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Abstract

We modeled the spatial distribution of the most important Chagas disease vectors
in Argentina, in order to obtain a predictive mapping method for the probability of
presence of the vector species. We analyzed both the binary variable of presence-absence
of Chagas disease and the vector species richness in Argentina, in combination with
climatic and topographical covariates associated to the region of interest. We used several
statistical techniques to produce distribution maps of presence-absence for the different
insect species as well as species richness, using a hierarchical Bayesian framework within
the context of multivariate geostatistical modeling. Our results show that the inclusion of
covariates improves the quality of the fitted models, and that there is spatial interaction
between neighboring cells/pixels, so mapping methods used in the past, which assumed
spatial independence, are not adequate as they provide unreliable results.

Keywords: Binary spatial data, Chagas vector, Covariate and hierarchical Bayesian
modeling.

1 Introduction

Chagas disease is caused by infection with the protozoa Trypanosoma cruzi, transmited
by triatomine bugs. The disease has been considered an endemic to 22 countries in the
continental Western Hemisphere (WHO, 2002, [47]) and is one of the most important
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Fig. 1. Map showing the location of Argentina in South America, and a zoom of the
study area, showing the topographic features of the terrain.

vector-borne diseases, with variable prevalence rates in tropical and subtropical areas
of America. The study region of our study is Argentina, as shown in Figure [I} The
estimated rate of prevalence for different countries ranges between 0.7% and 15.5%, and
for Argentina, the estimated prevalence rate of Chagas disease is 8.2% (Schmunis and

Yadon, 2010 [43]).

Among the 17 most common vector species related to Chagas disease, Triatoma,
Panstrongylus and Psammolestes bugs are perhaps the most important and widespread
vectors of Trypanosoma cruzi, the causative agent of Chagas disease. These vectors
are widely distributed in Argentina and other South American countries, where they
probably contribute to more than a half of the estimated 24 million cases of this disease
(WHO, 2002, [47]). However, there are few formal studies regarding the geographic
distribution of each species and its relationship to climatic and geographic factors related
to their presence at a given location. Most of the previous studies in this regard have used
ecological niche models or simple mapping and direct density computations (Cruz-Reyes
and Pickering-Lopez, 2006, [13]) ; (Gurgel-Goncalves et al, 2012, [20]). None of these
studies have considered the presence of spatial association between neighboring areas
in the species distribution nor the possibility of local variability in the presence of the
vector insect species.

In this paper we analyzed the spatial distribution of five vector species considered
the most important in the spreading of the pathogen. Our goal is to enable predictive
mapping of the spatial distribution of the probability of presence of the insect vector
species. The probability maps constructed may be used by experts in Chagas disease
transmission to link the presence of the vectors to the probability of presence of the
disease (Adin et al., 2016 [1] and Chia et al., 2014 @) Such information is highly
useful in planning health care and disease control activities. We analyzed the binary
variable of presence-absence of Chagas disease vectors in Argentina, using a data base
obtained from a long term field survey on a grid covering the northern part of the
country, including climatic and topographical covariates. Our analyses comprised the
use of several statistical techniques designed to produce distribution maps of probability
of presence of a given vector at specific locations within a grid covering the Argentinean
territory (Zeledon and Rabinovich, 1981, ) We modeled the presence-absence data
and species richness using a hierarchical Bayesian framework within the context of
autologistic regression models (Besag, 1974 [3] or Ugarte et al., 2005 ), ranging from
simple logistic regression models, as a particular case, to autologistic regression models.
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We also explored models to test the possibility of spatial interaction between different
vector species.

The plan of the paper is the following. In the Section 1.1, we presents the data set
with the vectors of Chagas disease and its preparation to further modeling. In Section 2
we present the statistical methodology used to fit autologistic regression models based
on a Bayesian framework. We develop several competing models and compare them with
the results obtained with the SPDE-INLA method. Section 3 discuses the results, and a
discussion is given in Section 4. The paper ends with a final section with conclusions.
An Appendix is added with tables and figures for completeness.

Longitude
Longitude

Longitude
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Fig. 2. Presence data per species. First row: Panstrongylus geniculatus, Panstrongylus
guentheri and Panstrongylus megistus. Second row: Triatoma infestans and Triatoma
garciabesi.

The study area comprises the central and northern part of Argentina, a country
located in South America (Figure . Most of Argentina’s territory is located in low
altitude lands, except for the west and northwest regions which are areas of higher
altitude. It is in these areas where the Andes mountain range is located, with elevations
above 4000 meters. Going in the east-west direction one finds an altitudinal gradient that
has a strong influence on the climatic variables. In the south-north direction, changes
in latitude define a pattern of increasing values of Normalized Difference Vegetation
Index (NDVI), explained mostly by the distribution of moisture and temperature. In
the northeastern part of the country we can find the most tropical area with the highest
rainfall and largest LST values. Near the center of the continental region, the average
annual rainfall decreases, but is ”compensated” by the relative humidity coming from
the Atlantic Ocean. This climatological and physiographic mosaic makes Argentina a
zone with conditions adequate for the spread of the insects that may transmit Chagas
disease to humans and to domestic animals.
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Fig. 3. Covariates used in the modeling process.
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1.1 Data

The data base we analyzed consisted of presence and absence data obtained from a major
field survey on a grid of 0.1 x 0.1 degrees (about 10 x 10 Km pixels). For a given pixel
and a given species, the presence was recorded if the species was reported as present at
any location within the pixel, regardless of the number of individuals. The data base was
kindly provided by J. Ravinovich, from Centro de Estudios Parasitologicos y de Vectores
(CONICET, CCT- La Plata, UNLP), Universidad Nacional de La Plata, Argentina. This
data set corresponds to periodic (36 months) census made between 1980 to 2001. We used
the mean values for presence-absence data, and also for covariates. Using Geographic
Information Systems (GIS), digital maps for altitude, NDVI, Rainfall, sunshine, wind,
actual evapotranspiration (AET), land surface temperature (LST), aridity and humidity
for the entire Argentinean territory were obtained at the same spatial resolution as the
presence data, to be included as covariates in the modeling process. All the covariate
raster data were converted to the coarser resolution of 10X10Km in which the presence
data were obtained. This scale is adequate for our objective, since we want to find the
factors affecting distribution of the insect vector species at a country scale. Anyway,
the reader should be aware that changes of scale change many of the inferences in an
analysys (Qi and Wu, 1996 [35]).

