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Abstract 

This thesis presents a cloud-based software platform for sharing publicly available scientific 

datasets. The proposed platform leverages the potential of NoSQL databases and 

asynchronous IO technologies, such as Node.JS, in order to achieve high performances and 

flexible solutions. 

This solution will serve two main groups of users. The dataset providers, which are the 

researchers responsible for sharing and maintaining datasets, and the dataset users, that are 

those who desire to access the public data.  To the former are given tools to easily publish 

and maintain large volumes of data, whereas the later are given tools to enable the preview 

and creation of subsets of the original data through the introduction of filter and aggregation 

operations.  

The choice of NoSQL over more traditional RDDMS emerged from and extended 

benchmark between relational databases (MySQL) and NoSQL (MongoDB) that is also 

presented in this thesis. The obtained results come to confirm the theoretical guarantees that 

NoSQL databases are more suitable for the kind of data that our system users will be 

handling, i. e., non-homogeneous data structures that can grow really fast. 

It is envisioned that a platform like this can lead the way to a new era of scientific data 

sharing where researchers are able to easily share and access all kinds of datasets, and even in 

more advanced scenarios be presented with recommended datasets and already existing 

research results on top of those recommendations. 
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Chapter 1 Introduction 

In this chapter, we introduce the motivation and biggest challenges to this work. Here we also 

identify the contributions of this thesis. 

In the “Motivation” section we explore several issues related to research data sharing, 

identifying these as motivations to develop our vision. We start by introducing our problem 

context and proceed with the identification of the main issues reported by the community 

through public surveys. 

In the “Vision” section we present the overall vision of our work. We start by identifying 

the need and the problems with current research data sharing tools. We then finalize by 

presenting an overview of our proposed solution for the identified problems. This solution 

will be described in detail in the remaining chapters of this thesis.  

The “Challenges in our Vision” section aims to explore the most general and likely 

challenges to occur during the development of the proposed solution. 

Lastly, in the “Thesis Contributions”’ we present the main contributions of our work to 

the scientific research and informatics engineering communities. 

1.1 Motivation 

As technology evolves and considering the complexity of many scientific problems, it 

becomes increasingly difficult for scientists to conduct ground-breaking research on their 

own. This not only promotes communication and cooperation among different researchers 

from distinct disciplinary backgrounds as well as it makes it a necessity. 

This is why scientific research in the 21st century is more data intensive and collaborative 

than in the past. The amount of data collected, analysed, re-analysed and stored has increased 
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in the past years due to the developments in computational simulation and modelling, 

automated data acquisition, and communication technologies and its sharing shall be 

promoted in order to contribute to scientific development [1]. 

 
Figure 1.1 –Research Lifecycle [1] 

The “Data Sharing by Scientists: Practices and Perceptions” [1], article reports the results 

of a survey with 1329 scientists related to their current data sharing practices and their 

perceptions of the barriers and enablers of data sharing. It presents a lifecycle that originates 

from the merge of research and data lifecycles.  

Figure 1.1 shows the Research Lifecycle that identifies research and data lifecycles as 

being dependent of each other, as data is an indispensable element of scientific research. 

Researchers started not only to share their results but also the raw data used in their 

scientific experiments. This phenomenon is also seen as an important measure to advance 

scientific results since data analysis is critical as it forms the basis for good scientific 

decisions and a wiser management and use of resources.  Sensorial data for data mining for 

instance, its sharing enable users to reuse sensor measurements without having to invest time 

and money in the implementation of a new sensorial network. 

Such cooperation have benefited different science fields like medicine, academia, 

government and business [2], enabling different perspectives on how data is modelled or 
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represented, thus allowing further verification of the results and extending research from 

prior results.  

“Data Sharing by Scientists: Practices and Perceptions” [1] authors’ identify several 

advantages in data sharing. Between them, the identification of data re-analysis was 

identified as an important measure to help on results verification, since different 

interpretations or approaches to existing data contribute to scientific progress - especially 

when involving different research fields. 

Another advantage worth mentioning is that well-managed, long-term data preservation 

helps retain its integrity and, when available, minimizes (re-) collection of data and improve 

resources management.  

Furthermore, the authors also identify replication studies as resources for training tools 

for new generations of researchers and data as being not only the outputs of research but also 

as inputs to new hypotheses, enabling new scientific insights and driving innovation. 

In “PARSE Insight” [3], a two-year project, the authors performed a survey report 

concerning the preservation of digital information in science. It consisted of a number of 

surveys to gather information about the practices, ideas, and needs of research communities 

regarding the preservation of digital research data. 

The survey stakeholders were asked to give their opinion about why research data should 

be preserved, basing their answers on seven reasons defined by the researchers.  

Table 1.1 shows the top 3 reasons for each stakeholder showing us that all stakeholders 

have stated that if research is publicly funded the data should be preserved as it belongs to the 

public as well. 

Table 1.1 - Cross analysis of top 3 reasons for preservation 

TOP 3 Reasons for preservation 

Research 
1 It will stimulate the advancement of science. 
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2 If research is publicly funded, the results should become public property and 
therefore properly preserved. 

3 It allows for re-analysis of existing data. 
Data management 
1 It is unique. 
2 It potentially has economic value 
3 If research is publicly funded, the results should become public property and 

therefore properly preserved. 
Publishing 
1 It will stimulate the advancement of science 
2 If research is publicly funded, the results should become public property and 

therefore properly preserved. 
3 It allows for re-analysis of existing data 
Yet, despite the importance of data preservation and sharing, there are several issues 

regarding the promotion of these activities and in how it should be done. In most the cases 

there are no standards or models to store and share data and there is no awareness for which 

data formats or structures should used. In general, available data also lacks the necessary 

metadata, which would allow the community to easily interpret the available data. 

Storing and managing large volumes of data is another barrier to data sharing. Research 

data emerges from collection, observation or even creation (by simulation) for purposes of 

analysis which produces large volumes of data thus making the sharing and preservation of 

this highly heterogeneous amount of information a very hard and time consuming task.  

On the “Data Sharing by Scientists: Practices and Perceptions” [1] survey most of the 

participants (59.8%) reported being satisfied with their processes for the initial, and short-

term parts of the data or research but are not satisfied with long-term data preservation (73%). 

Many organizations do not provide support to their researchers for data management both in 

the short and long-term. However, the study shows that, if certain conditions are met (such as 

formal citation and sharing reprints) respondents agree that they are willing to share their data 

and re-use others’ data. In addition to insufficient time, there is the lack of funding to make 

researcher’s data available electronically. 
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Respondents of the PARSE survey also identified the top threats for scientific data 

preservation. Table 1.2 presents the top three threats identified; stakeholders’ defined 

technical failure and inability to understand the meaning of the data as very important. 

Table 1.2 - Cross analysis of top 3 threats to preservation 

TOP 3 Threats to preservation  

Research  
1 Lack of sustainable hardware, software or support of computer environment may 

make the information inaccessible. 
2 The current custodian of the data, whether an organization or project, may cease to 

exist at some point in the future. 
3 Users may be unable to understand or use the data e.g. the semantics, format or 

algorithms involved. 
Data management 

1 Lack of sustainable hardware, software or support of computer environment may 
make the information inaccessible. 

2 Users may be unable to understand or use the data e.g. the semantics, format or 
algorithms involved. 

3 The current custodian of the data, whether an organization or project, may cease to 
exist at some point in the future. 

Publishing  

1 The current custodian of the data, whether an organization or project, may cease to 
exist at some point in the future. 

2 Lack of sustainable hardware, software or support of computer environment may 
make the information inaccessible. 

3 Evidence may be lost because the origin and authenticity of the data may be 
uncertain. 

In “Data Sharing by Scientists: Practices and Perceptions” [1] respondents’ identify the 

lack of awareness about the importance of metadata among the scientific community in order 

to make data and datasets retrievable in the future as a major problem. Metadata involvement 

is crucial in dealing with problems regarding data management; input and training modules 

must be a part of systems to assist scientists with preparing their data and datasets to be 

retrievable into the future. Adherence to formal metadata standards is crucial to retrieval 

effectiveness. 
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1.2 Vision 

Cooperation between researchers from different backgrounds is an essential part of the 

scientific process. This need has been identified since the beginning of modern science and 

fomented the birth of the Internet as we know it.  

Many datasets are available on huge compressed files and most of the time without 

offering metadata or the chance for a preview of the data thus forcing researchers to 

download large volumes of data without having a clear picture of its structure, format or even 

its origin or context.  

Being the Internet the biggest communication network in the world, we believe that a 

possible approach for the problems presented above would be a cloud-based system that 

could allow researchers to publish and maintain their data on the Internet, while enabling 

others to quickly explore and create subsets of the original data. A web platform where the 

community could query public datasets and have access to its metadata, have a preview of the 

data itself or even query the original data retrieving only the information that is considered 

relevant for the researcher and its work. 

A solution like this could help overcome several barriers on this topic. Such a web 

platform would serve two main groups of users, namely, the dataset providers and the dataset 

users. 

Dataset providers would be the researchers or entities that whish to publish scientific data 

originating from a research study or project. Our envisioned system should not present any 

barriers for these individuals to publish their data. The web platform should supply an 

interface where dataset providers could create metadata and a description of their datasets, 

upload and maintain their data. 

Dataset users would be the community that has the interest to access and explore the 

public data. A web solution containing the proper metadata could provide functions for data 

query and preview. It should allow filtering the data according to researchers’ needs or even 

selecting only the fields that are considered important for their purposes. Allowing 
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researchers to preview the resulting data before downloading and using it are important and 

interesting features that could promote the data re-use and facilitate the analysis of public 

scientific datasets.  

This vision led to the creation of “OpenDataHub”, a web-platform for scientific data 

sharing and management. 

1.3 Challenges in our Vision 

In today’s digital age, a massive amount of data is steadily being produced from various 

sources, such as sensors, social media and GPS signals. This large amount of data is known 

as Big Data, one of the most discussed topics in digital information. It can be described as 

massive volumes of both structured and unstructured data that is so large that it is difficult to 

process with traditional database and software techniques.  

The characteristics that broadly distinguish Big Data are the “3 V’s”: more volume, more 

variety and higher rates of velocity, i.e., faster insertions and reads [4].  

Due to the high volume and the non-homogeneous data structures, scalability and 

performance on data query are the two main topics to be aware of. Traditional single-node 

data storage strategies are no longer a viable solution to big data problems. Regardless of the 

database technology, the solution shall pass by data sharding, i.e., breaking a large 

monolithic database into multiple, smaller, faster, more easily managed database instances 

across multiple servers, known as shards. 1 

It is not easy to overtake these problems affecting the task of data maintenance and 

sharing. Scientists used to have barriers when trying to share their data, since there is not 

much offer of online platforms that allow the data publication, while still giving users the 

ability to understand the data structure and meaning. This can therefore be identified as a 

challenge to our vision, the ability to create a representation of public data in order to give 

users the data perception of its content, context and structure. 

                                                
1 Data sharding, http://searchcloudcomputing.techtarget.com/definition/sharding [last accessed 22/02/2015] 
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Due the large amount of data and its non-homogeneous structure or data format, it is not 

easy to define an approach to represent the published data. Most of the time, data is available 

in big compressed files containing unknown data structures. Building an easy to interpret and 

clear representation of these large amounts of data has been a problem difficult to address. 

Most of the time this kind of data is based on time series and a possible representation for 

data of this nature is through graphics or simply providing a preview of the original raw data.  

The format defined by the researcher when publishing the data may not be the most 

appropriate for the user needs. This presents another challenge to our vision, the capability to 

transform public data into different data formats according to the user requirements. 

During the course of this document we will have a closer look on how we intend to 

address these problems, referring in more detail the problem current state and developing an 

approach strategy. 

1.4 Thesis Contributions 

1.4.1 Benchmark 

The first contribution of this work is the result from a benchmark between two different 

database technologies, SQL and NoSQL. More specifically, we developed a benchmark 

between MySQL and MongoDB, two of the most well known technologies on the data 

storage world. Ultimately, this evaluation enabled us to decide which technology would be a 

better fit for our application purposes, the OpenDataHub.  

The benchmark is based on SustData dataset [5], a public scientific dataset related to 

electricity energy data collected from four energy monitoring and eco-feedback deployments 

that were done for the SINAIS2 research project [6]. 

                                                
2 Sustainable Interaction with social Networks, context Awareness and Innovative Services a 3-year research 
project which main goal was to raise the understanding and the awareness towards motivating people to 
consume more sustainably.  
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This evaluation benchmarks the performance of data reading and writing operations using 

both technologies. It focuses on the electric energy consumption of three different homes for 

an overall of 10 million records distributed among fifteen CSV files. The progressive 

insertion and read times for the different sets of data resulted in a performance curve until all 

the 10 million records were introduced on both databases. 

Ultimately, in this contribution we provide an in-depth benchmark of these two 

technologies according to the following four dimensions: 1) time to read and write; 2) 

database size; 3) scalability; and 4) pre-presentation (i.e., fetching the results before 

presenting them to the users). 

