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Abstract
Introduction Few studies assessed diffusion tensor imaging
(DTI) changes in the acute phase of subarachnoid haemor-
rhage (SAH). We prospectively evaluated DTI parameters in
the acute phase of SAH and 8–10 days after and analysed
whether changes could be related to SAH severity or to the
development of delayed cerebral ischemia (DCI).
Methods Apparent diffusion coefficient (ADC) and fractional
anisotropy (FA) changes over timewere assessed in a prospec-
tive cohort of patients with acute SAH. TwoMRI studies were
performed at <72 h (MRI-1) and 8–10 days (MRI-2). DTI
parameters were recorded in 15 ROIs. Linear mixed regres-
sion models were used.
Results Forty-two patients were included. Subtle changes in
DTI parameters were found between MRI-1 and MRI-2. At
the posterior limb of internal capsule (PLIC), a weak evidence
of a 0.02 mean increase in FA (p = 0.064) and a
17.55 × 10−6 mm2/s decrease in ADC (p = 0.052) were found
in MRI-2. Both FA and ADC changed over time at the

cerebellum (increase of 0.03; p = 0.017; decrease of
34.73 × 10−6 mm2/s; p = 0.002, respectively). Patients with
DCI had lower FAvalues on MRI-1 and lower ADC onMRI-
2, although not reaching statistical significance, compared to
non-DCI patients. DTI parameters on MRI-1 were not corre-
lated to clinical admission scales.
Conclusion ADC and FA values show subtle changes over
time in acute SAH at the PLIC and cerebellum although not
statistically associated with the severity of SAH or the occur-
rence of DCI. However, DTI changes occurred mainly in DCI
patients, suggesting a possible role of DTI as a marker of DCI.

Keywords Diffusion tensor imaging . Subarachnoid
haemorrhage . Delayed cerebral ischemia

Background and purpose

Subarachnoid haemorrhage (SAH), usually caused by rupture
of intracranial aneurysms, is a devastating clinical condition,
with high mortality and morbidity that reaches 50 and 20%,
respectively [1, 2]. The prognosis after SAH is determined by
the initial insult as translated into clinical scales, such as the
Hunt and Hess grade, but also by the occurrence of complica-
tions like vasospasm and delayed cerebral ischemia (DCI) [1,
3–5]. Besides these well-known factors, the occurrence of
early brain injury at the time of haemorrhage is emerging as
a leading cause of mortality [2].

Diffusion tensor imaging (DTI) is an MRI technique that
uses motion of water molecules to provide two different kinds
of information: (a) quantitative information on water move-
ment across cellular membranes—diffusion weighted imaging
(DWI) including the calculated apparent diffusion coefficient
(ADC) and (b) anatomical integrity of white matter tracts
based on anisotropic diffusion of water along axons—
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fractional anisotropy (FA) [6, 7]. FA and ADC vary inversely
in the brain [8] and represent different physiologic parameters,
albeit measured by the same sequence.

When cerebral parenchymal damage occurs in SAH, either
due to early brain lesion (cortical spreading depolarization,
blood-brain barrier dysfunction and ultimately neuronal cell
death) [9, 10] or to DCI [11], these changes affect water dif-
fusion and anisotropy and may lead to abnormal DWI param-
eters. It is known, for instance, that ADC values are affected in
white matter not only in the acute [12] but also in the subacute
phase of SAH [13].

Regarding FA measurements in SAH patients, however,
the literature is scarce, with only a few studies that refer to
specific tracts and that studied patients several weeks or
months after SAH [14–16].

In our study, we evaluated FA and ADC values in several
brain regions during the acute phase of SAH (<72 h, before
vasospasm period) and 8–10 days after ictus (during the va-
sospasm period), trying to answer the following questions: (1)
Do DTI parameters change over time in the acute phase of
SAH? and (2) Is there an association of changes in ADC and/
or FA values with DCI and severity of SAH?

Material and methods

Population

All patients with acute spontaneous SAH admitted at
Centro Hospitalar de Lisboa Central between May 2013
and November 2014 were enrolled in a prospective cohort
study. Institutional review board approval was obtained.
Inclusion criteria for the main study were as follows: (1)
age >18 years, (2) acute non-traumatic SAH diagnosed by
CT and/or lumbar puncture, (3) imaging studies performed
within the first 72 h of SAH onset and (4) informed consent
obtained from patient or legal representative. Patients in a
very poor clinical condition (GCS 3), pregnant women,
patients with renal insufficiency and patients with any con-
traindication to perform MRI or whose time of onset of
SAH was unknown were excluded. For the current analy-
sis, only patients who underwent sequential MRI within
the first 72 h of ictus and at 8–10 days were included.

