
Statistically-driven generation of multidimensional
analytical schemas from Linked Data

Victoria Nebot∗, Rafael Berlanga
Departamento de Lenguajes y Sistemas Informáticos

Universitat Jaume I
Campus de Riu Sec, 12071, Castellón, Spain

Phone: (+34) 964 72 83 67. Fax: (+34) 964 72 84 35

Abstract

The ever-increasing Linked Data (LD) initiative has given place to open, large
amounts of semi-structured and rich data published on the Web. However, effec-
tive analytical tools that aid the user in his/her analysis and go beyond browsing
and querying are still lacking. To address this issue, we propose the automatic
generation of multidimensional analytical stars (MDAS). The success of the multi-
dimensional (MD) model for data analysis has been in great part due to its simplic-
ity. Therefore, in this paper we aim at automatically discovering MD conceptual
patterns that summarize LD. These patterns resemble the MD star schema typical
of relational data warehousing. The underlying foundations of our method is a
statistical framework that takes into account both concept and instance data. We
present an implementation that makes use of the statistical framework to generate
the MDAS. We have performed several experiments that assess and validate the
statistical approach with two well-known and large LD sets.

Keywords: Linked Data, RDF, Multidimensional models, Statistical models

1. Introduction

The vision of the Semantic Web (SW) is to create a common framework that al-
lows data to be shared and reused at different levels (i.e., between applications, en-
terprises and communities). The most tangible realization of the SW is the Linked
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Data (LD) cloud, which contains around 85 billion triples over 10 thousand differ-
ent datasets (as of September 2015)1 and it is expressed using the Resource De-
scription Framework (RDF) [23] modeling language. Lately, communities from
different areas as well as governments and public organizations have published
large volumes of interlinked data in the LD cloud following the publication guide-
lines and providing the basis for creating and populating the Web of Data [14].

Given the explosive growth both in data size and also schema complexity and
heterogeneity, LD sources are becoming increasingly difficult to understand and
use, which limits the exploration and the exploitation of potential information
they contain. This has brought to the fore the need for new tools able to explore,
query, analyze and visualize these semi-structured, semantically-enriched and het-
erogeneous data sets [10]. While several different tools such as graph-based query
builders, semantic browsers and exploration tools [5, 7, 15, 4] have emerged to aid
the user in querying, browsing and exploring LD, these approaches have limited
ability to summarize, aggregate and display data in the form that a scientific or
business user expects, such as aggregation tables and graphs. Moreover, they fall
short when it comes to provide the user an overview of the potential data that may
be of interest from an analytical viewpoint.

In this paper our hipothesis is that LD constitutes a valuable source of knowl-
edge worth exploiting from a multidimensional (MD) perspective. Specially the
Business Intelligence (BI) field can benefit enormously from adding and aligning
the new knowledge uncovered from LD sources with the existing corporate data
warehouses to make better and more informed decisions. BI uses the MD model
to view and analyze data in terms of dimensions and measures, which seems the
most natural way to arrange data. BI has traditionally been applied to internal,
corporate and structured data, which is extracted, transformed and loaded (ETL)
into a pre-defined and static MD model. The relational implementation of the MD

data model is typically a star schema. The dynamic and semi-structured nature of
LD poses several challenges to both potential analysts and current BI tools. On one
hand, manual exploration of the datasets using the available browsers and tools to
find MD patterns is cumbersome due to the heterogeneity and incompleteness of
LD and the lack of support for obtaining informed summaries. Moreover, as the
datasets are dynamic, their structure may change or evolve, making the one-time
MD design approach unfeasible.

This paper approaches the exploration and discovery of potential analytical

1http://stats.lod2.eu/
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data from LD sources in a radical and innovative way. We propose a statistical
framework to automatically discover candidate MD patterns hidden in LD sources.
We call these patterns multidimensional analytical stars (MDAS) . A MDAS is a MD

star-shaped pattern at the class level that encapsulates an interesting MD analysis
[26]. The main innovations and contributions of this research to the LD and BI

community are stated below:

• We define the concept of MDAS as a mapping of the MD model to a statistical
layer on top of LD sources. This statistical layer is able to deal both with
heterogeneity and incompleteness common in LD sets and feeds itself from
the RDF schema graph elements and the instance data. We characterize
and identify the facts and potential dimensions and measures that compose
a MDAS in terms of classes and properties, whose underlying pattern has
been inferred in the statistical layer.

• We develop a statistical framework to approach the problem of discovering
MDAS in a foundational and automatic way. The automation of the process
relieves the analyst from the burden of having to explore the dataset to be-
come acquainted with it. Moreover, the discovery of the MDAS is driven
both by the implicit semantics of the data and the statistical arrangement of
the triple instances.

• We overcome the long-term known issues of data heterogeneity and incom-
pleteness in the LD world. Both issues arise from the very same nature of
LD and, in particular, the RDF modeling language, which does not impose a
hard schema on the instance data. This modeling approach provides more
flexibility than traditional modeling approaches based on hard schemas and
constraints but introduces the above-mentioned new challenges. The statis-
tical nature of the developed approach is able to deal with both heterogene-
ity and incompleteness of the datasets and discovers different configurations
of MDAS that capture such heterogeneity.

• The statistical nature of the approach allows us to use well-known sam-
pling techniques to build the statistical model instead of using the complete
dataset, which may not always be available (e.g., SPARQL endpoints) or is
too large to be processed (e.g., Big Data).

• We provide an implementation that makes use of the statistical model to
generate MDAS. The algorithms provide the analyst with all the pieces to
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compose and configure MDAS while ensuring the population with instance
data. On one hand, we automatically generate the bases of the stars (i.e., the
nucleus), where a ranking of properties according to their relevance for the
star is presented so that the user can select properties aided by the statistical
indicators. Moreover, we also generate dimension types to enrich the base
of the star with potential dimensions and measures. Dimension types are
organized into groups to alleviate heterogeneity among dimensions that are
expressed syntactically different but are semantically similar.

• We present several experiments with two different and well-known LD sets
and assess the quality of our statistical model to generate MDAS.

The structure of the paper is as follows. In Section 2 we motivate our approach
with an example. Section 3 presents preliminary concepts. Section 4 presents
the main foundations that underlie our approach. That is, we present a model
for MDAS over LD sources. Section 5 defines the statistical model developed to
approach the problem of generating MDAS and the implementation. Section 6
presents the experiments and results. In Section 7 we review the literature related
to the problem of analyzing LD and Section 8 gives some conclusions and future
work.

2. Motivating example

We will now illustrate the need for an automatic and statistical approach to
infer MD patterns (i.e., MDAS) from LD sources. We use the Enipedia2 dataset for
the examples. Enipedia is an initiative aimed at providing a collaborative environ-
ment through the use of wikis and the SW for energy and industry issues. They
provide energy data from different open data sources structured and linked in RDF.
Figure 1 shows an “ideal” RDF knowledge base that models information about
Powerplants, which have a Country, the type of Fuel and the carbonemmissions-23kg

associated (see the upper schema part). The lower part of the figure has descrip-
tions about resources, e.g., powerplants (&r1,&r3), countries (&r4,&r5) and fuel
type (&r2,&r7). The resources are connected to other resources or literals by an
arc if there is an rdf:property relating them. For example, the fact that &r1 is con-
nected to &r4 by a state property means that the resource represented by &r1 is
located in the resource represented by &r4. In addition, resources are connected to

2http://enipedia.tudelft.nl/wiki/Main_Page
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resource classes using the rdf:type property, which indicates that the resource is a
member of the class it is connected to. For example, resource &r1 is a Powerplant.
In the schema, classes and properties may also be related by rdfs:subclassOf and
rdfs:subpropertyOf properties, respectively, indicating a hierarchy on classes and
properties. Also, the domains and ranges of a property may be defined using the
rdfs:domain and rdfs:range properties.

In the previous ideal scenario, where all resources comply with a well-defined
schema, it is easy to see that, by exploring the schema, we can find interest-
ing associations between classes that resemble MD patterns. For example, from
the previous schema, the class Powerplant is a good candidate for being the fact,
the classes Country and Fuel can act as dimensions and the carbonemmissions-23kg

property can act as the measure.

Figure 1: Example of an ideal RDF knowledge base.

