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Dedicated to José Bonet on the occasion of his 60th birthday

Abstract

Frequent hypercyclicity for translation C0-semigroups on weighted
spaces of continuous functions is studied. The results are achieved by
establishing an analogy between frequent hypercyclicity for transla-
tion semigroups and for weighted pseudo-shifts and by characteriz-
ing frequently hypercyclic weighted pseudo-shifts on spaces of van-
ishing sequences. Frequently hypercyclic translation semigroups on
weighted Lp-spaces are also characterized.

1 Introduction and preliminaries

A continuous linear operator T on a separable Banach space X is called hy-

percyclic if there is an element x ∈ X, called a hypercyclic vector, such that

the orbit {T nx : n ∈ N} is dense in X. The first historically known exam-

ples of hypercyclic operators are due to Birkhoff, MacLane and Rolewicz. In
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particular, the last author studied hypercyclicity of weighted shift operators

on lp and c0. The interest in the study of linear dynamics of shift operators

is nowadays still alive, since many classical operators (e.g. derivative op-

erators in spaces of entire functions) can be viewed as such operators. We

refer to the recent monographs [11] and [24] for a complete overview on the

subject.

In 2005, motivated by Birkhoff’s ergodic theorem, Bayart and Grivaux [9]

introduced the notion of frequently hypercyclic operators, trying to quantify

how “often” an orbit meets non-empty open sets. More precisely, if the lower

density of a set A ⊆ N is defined as

dens(A) := lim inf
N→∞

#{n ≤ N : n ∈ A}/N,

an operator T ∈ L(X) is said to be frequently hypercyclic if there exists

x ∈ X (called a frequently hypercyclic vector) such that, for every non-

empty open subset U ⊆ X,

dens({n ∈ N : T nx ∈ U}) > 0.

This notion has been deeply investigated by various authors: see e.g. [22,

14, 18]. In particular frequently hypercyclic weighted shifts have been in-

vestigated in [10, 14]; their behaviour in lp and c0 has been completely

characterized by Bayart and Ruzsa [12].

In parallel with the theory for linear operators, since the seminal paper

by Desch, Schappacher and Webb [20], many researchers turned their at-

tention to the hypercyclic behaviour of strongly continuous semigroups. Ac-

tually hypercyclicity appears in solution semigroups of evolution problems

associated with “birth and death” equations for cell populations, transport

equations, first order partial differential equations, Black–Scholes equation,

and diffusion operators like Ornstein–Uhlenbeck operators [2, 4, 5, 6, 8, 13,

15, 17, 21, 25, 27].

We recall that, if X is a separable infinite-dimensional Banach space,

a C0-semigroup (Tt)t≥0 of continuous linear operators on X is said to be

hypercyclic if there exists x ∈ X (called a hypercyclic vector for the semi-

group) such that the set {Ttx : t ≥ 0} is dense in X. An element x ∈ X is

said to be a periodic point for the semigroup if there exists t > 0 such that

Ttx = x. A semigroup (Tt)t≥0 is called chaotic if it is hypercyclic and the

set of periodic points is dense in X.

The role of a “test” class, which is played by weighted shifts in the setting

of discrete linear dynamical systems, is taken over by translation semigroups

in the setting of continuous linear dynamical systems.
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Let I = R or I = [0,∞[. An admissible weight function on I is a measur-

able function ρ : I → ]0,∞[ for which there exist constants M ≥ 1, ω ∈ R
such that ρ(τ) ≤Meωtρ(τ + t) for all τ ∈ I and t > 0.

If ρ is an admissible weight function, then for every l > 0 there exist

A,B > 0 such that for all σ ∈ I and t ∈ [σ, σ + l],

(1.1) Aρ(σ) ≤ ρ(t) ≤ Bρ(σ + l).

For any 1 ≤ p <∞, consider the following function spaces:

Lρp(I) = {u : I → R | u is measurable and ‖u‖ρp <∞},

where ‖u‖ρp = (
∫
I
|u(t)|pρ(t) dt)1/p, and

Cρ
0 (I) =

{
u : I → R

∣∣∣ u is continuous and lim
x→±∞

u(x)ρ(x) = 0
}
,

with ‖u‖ρ∞ = supt∈I |u(t)|ρ(t).

If X is any of the spaces above and ρ is an admissible weight function,

the translation semigroup T = (Tt)t≥0 is defined as usual by

Ttf(x) = f(x+ t), t ≥ 0, f ∈ X, x ∈ R,

and it is a C0-semigroup (see e.g. [20]).

Hypercyclicity and chaos for translation semigroups have been charac-

terized in [20, 27]. In particular, if X is one of the spaces Lρp(R) or Cρ
0 (R)

with an admissible weight function ρ, then the translation semigroup T on

X is hypercyclic if and only if for each θ ∈ R there exists a sequence (tj)j

of positive real numbers tending to ∞ such that

lim
j→∞

ρ(tj + θ) = lim
j→∞

ρ(−tj + θ) = 0.

If X = Cρ
0 (R), then the translation semigroup T on X is chaotic if and

only if limx→±∞ ρ(x) = 0.

If X = Lρp(R), then T is chaotic if and only if for all ε, l > 0 there exists

P > 0 such that ∑
k∈Z\{0}

ρ(l + kP ) < ε.

The concept of frequent hypercyclicity was extended to C0-semigroups

in [3].

The lower density of a measurable set M ⊆ R+ is defined by

Dens(M) := lim inf
N→∞

µ(M ∩ [0, N ])/N,
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where µ is the Lebesgue measure on R+.

A C0-semigroup (Tt)t≥0 on a separable Banach space X is said to be

frequently hypercyclic if there exists x ∈ X (called a frequently hypercyclic

vector for the semigroup) such that Dens({t ∈ R+ : Ttx ∈ U}) > 0 for

any non-empty open set U ⊆ X. In [16, 26], it was proved that x ∈ X is a

(frequently) hypercyclic vector for (Tt)t≥0 if and only if x is a (frequently)

hypercyclic vector for each single operator Tt, t > 0. However, this is not

the case in general if we consider the chaos property [8].

In [26], a continuous version of the Frequent Hypercyclicity Criterion

was proved, based on the Pettis integral and the fact that chaotic transla-

tion semigroups on weighted spaces of integrable functions are frequently

hypercyclic.