1.4.2 OpenDataHub 

OpenDataHub is the result of the implementation of our vision in the real world. It is a web 

platform that offers researchers’ data management engines, supporting CRUD operations 

over research data. It enables dataset users to consult and download data in both CSV and 

JSON formats. 

As a use case, it holds the discussed SustData dataset with five different collections 

referring to energy consumption, power and users events, electric production and 

environmental conditions.  

The system enables dataset users to access each of these collections and create different 

queries over the same data. It contains a graphic interface where it is possible to apply 

different filters, manipulate which fields should be presented and group the resulting records. 

The data is presented to the user without the need of a previous download, through two 

possible representations: Raw data in a simple tabular format or in graphical representation. 

After querying, users can also download the data resulting from the data manipulation 

operations in either CSV or JSON formats. 

For dataset providers, OpenDataHub offers the possibility to create new collections and 

define its metadata. Defining metadata is a very important task in order to describe the data 

structure and serving as configurations for the definition of which query operations or data 
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representations are possible. Moreover, OpenDataHub enables the possibility to define the 

data accessibility, a collection may not be ready for publication so researchers can define a 

collection as public or not. 

In order to identify users as dataset providers or dataset users OpenDataHub offers a user 

account management engine, which enables the definitions of the permissions for each type 

of user. 

1.5 Document organization 

The remaining of this document is organized as follows: 

In Chapter 2 we present an overview of the already existing solutions when it comes to 

data sharing and briefly discuss how they compare to OpenDataHub. We then provide some 

technical background regarding some of the most well-known technologies for web 

development and data management, and justify our choices for developing OpenDataHub. 

In order to confirm our decisions over the technologies and having SustData public 

dataset as a test case, we developed a benchmark between SQL and NoSQL that is described 

in Chapter 3. 

In Chapter 4 we provide an in-depth explanation of the OpenDataHub system. To this end 

we follow the waterfall software analysis process, defining system requirements, use cases, 

prototypes as well as the application and database architectures and the selected technologies 

for the solution development. 

Lastly, in Chapter 5 we present the conclusions that emerged from this thesis and outline 

future work. 



 

Chapter 2 Background research 

2.1 State of the art 

Along the years, the need to share and analyse other researchers' data has grown and with 

this, several solutions to overcome the barriers implicit to this kind of job have emerged. In 

this chapter we provide an overview of some of the solutions that already exist to address 

some of the issues related to the sharing of scientific data. 

We start with the well-known “UC Irvine Machine Learning Repository”3, a scientific 

dataset repository available online which at the time of this writng maintain about 335 

datasets. It is described as a collection of databases, domain theories, and data generators that 

are used by the machine learning community for the empirical analysis of machine learning 

algorithms [7]. It offers a search engine where users can search for the desired dataset, access 

its description and download the raw data.  

Another solution for data sharing is the Open Science Data Cloud or simply OSDC, 

which provides virtual machines to store, share and analyse scientific datasets that can reach 

sizes in the order of tera or even petabytes. With this approach, researchers have the 

opportunity to customize their machines with whatever tools necessary to analyse their data, 

and perform the analysis to answer their research questions [8].  

Users can apply for an OSDC account and depending of the researcher’s organization and 

the evaluation made over the application by the allocation committee, users can get access to 

the “main OSDC console” and from this, manage their access keys and virtual machines. It is 

not a very easy task, as it requires some advanced informatics skills. Still it is a valid 

                                                
3 Machine Learning Repository, http://archive.ics.uci.edu/ml/ [last accessed 04/03/2015] 
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approach. Once the machines are ready and the data is published, users can access and 

download large volumes of data through high-speed Internet connections, 

StarLight4/Internet25.   

Data.gov6, is another data sharing platform. It was created by the U.S. General Services 

Administration and focuses only on governmental data of United States of America with the 

goal of making government more open and accountable [9]. However, Data.gov does not host 

data directly. Instead, it just hosts metadata about public datasets in order to facilitate the 

process of searching for public governmental datasets, providing as well some references 

about where users can find the correspondent data, most of the time over CSV files or similar. 

dash, DATA SHARNING MADE EASY7 is another data sharing service where researchers 

can describe, upload, and share their research data in only four steps so data users can read it 

and download. For data users, these can search the available datasets on the platform and 

visualize certain details like authors, abstract or metadata and download the data. However, 

users cannot visualize the data before downloading it. 

BigML8 is a tool that, although it is not focused on data sharing, has features that are very 

close to our vision. In fact, it is the solution that best matches our vision, but its focus is on 

Machine Learning and prediction engines instead of data publishing and sharing. 

The features that are very close to our vision are the manner how data is uploaded and 

manipulated on the platform. BigML let’s their users upload all the desired data identifying it 

as “Data sources”. Once the data is uploaded, users (i.e., data providers) can configure 

subsets of data, selecting which data sources and respective fields shall be available for 

publication and posterior analysis.  

This kind of features shall be very similar to the main tasks for dataset providers on 

OpenDataHub and therefore, deserve special attention. We can use this solution as a 

                                                
4 StarLight, http://www.startap.net/starlight/ABOUT/ [last accessed 15/03/2015] 
5 Internet2, http://www.internet2.edu/about-us/ [last accessed 15/03/2015] 
6 DATA.GOV, http://www.data.gov/ [last accessed 21/03/2015] 
7 dash, https://dash.cdlib.org/ [last accessed 21/03/2015] 
8 BigML, https://bigml.com/how_it_works [last accessed 24/03/2015] 
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guideline for evaluating the best way to interact with data providers on their data 

management. 

There are several other tools that we could have mentioned and provide a more in-depth 

description but ultimately all of them will share the same main issues. From these issues we 

highlight the inability to query, preview and download data for posterior analysis. Data users 

have always to download the data in some specific format and then evaluate if the raw data is 

what they expected, in order to be able to apply their analysis methods. We are dealing with 

large amounts of data that can take long periods of time to conclude the download and all this 

time can be put to waste in case the data does not serve the final user purpose. 

OpenDataHub platform aims to provide researches the possibility of sharing their data 

and data users the ability to query, manipulate and have a preview of the raw data before 

downloading it. There are several challenges in this vision but we believe that the biggest is 

the capability of interacting with large volumes of data. In the next sub-chapter we aim to 

explore in more detail strategies to address our vision’s challenges. 

2.2 Technological background 

In this section we explore and provide a brief description of the different technologies that we 

find as being potential solutions to our vision needs. We will focus on the main advantages 

and disadvantages of each one and provide a comprehensive comparison between them. 

This section is divided in three main sub-sections. Firstly, we present the database models 

and management systems, which will help us in deciding which database technology shall we 

implement in our solution.  

Secondly, in the server side technologies sub-section we given an overview of some of 

the most known and used technologies on server side development and evaluate which one 

can best serve our purpose. 
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Lastly, in the client side technologies sub-sections, we explore some of the existing 

technologies for web development. This time, focusing on the client side development and 

how these will enable us to build a graphical interface for our users. 

2.2.1 SQL, NoSQL and different Database Models 

The need for persistent data emerged since the beginning of computer science as most 

informatics systems need hardware and software to keep information stored to be used in the 

future. Along the technology evolution, the applications’ need for storage resources and 

techniques has increased whether being desktop, mobile or web-based solutions. The need to 

process, record and retrieve data are examples of the most common features that applications 

share [10]. According to these needs, several ways to store information on a computer were 

developed and tested for different use cases and environments but the most common and 

known one is the use of databases. 

Databases are collections of information that enable an easy access and management of 

data records. It is an organized collection of interrelated (persistent) data, organized to model 

aspects of the real world in a way that supports processes requiring information. Databases 

can be managed through software applications known as DBMS (database management 

system), computer software applications that interact with the user, other applications, and 

the database itself to capture and analyse data [11]. It offers a higher-level software to interact 

with lower-level application programming interfaces (APIs), that take care of read and write 

operations [10].  

Over the time different database needs emerged along with different DBMS approaches 

and applications implementing them. In the remaining sections, we present a brief description 

of these and what distinguish them. 

2.2.1.1 Database Management Systems  

Database Management Systems can be viewed as a wide range of different tools for data 

access and manipulation implementing different approaches based on different data models 

and structures.  
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Different needs have emerged, in which data can assume different shapes and sizes, this 

lead to the development of different DBMS solutions and even more database applications. 

Yet, despite the emergence of different solutions over the years, only some of them became 

popular and commonly used. Among them, probably the most predominant one in the past 

decades are the Relational Database Management Systems (RDBMS) [10].  

2.2.1.2 Database Models 

Database models are data models that define the logical structure of a database, how shall 

data be stored and manipulated. It is a collection of concepts and rules that describe the 

database structure, such as data types, constraints and relationships among different pieces of 

information [12]. Every database application adopts a database model, defining the logical 

structure of the data.  

The data model is the biggest determiner of how a database application will work and 

handle the information it deals with. There are several different database models offering 

different logical data structures, from which the relational model (RM) clearly stands out as 

the most used data model in the last few decades.  

Relational model and relational databases, despite being powerful, flexible and the most 

known and used solutions, have several issues or features that never have been over crossed 

or provided. Consequently, recently a series of new and different systems called NoSQL (Not 

only SQL) have emerged immediately gained popularity, with the purpose of overcoming 

some of the barriers imposed by MySQL. In the remaining section we can which barriers are 

these and how NoSQL comes to solve them. 

NoSQL aims to offer a much more freely shaped way of working with information, 

providing more flexibility and ease data management. NoSQL systems are known for its 

schema-less data approach that, unlike the relational model, can handle data with not very 

well defined structures, supporting structures that are or can become heterogeneous. It has its 

pros and cons, considering the important and indispensable nature of data. 
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2.2.1.2.1 The Relational Model 

Introduced in 1970s, the relational model offers a very mathematically-adapted way of 

structuring, keeping and using data. In this model data is represented in terms of tuples, 

grouped into relations.  

Databases based the relational model, known as relational databases, are mainly 

constituted by entities, attributes and relations with different cardinality. Altogether, this 

brings the capability to group different sets of data along different collections through its 

relation fields, thus enabling the structuration of information. 

Decades of research and development in the field database systems that implement the 

relational model guided us to solutions increasingly efficient and reliable. Combined with the 

long experience of programmers and database administrators working with these tools, using 

relational database applications has become the de-facto choice for applications that can not 

afford loss of any information, in any situation [10]. 

Furthermore, despite the strict nature of handling data, there are several techniques to 

achieve extremely flexible solutions. One of such solutions is data normalization that 

provides a sequence of steps to develop a successful schema design. Non-normalization can 

lead the database to a set of problems, like inaccurate data, poor performance, and 

inefficiency and may produce data that one does not expect [10].  

Data normalization consists of dividing the data into logical groups that become part of a 

whole, minimizing redundancy into the database and distributing data so it can be modified in 

a single point across the database. This enables data access and manipulation in a fast and 

efficient manner without compromising the integrity of the rest of the system [10]. 

2.2.1.2.2 The Model-less (NoSQL) Approach 

NoSQL databases, unlike the relational model, provide an unstructured approach that aims at 

eliminating the limitations of having strict relations [10].  
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Due the scale and agility challenges that modern applications face, NoSQL databases 

have become the first alternative to relational databases, being scalability, availability, and 

fault tolerance the key deciding factors in satisfying the user needs. Likewise, another 

important factor in favour of NoSQL databases is the cheap storage and processing power 

available today [13] [14].  As such, several NoSQL database technologies were developed in 

recent years in response to the rising need for large data storage, access frequency and greater 

performance and processing needs. 

Flexibility, schema-less model, horizontal scalability, distributed architectures, and the 

use of languages and interfaces that are “not only” SQL typically characterize this technology 

[13]. There are several NoSQL database types, which are briefly described next. 

2.2.1.2.2.1 NoSQL database types 

There are several different NoSQL databases, each one serving different purposes. For 

instance, if your application needs a Graph database, a simple { key: value } will not address 

the application needs. Here we provide a brief description of the different NoSQL database 

types and its purposes. 

Document databases, databases that store data in a { key: value } structure known as 

document, where “value” can be a complex data structure. Documents can be structures as 

key-value, or key-array, or even nested documents [14].  

Graph stores, databases that are used to store “network information”, such as social 

connections for instance [14].  

Key-value, similar to documents, is the simplest NoSQL database where data is stored in 

key-value pairs and value only sustains primitive data types [14].  

Wide column stores, also called extensible record stores, store data in records with the 

ability to hold a very large amount of dynamic columns. Since the column names as well as 

the record keys are not fixed, and a single record can have billions of columns, wide column 

stores can be seen as two-dimensional key-value stores [15].  
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2.2.1.3 Popular Database Management Systems 

In the remaining topics we will explore a little of the most popular database management 

systems. Although there are many DBMSes and data models, we will rely over the Relational 

and NoSQL databases. 

As of today, it is safe to say that the Relational Model is the most popular data model in 

DBMS thanks to its simple data modelling abstraction. The relational model can easily map 

real-world problems in almost 90% of the cases [10]. On the other hand, NoSQL databases 

come to address some challenges created by modern applications for which relational 

databases were not designed for, like for example data scalability and agility. 