Unfortunately, the real LD world could not be further from the previous ideal
scenario. The flexibility of the RDF model and the decentralized approach for
creating and publishing LD has resulted in very heterogeneous datasets, where
not only different datasets modeling the same domain objects are annotated with
different schemas, but also, within datasets, the schemas are usually very poor
(if non-existent) and the annotation of resources is incomplete and incoherent.
Therefore, the exploration and use of these datasets for analytical purposes be-
comes increasingly difficult. Figure 2 shows an example of the heterogeneity in
the Enipedia dataset, where four resources of type Powerplant are presented. We
observe that different properties are used to refer to the location of the powerplant
(i.e., country, state, county), with no defined relation among them neither domain
and range definition at the schema level. It is also frequent that a property is
used with different domains and ranges. The class representing the location also
varies from Country to OECDMember with no relation between them. The same occurs
with classes Fuel and Energy_concept, which represent apparently the same class.
Also, not all powerplant resources have attached the same data properties (i.e.,
&r4 and &r7 have carbonemmissions-23kg, whereas &r10 has also the property
carbonemmissionsnextdecade-23kg and &r1 has none).

Figure 2: Example of heterogeneity in LD sources.

In the current LD scenario, approaches that rely only on exploiting the schema
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to discover interesting associations and patterns in the data become insufficient,
as in most of the cases, the only schema that we find of top of LD sets are the
semantic types of the resources, that is, the classes. Even in the cases where
data have a larger semantic layer on top, this schema is usually heterogeneous
both in its shape and usage. Therefore, in this paper we approach the problem by
proposing a solution that combines both the semantics provided by the existing
schema and statistical information derived from the instance data.

3. Preliminaries

In this section we introduce the main foundations and related topics that un-
derlie the developed approach.

3.1. Multidimensional modeling
The term BI refers to all the decision support technologies aimed at making

better informed and faster decisions in the enterprise environment. During the
past two decades, businesses have been increasingly leveraging their data with
sophisticated analysis techniques to get comprehensive knowledge and gain in-
sight of their data. Data warehousing and OLAP are now mature technologies and
have been traditionally applied in the field of BI. Both technologies are based on
the MD model abstraction. Multidimensionality is based on the fact/dimension
dichotomy [20]. The information is conceptually modeled in terms of facts, the
central entities of the desired analysis (e.g., a sale), and dimensions, which pro-
vide contextual information for the facts (e.g., the products sold). The dimensions
are also known to be the different points of view (i.e., MD point) from where a fact
can be analyzed. A cube consists of fact instances (or simply facts), where each
fact is identified by a MD point (a point for each dimension) and quantified by
measure values. Usually, the dimensions are hierarchically organized into levels.
For instance, products can be grouped into product categories. Typically, the facts
have associated numerical measures (e.g., the quantity sold or the total price), and
queries aggregate fact measure values up to a certain level (e.g., total profit by
product category and month). This provides the user an easy-to-understand and
dynamic visualization of data.

The application of MD modeling to corporate, structured relational data has
been for quite some time an active area of research, at the logical level [21]
and later at the conceptual level [13]. Early MD methods view the modeling of
facts and dimensions as a complex and manual process performed by the data
warehouse designer. Other approaches try to assist the designer and sometimes
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even automate this complex process either by automatically analyzing the data
sources (i.e., supply-driven approaches) or by formalizing the user requirements
(i.e., requirement-driven approaches). Hybrid approaches combine both strate-
gies.

Regarding the implementation of the MD model using the relational technol-
ogy (ROLAP), the star schema is the most common logical schema used, where
data are stored in relational tables. The star schema consists of a fact table plus
one dimension table for each dimension. Each tuple in the fact table has a foreign
key column to each of the dimension tables and numeric columns that represent
the measures.

Despite the importance and great success of applying MD modeling to ana-
lyze relational data, the issue of automatically discovering MD analytical patterns
in sources other than relational (i.e., semi-structured, heterogeneous, semantics-
enriched data) has been poorly addressed in the literature [31, 2]. In our approach,
we aim at discovering these MD analytical patterns from unconventional data (i.e.,
LD sources) based on a) the semantics of the data schema and b) the probabilistic
distribution of the instance data.

3.2. Linked Data and RDF/S

The evolution of the Web from a global information space of linked documents
to one where data are linked (Web of Data) has propelled a set of best practices
for publishing and connecting structured data on the Web known as LD. Among
the basic principles for publishing LD we highlight the following: each entity has
a unique URL identifier, the identifiers should be dereferenceable by HTTP and the
entity representations should be interlinked together to form a global LD cloud.

RDF has become the most adopted data model to represent LD, as RDF allows
for the description of resources and how they relate to each other. The underlying
structure of RDF is a collection of triples of the form (subject predicate object),
which form an RDF graph. An RDF triple states that there is some relationship,
indicated by the predicate, holding between the subject and the object of the triple.
We consider only valid RDF triples using URIS (U), blank nodes (B) and literals
(L). By means of the clause rdf:type we can express class membership, even
though in RDF there is no technical distinction between the schema and the in-
stance data.

RDFS [8] defines a simple modeling language on top of RDF. An RDF schema
defines a finite set of class names C and property names P, uniquely identified by
the names in N = C∪P. It provides primitives that allow to express set mem-
bership of objects in property and class extensions. That is, RDFS uses classes,
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subsumption relationships on both classes and properties, and global domain and
range restrictions for properties as modeling primitives. For each property p ∈ P,
domain(p) is a class, and range(p) is either a class or a literal.

RDFS also provides inference semantics: structural inference given by the tran-
sitivity of subsumption relations and type inference given by the typing system.
The closure of an RDF schema contains all triples that are either explicit or can
be inferred from explicit triples using the previous types of inference. An RDFS

knowledge base S is an RDF schema graph that is closed w.r.t. both structural and
type inference.

We use the traditional graph data model to represent RDF/S data (both the
RDF schema and the RDF instance data). In particular, an RDF schema graph S
is a labelled directed graph that expresses a collection of triples TS = (s, p,o) =
U×U×U where the nodes represent classes c∈C, the edges represent properties
p ∈ P and there can be hierarchical relations between classes and properties.

An RDF instance graph I is a labelled directed graph that expresses a collection
of triples TI = (s, p,o) =U×U× (U ∪L) where the nodes represent instances of
classes c∈C and the edges represent properties p∈ P of the RDF schema graph S .
That is, rdf:type declarations link the RDF instance graph I with the RDF schema
graph S .

Notice that, even though we have modelled an RDF instance graph and its
corresponding schema graph, usually, LD sources do not contain complete and
consistent schemas as defined here. Therefore, the goal of this paper is to statisti-
cally capture the heterogeneity of the data and to infer MD patterns at the schema
level.

4. MD analytical stars

In this section we develop the MD data model of a MDAS from LD sources,
which is based on the model proposed by [30]. In this paper, we do not address
the construction of dimension hierarchies from semantic sources, as this has been
previously addressed in [26].

Definition 4.1. A MDAS is a two-tuple S = (FT ,DT ), where FT is a fact type and
DT = {Ti}i=1,...,n is its corresponding dimension types.

In the RDF model, the fact type maps to a class, that is, FT ∈ C. Thus, the
following SPARQL query retrieves all possible fact types.
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SELECT DISTINCT ?c

WHERE {

?e a ?c .

}

Listing 1: SPARQL query for retrieving fact types

Example 4.1. For demonstration purposes, we will show the generation and shape
of one possible MDAS from the example data set shown in Figure 1. However, our
method generates all possible MDAS that satisfy certain restrictions. Suppose we
select Powerplant class as fact type.

Definition 4.2. A dimension type T is a sequence (c1,r1,c2, ...,rn−1,cn) where
c1 = FT , ci, ...,cn−1 ∈C, cn ∈C∪DT , ri ∈ P and there are no cycles3. The length
of a dimension type is determined by the number of triple patterns that compose
it (i.e., n−1).

In the RDF model, a dimension type maps to a sequence of classes and prop-
erties that start at the fact type and finish in a class or a datatype container.

Notice that the length of a dimension type is not bounded, which makes the
possible number of dimension types exponential. As an example, the following
SPARQL query shows how to retrieve all possible dimension types of length one,
that is, sequences (c1,r1,c2), taking into account that Powerplant is the selected
fact type. For dimension types of length n, a similar query must be executed by
joining triple patterns until reaching the exact length. In our model, everything
that characterizes the fact type is considered to be dimensional (i.e., dimension
types), even attributes that would be considered as measures in other models.

SELECT ?r1 ?c2

WHERE {

?e1 a Powerplant .

?e1 ?r1 ?e2 .