The altitude for the study area is between 80-4980 m, with an average of 709 m. The
mean value for NDVI for the region is 0.38 (max = 0.79), mean value for precipitation
(Rain) is 621 mm with a great variation: minimum value is 12 mm and maximum is
4199 mm. Also, Land Surface Temperature shows a 44.3°C as maximum value but 2.4°C
as minimum, the mean value is 29.5°C. Relative Humidity average is 62.14%, but the
highest vale is 100 %. For the Aridity Index, the maximum value is 205, however, the
mean value is 20.3 with a standard deviation equal to 14.9. Also, for sunshine, the mean
is 50.5 £ 8.8 standard deviation. Finally, the mean value for AET is 44.6 £+ 21.5 standard
deviation.

The raw presence data for the 5 insect vector species of Chagas disease are shown in
Fig. [2l It can be seen that the three species of the genus Panstrongylus were detected
only in a relatively small area in the northern part of the country, in warm and humid
environments. On the other hand, Triatoma infestans and Triatoma garciabesi were
recorded in a larger area, which includes a wider range of temperatures and humidity.
Note that none of the five species was recorded in the areas near the Andes , where dry
and cold conditions prevail.

Chagas disease vectors are widely distributed in Argentina and other South American
countries, where they probably contribute to more than a half of the estimated 24
million cases of this disease. One of these field observational studies records data on
presence-absence of the above mentioned disease vectors for a variety of species over a
fine grid covering part of Argentina. In addition, climatic and topographical covariates
were also measured to asses their effect on the spatial distribution of the insect vector
species considered in our study and to test their significance in spatial distribution
predictive maps. The covariate maps for the study area are shown in Figure |3] Some of
the maps show a mosaic shape because they could not be obtained at a finer resolution;
yet, they provide limits on their spatial variability and their contribution to explain the
spatial variability of the species distribution.
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2 Statistical modeling
2.1 Autologistic regression models

The use of the raw observations to produce spatial distribution maps may be misleading
because of the high variability inherent to samples of spatial variables (Besag, 1991, [4]).
To make inferences about a random phenomenon, statistical models have proven to be
a sensible approach. Because the data available for this study were in raster format,
statistical inferences about the quantities of interest may be done using Markov Random
Field models. A raster image of n = I rows and J columns is equivalent to a lattice with
n = I x J nodes, where each node represents a pixel in the image. Since we may label
each node with an integer number, lattices are not restricted to regular shapes and can
be applied to areas irregularly shaped.

For data defined in a lattice with n nodes or vertices, as in our case, functionals of the
spatial distribution of the variable of interest such as the mean, median or maximum for
instance, given the values observed at the rest of the image, P(Y;|Y_;, 0), as well as the
parameters of the distribution of Y are the target for estimation and statistical inference.
Y_; refers to the values of Y in all the lattice except the i — th node and @ is a vector of
model parameters for P(:|-,6). Markov Random Field (MRF) theory allows stochastic
modeling of many spatial phenomena based on the conditional distribution of the variable
of interest over a set of spatial locations in a lattice, and were described in detail by
Besag (1974) [3] . Besag (1974) ( [3]) described in detail the class of auto-models. MRFs
allow to make inferences for a wide range of applications in spatial modeling, including
discrete and continuous spatial variables. In particular, for the class of auto-models,
the spatial variable of interest Y may follow any distribution in the exponential family
and shows some degree of association with the values of Y at a set of neighbouring
locations. The exponential family of distributions includes the binomial, the Poisson
and the Gaussian among others. This gives the auto-models a great flexibility to model
many spatial phenomena.

Besag (1974) proved that under some mild conditions,

where Y.; denotes the values of Y at those locations (pixels) that are neighbours of
location . A detailed description of the properties of MRF is beyond the scope of this
paper. For a description on the derivation of auto-models, the interested reader is referred
to the seminal paper by Besag (1974, [3]) and to the book by Cressie (1993) [|12].

When modeling the spatial distribution of dichotomic random variables the aim is
to produce probability maps. In our study, the goal is to produce maps showing the
probability of presence of the vector species at any given pixel within the study area,
which we will denote by D. Note that we assume that the species are absent when
the data base recorded a zero, although it is possible that a zero has been recorded in
places where the species are not observed but are still present in the area covered by
the corresponding pixel in the image. Let Y; be a Bernoulli random variable taking the
values Y; = 1 if the insect vector species is observed at pixel i and Y; = 0 otherwise.
We define p; = P[Y; = 1] which may be interpreted as the probability that the vector
species has pixel ¢ within its spatial distribution zone . Our interest here is to estimate
the p; and to test their possible association with a set of covariates Z1,..., Zk.

