
Exploiting Task and Data Parallelism in

ILUPACK’s Preconditioned CG Solver on

NUMA Architectures and Many-core Accelerators

José Ignacio Aliagaa, Rosa M. Badiab, Maria Barredaa, Matthias Bollhöferc,
Ernesto Dufrechoud, Pablo Ezzattid, Enrique S. Quintana-Ort́ıa

aDpto. de Ingenieŕıa y Ciencia de Computadores, Universitat Jaume I, Castellón, Spain.
bBarcelona Supercomputing Center (BSC-CNS) and Artificial Intelligence Research

Institute (IIAA). Spanish National Research Council (CSIC), Barcelona, Spain.
cInstitute of Computational Mathematics, TU Braunschweig, Braunschweig, Germany.

dInstituto de la Computación, Universidad de la República, Montevideo, Uruguay.

Abstract

We present specialized implementations of the preconditioned iterative linear
system solver in ILUPACK for Non-Uniform Memory Access (NUMA) plat-
forms and many-core hardware co-processors based on the Intel Xeon Phi
and graphics accelerators. For the conventional x86 architectures, our ap-
proach exploits task parallelism via the OmpSs runtime as well as a message-
passing implementation based on MPI, respectively yielding a dynamic and
static schedule of the work to the cores, with different numeric semantics
to those of the sequential ILUPACK. For the graphics processor we exploit
data parallelism by off-loading the computationally expensive kernels to the
accelerator while keeping the numeric semantics of the sequential case.

Key words: Sparse linear systems, preconditioned iterative solvers,
Conjugate Gradient (CG) method, task and data parallelism, multi-core
processors, Intel Xeon Phi, graphics processing units (GPUs)

Email addresses: aliaga@icc.uji.es (José Ignacio Aliaga), rosa.m.badia@bsc.es
(Rosa M. Badia), mvaya@icc.uji.es (Maria Barreda), m.bollhoefer@tu-bs.de
(Matthias Bollhöfer), edufrechou@fing.edu.uy (Ernesto Dufrechou),
pezzatti@fing.edu.uy (Pablo Ezzatti), quintana@icc.uji.es
(Enrique S. Quintana-Ort́ı)

Preprint submitted to Parallel Computing July 27, 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/75987434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

The solution of large sparse systems of equations is a key linear alge-
bra problem arising, among others, in quantum physics, circuit and device
simulation, and in general all sorts of applications involving the discretiza-
tion of partial differential equations (PDEs), nonlinear sparse equations, and
large-scale eigenvalue computations.

ILUPACK1 (incomplete LU decomposition PACKage) is a numerical pack-
age that contains highly efficient multilevel incomplete LU (ILU) factoriza-
tion solvers, based on Krylov subspace methods [1], for large-scale sparse
application problems with up to millions of equations [2, 3, 4]. For 3D prob-
lems [5], ILUPACK often outperforms direct sparse methods [6].

In past work, we proposed the exploitation of task-level parallelism in
ILUPACK’s preconditioned Conjugate Gradient (PCG) solver, via OpenMP2

for shared memory parallel computers [7] and MPI3 for small clusters of
multicore processors [8]. More recently, in [9] we refurnished our original
OpenMP version of ILUPACK, porting it to the OmpSs4 data-flow task par-
allel framework. Furthermore, there we introduced task priorities to acceler-
ate the execution of critical tasks and merged small suboperations in the PCG
iteration to reduce task management overhead. In these task parallel solvers,
the sequential semantics of ILUPACK are traded off for increasing levels of
task concurrency. Alternatively, in [10] we explored an approach that lever-
ages data-level parallelism in the application of ILUPACK’s preconditioner
while preserving the numerical semantics of a sequential execution. This
alternative employs NVIDIA’s CUDA5 programming interface to obtain a
parallel execution on multicore servers equipped with a graphics accelerator
(or GPU) by off-loading the computationally-intensive parts to the GPU.

In this work we revisit our task parallel and data parallel versions of
ILUPACK, making the following new contributions:

• Our task parallel implementations target a pair of “conventional” x86-
based architectures with large numbers of cores: an Intel Xeon Phi
60-core accelerator and a NUMA (non-uniform memory access) server

1http://ilupack.tu-bs.de
2http://www.openmp.org
3http://www.mpi-forum.org
4https://pm.bsc.es/ompss
5http://www.nvidia.com/object/cuda

2

with 4 AMD Opteron 6276 sockets and 64 cores. For the data parallel
version, we consider a Kepler GPU with 2,496 CUDA cores.

• For the task parallel version of ILUPACK based on OmpSs, we reformu-
late our previous implementation to exploit nested parallelism in order
to tackle the ample hardware concurrency of the Intel- and AMD-based
systems. In addition, we analyze the benefits of a “scattered” mapping
of the threads on the Intel Xeon Phi and we enhance the solver to pro-
duce a NUMA-aware execution for the AMD server.
Alternatively, on these two conventional platforms we also explore the
use of the MPI-based implementation of ILUPACK to extract task par-
allelism and transparently deal with NUMA effects. On the Intel Xeon
Phi, we expose the similarities between the thread mapping strategy
and the MPI rank mapping policy in this case.