2.2.1.3.1 Relational Database Management Systems 

RDBMSes, are relational database management systems that implement the relational model. 

These systems are, and should be for the next years, the most popular choice of keeping data 

reliably and safe [10].  

RDBMSes require a well defined and clearly set data structures in order to manage data. 

These structures define how the data will be stored and used. Data structures or schemas in 

the relational model are defined as tables, with columns representing the number and the type 

of information that belongs to each record [10].  

There are several databases that are considered to be part of the most popular group. On 

the relational model we have: [10] [16] 

• PostgreSQL9: The most advanced, SQL-compliant and open-source objective-RDBMS. 

• MySQL10: The most popular and commonly used RDBMS. 

• SQLite11: A very powerful, embedded relational database management system. 

                                                
9 PostgreSQL, www.postgresql.org/ [last accessed 07/04/2015] 
10 MySQL, www.mysql.com/ [last accessed 07/04/2015] 
11 SQLite, www.sqlite.org [last accessed 08/04/2015] 
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• MariaDB12: Has an enhanced query optimizer and other performance-related improvements, 
which give the database system a noticeable edge in overall performance compared to 
MySQL. 

2.2.1.3.2 NoSQL Database Systems 

NoSQL database systems do not apply models like relational solutions do. The schema-less 

approach opens a wide diversity of manners to store and manipulate data.  Consequently, 

there are several different implementations of these database systems, each one serving 

different purposes, working differently and defining their own query system.  

It is possible to group collections of data together with certain NoSQL databases, such as 

the MongoDB. These document keep each data item, together, as a single collection (i.e. 

document) in the database, and can be represented as singular data objects, similar to JSON  

[10].  

The most popular NoSQL implementations are:  

• CouchDB13: Uses JSON for documents, JavaScript for MapReduce indexes, and 

regular HTTP for its API. 

• Cassandra14: Store and process vast quantities of data in a storage layer that scales 

linearly. 

• MongoDB15: A document database that provides high performance, high availability, and 

easy scalability. 

• Hadoop16: A framework built to for running applications on large cluster built. It implements 
Map/Reduce paradigm, dividing applications into many small fragments of work, enabling 
the execution or re-execution of each fragment on any node in the cluster [17].  

                                                
12 MariaDB, https://mariadb.org/ [last accessed 13/06/2015] 
13 CouchDB, http://couchdb.apache.org/ [last accessed 14/04/2015] 
14 Cassandra, http://cassandra.apache.org/ [last accessed 12/04/2015] 
15 MongoDB, https://www.mongodb.org/ [last accessed 19/04/2015] 
16 MySQL Administration Guide, 
https://www.novell.com/documentation/nw65/web_mysql_nw/data/bookinfo.html [last accessed 23/04/2015] 
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2.2.1.4 Comparing SQL and No-SQL DBMSes 

There are several points to consider when comparing SQL and NoSQL technologies. In this 

section, we will give a general overview of different aspects of SQL and NoSQL. Our goal is 

to build a conclusion about which technology should be selected as the most suited, given the 

particularities of the proposed “OpenDataHub” web platform. 

2.2.1.4.1 Benefits of SQL 

SQL has been one of the most common and used solutions for data storage due to some 

important advantages [18] [19].  

• It is easy to use, despite the several database management systems that implement SQL, 

every single one of these uses the same structured query language (SQL). This builds a 

common knowledge between all the SQL solutions, easing developers’ work. 

• It is secure. Over the years SQL have been improved and tested in the most distinct 

environments building solid data security layers. 

• SQL databases use long-established standards. 

• SQL language support the latest object based programming and is highly flexible. 

2.2.1.4.2 Benefits of NoSQL 

NoSQL emerged in response to some restrictions of relational databases. It aims to offer 

more scalable solutions, supply superior performance and address some issues that relational 

data models were not designed for. Some benefits that we can refer about NoSQL are: [14] 

• It handles large volumes of structured, semi-structured and non-structured data. 

• Enables agile sprints, quick interaction and frequent code pushes. A change to the 

data structure does not need to change the whole database structure. 

• It handles object-oriented programming that is easy to use and flexible. 

• It is efficient. Offers a scale-out architecture instead of expensive and monolithic 

architectures. 
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2.2.1.4.3 Schema 

NoSQL databases are known for their schema-less approach. Its solutions enable the 

application of agile development processes, i.e., if the application data structure varies very 

often it is quite easy to sustain the new database schema. 

On the other hand, relational databases always need a very well defined schema. Every 

time a data structure needs to be modified, a new database schema has to be projected and the 

whole database needs to me migrated to the new solution. This process, depending of the 

database size, can be very time consuming and can conduct to large periods of down time and 

it can occur frequently if the development process follows agile methods. 

Let’s form a practical example of a digital store. There is a need to store users’ 

information such as username, name and address. After some iterations, the application’s 

stakeholders decided that it was an advantage to store the users’ most seen items. 

In a SQL solution all the requirements should to be addressed at the beginning. The 

change originated by these iterations would cause a new database schema projection and a 

migration plan, plus the down time for this to happen. 

In a NoSQL solution all the projection and migration process is unnecessary. Thanks to 

the schema-less approach the development team only needs to store the new information as 

they wish and all the new records will assume the new solution [10]. Different sets of 

information with different structures or even with embedded data can be stored and queried 

very easily.  

2.2.1.4.4 Scalability 

Relational databases use to scale vertically due to its internal structure. A single server hosts 

the whole database, which limits the scalability and can come expensive very quickly, since 

every time the database needs more resources the solution passes by buying more hardware 

and more powerful equipment. 
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An horizontal distribution of resources is an approach that can address these problems, 

adding more servers sustaining the database instead of having a single super server. This 

database distribution across multiple servers is called “sharding” and can be achieved both by 

SQL and NoSQL technologies.   

For relational databases, this process usually involves complex arrangements to make 

multiple hardware act as a single machine. Since the database does not provide this ability 

natively every database in each server needs to be handled as a standalone database. All the 

deployment process has to be replicated across the different databases and the development 

team has to implement solutions to store and handle data on each database autonomously.  

It requires applications to offer mechanisms to distribute data, distribute queries and 

aggregate data from all the different database instances. Furthermore, resource failures need 

to be handled, join statements between different databases are very likely and data 

rebalancing, replication and other requirements are very hard to address. Plus, the 

application on this manual sharding can cost in the relational database main benefits like the 

transactional integrity. 

On the other hand, NoSQL databases usually support auto-sharding. That is, NoSQL 

databases natively offer mechanisms that automatically spread data along the different 

database instances present on the different servers in a process that is transparent to the 

application. This approach eliminates problems related to the replication of deployment tasks 

and data, which is automatically balanced and queried across the servers and, on down time 

occasions, it can be quickly and transparently replaced without application disruption. 

Data sharding in NoSQL databases can be easily addressed by some database and hosting 

configuration but it can be avoided as well.  Thanks to the auto-sharding support, all the 

concerns related to sharding tasks are removed from the development team, avoiding the 

development of complex and expensive solutions to support their applications [10]. The 

database and some additional resources (like routers) will be able to handle all the sharding 

tasks by itself, turning all these transparent to the application.  
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2.2.1.4.5 Data integrity 

2.2.1.4.5.1 ACID compliance (Atomicity, Consistency, Isolation, Durability) 

Most of SQL databases are ACID17 compliant, transactions on SQL are one or more actions 

over the database that can affect several different entities and are defined as a single 

operation. This come to address atomicity, consistency, isolation and durability. 

An atomic transaction means that all the operations that constitute the transaction are 

executed or none of them are, hence leading to database consistency where the database 

always will be in a consistent state.  

Transactions are isolated operations and each one is self-contained, i.e., its internal state 

can only be visible to itself and invisible to the rest of the system. 

And finally durability, each time a transaction is committed all its internal operations 

shall persist even on system failure. This is ensured by log mechanisms that enable state 

recovery [20]. 

On the other hand, many NoSQL databases are not ACID compliant, sacrificing this in 

order to achieve best performance and scalability. After all, today’s focus lays on highly 

available distributed computing and the possibility of replicating changes over different 

servers distributed along different geographic locations [21].  

CAP18 is a mathematical theorem, which states that it is impossible for a distributed 

system to provide a guarantee of Consistency, Availability and Partition tolerance all at the 

same time. Following this order of ideas we can note that ACID rules are barriers to NoSQL 

goals. 

With this, a new concept named BASE emerged [21].  

                                                
17 ACID, https://pt.wikipedia.org/wiki/ACID [last accessed 04/05/2015] 
18 CAP, https://en.wikipedia.org/wiki/CAP_theorem [last accessed 04/05/2015] 
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2.2.1.4.5.2 BASE Compliance (Eventual Consistency) 

BASE means Basically Available, Soft State, Eventual consistency and is a concept shaped to 

distributed systems to handle consistency. Eventual consistency means that at some point in 

time, all the data sources will be synchronized. That can take more time than a SQL database 

would but it will happen sooner or later over all database replications [21]. 

2.2.1.4.6 Summary 

Despite all the points discussed above are important aspects to evaluate which technology can 

be elected as the best one, it makes very little sense to compare SQL and NoSQL without 

taking in consideration the type of problem we are solving.  

Overall, depending on the different application needs, some aspects may become more 

important than other. Thus the best database technology for a given application will be the 

one that ultimately provides the best balance between pros and cons taking into account the  

application’s necessities. 

2.2.2 Server side technologies  

In web development, when a new application emerges both server and client sides’ 

technologies are a major concern as this decision will end up affect the whole application 

life-cycle In the sections below we will give an overview of some of the most known 

programming languages that are used on the server side when building applications based on 

the cloud. 

2.2.2.1 Java 

Java is a server-side programming language that is very well known between web and mobile 

developers, since it is also the core language for building Android mobile applications.  

Java offers a wide variety of tools known as “The Java Platform”, an open source 

development environment that includes libraries, frameworks, APIs, the JRE (Java Runtime 

Environment), Java plug-ins and the JVM (Java Virtual Machine) [22].  This environment 
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offers all the resources needed to develop portable Java solutions, since JVM converts Java 

from source code into machine code.  

There are several good reasons to develop with Java. Its frameworks can outperform other 

languages and frameworks like Ruby on Rails in terms of speed. It is simple to program, 

offering a simple interface for users and programmers. It Is platform independent thanks to 

the JVM and its “write once, run everywhere” philosophy [22]. 

On the other hand, there are several restrictions that are important to mention. It 

consumes higher rates of physical resources since it is a high level programming language 

that offers many resources that can be unnecessary to the implemented solution. 

Java as a server-side programming language tries to solve all the problems in the world, 

which is not a requirement for every developer, which brings unnecessary overhead [23]. 

2.2.2.2 Python 

Python, similar to java, is a high level, free, object-oriented programming language. It is very 

well known for its clear syntax and readability, being easy to learn and portable (i.e., its 

statements can be interpreted in a number of operating systems [24][25]). 

It is useful for a range of application types, including Web development, scientific 

computing and education but it has its issues, being performance one of them. 

There are several advantages of using python. Pierre Carbonnelle, a Python programmer 

says that “The main characteristics of a Python program is that it is easy to read”, defending 

that this enables programmers to think more clearly when writing their applications and it 

helps in its maintenance and improvement by other programmers in the future, enhancing 

development production levels [26].  

Python has become popular in the Internet of things (IoT). Raspberry Pi's documentation, 

for instance, cites python as "a wonderful and powerful programming language that is easy to 

use (easy to read and write) and with Raspberry Pi lets you connect your project to the real 

world." [26]. 
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Multi-paradigm approach is another feature that distinguishes python from others 

languages as it supports object-oriented, procedural and functional programming styles [26]. 

Python is asynchronous, using a single event loop to manage small units of a major task.  

Stephen Deibel, co-founder of Wingware a python’s IDE, says that "Python's generators are a 

great way to interleave running many processing loops in this approach." [26]. 

However as with every other programming language, it has its pros and cons. Python is 

an interpreted language meaning that python is slower than compiled technologies in most of 

the cases. Mobile development is not an option for python as well. Python can be used for 

server and desktop platforms but is mostly absent when it comes to client side solutions, like 

browser and mobile applications [26]. 

Design restriction is another disadvantage of python. Python’s community cite several 

issues with the design of the language. Python is single thread, meaning that its internals can 

only be acceded for one thread at the time, that is why is important to produce asynchronous 

solutions or use the multiprocessing module [26]. 

2.2.2.3 PHP 

PHP is a widely-used open source programming language especially suited for web 

development, created for server side scripting [27]. 

It has its pros and cons like every other programming language. It is free and open-

source, relatively easy to learn and flexible. It also supports communication with a range of 

database types, which is an important feature when dealing with applications that need to 

communicate with databases. 

Thanks to its open-source approach, it has a large community contributing to its 

continuously improvement. It has a very strong and complete documentation created by PHP 

developers describing all its functions and demonstrating how to use them, which makes PHP 

a very easy to learn language.  
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Object oriented programming is currently a well known and much used programming 

convention and is fully supported by PHP. Beside this, PHP development can also be 

accomplished without the OO approach, which makes it a very flexible technology. 

