR methods
requiring a training stage (image learning methods Section have been trained.

Regarding the scaling factor, the target resolution of each experiment has been
set to reach the ground-reference resolution, that is, 512 x 512. Note that a scaling
factor of 2x has been used in databases with 256 x 256 low-resolution images and a
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factor of 4x in databases with 128 x 128 images. Finally, the quality of the super-
resolved images Igr has been evaluated using the 9 metrics presented in Section
[ with a full-reference assessment protocol, i.e. using the ground-reference images
Iggr for those metrics with reference. In addition, the computational time of each
super-resolution method has been reported to evaluate the efficiency of the methods
Training time has not been taken into account because this process can be carried
out off-line.

5.4. Results

For each one of the datasets described in Section {01LR2xbd, ...}, the mean
value for each figure of merit was obtained considering a 5-fold cross-validation
strategy (folds from (a) to (e) of Figure [5]). Then, the final figure of merit was the
mean over the 4 different types of images (types from (i) to (iv) of Figure[f]). Two
different comparisons were made afterwards:

(1) Effect of a change in the resolution factor on the reconstruction quality. We
compared the super resolved image quality results obtained when a 2x res-
olution factor was applied compared to the use of a 4x resolution factor. In
this comparison, no noise was added to the images.

(2) Effect of noise on reconstruction quality for a specific super-resolution factor.

Comparisons were made using three of the figures of merit proposed, i. e., SAM,
RMSE and PSNR, as given by Egs. and As explained in Section
SAM is a measure of the spectral change between two images. On the other hand,
RMSE and PSNR are two widely accepted measures when assessing image quality
for the case when there is a reference image.

Tables [2| to [7] show the results of the best three SR methods for each type of
image (from (4) to (iv)) for each one of the datasets described ({01LR2xbd,...})
and for all the figures of merit analysed in this paper. Baseline method 00IntL3
(Turkowski|1990) is also included. 08SDS (Dong et al.|2011)) method is always
amongst the best three methods in all the figures of merit that use a reference image
for all the datasets but in 05LR2xbdn05 where only in image types (4ii) and (iv)
appears amongst the best three. Tables|2|to[7|also show that the other two best SR
methods are 25FSR ((Zhao et al.|2015) and 07TLSE (Freedman and R.|2011).
Method 08SDS (Dong et al. 2011) is a sparse coding type method, whereas
25FSR (Zhao et al.[2015) is of PSF deconvolution type and 07LSE (Freedman
and R./[2011)) can be considered as an hybrid method. As it was stated in Section
sparse coding methods are the focus of a considerable attention nowadays
due to their promising results. On the other hand, PSF deconvolution methods
also work relatively well but tend to be dependent on a good quality PSF kernel
characterisation.

Other interesting results in Tables [2] to [7| should be highlighted: (1) none of the
best three SR methods, according to the figures of merit with reference image,
appear as the best three in terms of computational efficiency; (2) none of them
appear as the best three when using figures of merit that do not need reference
image (BRISQUE and NIQE); (3) method 12BDB (Michaeli and M. 2014)
is one of the best three SR methods when considering the BRISQUE and NIQE
figures of merit. However, it is not among the first 10 best SR methods in terms of
the figures of merit with reference. This fact is somehow surprising and confirms the
need to continue working in the development of new and effective quality measures
applied to super resolution.
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In order to make these comparisons in a more meaningful and illustrative way,
the data for each comparison case was normalised so that the interpolation method
(00IntL3) for the lowest resolution and lowest noise value (in each comparison)
acted as baseline measure (and therefore a value of zero is assigned to it), all
methods that are better than 00IntL3 would get higher values than zero of the
corresponding figure of merit, the best one would be set to 1 and the worst one
a value equal to —1. The rest of the values of the remaining methods are linearly
rescaled to [—1, +1].

Figure [0 a)-(¢) shows the bar plots for the SAM, RMSE and PSNR figures
of merit for the comparison between a 2x resolution factor in relation to a 4x
resolution factor. Notice that (as it may be expected) an increase in the resolution
factor lowers down the reconstruction quality of all the methods. However, method
08SDS (Sparse Coding) (Dong et al.[2011) gives the best result for the three
figures of merit (SAM, RMSE and PSNR). Figure [6[b)-(c) also shows that the
best three other methods for the RMSE and PSNR figures of merit are 25FSR
(Zhao et al.|2015), 07LSE (Freedman and R.[2011)) and 03GPP (Gradient
Profile) (Jian, Xu, and Shum|2008)).

Figure[7| a)-(c) shows the effect of Gaussian noise addition on 2x super-resolution
with different noise levels. In particular, the effect of the addition of o = 0.01 and
o = 0.05 white Gaussian noise, respectively, is analysed. As we can see, the addition
of noise lowers down the reconstruction results for all methods and all the three
figures of merit (SAM, RMSE and PSNR). However, as it also happens in the
results shown in Figure [6] the 08SDS (Sparse Coding) (Dong et al/[2011])
method provides the best results. Figure [7[b)-(c) also shows that the best three
other methods for the RMSE and PSNR figures of merit the same as those of
Figure [6] i.e. 25FSR (Zhao et al. [2015]), 07LSE (Freedman and R.|[2011]))
and 03GPP (Gradient Profile) (Jian, Xu, and Shum 2008]).

Figure [§a)-(c) shows the effect of Gaussian noise addition on 4x super-
resolution. In particular, the effect of the addition of ¢ = 0.01 and o = 0.05 white
Gaussian noise on the 4x super-resolution process is analysed. As we can see, the
addition of noise decreases the super reconstruction results for all methods and
the three figures of merit (SAM, RMSE and PSNR). However, again in the results
shown in Figure [6] the 08SDS (Sparse Coding) (Dong et al.[2011]) method
provides the best results. Figure [§(b) also shows that the best three other methods
for the RMSE figures of merit are 25FSR (Zhao et al.[[2015]), 0O7TLSE (Freed-
man and R.[2011) and 04SRSI (Hybrid) (Glasner, S., and M.|2009), and
methods 25FSR (Zhao et al. [2015), OTLSE (Freedman and R.|[2011) and
02FIU (PSF Deconvolution) (Shan et al.|2008)) for the PSNR (Figure[§|c)).

Figures [7| and |8] also show that the methods 15GLR (Timofte, V., and L.
2013) to 19JOR (Dai, R., and L. 2015) work relatively worse than the rest of
methods (for the RMSE and PSNR figures of merit, above all).