• We enhance our previous data parallel, GPU-enabled implementation
to off-load the sparse matrix-vector (SpMV) product to the GPU in ad-
dition to the application of the preconditioner during the PCG method.

• Finally, we use a common reference application to experimentally eval-
uate these parallelization alternatives (OmpSs or MPI combined with
task parallelism vs CUDA combined with data parallelism), target plat-
forms (AMD x86 many-core server, Intel Xeon Phi accelerator, NVIDIA
GPU) and numerical semantics (sequential vs task parallel) from the
perspectives of performance, convergence rate and numerical accuracy.

The rest of the paper is structured as follows. In section 2 we review the
basic principles of the multilevel preconditioned solver in ILUPACK, and its
task parallel variant. In sections 3 and 4, we introduce the main changes
(improvements) applied, respectively, to the task parallel and data parallel
implementations. In section 5 we evaluate the impact of these modifications
and compare the solvers using a common experimental framework. Finally,
in section 6 we close the paper with a few concluding remarks.

2. Overview of ILUPACK

Consider the linear system Ax = b, with A ∈ Rn×n sparse, b ∈ Rn,
and x ∈ Rn the sought-after solution. ILUPACK integrates an “inverse-
based approach” into the ILU factorization of matrix A, in order to obtain
a multilevel preconditioner. In this paper, we only consider systems with A
symmetric positive definite (s.p.d.), on which PCG is applied.

3

A→M O0. Preconditioner computation
Initialize x0, r0, z0, d0, β0, τ0; k := 0
while (τk > τmax) Loop for iterative PCG solver

wk := Adk O1. SpMV
ρk := βk/d

T
kwk O2. dot product

xk+1 := xk + ρkdk O3. axpy
rk+1 := rk − ρkwk O4. axpy
zk+1 := M−1rk+1 O5. Apply preconditioner
βk+1 := rTk+1zk+1 O6. dot product
dk+1 := zk+1 + (βk+1/βk)dk O7. axpy-like
τk+1 :=‖ rk+1 ‖2 O8. vector 2-norm
k := k + 1

endwhile

Figure 1: Algorithmic formulation of the preconditioned CG method. Here, τmax is an
upper bound on the relative residual for the computed approximation to the solution.

Figure 1 offers an algorithmic description of the PCG method. The com-
putation of the preconditioner M is the first step of the solver (O0). The
subsequent iteration involves a SpMV (O1), the application of the precon-
ditioner (O5), and several vector operations (dot products, axpy-like up-
dates, 2-norm; in O2–O4 and O6–O8). In the remainder of this section,
we mainly focus on the computation and application of the preconditioner,
which are by far the most challenging operations.

2.1. Sequential (and data parallel) ILUPACK

Computation of the preconditioner. This operation of ILUPACK relies on
the Crout variant of the incomplete Cholesky (IC) factorization, yielding
the approximation A ≈ LΣLT , with L ∈ Rn×n sparse lower triangular and
Σ ∈ Rn×n diagonal. Before the factorization commences, a scaling and a
reordering (defined respectively by P,D ∈ Rn×n) are applied to A in order to
improve the numerical properties as well as reduce the fill-in in L. After these
initial transforms, the factorization operates on Â = P TDADP . At each step
of the Crout variant, the “current” column of Â is initially updated with
respect to the previous columns of the triangular factor L, and the current
column of L is then computed. An estimation of the norm of the inverse of
L, with the new column appended, is obtained next. If this estimation is
below a predefined threshold κ, the new column is accepted into the factor;
otherwise the updates are reversed, and the corresponding row and column
of Â are moved to the bottom-right corner of the matrix. This process is

4

Figure 2: A step of the Crout variant of the preconditioner computation.

graphically depicted in Figure 2. Once Â is completely processed in this
manner, the trailing block only contains rejected pivots, and a partial IC
factorization of a permuted matrix is computed:

P̂ T ÂP̂ ≡
[
B FT

F C

]
=

[
LB 0
LF I

] [
DB 0
0 Sc

] [
LT
B LT

F

0 I

]
+ E. (1)

Here, ‖L−1
B ‖ / κ and E contains the elements dropped during the IC factor-

ization. Restarting the process with A = Sc, we obtain a multilevel approach.

Application of the preconditioner. For simplicity, let us next remove the
subscripts in the corresponding operation (O5) of Figure 1: z := M−1r.
From (1), the preconditioner can be recursively defined, at level l, as

Ml = D−1PP̂

[
LB 0
LF I

] [
DB 0
0 Ml+1

] [
LT
B LT

F

0 I

]
P̂ TP TD−1, (2)

where M0 = M . Operating properly on the vectors,

P̂ TP TD−1z = ẑ =

[
ẑB
ẑC

]
, P̂ TP TDr = r̂ =

[
r̂B
r̂C

]
, (3)

and applying LF = FL−T
B D−1

B (derived from (1)), we can expose the following
computations to be performed at each level of the preconditioner [10]:

Before: r̂ := P̂ TP TDr, Solve LBDBL
T
BsB = r̂B for sB,

tB := FsB, yC := r̂B − tB,
Recursive step: Solve Ml+1ẑC = yC for ẑC ,
After: t̂B := F T ẑC , Solve LBDBL

T
B ŝB = t̂B for ŝB,

ẑB := sB − ŝB, z := DPP̂ ẑ.