On the other hand, PHP is ineffective at producing desktop applications and is usually 

slower than other languages since it is an interpreted language. Another disadvantage is it has 

poor support for error handling, which contributes for its slowness [28]. 

2.2.2.4 JavaScript 

JavaScript (JS) has been for a long time mostly known for its capability to enhance and 

manipulate web pages and client browsers. Yet lately it has become more and more 

prominent as a server side programming language (SSJS).  

It is an object-oriented dynamic language with types and operators, standard built-in 

objects, and methods. Although it is an OOP language it has no classes, instead it has object 

prototypes. Another main difference between JavaScript and common OOP languages is that 

functions in JS are like any other object that can be passed around like a regular variable. It is 

fast and convenient. Besides, JavaScript is one of the fastest or even the fastest dynamic 

language. Most web developers know JS and the opportunity to use the same programming 

language on both client and server sides turn JS one of the best choices for web 

programming.  

When talking about Server Side Java Script (SSJS) it is inevitable to talk about Node.JS, 

a JavaScript runtime built on Google Chrome's V8 JavaScript engine. It uses event-driven, 

non-blocking I/O model turning it into a lightweight and efficient solution. 

V8 is a high performance engine written in C++, built in order to overcome some 

performance issues when developing bigger JS applications. It compiles and executes 

JavaScript source code, handles memory allocation for objects and garbage collects objects 

that are no longer needed [29]. 

JavaScript is single thread, which means that time-consuming operations would freeze the 

entire application. The non-blocking I/O model solves the problems that could occur from 
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this processing model and it can be achieved in several ways. Yet the easiest one is probably 

the event loop and the use of callbacks. While the event loop is always listening for new 

events, callbacks enable to put time-consuming tasks off to the side, usually by specifying 

what should be done when these tasks are complete, thus allowing the processor to handle 

other requests in the meantime [30].  

2.2.2.5 ECMAScript 6 (ES2015) 

ES2015 is the new way to write JavaScript. It is the newest version of ECMAScript standard. 

It is a significant update to the language, and the first major update to the language since ES5 

was standardized in 2009. It introduces new concepts to the JavaScript world like classes and 

subclasses, block-scoped binding constructs (i.e., block hoisting), arrow functions, template 

strings, and many other features. 

Although all these features and the acceptance of this new way to write JS by the 

community, it is not yet supported natively by the most of the browsers. This way, some 

alternatives have to be explored in order to overcome this limitation. One of them is Babel19 

JavaScript compiler, which enable the compilation of ES2015 into ES5 in such that any 

browser it able to interpret the code. 

2.2.2.6 Non blocking operation vs multi threaded request response 

Traditional web application used to follow the “Multi-Threaded Request-Response” or 

simply “Multi-Threaded Request-Response”. This model is constituted by the following main 

steps [31]:  

1. Clients Send request to Web Server. 

2. Web Server internally maintains a Limited Thread pool to provide services to the 

Client Requests. 

3. Web Server is in Infinite Loop and waiting for Client Incoming Requests. 

4. Web Server receives those requests. 

                                                
19 Babel, https://babeljs.io/ [last accessed 12/01/2016] 
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a. Web Server picks one Client Request. 

b. Web Server picks one Thread from Thread pool. 

c. Web Server assigns this Thread to Client Request. 

d. This Thread will take care of reading Client request, processing Client request, 

performing any Blocking IO Operations (if required) and preparing Response. 

e. This Thread sends prepared response back to the Web Server. 

f. Web Server in-turn sends this response to the respective Client. 

In this approach the server is always listening for new requests in infinite loop and 

performs all the previous steps every time a new request is received. This means that this 

model creates one thread per client request which can lead to high rates of consumption of 

server’s physical resources [31].  

If many client requests happen in quick succession requiring more blocking IO 

operations, this will consume almost all the threads. Each thread will then be busy preparing 

the response for its request and the remaining client requests will have to wait longer time 

before they are handled by the server. 

 

Figure 2.1 –Request/Response Model [31] 

Figure 2.1 is a graphical representation of the Request/Response model on a server that 

takes requests from n clients and has m threads available on the thread pool, picking up a T 

thread for each request, where any request can require blocking IO operations such as 

iteration with database or the file system [31]. 
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If n is greater than m (which is very often), many requests should wait in the Queue until 

some of the busy Threads finish their Request-Processing Job and become free to pick the 

next Request [31]. 

Instead, Node.JS uses Single-Threaded Event Loop Model that is constituted by the 

following main processing steps [31]:  

• Clients Send request to Web Server. 

• Node.JS Web Server internally maintains a Limited Thread pool to provide services 

to the Client Requests. 

• Node.JS Web Server receives those requests and places them into a Queue. It is 

known as “Event Queue”. 

• Node.JS Web Server internally has a Component, known as “Event Loop”. It uses 

indefinite loop to receive requests and process them. (See some Java Pseudo code to 

understand this below). 

• Event Loop uses Single Thread only. It is main heart of Node.JS Platform Processing 

Model. 

• Even Loop checks if any Client Request is placed in Event Queue. If no, then wait for 

incoming requests for indefinitely. 

• If yes, then pick one Client Request from Event Queue 

• Starts process that Client Request 

• If that Client Request Does Not requires any Blocking IO Operations, then 

process everything, prepare response and send it back to client. 

• If that Client Request requires some Blocking IO Operations like interacting 

with Database, File System, External Services then it will follow different 

approach 

• Checks Threads availability from Internal Thread Pool 

• Picks up one Thread and assign this Client Request to that thread. 

• That Thread is responsible for taking that request, process it, perform 

Blocking IO operations, prepare response and send it back to the 

Event Loop 
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• Event Loop in turn, sends that Response to the respective Client. 

 

Figure 2.2 – Single-Threaded Event Loop Model 

Figure 2.2 is a graphical representation of the Single-Threaded Event Loop Model on a 

server taking requests from n clients and has m threads available on the thread pool. This 

time there is no need to afford a thread per request. Instead, the event loop evaluates if the 

request requires blocking or time-consuming tasks.  

If not, the request is processed by the main thread and the response given to the client 

right way. If yes, the event loop picks a thread from the thread pool responsible for read and 

processes the request. The thread then performs the blocking operations and prepares the 

response before sending it to the event loop that is responsible for delivering the response to 

the original request [31]. 

If n is greater than m (which happens very often), it is not necessarily a problem. Since 

much of the requests should not require blocking operations, many of of them would not need 

a thread form the thread pool to get processed. Thanks to this feature, Node.JS can handle 

many more requests with fewer resources than a server with the Request/Response model. 

Another motivation to Node.JS adoption is its complicity with NoSQL databases, 

MongoDB specially. Node.JS offers a driver to interact with MongoDB databases, and since 

it is a document based database, all the data managed between the database and the Node 



   Background research 

 

22 

application is handled through JSONs (JavaScript Object Notation), enabling the 

development of homogeneous solutions avoiding the need to transform data in the form of 

objects, maps, arrays and others into JSON.  

The Node.js driver can be used on its own, but it also serves as the basis for several 

object-mapping libraries, such as Mongoose. 

2.2.3 Client side technologies 

Every web application has to interact with its final users somehow, be it a mobile interface, a 

browser or some other mean. In this subsection we will look at client technologies supported 

by web browsers that will be the default mean of interaction in OpenDataHub. 

When talking about web development and browser interfaces, it is indispensable to refer 

to technologies such as HTML, CSS and Javascript. These technologies are known since the 

beginning of Internet and therefore do not require big introductions.  

HTML is a standard markup language that enables the web page creation, consisting of 

structured document that implement building blocks, media components and interactive 

forms. All this is interpreted by the browser and originates visual and audio interfaces with 

the user [32]. But a well structured purely HTML page might not be sufficient to provide the 

best experience for the user. CSS and JavaScript offer different mechanisms to improve the 

user interaction.  

CSS is a style sheet language used to describe the presentation of a HTML page. It 

enables developers to create visually engaging webpages, user interfaces for web applications 

as well as user interfaces for many mobile applications [33].  

JavaScript, as we have already seem above, is a scripting language widely used on web 

pages to enable the creation of dynamic contents thus promoting more pleasant interactions 

and the development of more efficient client side solutions [34]. 

JavaScript is known as an interpreted language but for Google Chrome users this is not 

true. Google Chrome’s V8 engine compiles JavaScript into native machine code before 
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executing it, introducing some additional optimization in the process promoting a faster 

execution and a smoother interaction with the user. 

Nevertheless, there are many other client side technologies that complement these three. 

In the remaining section we will give an overview of some of the most interesting and 

promising technologies nowadays.  

2.2.3.1 Less and Sass 

Less is a CSS pre-processor, i.e., it extends the CSS language and it aims at turning CSS 

more maintainable, theamable and extendable. The way it addresses this is through the 

introduction of mixins, variables, nesting, inheritance, namespacing, scoping, functions and 

many other techniques to the world of CSS.  

Similar to Less there is Sass, another CSS pre-processor that implements all the above 

techniques. Sass is well known and has been target of distinction thanks to its faster 

compiling times and for offering Compass, a Sass framework designed to make the work of 

styling interfaces smoother and more efficient. 

2.2.3.2 Bootstrap 

Bootstrap20 is a HTML, CSS and JS framework for web and mobile developments. Until the 

last stable release, its source code uses Less pre-processor, making it very customizable.  

Bootstrap is as of today one of the most well-known and used web technologies. It offers 

many different CSS and JS resources that promote a faster and cleaner development turning 

responsive design really easy to accomplish thanks to its grid system. 

                                                
20 Bootstrap, http://getbootstrap.com/ [last accessed 17/08/2015] 
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2.2.3.3 jQuery and jQuery UI 

jQuery21 is a JavaScript library that makes JavaScript easier to implement and read. Through 

its API, DOM manipulation, event handling, animation and Ajax22 request are much simpler 

[35]. 

Complementing jQuery, there is jQuery UI. A curated set of user interface interactions, 

effects, widgets, and themes create on top of the jQuery.  jQueryUI was built to support 

development of highly interactive web application. 

2.2.3.4 AngularJS and Angular Material 

AngularJS23 is a structural framework for dynamic web apps that has been increasingly used 

for frontend development. AngularJS has several features that can change the way we 

structure and develop frontend applications.  

It implements the MVC architecture, which leads developers to write components that 

very clearly separates the logical sections from the graphical interface thus enhancing code 

readability and reuse.  Thanks to this architecture, AngularJS enables developers to easily 

implement unit tests and provide several other advantages like dependency injection, data 

binding, form validation, request routing and others.  

Angular Material24, is an implementation of the Google's Material Design Specification. 

[36] A specification created by the Google team, describing the classic principles of good 

design with the final goal of developing a single underlying system that allows for a unified 

experience across platforms and device sizes.  

Angular Material comes to implement a set of components and services wrote in 

AngularJS that implement these principles and enable developers to create graphical 

                                                
21 jQuery, https://jquery.com/ [last accessed 24/08/2015] 
22 Ajax, http://www.w3schools.com/ajax/ [last accessed 24/08/2015] 
23 AngularJS, https://angularjs.org/ [last accessed 04/02/2016] 
24 Angular Material Design, https://material.angularjs.org/latest/ [last accessed 04/02/2016] 
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interfaces that can adapt to both desktop and mobile environments. In very simple terms, 

Angular Material can be thought of as a jQuery UI for AngularJS applications. 

2.3 Summary 

Having this background research completed, we have presented a solid base to make our 

decisions about what our system shall be and how we shall proceed in order to provide and 

effective implementation of our envisioned OpenDataHub. In the remaining sections we will 

address some of the topics discussed abovein order to ground our decisions over the project 

progress. 

 





 

Chapter 3 Benchmark MySQL vs MongoDB 

In this chapter we describe, present and discuss the results from a benchmark produced from 

SustData dataset between one SQL and a NoSQL database, MySQL and MongoDB 

respectively. 

We start describing the environment for the tests, then we proceed with a description of  

3.1 Introduction 

SQL and NoSQL have been the subject of several discussion in the past few years regarding 

which is the best technology for data storage [37]. Yet, the overall conclusion is that the 

selection of the appropriate technology should be made taking into account the application 

specifications, and that there is no “one-size-fits-all” approach. Ultimately, choosing the right 

technology depends of the use case. If data is continuously changing or growing fast and you 

need to be able to scale it quickly and efficiently, maybe NoSQL is the right choice. On the 

other hand, if a data structure is well defined, and it will not change much frequently and data 

does not grow that much then SQL is the best answer.  

In this work we aim to go beyond the theoretical guarantees about data storage 

technologies. To this end, we have decided to perform an extensive benchmark between SQL 

and NoSQL databases.  

This benchmark was done against one public scientific dataset and the several tests were 

created taking into consideration the dataset needs and the purpose of the actual data. More 

specifically, this benchmark was done between MongoDB and MySQL, two of the most 

known technologies on data storage world. Ultimately, at the end of this analysis we will be 

able to decide which storage technology is a better fit for our proposed dataset management 

system, the OpenDataHub.  
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In order to perform fair benchmarks between both technologies, different environments 

and different sets of data were created so both technologies could be tested in the same exact 

conditions. Having the environments all set, PHP (for MySQL) and Node.JS (for MongoDB), 

algorithms were created to perform read and write operations in order to assess the 

performance of each technology.  