Moreover, in [28], it is proved that the Frequent Hypercyclicity Criterion

for semigroups implies the existence of strongly-mixing Borel probability

measures with full support.

In this paper we characterize, in the spirit of [12], frequently hypercyclic

translation semigroups on Lpρ(I) and, for supk ρ(k+1)/ρ(k) <∞, on Cρ
0 (I).

The main results are Theorems 3.2 and 3.9, proved in the last section.

In particular, Theorem 3.2 will be a consequence of Theorem 2.1 which

characterizes frequent hypercyclicity of the so-called pseudo-shifts on c0(I)

spaces, where I is a countably infinite set.

2 Frequently hypercyclic weighted pseudo-

shift

We recall the concept of weighted pseudo-shift introduced by Grosse-Erd-

mann [23].

Given topological sequence spaces X, Y over countably infinite sets I

and J respectively, a continuous linear operator T : X → Y is called a

weighted pseudo-shift if there is a sequence (bj)j∈J of non-zero scalars and

an injective mapping φ : J → I such that

T [(xi)i∈I ] = (bjxφ(j))j∈J for (xi)i∈I ∈ X.

We will be interested in weighted pseudo-shifts acting on spaces of van-

ishing sequences. More precisely, given a countable set I, we consider the

space

c0(I) = {(xi)i∈I ∈ RI | ∀ε > 0 ∃J ⊆ I, J finite ∀i ∈ I \ J : |xi| < ε},
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endowed with the norm ‖(xi)i∈I‖ = supi∈I |xi|.
Obviously, if (Wp)p∈N is an increasing sequence of finite subsets of I such

that I =
⋃∞
p=1Wp, then

(2.1) c0(I) = {(xi)i∈I ∈ RI | ∀ε > 0 ∃n ∈ N∀i ∈ I \Wn : |xi| < ε}.

The first result that we prove is a characterization of frequently universal

sequences of weighted pseudo-shifts on c0(I).

We recall that a sequence (Tn)n∈N of continuous mappings between topo-

logical spaces X and Y is said to be frequently universal if there exists

x ∈ X, called a frequently universal vector for the sequence, such that for

every non-empty open set U ⊆ Y ,

dens({n ∈ N : Tnx ∈ U}) > 0.

Following the idea of Bayart and Ruzsa [12] for weighted backward shifts

on c0(Z), we first obtain a characterization for weighted pseudo-shifts.

Theorem 2.1. Let (Tn)n∈N be a sequence of weighted pseudo-shifts on c0(I)

defined by Tn[(xi)i∈I ] = (bni xφn(i))i∈I , where the bni are positive real numbers.

Assume that:

(i) (φn)n is a run-away sequence, i.e. for any finite subsets I0, J0 ⊆ I

there exists n0 ∈ N such that, for every n ≥ n0, φn(J0) ∩ I0 = ∅,

(ii) there exists ρ > 1 such that 1/ρ|n−m| ≤ bns/b
m
t for all n,m ∈ N and

s, t ∈ I such that φn(s) = φm(t),

(iii) there exists g : I → R such that |n − m| ≤ |g(s) − g(t)| for all

n,m ∈ N and s, t ∈ I such that φn(s) = φm(t),

(iv) (Wp)p∈N is an increasing sequence of finite subsets of I such that

I =
⋃∞
p=1Wp.

Then (Tn)n∈N is frequently universal on c0(I) if and only if there exist a

sequence (M(p))p∈N of positive real numbers tending to ∞ and a sequence

(Ep)p∈N of subsets of N such that:

(a) for any p ≥ 1, dens(Ep) > 0,

(b) for any distinct p, q ≥ 1, n ∈ Ep and m ∈ Eq, φn(Wp)∩φm(Wq) = ∅,
(c) for every p ≥ 1 and every s ∈ Wp, limn→∞,n∈Ep b

n
s =∞,
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(d) for any p, q ≥ 1, n ∈ Ep, m ∈ Eq with n 6= m, t ∈ Wq and s ∈ I

such that φn(s) = φm(t),

bns
bmt
≤ 1

M(p)M(q)
.

Moreover, one can replace “there exists a sequence (M(p))p∈N and a sequence

(Ep)p∈N” by “for any sequence (M(p))p∈N there exists a sequence (Ep)p∈N”.

Proof. We first observe that if properties (a) to (d) hold for some sequence

(M(p))p∈N, then they are also satisfied for any sequence (M(p))p∈N, on con-

sidering, if necessary, a subsequence of (Ep)p∈N.

“⇒”: Let x ∈ c0(I) be a frequently universal vector for (Tn)n∈N. Let

(αp)p∈N be a strictly increasing sequence of positive real numbers such that

α1 = 2 and for all p ≥ 2, αp > 4αp−1ρ
2Ψ(p), where Ψ(p) = max{|g(t)| :

t ∈ Wp}. Define

Fp =
{
n ∈ N : ‖Tnx− αp

∑
i∈Wp

ei‖ < 1/p
}
.

If Fp = {npk : k ∈ N}, where (npk)k∈N is an increasing sequence of natural

numbers, we define Ep = {np(2[Ψ(p)]+3)k : k ∈ N} where [Ψ(p)] is the integer

part of Ψ(p).

Clearly dens(Ep) > 0 and the distance between two different elements of

Ep is greater than 2Ψ(p). Moreover

(2.2) ∀p ∈ N ∀s ∈ Wp ∀n ∈ Ep : αp/2 ≤ |bnsxφn(s)| < 2αp.

Indeed, bnsxφn(s) is the sth coefficient of Tnx, so

|bnsxφn(s)| ≤
∥∥∥Tnx− αp ∑

i∈Wp

ei

∥∥∥+ αp

∥∥∥∑
i∈Wp

ei

∥∥∥ < 1

p
+ αp < 2αp,

while

|bssxφn(s)| ≥ αp − |bnsxφn(s) − αp| ≥ αp −
∥∥∥Tnx− αp ∑

i∈Wp

ei

∥∥∥(2.3)

≥ αp − 1/p ≥ αp/2.

In particular,

(2.4) ∀p ∈ N ∀s ∈ Wp ∀n ∈ Ep : xφn(s) 6= 0.