(4)

5

To conclude this subsection, we emphasize that the data parallel version
of ILUPACK proceeds exactly in the same manner as the sequential imple-
mentation and, therefore, preserves the semantics of a serial execution.

2.2. Task parallel ILUPACK

Computation of the preconditioner. The task parallel version of this proce-
dure exploits the connection between sparse matrices and adjacency graphs [1],
extracting parallelism via nested dissection. Consider for example a graph-
based symmetric reordering, defined by a permutation P̄ ∈ Rn×n, such that

P̄ TAP̄ =

[
A00 0 A02

0 A11 A12

A20 A21 A22

]
. (5)

Computing a partial IC factorizations of the two leading blocks, A00 and A11,
yields the following partial approximation of P̄ TAP̄L00 0 0

0 L11 0

L20L21 I

D00 0 0

0 D11 0

0 0 S22

LT
00 0 LT

20

0 LT
11 L

T
21

0 0 I

+E01,

where
S22 = A22 − (L20D00L

T
20)− (L21D11L

T
21) + E2 (6)

is the approximate Schur complement. By recursively proceeding in the same
manner with S22, the IC factorization of P̄ TAP̄ is eventually completed.

The block structure in (5) exposes a coarse-grain concurrency during these
computations. Concretely, the permuted matrix there can be decoupled into
two submatrices, so that the IC factorizations of the leading block of both
submatrices can be concurrently obtained:

A22 = A0
22 + A1

22 ,

[
A00 A02

A20 A0
22

]
=

[
L00 0
L20 I

][
D00 0

0 S0
22

][
LT
00 LT

20

0 I

]
+E0,

[
A11 A12

A21 A1
22

]
=

[
L11 0
L21 I

][
D11 0

0 S1
22

][
LT
11 LT

21

0 I

]
+E1.

(7)

Then, we can also compute in parallel the Schur complements corresponding
to both partial approximations

S0
22 = A0

22 −
(
L20D00L

T
20

)
+ E0

2 ; S1
22 = A1

22 −
(
L21D11L

T
21

)
+ E1

2 .

6

T0 T1 T2 T3

T5T4

T6

Figure 3: Dependency tree of the diagonal blocks. Task Tj is associated with block Ajj .

However, the construction of (6) involves a synchronization before the addi-
tion of these two blocks can be computed

E2 ≈ E0
2 + E1

2 → S22 ≈ S0
22 + S1

22. (8)

To unveil increasing amounts of task parallelism, we can identify a larger
number of independent diagonal blocks, by applying permutations analogous
to P̄ on the two leading blocks. For example, by reordering and renaming
the blocks properly, a block structure similar to (5) is obtained, from which
four submatrices can be disassembled:

A00 0 0 0 A04 0 A06

0 A11 0 0 A14 0 A16

0 0 A22 0 0 A25 A26

0 0 0 A33 0 A35 A36

A40A41 0 0 A44 0 A46

0 0 A52A53 0 A55 A56

A60A61A62A63 A64A65 A66

 →
Ā00 =

A00 A04 A06

A40

A60

A0
44 A0

46

A0
64 A0

66

Ā11 =

A11 A14 A16

A41

A61

A1
44 A1

46

A1
64 A1

66

Ā22 =

A22 A25 A26

A52

A62

A2
55 A2

56

A2
65 A2

66

Ā33 =

A33 A35 A36

A53

A63

A3
55 A3

56

A3
65 A3

66

(9)

Figure 3 illustrates the dependency tree for the factorization of the diagonal
blocks in (9). The edges of the preconditioner directed acyclic graph (DAG)
define the dependencies between the diagonal blocks (tasks), i.e., the order
in which these blocks of the matrix have to be processed.

The task parallel version of ILUPACK partitions the original matrix into
a number of decoupled blocks, and then delivers a partial IC factorization
during the computation of (7), with some differences with respect to the
sequential procedure. The main change is that the computation is restricted
to the leading block, and therefore the rejected pivots are moved to the
bottom-right corner of the leading block; see Figure 4. Although the recursive
definition of the preconditioner, shown in (2), is still valid in the task parallel
case, some recursion steps are now related to the edges of the corresponding
preconditioner DAG. Different preconditioner DAGs thus involve distinct

7

Figure 4: A step of the Crout variant of the parallel preconditioner computations.

recursion steps yielding distinct preconditioners, which nonetheless exhibit
close numerical properties to that obtained with the sequential ILUPACK [7].

Application of the preconditioner. As the definition of the recursion is main-
tained, the operations to apply the preconditioner, in (4), remain valid. How-
ever, to complete the recursion step in the task parallel case, the precondi-
tioner DAG has to be crossed two times per solve zk+1 := M−1rk+1 at each
iteration of the PCG: once from bottom to top and a second time from top
to bottom (with dependencies/arrows reversed in the DAG).

Other operations in the iteration. If the vectors involved in the PCG are
partitioned conformally to matrix A, see e.g. (9), the SpMV and axpy-
like kernels only operate with the data associated with the leaves of the
preconditioner DAGs. For example, for a matrix partitioned as in (9), the
SpMV (O1) is decoupled into four matrix-vector products, with Ā00, Ā11,
Ā22 and Ā33, which are accumulated as part of the subsequent dot product
(O2) [7]. In consequence, the computations with each one of these four leaves
in SpMV is fully independent from the others. On the other hand, the dot
and the 2-norm require a reduction (synchronization) to obtain the result.