Given the binary nature of the data y;, a natural choice is to fit logistic regression
models of the form

§i = logit(p;) = log { 1 fipi } =2 B

to the presence-absence data of each of the five species considered as the most
important. 8 is a vector whose entries are the coefficients related to the spatial covariates
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z. Logistic regression assumes that the data are independent, but such assumption might
not be adequate if the data are not spatially independent. We thus alternatively fit the
model

&=z B+ (1)

where 1; = ZiNj p; is a term that incorporates the spatial interaction between
neighboring areas and may be seen as a surrogate for unobserved covariates that are
correlated in space (Besag et al., 1995 [5]). This approach corresponds to generalized
linear mixed models (GLMM), a class of models useful in problems that involve the
mapping of risks (Clayton and Kaldor, 1987 [10]). From we obtain

__exp{yiriB+ i}
1 +exp {y;x;B + s}

In a similar fashion, to model the spatial distribution of species richness we fitted the
model

i

E[Xi) = 2l B+ U; (2)

In models and the spatial terms ; and U; will be assumed to be Gaussian
Markov Random Fields (GMRFs). Thus, model (1)) corresponds to a logistic normal
model (Diaz-Avalos et al., (2001) [15]) whilst model corresponds to an ordinary linear
regression model with spatial dependent errors.

Our approach to model bases on the Bayesian context, that is, if 6 is a vector of k
components containing all the parameters in the model, statistical inferences about 6
are based on the posterior distribution

L(6;y)m(0) .
1600 = 77 e myei@yas = M6 070)

Our model formulation is as follows. We assumed a flat, noninformative prior dis-
tribution (Box and Tiao, 1973 [7]) for the nonspatial parameters in our model, which
allows them to be assigned any arbitrary initial values. Following Besag et al. (1991 [4]),
we assumed that v is a markov random field with a Gaussian pairwise difference prior
distribution, with precision A, this is,

pi (1) o< XN W |95 exp{ 0.5 ' Wep} (3)

where ¢ = (¢1,...,1¥n) is the vector of spatial components, W is a matrix with W;; = v;,
W;; = 1 if pixels i and j are neighbors and W;; = 0 otherwise. We are weighting each
direction equally, because the geographic scale we are working with is not detailed
enough to detect possible anisotropies. The prior density previously described belongs
to the class of nonstationary Gaussian intrinsic autoregressions, and may be considered
as the stochastic equivalent of linear interpolation (Besag et al., 1991 [4]). The Gaussian
conditional autoregressive processes have been used extensively in spatial statistics and
Bayesian image analysis, both for regular and irregular arrays. Gaussian conditional
autoregressive model allows some smoothing in the predictive maps and maintains the
autoregressive structure of the CAR model. Also, the use of the GCAR model prior for
the spatial effect in our model makes the full conditional distributions computationally
simple, something desirable when using MCMC methods.

Because both the columns and rows of W add to zero, this prior is improper.
However, the full conditional densities necessary to make statistical inferences on the
Yi,i=1,..., N are well defined (Besag, et al., 1995 [5]). For the precision A we assumed a
G(1,1) prior density, which allows initially low values for A and, therefore, high variability
in . The model is completely specified by further assuming independence between the
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components of § = (8,1, ) and by assuming that the observations y; are conditionally
independent. The posterior density of the parameters is proportional to

N
exp {yizif + ¥i} 0.5N 1705 / a—1
(}:[1 1+ exp {y:x'3 + %}) X ANV exp{—=0.5 ' W} x A" " exp {—bA}

and the full conditional distributions are given by

N
m(B]-) o (E 1+ exp{y;zf+ wz}>

N
exp {yiz; B + i} ,
m(Wl) (Zl:[l 1+ exp {yiz;B + %}) X exp{ =05\ W}

N
7(Al) ~ D(a+ 05N, b+ Y vi(v; —1))?)
i=1
where the notation (u|-) means the conditional distribution of one set of parameters
given the rest of the components in the model.

We ran the MCMC algorithm described previously using random updates of the full
conditional distributions. Although convergence of the MCMC depends on the proportion
of positive to null observations, we used a minimum of 3000 simulations as ”burning
up” and left the algorithm run until 10 000 iterations were achieved. At the end of each
iteration, a ”posterior” probability of presence was also computed for each pixel. We used
the results of the last 7000 iterations to compute posterior means, medians and quantiles
of posterior probability of presence, as well as for the rest of the model parameters.

2.2 INLA and SPDE approach

MCMC has the disadvantage of requiring intensive computations that in many cases make
the algorithm slow and time consuming. Although advances in computer science and
electronics have made this a rare issue, it is sometimes desirable to get the results in short
time. One methodology based on INLA and the stochastic partial differential equation
(SPDE) approach provides quicker results. The SPDE approach allows a Gaussian field
with Matérn type covariance function

21—u

M (h|v,K) = m(% 121K, (s [[2]]) (4)
to be approximated as a discretely indexed spatial random field. Further use of the
integrated Laplace transform produces significant computational advantages (Lindgren
et al. (2011) [30]). In K, is a modified Bessel function of the second kind and & > 0
is a spatial scale parameter whose inverse, 1/x, is sometimes referred to as a correlation
length. The smoothness parameter v > 0 defines the Hausdorff dimension and the
differentiability of the sample paths (Gneiting et al. (2010) [19]). Specifically, we tried
v=1,2,3 (Plummer (2008) [34]). Using the expression defined in the previous formulae,
when v+d/2 is an integer, a computationally efficient piecewise linear representation can
be constructed by using a different representation of the Matérn field (see equation 5),
namely as the stationary solution to the stochastic partial differential equation (SPDE)

(Simpson D. et al., (2001) [42]).
The idea behind INLA and SPDE is to construct a finite representation of a Matérn
random field by using a linear combination of basis functions defined in a triangulation
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of a given domain D. This representation gives rise to the SPDE, which is a link between
the GF and the GMRF. Such link allows the spatial or the spatio-temporal covariance
function and the dense covariance matrix of a GF to be replaced by a neighborhood
structure and a sparse precision matrix, respectively, both of which are typical elements
that define a GMRF, which in turn yields substantial computational advantages (Lindgren
et al. (2011) [30]).