FILTER (datatype(?e2) = ?c2 || ?e2 a ?c2 )

}

Listing 2: SPARQL query for retrieving dimension types of length one given Powerplant as
fact type

3From now on, we use the symbol r to refer to properties instead of p.
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We support the aggregation semantics as in [30] for each dimension type T
by keeping track of what types of aggregate functions can be applied. We distin-
guish between three types of aggregate functions: Σ, applicable to data that can
be added together, φ, applicable to data that can be used for average calculations,
and ε, applicable to data that is constant, i.e., it can only be counted. Considering
only the standard SQL aggregation functions, we have that Σ= SUM, COUNT,
AVG, MIN, MAX, φ=COUNT, AVG, MIN, MAX and ε=COUNT. The aggrega-
tion types are ordered, ε⊂ φ⊂ Σ, so data with a higher aggregation type, e.g., Σ,
also possess the characteristics of the lower aggregation types. We assume a func-
tion Aggtype : T → {Σ,φ,ε} that gives the aggregation type for each dimension
type.

Example 4.2. Following with the example, from all the possible dimension types
of any length, we select the following ones: Country=(Powerplant, state, Country),
Fuel=(Powerplant, fuel_type, Fuel, rdfs:label, string) and CarbonEmmissions:
(Powerplant, carbonemmissions-23kg, float). According to the previous aggregation
semantics, the aggregation types of the dimension types are:
Aggtype(CarbonEmmisions)= Σ, Aggtype(Country)= ε, and Aggtype(Fuel)= ε.

Definition 4.3. A set of facts F = { f} is a set of resources f such that each f is
of type FT .

The following SPARQL query retrieves the facts given the fact type Powerplant.

SELECT DISTINCT ?f

WHERE {

?f a Powerplant .

}

Listing 3: SPARQL query for retrieving facts

Example 4.3. The facts of type Powerplant are {&r1,&r3}

Definition 4.4. A dimension D of type T = (c1,r1,c2, ...,rn−1,cn) is a set of re-
source sequences (e1,r1,e2, ...,rn−1,en) where e1, ...,en−1 ∈U , en ∈U ∪L, ri ∈ P
and ∀ei, (ei a ci) ∈ TS and (ei,ri,ei+1) ∈ TI . We denote with Dv = {ein} the set of
dimension values, which are the values at the end of each sequence.

The following SPARQL query populates the dimension type Country=(Powerplant,
state, Country).
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SELECT ?e1 ?r1 ?e2

WHERE {

?e1 a Powerplant .

?e2 a Country .

?e1 ?r1 ?e2

}

Listing 4: SPARQL query for populating the dimension type Country

Example 4.4. The dimension Country is composed by the set of sequences Country=
{(&r1,state,&r4),(&r3,state,&r5)}. Countryv are the values {&r4,&r5}

Definition 4.5. Let F be a set of facts, and D a dimension. A fact-dimension
relation between F and D is a set R = {( f ,e)}, where f ∈ F and e ∈ Dv. Thus R
links facts to dimension values.

Example 4.5. The fact-dimension relation R links Powerplant facts to Country
dimension values. The result is R = {(&r1,&r4),(&r3,&r5)}.

Definition 4.6. A multidimensional object (MO) is a four-tuple M = (S,F,D,R),
where S = (FT ,DT = {Ti}) is the fact schema, F = { f} is a set of facts of type
FT , D = {Di}i=1,...,n is a set of dimensions where each Di is of type Ti and R =
{Ri}i=1,...,n is a set of fact-dimension relations, such that ( f ,e) ∈ Ri =⇒ f ∈
F ∧ e ∈ Dvi .

Example 4.6. From the running example, we obtain a MO M = (S,F,D,R) where:
S = (Powerplant,{Country,Fuel,CarbonEmmissions} and F = {&r1,&r3}.
Now, we describe the dimension types, whose aggregation semantics are defined
in Example 4.2.
Country=(Powerplant, state, Country),
Fuel=(Powerplant, fuel_type, Fuel, rdfs:label, string),
CarbonEmmissions=(Powerplant, carbonemmissions-23kg, float).
The dimensions:
Country={(&r1, state, &r4), (&r3, state, &r5)},
Fuel={(&r1, fuel_type, &r2, rdfs:label, “Wind”),

(&r3, fuel_type, &r7, rdfs:label, “Gasoil”)},
CarbonEmmissions={(&r1, carbonemmissions-23kg, 8.1e+4),

(&r3, carbonemmissions-23kg, 2.1e+5)}.
The R relation:
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RCountry = {(&r1,&r4),(&r3,&r5)},
RRuel = {(&r1,“Wind′′),(&r3,“Gasoil′′)},
RCarbonEmmissions = {(&r1,8.1e+4),(&r3,2.1e+5)}.

The standard relationship between fact and dimension is many-to-one: each
fact links to one and only one dimension value and, usually, each dimension value
points back to many facts. As this is too strict in our setup, we do not enforce
this constraint. Instead, we check the capacity of a dimension type to aggregate
or summarize fact values into dimension values, and enforce the found dimen-
sion types to satisfy a certain degree of aggregation power. That is, we try to
avoid one-to-one and one-to-many relationships, where no real aggregation is be-
ing produced between the set of facts and the set of dimension values.

Definition 4.7. Given a dimension type T = (c1,r1,c2,r2, ...rn−1,cn), the aggrega-
tion power of T , Aggpower : T →R, is calculated as the ratio between the number
of instances of the fact class c1 and the number of different instances (or literals)
of the sink class (or datatype) cn that satisfy the query given by the dimension
type.

Example 4.7. Given the number of instances (or literals) in parenthesis that sat-
isfy the underlying queries of the dimension types, we show their aggregation
power:

Country = (Powerplant(160),state,Country(13))→
Aggpower(Country) = 12.3

Fuel = (Powerplant(11994), f uel_type,Fuel, label,string(27)→
Aggpower(Fuel) = 444.2

In order to exactly calculate the aggregation power, one must execute the
SPARQL query that populates the dimension type, and then calculate the ratio be-
tween the number of facts and the number of distinct dimension values. In the
next section, we show an approximation to calculate the aggregation power of a
dimension type that does not need to execute a SPARQL query.

To summarize, the elements of the data model presented in Defs. 4.1 and 4.2
refer to the schema part of the MDAS, that is, S = (FT ,DT ) are the fact type and
dimension types, whereas elements defined in Defs. 4.3 to 4.5 refer to the instance
data that will populate an MDAS, that is, the facts, dimensions and fact-dimension
relations. The MO presented in Def. 4.6 is the element that groups together the
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schema and the instance data of the star. Recall that the main aim of this paper is to
automatically discover MDAS, that is, the schema part of a MO, as the population
with instance data can be easily done by means of SPARQL queries once we know
the schema.

Notice that a brute-force algorithm that searches any possible combination of
fact type and dimension types is unfeasible as the search space of the problem is
combinatorial. Also, the approach is not scalable because SPARQL query proces-
sors suffer from scalability issues when queries imply many joins.

Thus, we have devised a probabilistic approach for generating MDAS that
guides the exploration of the search space for finding fact and dimension types.
The statistical nature of the proposed model allows us to deal with the incomplete-
ness and heterogeneity inherent in LD sets.

5. Statistical model

In this section we show the statistical model devised to provide an estimation
of “good” candidate MDAS. The first part shows the statistical indicators that
compose the model, in the second part, we provide the algorithms that make use
of the statistical model in order to generate MDAS, finally, we comment on the
computational complexity of the implementation.

Intuitively, a candidate MDAS should keep a good balance between the num-
ber of dimensions that compose it (i.e., dimensionality), and the number of facts
that populate it (i.e., cardinality). Those candidate MDAS that cannot eventually
be populated with facts are called empty schemas. In this way, a good statisti-
cal model should produce a low rate of empty schemas and should rank higher
schemas with high cardinality, at the same time that it should avoid schemas with
extreme dimensionality (either too low or too high).

5.1. Components of the model
In order to deal with the incompleteness and heterogeneity of LD we build a

statistical model on top of the RDF instance graph and RDF schema graph that will
estimate MDAS as defined in Section 4. We assume that at least type information
is available in the RDF schema graph.

First of all, we generate what we call typified triples. Given a LD set with its
associated schema triples TS and instance triples TI , ∀(x r1 y) ∈ TI we derive a
typified triple (c1,r1,c2) iff TS |= (x a c1)∧(y a c2), c1,c2 ∈C, r1 ∈ P. We assume
the existence of a reasoning system able to infer the classes c1 and c2 of instances
x and y when not explicitly set [6].