In order to prove (b), fix p 6= q, with p < q, n ∈ Ep,m ∈ Eq and

assume by contradiction, that there exist s ∈ Wp and t ∈ Wq such that

φn(s) = φm(t). Then, by (2.2),

1

ρ2Ψ(q)
≤ 1

ρ|n−m|
≤
|bnsxφn(s)|
|bmt xφm(t)|

≤ 2αp
2

αq
≤ 4

αq−1
αq

,
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contradicting the choice of (αp)p.

Now let p ≥ 1 and s ∈ Wp. Let M > 0. Given ε = αp/(2M), since

x ∈ c0(I), there exists J ⊆ I finite such that |xi| < ε for all i ∈ I \ J . Since

(φn) is a run-away sequence, there exists n0 ∈ N such that for all n ∈ N
with n > n0 and all s ∈ Wp we have φn(s) /∈ J , and so |xφn(s)| < ε. Hence,

for all n ∈ Ep with n ≥ n0, by (2.2) and (2.4),

bns ≥
αp

2|xφn(s)|
≥ αp

2ε
= M.

So, we have proved (c).

Finally, let p, q ≥ 1, n ∈ Ep, m ∈ Eq with n 6= m, t ∈ Wq and s ∈ I be

such that φn(s) = φm(t). Then p 6= q, as otherwise, since n 6= m, by the

definition of Ep we have |n − m| > 2Ψ(p); on the other hand, (iii) yields

|n − m| ≤ 2Ψ(p), a contradiction. Therefore, since p 6= q, we can apply

(b) to get s /∈ Wp and so the s-coefficient of Tnx − αp
∑

i∈Wp
ei is bnsxφn(s).

Hence, by (2.2),
bns
bmt

=
|bnsxφn(s)|
|bmt xφm(t)|

≤ 1

p

2

αq
≤ 1

p

1

q
.

Hence (d) holds with M(p) = p.

“⇐”: We first observe that if (b) holds, then

(2.5) ∀p, q ∈ N, p 6= q : Ep ∩ Eq = ∅.

Indeed, assume p < q; if there exists n ∈ Ep∩Eq, then for any s ∈ Wp ⊆ Wq,

one gets φn(s) ∈ φn(Wp) ∩ φn(Wq), contradicting (b).

As properties (a) to (d) hold true for any sequence (M(p))p∈N, we may

assume that M(p) ≥ ρ4p for any p ≥ 1.

We set

E ′p = Ep \
⋃
s∈Wp

{n ∈ N : bns ≤ ρ4p}.

By (c),E ′p is a cofinite subset ofEp, hence dens(E ′p) > 0. IfE ′p = {npk : k ∈ N},
where (npk)k is an increasing sequence of natural numbers, we consider the

set Gp = {np(2[Ψ(p)]+3)k : k ∈ N}. It has positive lower density and moreover

the distance between two different elements of Gp is greater than 2Ψ(p).

Let (yp)p≥0 be a dense sequence in c0(I) such that supp(yp) ⊆ Wp and

‖yp‖ < ρp. We define x ∈ RI by setting

(2.6) xi =

{
1
bns
yp(s) if i = φn(s), n ∈ Gp, s ∈ Wp,

0 otherwise.
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This definition is correct, because if i = φn(s) = φm(t) with n ∈ Gp,

s ∈ Wp, m ∈ Gq and t ∈ Wq, then, by (b), p = q, and assumption (iii) yields

|n−m| ≤ |g(s)− g(t)| ≤ 2Ψ(p); hence, by the definition of Gp, n = m and

so s = t, by the injectivity of φn.

We have x ∈ c0(I). Indeed, given ε > 0, there exists p0 ∈ N such that

for p ≥ p0 and n ∈ Gp, s ∈ Wp, i = φn(s),

|xi| ≤
ρp

ρ4p
≤ ε.

If p ≤ p0, then

|xi| ≤
ρp0

bns
→ 0 as n→∞.

We finally show that x is a frequently hypercyclic vector by proving that for

all p ≥ 1 and n ∈ Gp, ‖Tnx− yp‖ < ε(p) with ε(p)→ 0 as p→∞. We have

‖Tnx− yp‖ = sup
s/∈Wp

|bnsxφn(s)|.

If s /∈ Wp, then bnsxφn(s) does not vanish if and only if

(2.7) ∃q ≥ 1 ∃m ∈ Gq, t ∈ Wq : φn(s) = φm(t).

If (2.7) holds, then n 6= m, as otherwise, p = q by (2.5) and s = t by the

injectivity of φn, which is impossible since s /∈ Wp and t ∈ Wp = Wq.

Hence, we can apply (d) to get

|bnsxφn(s)| =
∣∣∣∣ bnsbmt yq(t)

∣∣∣∣ ≤ ρq

M(p)M(q)
≤ ρq

ρpρq
=

1

ρp
.�

As a corollary, we obtain a characterization of frequent hypercyclicity

for weighted backward shift operators defined on c0(I) where I ⊆ R.

Corollary 2.2. Let I be a countably infinite subset of R such that I+Z ⊆ I

(resp. I + N ⊆ I), I =
⋃∞
p=1Wp, where (Wp)p is an increasing sequence of

finite subsets. Let (wi)i∈I be a family of positive real numbers such that

(2.8) 0 < inf
i∈I

wi ≤ sup
i∈I

wi <∞.

The operator T : c0(I) → c0(I) defined by T (xi)i∈I = (wixi+1)i∈I is fre-

quently hypercyclic on c0(I) if and only if there exist a sequence (M(p))p∈N

of positive real numbers tending to ∞ and a sequence (Ep)p∈N of subsets of

N such that

(a) for any p ≥ 1, dens(Ep) > 0,
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(b) for any p, q ≥ 1, p 6= q, (Ep +Wp) ∩ (Eq +Wq) = ∅,
(c) for all p ≥ 1 and s ∈ Wp, limn→∞, n∈Ep ws . . . ws+n−1 =∞,

(d) for any p, q ≥ 1, n ∈ Ep and m ∈ Eq with m 6= n, and t ∈ Wq (resp.

t ∈ Wq such that t+ (m− n) ∈ I),

wm−n+t . . . wm+t−1

wt . . . wt+m−1
≤ 1

M(p)M(q)
.