In particular the SPDE approach consists in defining the continuously indexed Matérn
GF, U(s) as a discrete indexed GMRF by means of the representation of a basis function
defined on a triangulation of the domain D

U(s) = pils)wr ()
1=1

where n is the total number of vertices in the triangulation, {¢;(s)} is the set of basis
functions, and {w;} are zero-mean Gaussian distributed weights. The basis functions are
not random, but are instead chosen to be piecewise linear on each triangle

(6)

1 at vertiz 1
o1 (s) =

0 elsewhere

The key is to obtain the weights {w;}, which report on the value of the spatial field
at each vertex of the triangle. The values inside the triangle will be determined by linear
interpolation (Simpson et al. (2011) [42] and developed by R-INLA project (2012) [37]).

Thus, expression defines an explicit link between the Gaussian field U(s) and the
Gaussian Markov Random Field, and it is defined by the Gaussian weights {w;} that
can be given by a Markovian structure. The Matérn spatial covariance function controls
the spatial correlation at distance ||h| = ||u; — u;||, where u; and u; are two arbitrary
locations within a spatial domain or study area, separated by a distance ||h]].

When v + d/2 is an integer in a computationally efficient piecewise linear repre-
sentation can be constructed by using a different representation of the Matérn random
field w (%), namely as the stationary solution to the SPDE (Simpson et al. [42])

a/2

(5% = 2)"7U () = W(i) (7)

where « =wv+d/2 is an integer, A = Z;fl:l g—; is the Laplacian operator, and W (4) is
spatial white noise. '

In a statistical analysis, to estimate a general model it is useful to model the mean
for the i-th unit using an additive linear predictor, defined on a suitable scale

M L
ni=Bo+ Y Bmzmi+ Y filvi) (8)
m=1 =1

Here fy is a scalar which represents the intercept, 5 = (1, .., 8,) are the coefficients
which quantify the effect of some covariates z = (21, .., z;;) on the expected value of the
presence-absence random variable, and f = {f1(.),.., f; (.)} is a collection of functions
defined in terms of a set of random effects v = (vy,..,v;). In our particular case,
v = (v1,..,v;) are the conditional means associated to the GMRF. Changing the form of
the functions f; (.) allows to fit different kind of models, from standard and hierarchical
Bayesian regression, to more complex spatial models (Rue et al., 2009 [40]). Given the
specification in , the vector of parameters is represented by 6 = {8y, 5, f}. Unlike
the MCMC algorithm, which needs to evaluate the full conditional distributions at
each iteration of the algorithm, the INLA approach exploits the model assumptions to
produce a numerical approximation to the posteriors distributions of interest, based on
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the Laplace approximation over a tesellation constructed in a grid (Tiernery and Kadane
(1986) [45)).

The use of INLA and the SPDE algorithms yields significant savings in computational
time and allows the user to work with relatively complex models in an efficient way. In
our application, all the analyses are carried out using the R freeware statistical package
(version 3.1) (R Development Core Team (2011) [36]) and the R-INLA package (R-INLA
project (2012) [37]). To test the robustness of our methodological choice we used several
non-conjugate priors for the parameters, in particular Gaussian and flat priors for the
model parameters. We found no notorious changes in the empirical posterior distribution
for the precision hyper-parameters.

We have preferred to use the corresponding posterior distributions assuming a
Binomial likelihood with non-conjugate priors for the model parameters. A detailed
technical description of the INLA and SPDE approach is beyond the scope of this paper.
The interested reader is referred to review Lindgren et al. (2011) [30] and Rue, Martino,
Chopin 2009 [40] or Illian et al. 2013 [26]. As we mentioned previously, the autologistic
models were fitted using Markov Chain Monte Carlo (MCMC) whilst for the INLA
method we used the Stochastic Partial Differential Equation (SPDE) approach, which
is the building block for the Integrated Nested Laplace Approximation (INLA) library
for the R software for the autologistic regresion models (Lindgren and Rue (2013) [29],
Lindgren et al. (2011) [30], Rue and Martino (2006) [38], Rue et al. (2007) [39], Rue et
al. (2009) [40]).

3 Results

The results for the different fitted models in this study are shown in Table 1, where
we show the marginal likelihood and in parenthesis the CPO score or cross validated
score, defined as the mean of the negative of the conditional probability 7 (y;|y—;) -
Scoring rules are negatively oriented, which means that, the smaller the score, the better
the predictive power of the model (Schrodle et al. 2010). An attractive feature of this
measure is that it can be applied to parametric and non-parametric settings and does
not require models to be nested, nor to be related in any way (Gneiting and Raftery,
2007). According to this, except for the case of P. megistus, the inclusion of covariate
information improves the predictive performance of the models, meaning that part of
the spatial variation in the probability of presence of the insect vectors considered in
this study is explained by the spatial variation of climatic and biological factors.

Tables 2 to 4 show a summary of the posterior statistics for the parameters of the
fitted models using the MCMC approach, whilst Tables 5 to 7 show the corresponding
posterior estimates for the fitted models using the INLA approach. The tables only show
those terms that were statistically significant. The coefficient estimates in the tables
show that the logit for the presence of P. geniculatus is positively associated to rain,
AET and LST, terms that were significant both with MCM and INLA methods (Tables
2 and 5). Climatic factors were significant only for the MCMC method.