Clinical and imaging data

Demographic data and clinical presentation were collected
from the patients’ medical records. Neurological status at ad-
mission was evaluated using the Glasgow coma scale (GCS),
World Federation of Neurosurgeons scale (WFNS) and Hunt
and Hess scale (HH). The amount of blood in brain CT scan
was assessed using the modified Fisher scale [17] and the
Hijdra scale [18].

Patients were classified as having DCI if (1) they presented
with a new focal neurological deficit/decrease in level of con-
sciousness not attributable to other causes (e.g., hydrocepha-
lus, seizures, metabolic derangement, infection or sedation),
(2) there was a new infarct on follow-up CT/MR imaging or
(3) both 1 and 2, after 4 days post-ictus [19, 20].

DCI and other relevant variables such as the presence of
hydrocephalus and surgical/endovascular approach and
timing for aneurysm treatment were collected for analysis.
Hydrocephalus was defined as a bicaudate index above the
95th percentile for age, occurring at any time between admis-
sion and discharge.

MRI protocol

The imaging protocol included two MRI studies: MRI-1 and
MRI-2. The first (baseline) was performed on days 0–3 and
the second (follow-up) on days 8–11 after SAH. All MRIs
were performed on the same 1.5T scanner (Magnetom
Avanto; Siemens Medical Systems, Erlangen, Germany).
The imaging protocol included T1, T2, T2*, fluid attenuation
inversion recovery (FLAIR) and DTI. In the DTI sequence,
for each of the 20 non-collinear diffusion-sensitizing gradi-
ents, we acquired 84 contiguous slices. Imaging parameters
were as follows: matrix = 128 × 128, field of view = 230 mm,
TE = 95 ms, TR = 2800, EPI factor = 128, b = 1000 s/mm2,
NEX = 1 and 5-mm slice thickness.

Postprocessing

OLEA software (La Ciotat, France) was used to select regions
of interest (ROIs) bilaterally and symmetrically (each ROI
with 20 mm2) at the following locations: frontal and parietal
centrum semiovale, posterior limb of the internal capsule
(PLIC), lentiform nucleus, thalamus, genu and splenium of
corpus callosum, midpons and subcortical cerebellar hemi-
spheres (Fig. 1). Mean FA and ADC were measured for each
ROI. An average of left and right ROIs for each anatomical
location was considered representative, after no significant
differences were observed between the two sides. The mean
whole-brain FA and ADC were also calculated for each pa-
tient. Measurements avoided areas of parenchymal hematoma
and ventricular drainage trajectory.

Statistical analysis

The characteristics of study patients were described using the
mean (standard deviation) or median (minimum, maximum)
for continuous variables and the frequencies (percentages) for
categorical variables. To compare FA and ADC ROI values
between the left and right hemispheres, Wilcoxon signed rank
test was used. Non-parametric Fisher’s exact test and Mann-
Whitney test were used, as appropriate.
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Correlation between DTI parameters at admission and se-
verity of SAH (GCS, HH WFNS and Fisher scale as contin-
uous variables) was studied with Spearman correlation
coefficient.

Linear mixed effects regression models were used to take
into account the correlation structure between measures in
time and to explore the association between each DTI param-
eter and relevant clinical data. Clinical and imaging scales
were dichotomized for regression analysis: Hunt and Hess
grades 1, 2 and 3 versus grades 4 and 5; WFNS I, II and III
versus IVand V; GCS >8 versus ≤8 and Modified Fisher 1, 2
and 3 versus 4.

A level of significanceα = 0.05 was considered. Data were
analysed using STATA 13.0 (StataCorp. 2013. Stata Statistical
Software: Release 13. StataCorp LP, College Station, TX) and
SPSS version 21.

Results

Study sample

One hundred twenty-nine patients with spontaneous non-
traumatic SAH were admitted during the inclusion period.
Eighty patients fulfilled the inclusion criteria for the main
prospective cohort. For the present study, patients were further
excluded if they did not perform brain MRI in two different
moments in the course of SAH or if the images were not

readable because of technical reasons. In total, 42 patients
were included (Fig. 2).