3. Tuning the Task Parallel ILUPACK on Many-core Architectures

3.1. OmpSs implementations

OmpSs is a task-based programming model that detects data dependen-
cies between tasks at execution time, with the help of directionality clauses

8

embedded in the code as OpenMP-like directives. With this information,
OmpSs implicitly generates a task graph during the execution that is simul-
taneously employed by the threads to exploit the task parallelism implicit to
the operation via a dynamic out-of-order but dependency-aware schedule.

3.1.1. Exploiting nested parallelism

The operations that appear in the iterative PCG solve (while loop in Fig-
ure 1) define a partial order which enforces an almost strict serial execution.
Specifically, at the (k + 1)-th iteration

. . .→ O7→
(k + 1)-th iteration

O1→ O2→ O4→ O5→ O6→ O7→ O1→ . . .

must be computed in that order, but O3 and O8 can be computed any
time once O2 and O4 are respectively available. Further concurrency can
be exposed by dividing some of these operations into subtasks, as described,
for example, at the end of the previous section for the SpMV involving (9).

Handling the dependencies is easy at the task/subtask levels but rapidly
becomes a burden for the OmpSs runtime when the number of cores in the
target architecture is large. This scenario asks for a high number of (sub)tasks
which, in ILUPACK, necessarily exhibit a small computational cost except
for the operations involving the leaf nodes of the preconditioner DAG. In [10]
we increased the granularity of the subtasks by modifying the code to merge
three pairs of operations in the PCG solve into a single “group” of sub-
tasks each: O1+O2, O3+O4 and O6+O8; see Figure 1. For example,
the SpMV+dot in O1+O2, applied to (9), are combined by merging each
one of the small matrix-vector products w̄i := Āiidk, i = 0, . . . , 3, with the
reduction of the corresponding elements of O2. Additionally, the ordered ex-
ecution of the groups was controlled by inserting explicit barriers (#pragma
omp barrier) between O1+O2, O3+O4, O5, O6+O8 and O7.

In the new implementation, we eliminate the explicit barriers and in-
stead rely on OmpSs to elegantly deal with the nested parallelism exhibited
by the task/subtask dependencies. Concretely, the nested variant defines
O1+O2, O3+O4, O5, O7 and O6+O8 as five coarse-grain OmpSs tasks
(via #pragma omp task) and off-loads the complete detection and control of
the dependencies to the OmpSs runtime. In addition, this version also di-
vides these five macro-operations into fine-grain subtasks, and merges pairs
of them as described above. In order to illustrate this, consider for example

9

O1+O2, consisting of the SpMV wk := Adk and the dot ρk := βk/d
T
kwk.

The code that performs this operation is annotated as follows:

1 // SpMV_DOT computes w_k := A * d_k and rho_k := beta_k / (d_k^T * w_k)

2 // Coarse -grain task

3 #pragma omp task input (n, beta , d[0:n-1]) output (w[0:n-1], rho)

4 {

5 SpMV_DOT(int *n, double *beta ,

6 double d[], double w[], double *rho) {

7 // Initialization code ...

8 for (id_task = 0; id_task < num_leaves_in_DAG; id_task ++) {

9 // Fine -grain (sub)task

10 #pragma omp task

11 {

12 SpMV_DOT_LEAF(int *task_id , int *n, double *beta ,

13 double d[], double w[], double *rho) {

14 // Merged SpMV and DOT operating with leaf task_id ...

15 }

16 }

17 }

18 // Termination code ...

19 }

20 }

For simplicity, we do not illustrate how to deal with the reduction on ρk
(variable rho) in the previous excerpt of code.

3.1.2. Mapping threads to cores on the Intel Xeon Phi

The Intel Xeon Phi supports up to 4 hardware threads per physical core,
while our task parallel approach spawns one OmpSs thread per leave in
the preconditioner DAG. A critical aspect in this platform is how to bind
the OmpSs threads to the hardware threads/cores in order to distribute
the workload. The mapping is controlled using the NANOS6 runtime en-
vironment variable NX ARGS, passing the appropriate values via arguments
--binding stride, --binding start and --smp workers. Specifically, the
first argument governs how many hardware threads are to be skipped be-
tween the mapping of two consecutive OmpSs threads; the second identifies
the starting point (first hardware thread) for a strided round-robin map-
ping; and the third argument specifies the total number of OmpSs threads.
Thus, for example, by setting --binding stride=1 we completely populate
a core with 4 OmpSs threads before mapping threads to a new core. On
the other extreme, --binding stride=4 populates all cores with a single,
two,. . . OmpSs thread(s) before assigning a second, third,. . . thread to them.