According to these coefficients, the probability of presence for P. geniculatus is inhib-
ited by increments in altitude, sunshine and humidity. For P. guentheri, the coefficients
for altitude, NDVI, AET and LST were significant for the full fitted model by the two
methods. In both cases, the logit of its probability of presence at a given location in
Argentina is positively associated to changes in NDVI, AET and LST. By the INLA
method the logit of probability of presence is negatively associated to increments in rain
and humidity. The third species of this genus, P. megistus has a logit of probability of
presence associated positively to changes in NDVI and humidity (Tables 3 and 6).

The posterior probability of presence maps for a logistic model of Triatoma genus
shows a positive association with humidity, in contrast with the genus Panstrongylus
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whose distribution includes zones with lower humidity even with highest aridity and
high AET (Figures 5 to 8). Particularly, P. geniculatus prefers the lowlands, specifically
those zones with tropical savannas in the north of Argentina. P. guentheri is essentially
distributed in dry areas, i.e., with little rainfall, low humidity and high evapotranspiration.
P. megistus shows a restricted distribution that corresponds with Atlantic forest present
in this country, in this case indicated for higher values of NDVI. For Triatoma species,
the posterior probability of presence maps predicted largest areas of distribution. 7.
infestans is the most widely distributed species. This species is absent in highlands
but in high humidity and temperature. Also, T. garciabesi is present in zones with
high humidity but with high altitude, and wooded sites (Fig. [5| and @ The posterior
probability of presence for Triatoma richness shows that the high values corresponded
to the zones with high evapotranspiration but medium relative humidity (Fig. [7| and |8)) .
Similarly, total species richness shows the same pattern, because it shows an extended
distribution.

The posterior probability of presence maps as well as the standard deviation maps
for the five species considered in his study are shown in Figs. [5| to |8] both obtained with
INLA and MCMC methods. Although both methods agree in the shape and the extent
of the spatial distribution of the five insect species under consideration, the maps show
differences, particularly regarding the smoothness of the fitted random field. Fig. [0] shows
the posterior mean and its standard deviation for the species richness using the five
species (upper panel) and for the two triatomus species (lower panel) for both cases with
and without covariates. The posterior mean estimates for the fitted models with and
without covariates show the same general pattern in the study area, with high values in
the central north part of Argentina, this is, both models capture the large scale variability
of the spatial distribution of species richness. However, the model with covariates is
able to better capture the local spatial variability of species richness, which is expected
to be associated to local conditions of topography and other environmental variables,
something that may be very important for health authorities at the municipalities.

4 Discussion

The Bayesian approach has produced distribution maps for the insect vector species
considered in this paper producing results that are consistent with what the experts in
epidemiology have reported for the Chagas disease using non statistical methods. The
inclusion of spatial covariates in the models not only improves the quality of the resulting
maps, but also is an aid to screen the factors related to the spatial distribution of the
vectors of Chagas disease. Knowledge of such factors may be used to define critical or
potentially critical areas for outbreaks of insect bites and thus for an increase in Chagas
disease prevalence. Thus, the statistical methods used here can be used as a tool for
planning and to draw potential scenarios for the distribution of the vector insects under
the global warming and climate change. The coefficient estimates associated to each
covariate provide evidence about which factors are related to the spatial distribution
of the vectors of Chagas disease. Clearly, one should not expect the presence of all the
species to be associated with the same strength to the physical and climatic factors, as
their spatial distribution is the result of a long process of competition and adaptation to
different environments (Galvao and Justi, 2015 [17]).

The posterior probability maps show the almost ubiquity of the two Triatomus
species. This is evident in the individual posterior probability of presence and in the
posterior mean maps for the species of those two Triatomus species. As we mentioned
previously, the distribution range of these species is controled mainly by temperature
and temperature-related covariates such as NDVI, LST, altitude above sea level and
evapotranspiration. These results suggest that these two species have been very successful
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Table 1. Marginal likelihood and CPO for INLA models for individual species and
species richness

Species Model Model

without covariates with covariates
P. geniculatus -478.56 (2.72) -14238.87 (1.69)
P. guentheri -1370.47 (6.54) -1381.34 (4.82)
P. megistus -420.53 (2.96) -13889.78 (3.08)
T. infestans -3163.92 (0.27) -3102.18 (0.24)
T. garciabesi -1581.68 (7.47) -1528.10 (6.71)
Species richness -36346.57 (1.438) -36316.80 (1.434)
Triatoma richness  -38134.80 (1.520) -38088.08 (1.516)

to survive under a wide spectrum of ecological conditions, and this explains why they
are considered the most important vectors for Chagas disease at least in South America
(Gurtler and Yadon, 2015 [21]; Schofield et al., 2006 [41]) . Further, T. infestans has
been described as a species highly adapted to peridomestic environments (Galvao and
Justi, 2015 [17]) whilst, on the other hand, T. garciabesi, is seldom recorded in those
environments and apparently does not colonize households either (Canale et al., 2000 [8]).
T. garciabesi has been recorded mainly in areas with low rainfall and temperatures in
the north and central parts of Argentina (Gurgel-Goncalves et al., 2012 [20]) but often
associated to tree covered areas, as this species is found mainly under the tree bark
(Galvao and Justi, 2015 [17]) .