Once we gathered all the results, we have developed an extended analysis of the results 

and identified which technology offers the best conditions for the creation of the 

OpenDataHub. 

3.2 Benchmark Environment 

In order to test both technologies under the same conditions two virtual machines were 

created on an apple iMac machine, with the following specifications: 

● OS: OS X Yosemite 

● Storage: 1TB Sata disk; 

● Memory: 10GB 1067MHz DDR3; 

● Processor: 3,06GHz Intel Core 2Duo. 

For the VM creation we used Oracle VM VirtualBox25, a virtualization product that 

enabled the installation of machines with the following specifications: 

● OS: Ubuntu (64 bits); 

● Storage: 500GB (virtual); 

● Memory: 4096 MB; 

● Processor: 2 processors. 

Once the VMs were created some additional software was installed in each machine, in 

order to build and run the PHP and Node.JS algorithms.  

                                                
25 VirtualBox, https://www.virtualbox.org/ [last accessed 14/08/2015] 
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For the “MySQL Machine” XAMPP (Apache, MySQL, PHP, Perl) was installed. 

XAMPP is a very popular, free and open source cross-platform web server solution stack 

package, consisting mainly of the Apache HTTP Server, MySQL database,and interpreters 

for scripts written in the PHP and Perl programming languages [38]. 

For the “MongoDB Machine”, MongoDB and Node.JS were installed.  

Having all the environment set, two REST services were written to record the 

performance of the write and read operations for both technologies, one using PHP for 

MySQL and the other one using Node.JS for MongoDB. 

3.3 Data Under Test 

Large amounts of data were used to evaluate the performance and scalability in big data real 

problems of both database technologies.  

For the benchmark we used SustData dataset, a public scientific dataset related to 

electricity energy data. It contains five years of electric energy related data collected from 

four energy monitoring and eco-feedback deployments that were done during the SINAIS 

project [6].  

Overall, SustData contains over 35 million individual records from 50 monitored homes 

covering electricity consumption logs and demographic information as well as the energy 

production in Madeira Island. The dataset also contains 3 years worth of environmental data 

for the island (temperature, cloud coverage, etc.) [5].  

For the performance evaluation we used the energy consumption logs, using fifteen CSV 

files containing different volumes of data for both write and read operations.  

Overall, we built a performance curve that simulated the progressive insertions and 

readings of the different sets of data until a total of ten million records were introduced in 

both databases. Figure 3.1 presents the different volumes of data in each set.  
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Figure 3.1 – Data 

3.3.1 Data Representation and Storage in MySQL 

MySQL uses a normalized data structure approach for data storage, but since our main goal is 

to build and test an environment where read operations will occur more frequently, our major 

concern is to optimize reads (in public datasets read queries are much more common than the 

data manipulation counterparts).  

In order to achieve this effect, we decided not to normalize the data. Instead we created a 

schema that supports all the different data structures in a single table.  

We are aware that this approach is not the most common and correct for relational 

databases since this will result in worst performance for data storage sizing and scalability. 

Yet, this approach has the upper hand on read / write performance since its not necessary 

introduce time consuming JOIN statements in the SQL read queries, and all the data is 

inserted in a single table. 

As mentioned before, SustData emerged from four different deployments each one with 

different data structures. Consequently, for the MySQL database, a table that contains all the 

different structures had to be created. The structure of that table is shown in Table 3.1. The 

different sets of data were then loaded using the SQL query present in Code Block 3.1 
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Table 3.1 – MySQL Data 

Id iid tmstp deploy Imin Imax Iavg Vmin Vmax Vavg 

1 1 14/09/11 23:39 2 2.14 2.27 2.23067 237 240 238.424 

Pmin Pmax Pavg PFmin PFmax PFavg Qmin Qmax Qavg miss_flag 

507.18 542.427 531.607 0.993068 1 0.999552 NULL NULL NULL 0 

 

 

Code Block 3.1 - Import data MySQL Query 

On a normalized fashion, to store this kind of data we would need two additional tables. 

One storing all the different variables (i.e. I, V, P, PF and Q) and another one holding a 

many-to-many relation between the Homes table and the variables table, storing MIN, MAX 

and AVG values as well as the measurement timestamp. Using this approach read operations 

would have to contain JOIN and Group statements, which would results in considerably 

higher reading times. 

3.3.2 Data Representation and Storage in MongoDB 

MongoDB is a schema-less JSON-style data storage technology that supports multiple 

documents with different structures in a single collection. Hereupon, having a single 

collection with only non-null values for all the dataset is not a problem.  

Using mongoimport tool and --ignoreblanks options set to true (Code Block 3.2) we 

managed to import all the data producing documents like the one shown on Figure 3.2. 
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Code Block 3.2 - Import data MongoDB  

 

 

Figure 3.2 –MongoDB Document 

3.4 Method 

For each REST services we have implemented a benchmarking algorithm with the same 

logic. PHP with MySQL and Node.JS with MongoDB. The logic of the implemented 

algorithm is shown in Figure 3.3. 
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Figure 3.3 –Benchmark flowchart 

These two scripts are responsible for two major tasks in our benchmark, namely: 1) 

insertion of the identified sets of data; and 2) the execution of different queries to measure 

read and write performance.  

Five different aggregation queries were implemented and executed against the data from 

three different houses. Each query was executed 10 times in order to minimize effects 

produced by external issues like processor or memory overhead. Ultimately, this resulted in a 

total of 150 log records for each dataset. 

 This was then reproduced over the fifteen datasets already presented above (see Figure 

3.1), producing a total of 2250 read log records for each technology.  
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3.5 Data Indexing 

Having the data storage strategy set, we have created indexes for the most common fields 

used among the aggregation queries in order to enhance the read operations performance in 

both technologies. 

Database indexes are an important aspect to consider when looking for fast data access. 

Yet, there is no standard or pattern to define indexes, as this heavily depends of each use 

case. Consequently, before defining the indexes we first had to understand what were the 

most common ways that our data would be accessed. Only then we could create strategies to 

enhance the performance of the reading operations by means of data indexing. 

To this end, we have looked at the most common queries that were performed to the data 

during SINAIS project and selected the top five. In the next section we present in detail each 

selected query. 
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3.6 Queries 

All the selected queries performed aggregation operations in order to produce electric energy 

statistics. Table 3.2 summarizes the data each query is expected to retrieve. 

Table 3.2 – Queries 

Query 1 Calculates the power average by hour for a specific installation ID. 

Query 2 

Calculates the power average and the average of the results of the 

multiplication of current and voltage average values. The obtained results are 

then grouped by hour for a specific installation ID. 

Query 3 Calculates the power average per hour for a specific date and installation ID. 

Query 4 
Selects all the power averages calculated on SustData during a specific week 

of the year. 

Query 5 
Sums power averages per hour during a specific month and for a specific 

installation ID. 

 

In the sections bellow we present how these queries were implemented in MongoDB and 

Mysql. 

3.6.1 Implementation 

In MongoDB we used the aggregation pipeline, a framework for performing aggregation 

tasks, modelled on the concept of data processing pipelines [39]. The pipeline allows to 

process data from a collection with a sequence of stage-based manipulations transforming the 

documents into aggregated results. In MySQL the default GROUP BY clause was used for 

data aggregation. This clause offers several aggregation functions such as average, sum, 

count and others. 
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Query 1 

For the MongoDB a pipeline with four stages was defined (see Code Block 3.3):  

• The first one performs a match operation, selecting all the records for Home 1 and 

with miss_flag set to zero (miss_flag identifies the records that were added to 

SustData by means of post-processing (1 for post-process data and 0 otherwise). Thus 

setting this to zero means that only the original data will be loaded).  

• Second stage manipulates documents selecting Pavg, tmstp and decoupling timestamp 

in year, month, day and hour.  

• Stage three, groups the result by hour, calculating the average of pAVG field and the 

maximum tmstp. 

• Finally, fourth stage sorts the results by tmstp in ascending order. 

For MySQL a GROUP BY clause and AVG aggregation function were used in the sequence 

presented bellow: 

• Restrains results to Home 1 and with miss_flag set to zero. 

• Group the results by date and hour, calculating the average of pAVG. 

• Sort the results by tmstp in an ascendant order. 
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Code Block 3.3 - Query 1. MongoDB (left), MySQL (right) 

Query 2 

For MongoDB a pipeline with four stages was defined (see Code Block 3.4):  

• The first one performs a match operation, selecting all the records for Home 1 and 

with miss_flag set to zero.  

• Second stage manipulates documents selecting Pavg, Vavg, pAvgS, tmstp and 

decoupling timestamp in year, month, day and hour. Important to notice that pAvgS is 

composed by the multiplication of Iavg and Vavg fields. 

• Stage three, groups the result by hour, calculating the average of Pavg and pAvgS 

fields and the maximum tmstp. 

• Finally, fourth stage sorts the results by tmstp in an ascendant order. 

On MySQL is used GROUP BY clause and AVG aggregation function. 

• Restrains results to Home 1 and with miss_flag set to zero. 

• Multiplies Iavg and Vavg fields originating pAvgS. 
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• Groups the results by date and hour, calculating the average of pAVG and pAvgS. 

• Sorts the results by tmstp in an ascendant order. 

 

 

Code Block 3.4 - Query 2. MongoDB (left), MySQL (right)  

Query 3 

For MongoDB a pipeline with five stages was defined:  

• The first one performs a match operation, selecting all the records for Home 1 and 

with miss_flag set to zero.  

• Second stage manipulates documents selecting Pavg, Vavg, tmstp and decoupling 

timestamp in year, month, day and hour. 

• Stage three, performs another match operation, selecting all the records which record 

date is 2010-11-25. 

• Stage four, groups the result by hour, calculating the average of Pavg field and the 

maximum tmstp. 

• Finally, fifth stage sorts the results by tmstp in an ascendant order. 

For MySQL a GROUP BY clause and AVG aggregation function were used. It: 
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• Restrains results to Home 1, miss_flag set to zero and all the records which date is 

2010-11-25. 

• Groups the results by date and hour, calculating the average of pAVG. 

• Sorts the results by tmstp in an ascendant order. 

 

 

Code Block 3.5 - Query 3. MongoDB (left), MySQL (right) 

Query 4 

On MongoDB a pipeline with four stages was defined:  

• The first one performs a match operation, selecting all the records for Home 1 and 

with miss_flag set to zero.  

• Second stage manipulates documents selecting Pavg, Vavg, tmstp and decoupling 

timestamp in year, month, and week. 

• Stage three, performs another match operation, selecting all the records which record 

date is 2010-11-25.  

• Finally, fourth stage sorts the results by tmstp in an ascendant order. 

On MySQL a GROUP BY clause and AVG aggregation function were used. It: 

• Restrains results to Home 1 and with miss_flag set to zero. 
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• Multiplies Iavg and Vavg fields originating pAvgS. 

• Groups the results by date and hour, calculating the average of pAVG and pAvgS. 

• Sorts the results by tmstp in an ascendant order. 

 

 

Code Block 3.6 - Query 4. MongoDB (left), MySQL (right) 

Query 5 

On MongoDB a pipeline with five stages was defined: 

• The first one performs a match operation, selecting all the records for Home 1 and 

with miss_flag set to zero.  

• Second stage manipulates documents selecting Pavg, Vavg, tmstp and decoupling 

timestamp in year, month, and week. 

• Stage three, performs another match operation, selecting all the records which record 

date is 2010-11-25.  

• Finally, fourth stage sorts the results by tmstp in an ascendant order. 

On MySQL is used GROUP BY clause and AVG aggregation function. It: 

• Restrains results to Home 1 and with miss_flag set to zero. 

• Multiplies Iavg and Vavg fields originating pAvgS. 

• Groups the results by date and hour, calculating the average of pAVG and pAvgS. 

• Sorts the results by tmstp in an ascendant order. 
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Code Block 3.7 - Query 5. MongoDB (left), MySQL (right) 

3.7 Results 

Once the recording process was completed, the collected data was catalogued into four 

different groups in order to create different analyses. 

In group I we have an analysis of the database sizes and insertion times. With these two 

metrics we developed averages and charts representing the time and storage size, relating 

these with the growing number of records. 

Group II represents the performance of every aggregation query performed for each 

different home ID. This gives us the performance curve related to the data growth and allows 

a direct comparison of each case between both technologies.  

Then, for a briefest review we have group III representing the overall query performance 

for each home ID. Once again, enabling a direct comparison between MongoDB and 

MySQL. 
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Finally, there is group IV revealing the final overall results for both technologies where 

we can see the global performance for each technology. 

In the remaining of this section we explain in detail the results for each of the 

abovementioned groups. 

Group I 

From Figure 3.4 we can analyse the insertion time of the different sets of data on MongoDB 

and MySQL databases. As the chart shows, MySQL has faster insertion times than 

MongoDB. 