Methods 10ANR (Timofte, V., and L./[2013)), 15GLR (Timofte, V., and
L.[2013)), 16NELS (Timofte, V., and L. 2013), 17NENNLS (Timofte, V.,
and L. 2013) and 18NELLE (H., T., and Y.|2004) are variations of the same
method where there is only a change in the regularisation factor, and therefore it
may be logical that they have obtained similar performance results.

On the other hand, methods 11GPR (He and W.-C. 2011), 12BDB
(Michaeli and M. [2014), 13SIP (Yang et al. 2008), 14SIS (Zeyde, M.,
and M.|2012) and 19JOR) (Dai, R., and L.|[2015]) are all different among
them. However, results are similar and therefore model parameters might be play-
ing a role in the results.
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Codes related to the methods 10ANR (Timofte, V., and L. 2013, 15GLR
(Timofte, V., and L. 2013), 16NELS (Timofte, V., and L. [2013),
17NENNLS (Timofte, V., and L.[2013) and 18SNELLE (H., T., and Y.
2004)) and 19JOR (Dai, R., and L. 2015) were part of the same software tool-
box and therefore the default values of the parameters used is shared among them.
On the one hand, a 3 x 3 size patch with first and second order derivatives and
Principal Component Analysis (PCA) as input for each vector was used in the
toolbox for all of them. On the other hand, method 13SIP (Yang et al.|2008]
uses a 3 X 3 size patch and method 14SIS (Zeyde, M., and M./ |2012) and a
dimensionality reduction process through PCA as well.

It seems clear that the ideal patch size depends on the selected methods and im-
ages. Each single method uses a different patch size. For instance, method 08SDS
(Dong et al. [2011)) uses a 7 x 7 size patch, 06VSR (Yang et al. 2010) and
25FSR (Zhao et al. 2015) use a 5 x 5 size patch, 11GPR (He and W.-C.
2011)) uses a 20 x 20 size patch and method 22BSR (Polatkan et al. 2015 an
8 x 8 size patch. We should bear in mind that we assume that there is no access
to the HR image, there is no way to know the best value for the parameters of
each one of the different methods. That is why the complete experimental part was
made using the default parameters offered by authors of each method, which were
assumed to work satisfactorily in the present case. The same patch size was used
for those methods that used a dictionary training step, in order to make a fairer
comparison.

Method 12BDB (Michaeli and M.|2014)) may have a low performance result
because the kernel the method recovers is the one used in the interpolation stage
and in this case the deblurring stage is made through an Lo fitting minimising the
number of patches.

Method 09DSF (Mapping) (Yang and M.-H.| 2013) is not shown in the
plots of Figures [0] to [8] because performance results for this method were so poor
it made visualisation of the rest of the methods performance results difficult to be
obtained.

Figures [0 and show some visual results on databases 01LR2xbd and
02LR4xbd in order to provide a qualitative super-resolution evaluation. Orthoim-
ages are shown in rows and columns are arranged as follows: (1st) HR reference
image, (2nd) baseline interpolation, (3rd) best PSNR reconstruction result, (4th)
best PSNR learning result and (5th) best PSNR hybrid result.

When considering a 2x up-scaling factor (Fig. @, method 08SDS (Dong et al.
2011)) is capable of recovering high-resolution details that are clearly missing in
the rest of SR results. Structured details, like pedestrian crossings of images Fig.
9((¢) and Fig.[9)(n), are better-defined and visually closer to their HR counterparts.
Other details where no regular structures can be detected, like shrubs appearing
in images Fig. [9[d) and Fig. [J(s), are better-defined as well but sometimes it is
possible to perceive a slight noise increase. This observation is also confirmed by
quantitative evaluation where 08SDS (Dong et al./2011)) PSNR values tend to
be higher for (2nd) and (3rd) images than those for (1st) and (4th).

In the case of Fig. [10] (4x scaling factor), we can see how visual differences among
SR results become relatively small. Even though 08SDS (Dong et al.|2011)) often
seems to obtain the best result, other methods like 07LSE (Freedman and R.
2011)) and 26 TSE (Huang, A., and N.|2015) tend to generate slightly sharper
edges and less noisy surfaces such as in the case of Fig.[10| e) and Fig.[10| 0) images.
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Bar plots for 2x and 4x resolution factors without noise.
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Figure 7.: Bar plots for 2x super resolution without and with ¢ = 0.01 and ¢ = 0.05
levels of additive white Gaussian noise.
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- (k) HR 0) 0701mL3 (26.47) (m) 725FSR (27.55) (n) 08SDS (33.75) (o) 07LSE (27.95)

(p) HR (g) 00IntL3 (26.04) (r) 25FSR (26.62) (s) 08SDS (29.93) (t) 26 TSE (30.39)

Figure 9.: SR results for the (a) fold of 01LR2xbd database. Orthoimages in
rows and SR methods in columns. HR reference image in first column, Lanczos-
3 interpolation in second, best PSNR reconstruction result in third, best PSNR
learning result in forth and best PSNR hybrid result in fifth. For each method
PSNR values in brackets and for each row the best PSNR result is highlighted in
bold.

Table 2.: Average results of Time, SAM, RMSE, sCC, Q-index, PSNR, BRISQUE and NIQE on 01LR2x_bd database.
There are four group of rows (from (i) to (iv)) which correspond to the four different kinds of orthoimages. Besides, each
group contains four rows with the following results: baseline Lanczos-3 interpolation (first row), best reconstruction result
(second row), best learning result (third row) and best hybrid result (fourth row). Note that the best results are highlighted
in bold and method’s identification codes are in brackets within the table.