6http://pm.bsc.es/nanox

10

3.1.3. NUMA-aware execution on the AMD server

In order to attain high performance on the four-socket target AMD server,
it is important to accommodate a NUMA-aware execution. This is achieved
in our implementation via the use of the NANOS environment variable
NX ARGS with the argument --schedule=socket combined with a careful
modification of the ILUPACK code. Concretely, our code records in which
socket each task was executed during the initial calculation of the precondi-
tioner. This information is subsequently leveraged, during all iterations of
the PCG solve, to enforce that tasks which operate on the same data that
was generated/accessed during the preconditioner calculation are mapped to
the same socket where they were originally executed. The following fragment
of code illustrates how this is achieved in the merged code for O1+O2:

1 for (id_task = 0; id_task < num_leaves_in_DAG; id_task ++) {

2 // Fine -grain (sub)task

3 socket = preconditioner_socket[task_id];

4 nanos_current_socket(socket);

5 #pragma omp task

6 {

7 SpMV_DOT_LEAF(int *task_id , int *n, double *beta ,

8 double d[], double w[], double *rho) {

9 // Merged SpMV and DOT operating with leaf task_id ...

10 }

11 }

12 }

This strategy ensures that, during the PCG iteration, a task is always ex-
ecuted on (any core of) the same socket that computed the correspond-
ing task during the computation of the preconditioner (recorded into array
preconditioner socket) using NANOS routine nanos current socket().

3.2. MPI implementations

For this particular work, we ported the task-parallel MPI implementa-
tion of ILUPACK described in [8] to the Intel Xeon Phi accelerator and the
AMD server. The MPI implementation also exploits the task concurrency
explicitly exposed by the preconditioner DAG during the calculation of the
preconditioner and the subsequent PCG iteration, but employs MPI ranks
(i.e., processes) instead of the threads leveraged in the OmpSs version. A
second major difference is that, in the MPI implementation, the tasks are
mapped to the MPI ranks a priori, that is, before the execution commences.
The execution with the MPI implementation is thus the result of a static
schedule (static mapping of tasks to MPI ranks) instead of a dynamic one as
occurs with the OmpSs implementation.

11

To distribute the MPI ranks among the processor cores of the Intel Xeon
Phi, we include the options:

-genv I_MPI_PIN_MODE=lib \

-genv I_MPI_PIN_PROCESSOR_LIST=\$mapping

in the mpirun invocation, with a list of cores in $mapping specifying the
binding of ranks to cores.

To reduce inter-process communication, the original MPI implementa-
tion already ensures that the same MPI rank executes the operations asso-
ciated with the “same” tasks of the preconditioner calculation and the PCG
iteration. Compared with this, we note that we had to manually modify
the OmpSs version to enforce a similar behaviour at the socket level in the
NUMA-aware implementation for the AMD server.

4. Data Parallel ILUPACK

In [10], we introduced two data parallel variants of ILUPACK that off-
load the computationally-intensive parts of the PCG iteration to a graphics
accelerator. The most efficient variant among these two performs the com-
plete application of the multilevel preconditioner, see (4), on the GPU, via
ad-hoc kernels and the CUDA and CUSPARSE libraries [11]. In more detail,
this implies that the residual rk+1 is transferred to the GPU when the precon-
ditioner is to be applied; the complete application (all levels) proceeds in the
accelerator yielding zk+1 := M−1rk+1; and the residual zk+1 is retrieved back
to the CPU upon completion. However, due to the complexity of ILUPACK,
in both variants the SpMV and the vector operations of the PCG iteration
were performed using the original code in the CPU.

For this work, we have enhanced our previous implementation to off-load
the SpMV kernel also to the GPU. This requires that, at the beginning of
each PCG iteration, vector dk is transferred from the CPU to the GPU; the
SpMV wk := Adk is computed there; and the result wk is then recovered
to the CPU memory. Matrix A is transferred to the GPU memory before
the PCG iteration commences and resides there, together with the precon-
ditioner data, for the complete duration of the solve. The matrix is stored
in CSR format [1] and the matrix-vector product is performed using the im-
plementation of this kernel from CUSPARSE. In addition, we note that in
general the vector operations contribute little to the computational cost of
the solver. Therefore, these operations are performed in the CPU.

12

5. Experimental Results

5.1. Set up

All the experiments reported next were performed using ieee 754 real
double-precision arithmetic on three platforms:

• xeon phi: A board with an Intel Xeon Phi 5110P co-processor at-
tached to a server through a PCI-e Gen3 slot. (The tests on this board
were ran in native mode and, therefore, the specifications of the server
are irrelevant.) The accelerator board comprises 60 x86 cores running
at 1,053 MHz and 8 Gbytes of GDDR5 RAM. The compiler and MPI
implementation are part of Intel icc 13.1.3 20130607 (Intel MPI Li-
brary for Linux* OS, Version 4.1 Update 1 Build 20130507).

• opteron: A server with four AMD Opteron 6276 (16-core) processors
at 2.1 GHz and 64 Gbytes of DDR3 RAM. The compiler is Intel icc
11.1 20100806 and the MPI implementation is OpenMPI 1.6.

• K20: An NVIDIA K20 board (2,496 cores at 706 MHz) with 6 Gbytes
of GDDR5 RAM, connected via a PCI-e Gen3 slot to a server equipped
with an Intel i3-3220 processor (2 cores at 3.4 GHz) and 16 Gbytes of
DDR3 RAM. The compiler for this platform is gcc v4.4.7, and the
codes are linked to CUDA 5.0 and CUSPARSE 5.0.