Moreover, one can replace “there exist a sequence (M(p))p∈N and a sequence

(Ep)p∈N” by “for any sequence (M(p))p∈N there exists a sequence (Ep)p∈N”.

Proof. Observe that T is frequently hypercyclic if and only the family of its

powers (T n)n∈N is frequently universal. If we set Tn = T n, we have that

Tn[(xi)i∈I ] = (wiwi+1 . . . wi+n−1xi+n)i∈I .

Therefore, if we set

bns := wsws+1 . . . ws+n−1, φ(s) := s+ 1, φn := φ ◦ · · · ◦ φ︸ ︷︷ ︸
n

and g(s) := s for all s ∈ I and n ∈ N, then assumptions (i), (iii) and

(iv) of Theorem 2.1 are trivially satisfied, while (ii) follows from (2.8). The

characterization follows by Theorem 2.1.

Remark 2.3. Observe that condition (d) is equivalent to saying that for

any p, q ≥ 1, n ∈ Ep and m ∈ Eq with n 6= m, and t ∈ Wq (resp. t ∈ Wq

such that t+ (m− n) ∈ I),

(2.9)

{
wt . . . wt+m−n−1 ≥M(p)M(q) if m > n,

wt+(m−n) . . . wt−2wt−1 ≤ 1
M(p)M(q)

if m < n,

and we obtain the conditions of [12, Theorem 12].

3 Frequently hypercyclic translation semigroups

The purpose of this section is to obtain a characterization of frequent

hypercyclicity for translation semigroups on Cρ
0 (R) under the assumption

supk∈Z ρ(k + 1)/ρ(k) <∞, and on Lρp(R).

In the following we set, for any r, s ∈ Z, [[r, s]] = [r, s] ∩ Z.

To treat the case of continuous functions, we recall some known results

about the construction of a Schauder basis in C0(R), referring for more

details to [29].
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Let D̃ be the set of dyadic numbers except 1, that is, D̃ =
⋃∞
n=0Dn

where D0 = {0} and, if n ≥ 1,

Dn =

{
2k − 1

2n
: k = 1, . . . , 2n−1

}
.

For any τ ∈ Dn, set τ− = τ − 2−n and τ+ = τ + 2−n.

Let ϕ(x) := max{0, 1 − |x|} for x ∈ R, and define for every k ∈ Z,

τ ∈ Dn, and x ∈ R,

(3.1) ϕk+τ (x) := ϕ(2n(x− k − τ)).

Observe that ϕk+τ (x) = ϕτ (x− k) where ϕτ is the Faber–Schauder dyadic

function with peak at τ .

Set I = Z + D̃ and consider the partition I =
⋃
n≥0 Vn where V0 = {0},

and

(3.2) Vn = {−n+ h+Dh : h = 0, 1, . . . , n} ∪ {h+Dn−h : h = 1, . . . , n}.

We define an order on I assuming that the elements of Vk are earlier than

those in Vn if 0 ≤ k < n, and within each Vn we keep the usual order.

The system (ϕi)i∈I is a Schauder basis in C0(R). More precisely, if

f ∈ C0(R), then f =
∑

k+τ∈Z+D̃ ak+τϕk+τ where

ak+τ =

{
f(k), k ∈ Z, τ = 0,

f(k + τ)− 1
2
(f(k + τ−) + f(k + τ+)), k ∈ Z, τ 6= 0.

By the construction of the functions ϕk+τ , it follows that for any n ∈ Z+,

for every family (ak+τ )k+τ∈Z+Dn of real numbers, and for every x ∈ R:

(3.3)
∑

k∈Z,τ∈Dn

|ak+τϕk+τ (x)| ≤ 2 sup
k∈Z,τ∈Dn

|ak+τ |.

If we set for every n ∈ Z+

D̃n :=
n⋃
h=0

Dh, Wn = [[−n, n]] + D̃n,

then clearly (Wn)n≥0 is an increasing sequence of finite subsets such that

Z + D̃ =
⋃
n≥0Wn. Thus

c0(Z + D̃) = {(ak+τ )k,τ ∈ RZ+D̃ | ∀ε > 0 ∃n ∈ N : k + τ /∈ Wn ⇒ |ak+τ | < ε}

= {(ak+τ )k,τ ∈ RZ+D̃ | ∀ε > 0 ∃n ∈ N : (|k| > n or τ /∈ D̃n)⇒ |ak+τ | < ε}.

For any x ∈ R, let [x] denote the integer part of x.
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Lemma 3.1. Let ρ be an admissible weight function on R such that ρ(x) =

ρ([x]) for any x ∈ R and let T1 : Cρ
0 (R) → Cρ

0 (R) be the translation opera-

tor defined as T1f(x) = f(x+ 1). Then T1 is quasiconjugate to the weighted

backward shift operator Bw : c0(Z + D̃)→ c0(Z + D̃) defined by

Bw[(xk+τ )k+τ∈Z+D̃] = (wk+τxk+τ+1)k+τ∈Z+D̃, f

where

wk+τ :=
ρ(k + τ)

ρ(k + 1 + τ)
=

ρ(k)

ρ(k + 1)
, k + τ ∈ Z + D̃.

Moreover, Bw is quasiconjugate to T1.

Proof. To prove that T1 is quasiconjugate to Bw, we exhibit a continuous

linear operator Q : Cρ
0 (R) → c0(Z + D̃) with dense range such that the

following diagram commutes:

Cρ
0 (R)

T1−→ Cρ
0 (R)

↓Q ↓Q
c0(Z + D̃)

Bw−→ c0(Z + D̃)

Given f ∈ Cρ
0 (R), we define Q(f) = (ak+τ )k+τ∈Z+D̃ where

ak+τ = ρ(k) ·

{
f(k), k ∈ Z, τ = 0,

f(k + τ)− 1
2
(f(k + τ−) + f(k + τ+)), k ∈ Z, τ 6= 0.

It holds that Q(f) ∈ c0(Z + D̃). Indeed, since f ∈ Cρ
0 (R), for every ε > 0,

(1) there exists N1 ∈ N such that if |x| > N1, then |f(x)ρ(x)| < ε
2

(2) there exists δ > 0 such that, for all x, y ∈ [−N1−1, N1+2], if |x−y| < δ

then |f(x)− f(y)| < ε
ρN1

, where ρN1 = maxk∈[[−N1−1,N1+2]] ρ(k).