O1LR2x bd 1d. & efficiency Method identification code & metric with reference 1d. & metric without reference
Time (s) SAM RMSE ERGAS sCC Q-index SSIM PSNR (dB) BRISQUE NIQE
(00) 0.11 £ 0.03 | (00) 0.61 £ 0.16 | (00) 9.70 154 | (00) 398 £0.74 | (00) 0.9972 £ 0.0009 | (00) 0.7904 + 0.0419 | (00) 0.8930 £ 0.0159 | (00) 28.52 + 142 | (00) 41.26 £ 5.58 | (00) 18.87 = 1.16
(24)050 £0.04 | (20) 0642014 | (25)880 £ 119 | (25)3.60£0.53 | (25)0.9978 £0.0006 | (03) 0.8065 + 0.0413 | (01) 0.9079 £ 0.0163 | (25) 2934 £ 1.18 | (01) 3848 +£5.26 | (01) 15.25 = 0.99
g (27) 150+ 003 | (08) 0.54 £ 0.14 | (08) 6.51 £ 1.50 | (08) 2.66 - 0.62 | (08) 0.9987 £ 0.0005 | (08) 0.8835 £ 0.0446 | (08) 0.9580  0.0196 | (08) 32.09 £ 2.0 | (17) 20.63 £ 463 | (13) 8.56 = 119
(12) 778 £802 | (26)0.35£0.27 | (07)9.22£119 | (07)3.73£052 | (07) 0.9976 £ 0.0006 | (26) 0.8744 + 0.0681 | (07) 0.9220 £ 0.0140 | (07) 28.93 £ 111 | (12) 20.17 + 3.25 | (12) 1155 £ 1.22
(00) 0.08 + 0.02 | (00) 0.35 %018 | (00) 949 + 157 | (00) 284+ 0.76 | (00) 0.9985 £ 0.0007 | (00) 0.9009 + 0.0250 | (00) 0.9247 £ 0.0085 | (00) 28.72 £ 1.44 | (00) 39.48 + 668 | (00) 17.53 £ 2.48
(2005009 | (25)038£019 | (5)840£ 128 | (25) 250065 | (25) 0.0988 £ 00006 | (25) 09137 £ 00241 | (25) 0.948 £ 00071 | (25) 205 £ 129 | (01) 3647 £ 701 | (01) 1488 £ 140
() (27) 1524 003 | (08) 0.34 £ 0.15 | (08) 4,98 £ 0.45 | (08) 148 £ 0.26 | (08) 0.9996 + 0.0001 | (08) 0.9631 £ 0.0113 | (08) 0.9853  0.0019 | (08) 34.25 £ 0.79 | (17) 2,94 £ 7.60 | (13) 8.13 = 0.53
(12) 5174346 | (07) 0382018 | (04) 896+ 144 | (07) 265045 | (07) 0.9987 £0.0004 | (07) 0.9325 + 0.0084 | (07) 0.9563 £ 0.0051 | (04) 2920 £1.39 | (12) 20.75 + 9.69 | (12) 11.14 £ 0.93
(00) 0.13 £ 0.03 [ (00) 048 £ 004 | (00) 1197 £ 069 | (00) 421 £ 0.33 | (00) 09969 £ 00005 | (00) 0.9323 + 0.0126 | (00) 0.9245 = 0.0085 | (00) 26.61 £ 052 | (00)3219 £ 321 | (00) 18.85 £ 0.64
§ (24)049+0.04 | (25)0.33 £ 0.04 | (25)10.58 £ 0.54 | (25)372£026 | (25) 09976 £ 0.0003 | (25) 0.9445 + 0.0103 | (25) 0.9467 £ 0.0056 | (25) 27.69 + 0.46 | (01) 2892 £ 343 | (01) 16.08 + 1.13
(i) (27) L1+ 0.04 | (08) 0.48 = 0.03 | (08) 5.37 + 0.25 | (08) 1.89 + 0.13 | (08) 0.9994 + 0.0001 | (08) 0.9836 = 0.0045 | (08) 0.9892 = 0.0018 | (08) 33.57 + 0.41 | (17) 1835 £325 | (13) 7.69 = 0.71
(12)800£728 | (07) 053 £ 004 | (07) 1025 % 041 | (07) 356 £ 0.08 | (07) 09978 £ 00002 | (07) 0.9389 £ 0.0077 | (07) 0.9579 £ 00083 | (07) 27.95 £ 035 | (12) 773 £ 7.32 | (12) 12.14 £ 0.98
(00) 015 £ 0.12 [ (00) 112 £ 036 | (00) 1175+ 110 | (00) 701 £ 140 | (00) 09921 £ 00029 | (00) 0.8991 £ 0.0074 | (00) 0.9043 £ 00099 | (00) 26.80 £ 0.82 | (00) 4350 £ 125 | (00) 20,31 £ 0.82
(24)0.36+0.04 | (25) L15£0.36 | (25) 10.91£0.99 | (25) 652 £135 | (25) 09932 £0.0026 | (03) 0.9118 + 0.0156 | (25) 0.9263 £0.0090 | (25) 2744 £0.80 | (01) 39.78 £ 1.52 | (01) 16.38 £ 0.95
fi) (27) 1494003 | (08)094£029 | (08) 7.19 £ 0.66 | (08) 431 1,01 | (08) 0.9970 £ 0.0013 | (08) 0.9648 + 0.0082 | (08) 0.9823  0.0032 | (08) 3106 £ 0.78 | (08) 30.36 £ 0.91 | (13) 10.19  0.50
(12) 475+ 0.74 | (26) 0.70 + 0.46 | (26) 10.17 £ 242 | (26) 480 £2.63 | (26) 0.9954 £ 0.0043 | (07) 0.9296 + 0.0135 | (07) 0.9423 £0.0069 | (26) 28.23 £ 218 | (26) 3198 £ 4.99 | (12) 11.95 £ 0.39
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Figure 10.: SR results for the (e) fold of 02LR4xbd database. Orthoimages in
rows and SR methods in columns. HR reference image in first column, Lanczos-
3 interpolation in second, best PSNR reconstruction result in third, best PSNR
learning result in forth and best PSNR hybrid result in fifth. For each method
PSNR values in brackets and for each row the best PSNR result is highlighted in

bold.

Tab].e 3 Average results of TIME, SAM, RMSE, sCC, Q-index, PSNR, BRISQUE and NIQE on 02LR4x_bd database.
There are four group of rows (from (i) to (iv)) which correspond to the four different kinds of orthoimages. Besides, each
group contains four rows with the following results: baseline Lanczos-3 interpolation (first row), best reconstruction result
(second row), best learning result (third row) and best hybrid result (fourth row). Note that the best results are highlighted
in bold and method’s identification codes are in brackets within the table.