The median age of the patients was 63 years (range 35–86),
and 59.5% were female. The median HH grade was 2 (range
1–5), 24 patients were WFNS grade I and 8 patients were
WFNS grade IV; only 2 patients had GCS <8 at admission
(Table 1). In 31 patients, one or more than one aneurysm was
diagnosed: 6 were clipped (14.3%) and 26 were coiled
(61.9%). Seven patients (16.7%) developed hydrocephalus
and 12 patients (28.6%) were considered to have DCI. There
were no significant differences between patients with and
without DCI regarding age, gender, neurological status at ad-
mission, modified Fisher grade or presence of hydrocephalus
(Table 2).

Evolution of DTI parameters in acute SAH

Whole-brain mean FA and ADC showed no significant differ-
ences between baseline and follow-up MRI, as shown in
Table 3. However, and from the specific ROIs analysed, subtle
regional changes in DTI parameters were observed at the pos-
terior limb of the internal capsule (PLIC) and subcortical cer-
ebellum between the two times of evaluation. Also, a slight
mean increase in ADC values at the lentiform nucleus was
present on MRI-2 compared with MRI-1 (coefficient estimate
26.05 × 10−6 mm2/s, 95% CI: 2.29, 49.81; p = 0.032), but not
in FA values.

Fig. 1 Transverse FA and ADC
maps show ROIs that were drawn
bilaterally in brain parenchyma.
Top and bottom left: ROIs in pons
and cerebellar white matter. Top
and bottom middle: ROIs in
lentiform nucleus, thalamus,
PLIC, splenium and genu of
corpus callosum. Top and bottom
right: ROIs in frontal and parietal
centrum semiovale
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DTI measurements at the PLIC

The univariable analysis comparing DTI parameters on MRI-
1 and MRI-2 showed a weak evidence of a mean increase of
0.02 in FA values (95% CI 0.00, 0.04; p = 0.064) and of a
mean decrease of 17.55 × 10−6 mm2/s in ADC values (95%CI
−35.27, −0.17; p = 0.052).

Fig. 2 Flow chart demonstrating the number of patients screened and
reasons of exclusion in the study

Table 1 Demographic and clinical characteristics of patients enrolled

Characteristics

Age (median; range) 63 (35–86)

Female gender, n (%) 25 (59.5)

Comorbidities, n (%)

Smoking 7 (17)

Hypertension 19 (45)

Diabetes 3 (7)

Clinical grade at admission, n (%)

GCS <8
GCS 8–15

2 (4.8)
40 (95.2)

WFNS I 24 (57.1)

WFNS II 7 (16.7)

WFNS III 1 (2.4)

WFNS IV 8 (19)

WFNS V 2 (4.8)

Hunt & Hess
1
2
3
4
5

15 (35.7)
9 (21.4)
11 (26.2)
5 (11.9)
2 (4.8)

Imaging at admission, n (%)

Modified Fisher
2
3
4

4 (9.5)
11 (26.2)
27 (64.3)

Cisternal Hijdra grade (median; range) 14 (0–26)

Ventricular Hijdra grade (median; range) 2 (0–12)

Aneurysmal SAH, n (%) 31 (73.8)

Anterior circulation 25 (80.6)

Posterior circulation 6 (19.4)

Non-aneurysmal SAH, n (%) 11 (26.2%)

Perimesencephalic SAH
Non-aneurysmal non-perimesencephalic SAH

10 (23.8)
1 (2,4)

Table 2 Clinical and demographic characteristics of patients by DCI
group

DCI (n = 12) No DCI (n = 30) p value

Age (years) 61 (36–84) 64 (35–86) 0.706b

Female gender 8 (66.7) 17 (56.7) 0.731a

GCS 15 (10–15) 14.5 (4–15) 0.367b

WFNS (IV-V) 1 (8.3) 9 (30.0) 0.233a

Hydrocephalus 1 (8.3) 6 (20.0) 0.651a

Modified Fisher (grade 4) 8 (66.7) 19 (63.3) 1.000a

Values are expressed as median and range (minimum–maximum) or n
(%)

GCS Glasgow coma scale, WFNS World Federation of Neurosurgeons
scale
a Fisher’s exact test
bMann-Whitney test
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The remaining univariable regression analysis showed that
FA changes were not associated with other variables, like age,
DCI, severity of SAH, hydrocephalus, aneurysmal versus
non-aneurysmal SAH and type of aneurysm treatment
(clip/coil) (Table 4).

Changes in ADC values were also associated with the pres-
ence of hydrocephalus, GCS scale at admission, Fisher grade
and surgical treatment of the aneurysm (Table 5).