Choose N2 ∈ N such that 1
2N2

< δ and set N = max{N1 + 1, N2}. Let

k + τ ∈ (Z + D̃) \WN .

If |k| > N1 + 1, by (1) it is clear that for every s ∈ [0, 1[,

|f(k + s)ρ(k)| = |f(k + s)ρ(k + s)| < ε

2
,

since |k + s| > N1. Hence, by the continuity of f , for every s ∈ [0, 1],

(3.4) |f(k + s)ρ(k)| ≤ ε

2
.

By replacing s by τ , τ+ and τ− in (3.4), we immediately get |ak+τ | ≤ ε.

11



If |k| ≤ N1 + 1, then necessarily τ ∈ Dn, with n > N , and, in particular,

τ 6= 0. It holds that

|τ − τ−| < 1

2N
< δ, |τ − τ+| < 1

2N
< δ,

and k + τ, k + τ−, k + τ+ ∈ [−N1 − 1, N1 + 2], thus, by (2) we get that

|ak+τ | = |ρ(k)(f(k + τ)− 1
2
(f(k + τ−) + f(k + τ+)))| ≤ ε.

Then Q : Cρ
0 (R)→ c0(Z+D̃) is well-defined and clearly linear. Moreover,

for every f ∈ Cρ
0 (R), k ∈ Z, we have

|f(k + s)ρ(k)| = |f(k + s)ρ(k + s)| ≤ ‖f‖ρ∞ for all s ∈ [0, 1[,

hence, by the continuity of f ,

(3.5) |f(k + s)ρ(k)| ≤ ‖f‖ρ∞ for all s ∈ [0, 1].

By replacing s by τ , τ+ and τ− in (3.5), with τ ∈ D̃, we immediately get

‖Q(f)‖ ≤ 2‖f‖ρ∞, so Q is continuous.

To prove that Q has dense range, it is enough to show that for every

h ∈ Z and σ ∈ D̃,

(xh+σk+τ )k∈Z, τ∈D̃ ∈ Q(Cρ
0 (R)) where xh+σk+τ = δ(h,σ)(k, τ),

and, indeed, by the definition of ϕh+σ, we have

Q(ρ(h)−1ϕh+σ) = (xh+σk+τ )k∈Z, τ∈D̃.

Finally, by observing that, for every f ∈ Cρ
0 (R), Q◦T1(f) = (bk+τ )k+τ∈Z+D̃,

where

bk+τ =


f(k + 1)ρ(k) = ak+1

ρ(k)

ρ(k + 1)
, if τ = 0,

(f(k + 1 + τ)− 1
2
(f(k + 1 + τ−) + f(k + 1 + τ+))ρ(k)

= ak+τ+1
ρ(k)

ρ(k + 1)
if τ 6= 0,

for k ∈ Z and τ ∈ D̃, it is immediate that Q ◦ T1(f) = Bw ◦Q(f).

Now, let us prove that Bw is quasiconjugate to T1, namely that there ex-

ists a continuous linear operator P : c0(Z + D̃)→ Cρ
0 (R) with dense range

such that the following diagram commutes:

c0(Z + D̃)
Bw−→ c0(Z + D̃)

↓P ↓P
Cρ

0 (R)
T1−→ Cρ

0 (R)

12



Given (ak+τ )k∈Z,τ∈D̃ ∈ c0(Z + D̃), we define

(3.6) P
(

(ak+τ )k∈Z,τ∈D̃

)
=
∞∑
n=0

1

2n

( ∑
k∈Z,τ∈Dn

ak+τ
ρ(k)

ϕk+τ

)
.

Observe that, for every N ∈ N, x ∈ [−N,N ], taking (3.3) into account,∣∣∣∣∣ ∑
k∈Z,τ∈Dn

ak+τ
ρ(k)

ϕk+τ (x)

∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
|k|≤N,τ∈Dn

ak+τ
ρ(k)

ϕk+τ (x)

∣∣∣∣∣∣ ≤
≤

∑
|k|≤N,τ∈Dn

|ak+τ |
ρ(k)

ϕk+τ (x) ≤ 2
‖(ak+τ )k,τ‖

min|k|≤N{ρ(k)}
,

thus by the Weierstrass M-test, the series on the right-hand side of (3.6)

is uniformly convergent on [−N,N ]. It follows that P
(
(ak+τ )k∈Z,τ∈D̃

)
is a

continuous function on R.

Moreover, for every x ∈ R there exists k ∈ Z such that k ≤ x < k + 1.

Hence, by (3.3) and by (1.1) applied with l = 1

|P ((ak+τ )k,τ ) (x)ρ(x)| =

∣∣∣∣∣ρ(x)
∞∑
n=0

1

2n

( ∑
k∈Z,τ∈Dn

ak+τ
ρ(k)

ϕk+τ (x)

)∣∣∣∣∣ =

=

∣∣∣∣∣ρ(k)

(∑
k∈Z

ak
ρ(k)

ϕk(x)

)
+ ρ(k)

∞∑
n=1

1

2n

( ∑
k∈Z,τ∈Dn

ak+τ
ρ(k)

ϕk+τ (x)

)∣∣∣∣∣ =

=

∣∣∣∣∣akϕk(x) +
ρ(k)

ρ(k + 1)
ak+1ϕk+1(x) + ρ(k)

∞∑
n=1

1

2n

(∑
τ∈Dn

ak+τ
ρ(k)

ϕk+τ (x)

)∣∣∣∣∣ ≤
≤ ρ(k)

ρ(k + 1)

∣∣ak+1

∣∣+

∣∣∣∣∣
∞∑
n=0

1

2n

(∑
τ∈Dn

ak+τϕk+τ (x)

)∣∣∣∣∣ ≤
≤ B

∣∣ak+1

∣∣+ 2
∞∑
n=0

1

2n
sup
τ∈Dn

|ak+τ |.(3.7)

Thus, if ε > 0 and N ∈ N is such that |ak+τ | < ε if k + τ /∈ WN , then

for any x ∈ R such that |x| > N + 1, it holds that |k| > N and |k+ 1| > N ,

thus k + τ /∈ WN for every τ ∈ D̃ and k + 1 /∈ WN . Therefore |ak+τ | < ε

and |ak+1| < ε. Hence

|P ((ak+τ )k,τ ) (x)ρ(x)| < (B + 4)ε.