02LRAxbd 1d. & efficiency Method identification code & metric with reference 1d. & metric without reference
Time (s) SAM RMSE ERGAS sCC Qindex SSIM PSNR (dB) BRISQUE NIQE
(00) 0.07 £ 0.02 | (00)0.95 =027 | (00) 1583 £ 281 | (00) 3.27+0.75 | (00) 0.9925 + 0.0032 | (00) 0.5687 £ 0.0585 | (00) 0.6779 £ 0.0176 | (00) 24.29 + 1.60 | (00) 66.42 =594 | (00) 39.11 + 4.55
() 0614012 | (23)099£027 | (%5) 1579255 | (25)324 £ 071 | (25)0.9926 £ 00030 | (23) 05703 £ 0.0585 | (28) 06785+ 0.0075 | (02) 2430 £ L67 | (02) 6331 £ 6.25 | (02) 3271 £ 439
() (15) LIG£ 022 | (08) 0.91 £ 0.23 | (08) 12.46 = 147 | (08) 2.55 £ 0.39 | (08) 0.9955 = 0.0012 | (08) 0.6527  0.0430 | (08) 0.7607 = 0.0183 | (08) 26.31 £ 1,05 | (13) 3461 £ 866 | (17) 15.27 £ 2.32
(12) 1337 £ 1130 | (26) 0.04 =045 | (07) 1510 £219 | (07)305% 058 | (07) 09934 £ 00023 | (26) 0.6707 + 0.0746 | (07) 0.7219 + 0.0144 | (07) 24,66 + 130 | (12) 20.91 £ 3.25 | (12) 1670 % 1.20
(00) 0.08 £ 0.03 ] (00) 062 029 | (00) 1682 £ 2.98 | (00) 252 +0.67 | (00) 0.9951 £ 00023 | (00) 0.7120 + 0.0625 | (00) 0.7028 + 0.0251 | (00) 276 £ 159 | (00) G5.60 = 294 | (00) 36.08 £ 5.18
() 060£019 | (25) 0652030 | (25) 1663 £ 316 | (23) 248 066 | (29) 09953 £ 00022 | (02) 07167 £ 0.0646 | (02) 0.7076 £ 0.0257 | (25) 2885 £ 172 | (02) 60.35 £ 451 | (02) 30.81 £ 478
() (15)1.26 £ 0.33 | (08) 0.61 + 0.29 | (08) 13.62 = 2.36 | (08) 2.04 = 0.53 | (08) 0.9968 = 0.0014 | (08) 0.7918 + 0.0524 | (08) 0.7905 + 0.0213 | (08) 25.59 + 1.55 | (13) 28.57 £ 6.53 | (17) 13.19 + 2.13
(12) 1200 £ 10.75 | (07) 065 £029 | (07) 1652 £ 246 | (07) 243+ 058 | (07) 0.9955 £ 00019 | (07) 07536 £ 0.0576 | (07) 0.7486 + 0.0235 | (07) 2880 £ 132 | (12) 3253 £ 8.09 | (12) 1483 £ 186
(00) 0.08 = 0.03 | (00) 0.90 £ 0.09 | (00) 2182 £ 124 | (00)383 =026 | (00) 09897 £ 00013 | (00) 07682 £ 0.0347 | (00) 0.6861 £ 0.0238 | (00) 2140+ 051 | (00) 60.71 =260 ] (00) 35.06 184
TR0 (020932009 | (022043 £ 131 | (02)377 %025 | (02) 09901 0.0014 | (02) 0.7816 £ 0.0389 | (02) 0.7005 £ 00284 | (02) 2056 £ 0.55 | (02) 5205 2 381 | (02) 33.03 £ 107
(i) (151254022 | (08)091£009 | (08) 17.43 £ 0.92 | (08) 3.06 £ 0.18 | (08) 0.9935 £ 0.0008 | (08) 0.8440 £ 0.0240 | (08) 0.7859 + 0.0158 | (08) 23.35 + 0.47 | (13) 19.08 £ 155 | (17) 14.41 £ 2.69
(121370 £ 1205 | (04) 093 000 | (26) 1960 £ 265 | (07) 358 =024 | (07) 09909 £ 00012 | (07) 05089 £ 0.0307 | (07) 07387 £ 0.0222 | (26) 236 £ 117 | (12) 2880 £099 | (12) 17.24 £ 262
(00) 0.08 + 0.02 | (00) 176 £ 050 | (00) 19.13 £ 1.93 | (00) 5.67 £ 0.94 | (00) 0.9793 £ 0.0060 | (00) 0.6982 £ 0.0339 | (00) 0.6208 + 0.0225 | (00) 22.57 £ 0.89 | (00) 68.11 £ 1.02 | (00) 46.66 = 0.43
(24050016 | (02) 179 £050 | (02)19.06 + 192 | (02)5.66 +0.94 | (02) 09794 £ 00060 | (02) 07083 £ 0.0339 | (02) 0.6287 +0.0227 | (02) 2260 £ 0.89 | (02) 5332 250 | (02) 4208 £ 208
fi) (151224005 | (08) 171+ 049 | (08) 16.07 £ 149 | (08) 479 +0.88 | (08) 0.9853 £ 0.0048 | (08) 0.7822 + 0.0308 | (08) 0.7284 + 0.0207 | (08) 24.07 + 0.82 | (13) 33.31 + 2.87 | (17) 2142 £ 0.93
(12) 12.87 + 10.44 | (26) 1.15 + 0.68 | (26) 1749 £ 442 | (26) 4.07 = 2.07 | (26) 0.9870 = 0.0110 | (07) 0.7459 £ 0.0301 | (07) 0.6784 + 0.0211 | (26) 2355 +2.33 | (12) 3411 =195 | (12) 20.61 + 1.34
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Table 4 Average results of Time, SAM, RMSE, sCC, Q-index, PSNR, BRISQUE and NIQE on 03LR2x_bdnO1
database. There are four group of rows (from (i) to (iv)) which correspond to the four different kinds of orthoimages.
Besides, each group contains four rows with the following results: baseline Lanczos-3 interpolation (first row), best re-
construction result (second row), best learning result (third row) and best hybrid result (fourth row). Note that the best
results are highlighted in bold and method’s identification codes are in brackets within the table.