However, no multivariable model was achieved for either
FA or ADC.

DTI measurements at the cerebellum

The univariable analysis comparing the DTI parameters ob-
tained byMRI-1 and MRI-2 showed a slight mean increase in
FA values of 0.03 (95% CI 0.00, 0.05; p = 0.017) and a mean
decrease of 34.73 × 10−6 mm2/s in ADC values (95% CI
−56.97, −12.49; p = 0.002). The remaining univariable regres-
sion analysis showed that besides time of assessment, FA and
ADC values were also associated with the presence of hydro-
cephalus (Tables 4 and 5).

Regarding FA, the multivariable analysis showed a mean
increase of 0.03 between the two times of evaluation (95% CI
0.01, 0.05; p = 0.017). Regarding ADC, the multivariable
analysis showed a mean decrease of 34.73 × 10−6 mm2/s be-
tween the two times of evaluation (95% CI −56.97, −12.49;
p = 0.002).

Also, patients with hydrocephalus had lower mean FA
values (coefficient estimate −0.06; 95% CI −0.09, −0.02;
p = 0.001) and higher mean ADC values (coefficient estimate
55.11 × 10−6 mm2/s; 95% CI 15.61, 94.62; p = 0.006).

DTI parameters: relation to SAH severity and DCI

DTI parameters on the first 72 h (MRI-1) were not correlated
with clinical scores at admission. However, when clinical and
imaging scales were dichotomized, linear regression analysis
showed evidence of higher ADC values at the PLIC in pa-
tients with GCS >8 and higher ADC values at the cerebellum
in patients with WFNS IVand V (Table 5).

There were no associations between DTI parameters on the
first MRI and amount of blood on CT measured by the mod-
ified Fisher scale.

DTI parameters were compared in patients with and with-
out DCI (Figs. 3 and 4). Changes in DTI parameters between
MRI-1 and MRI-2 seem to have occurred in all patients with
DCI. FA in DCI patients (versus non-DCI patients) was lower
on the first days of SAH (MRI-1), whilst ADCwas lower later
in the course of disease (MRI-2), during the vasospasm peri-
od, although not reaching statistical significance.

Discussion

In this exploratory study, we tried to assess DTI changes in the
acute phase of SAH, as to our knowledge, there are no previ-
ous reports regarding this time frame.

We found an increase of FA values in the posterior limb of
the internal capsule (PLIC) and in the cerebellum from the
acute phase MRI (0–72 h) to the follow-up MRI (8–10 days
after SAH) and a parallel decrease of ADC values in the same
locations.

The physiopathologic mechanisms of brain injury in acute
SAH are still incompletely understood. Delayed cerebral

Table 3 FA and ADC values
obtained at MRI-1 and MRI-2 FA ADC

MRI1 MRI2 p MRI1 MRI2 p

FCSO 0.49 (0.07) 0.48 (0.07) 0.892 704.39 (72.56) 716.87 (53.98) 0.260

PCSO 0.47 (0.07) 0.46 (0.06) 0.469 733.27 (50.57) 735.38 (55.58) 0.826

L 0.21 (0.05) 0.19 (0.05) 0.221 725.23 (68.12) 751.28 (84.36) 0.032

T 0.30 (0.04) 0.30 (0.04) 0.860 813.96 (171.7) 778.62 (81.34) 0.183

PLIC 0.63 (0.07) 0.65 (0.05) 0.064 723.68 (74.12) 706.13 (57.38) 0.052

GSCC 0.69 (0.13) 0.68 (0.13) 0.752 790.03 (134.4) 791.26 (112.6) 0.950

C 0.35 (0.06) 0.38 (0.07) 0.017 706.35 (79.32) 671.62 (46.87) 0.002

P 0.34 (0.11) 0.35 (0.11) 0.844 675.36 (77.51) 673.45 (59.40) 0.871

Whole-brain 0.43 (0.04) 0.44 (0.04) 0.687 734.04 (56.66) 728.08 (42.83) 0.405

Values are expressed as mean (standard deviation); p values were obtained by linear mixed effects regression
models

ADC apparent diffusion coefficient, C subcortical cerebellar hemispheres, FA fractional anisotropy, FCSO frontal
centrum semiovale, GSCC genu and splenium of corpus callosum, L lentiform nucleus,MRImagnetic resonance
imaging, P midpons cerebellar hemispheres, PCSO parietal centrum semiovale, PLIC posterior limb of the
internal capsule, T thalamus
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ischemia has classically been associated with vasospasm and
with the amount of blood present in the subarachnoid space
[21, 22]. However, the changes in intracranial pressure, auto-
regulation, cortical spreading depolarization, blood-brain bar-
rier opening and neuronal apoptosis that exist in the first 72 h
after rupture lead to early brain injury and also contribute to
the occurrence of DCI [23].