On the other hand, (3.7) implies that

‖P ((ak+τ )k,τ ) ‖ρ∞ ≤ (B + 4)‖(ak+τ )k,τ‖,
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hence P : c0(Z+ D̃)→ Cρ
0 (R) is well defined, clearly linear and continuous.

Observe that clearly

{ϕk+τ , k ∈ Z, τ ∈ D̃} ⊆ P (c0(Z + D̃)).

If f ∈ Cρ
0 (R), given ε > 0, there exists g ∈ C(R) with compact sup-

port such that ‖f − g‖ρ∞ < ε
2
. Let us assume that supp(g) ⊆ [−M,M ],

M ∈ N and consider ϕ ∈ span{ϕk+τ , k ∈ Z, τ ∈ D̃} ⊆ P (c0(Z + D̃)),

supp(ϕ) ⊆ [−M−1,M+1], such that ‖g−ϕ‖∞ < ε
2maxx∈[−M−1,M+1] ρ(x)

. Then

‖f −ϕ‖ρ∞ < ‖f − g‖ρ∞+ ‖g−ϕ‖ρ∞ <
ε

2
+ sup
x∈[−M−1,M+1]

|g(x)−ϕ(x)|ρ(x) < ε

and therefore P has dense range.

Finally we observe that

P ◦Bw((ak+τ )k,τ ) =
∞∑
n=0

1

2n

( ∑
k∈Z,τ∈Dn

ak+τ+1

ρ(k + 1)
ϕk+τ

)
.

On the other hand, for every x ∈ R,

T1 ◦ P ((ak+τ )k,τ )(x) =
∞∑
n=0

1

2n

( ∑
k∈Z,τ∈Dn

ak+τ
ρ(k)

ϕk+τ (x+ 1)

)
=

∞∑
n=0

1

2n

( ∑
k∈Z,τ∈Dn

ak+τ
ρ(k)

ϕk+τ−1(x)

)
=
∞∑
n=0

1

2n

( ∑
h∈Z,τ∈Dn

ah+τ+1

ρ(h+ 1)
ϕh+τ (x)

)
.

Then P ◦Bw = T1 ◦ P .

Theorem 3.2. Let T be the translation semigroup on Cρ
0 (R), where ρ is an

admissible weight function and supk∈Z ρ(k + 1)/ρ(k) < ∞. Then T is fre-

quently hypercyclic on Cρ
0 (R) if and only if there exist a sequence (M(p))p∈N

of positive real numbers tending to ∞ and a sequence (Ep)p∈N of subsets of

N such that:

(a) for any p ≥ 1, dens(Ep) > 0,

(b) for any distinct p, q ≥ 1, (Ep + [[−p, p]]) ∩ (Eq + [[−q, q]]) = ∅,
(c) for any p ≥ 1, limn→∞, n∈Ep ρ(n) = 0,

(d) for any p, q ≥ 1 and any n ∈ Ep and m ∈ Eq with m 6= n,

(3.8) ρ(m− n) ≤ 1

M(p)M(q)
.

Moreover, one can replace “there exist a sequence (M(p))p∈N and a sequence

(Ep)p∈N” by “for any sequence (M(p))p∈N there exists a sequence (Ep)p∈N”.
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Proof. Since ρ is an admissible weight function supk∈Z ρ(k)/ρ(k + 1) <∞,
there exists M > 1 such that for every k ∈ Z,

M−1 ≤ ρ(k + 1)

ρ(k)
≤M.

As a consequence we get for every n ∈ N we get, if k ∈ [[0, p]],

ρ(k + n) =
ρ(k + n)

ρ(k − 1 + n)
· · · ρ(n+ 1)

ρ(n)
· ρ(n) ≤Mkρ(n)

and if k ∈ [[−p, 0]],

ρ(k + n) =
ρ(k + n)

ρ(k + 1 + n)
· · · ρ(n− 1)

ρ(n)
· ρ(n) ≤M |k|ρ(n),

thus for every k ∈ [[−p, p]],

(3.9) ρ(k + n) ≤M |k|ρ(n).

On the other hand, by (1.1), there exist constants 0 < A < B such that

for every x ∈ [k, k + 1],

Aρ(k) ≤ ρ(x) ≤ Bρ(k + 1) ≤ BMρ(k).

If we now define ρ̃(x) = ρ([x]) for x ∈ R, then there exist constants

M1,M2 > 0 such that

M1‖f‖ρ̃∞ ≤ ‖f‖ρ∞ ≤M2‖f‖ρ̃∞,

so ‖·‖ρ̃∞ is an equivalent norm to ‖·‖ρ∞. Therefore, without loss of generality

we can assume in the following that ρ(x) = ρ([x]) for every x ∈ R.

By the results in [16, 26], it is known that T is a frequently hypercyclic

semigroup if and only if T1 is a frequently hypercyclic operator. Since T1

is quasiconjugate to the operator Bw defined as in Lemma 3.1 and Bw is

quasiconjugate to T1, by [24, Proposition 9.4] we find that T is frequently

hypercyclic if and only if Bw is frequently hypercyclic, hence, by Corol-

lary 2.2, if and only if there exist a sequence (M(p))p∈N of positive real

numbers tending to ∞ and a sequence (Ep)p∈N of subsets of N (or equiva-

lently, for any (M(p))p∈N there exists (Ep)p∈N) such that

(a1) for any p ≥ 1, dens(Ep) > 0,

(b1) for any distinct p, q ≥ 1, (Ep +Wp) ∩ (Eq +Wq) = ∅,
(c1) for every p ≥ 1 and every s ∈ Wp,

lim
n→∞, n∈Ep

ws . . . ws+n−1 = lim
n→∞, n∈Ep

ρ(s)

ρ(s+ n)
=∞,
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(d1) for any p, q ≥ 1, n ∈ Ep and m ∈ Eq with m 6= n, and t ∈ Wq,

wm−n+t . . . wm+t−1

wt . . . wt+m−1
=
ρ(m− n+ t)

ρ(t)
≤ 1

M(p)M(q)
,

where Wp = [[−p, p]] + D̃p.