1d. & efficiency Method identification code & metric with reference Id. & metric without reference
Time (s) SAM RMSE ERGAS sCC Q-index SSIM PSNR (dB) BRISQUE NIQE
(00) 0.12  0.07 | (00) 110+ 0.17 | (00) 9.97 £ 1.49 | (00) 4.09 £ 0.73 | (00) 0.9971 £ 0.0009 | (00) 0.7739 £ 0.0424 | (00) 0.8733 £0.0137 | (00) 28.27 £1.33 | (00) 39.92 £3.19 | (00) 19.01 + 108
(24)047£007 | (02) 1124018 | (25)914£115 | (25)374£053 | (25) 09976 £0.0006 | (03) 0.7880 + 0.0419 | (25) 0.8868 £ 0.0120 | (25) 20.00 £ 1.09 | (23) 37.91 £ 250 | (01) 14.45 + 0.54
(.’ J 1484002 | (08) 1.09 £ 0.16 | (08) 7.91 + 1.24 | (08) 3.22 + 0.55 | (08) 0.9982 + 0.0006 | (08) 0.8324 + 0.0458 | (08) 0.9118 + 0.0173 | (08) 30.29 + 1.37 | (17) 20.11 £ 256 | (13) 7.94 £ 0.82
(07) L13£ 016 | (07) 957 £ 114 | (07) 387 = (07) 0.9974 + 0.0006 | (26) 0.8553 + 0.0748 | (07) 0.8997 = 0.0119 | (07) 2859+ 1.02 | (12) 20,23 £ 4.32 | (12) 1165 = 0.5
(00) 0.07 +0.02 | (00) 0.76 =+ 0.26 | (00) 9.76 + 1.53 00) 0.9984 + 0.0007 | (00) 0.8907 + 0.0280 | (00) 0.9065  0.0101 | (00) 2846 + 1.36 | (00) 38.66 +£ 620 | (00) 18.35 £ 1.67
(24) 048 £0.05 | (02)0.76£027 | (25) 877123 25) 0.9987 £ 0.0006 | (25) 0.9016 + 0.0277 | (25) 0.9263 + 0.0089 | (25) 2937+ 1.20 | (24) 36.45 £ 572 | (01) 14.51 £ 0.83
( ( ( (
\ ( (
(
(02)
{
(t

03LR2x_bdn01

( (t

(25 ( 24)

(27) 147£002 | (08)0.76 £ 0.25 | (08) 6.65 + 0.34 (08) 1.97 £ 0.29 | (08) 0.9993 + 0.0002 | (08) 0.9303 + 0.0202 | (08) 0.9421 = 0.0060 | (08) 3172 + 0.45 | (17) 25.82 £ 549 | (13) 6.81 £ 0.73
07)0.78+0.26 | (07) 934+ 0.67 | (07 (07) 0.9986 + 0.0004 | (07) 0.9202 + 0.0220 07) 0.9365 £ 0.0069

13424922 )
00) 12.19 + 0.68
)

04) 2883 £ 128 | (12) 20.20 + 7.64 | (12) 10.91 + 116

00) 0.10 £ 0.07 | (00) 0.96 = 0.05

)

( (00) 0.9968 £ 0.0005 | (00) 0.9282 + 0.0137 | (00) 0.9117 £ 00080 ] (00) 26.46 +0.50 | (00) 3358+ 244 | (00) 18.86 £ 0.75
12) 096 £ 005 | (25) 1087 £ 053 (25) 09975 = 0.0003 | (25) 0.9396 + 0.0116 | (25) 0.9337 = 00064 | (25) 2745 £0.43 | (01) 3LO3£2.99 | (01) 15.44 £ 0.89
08) 097 £ 005 | (08) 7.02 £ 0.20 (os)mim (08) 0.9989 + 0.0001 | (08) 0.9696 + 0.0085 | (08) 0.9587 = 0.0061 | (08) 31.24 = 0.25 | (17) 1927 £ 263 | (13) 6.18 £ 0.48

( (07) 09976 £ 0.0002 | (07) 0.9540 -+ 0.0093 | (07) 0.941 £ 00057 | (07) 27.70 4033 | (12) 1091 £ 496 | (12) 12:63 % 1.66
(00) 1197 £ 108 [ (00) 714 = 142 [ (00) 0.9918 £ 0.0029 | (00) 08952 = 00179 ] (00) 0.8969 = 0.0105 | (00) 26.63 % 0.79 | (00) 4278 £ 108 | (00) 2007 £ 087
24)04T£0.12 [ (02) L78£048 | (25) ILIS =007 | (25)6.68 £ 138 | (25) 0.0928£0.0027 | (03) 0.0074 £ 00161 | (25) 09185 = 00098 | (25) 2722 £ 076 | (01) 3037 £ 136 | (01) 15.04 £ 079
M) LATE001 | (08) 170+ 044 | (08) 848 £ 0.57 | (08)5.07 £ 110 | (08) 0.9958  0.0016 | (08) 0.9505 = 0.0104 | (08) 0.9642 = 0.0054 | (08) 29.61 = 0.58 | (08) 28.68 + 0.40 | (13) 9.17 £ 0.47
(12) 1425 + 068 | (26) 1.64 + 076 | (26) 10.76 £ 227 | (26) 5.06 2,67 | (26) 0.9950 = 00046 | (07) 09246+ 0.0142 | (07) 0.9340 = 0.0077 | (26) 2770+ 192 | (12) 3211 £350 | (12) LL9L £ 0.86

) 0.56 + 0.14

A
27) 147 £ 001

(12)
(
(
(i) ;
(12) 10.15 + 9.09
(
(
21

07) 0.98 +0.05 | (07)10.55 £ 0.39 | (07) 3.67 £ 019

00) 0.07 £ 0.01 | (00) 1.76 + 0.46 0

(iv)

Ta.ble 5 Average results of Time, SAM, RMSE, sCC, Q-index, PSNR, BRISQUE and NIQE on 04LR4x_bdnO1
database. There are four group of rows (from (i) to (iv)) which correspond to the four different kinds of orthoimages.
Besides, each group contains four rows with the following results: baseline Lanczos-3 interpolation (first row), best re-
construction result (second row), best learning result (third row) and best hybrid result (fourth row). Note that the best
results are highlighted in bold and method’s identification codes are in brackets within the table.