Other software included ILUPACK (2.4), the Mercurium C/C++ compil-
er/Nanox (releases 1.99.6/0.9a for xeon phi and 1.99.1/0.8a for opteron)
with support for OmpSs, and METIS (4.0.01) and ParMETIS (4.0.2) for the
graph reorderings with the OmpSs and MPI implementations respectively.

For the analysis, we employed a s.p.d. linear system arising from the finite
difference discretization of a 3D Laplace problem, with instances of different
size; see Table 1. In the experiments, all entries of the right-hand side vector
b were initialized to 1, and the PCG was started with the initial guess x0 ≡ 0.
For the tests, the parameters that control the fill-in and convergence of the
iterative process in ILUPACK were set as droptool = 1.0E-2, condest = 5,
elbow = 10, and restol = 1.0E-6.

5.2. Task parallel ILUPACK

In this subsection we analyze the performance of different task parallel
implementations of ILUPACK, based on MPI and OmpSs, on xeon phi and
opteron. For each platform, we employ the largest problem size that fits

13

Matrix Dimension n #non-zeros Density (%)

Laplace

A100 1,000,000 3,970,000 3.97E-6
A126 2,000,376 7,953,876 1.99E-6
A159 4,019,679 16,002,873 9.90E-7
A171 5,000,211 19,913,121 7.96E-7
A182 6,028,568 24,014,900 6.61E-7
A191 6,967,781 27,762,041 5.72E-7
A200 8,000,000 31,880,000 4.98E-7
A318 32,157,432 128,326,356 1.24E-7

Table 1: Matrices employed in the experimental evaluation.

into its main memory. The experiments report the speed-up compared with
the sequential implementation of ILUPACK, running on the corresponding
platform (a single core of xeon phi or opteron). Therefore, the results
show the execution time of the parallel solver normalized with respect to
the sequential version. In order to expose enough task concurrency, for the
task parallel cases we partition the matrix into DAGs with one leaf per
worker (either an OmpSs thread or an MPI rank), while the sequential version
“solves” a DAG/matrix with a single task. We emphasize that the semantics
of the task parallel version differ with the number of leaves (hereafter l)
in the preconditioner DAG, and they are also different from the sequential
semantics. However, we ensure that the solvers are comparable by stopping
convergence when the same residual, of order restol, is attained.

On xeon phi, the number of physical cores that are actually used in the
task parallel executions, denoted by c, depends on the number of workers w
that are spawned, between 1 and 32, and how many workers are mapped per
core, wc=1, 2 or 4 (inverse of the binding factor): c = w/wc; see Table 2. On
opteron, the number of cores is simply given by c = w, as one worker is at
most mapped per core; see Table 2. On both platforms, w = l.

Table 3 reports the speed-ups attained by the OmpSs and MPI imple-
mentations of ILUPACK in xeon phi for the benchmark A171. (Similar
results were obtained for the smaller test cases A126 and A159.) The data
comprised there reveals the following trends along different dimensions:

• Iso-workers and Iso-DAGs (same w or column of the table). Fixing
the number of workers while we increase the level of “saturation” of
the cores (i.e., raise wc) has a clear negative effect on the OmpSs im-
plementation and a slightly smaller one on the MPI one, for both the

14

#Workers w, l= 1 2 4 8 16 32 64

xeon phi
wc=1 1 2 4 8 16 32 - -
wc=2 1 1 2 4 8 16 - -
wc=4 1 1 1 2 4 8 - -

opteron 1 2 4 8 16 32 64

Table 2: Number of cores (c) for the experimental evaluation on xeon phi and opteron.
The cases with 64 workers were not evaluated on xeon phi due to lack of enough memory
for the MPI implementations.

OmpSs MPI
#Workers w, l= 2 4 8 16 32 2 4 8 16 32

wc=1 1.9 3.8 7.5 12.8 22.4 2.0 3.9 7.3 13.3 23.2
Precond. wc=2 1.4 2.9 5.5 9.8 16.9 1.4 2.9 5.7 10.6 18.3

wc=4 1.4 1.7 3.3 5.9 10.5 1.4 1.6 3.3 6.3 11.6

wc=1 1.9 3.9 8.0 15.5 27.7 2.0 3.9 7.6 13.4 22.6
PCG solve wc=2 1.5 3.1 6.2 11.9 18.0 1.6 3.1 5.9 10.9 19.4

wc=4 1.5 1.8 3.5 5.0 4.1? 1.6 1.5 2.8 5.1 11.4

Table 3: Speed-ups of the task parallel OmpSs and MPI implementations of the precon-
ditioner computation and PCG solve in xeon phi for matrix A171.

preconditioner computation and the PCG solve.

• Iso-saturation (same wc or row of the table). Keeping constant the sat-
uration, while increasing the number of workers w, implies a growth also
in the number of physical cores (hardware resources) and, as could be
expected, an increase of performance (except for one case in the OmpSs
implementation of the PCG solve, marked with the superscript “?”).