On the other hand, models predict a distribution of genus Panstrongylus in zones
with lower humidity even with highest aridity and high AET. Particularly, P. guentheri
is essentially distributed in zones occupied by ”Chaco” region and savannas. This species
has been recorded associated to peridomostic environments, living in between the wood
used in domestic fireplaces (Galvao and Justi, 2015 [17]) . The P. geniculatus’ distribution
matches with zones with tropical savannas and ”cerrado” in the north of Argentina. This
distribution pattern in the north of Argentina is the continuation of the distribution
pattern observed in Brazil and Paraguay (Galvao and Justi, 2015 [17]), which in the
boarder with Argentina share a subtropical climate. P. megistus shows a restricted
distribution to the spatial distribution of the Atlantic forest or ”cerrado” as reported by
Gurgel-Goncalves et al. (2012 ( [20]). For P. megistus both models pinpoint NDVT as the
covariate with the stronger association to the posterior probability of presence at any
given location, with higher NDVTI values associated to higher probability of presence.
The last two species have been reported as ongoing a process of adaptation to household
environments (Galvao and Justi, 2015 [17]) and therefore it is likely that future studies
do not show this strong association between the probability of presence and NDVI .

The MCMC method suggests a positive association of the logit of presence for
this species to sunshine and AET, and a negative association to LST and humidity.
P. geniculatus and P. guentheri seem to prefer the same kind of habitat, in which the
vegetation coverage is high, with high evapotranspiration due in part to high temperatures
in low altitude zones, whilst P. megistus seems to prefer the same kind of habitat, but
in areas where temperatures are lower than those preferred by the two former species.
Regarding the species of the genus Triatoma, the logit of presence for T.infestans in the
study area is negatively associated to altitude, and positively associated to sunshine,
AET, LST and humidity, whilst the logit of presence for T. garciabesi is positively
associated to altitude, NDVI, LST and humidity (Tables 4 and 7).

This species thus prefers warm and humid habitats, but unlike T.infestans and T.
garciabesi, avoids habitats with high sunshine and high evapotranspiration. The posterior
probability of presence maps obtained with autologistic models fitted using the INLA-
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SPDE methodology show ”abrupt” boundaries, unlike the maps obtained by fitting the
autologistic models with MCMC method. This is due in part to the coarser partition
made by the INLA-SPDE method and to the lack of the smoothing effect that the use
of the Gaussian spatial term included in the model induces in the posterior probability
maps when MCMC is used for model fitting. The standard deviation maps for both
models show a dotted pattern which is a consequence of the way the INLA-SPDE package
is implemented in R. Note however that high values of the standard deviation correspond
to areas of high diversity as a result of the fitted Poisson model, in which the variance is
proportional to the mean. Thus, areas of high species richness are predicted with higher
uncertainty.

Despite the complex interactions among the abiotic factors considered in our analysis,
the interelationship between those factors and the insect vector species for Chagas
disease have led to a spatial distribution pattern where only a couple of species have
a wide distribution range in Argentina. The models we have fitted provide valuable
information both, to assess which covariates and how they relate to the probability of
presence of the five insect vector species considered in this study, and also provide a
spatial map for the distribution of such probabilities. The inclusion of the spatial term
in the autologistic model corrects the underestimation of the confidence intervals for the
coefficients associated to the covariates, a common error when the spatial locations are
assumed spatially independent. Fitting models with covariates to the spatial distribution
of the probability of presence will allow to assess the changes associated to those spatial
distribution patterns associated to global warming and climate change. Medone et al.
(2015) [31] for instance, mention that the spatial distribution range for T. infestans will
shrink to more temperated places as the global temperature increases. This will allow
species such as T. garciabesi increase its distribution range according to our results.
Ignoring the climate change scenario, Schofield et al. (2006) [41] predicted that 7.
infestans will spread to almost all the Argentinean territory, spreading the incidence
of Chagas disease to new areas in the southern part of America. Gurtler and Yadon
(2015, |21]) highlight the importance of controling the presence of insect vectors in
domestic environments, but also highlight the importance of ecological factors on the
dispersion of the disease. Thus, policies for vector control should be planned to face this
future scenario.

Mathematical models can then provide highly valuable tools to describe, understand
and predict the presence and/or abundance of vectors, as well as to estimate the potential
effect of various vector control strategies (Nouvellet et al., 2015 [32]). There are several
approaches to tackle the task of producing spatial distribution maps for biological species,
some of them widely used in the ecologists community. Methods such as GARP, MaxEnt
and Bioclim have become the standard tool in government agencies for natural resources
management, scientists working on biodiversity, ecological modeling and epidemiology
(Gorla, 2002 |18] ,Gurgel-Goncalves et al.,2012 [20], Medone et al., 2015 [31] and Peterson
et al., 2002 [33]). All these methods are based on multivariate techniques such as principal
component analysis, combined with some classification rules. GARP, for instance, uses
logistic classification rules and genetic algorithms to produce distribution maps. Their
performance was compared with the Bayesian approach using MCMC by Diaz-Avalos
(2007) [16] under a combination of spatial sampling schemes and sample sizes. He found
that in general, the Bayesian approach performs better, and concluded that the Bayesian
methods have a superior ability to capture small scale variation. The INLA approach
used here is based also on a Bayesian setting and in principle provided similar results to
those obtained with the MCMC approach, with the benefit of an easier implementation.
Our resulting distribution maps differ of those reported by de la Vega et al. (2015) |14],
but most of the differences are explained by the different spatial resolution of their study.
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Formal comparisons between the INLA approach and the MCMC approach are needed
in the context of binary random fields with covariates.

semivariance
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Fig. 4. Empirical variograms for spatial term 1) and theoretical models, Matern (dotted
line) and Gaussian (solid line).