1d. & efficiency Method identification code & metric with reference 1d. & metric without reference
04LR4x bdn01

Time (s) SAM RMSE ERGAS sCC Q-index SSIM PSNR (dB) BRISQUE NIQE

00) 0.09 £ 0.03 | (00) 136+ 0.28 | (00) 15.99 +2.77 | (00) 330 £0.75 | (00) 0.9924 £0.0032 | (00) 0.5578 £ 0.0596 | (00) 0.6618  0.0153 | (00) 2420 £ 156 | (00) 64.57 + 450 | (00) 3943 £ 2.83

) )
24)039+006 | (02) 136+0.29 | (02) 1596 + 2.89 5) 328+ 0.71 | (25)0.9924 £ 0.0031 | (23) 0.5587 £ 0.0597 02) 0.6628 £ 00133 | (02) 2422 £ 1.63 | (03) 61.60 £3.75 | (02) 33.50 £ 3.22

(
)0 (

15) 1.07£030 | (08) 1.32 £ 0.24 | (08) 12.71 + 1.43 | (08) 2.61 + 0.38 | (08) 0.9953 + 0.0012 | (08) 0.6386 + 0.0450 08) 0.7411 + 0.0157 | (08) 26.13 £ 1.00 | (13) 34.35 + 8.46 | (17) 18.87 + 1.56
( (12)

2
9

)25
24)0.39+006 | (02)0.94+035 | (02) 1681+ 286 | (25) 251 +0.65 5) 09952 40,0022 | (02) 0.7108 £ 0.0654 02) 0.6959 + 00262 | (25) 2378 £ 1.68 | (02) 5845 £4.75 | (02) 32.23 £ 531

(ii)

08) 2.07 £ 0.53 | (08) 0.9967 + 0.0014 | (08) 0.7815 + 0.0545 | (08) 0.7713 + 0.0220 | (08) 25.44 + 1.50

(
(2
(
129024793 | (07)137+027 | (07) 1533+ 215 | (07)310£058 | (07)0.9932 £ 0.0023 | (26) 0.6560 = 0.0799 | (07) 0.7012 £ 0.0121 | (07) 2452 £ 1.26 | (12) 42.50 + 28.63 22.63 £ 381
(t
(
(
(t

( ( (

( ( (

(15) ( (

( ( ( )

(00) 0.08 +0.02 | (00) 0.95+0.35 | (00) 16.98 + 2.95 00) 2.54 £ 0.67 | (00) 0.9951 + 0.0023 (00) 0.7039 £ 0.0640 (00) 0.6871 £ 0.0260 (00) 23.68 + 156 00) 64.28 £2.80 | (00) 35.77 + 3.69
( ( (02) ( )

(15) 094 +0.19 (l]ﬂ) 0.94 = 0.34 (I]S ) 13.84 £ 2.32 ( 13) 2944 +7.15 (17) 15.62 + 1.86
(12)897+£7.76 | (07)0.96 £ 035 | (07) 16.72 £ 2.44 07 07) 0.9954 £ 0.0020 (07) 0.7438 £ 0.0594 (0 12) 3151 £ 6.66 | (12) 1857 £1.34

16£058 7) 0.7304 £ 00249 | (07) 2378 £1.29

)
. 02) 51444360 | (02) 3357 £ 089
m

13) 20.58 = 1.63 | (17) 14.98 + 1.21

\

(24) 041+ 010 | (02) 1.25 £ 0.09 | (02) 2155+ 1.30 | (02) 3.79 £ 028 | (02) 0.9900 + 0.0014 | (02) 0.7787 + 0.0360 02) 0.6929 + 0.0278
(
(

(12) 9.66 +9.03 | (07) 127 £0.09 | (26) 1997 £ 261 | (07)3.60+0.24 | (07) 0.9907 +0.0012 | (07) 0.8043 £ 0.0319 07) 0.7264 + 0.0220 12) 2677+ 131 | (12) 2029 £ 0.69

(

(2 {

(08) (

M2 ( (

(00) 0.09 £ 0.05 | (00) 1.5 £ 0.08 | (00)21.94 £ 124 | (00) 386 £0.26 | (00) 0.9806 % 00013 | (00) 0.7648 £ 00333 | (00) 0.6755  0.0252 050 [ (00) 60.44+2.23 | (00) 36.78 £ 149

) (t ) (

(t (

( (12)

( {

( (t 00) 21.35 =

( ( (02) 2151 £
(15)0.94 £ 014 | (08) 126009 | (08) 17.60 = 0.92 | (08) 3.09 + 0.18 | (08) 0.9934 + 0.0008 | (08) 0.8397 = 0.0247 | (08) 0.7725 = 0.0153 (us) 23,27 £ 046
(t (t ( 2

(00) 0.08 + 0.05 | (00) 222+ 057 | (00) 1927 L9 | (00)5.71 £ 095 [

00) 0.9789 + 0.0061 | (00) 0.6947 + 0.0345 | (00) 0.6147 + 0.0227 00) 66.81 £0.92 | (00) 45.02 £ 1.73

)
(i) (24) 045+ 0.1 | (02)220 £0.57 | (02) 1919 £1.90 | (02)5.69£0.95 | (02) 0.9791 +0.0061 | (02) 0.7053 £ 0.0345 | (02) 0.6237 £0.0230 | (02) 2254 £ 088 | (02) 5345+ 270 | (02) 41.73 £2.71
i
)

(t (
( ) (
(15)0.90 £ 0.11 | (03) 218 £ 0.57 | (08) 16.27 + 1.47 | (08) 4.85 £ 0.89 | (08) 0.9849 +0.0049 | (08) 0.7776 + 0.0314 | (08) 0.7203 + 0.0209 | (08) 23.96 + 0.80 | (13) 32.91 + 2.95 | (17) 19.87 + 1.44
(12)9.91 + 839 | (26) 1.92 £ 0.90 | (26) 17.87 + 432 | (26) 4.15 + 2.08 | (26) 0.9866 + 0.0113 | (07) 0.7409 + 0.0308 | (07) 0.6704 £ 0.0214 | (26) 23.34 £ 2.23 | (12) 33.69 + 188 | (12) 20.90 £ 1.62

o

Table 6 Average results of Time, SAM, RMSE, sCC, Q-index, PSNR, BRISQUE and NIQE on 05LR2x_bdn05
database. There are four group of rows (from (i) to (iv)) which correspond to the four different kinds of orthoimages.
Besides, each group contains four rows with the following results: baseline Lanczos-3 interpolation (first row), best re-
construction result (second row), best learning result (third row) and best hybrid result (fourth row). Note that the best
results are highlighted in bold and method’s identification codes are in brackets within the table.