13



A direct way to estimate the probability of an MDAS consists in defining ran-
dom walks over the observed transitions between classes and properties in the
typified triples. That is, we first estimate the conditional probabilities p(r1|c1),
p(c2|r1) and p(c2|c1) for the triple random variables subject (c1), property (r1)
and object (c2). In [27], we proposed a preliminary model for estimating the joint
probability of a star schema directly over these probabilities, mainly in hetero-
geneous datasets. Unfortunately, the resulting statistical model is too simple to
capture the implicit data constraints. As a consequence, the method produces nu-
merous empty schemas. In this work we propose a more accurate statistical model
aimed at capturing the existing data constraints.

In the following, we introduce the components of the statistical model that
will guide the generation of MDAS by taking into account both the instance and
the schema graph by means of the typified triples.

To estimate fact types, according to Def. 4.1, the probability of a class c acting
as a fact type given a dataset TS ∪TI , that is p(c|TS ∪TI ), can be estimated by
simply counting the typified triples associated to that class.

Regarding dimension types, in Def. 4.2 we define the structure of a dimen-
sion type as an acyclic sequence of classes and properties (c1,r1,c2, · · · ,rn−1,cn).
As previously mentioned, the most likely sequences can be easily generated by
random walking over the conditional models p(ri|ci), p(ci+1|ri) and p(ci+1|ci)
[27]. Additionally, in order to take into account existing data constraints between
classes, we also estimate the pairwise co-occurence of chaining properties. Thus,
for chaining up properties in the way (r1,c2,r2), we estimate the co-occurrence of
(r1,r2) under the class c2 by sampling at the instance level, which is denoted as
p(r1 → r2|c2). Unlike random walk models, which aim at generating candidate
dimension types, these distributions are used for checking whether a dimension
type is likely to fulfill the instance data constraints or not.

As an MDAS is defined as a fact type and a set of dimension types, we must
take care that the dimension types are likely to co-occur at the instance level so
that it does not produce an empty schema. With this purpose, we estimate the co-
occurrence probability of property pairs (ri,r j) under the fact type c by sampling
at the instance level, which is denoted as p(ri ∼ r j|c). These probabilities will be
used to generate tight property clusters around each fact type c so that they are
likely to generate non-empty schemas.

Table 1 provides a summary of the statistical indicators that compose the
model. Next section describes how these estimators can be used to guide the
construction of candidate MDAS.
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Table 1: Statistical indicators

Function Statistical indicator
Estimating fact type p(c|TS ∪TI )
Generating dimension types (random walks) p(ri|ci), p(ci+1|ri), p(ci+1|ci)
Generating bases4of MDAS p(ri ∼ r j|c)
Restricting chaining of props. in dim. types p(r1→ ri+1|ci+1)

5.2. Implementation
In order to generate MDAS from both schema and instance data, we need to

estimate likely fact types FT = c and potential dimension types Ti associated to
them. Dimension types are composed by sequences of classes and properties es-
timated in such a way that represent likely sequences of instances and properties
at the instance level. We must ensure as much as possible that there is a fact-
dimension relation between the set of facts (F) and dimensions (D). This means
that there must be a path connecting each fact f ∈ F with each dimension value
e ∈ Dv at the instance level. For this matter we use the statistical indicators of the
previous section aimed at capturing instance data constraints.

The structure of a MDAS is shown in Figure 3. We approach the problem of
generating MDAS in two phases. Given a likely fact type FT = c, the first phase
consists in estimating bases for c, that is, the core part in bold, which is composed
by c and a set of ranked properties that co-occur given c. Each property in the base
is ranked according to a measure of the cohesion with the previous properties in
the rank. The second phase, shown in dotted lines, estimates potential dimension
types. As the inferred MDAS are statistical approximations, we follow this 2-step
approach to ensure as much as possible that final stars configured by the user will
be populated with facts and dimensions that are connected. The calculation of the
base of a star with the ranked properties increases the chances that the different
dimensions of each dimension type will overlap at the same fact type instances and
result in non-empty schemas. In the following sections, we explain each phase in
more detail.

Figure 3: Structure of a MDAS. The bold part corresponds to the base of the star and the
dotted part to the dimension types.

4The definition of base is given in Def. 5.1
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5.2.1. First phase: Generation of bases of MDAS

Generating possible bases of a MDAS consists in estimating sets of ordered
properties that most likely co-occur given the fact type class c. We formalize this
notion as follows:

Definition 5.1. We define a base as a tuple B = (c,rep,core,opt,sc), such that:

• c is the fact type,

• rep = (r1,r2) ∈ P is the representative property pair of the base,

• core = (R,≺) is the core of the base where R is the set of ground properties
ri ∈ P and ≺ is a partial order of R such that ∀s, t ∈ R, s≺ t iff min({p(s∼
ri|c)ri∈core}) < min({p(t ∼ ri|c)ri∈core}). Properties in R also satisfy that
∀ri,r j ∈ core, p(ri ∼ r j|c)>= α · p(r1 ∼ r2|c)r1,r2∈rep,

• opt = (R,≺) is the optional part of the base where R is the set of ground
properties ri ∈ P and ≺ is a partial order of R such that ∀s, t ∈ R, s ≺ t iff
min({p(s ∼ ri|c)ri∈core}) < min({p(t ∼ ri|c)ri∈core}). Properties in R also
satisfy that ∀ri,r j ∈ opt, β · p(r1∼ r2|c)r1,r2∈rep <= p(ri∼ r j|c)<α · p(r1∼
r2|c)r1,r2∈rep,

• sc = min({p(ri ∼ r j|c)})ri,r j∈core is the probabilistic score assigned to the
base.

From the previous definition we observe that each base has a representative
property pair rep. The properties that belong to the base are divided into two
disjoint ordered sets, the core properties, and the optional properties. In both
sets, properties are ordered by their cohesion score (i.e., co-occurrence probabil-
ity) with the rest of preceding properties. This provides the analyst a valuable
estimation of the degradation in the number of facts as properties further down
in the rank are selected. Properties that belong to the core have a higher degree
of cohesion among themselves than properties in the optional set, that is, they
must satisfy the restriction that their co-occurrence probability pairwise is not in-
ferior to a percentage (α) of the co-occurrence probability of the representative
pair. Properties that belong to the optional set have a lower degree of cohesion
with the properties of the core, that is, they must satisfy that their co-occurrence
probability pairwise with the core properties is in between two percentages of the
probability of the representative pair (α and β). These restrictions that enforce
cohesion at two different levels are set to aid the analyst in the selection of proper-
ties and ensure as much as possible that the resulting base will be populated with
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facts. The α and β parameters can be set by the analyst and mark the degradation
on the cohesion (i.e., number of facts) which one is willing to accept, that is, if
the analyst selects top properties in the core, the resulting star will probably have
more facts than if properties from the optional set are selected.

Next, we formally define the cardinality of a base.

Definition 5.2. The cardinality of a base B is defined as the number of facts that
have all the properties in the core set. That is, |{ f ∈ c / ∀ri ∈ core, Ti |= ( f ri ?x)}|

Obviously, the estimation of bases as proposed in Def. 5.1 is an optimistic ap-
proximation because we are reducing the probability of generating a set of proper-
ties from a fact type to the probability of generating those properties from the fact
type pairwise. Moreover, this probability measures the degree of cohesion of the
properties of the base rather than the cardinality that eventually will populate the
base, which can only be calculated by actually querying the dataset. Nevertheless,
results show that this measure is a good indicator of the cardinality of the base.

The algorithm for generating the bases given a fact type c is shown in Algo-
rithm 1. Given a potential base B, we use the functions rep(B), core(B), opt(B)
and sc(B) to access its components. The general idea of this algorithm is to create
clusters of ordered properties (i.e., bases) by adding to the clusters new property
pairs that share a common property with the cluster but with the restriction that
the co-occurrence probability of generating the new property together with the rest
of the cluster properties pairwise must be over a percentage of the co-occurrence
probability of the representative pair of the cluster. Inside a cluster, properties
are classified into two groups: core properties, whose cohesion pairwise is higher
(above α), and optional properties, whose cohesion with the core properties pair-
wise is lower (in between α and β).