• Iso-cores (same c, cell color or diagonal of the table). Fixing the num-
ber of cores to solve a problem, as the number of workers w grows,
involves a proportional increase of the level of saturation of the cores.
In other words, we maintain a constant volume of cores, while we in-
crease the amount of workers and, simultaneously, the saturation of
these hardware resources. This has a positive effect on both the OmpSs
and MPI implementations of the preconditioner computation as well as
the MPI implementations of the PCG solve. When the saturation level
is wc=4, the OmpSs implementation of the PCG solve suffers from the

15

increase to 32 workers.

• Overall performance of OmpSs vs MPI. In general, when the number of
cores/workers is small, there appear slight performance differences in
favor of the MPI implementation for the preconditioner computation
and the OmpSs implementation for the PCG solve. On the other hand,
as these values increase, OmpSs becomes the overall winner for the
PCG solve while both implementations offer close performance for the
preconditioner computation.

OmpSs MPI
#Workers w, l= 2 4 8 16 32 64 2 4 8 16 32 64

Precond. 2.0 4.0 6.3 10.5 14.5 22.9 2.0 3.9 7.3 12.8 19.5 23.9

PCG solve
NO 1.9 3.9 6.1 8.6 6.9 10.2 - - - - - - - - - - - -
NA 2.2 5.1 8.2 13.4 14.7 27.2 2.3 4.1 8.2 13.1 21.3 17.2

Table 4: Speed-ups of the task parallel OmpSs and MPI implementations of the precon-
ditioner computation and PCG solve in opteron for matrix A318. NO and NA denote
respectively the NUMA-oblivious and NUMA-aware implementations of the PCG solve.

Table 4 shows the speed-ups attained by the OmpSs and MPI implemen-
tations of ILUPACK in opteron. The number of parameters is now more
reduced, which leads to a simpler analysis. First, the NUMA-aware OmpSs
implementation of the PCG solve clearly outperforms its NUMA-oblivious
counterpart, with the difference rapidly growing with the number of threads
(and therefore cores). Also, as expected, increasing the number of workers
yields higher speed-ups, as more resources are employed in the solution of the
problem. We note here that this result demonstrates that the computational
overhead intrinsic to partitioning into the matrix into a DAG consisting of
more tasks is by far compensated by a superior amount of task concurrency
to be exploited by a larger number of workers/cores. Finally, the OmpSs
and MPI implementations deliver similar performance in the preconditioner
computation when the number of cores is large, but OmpSs attains a much
higher speed-up for the PCG solve when 64 workers are employed.

5.3. Data parallel ILUPACK

We next study the performance of the data parallel version of ILUPACK
on K20. We remind that this implementation off-loads the SpMV and ap-
plication of the preconditioner to the graphics accelerator, while all other

16

operations (including the preconditioner computation) are performed on the
server’s multicore CPU. Figure 5 reports the speed-up of the two GPU-
accelerated operations as well as the global PCG solve with respect to the
sequential version of ILUPACK running on a single Intel i3-3320 core of the
server. For this particular collection of sparse problems, the GPU implemen-
tation of SpMV in CUSPARSE delivers a close-to-constant speed-up factor
between 2.2× and 2.4×, independently of the matrix size. The application
of the preconditioner offers better results, with a speed-up that is close to
4× for the largest matrix case. Combined, these two factors yield a speed-up
of almost 3× for the PCG solve operating with the largest problem.

2 4 6 8
x 106

0

1

2

3

4

Matrix Dimension (n)

Sp
ee

d−
U

p

Data Parallel ILUPACK

SpMV
Apply precond.
PCG solver

Figure 5: Speed-up of different parts of the PCG solve in K20 for several matrix cases;
see Table 1.

5.4. Comparison of the solvers

We finally evaluate the numerical behaviour of the task and data parallel
solvers, using a common matrix case (A171). For this purpose, we leverage
the A-norm defined in [12], with the estimator in [13], as a measure of the
numerical accuracy of the approximate solution xj computed at the j-th
iteration of the PCG solve: ‖x−xj‖A, where x stands for the correct solution
to the linear system. For the task parallel solvers, we use 32 workers/cores
of xeon phi and 64 on opteron.

Figure 6 relates the estimated residual of the solutions computed by the
parallel solvers to the execution time. These results show that the numerical
behaviour of the task parallel implementations based on OmpSs and MPI

17

is almost identical, which could be expected as they operate on DAGs with
the same number of leaves. The small differences are due to the use of
different versions of the METIS graph partitioning package to decompose the
problem into tasks. The time difference between xeon phi and opteron
is explained by the use of 64 cores at 2.1 GHz in the latter vs only half of
that number of cores at about half the frequency as well (1,053 MHz) in the
former. Interestingly, when executed on K20 the data parallel solver, with a
numerical behaviour equivalent to that of the sequential ILUPACK, shows an
execution time between those of the task parallel implementations on xeon
phi and opteron.

Time (s)
0 10 20 30 40

E
s
ti
m

a
te

d
 |
|x

-x
j||

A

10
-15

10
-10

10
-5

10
0

10
5

10
10

Convergence rate

Data Parallel+K20
OmpSs+XEON PHI
MPI+XEON PHI
OmpSs+OPTERON
MPI+OPTERON

Time (s)
0 20 40 60

E
s
ti
m

a
te

d
 |
|x

-x
j||

A

10
-15

10
-10

10
-5

10
0

10
5

10
10

Convergence rate

Data Parallel+K20
OmpSs+XEON PHI
MPI+XEON PHI
OmpSs+OPTERON
MPI+OPTERON

Figure 6: Convergence speed of the task and data parallel solvers for matrices A126 (left)
and A171 (right).