1d. & efficiency Method identification code & metric with reference 1d. & metric without reference
Time (s) SAM RMSE ERGAS sCC Q-index SSIM PSNR (dB) BRISQUE NIQE
(00) 0.08 + 0.05 | (00) 2.05+0.24 | (00) 1099 +1.35 | (00) 4.50 £ 0.70 | (00) 0.9965 + 0.0010 | (00) 0.7266 + 0.0459 | (00) 0.8084 % 0.0107 (00) 3732 £1.28 | (00) 16.65 £ 0.83
(20037 £008 | (02) 200 = 0.25 | (25) 10.31 = 1.03 | (25) 4.22 + 0.51 | (25) 0.9969 £ 0.0007 | (03) 07383 £ 00051 | (25) 08232 £ 0.0102 (203843230 | (01) 1175 £0.46
( ( (2 )
( ( (

05LR2x_bdn05

146 £001 | (06)206£025 | (22) ILIS+136 | (22) 457 £0.71 2) 09964 4 0.0010 | (05) 0.7232 4 0.0466 | (18) 0.8043 £ 0.0112 20) 34134323 | (13) 7.17 £ 0.38
) 7)

) (2
838 £6.26 7) 07) 437+ 049 | (07) 0.9967 + 0.0007 | (26) 0.8012 £ 0.0915 | (07) 0.8280 + 0.0115 (12) 19.72 £ 4.55 | (12) 10.34 £ 0.38

2064024 | (07) 1082 £ 1.01

2l
(12)
(00) 0.08 £ 0.03
(2
(2

1281 £ 1.01
1214 £089
19)313£0.72 | (08) 12.53 £0.38
07)312+0.71 | (07) 11.91 £ 0.76

(t
00)7.65+ 149 | (00) 0906+ 0.0033 | (00) 0.8799 + 0.0202
%) T LA | (25) 09915 £ 00030 | (02) 0.8920 £ 0.0176

T4 08) 0.9910 = 0.0031 | (08) 0.8957 & 0,019
(

26) 0.9933 + 0.0057 | (07) 0.9062 + 0.0173

00) 0.8695 + 0.0132 | (00) 26.03 £ 0.69
25) 0.8902 £ 0.0129 | (25) 26.50 + 0.64
08) 0.8982 £ 0.0135 | (08) 26.21 £ 0.26
07) 0.9037 + 0.0114 | (07) 26.66 + 0.56

(00) 1808 £ 112
01) 1334 £ 0.49
13) 744 £ 0.43
12) 1088 £ 063

00) 0.06 £ 0.01 [ (00) 312 071 | (00)
20) 030 £ 003 | (02) 3.09 = 0.72 | (23)
MLBEO0 | (
1288738 |

08) 745 147
26) 5.93 + 2.85

(00) LIS =043 [ (00) 1079 = 138 | (00) 322074 | (00) 0.9980 £ 00008 | (00) 08581 + 00359 | (00) 08558 £ 0.0147 | (00) 27.56 = 110 (00) 1668 £ 0.70
038 £ 001 | (02) 145 = 0.43 | (25) 9.99 = 109 | (25) 2.98 + 0.64 | (25) 0.9983 £ 0.0006 | (02) 08717 +0.0325 | (25) 08663 £ 00140 | (25) 28.22 = 0.93 (01) 1141 £ 0.62
@) ) 151 =006 | (06) L4904 | (05) 1088 LAT | (05) 524+ 067 | (05) 09980 + 00007 | (05) 08536 £ 0.0870 | (18) 0896 £ 0.0153 | (05) 27.47 = 0.8 (13) 5.94 £ 0.98
(12)9.07 £ 667 | (07) 145 £0.42 | (07) 1057 £ 0.57 | (07) 811 =047 | (07) 09982 = 00004 | (07) 0.8821 = 0.0320 | (07) 0.8706 = 0.0127 | (07) 27.60 = 047 (12)897£079
(00) 0.07 £ 0.03 | (00) L84 +008 | (00) 1301 £ 0.6 | (00) 457 =032 | (00) 09964 = 00005 | (00) 09141 £ 00168 | (00) 08692 £ 0.0120 | (00) 25,89 = 043 00) 1736 £ 0.54
. (24033 £009 | (02) 180 = 0.08 | () L8 £ 0.8 | (23) LAT 2025 | (25) 09970 = 00004 | (02) 09249 + 00150 | (25) 08913 £ 0.0107 | (25) 26.68 = 036 (O 1193 £ 027
() (T L2005 | (06) L86£009 | (08) IL6G £ 0.05 | (08) 209+ 019 | (08) 09971 £ 0.0003 | (08) 0.9231  0.0174 | (14) 0.8662 £ 00125 | (08) 26.83 £ 0.11 13) 5.51 £ 0.36
(1211292832 | (07) L84 £008 | (07) 11,65 = 0.36 | (07) 405 + 0.19 | (07) 0.9971 £ 0.0003 | (07) 0.9374 = 0.0134 | (07) 0.8981 = 0.0114 | (07) 26.84 = 0.27 12)9.55 £ 0.4
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Table 7 Average results of Time, SAM, RMSE, sCC, Q-index, PSNR, BRISQUE and NIQE on 06LR4x_bdn05
database. There are four group of rows (from (i) to (iv)) which correspond to the four different kinds of orthoimages.
Besides, each group contains four rows with the following results: baseline Lanczos-3 interpolation (first row), best re-
construction result (second row), best learning result (third row) and best hybrid result (fourth row). Note that the best
results are highlighted in bold and method’s identification codes are in brackets within the table.