The algorithm requires a list of property pairs ordered by their importance
with respect to the fact type c. Then, we process each property pair (r1,r2) and
check each candidate base Bi that contains either r1 or r2 (lines 6-21). For each
candidate, we have the possible new property rnew (line 7) to be added. Line 8
checks if the co-occurrence probability of rnew with each of the properties in the
core of the candidate base is over a percentage w.r.t. the representative pair of
the base. If that applies, rnew together with its associated score is added to the
core of the base (abusing notation) and the score of the base is recalculated (lines
10-12). Otherwise, lines 13 to 19 check if rnew can be added to the optional set
of properties in the base. If we do not find candidate bases that contain either r1
or r2 or the pair cannot be added to a candidate base, we create a new base (lines
23-27). Each base contains the representative pair, the core properties set, the
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optional properties set and a score. Line 28 adds the newly created base to the set
of bases. As the goal of the paper is to generate useful MDAS, that is, non-empty
schemas (with facts associated), we rate each base with a score that is a good
estimator of the cardinality of the base. Such score is the minimum co-occurrence
probability of the properties pairwise in the core of the base (see lines 11 and 27).

5.2.2. Second phase: Generation of dimension types
The second phase generates dimension types Ti = (c1,r1,c2, ...,rn−1,cn) that

are likely to be populated by instance data. Starting form a concept c1, we gener-
ate each possible dimension type (i.e., path) of length n by applying the statistical
model devised in Section 5.1. That is, we generate the paths by random walking
over the conditional models p(ri|ci), p(ci+1|ri), p(ci+1|ci). Additionally, at each
transition (ci ri), we check the co-occurrence of (ri−1,ri) under the class ci, that
is p(ri−1 → ri|ci), to make sure that we are chaining properties that fulfill the
instance data constraints (i.e., they have instance data associated). Through the
random walk, we set up the minimum threshold δt to avoid walking over transi-
tions that are too low to be considered relevant.

We assign to each new dimension type generated with the previous algorithm
the following score:

sc(T ) =
len(T )−1

∏
n=1

p(ri|ci) · p(ri→ ri+1|ci+1) · p(ci+2|ri+1)

We discard dimension types whose score is below some threshold δpath ( em-
pirically set), as we consider these dimension types not statistically significant.

Grouping of dimensions. The number of possible dimension types (c1,r1, ...,cn)
starting from a fact type can be very large, as datasets tend to be very heteroge-
neous and we generate each possible combination of classes and properties re-
flected in the instance data that are statistically significant.

This can overwhelm the analyst, who is in charge of selecting a base for a star
and then, a set of dimension types that he/she considers interesting for analysis.
Thus, in an attempt to facilitate the task of selecting dimension types and deal with
the heterogeneity, we group dimension types into grouped dimension types. That
is, we group together into the same group all dimension types that share the same
fact type c1 and properties ri and leave as wildcards the rest of the intermediate
classes c2, ...,cn. The intuition is that paths under the same group express the
same relation between the facts in the fact type and the dimension values with
only slight variations due to the heterogeneity of the dataset (e.g., using different
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Algorithm 1 Generation of bases of MDASs for a fact type FT = c

Require: L: list of property pairs (r1,r2) ordered by p(r1∼ r2|c) · p(r1|c) · p(r2|c)
Ensure: Bases: a set of bases

1: Bases = /0

2: for all (r1,r2) ∈ L do
3: added = False
4: Bcand = {Bi ∈ Bases such that core(Bi)∩{r1,r2} 6= /0}
5: if Bcand! = /0 then
6: for all Bi ∈ Bcand do
7: rnew = {r1,r2}\ core(Bi)
8: checkCore = {ri ∈ core(Bi) such that p(ri ∼ rnew|c) > α · p(r1 ∼

r2|c)r1,r2∈rep(Bi)}
9: if |checkCore|== |core(Bi)| then

10: core(Bi).add((rnew,sc(rnew,Bi)))
11: sc(Bi) = min({p(ri ∼ r j|c) such that ri,r j ∈ core(Bi)∧ i 6= j})
12: added = True
13: else
14: checkOpt = {ri ∈ core(Bi) such that β · p(r1 ∼ r2|c)r1,r2∈rep(Bi) <=

p(ri ∼ rnew|c)< α · p(r1 ∼ r2|c)r1,r2∈rep(Bi)}
15: if |checkOpt|== |core(Bi)| then
16: opt(Bi).add((rnew,sc(rnew,Bi)))
17: added = True
18: end if
19: end if
20: end for
21: end if
22: if ! added then
23: Bnew = ()
24: rep(Bnew) = {r1,r2}
25: core(Bnew).add((r1,sc(r1,Bnew))).add((r2,sc(r2,Bnew)))
26: opt(Bnew) = ()
27: sc(Bnew) = p(r1 ∼ r2|c)
28: Bases = Bases∪Bnew
29: end if
30: end for
31: return Bases
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subclasses to refer to the same conceptual entity). As an example, we show in
Table 2 a group of dimension types for the fact type Person in Dbpedia, where
the row in bold represents the dimension group and the rest of rows represent the
dimension types that belong to that group. Notice that this a powerful mechanism
to discover heterogeneity issues in LD sets and a starting point towards repairing
these issues.

Table 2: Example of a grouped dimension type

c1 r1 c2 r2 c3 score
Person almaMater * affiliation *
Person almaMater University affiliation Agent 0.00038
Person almaMater CollegeOrUniversity affiliation Agent 0.00039
Person almaMater EducationalInstitution affiliation Agent 0.00031
Person almaMater EducationalOrganization affiliation Agent 0.00031

Estimation of the aggregation power and filtering. As previously explained, cal-
culating the aggregation power of a dimension type implies solving a query with
potentially several joins, which results impractical for large datasets. Thus, we
resort to an approximation. In an off-line pre-processing step, we build an in-
dex I where we keep the number of instances associated to each typified triple
ti = (c1i,ri,c2i). That is, for each such triple, we calculate the number of instances
x of c1i and the number of distinct instances or literals y of c2i that satisfy the triple
(i.e., I[ti][c1i] = x and I[ti][c2i] = y). Notice that for the object of the triple we keep
the number of distinct instances, as we are interested in discovering groups.

Then, given a dimension type T = t1t2...tn, where ti = (ci,ri,ci+1) (composed
by typified triples), we make a rough estimation of its aggregation power by cal-
culating the ratio a

b , where a is the number of instances of the root class (i.e.,
I[t1][c11]), and b has been calculated by carrying the minimum score at each triple
join. That is:

MIN(MIN1≤i≤n(I[ti][c2i], I[ti+1][c1(i+1)]), I[tn][c2n])
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For example, having the following statistics about typified triples:

I[(Powerplant, f uel_type,Fuel)][Powerplant] = 12315
I[(Powerplant, f uel_type,Fuel)][Fuel] = 30
I[(Fuel, label,string)][Fuel] = 27
I[(Fuel, label,string)][string] = 27
...

for the dimension type (Powerplant, f uel_type,Fuel, label,xsd : string), we have
that a = 12315 and b = MIN(MIN(30,27),27) = 27, The final aggregation power
is 12315

27 = 456.1. Notice that this estimation is optimistic, as we are assuming that
all the instances of one side of the join will join the instances of the other side.

As explained in the following section, we use the aggregation power of a di-
mension type to classify it into a potential dimension, measure or attribute.

5.2.3. Composing MDAS

The algorithms presented in this section provide the analyst all the pieces to
build MDAS interesting for analysis. Given a fact type of interest, the analyst is
presented with a ranking of all bases that have been generated for such fact type
ordered by the score. Properties inside a base are also split into two groups (i.e.,
core and optional properties) and ranked according to their cohesion w.r.t. the
preceding properties. After selecting one base and configuring the appropriate
properties from its core and optional sets, the analyst can select different dimen-
sion types that complement the selected base.

Regarding the presentation of dimension types, although our MD model does
not distinguish between dimensions and measures, we make a simple classifi-
cation of the dimension types into the traditional dimensions, measures and at-
tributes, for the analyst’s guidance. We make use of the aggregation power of the
dimension type and the type of the sink node. Dimension types ending in numeric
data types (i.e., xsd:integer, xsd:float, xsd:double, etc.) and with low aggrega-
tion power are considered measures, dimension types ending in xsd:integer or
xsd:string with low aggregation power are considered attributes and the rest (i.e.,
dimension types ending in classes or datatypes with high aggregation power) are
considered dimensions. Dimension types are presented to the analyst in groups as
previously explained and ordered by their score.