INLA and MCMC methods agreed in the shape and the extent of the spatial dis-
tribution in general for each species, but we observed slight differences particularly
regarding the smoothness of the fitted random field fitted. The main reason for this
comes from the prior distribution considered under each method. The INLA approach
assumes a continuous random field a priori for the spatial component of the model,
whilst the MCMC approach considers a Markov random field. Thus, the posterior spatial
distribution maps for each method differ in the degree of smoothness in the prior for
the spatial component of the fitted model. It is not clear which prior produces better
results, but in the context of probability of presence maps one should expect small scale
variation, something that seems to be captured better by the MCMC method. Also, the
way the INLA method works, with the SPDE approach and the way the teselations for
the estimation process are constructed may explain the smoothness similarity that can
be observed between the probability maps with INLA and the spatial dispersion of the
presence records. Previous studies comparing INLA and MCMC have highlighted these
dissimilarities when the same model is fitted by those methods to the same data set
(Taylor and Diggle (2014) [44]). For instance, with sparse binary data MCMC needs
a long burning up time and many iterations to converge to the posterior distribution.
Further, it is very sensitive to the presence of collinearity in the covariates, particularly
when the proportion of presence-absence in the data is very low.

The INLA method on the other hand, does not need such burn-in time but is also
sensitive to the spatial association (SPDE) created for numerical solution of the Laplace
approximation. Fig. [4] shows two different theoretical models fitted to the spatial term
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for comparison. The MCMC method does not assume any particular covariance structure
for the spatial term, whilst the latent random field structure assumed by INLA has to
have a Matérn type covariance. For the logistic models we assumed a Gaussian Markov
random field structure for v, which explains the similarity of the fitted variogram models
to the empirical variogram of the spatial term 1) shown in Figure [4]

Although the INLA and the MCMC work with the Bayesian framework, there are
key differences that result in differences in the results with each method. A conspicuos
difference between INLA and MCMC relates to the way both methods estimate the
spatial association. On one hand, INLA uses the SPDE to obtain a smooth approximation
between neighboring tessellation cells. On the other hand, MCMC uses the neighbor
structure imposed by the modeler, resulting in noisier maps, depending of whether a first
or higher order neighbor structure is used ( [6]). This explains in part the discrepancies
observed in the parameter estimated with both methods. A formal comparison of these
methods and the non-statistical methods currently used in most instances is needed in
the context of binary random fields with covariates. Such comparison should be based
on the use of virtual species, as this approach allows the evaluation of the error rates
and makes better comparisons between the different methods for distribution mapping.

5 Concluding remarks

In the modeling of spatial distribution of Chagas disease, part of the spatial variation
could be modeled through the inclusion of spatially varying covariates. The improvements
in the map constructed can be evaluated using any adequate statistic such us the posterior
deviance or the Bayesian Information Criterion (BIC), providing potential users of the
methodology shown in this paper a way to screen which covariates can be useful in their
particular studies.

The Bayesian approach has produced distribution maps for the insect vector species
considered in this paper that are consistent with what the experts in epidemiology have
reported for the Chagas disease using non-statistical methods. The inclusion of spatial
covariates in the models not only improves the quality of the resulting maps, but is
an aid to screen the factors related to the spatial distribution of the vectors of Chagas
disease. Knowledge of such factors may be used to define critical or potentially critical
areas for outbreaks of insect bites and thus for an increase in Chagas disease prevalence.
The increasing temperatures in the planet suggest that the distribution range of the
Triatomus species will turn wider, allowing them to colonize some of the upper parts
in the Andes range. Thus, the statistical methods used here can be used as a tool for
planning and drawing potential scenarios for the distribution of the vector insects under
a global warming and climate change.

MCMC and INLA both use a Bayesian approach, the results presented here show
some differences, mainly on the estimated parameter of the logistic term and on the
smoothness of the resulting maps. Such differences apparently come from the way both
approaches model the spatial dependence in the data.
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Table 2. Summary statistics for autologistic models fitted using MCMC: posterior
median, posterior standard deviation (SD) and posterior 95% credible interval for fixed
effects

Mean SD 2.5% 50% 97.5%
P. geniculatus
without covariates
Intercept -1773.65 380.5328 -2646.615 -1773.65 -1623.118
with covariates
Intercept -2.533 1.881 -4.901 -2.533 2.508
Altitude -6.108 0.870 -6.587 -6.108 -3.806
Rain 1.326 0.715 0.656 1.326 3.008
Sunshine -29.486 8.847 -30.513 -29.486 -2.716
AET 21.622 8.851 1.989 21.622 26.049
LST 13.912 6.046 1.308 13.912 17.084
Humidity -32.028 11.908 -35.222 -32.028 -1.007
P. guentheri
without covariates
Intercept -25.047 15.775 -54.280 -25.047 -0.254
with covariates
Intercept 16.518 5.821 -0.592 16.51 17.092
Altitude -2.237 1.044 -4.200 -2.237 -1.284
NDVI 10.628 3.733 0.388 10.628 15.692
AET 58.121 21.657 2.020 58.121 64.587
LST 26.807 7.692 3.568 26.807 27.595

Table 3. Summary statistics for autologistic models fitted using MCMC: posterior
median, posterior standard deviation (SD) and posterior 95% credible interval for fixed
effects