6. Concluding Remarks

We have presented three parallel implementations of ILUPACK, based
on the OmpSs runtime and the MPI message-passing libraries to exploit task
parallelism on x86 many-core architectures, and using CUDA to exploit data
parallelism on graphics processors. Compared with our previous work using
this library, our OmpSs-based implementations employ nested parallelism
to tackle task dependencies (instead of explicit barriers) at execution time,
and introduce an architecture-aware implementation of the PCG solve for
NUMA systems. Furthermore, our enhanced CUDA implementation per-
forms the most expensive computational kernels of the PCG solve on the
graphics accelerator (instead of only the preconditioner application).

18

Our experimental results on three many-core platforms (an Intel Xeon Phi
accelerator, a 64-core NUMA AMD server, and an NVIDIA GPU with more
than 4,000 cores) reveal that there exists ample task and data concurrency in
the preconditioned solver embedded into ILUPACK, showing notable speed-
ups in all these architectures. The direct comparison between our parallel
implementations also exposes that, while they all can achieve similar residuals
in the computed solution, from the point of view of performance the best
option is to employ the MPI or OmpSs versions on the AMD server.

One advantage of x86-based architectures over GPUs is the existence of
parallel programming tools such as OpenMP and MPI, more appealing to
most programmers than the CUDA interface. However, our experience sug-
gests that, for ILUPACK, the difficulties of the data-parallel programming
model are partially overcome by the existence of data-parallel numerical li-
braries. Furthermore, the concurrency intrinsic to this application is easier to
extract at a data-parallel level, favoring the implementation on a GPU. Ex-
ploiting the concurrency at the task-level for ILUPACK, on the other hand, is
considerably more difficult, requiring a significant rewrite of the application
to maintain semantics close to those of the sequential version.

Acknowledgements

The authors from the Universitat Jaume I were supported by the projects
EU FP7 318793 (Exa2Green), TIN2011-23283 of the Ministerio de Economı́a
y Competitividad (MINECO) and EU FEDER, and P11B2013-20 of the Fun-
dació Caixa Castelló-Bancaixa and UJI. Rosa M. Badia was supported by
project TIN2012-34557 of MINECO and EU FEDER, and by the General-
itat de Catalunya (contract 2009-SGR-980). Maŕıa Barreda was supported
by the FPU program of the Ministerio de Educación, Cultura y Deporte.

We thank Francisco D. Igual, from Universidad Complutense de Madrid
(Spain), for his help with the Intel Xeon Phi.

References

[1] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.

[2] T. George, A. Gupta, V. Sarin, An empirical analysis of the performance
of preconditioners for SPD systems, ACM Trans. Math. Softw. 38 (4)
(2012) 24:1–24:30.

19

[3] O. Schenk, M. Bollhöfer, R. A. Römer, On large scale diagonalization
techniques for the Anderson model of localization, SIAM Review 50
(2008) 91–112.

[4] O. Schenk, A. Wächter, M. Weiser, Inertia-revealing preconditioning for
large-scale nonconvex constrained optimization, SIAM J. Sci. Comput.
31 (2) (2009) 939–960.

[5] A. George, Nested dissection of a regular finite element mesh, SIAM J.
Numer. Anal. 10 (2) (1973) 345–363.

[6] T. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006.

[7] J. I. Aliaga, M. Bollhöfer, A. F. Mart́ın, E. S. Quintana-Ort́ı, Exploiting
thread-level parallelism in the iterative solution of sparse linear systems,
Parallel Computing 37 (3) (2011) 183–202.

[8] J. I. Aliaga, M. Bollhöfer, A. F. Mart́ın, E. S. Quintana-Ort́ı, Paral-
lelization of multilevel ILU preconditioners on distributed-memory mul-
tiprocessors, in: Applied Parallel and Scientific Computing, LNCS, Vol.
7133, 2012, pp. 162–172.

[9] J. I. Aliaga, R. M. Badia, M. Barreda, M. Bollhöfer, E. S. Quintana-Ort́ı,
Leveraging task-parallelism with OmpSs in ILUPACK’s preconditioned
cg method, in: 26th Int. Symp. on Computer Architecture and High
Performance Computing (SBAC-PAD 2014), 2014, pp. 262–269.

[10] J. I. Aliaga, M. Bollhöfer, E. Dufrechou, P. Ezzatti, E. S. Quintana-Ort́ı,
Leveraging data-parallelism in ILUPACK using graphics processors, in:
13th Int. Symp. Parallel and Distributed Computing (ISPDC 2014),
2014, pp. 119–126.

[11] CUDA Toolkit 5.5. CUSPARSE Library, NVIDIA Corporation, 2013,
version 5.5.

[12] M. R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving
linear systems, J. Research Nat. Bur. Standards 49 (1952) 409–435.

[13] Z. Strakoš, P. Tichý, On error estimation in the Conjugate Gradient
method and why it works in finite precision computations, Electronic
Trans. Numer. Anal. 13 (2002) 56–80.

20