Once the schema of the MDAS has been selected (i.e., fact type, base properties
and dimension types), the population with instance data is trivial, as it comes down
to translating the star to a SPARQL query.
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5.3. Computational complexity
Here we present a discussion about the computational complexity of the whole

process of generating MDASs.
The dataset instance triples TI must be scanned in order to generate their typ-

ified triples and then to calculate all the statistical indicators presented in Section
5.1. The generation of typified triples depends on the reasoning method used. If
all the triples are materialized, the process is O(|TI |× |C|2), with |TI | the number
of instance triples and |C| the number of classes, as the inference of the classes for
each instance is O(1) but each triple can generate up to |C|2 typified triples (|C|
parents for the subject multiplied by |C| parents for the object). However, such a
high number of typified triples per triple is highly unlikely in practice. Otherwise,
we must also consider the reasoning time for each triple.

The generation of all the statistical indicators of the statistical model for the
typified triples is linear with the number of typified triples.

The generation of the bases of the stars is based on the clustering algorithm
explained in Section 5.2.1. It is quadratic w.r.t. the number of property pairs
(r1,r2), as we must ensure before adding a new pair to a cluster that there is
probabilistic evidence over a threshold of the pair with the rest of properties in the

cluster. Thus, in the worst case it is O(
(|P|

2

)2
) ≈ O((k · |P|)2), with P being the

number of properties in the dataset.
The generation of dimension types explained in Section 5.2.2 is O(C2 ·P), as

it is based on random walks over the transitions of classes and properties.

6. Experiments

In this section we present several experiments that assess the probabilistic
method devised to build MDAS from LD sources. We have selected two LD sets
with different features to test our method, which are described in turn. Enipedia
has already been described in Section 2. Dbpedia 3.95 is a community effort
to extract structured information from Wikipedia. They also make the informa-
tion available in RDF. Each dataset has different size and structure. Notice that
the collaborative nature of these datasets makes them very heterogeneous in their
structure, as well as incomplete. Table 3 shows some statistics about the datasets.
We show both the number of triples, and the number of typified triples, which
demonstrates the big scale of the scenario.

5http://wiki.dbpedia.org/Downloads39
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All experiments were run on a server with 96 GB of RAM, eight physical
CPUs (Intel Xeon at 2.4 GHz, 32 threads) and using Ubuntu.

Table 3: Datasets statistics

# triples # typified triples
Enipedia 4,463,909 8,721,813
Dbpedia 25,896,867 253,599,827

6.1. Generation of the statistical model
The statistical model that we build on top of the RDF/S sources is based on the

abstraction provided by the typified triples. Based on this abstraction, we are able
to generate different statistical indicators. This has been implemented in Python.
Table 4 shows the execution times for the generation of the different statistical
indicators. As this is a one time process, we have not optimized the calculations.
However, the process can be easily parallelized using map-reduce techniques. The
execution times are linear w.r.t. the number of typified triples.

Table 4: Execution times for the indicators of the statistical model (in seconds).

Statistical indicators Enipedia Dbpedia
Generation of typified triples 176.2 3156.8
p(ci+1|ci) 85 1603
p(ri|ci) 37 1939
p(ci+1|ri) 38 1894
p(ri ∼ r j|c) 248 1510
p(r1→ r2|c2) 43 340

6.2. Generation of base stars
In the following, we perform several experiments that involve the generation of

bases of stars in order to study the behavior of our statistical model when dealing
with different datasets.

From both datasets, we have selected a set of representative classes and have
generated all the bases of the stars, along with several measures. The parameters
α and β can be set up by the analyst as a way to enforce cohesion to a certain limit
among properties of the core set and the optional set of a base, respectively. For
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the experiments, we set α = 0.8 and β = 0.5. This means that the core properties
of a base maintain the co-occurrence probability pairwise higher than the 80% of
the co-occurrence probability of the representative pair of the core. On the other
hand, properties that belong to the optional set have a co-occurrence probability
in between 50% and 80% w.r.t. to the representative pair.

Results are shown in Tables 5 and 6 for Enipedia and Dbpedia datasets, respec-
tively. Columns are explained in turn. The column Class shows the class acting as
fact type and the level in the class hierarchy as an indicator of the specificity of the
class, which is also related to its heterogeneity. The second column, Total, shows
the total number of bases generated by our algorithm for each class. To assess if
the score given to a base is a good indicator of the cardinality of a base (see Def.
5.2), we estimate the correlation of both variables by means of a linear regres-
sion model, that is, Corr(sc(B), |B|). The correlation coefficient is shown in the
column Corr. Based on the estimated parameters of the linear regression (slope
and intercept), the column # pos shows the number of generated bases whose esti-
mated cardinality according to the regression model is greater than 0, that is, bases
whose score indicates that they will contain facts. From this number, we calculate
the false positives in column FP, that is, the number of bases estimated to have
facts but that actually have no facts associated. Similarly, the column # neg shows
the number of generated bases whose estimated cardinality is 0, and from these,
we calculate false negatives in column FN, that is, the number of bases estimated
to have 0 facts but that eventually have more than 50 facts associated. We set
the threshold of false negatives to 50 facts per base as a lower number of facts is
not representative. Finally, we show in the last column, Sp, the Spearman rank
correlation of the score of a base w.r.t. its cardinality, that is Sp(sc(B), |B|), as an
alternative to the linear correlation coefficient because this rank takes into account
any type of correlation, not only linear.

Table 5: Generation of bases for representative Enipedia class

Class (L) Total Corr # pos FP # neg FN Sp
Powerplant (1) 133 1 70 0 (0%) 63 6 (9.5%) 0.94
Facility (1) 114 0.88 93 5 (5.4%) 21 0 (0%) 0.77
ChemManufacturer (1) 50 0.70 50 1 (2%) 0 0 (0%) 0.80
Country (1) 47 0.83 47 0 (0%) 0 0 (0%) 0.92
Refinery (1) 14 1 14 0 (0%) 0 0 (0%) 1
Company (1) 9 1 4 0 (0%) 5 0 (0%) 0.86
Fuel (1) 6 1 6 0 (0%) 0 0 (0%) 1
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In Table 5 we observe both a high linear correlation and Spearman rank co-
efficient of the scores associated to the bases of Enipedia classes w.r.t. their true
cardinality. This proves that our probabilistic score assigned to a base is a good
indicator of its cardinality. Because of the high linear correlation of both vari-
ables, the number of estimated FP and FN is also very small, being 0 in most of
the cases.

Table 6: Generation of bases for representative Dbpedia classes

Class (L) Total Corr # pos FP # neg FN Sp
Agent (1) 4359 0.46 4359 1013 (23%) 0 0 (0%) 0.84
Person (2) 1781 0.47 1781 402 (23%) 0 0 (0%) 0.83
Artist (3) 300 0.69 300 60 (20%) 0 0 (0%) 0.89
Actor (4) 155 0.94 100 9 (9%) 55 0 (0%) 0.85
Athlete (3) 624 0.86 624 101 (16.2%) 0 0 (0%) 0.89
Boxer (4) 35 0.97 35 5 (14.3%) 0 0 (0%) 0.96
AmateurBoxer (5) 14 0.97 14 0 (0%) 0 0 (0%) 0.95
Country (2) 71 0.94 44 0 (0%) 27 0 (0%) 0.96
Organization (2) 2497 0.74 2497 605 (24%) 0 0 (0%) 0.84
University (4) 230 0.93 111 0 (0%) 119 5 (4.5%) 0.93
AcademicJournal (4) 58 0.98 58 5 (8.6%) 0 0 (0%) 0.95
Biomolecule (1) 22 0.98 22 1 (4.5%) 0 0 (0%) 0.99
Gene (2) 14 0.98 14 0 (0%) 0 0 (0%) 0.96
HumanGene (3) 12 1 12 0 (0%) 0 0 (0%) 1

We now analyze the results for Dbpedia classes, shown in Table 6. Regarding
the linear correlation of the score associated to a base and its real cardinality, bases
from more general classes (up in the class hierarchy) have a much lower linear cor-
relation than more specific classes because of their heterogeneity. These classes
do not have a clear schema but a mixture of different schemas from its subclasses.
Therefore, these classes are more problematic in the sense that they will generate
more bases to account for the different schema possibilities. Incompleteness of
the schemas is also a factor to be taken into account. General classes have more
chances of having a higher rate of incompleteness in their schemas simply due to
the variety of schemas they account for. The Spearman rank correlation shows
instead a higher correlation for all the classes’ bases, meaning that the score of
the base and the cardinality have a relationship other than linear. The estimation
of FP according to the linear regression model calculated for each class also veri-
fies the initial intuition of general classes being more heterogeneous schema-wise.
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Therefore, the rate of FP is higher for bases of these classes. From the analysis of
estimated FP and FN, we can conclude that our algorithm for generating bases is
optimistic, as the rate of FP is much higher than the rate of FN.