 

Figure 3.4 –Insertion time 

In big data environments storage can lead to big problems. Data is always increasing but 

storages technologies are not necessarily keeping up, which drives us to measure this 

important metric on this benchmark. 

Once again the analysis is produced over the different sets of data where we can see that 

MySQL stores the same data in a smaller storage size. 
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Figure 3.5 – Data storage 

Group II 

For read operations a more detailed analysis was produced. From Figure 3.6 to Figure 3.20 

we have charts representing the average performance and standard deviation for all the 10 

iterations, along with the data growth for each home ID. This was done for each aggregation 

query on both technologies. 

Here it is possible to see that in every case MongoDB queries the data faster than 

MySQL. 
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Figure 3.6 – Query 1, Home 1 

 

Figure 3.7 – Query 2, Home 1 
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Figure 3.8 – Query 3, Home 1 

 

 

Figure 3.9 – Query 4, Home 1 
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Figure 3.10 – Query 5, Home 1 

 

 

Figure 3.11 – Query 1, Home 2 
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Figure 3.12 – Query 2, Home 2 

 

 

Figure 3.13 – Query 3, Home 2 
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Figure 3.14 – Query 4, Home 2 

 

 

Figure 3.15 – Query 5, Home 2 
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Figure 3.16 – Query 1, Home 3 

 

 

Figure 3.17 – Query 2, Home 3 
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Figure 3.18 – Query 3, Home 3 

 

 

Figure 3.19 – Query 4, Home 3 
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Figure 3.20 – Query 5, Home 3 

Group III 

As a summary we have the query performance by home ID. Figure 3.21 to Figure 3.23 

presents the query performance for all the different aggregation queries performed for the 

different homes.  

As expected from the previous analysis, MongoDB obtains better results than MySQL in 

every case.  
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Figure 3.21 – Overall performance, Home 1  

 

 

Figure 3.22 – Overall performance, Home 2  
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Figure 3.23 – Overall performance, Home 3  

Group IV 

Instead of having different charts for each query, Figure 3.24 represents the query 

performance for each aggregation query on both technologies on the same chart, considering 

all the different home IDs. Here MongoDB is presented by the series with the light blue 

colour palate. 

 

Figure 3.24 – Read Performance (per query) 
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Finally, as the final overall analysis, Figure 3.25 represents the performance average for 

all the different queries among the different home IDs. 

 

Figure 3.25 – Read Performance (overall) 

3.8 Discussion and Conclusions  

Having these results, we are able to make our evaluation over insertion and query 

performance on MySQL and MongoDB, and select one of these as the one that better 

responds to our purposes and necessities. 

3.8.1 Write Performance 

Referring to data insertion, MySQL consumed 1 964 MB to store the total of 10 000 000 

records and had an average insertion time of 6,15 seconds for all the different sets of data. 

On the other hand, MongoDB consumed 4 730 MB to store all the 10 000 000 records 

and have 25,26 seconds as average for insertion of all the different sets of data. This means 

that MongoDB takes 240% more disk space and is 410% slower when compared to MySQL. 

We should note that the obtained results for storage size and time could be enhanced if we 

deleted all the data indexes. In fact, indexing data improves reads but compromise writes 

because every time a record is inserted all the associated indexes must be updated. 
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Nevertheless, our goal here was to analyse performances on a production environment where 

there are much more read than write operations, so we decided not to take this approach. 

Likewise, the decision of not normalizing the data in MySQL would cost us a non-

scalable solution but it definitely helped us to achieve better results both for write and read 

operations. 

MongoDB stores data in a {key : value} format in order to enable the store of multiple 

documents with different structures and avoiding the storage of empty fields. This produces  

more scalable data structures but consumes more disk space and increases the amount of data 

to write, since every key must be inserted along with its values.  

Is also important to refer the usage of the mongoimport tool for insertion, which is known 

to have worse performance than the MySQL LOAD DATA INFILE operation. This occurs 

because MongoDB’s data is stored on BSON format, meaning that most of the effort is spent 

on data serialization since neither JSON or CSV are native MongoDB formats. 

This said, we conclude that MySQL has the best performance for data insertion, since 

MongoDB consumed about 2,5 times more storage and about 4,1 times more time for data 

insertion. Yet, once again, it is important to remember that the non-normalized data approach 

on MySQL it is not an optimal solution, since it leads to a lot of effort every time a change in 

the database is needed. A situation that is very likely to happen during application operation 

and maintenance. 

3.8.2 Read Performance 

Referring to data querying, MySQL produced a global average of about 53 seconds to consult 

all the different sets of data. On the other hand, MongoDB presented an overall average of 

about 10 seconds for the same operations, which is about five times faster than MySQL.  

We believe that these results could not be much more optimized since we had the care of 

creating appropriated indexes and stored the data in a way that could offer the best results. 
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The main reason that justifies this performance difference is in how both technologies 

store their data. Mongo DB stores embedded data into the same document/collection. This 

way the data is written in sequential disk positions, which accelerates and reduces the number 

of round trips to one, since the information can be read all at once. Consequently, because the 

first disk access is the one that consumes more time (1ms essentially) this detail is important 

to consider.  

3.8.3 Fetching 

An important task that we did not consider in this benchmark is fetching the query results. At 

the beginning of the benchmark this task was performed, but the PHP’s maximum allowed 

memory size was easily exceeded when fetching MySQL results. Consequently, it was not 

possible to produce a fair benchmark on this type of operation.  

In Node.JS + MongoDB algorithm we did not have this problem. When a MongoDB 

query is performed through the Node.JS driver a cursor is returned. Afterwards we can loop 

the cursor, iterating all the query results. This operation has a singular particularity: the 

results are loaded in batches until all the results are fetched. This not only reduces the amount 

of data to be loaded, avoiding the memory exhaustion but also turns the data access faster 

since there are smaller chunks of data to return at each time. 

An alternative to solve this kind of problems in MySQL is to use OFFSET and LIMIT 

operators or, for instance, mysql_unbuffered_query function. mysql_unbuffered_query 

enables the query execution without automatically fetching and buffering the result rows as 

mysql_query() does. But, besides being deprecated since PHP 5.5.0 it has some costs, we 

cannot use mysql_num_rows() and mysql_data_seek() on a result set until all rows are 

fetched, and we also have to fetch all the result rows from an unbuffered SQL query before 

we can send a new SQL query to MySQL within the same database connection. 

3.8.4 Limitations 

Although we have created symmetric environments for both technologies in order to test 

them in the exact same conditions using virtual machines, there was no guarantee that the test 
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execution of one technology would not have impact on the other’s performance. This happens 

because both virtual machines are sharing the same physical resources. 

As we can see in the results, some of them present some disturbance and consequently, 

not very linear results. Such disturbance can be justified by the execution of the tests on both 

technologies in simultaneous, yet we cannot claim this with 100% confidence. An alternative 

would be to perform the tests on different physical machines with the exact same conditions 

but unfortunately at the time of this work we did not posses the necessary resources. 

Nevertheless, despite the nonlinear results and observed disturbances, given the 

significant differences in the obtained results we are confident that the final conclusions 

would be very similar to the ones presented here. 

3.8.5 Summary 

Considering the fact that the main goal of OpenDataHub is to bring to the research 

community a tool for a simple and fast access to public datasets, read operations will 

necessarily be the most common. Consequently, our biggest concern is to adopt the 

technology that offers the best performance for this type of operations.  

Another concern is the data scalability, since there is a high chance of having to handle 

non-homogeneous data structures in scientific datasets. The non-normalized approach on 

MySQL achieved best performance for read/write operations, however this does not offer 

scalability due to MySQL’s relational model.  

For this specific case, MongoDB offers the best options, due to its schema-less feature; 

any kind of documents can be stored along the same collection without the need of any 

change in the database structure or configuration.  

Building these analyses and conclusions, we can summarize our results stating that 

MongoDB is the best solution for our purposes as it provides the best conditions for data 

consult and data scalability. 

 





 

Chapter 4 OpenDataHub  

In this chapter we provide a more detailed overview of the OpenDataHub platform, an open 

dataset management system that aims at overcoming the barriers of data sharing and 

maintenance. 

All the stages of a software analysis and development lifecycle are presented in detail 

from the definition of the system requirements, to the use cases and user interface prototypes. 

Additionally, we also present the overall architecture of the NoSQL database and the 

OpenDataHub application itself. 

As a use case of our approach we will be using the SustData dataset, which was already 

mentioned in previous chapters.  

4.1 Requirements  

Our analysis starts with the functional and non-functional requirements definition. To make it 

more simple and readable, we decided to break some of the requirements into different 

sections.  

4.1.1 Functional requirements  

Functional requirements are the definition of the functionalities that our system shall address. 

Are the functional needs from the original problem and serve as a guideline for the definition 

of the solution. The following requirements define how our solution shall address our 

problem needs. 

1. Frontend and backend; 

a. It shall offer a frontend workspace for all the users that visit SustData; 
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b. An “About” area shall be present, giving users a general overview and introduction 

to the dataset, the authors and metadata about the different collections that constitute 

the whole dataset; 

c. It shall present a “Contacts” area, presenting contacts related to the project; 

d. A registration/authentication area, enabling users to register and access the dataset 

data; 

2. Users management; 

a. Shall support user registration and authentication; 

b. Different group of users with different permissions shall be supported; 

c. Account management; 

i. User should be able to change its account settings when desired; 

d. Activity history; 

i. Users should be able to consult their actions’ history over the datasets; 

1. A timeline showing the user’s main tasks performed, such as downloads and 

collection querying; 

e. A password recovery engine shall be available; 

3. Groups of users; 

a. Dataset providers. Users who are responsible for the data sharing and management; 

b. Dataset users. Users that wish to access to datasets and consult the shared data; 

4. Data query 

a. Users shall be able to consult all the public collections created by data providers; 

b. For each collection, it should be possible to filter data using filters for each one of 

the fields present on the collection; 

c. Filters shall vary according to the field type (defined through the metadata). I.e., 

date-time picker for timestamps, numeric input for decimals and text input for text 

fields. 

d. On data query, users should be able to transform the data, having opportunity to 

identify which fields shall be presented; 

e. Users shall be able to group their results by timestamp (minute, hour, day, week, 

month and year; 

f. Users shall be able to limit the number of obtained results; 
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g. A data preview shall be performed by the system, presenting all the data resulting 

from the produced query; 

i. Two types of preview shall be supported. Graphical and tabular data. 

h. Users should be able to download the data resulting from the performed queries. It 

also should be possible to download all the raw data i.e., without performing any 

kind of query. 

5. Data management; 

a. Data management shall only be available for dataset providers;  

b. Users shall be able to create collections identifying the proper metadata; 

c. Users should be able to import new data for existing collection whenever they wish; 

i. CSV and JSON formats shall be supported; 

d. Users should be able to identify a collection as publicly available or private; 

e. Private collections shall be available only for the dataset providers; 

4.1.2 Non-functional requirements  

Non-functional requirements aim to describe how the system is supposed to be. They are 

used to judge the operation of a system, rather than specific behaviours. The list below 

presents OpenDataHub non-functional requirements. 

1. Scalability; 

a. The solution needs to scale in order to manage large volumes of data and dynamic 

creation of collections; 

2. Availability; 

a. Any “Down time” shall be avoided, engines that guarantee high availability shall be 

introduced; 

3. Performance; 

a. The application needs to perform requests in a non-blocking operation approach in 

order to achieve the best performance rates possible; 

4. Recoverability; 

a. In a “Down Time” situation the system should be able to recover non-losing any 

data recorded before the occurrence; 
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5. Security; 

a. The systems shall confine features according to the user permissions; 

6. Usability; 
a. It shall have a user friendly interface, i.e., users should easily understand how to 

operate the system without needing instructions in addition to what is already in the 

user interface; 

4.2 Use cases  

Use cases are used for defining the interactions between a role (known in the Unified 

Modeling Language as an actor) and a system, to achieve a goal. Figure 4.1 shows a 

graphical representation of the system’s requirements and its users’ permissions. 

As one can se by the diagram there are three types of users. Dataset providers can manage 

the different collections that compose the dataset. Dataset users on the other hand can only 

manage info about their own account and query the data provided. Lastly, non-authenticated 

users can only access a brief description of the dataset, related contacts and the registration 

section. 
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Figure 4.1 – Use cases 

4.3 Prototypes 

Having the system’s requirements and use cases defined, we are able to build the user 

interface that will enable users to access and manipulate the dataset in different ways.  

The following prototypes were built using the SustaData dataset as a test case. 
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Figure 4.2 represents the home page. There users can find a brief introduction of the 

dataset, related publications and general metadata about the different collections that 

constitute the public dataset. 

 

Figure 4.2 – About page 

In the contacts page, represented on Figure 4.3, users can find some information about 

dataset creators. This includes the people involved and how and who should be contacted in 

order to get further information. 

 

Figure 4.3 – Contacts 
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Users need to register in order to gain access to the dataset collections. For this we have 

the registration page presented by Figure 4.4, asking users for some basic demographic 

information. 