ooLR b bangs | ey Method identification code & metric with reference Td. & metric without reference
Time (s) SAM RMSE ERGAS sCC Qeindex SSIM PSNR (dB) BRISQUE NIQE
(00) 0.07 £ 0.02 [ (00)222£ 032 [ (00) 16:66= 260 | (00) 3432073 [ (00) 09918 0.0032 | (00) 0.5264 = 0.0623 | (00) 06073 £ 00110 [ (00) 2382 £ 1.2 [ (00) LT3 £273 [ (00) 3385 = 180
(24)036£ 008 | (02) 216 + 032 | (02) 1657 %277 | (25) 3422060 | (25) 09919 % 0.0081 | (02) 0.5319 £ 0.0639 | (02) 0.6200 £ 00095 | (02) 2388 £ 150 | (03) 5789 £ 138 | (01) 3101 = 1.4
0 (15095 021 | (08)220+030 | (08) 13.66 = 131 (03)2501037 (08) 0.9946 + 0.0013 | (08) 0.5078 + 0.0407 | (08) 0.6731 £ 0.0163 | (08) 25.49 = 0.85 | (13) 35.97 £ 6.50 | (17) 16.15 + 1.02
(1214134244 | (O07)220£031 | (07) 1620 %200 | (07)3.27 =056 | (07) 0.9925 = 0.0024 | (26) 0.6142 £ 0.0917 | (07) 06330 £ 00127 | (07) 2002 £ 110 | (12) 4208 £ 2407 | (12) 19.67 £ 147
(00) 0.06 + 0.01 | (00) L6 £ 060 | (00) 1760+ 6.10 | (00) 263+ 738 | (00) 0.9947 £ 0.0961 | (00) 0.6777 +0.0975 | (00) 0.6358 = 0.0432 (00) 61.25 + 16,13 | (00) 3400 + 11.44
(24) 031004 | (02) 155 + 0.60 | (02) 1730 % 6,07 | (25)260 = 7.60 | (02) 09948 = 0.9507 | (02) 0.6806 + 0.0038 | (02) 0.6538 £ 00451 | (25) 2346 + 10.80 | (02) 36.06 £ 1238 | (01) 3273 = 12.10
) (1) L00£ 018 | (08) 139 £ 46081 | (08) 14.70 + 4.91 | (08) 2.20 + 6.25 | (08) 0.9963 + 0.7471 | (08) 0.7484 £ 0.0727 | (08) 0.7067 = 0.0412 | (08) 24.89 = 11.39 | (13) 3153 + 1.39 | (17) 14.85 = 10.08
(12) 1580+ 403 | (07) 139 £ 133110 | (07) 1750 % 6.16 | (07) 257 =736 | (07) 0.9950  0.9167 | (07) 0.7010 + 0.0865 | (07) 06677 £ 00437 | (07) 2337 £ 10.63 | (12) 3292 £ 424 | (12) 1801 £ 751
(00) 0.06 £ 0.03 ] (00) 201 £0.10 | (00) 2241+ 121 [ (00)3.94 =025 | (00) 0.9892 £ 0.0014 | (00) 0.7532 + 0.0366 | (00) 06407 £ 00242 [ (00) 2117+ 048 | (00) 5888 £ 110 | (00) 35.20 £ 0.77
(24037008 | (02) 197 010 | (02)2204% 128 | (02) 3872028 | (02) 0.9895 = 0.0015 | (02) 0.7685 = 0.0368 | (02) 06632 £ 00267 | (02) 2031 £ 032 | (02)50.83 £ 238 | (01) 3874 =093
(@ (10) 107017 | (08)202£0.11 | (08) 18.29 £ 088 (08)321i018 (08) 0.9928 + 0.0008 | (08) 0.8241 + 0.0278 | (08) 0.7267 £ 0.0176 | (08) 22.93 = 0.43 | (13) 22.46 + 2.64 | (17) 1493 £ 175
(12) 17814365 | (7201 £0.11 | (26) 2018 %247 | (07) 3712024 | (07) 09902 £ 0.0012 | (07) 0.7900 + 0.0335 | (07) 06850 £ 00228 | (26) 2069 £ 101 | (12) 2014 £ 100 | (12) 1955 £ 273
(00) 0.05 + 0.01 | (00) 337 =078 [ (00) 1981 % 186 | (00)5.88 = 0.97 | (00) 0.9777 £ 0.0065 | (00) 0.6818 +0.0364 | (00) 05928 £ 00236 | (00) 2226 £ 083 | (00) 6362+ 117 | (00) 38.80 = 178
(24035012 | (02)3.30 2076 | (0219732 185 | (02) 585 (02) 09779 £ 0.0064 | (02) 0.693 +0.0360 | (02) 0.6045 £ 00235 | (02) 2220+ 083 | (02) 57.02 £ 191 | (28) 3730 = 119
) (15087013 | (08)337£079 | (08) 17.04 £ 142 | (08) 5.08 £ 0.93 | (05) 0.9834 £ 0.0054 | (08) 0.7598 + 0.0344 | (08) 0.6892 = 0.0236 | (08) 23.56 = 0.73 | (13) 32.80 + 281 | (17) 16.15 £ 0.76
(12) 28 260 | (07)337£078 | (26) 19204399 | (26) 445 + 2.14 | (26) 0.9847 £ 0.0125 | (07) 0.7236 = 0.0333 | (07) 06419 £ 00227 | (26) 2260 £ 188 | (12) 36,74 £ 091 | (12) 19.67 £ 0.6

6. Conclusions

A practical overview and comparison analysis has been presented on the perfor-
mance of single-frame super-resolution methods applied to remote sensing images.
From the set of 27 methods analysed over six simulated image collections, the best
four methods are 08SDS (Dong et al.2011), 25FSR (Zhao et al. 2015),
07LSE (Freedman and R. 2011) and 03GPP (Jian, Xu, and Shum//2008).
These methods are of type sparse coding, PSF deconvolution, hybrid and
gradient profile type, respectively. Note that experiments have been conducted
using the default settings of SR codes in order to perform a comparison as fair as
possible considering the high variety of techniques. However, tuning parameters of
some methods might improve their corresponding results.

Although 08SDS (Dong et al. [2011) shows the best general performance,
there are several important considerations to point out. In particular three practical
conclusions arise from this work: (i) learning-based methods tend to outperform
the rest of SR techniques in remote sensing when considering moderate up-scaling
factors and reduced levels of noise, (ii) reconstruction-based and hybrid methods
are able to improve their results with higher scaling factors and levels of noise,
although PSF deconvolution methods depend on the quality of the PSF kernel
characterisation, and (iii) Lanczos-3 interpolation gives better results than expected
especially with noisy images.

Learning-based methods use external training sets to learn high-resolution struc-
tures, therefore it seems clear that these methods are the best when relevant train-
ing examples are available. However, when not enough samples are available, recon-
struction and hybrid methods are suggested instead. Within all learning techniques,
sparse code methods have shown to be the most effective ones mainly because there
is not any neighbourhood or functional constraint in the learning process, as in the
case of neighbourhood embeddings or mappings.

In general, the increase in the up-scaling resolution factor (from 2x to 4x) and
in the amount of noise (from noiseless to ¢ = 0.05 additive white Gaussian noise)
decreases significantly the performance of all the tested SR methods. Although
learning-based methods have shown to perform well under any imaging model, it
is important to remark that reconstruction-based and hybrid methods tend to be
more robust to high up-scaling factors and levels of noise because their performance
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drops are less pronounced. As differences between LR and HR domains become
bigger, it is more difficult to learn a model to effectively fill the gap between LR
and HR. Considering both reconstruction-based and hybrid methods, the former
type seems to be more robust to noise and the latter more robust to high scaling
factors.

Finally, it is worthwhile indicating that the baseline method (00IntL3
(Lanczos-3 Interpolation)) provides better results than expected as compared
to the most of SR methods analysed in this work.
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