6.3. Generation of dimension types
In this experiment, we generate all possible dimension types of length up until

5 by random walking as explained in Section 5.2.2. The configuration of thresh-
olds has been empirically set up to the following values: δt = 0.01, δpath = 0.0001
and Aggpower = 5.

Table 7 shows statistics about the generation of dimension types for both
datasets. We show the number of dimension types, and the classification into
dimensions, measures and attributes according to Section 5.2.3. We also calculate
the number of grouped dimensions types, that is, the number of groups that con-
tain dimension types with similar semantics. These groups are built to facilitate
the user the selection of dimension types given a base star, as the heterogeneity
given in a dataset can give place to a large number of dimension types with similar
semantics.

Table 7: Statistics about generation of dimension types (D = dimension, M=measure,
A=attribute)

Dataset # dims # D # M # A # grouped dims. time
Dbpedia 10,539 8,870 632 1,037 6,517 7.514s
Enipedia 1,025 462 535 880 28 0.525s

6.4. Examples of MDAS (bases and dimension types)
In this section we show examples of bases generated from different concepts,

as well as examples of dimension types.

6.4.1. Examples for the Enipedia dataset
Tables 8 and 9 show three different bases rooted in Enipedia concepts. The

first two lines of the table show the name of the class acting as fact type, the
score associated to the base, sc, its real cardinality, real card, and its estimated
cardinality according to the linear regression model calculated, est card. The next
block of the table shows the core properties of the base ranked according to their
co-occurrence score. As we have previously proven that the score is linearly corre-
lated with the cardinality, for each property in the ranking we show the estimated
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Table 8: Base for Powerplant (Enipedia)

Powerplant, sc = 0.001395
real card = 67703, est card=66715

Core properties est card
Country 72418
Ownercompany 72418
wikiPageSortKey 67338
label 67338
isDefinedBy 67338
Modification_date-23aux 67338
Longitude 67335
Point 67334
Latitude 67333
CarmaId 67229
Intensity2000_kg_CO2_per_MWh_elec 67206
Intensitynextdecade_kg_CO2_per_MWh_elec 67205
Intensity_kg_CO2_per_MWh_elec 67204
Annual_Energyoutput_MWh 67028
Annual_Energyoutputnextdecade_MWh 67028
Annual_Carbonemissions_kg 67028
Annual_Carbonemissions2000_kg 67027
Annual_Carbonemissionsnextdecade_kg 67027
Annual_Energyoutput2000_MWh 67027
State 66715
Optional properties est card
City 57866
Continent 47986

Table 9: Bases for Facility and Country (Enipedia)

Facility, sc = 0.00197
real card = 105, est card = 74

Core properties est card
label 85
Location 85
isDefinedBy 85
Name 85
Point 84
Longitude 84
Latitude 84
wikiPageSortKey 74
Modification_date-23aux 74
Optional properties est card
Site_size 61
City 58
Website 58
PostCode 58
Telephone 58
Employees 56
Address 49
Uses 44

Country, sc = 0.00197
real card = 129, est card = 70

Core properties est card
ISO_3166-1_Alpha-3_code 70
NaturalGasImport_m3 70
NaturalGasProduction_m3 70
TechnicallyRecoverableShaleGasResources_m3 70
NaturalGasExport_m3 70
NaturalGasConsumption_m3 70
NaturalGasProvenResources_m3 70
Optional properties est card
GINI 63
OilConsumption_MMbbl 56
OilProvenReserves_MMbbl 56
OilProduction_MMbbl 56
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cardinality of the base if it were composed by the upper properties in the ranking
and itself, in order to point out the possible degradation in the cardinality of the
resulting base as we move down the ranking. Finally, the last block of the table
shows the optional properties of the base, which are ranked according to the same
criteria as the core properties.

A closer look to the base in Table 8 reveals that this base rooted in class Pow-
erplant includes a large set of core properties with a strong cohesion (exactly 20
properties). Such a large base is an indicator of the nature of the fact type class,
meaning that resources of type Powerplant do not suffer strongly from hetero-
geneity or incompleteness issues.

The bases shown in Table 9 reveal a similar nature for the classes Facility and
Country, respectively. From the results, we can conclude that such classes also
have a well-defined set of core properties associated.

Overall, the experiments performed with Enipedia show that even though this
data set has some heterogeneity issues, classes usually have sets of core properties
associated, which are well-captured and displayed as bases by our statistical ap-
proximation. Notice that the generated bases show a good compromise between
the cardinality and the complexity of the schema (number of associated proper-
ties).

Regarding examples of dimension types, Table 10 shows potential dimension
types for some of the core properties of the Powerplant base shown in Table 8.
The first column shows the path of the dimension type, the second column shows
the aggregation power of the dimension type and the third column shows the mul-
tidimensional nature, which can be a dimension (D), attribute (A) or measure (M)
according to the classification explained in Section 5.2.3. Notice that dimension
types that form a grouped dimension type according to Section 5.2.2 are shown
together. This grouped visualization is a valuable tool for the analyst when the
data set has heterogeneity issues, as it gathers together all the different syntactical
options that express a same semantic dimension type.

6.4.2. Examples for the Dbpedia dataset
Table 11 shows several bases that have been generated from the class Agent

in Dbpedia. This class is specially difficult, as it is used as a wildcard for the
subject to express subject-predicate-object relations. Therefore, it has associated
many properties, some of them semantically belonging to more specific classes.
However, our statistical model is able to differentiate the latent schemas (i.e., sets
of properties) that belong to more specific classes. Thus, we have selected four
bases as examples, generated from Agent with both high score and cardinality, and
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Table 10: Possible dimension types for the Powerplant base of Table 8

Dimension type Agg. power Type
Country/*
Country/Country 373 D
Country/Americas 608 D
Country/... ... D
Ownercompany/*
Ownercompany/Company 6.85 D
Ownercompany/Energy_Company 6.85 D
OwnerCompany/... ... D
State/*
State/State 134 D
State/USState 241 D
State/... ... D
label/string 1 A
CarmaId/string 1 A
isDefinedBy 1 A
Annual_Carbonemissions_kg/double 1.27 M
Annual_Energyoutput_MWh/decimal 2.66 M
Annual_Energyoutput2000_MWh/decimal 3.57 M

from the semantics of the core properties we are able to infer the potential sub-
class to which such set of properties refer. The name of the class preceded by the
∼ symbol is the potential class that the core properties refer to. In this sense, our
statistical model could be used to repair the dataset and associate to the subjects
of the triples more specific classes than the ones originally defined.

Regarding other parameters of each of the bases generated in Table 11, we
observe that the estimated cardinality is much lower than the real cardinality. This
is due to the low correlation coefficient between the score and the cardinality
shown in Table 6 for the class Agent, whose main reason is the heterogeneity in
the usage of the class, that is, the misuse of the class as a wildcard instead of using
more specific classes to define relations.

Table 12 shows four examples of bases rooted in the classes Artist, President,
University and AcademicJournal, respectively. Notice that all the bases shown
contain a set of core properties interesting for analysis, at the same time that their
estimated cardinality along the ranking is preserved. As previously explained,
the deviation between the real and the estimated cardinality depends on the cor-
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Table 11: Bases for Agent (Dbpedia)

∼ Singer/Band, sc = 0.00044
real card.= 17126, est. card.= 1854
Core properties est. card.
activeYearsStartYear 1967
associatedBand 1967
associatedMusicalArtist 1967
hometown 1854
Optional properties est. card.
background 1657

∼ BaseballPlayer, sc = 0.000125
real card.= 17094, est. card.= 1327
Core properties est. card.
formerTeam 1428
throwingSide 1328
position 1328
battingSide 1327
Optional properties est. card.
activeYearsStartDate 1285

∼ Politician, sc = 0.000084
real card.= 6127, est. card.= 1259
Core properties est. card.
activeYearsStartDate 1431
party 1306
almaMater 1259
termPeriod 1259
Optional properties est. card.
nationality 1193

∼MilitaryPerson, sc = 0.00025
real card.= 13477, est. card.= 1536
Core properties est. card.
battle 1536
serviceEndYear 1536
Optional properties est. card.
award 1379

relation coefficient of the score and the real cardinality. Thus, higher correlation
leads to more accurate cardinality estimations. This is an indicator of the het-
erogeneity and possible incompleteness of the latent schema/s for a class. In the
examples, the classes President and AcademicJournal have more accurate estima-
tions, meaning that their latent schemas are more homogeneous than those from
the other classes.