Clearly (a1)–(d1) imply (a)–(d) simply by observing that [[−p, p]] ⊆ Wp,

and in particular 0 ∈ Wp, for every p ∈ N.

Conversely, assume that (a)–(d) hold. Passing to a subsequence of (Ep)p∈N

if necessary, we can choose (M(p))p∈N such that

lim
p→∞

M(p) ·min{ρ(k) : k ∈ [[−p, p]]}
Mp

=∞.

If

(Ep +Wp) ∩ (Eq +Wq) 6= ∅,

then there exist n ∈ Ep, s ∈ [[−p, p]], σ ∈ D̃, m ∈ Eq, t ∈ [[−q, q]] and τ ∈ D̃,

such that

n+ s+ σ = m+ t+ τ ;

taking integer parts yields n+s = m+t, hence (Ep+[[−p, p]])∩(Eq+[[−q, q]])
6= ∅. Thus p = q. So (b1) is satisfied.

By (3.9) and (c), we get limn→∞,n∈Ep ρ(n+ k) = 0 for every k ∈ [[−p, p]],
and (c1) follows by observing that for every s ∈ Wp there exists k ∈ [[−p, p]]
such that ρ(n+ s) = ρ(n+ k).

Let p, q ≥ 1 and n ∈ Ep, m ∈ Eq, m 6= n. By (3.9) and (d), for every

k ∈ [[−q, q]],

ρ(m− n+ k)

ρ(k)
≤ ρ(m− n)

ρ(k)
M |k| ≤ M q

min{ρ(k) : k ∈ [[−q, q]]}M(p)M(q)

≤ 1

K(p)K(q)

where

K(q) = min

{
M(q) ·min{ρ(k) : k ∈ [[−q, q]]}

M q
,M(q)

}
.

We get (d1) by observing that for every t ∈ Wq there exists k ∈ [[−q, q]]
such that

ρ(m− n+ t)

ρ(t)
=
ρ(m− n+ k)

ρ(k)
.�

Remark 3.3. As an immediate consequence, if ρ is an admissible weight

function on R such that supk∈Z ρ(k + 1)/ρ(k) < ∞ and we set wk =

ρ(k)/ρ(k + 1) for k ∈ Z, then, by the characterization given in [12, Theorem

9] and by Theorem 3.2, Bw is frequently hypercyclic on c0(Z) if and only if

the translation semigroup is frequently hypercyclic on Cρ
0 (R).

16



Proposition 3.4. If the translation semigroup T is mixing (equivalently

chaotic) on Cρ
0 (R), then it is frequently hypercyclic.

Proof. As is proved in [13, 27], chaos and mixing are equivalent properties

for the translation C0-semigroup on Cρ
0 (R), and this happens if and only if

limx→±∞ ρ(x) = 0.

As already observed, it is enough to prove that T1 satisfies the Frequent

Hypercyclicity Criterion for operators (see [14]). Let X0 = span{ϕk+τ : k ∈
Z, τ ∈ D̃}, where ϕk+τ is defined in (3.1). Every continuous function on

R with dense support can be approximated in the uniform norm with el-

ements of X0, and therefore X0 is dense in Cρ
0 (R). Moreover, if we define

S : X0 → X0 by Sf(x) = f(x− 1), it is clear that T1Sf = f .

Let us prove that
∑∞

n=1 T
n
1 f and

∑∞
n=1 S

nf are unconditionally con-

vergent for all f ∈ X0. It is enough to consider f = ϕk+τ ∈ X0; then

supp(f) ⊆ [a, b] with b− a ≤ 2, and for every n ∈ N,

supp(T n1 (f)) ⊆ [a− n, b− n];

thus for every n,m ∈ N, if supp(T n1 f)∩supp(Tm1 f) 6= ∅, then it is immediate

that |n−m| ≤ |b−a| ≤ 2, hence either m = n, or m = n± 1, or m = n± 2.

This implies that if J ⊆ N is finite, then∥∥∥∑
n∈J

T n1 f
∥∥∥ρ
∞
≤ 4 sup

n∈J
‖T n1 f‖ρ∞.

Let ε > 0 and let M > 0 be such that ρ(x) < ε for every |x| > M . For

every finite set F ⊆ N∩ ]M + b,∞[ and every x ∈ [a, b] and n ∈ F , we have

|x− n| = n− x > M , so∥∥∥∑
n∈F

T n1 f
∥∥∥ρ
∞
≤ 4 sup

x∈R, n∈F
|f(x+ n)ρ(x)| = 2 sup

x∈[a,b], n∈F
|f(x)ρ(x− n)| ≤ 2ε.

The argument for
∑∞

n=1 S
nf is similar.

Remark 3.5. The converse of the previous proposition does not hold. In-

deed, let (wk)k∈Z be one of the sequences of weights constructed in [12] such

that Bw is frequently hypercyclic on c0(Z) and w1 · · ·wk = 1 for infinitely

many k. Define ρ(k) = (w1 · · ·wk)−1 if k ≥ 1, ρ(k) = wkwk+1 · · ·w0 if k ≤ 0,

and ρ(x) = ρ([x]) for any x ∈ R. Then supk∈Z ρ(k + 1)/ρ(k) < ∞, due to

the fact that 1/2 ≤ wk ≤ 2 for all k ∈ Z, as shown in [12]. By Remark 3.3

the translation semigroup is frequently hypercyclic on Cρ
0 (R), while clearly

it is not mixing, since ρ(k) = 1 for infinitely many k.

17



Finally, set J = Z+ + D̃ and consider the partition J =
⋃
n≥0 Jn where

J0 = {0} and

(3.10) Jn = {h+Dn−h : h = 0, 1, . . . , n} for n ≥ 1.

Define an order on J assuming that the elements Jk are earlier than those

in Jn if 0 ≤ k < n, and within each Jn we keep the usual order.

The system (ψi)i∈J , where ψ0(x) := max{0, 1 − x} and ψk+τ = ϕk+τ if

τ 6= 0 or k 6= 0, is a Schauder basis on C0([0,∞[).