As FA values indicate the directionality of water diffusion,
and indirectly reflect the integrity of axons, myelin and micro-
tubules [, 24], it is fair to extrapolate that FA could be a po-
tential marker of acute neuronal lesion in SAH patients.

Some reports exist on FA changes in SAH, namely regard-
ing the mammillothalamic tract [15], the corticospinal tract
[16] and the ascending reticular activating system [14].
However, these reports focused only at the chronic stages of

SAH, thus probably reflecting the late secondary injury to the
neuronal tracts and not any acute changes.

ADC values are also derived from diffusion-weighted
sequences and represent the diffusion of water molecules
across cell membranes. Early ischemia leads to cytotoxic
oedema, which is due to a decrease in normal diffusion of
water molecules from the intracellular to the extracellular
compartment, secondary to energetic failure at the cell
membrane [25].

Our analysis showed subtle regional changes in the PLIC
and subcortical cerebellum. A previous study in an animal
model that focused on DTI changes in the acute phase of
SAH [26] found an acute reduction of ADC in the cerebral
cortex in the first minutes/hours after SAH, in association with
a subsequent depolarization of brain tissue. These changes

Table 5 Univariable regression
analysis results for ADC values
considering the PLIC and
cerebellum locations

PLIC Cerebellum

β-estimate (95%CI) p β-estimate (95%CI) p

Agea 7.71 (−3.81,19.24) 0.190 2.47 (−8.10,13.05) 0.647

DCI −15.09 (−54.04,23.86) 0.448 −21.73 (−56.48,13.03) 0.221

HH (grades 4 and 5) −23.84 (−70.82,23.14) 0.320 22.42 (−15.53,60.37) 0.247

WFNS (IV–V) 17.78 (−23.47,59.02) 0.398 40.92 (5.50,76.34) 0.024

GCS (>8) 90.03 (26.87,153.19) 0.005 −9.44 (−71.42,52,53) 0.765

Fisher (grade 4) 31.69 (−4.02,67.40) 0.082 6.99 (−26.28,40.28) 0.680

Hydrocephalus 41.83 (−3.98,87.65) 0.074 55.11 (15.61,94.62) 0.006

Clipped aneurysm −44.48 (−93.28,4.32) 0.074 −4.90 (−50.54,40.74) 0.833

Coiled aneurysm 16.04 (−20.11,52.20) 0.384 −11.08 (−43.81,21.66) 0.507

Aneurysmal SAH −3.08 (−43.36,37.20) 0.881 −4.94 (−41.25,31.38) 0.790

p values obtained by linear mixed effects regression models

ADC apparent diffusion coefficient, CI confidence interval, DCI delayed cerebral ischemia, PLIC posterior limb
of the internal capsule
a For each 10 years increase in age

Table 4 Univariable regression
analysis results for FA values
considering the PLIC and
cerebellum locations

PLIC Cerebellum

β-estimate (95%CI) p β-estimate (95%CI) p

Agea 0.01 (−0.01, 0.01) 0.860 0.00 (−0.01, 0.01) 0.915

DCI 0.00 (−0.04, 0.03) 0.817 0.00 (−0.04, 0.03) 0.772

HH (grades 4 and 5) 0.04 (0.00, 0.07) 0.061 −0.02 (−0.05, 0.02) 0.424

WFNS (IV–V) 0.01 (−0.03, 0.04) 0.761 −0.02 (−0.06, 0.01) 0.206

GCS (>8) −0.02 (−0.08, 0.03) 0.415 0.03 (−0.03, 0.08) 0.328

Fisher (grade 4) −0.02 (−0.05, 0.01) 0.227 −0.01 (−0.04, 0.02) 0.494

Hydrocephalus 0.01 (−0.03, 0.05) 0.751 −0.06 (−0.09, −0.02) 0.001

Clipped aneurysm −0.01 (−0.05, 0.03) 0.601 0.00 (−0.04, 0.04) 0.997

Aneurysmal SAH −0.02 (−0.05, 0.02) 0.341 0.02 (−0.01, 0.06) 0.141

p values were obtained by linear mixed effects regression models

CI confidence interval, DCI delayed cerebral ischemia, FA Fractional Anisotropy, PLIC posterior limb of the
internal capsule
a For each 10 years increase in age
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were attributed to acute vasospasm, related to the affected
arterial territory.