Mean SD 2.5% 50% 97.5%
P. megistus
without covariates
Intercept -125.275  69.058 -232.485 -125.275 -5.141
with covariates
Intercept 3.525 3.255 -3.719 3.525 7.549
Altitude 0.180 0.519 -1.384 0.180 0.579
NDVI 7.743 2.942 0.9744 7.743 9.984
Sunshine -39.663  14.572 -53.692 -39.663 -1.838
LST -18.661 4.918 -21.544 -18.661  -1.0167
Humidity -50.601 19.671 -68.749 -50.601 -3.126
T. Infestans
without covariates
Intercept 82.879  43.191 7.000 82.879  146.979
with covariates
Intercept 1.601 1.313 -0.939 1.601 4.021
Altitude -0.738 0.171 -1.027 -0.738 -0.385
Sunshine 16.150 3.848 3.668 16.150 19.130
AET 12.844 4.519 2.582 12.844 19.311
LST 7.903 3.792 0.586 7.903 13.148
Humidity 7.217 1.949 3.195 7.217 10.993

6 APPENDIX
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Fig. 5. Posterior probability of presence and standard deviation maps for autologistic
models fitted without covariates using INLA-SPDE for the insect vector species
considered in this study.
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Fig. 6. Posterior probability of presence and standard deviation maps for autologistic
models fitted without covariates using MCMC for the insect vector species considered in
this study.
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Fig. 7. Posterior probability of presence and standard deviation maps for autologistic
models fitted with covariates using INLA-SPDE for the insect vector species considered
in this study.
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Fig. 8. Posterior probability of presence and standard deviation maps for autologistic
models fitted with covariates using MCMC for the insect vector species considered in
this study.
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mean without covariates sd without covariates mean with covariates sd with covariates

Species richness

Triatoma richness

Fig. 9. Mean and sd maps for species richness models without covariates (first two
columns from left to right) and with covariates (third and fourth columns) for the insect
vector species considered in this study.

Table 4. Summary statistics for autologistic models fitted using MCMC: posterior
mean, posterior standard deviation (SD) and posterior 95% credible interval for fixed
effects

Mean SD 2.5% 50% 97.5%
T. garciabesi
without covariates
Intercept -65.231 35.049 -118.120 -65.231 -2.277
with covariates
Intercept -49.928 54.484  -134.281  -49.928 48.147
LST 124.380 61.103 10.218 124.38 206.03

Humidity 124.380  61.1036 10.2187  124.380  206.030
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Table 5. Summary statistics for autologistic models fitted with INLA-SPDE: posterior
mean, posterior standard deviation (SD) and posterior 95% credible interval for fixed
effects

Mean SD 2.5% 50% 97.5%
P. geniculatus
without covariates
Intercept -25.357 3.717 -33.010 -25.235  -18.384
with covariates
Intercept -53.499 8.571 -70.778 -53.367  -36.933
NDVI 15.554 3.840 8.082 15.531 23.152
AET 0.2610 0.0817 0.1032 0.2599 0.4248
LST 0.5199 0.1239 0.2777 0.5195 0.7639
P. guentheri
without covariates
Intercept -10.0769  30.3547 -67.7663 -10.7804 51.344
with covariates
Intercept -7.1593  30.5665 -67.1694 -7.1609  52.8052
Altitude 0.0020 0.0007 0.0007 0.0020 0.0034
NDVI 18.993 2.382 14.443 18.948 23.803
Rain -0.012 0.004 -0.022 -0.012 -0.002
AET 0.427 0.113 0.208 0.426 0.652
LST 0.540 0.094 0.356 0.540 0.728
Aridity 0.322 0.122 0.083 0.322 0.564
Humidity -0.067 0.027 -0.120 -0.067 -0.013

Table 6. Summary statistics for autologistic models fitted with INLA-SPDE: posterior
mean, posterior standard deviation (SD) and posterior 95% credible interval for fixed
effects

Mean SD 2.5% 50% 97.5%
P. megistus
without covariates
Intercept -37.911 4.070 -46.516 -37.694 -30.542
with covariates
Intercept -15.775 7.619 -30.703 -15.800 -0.730
NDVI 6.371 2.687 1.147 6.352 11.695
Sunshine -0.031 0.013 -0.057 -0.031 -0.005
AET 0.179 0.061 0.060 0.179 0.299
Humidity -0.062 0.024 -0.110 -0.062 -0.014
T. infestans
without covariates
Intercept -10.112  15.702  -41.748 -10.417 24.453
with covariates
Intercept -17.123  18.234 -50.096 -18.739 26.355
NDVI 16.057 1.141 13.847 16.046 18.328

Humidity 0.021 0.008 0.006 0.021 0.037
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Table 7. Summary statistics for autologistic models fitted with INLA-SPDE: posterior
mean, posterior standard deviation (SD) and posterior 95% credible interval for fixed
effects

Mean SD 2.5% 50% 97.5%
T. garciabesi
without covariates
Intercept -18.869 24.881 -67.716 -18.871 29.94
with covariates
Intercept -11.890 29.246 -68.712 -12.108 46.173
Altitude 0.0006 0.000 0.000 0.000 0.001
NDVI 18.7073 1.661 15.509 18.685 22.031

Table 8. Summary statistics for auto Poisson models fitted with INLA-SPDE:
posterior mean, posterior standard deviation (SD) and posterior 95% credible interval
for fixed effects

Mean SD 2.5% 50% 97.5%
Species richness without  covariates
Intercept -3.188 12.492 -31.59  -3.466 27.517
Species richness with  covariates
Intercept -4.473 12.594  -32.399 -4.926  27.093
NDVI 1.541 0.107 1.330 1.541 1.753
LST 0.023 0.003 0.017 0.023 0.030

Triatoma richness  without covariates

Intercept -1.979 20.1408  -43.971 -2.445 42.169
Triatoma richness with  covariates

Intercept -2.788 20.346  -44.634  -3.462 42.162
Altitude 0.000 0.000 0.000 0.000 0.000
NDVI 1.601 0.105 1.395 1.601 1.808

LST 0.023 0.003 0.016 0.023 0.030
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