 

Figure 4.4 – Sign up 

Once registration is done, users are able to authenticate in the system and therefore access 

all the public data available. Figures Figure 4.5 and Figure 4.6 show the authentication page 

and the password recovery form. 



   OpenDataHub 

 

66 

 

Figure 4.5 – Login 

 

Figure 4.6 – Password recovery 

When a user authenticates there are some new functionalities available. One of them is 

the user profile. In the user’s profile, presented by Figure 4.7, all the basic information is 

available to consult and update. Also the user activity history is presented, showing the main 

tasks performed by each user on the platform. This can be interesting to consult previous 

performed queries and reproduce them for instance. 
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Figure 4.7 – User profile 

Users can be interested in downloading the whole dataset and manage its data with their 

own data management system. For this we provide the download page, represented on Figure 

4.8, where users can download big CSV compressed files containing all the raw data of 

SustData. 
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Figure 4.8 – Download 

The “Explore” page, offer dataset users access to all the public data available on SustData 

for query, visualization and download results on CSV and JSON formats. Here users can 

navigate between the different collections, filter the data by performing different queries and 

having a preview of results in the form of lists or charts. 
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Figure 4.9 – Table data visualization 

Like shown in Figure 4.9 and Figure 4.10, dataset users are given the opportunity to 

preview their query results. Where, in a graphical mode, time is represented on X axis and the 

remaining variables on Y axis. 
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Figure 4.10 – Graphical visualization 

The query builder pop-up is presented in Figure 4.11 and enables users to apply several 

filters to the different field that compose a particular collection. For each type of data stored 

on each field, different types of filters are available.  

Users can select which fields they wish to view toggling the available checkboxes and can 

aggregate the results by different time units, like “Minute”, “Hour”, “Day”, “Week” and so 

on. 
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Figure 4.11 – Query builder UI 

On Figure 4.12 we have the data management area. Here, dataset providers are able to 

manage their data collections and publish them.  

Here, each existing collection is presented to the user that is also given the opportunity to 

import new data or even change the specifications (i.e., the metadata) of the already existing 

collections. Through this mechanism, dataset creators can identify which fields shall be 

available to query and the data type that each one should hold. For a easier data 

interpretation, there is the description of each field. 

There is as well the possibility of making collections public or private, where private 

collections will only be available for dataset providers. 
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Figure 4.12 – Data Management 

4.4 Technologies 

From the analysis in Chapter 2 about some of the most known and used technologies for web 

development and data storage (see section 2.2) and having the problem statement of 

SustData, we are ready to evaluate which technologies can serve our purpose and attend our 

needs. 

In the next sections we will present the main technologies that support SustData, starting 

from the storage, passing by the server language and finally ending at the client side 

technologies that will build the user interface. 

4.4.1 Storage 

In this kind of projects we are dealing with large volumes of data that can assume several 

different structures and can grow very fast. It is therefore important that the final solution 

provides very good scalability.  
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When dealing with this kind of problems, it is inevitable not to talk about NoSQL 

databases. In this particular scenario MongoDB has proven to be a really good candidate to 

handle datasets like SustData (please refer to the Chapter 3 for mode details about this). It is 

easy to scale as it supports horizontal scaling, allows the choice of the consistency level of 

the data, it is schema-less and the data is in BSON format, a very flexible and simple to 

understand data structure.  

Thanks to these features and all the advantages mentioned before when talking about No-

SQL databases, MongoDB is our database of election. Later on this chapter we will see how 

data will be stored on MongoDB and which decisions over scalability, replication and 

consistency were made. 

4.4.2 Server side 

Performance and scalability are the major concerns for this platform. Having our MongoDB 

setup set, is important to select a server-side technology that offers a good interface with the 

database and that can offer good performance and scaling features.  

There are several technologies that offer good database drivers like Python for instance, 

so this was not a major concern for our decision. However, besides the need for a good 

database driver, we need a technology that presents good performance values, manages 

physical resources efficiently and is easy to scale. 

Node.JS has emerged in web development world as one of the lightest and easiest to scale 

technologies. It is open source, has a large and growing community producing every day new 

different resources and scales very well. Additionally, it is very fast thanks to the V8 

Javascript engine and it is very suitable to deal with JSON data structures, which is a great 

plus when dealing with MongoDB for compatibility purposes. 
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Working together with Node.JS we have Mongoose26, a MongoDB object modelling 

tool that help developers to validate, cast and perform some business logic. Mongoose also 

enables developers to define the database schema.  

It can be somewhat contradictory to the schema-less approach of MongoDB but 

sometimes it is necessary to guarantee that the application will always deal with the same 

data structure, specific data types, and with data that meets some specific requirements. 

Mongoose comes to provide a layer to address these needs. 

In short, having all these in consideration, Node.JS is naturally our server side election. 

4.4.3 Client side 

Finally, we present client side technologies. Here HTML, CSS and JavaScript are obvious 

choices. Nevertheless, several other technologies come to speed up and guide development to 

standard and better-accepted solutions by the community. 

Instead of HTML we will use Jade27. Jade is an HTML template engine that supports 

dynamic code, reusability (DRY), requires less code overall and offers mechanisms that can 

conduct to better productivity. 

Instead of using pure CSS, we will use Less. Less and Sass are CSS pre-processors that 

have proven to be great for building code easier to maintain, extend and customize. 

For icons, since we selected Font Awesome28, which provides hundreds of vectorial icons 

through fonts, which makes the introduction of icons very easy while enabling  the possibility 

of scaling and colouring the whole user interface using CSS like a text font. 

Concerning JavaScript, AngularJS along with jQuery and Angular Material were our 

choices. These technologies come to provide more abstract layers that make JavaScript 

development more intuitive and therefore easier to produce. 

                                                
26 Mongoose, http://mongoosejs.com/  [last accessed 12/11/2015] 
27 Jade, http://jade-lang.com/ [last accessed 14/11/2015] 
28 Fontawesome, https://fortawesome.github.io/Font-Awesome/icons/ [last accessed 09/02/2015] 
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A clear advantage of using JavaScript on the client side is that with this, we have a 

homogeneous solution. With both JSON and JavaScript languages in the database, server and 

in the frontend user interface we have a homogeneous solution that implements all its logic 

and data presentation using the same core technologies. 

4.5 Development tools and frameworks 

There are several different tools that make developers’ work easier and more practical to 

perform. In this section we provide a very brief overview of the different public resources 

used in OpenDataHub development. 

   

 
  

 
 

 

Figure 4.12 – Tools and frameworks 

NPM and Bower 

For our Node.JS dependency management we use NPM29 a package manager that is 

responsible for referring to all the external dependencies in our project and enabling a fast 

and simple installation of all of these whenever a new developer wishes to collaborate to 

OpenDataHub project. 

                                                
29   https://www.npmjs.com/ [last accessed 18/012/2015] 
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NPM stores references to production and development dependencies as well as the 

versions in use. For deployment and in order to guarantee availability and operability of the 

platform we use npm-shrinkwrap30 for locking down dependency versions and therefore 

maintain a homogeneous deployment installation in any different environment. 

Very similar to NPM, we have bower31. A package manager for the frontend 

dependencies, storing reference to all the external public resource dependencies ant its 

versions as well. 

Browserify 

Browserify32 is a Javascript module loader where we can create JavaScript bundles that are 

independent of any external resources that are not required.  

For instance, if in our application we have globally available both jQuery and Moment.js 

and our bundle only needs jQuery, in our bundle we write “require(‘jQuery’)” and only 

jQuery will be available within our bundle code. 

This makes our implementation much more modular and non-fragile to the external JS 

world. 

Grunt and Babel 

Grunt33 automatizes several tasks in our project. In our case, we are using ES201534 in order 

to write JavaScript in a nicer way and taking advantage of the different recent JavaScript 

features. Yet ES2015 is not fully supported on many browsers, so we use Babel JavaScript 

compiler to compile ES2015 to the original JavaScript such that the different web browsers 

can interpret it. 

This compilation is a very common task to perform during the implementation phase, so 

we use grunt and grunt watch to do it for us in the background.. We also use it to minify and 
                                                
30 Shrinkwrap, https://docs.npmjs.com/cli/shrinkwrap [last accessed 04/02/2016] 
31 Bower, http://bower.io/ [last accessed 09/02/2016] 
32 RequireJS, http://requirejs.org/ [last accessed 10/02/2016] 
33 Grunt, http://gruntjs.com/  [last accessed 10/02/2016] 
34 ES2015, https://babeljs.io/docs/learn-es2015/ [last accessed 11/02/2016] 
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uglify our source code for production environment, in order to enhance speed on the browser 

and prevent the interpretation of our client-side implementation through the DOM query. 

There are thousands of tasks that can be performed through Grunt, compile, minify and 

uglify are just some examples. In our project we also use it for compiling Less into native 

CSS, to concatenate our JS bundles, to deploy the application and several other tasks. 

Mocha + Chai + Sinon 

Mocha35 is a unit test framework very suitable to test driven development and for testing our 

NodeJS API. Mocha will enable us to run several tests over the API and guarantee its correct 

behaviour.  

Chai36 is simply an assertion library that comes to complement Mocha, it enables us to 

write tests over Mocha in a more intuitive manner. 

Sinon37 also comes as a complement to the Mocha framework. As it is natural, our 

application modules communicate between them and sometimes with other resources that are 

external to the application. As our goal is to write unit tests, we need to guarantee that our 

code is tested without being affected by external resources. For that we use Sinon, an API 

that enable us to fake the behaviour of external resources, giving us the opportunity to 

explore the different responses that the unit that is being tested can face in a real scenario. 

Yeoman 

Yeoman38 is a code generator tool that combined with grunt and bower helps to achieve 

higher rates of productivity and code quality. With this we can easily build new applications 

or JavaScript components. Yeoman helped us especially on our server side development. 

 

 
                                                
35 Mocha, https://mochajs.org/ [last accessed 12/02/2016] 
36 Chai, http://chaijs.com/ [last accessed 12/02/2016] 
37 Sinon, http://sinonjs.org/ [last accessed 12/02/2016] 
38 Yeoman, http://yeoman.io/ [last accessed 12/02/2016] 
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Git, GitHub and GitLab 

For the versioning and deployment we use Git39 version control system and as remote servers 

we have GitHub40 and GitLab41, a Git repository where we can easily store our projects and 

manage not only the code versions but also handle tasks like issues, wiki and others.  

4.6 Database architecture 

The database is the most critical part of our system due the big-data nature of SustData data. 

MongoDB is very suitable to large volumes of data but it is important to build a well-defined 

strategy to take the best out of the many advantages that MongoDB can provide to our 

problem. Therefore, we designed the database architecture and decided how to configure our 

database server in order to address all our needs. 

To achieve better performance and reduce the risk of data loss, we divided our biggest 

collections over three different shards. Each shard is constituted by a replica set of three 

databases, one of them acting as primary and the other two as secondary databases. 

The use of replication reduces the probability of down time since on a scenario where the 

primary database becomes unavailable one of the secondary will be selected as the new 

primary. Then, in the meantime, the old primary will come back up and when it does, it will 

perform tasks to synchronize its data according to the data stored on the primary database.  

This can be done through the oplog or by copying the entire dataset from the primary. It 

depends of the failure scenario, but the first approach is the most common. 

By default, replication sets only permit reads and writes on the primary database for 

consistency reasons. There are some mechanisms such as write concern and journal that are 

essentially mechanisms that enable database users to choose what level of consistency they 

want, depending on the value of the data.  
                                                
39 Git, https://git-scm.com/ [last accessed 19/09/2015] 
40 GitHub, https://github.com [last accessed 19/09/2015] 
41 GitLab, https://about.gitlab.com/ [last accessed 19/09/2015] 
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If we need higher performance, we can write on a single node and return a response to the 

application and the oplog will be responsible for enabling to rest of the nodes to acknowledge 

the new updates. On the other hand, if we need higher consistency, we can ensure that a write 

may happen on the majority or even on all the nodes that constitute the replica set and then 

return a response to the application. Naturally this second approach is slower than the first 

one. 

Due the nature of SustData dataset, having eventual consistency is not a major problem, 

so we decided to enable read operations over secondary nodes and make writes only over the 

primary node and let the replication set synchronize the rest of the nodes.  

For instance, if one user gets data from the primary database with 5 000 results from a 

specific query and another user gets 4 980 for the exact same query it is not critical. It is 

public data for posterior analysis and has no immediate impact on any external environment. 

Furthermore, public datasets generally are published when the study ends and therefore, new 

updates to an existing collection are not very usual. 

This decision drives our solution for higher performance and reduces the workload over 

the primary nodes of each replication set. 

MongoDB is very well known for its capability to scale horizontally, and this can be 

achieved through data sharding. For SustData we have created a cluster constituted by three 

shard nodes, each node with the replication set also with the tree nodes and three config 

servers containing metadata for the sharded cluster. 

These shards split the SustData’s biggest collections in equal or almost equal parts, 

dividing the database into parts and therefore requiring lower physical resources for 

performing the data queries. 