Another study that analysed ADC values in the subacute
stage of SAH [13], in comparison to normal controls, found a
global increase in ADC values affecting both white and grey
matter. This seems to contradict our results, but there are fun-
damental differences in study design that might explain this
discrepancy in findings, as no measurements of the internal
capsule were taken, and patients with vasospasm were exclud-
ed. However, the increase of ADC at the lentiform nucleus in
our cohort of patients, at the follow-up MRI, is in line with the
changes described by Liu et al. in the subacute phase.

The particular engagement of the PLIC that we found is not
surprising, as this is a sensible area that incorporates major
motor and sensory pathways to and from the cortex and the
spinal cord, as well as fibres from the thalamus connecting to
most regions of the cortex. Indeed, the impact that FA and
ADC values in this region have on outcome after ischemic
injuries has been extensively described in neonates [27, 28].

Likewise, the cerebellum is particularly sensitive to ische-
mia, even if it seldom reflects on CT or MR imaging.
Involvement of the cerebellum in ischemic lesions secondary
to DCI has been described in a few studies [29–31], affecting
up to 20% of patients [32]. However, DTI changes observed
the cerebellum of patients with SAH do not appear to be
related the location of the ruptured aneurysm and more prob-
ably reflect a global parenchymal insult.

Changes found in DTI parameters in our study population
could therefore reflect different physiopathologic mecha-
nisms, either due to the initial insult or to the complications
developing during the first days after SAH: hydrocephalus,
vasospasm or treatment-induced lesions.

The modification of FA and ADC along time appears to
occur mainly in the group of patients that developed DCI, so
we question whether these MRI parameters could be used as
biomarkers of DCI, even if the real significance and impact on
outcome remains to be addressed in larger studies. It is also of
note that in patients with DCI, these changes in FA (when
comparing with non-DCI patients’ values) appear to have oc-
curred on the first days of SAH, whilst changes in ADC were
more visible only later in the course of disease, during the
vasospasm period, although these results did not reach statis-
tical significance in this small cohort. We realize that our find-
ings may reflect different mechanisms occurring at separate
times in the acute course of SAH. The changes in FA that exist
early in the course of SAH possibly reflect the cascade of
events in early brain injury. The lower ADC values that occur
in the vasospasm time window might be related to late ische-
mia, secondary to vasospasm.

We recognize limitations to our study that are worth
discussing.

First, this is a small cohort of patients, considering the
complexity of this disease and the existence of many con-
founding variables, and therefore this study is exploratory.
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We have no external control group, which may render the
interpretation of FA and ADC values at the baseline difficult,
since we are not able to determine if DTI values are already
affected on the first 72 h after SAH.

We could not perform sequentialMR imaging of some poor-
grade SAH patients due to logistical and patient safety reasons.
In fact, only two patients had GCS <8, so it might be argued
that our results are more representative of patients with less
severe SAH. The prevalence of DCI in our population however
was in the range of DCI reported in other series [33, 34].

Limitations on DTI should also be considered, especially
for FA measurements. DTI analysis is known to be operator
dependent, and regions where fibres cross may modify FA
values [24]. We did not analyse tract volume, which has been
shown to be associated with lesion of white matter tracts [14,
15], sometimes more significantly than FAvalues. Our interest
was more on measuring whole-brain DTI and different re-
gions of interest in the brain, other than analysing specific
tracts. Finally, the magnitude of changes in FA is very small,
which is a direct consequence of the narrow physiologic in-
tervals of FA values (0–1), also reported in other studies [15].

Conclusion

In this series of acute SAH patients, we report changes in DTI
parameters at the posterior limb of the internal capsule and
cerebellum, occurring along the first 10 days after haemor-
rhage. There was no significant statistical association of DTI
parameters and SAH severity or the occurrence of DCI.
However, in patients with DCI, changes in FA appear to have
occurred on the first days of SAH, whilst changes in ADC
were visible only later in the course of disease, probably
reflecting different mechanisms.

Our results encourage further research to better understand
the physiopathological mechanisms in SAH and to determine
the possible usefulness of DTI parameters as markers of
prognosis.
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