Reasoning analogously to the case of translation semigroups in Cρ
0 (R), we

also get the following characterization of frequently hypercyclic translation

semigroups on Cρ
0 ([0,∞[):

Theorem 3.6. Let T be the translation semigroup on Cρ
0 ([0,∞[), where ρ

is an admissible weight function and supk∈N ρ(k + 1)/ρ(k) < ∞. Then T
is frequently hypercyclic on Cρ

0 ([0,∞[) if and only if there exist a sequence

(M(p))p∈N of positive real numbers tending to ∞ and a sequence (Ep)p∈N of

subsets of N such that:

(a) for any p ≥ 1, dens(Ep) > 0,

(b) for any distinct p, q ≥ 1, (Ep + [[0, p]]) ∩ (Eq + [[0, q]]) = ∅,
(c) for every p ≥ 1, limn→∞, n∈Ep ρ(n) = 0,

(d) for any p, q ≥ 1 and any n ∈ Ep and m ∈ Eq with m > n,

(3.11) ρ(m− n) ≤ 1

M(p)M(q)
,

Moreover, one can replace “there exist a sequence (M(p))p∈N and a sequence

(Ep)p∈N” by “for any sequence (M(p))p∈N there exists a sequence (Ep)p∈N”.

The final part of the paper will be devoted to characterizing frequently

hypercyclic semigroups on Lρp(R). Also in this case we will first establish a

relation between the discrete and the continuous cases. We recall that the

relation between the discrete and the continuous cases for Devaney chaos was

studied in [8] and for distributional chaos in [7]. The following lemma follows

immediately from the conjugacy of the backward shift B on `vp = {(xk)k∈Z :∑
k∈Z |xk|pvk <∞} and the weighted backward shift Bw on `p where wk =

(vk/vk+1)
1/p for k ∈ Z, and from the characterization of frequently hypercyclic

weighted backward shifts on `p proved in [12, Theorem 3].

Lemma 3.7. Let v = (vk)k∈Z be a sequence of strictly positive weights such

that (vk/vk+1)k is bounded. Then the backward shift operator B is frequently

hypercyclic on `vp if and only if
∑

k∈Z vk <∞.
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Theorem 3.8. Let ρ be an admissible weight function on R. If the transla-

tion semigroup T is frequently hypercyclic on Lρp(R), then the backward shift

operator B is frequently hypercyclic on `vp, where vk = ρ(k) for all k ∈ Z.

Proof. Since ρ is an admissible weight function, by (1.1) there exist A,B ≥ 0

such that Aρ(k) ≤ ρ(t) ≤ Bρ(k + 1) for all t ∈ [k, k + 1]. If (Tt)t≥0 is fre-

quently hypercyclic, then T1 is frequently hypercyclic [16]. Hence there exists

f ∈ Lρp(R) such that for all g ∈ Lρp(R) and for all ε > 0,

dens({n ∈ N : ‖T n1 f − g‖ < ε}) > 0.

Since f ∈ Lρp(R) we have |f |ρ1/p ∈ Lp([k, k + 1]) ⊆ L1([k, k + 1]) for ev-

ery k ∈ Z. As ρ is strictly positive and locally bounded below by (1.1),

we infer that f ∈ L1([k, k + 1]) for all k ∈ Z. Therefore we can define

xk =
∫ k+1

k
f(t) dt for all k ∈ Z. We have∑

k∈Z

|xk|pρ(k) =
∑
k∈Z

∣∣∣ ∫ k+1

k

f(t) dt
∣∣∣pρ(k) ≤

∑
k∈Z

∫ k+1

k

|f(t)|pρ(k) dt

≤ 1

A

∑
k∈Z

∫ k+1

k

|f(t)|pρ(t) dt =
1

A
‖f‖pp <∞.

So x = (xk)k∈Z ∈ `pv with vk = ρ(k).

Let

y = (0, . . . , y−N , . . . , y0, . . . , yM , 0, . . . , 0)

and let ε > 0. Set g =
∑M

k=−N ykχ[k,k+1] ∈ Lρp(R). We will show that

{n ∈ N : ‖T n1 f − g‖ < A1/pε} ⊆ {n ∈ N : ‖Bnx− y‖ < ε},

and therefore

dens({n ∈ N : ‖Bnx− y‖ < ε}) > 0

because f is a frequently hypercyclic vector. We have

‖Bnx− y‖p =
∑
k∈Z

|xn+k − yk|pρ(k)

≤ 1

A

∑
k∈Z

∫ k+1

k

|f(t+ n)− g(t)|pρ(t) dt ≤ εp.

By the density of finite sequences in `vp we conclude that B is frequently

hypercyclic.

Finally, we are able to characterize frequently hypercyclic translation

semigroups on Lρp(R).
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Theorem 3.9. Let ρ be an admissible weight function on R. The following

assertions are equivalent:

(1) The translation semigroup T is frequently hypercyclic on Lρp(R).

(2)
∑

k∈Z ρ(k) <∞.

(3)
∫∞
−∞ ρ(t) dt <∞.

(4) T is chaotic on Lρp(R).

(5) T satisfies the Frequent Hypercyclicity Criterion.

Proof. Observe that (ρ(k)/ρ(k + 1))k∈Z is bounded by the admissibility of ρ.

By Theorem 3.8 and Lemma 3.7, we have (1)⇒(2). The equivalence of (2)

and (3) follows from the properties of ρ, by comparing integrals and series.

The equivalence of (4) and (5) can be proved with the same argument as in

[26, Proposition 3.3]. (5)⇒(1) is proved in [26, Theorem 2.2], while (3)⇒(5)

can be proved as in [26, Proposition 3.4].

With minor changes we also get a characterization of frequently hyper-

cyclic translation semigroups on Lρp([0,∞[):

Theorem 3.10. Let ρ be an admissible weight function on [0,∞[. The fol-

lowing assertions are equivalent:

(1) The translation semigroup T is frequently hypercyclic on Lρp([0,∞[).

(2)
∑

k∈N ρ(k) <∞.

(3)
∫∞
0
ρ(t) dt <∞.

(4) T is chaotic on Lρp([0,∞[).

(5) T satisfies the Frequent Hypercyclicity Criterion.
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