Regarding dimension types from Dbpedia, Tables 13 and 14 show examples
of possible dimension types along with their aggregation power and classification
for the bases AcademicJournal and University, respectively.

7. Related work

The development of new tools and applications that enable the access and
exploitation of the ever increasing amounts of LD published on the Web has been
recently an active research area. We review two main lines of research, namely
(1) general exploitation, querying and visualization of LD; and (2) MD analysis of
LD using SW standards.

As far as querying LD is concerned, the SPARQL query language is the de-
facto standard. However, directly expressing queries in SPARQL is difficult for a
non-expert end user because of the complexity and high expressivity of the lan-
guage, as well as the need to know the structure of the data in advance. To aid the
end user in querying tasks over LD, several graph-based query builders have been
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Table 12: Bases for Artist, President, University and AcademicJournal

Artist, sc = 0.00062
real card.= 356, est. card.= 1098
Core properties est. card.
influencedBy 1760
genre 1144
birthPlace 1098
influenced 1098
Optional properties est. card.
deathPlace 933

President, sc = 0.00938
real card.= 1396, est. card.= 1694
Core properties est. card.
birthPlace 1933
orderInOffice 1933
activeYearsStartDate 1812
activeYearsEndDate 1711
successor 1694
Optional properties est. card.
deathPlace 1070

University, sc = 0.00350
real card.= 1474, est. card.= 3913
Core properties est. card.
affiliation 5012
type 4437
homepage 4416
country 3913
motto 3913
Optional properties est. card.
state 2779
campus 2681
numberOfStudents 2104
officialSchoolColour 1996

AcademicJournal, sc = 0.00687
real card.= 3495, est. card.= 3048
Core properties est. card.
issn 5225
publisher 3258
firstPublicationYear 3258
academicDiscipline 3136
homepage 3136
frequencyOfPublication 3048
Optional properties est. card.
abbreviation 2359
oclc 2183
impactFactorAsOf 1688
impactFactor 1679

developed such as [5], which allow the user to build triple patterns that are inter-
nally translated into SPARQL. Still, the main problem is that users do not know
the structure of the data upfront, which makes it difficult to express interesting
queries. This issue is reinforced by the review performed in [10] about visualiza-
tion and exploration tools for LD, which states that the majority of the reviewed
tools fall short when providing an overview of the data that aids the querying
process, at the same time that require technical knowledge.

The exploration and visualization of LD has also been targeted among the sci-
entific community. In particular, many LD browsers with faceted filtering fea-
tures have been developed, both for general domains [7, 4, 39] and for specific
applications [32, 33]. The common issue is that such interfaces neither provide
summaries nor support the user in aggregation tasks. Graph-based tools such as
RDF-Gravity6, IsaViz7 or Relfinder [15] can facilitate the understanding of the
underlying data structure by providing the visualization of nodes and their rela-
tionships but this graph visualization can suffer from scalability issues.

6http://semweb.salzburgresearch.at/apps/rdf-gravity/
7http://www.w3.org/2001/11/IsaViz/
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Table 13: Possible dimension types for the AcademicJournal base of Table 12

Dimension type Agg. power Type
publisher/*
publisher/Agent 6.65 D
publisher/Publisher/founder/Agent 33.58 D
publisher/... ... D
fistPublicationYear/gYear 24.67 D
frecuencyOfPublication/string 12.76 D
impactFactorAsOf/gYear 162 D
abbreviation/string 1 A
issn/string 1 A
oclc/string 1 A
impactFactor/double 1.29 M

Table 14: Possible dimension types for the University base of Table 12

Dimension type Agg. power Type
affiliation/Agent 5.40 D
country/Place 51.10 D
state/Place 12.04 D
officialSchoolColour/string 2.29 D
motto/string 1.12 A
numberOfStudents/nonNegativeInteger 1.89 M

The approaches mentioned so far enable exploration, querying and visualiza-
tion of LD but do not address these aspects from an analytical viewpoint. Recently,
web-based visualization platforms such as the CODE Query Wizard and Vis Wiz-
ard 8 and Payola [22] have been developed to enable lightweight analytic tasks
on LD sets. However, the main problem of having to become acquainted with the
dataset before expressing the queries still remains.

To shed some light into the problem of providing summaries to the user to
aid the analysis of the datasets, we have looked into research approaches focused
on summarizing LD. Some of them use bisimulation and clustering techniques
[3, 19], whereas others such as [34, 37] are based on statistics and topological

8http://code-research.eu/
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features. These approaches differ from ours in their main objective: while they
are focused on identifying the relevant parts of the dataset, we look for the parts
more suited for MD analysis.

The recent ontology-based data access (OBDA) technology is also partially
related to this research, in the sense that it provides integration tools based on
ontologies [38] to access transparently different data sources and allows end users
to express complex information requirements with familiar and comprehensible
terms. The work in [12] is an example of OBDA where they integrate concept
browsing, facet-based search, and visual query manipulation to allow the user
to express their information needs and hide the query language syntax. Behind
the scenes, the system builds a SPARQL query. Even though the visual interface
facilitates the formulation of queries, the tool does not provide a summary of the
dataset nor focuses in analytical aspects.

Regarding MD analysis of SW data, the approach in [26] proposes a semi-
automatic method to extract semantic data into a traditional MD database. The
method is driven by the user requirements, making necessary some human effort,
and the data sources must be enriched with a semantic layer (OWL axioms), which
is not always the case.

Recently, terms like self-service BI [1], Situational BI [25] or Exploratory
OLAP [2, 16] have emerged to refer to new methods that allow performing OLAP

analysis directly over SW MD data. These methods usually rely on previous man-
ual or semi-automatic identification and annotation of the MD elements with vo-
cabularies fitted to that purpose, such as VOID vocabulary [36] for expressing
metadata about RDF datasets and QB [9] or QB4OLAP [11] vocabularies to repre-
sent RDF MD data. The work in [17, 18] does not perform OLAP analysis directly
over the sources but in a traditional MD database. Still, it also requires manual
annotation of the MD elements. This contrasts with the method presented in this
paper, which focuses on automatically inferring potential MD elements (i.e., di-
mensions and measures) and patterns for analysis.

Finally, concerning the statistical nature of our approach, we acknowledge
existing research that also uses statistical methods over RDF data. The work in
[29] focuses on heuristically inferring type information in noisy and incorrect RDF

data by using statistical distributions. In [28] they predict properties for resources
based on a statistical dataset analysis, in particular, in co-occurrence of properties.
The proposals [35] and [24] infer schema axioms from RDF datasets using mining
algorithms. The previous approaches are research examples that make use of
statistical machinery to enrich the schema of an RDF dataset rather than to infer
potential MD schemas for analysis purposes.
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8. Conclusions and future work

In this paper, we have presented an automatic approach to generate useful MD

analytical patterns from LD sources. The MD patterns, MDAS, are star-shaped
patterns at the class level, are based on the semantics of the data (i.e., they pro-
vide a conceptual summary of the data), follow the MD model (i.e., information is
modeled in terms of facts, dimensions and measures) and are generated following
a statistical approach. We have also presented the foundations of the statistical
framework that underlies the approach and an implementation that takes into ac-
count both the complexity of the generated star schema and its cardinality (i.e.,
number of facts that will populate the star). The statistical framework has been
assessed and validated by a series of experiments with two popular LD sets.

As future work, we plan to address several aspects that will definitely improve
the work. In the first place, we plan to take into account the class hierarchy of a
LD set by using only the most specific class of an instance to generate the typified
triples. This will greatly reduce the total number of typified triples. Another aspect
for future research is to find a better estimator for the cardinalities, especially for
heterogeneous datasets, where linear regression models do not seem to fit very
well. Regarding the presentation of results, we plan to use a vocabulary such as
QB4OLAP to publish the generated MDAS as MD data in the LD cloud.

In broader terms, we would like to investigate further the synergies between
LD and Big Data, as we believe LD is part of the Big Data landscape. In particular,
the Big Data dimension of variety is a generalization of semantic heterogeneity as
studied in the field of the SW, and the idea of LD of advancing the hypertext prin-
ciple from a web of documents to a web of rich data can help alleviate Big Data
variability. As Big Data is also characterized by its volume, further research needs
to address the analysis of LD as part of Big Data by using scalable approaches (e.g.
statistical methods). In this sense, the work presented in this paper is a starting
point in that direction.
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