Ideally these shards and each node of the replication sets should live in different physical 

servers, as only in this way we would be able to take full advantage of all the benefits of data 

sharding, dividing the workload and the resource consumption over different machines. This 

does not only provide higher rates of availability as well it leads to higher performances. 
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Yet, due the lack of resources and given that SustData is a case study, we developed this 

architecture on the same server, launching different services on different ports. 

Figure 4.13 shows the architecture that sustains SustData’s database.  

 

Figure 4.13 –Data sharding and replication 

On ports 57040, 57041 and 57042 we have our config servers and on ports 37017, 47017, 

57017 we have the primary database of each shard, and on ports 18 and 19 of each of these 

ranges would be the secondary databases. MongoS, running in port 3000, is our database 

driver. The one responsible for receiving requests from the database and forwarding queries 

for the respective shards. 
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4.7 Application structure 

Concerning to the server side, there are several Node.JS 

frameworks that aim to facilitate and speed up the development 

process. Express42 is our framework of election, offering great 

functionality and flexibility over the Node.JS itself.  

Our entry server’s point is the app.js present at our project’s 

root directory. Next we have src, app and config folders.  

The config folder contains all the configurations to our express 

(default responses for 404 and common middlewares for 

instance), core dependencies load and the configurations to our 

application, such as the server port, the database connection 

details and other configurations that might vary on development, 

test and production environments. 

Regarding to the src and app folders, the src contains all the 

server-side logic implementation and main HTML templates 

where implementation is written in ES201543 standard, while the 

app folder has the exact same implementation but it’s the result 

of the compilation of the src code. This folder is dynamically 

generated by a Grunt task when compiling the code using Babel. 

Another important components of our server-side 

implementation are the package.json and the npm-shrink-

wrap.json. These files are responsible for storing information 

about our application, such as the application name, author, 

version and more importantly, all the project dependencies. 

                                                
42 Express, http://expressjs.com/ [last accessed 03/12/2015] 
43 ECMAScript 6, https://babeljs.io/docs/learn-es2015/ [last accessed 03/12/2015] 

Figure 4.14 - Application 

structure (server) 
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The package.json stores both development and application dependencies giving the 

opportunity to receive new versions of this dependencies by a simple “npm install”.  

On the other hand, npm-shrinkwrap.json stores only the application dependencies, not 

giving the opportunity to receive newer versions of the specified dependencies and respective 

version. This is important in a production environment in order to avoid the installation of 

versions of our dependencies that were not tested and can compromise our solution 

availability, consistency and reliability. 

Finally we have the node_modules folder, storing all the external dependencies to our 

project that are installed via NPM. 

 Regarding to the client side, our entry point is also the app.js, but 

this time the one that is in the root of the public folder. The public 

folder contains all the implementations and resources that are 

referent to OpenDataHub client side implementations.  

Here, the js folder contains all our implementations with 

AngularJS, dividing it into a component per module. I.e., a 

component for the data explorer module, another to the user 

profile, registration and authentication, another to the about and 

so on. Here, controllers, directives, services and views compose 

each one of these components and each one of these components 

will be translated into a JS bundle through browserify.  

The img folder contains all the images that are used and the less 

folder contains all our application style sheets written in Less that 

are compiled through a Grunt task. The result of this compilation 

is stored in the css folder in order for the browser be able to 

interpret it. 

In the build folder we have all the resulting native JavaScript from the ES2015 code that 

is implemented in the js folder. This folder contains the resulting bundles that are ready to 

Figure 4.15 - Application 

structure (client) 
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inject into the different HTML pages. In case we are in a production environment, this folder 

will store all the code in a minified version in order to enhance the traffic in our pages. 

Finally, and similarly to the node_modules folder, there is the components folder 

containing all the external resources to our client side that are installed via Bower. The 

bower.json file, analogous to the package.json, stores data about the frontend application like 

its name, version and all its dependencies such that is it possible install of them through a 

simple “bower install” command.  

4.8 Summary 

The presented architectures were not a result from our first attempt. In a first iteration the 

MongoDB database was a single database with no replication. Yet, while this would responds 

to our functional needs it would not guarantee high availability and data integrity. 

Consequently, we had to change our strategy introducing data clusters with the data sharding 

and replication techniques. 

Lastly, it is important to stress once again that at its current state, we are not taking full 

advantage of the sharding and replication benefits. This will happen once it is possible to 

distribute the shards in different machines. 

 





 

Chapter 5 Conclusions 

In this chapter we aim to expose the different challenges that were presented to us during the 

development of OpenDataHub as well as the different solutions that were found to overcome 

such challenges.  

5.1 The challenge 

Starting with our problem, the need for a tool to enable researchers to easily share their 

research data and, dataset users to easily have a brief introduction and preview of these before 

downloading it for posterior analysis. This was a need that emerged when the SustData 

research team had to publish their dataset on the Internet. 

The research team did not find a platform where they could publish the data produced 

during the SINAIS project and at the same time offer to the dataset users novel means to 

query, manipulate and preview the dataset contents. Furthermore, due the data dimension 

there were several difficulties when dealing with the data. The data was originally stored in 

different databases or CSV files, making the data difficult to maintain. 

Given all this constraints we built our vision over this problem and all the revolving 

issues around it and started to explore and evaluate existing solutions to learn how these 

could help us build our proposed solution. 

We found several platforms that shared our main goal and vision, of improving scientific 

data sharing. Each of them using distinct techniques but always producing the same output, a 

web page containing a brief description of the data and download links for downloading large 

files in formats like html, csv or xml. 
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Yet, ultimately, none of the already existing solutions served our purpose. The main 

reason for this was the fact that data resulting from scientific research can assume different 

structures, data types and is very likely to assume very large dimensions. Consequently, 

learning how to deal deal with such issues was one of our main tasks before building any 

kind of proposal for solution. 

This kind of problems is not really new as of today, and several technologies have already 

been created and progressively improved to overcome barriers on big data storing. After our 

technological background research we conclude that NoSQL would be centre of our solution 

and using SustData as a test case for the realization of our vision. 

Yet, before selecting NoSQL as the way to go, we had to prove in practice that this was 

really the best alternative. To this end, we conducted and extensive benchmark between SQL 

and NoSQL technologies that come to confirm that for this kind of problems NoSQL 

technologies would offer better overall performance. 

However, from this analysis another problem has emerged. If we would follow the 

NoSQL approach we had to guarantee high capability of physical storage since our test 

shown that NoSQL requires higher rates of physical storage for storing the same portion of 

data. We could not afford from a super machine that could be able to address the needs that a 

public dataset can require.  

Fortunately, we found the technique of splitting the data form the same database across as 

many servers as necessary through data sharding and the ability of building clusters. At this 

point, before building our proposed solution, we had pretty much the answers to our main 

problems. 
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5.2 Developed work 

NoSQL vs SQL Benchmark 

Although there are several articles and studies comparing SQL and NoSQL databases, we 

built our own study using the SustData dataset as a use case, what was important to evaluate 

which option will be the best for our purpose.  

We used PHP for the MySQL database and the NodeJS for the MongoDB database. This 

could raise doubts about the final results, but in our study we only measured the time 

consumed by the database operations, so the programming language used has no impact over 

the final results.  

The reason why we use PHP for the MySQL and NodeJS for the MongoDB was thanks to 

its drivers to interact with relational and non-relational databases. PHP offers great drivers for 

MySQL databases, such as PDO44 and active records from frameworks like Laravel45, Yii46, 

CodeIgniter and so on. On the other hand, NodeJS offers as well a great driver and modelling 

tools like Mongoose. 

As final result, we had MySQL with better results on write operations and MongoDB 

with better results on read operations. On write operations MongoDB consumed more disk 

space and took longer storing the same data, although several articles mention MongoDB as 

being faster both on read and write operations. But we believe that these results on writes 

were thanks the tool that we used for importing data directly from a CSV file, the 

mongorestore.  

Having the results, we built our conclusion based on our applications purposes. Since we 

are dealing with dataset publication and sharing, there will be much more data reads than 

writes. Because once the data is uploaded and shared, it will be unusual to suffer changes or 

                                                
44 PDO, http://php.net/manual/en/book.pdo.php [last accessed 21/02/2015] 
45 Laravel, https://laravel.com/ [last accessed 21/02/2015] 
46 Yii, http://www.yiiframework.com/ [last accessed 21/02/2015] 
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updates, on the other way, it will be very likely to be queried in different ways. And, for 

reading, MongoDB is the leader.   

Another advantage of taking MongoDB is its schema-less features. Public datasets are 

very likely to have non-homogeneous data structures and being able to easily handle different 

data structures within the same data collection is a big plus. 

OpenDataHub 

In our work definition we followed the waterfall sequence for software analysis, starting on 

requirements definition, use cases, prototypes and so on. In this phase, we decided to 

introduce two additional steps, the definition of the application and database architectures.  

Having this phase concluded we start a more interactive cycle between implementation 

and the application technologies. This interactive process was the result of the continuous 

increase in our familiarity with the used technologies, which meant that different visions were 

emerging during the development. 

After some interactions we found that our core of OpenDataHub application should suffer 

some changes in order to introduce REST concepts and standardize our client/server 

communication. It would turn the communication with our server side more homogeneous 

and standardized. This would also conduct our solution to a more modular structure, which 

made the implementation easier to understand , maintain, scale and test. 

At this time we also find unit tests as being important to guarantee the right behaviour of 

our components, so we decided to introduce Mocha, plus Chai and Sinon and with these a 

new manner to produce our code. First we write our unit tests and then we proceed with the 

solution development. This way we have a moment to stop, think in our component needs 

and responsibilities, describe the component through the tests and then implement it. 

Avoiding the implementation of solutions that at the end does not attend all our needs 

because we did not think about them from the beginning.  

Another major change in our solution along these interactions was the introduction of 

AngularJS along with Angular Material. At the beginning our frontend was implemented 

with jQuery and jQuery UI libraries but along the time we had the opportunity to take a 
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closer look over AngularJS framework and Angular Material and the advantages that it could 

bring to our project. This way we proceed with the refactor of our frontend implementation, 

building a more modular and clean solution. It also enabled us to create responsive interfaces 

and to introduce unit tests on the frontend implementation more easily. 

Considering the database, initially we had a single database with a set of collections that 

would sustain persistent data about users, users’ activity and SustData’s data.  

However, although this was enough for SustData dataset we had in mind build a solution 

that could serve many datasets as possible with different sizes. For that, we had to build a 

scalable solution and with that goal, we introduced data sharding. Furthermore, availability 

and data loss were major concerns as well so we proceed with data replication as well. 

As result, we came up with a cluster with three shards and in each shard a replication with 

three databases. This would enable us to divide our data into chunks across the shards and we 

could easily add more shards as we wish and data would automatically rebalance between 

these. 

On an ideal environment all these database nodes, both replication databases and shards, 

should be present on different servers, on different physical machines in order to guarantee 

that an unavailable server would not compromise data availability or integrity. But we did not 

have all this resources, so we had to build this structure on a single server launching mongo 

instances on different ports. 

This would not actually give us the advantages on data sharding but served as a use case 

for the used technology. 

Having our strategy set and a first stage of the project concluded, it was time to deploy it. 

Several hostage options were explored, including Amazon AWS for instance. But on most of 

them we could not find a free service that could serve our needs. This way M-ITI, Madeira 
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Interactive Technologies Institute47 provide us a server where we could install all our project 

dependencies, including Git who turn the deployment tasks much easier and clean to perform. 

OpenDataHub is an open source project and can be acceded on GitHub: 

https://github.com/OrencioRodolfo/OpenDataHub.git 

Here users will find the project sources and how can they download it, install and launch 

the application. 

For accessing SustData dataset, users can simply register on SustData’s web page and 

access all its public data (http://aveiro.m-iti.org:3000/). 

5.3 Future work 

NoSQL vs SQL Benchmark 

Like the OpenDataHub source code, the source code for the benchmark is also publicly 

available. So other users can use our source code and build their own studies. For instance, 

since the write operations presented results that maybe would not be the expected for the 

most of the people reading this study, some changes could be introduced and data could be 

written into the database through other techniques that could enhance the final results. 

The source code is available together with OpenDataHub source code and can be 

downloaded by anyone. 

OpenDataHub 

OpenDataHub until now has just SustData as use case but was designed to sustain any kind of 

dataset which different collections.  

However, at this point, in order to publish a new dataset, it would be necessary to install 

another project and all its dependencies and manage its data. All this is not pratical or easy to 

do.  

                                                
47 M-ITI, Madeira Interactive Technologies Institute, http://www.m-iti.org/ [last accessed 12-12-2015] 
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As future work we visualize a more abstract layer consisting on a dataset search engine 

where users could search for different datasets and access its details. Where this details area 

would be exactly or at least very similar to SustData presentation. In this way, any researcher 

could easily create as many datasets with as many collections as desired. 

Having users’ activity log, it would be interesting to build a dashboard area where data 

providers could find which operations data users perform more often over the published data, 

which kind of queries, which kind of users, what is the geographical location of the users 

interested on their data, and many other metrics. Basically it would be an analytics service for 

public scientific data. 
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