Joint Modelling of Longitudinal and Survival Data

Rui Martins

Summary

(1) Background

- Longitudinal and survival data
- Outline
(2) The basic framework
- Joint Models
- JM in medicine
- Software

3 HIV/AIDS Example

- Data
- Modelling
- Results

Data in longitudinal studies

- Multiple biomarkers, e.g. blood pressure or CD4 counts, are often collected repeatedly over time (longitudinal data)
- time to an event of interest, e.g. death from any cause (survival data)
- Examples
- PSA repeated measures and time to a recurrence of prostate cancer
- CD4 repeated measures and time to AIDS

Questions of interest

- Separate Analysis
- does treatment affect survival?
- are the average longitudinal evolutions different between males and females?
- Joint Analysis
- what is the effect of the longitudinal evolution of CD4 cell count in the hazard rate for death?
- how the association between markers evolves over time (evolution of the association)
- how marker-specific evolutions are related to each other (association of the evolutions)

Questions of interest

- Separate Analysis
- does treatment affect survival?
- are the average longitudinal evolutions different between males and females?
- Joint Analysis
- what is the effect of the longitudinal evolution of CD4 cell count in the hazard rate for death?
- how the association between markers evolves over time (evolution of the association)
- how marker-specific evolutions are related to each other (association of the evolutions)

Issues

- Longitudinal studies are often affected by (informative) drop-out, e.g. due to death: MCAR, MAR, MNAR
- Biomarkers are often measured with error
- Survival analysis assumes that covariates are measured without error: Internal vs External covariates

Principle

Simultaneous modelling of correlated longitudinal and survival data

If the two processes are associated \Rightarrow define a model for their joint probability distribution: $f\left(y_{1}, y_{2}\right)$

Objectives of a joint analysis

- explore the association between the two processes
- describe the longitudinal process stopped by the event
- predict the risk of event adjusted for the longitudinal process

Applications

- Arose primarily in the field of AIDS, relating CD4 trajectories to progression to AIDS in HIV ${ }^{+}$patients (Faucett and Thomas, 1996)
- Further developed in cancer, particularly modelling PSA levels and their association with prostate cancer recurrence (Proust-Lima and Taylor, 2009)

Joint Models to Analyse Longitudinal and Survival Data

Statistical Models

- Longitudinal model
- mixed effects model
- splines, etc.
- multiple markers of progression and/or different nature
- Gaussian, binary, Poisson
- continuous but non Gaussian
- Survival model
- Relative risk model (Proportional hazard model)
- Accelerated failure time model
- Competing risks; recurrent events; multiple events
- Linking structure
- depends on the purposes
- without consensus
- still evolving ...

Statistical Models

Main families of joint models

- Latent classes (Proust-Lima et al., 2012)
- Shared parameters (Wulfsohn and Tsiatis, 1997; Henderson et al., 2000; Gould et al., 2014)
- random-effects models
- Pattern-mixture models
- Selection models

General idea

How to specify the joint distribution, $f\left(y_{1}, y_{2}\right)$?

- directly
- factorize

$$
f\left(y_{1}, y_{2}\right)=f\left(y_{1} \mid y_{2}\right) f\left(y_{2}\right)=f\left(y_{2} \mid y_{1}\right) f\left(y_{1}\right)
$$

- use latent variables

$$
\begin{aligned}
& f\left(y_{1}, y_{2}\right)=\int f\left(y_{1}, y_{2} \mid \boldsymbol{b}\right) f(\boldsymbol{b}) d \boldsymbol{b}=\int f\left(y_{1} \mid \boldsymbol{b}\right) f\left(y_{2} \mid \boldsymbol{b}\right) f(\boldsymbol{b}) d \boldsymbol{b} \\
& f\left(y_{1}, y_{2}\right)=\int f\left(y_{1}, y_{2} \mid \boldsymbol{b}\right) f\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right) d \boldsymbol{b}=\int f\left(y_{1} \mid \boldsymbol{b}_{1}\right) f\left(y_{2} \mid \boldsymbol{b}_{2}\right) f\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right) d \boldsymbol{b}_{1} d \boldsymbol{b}_{2}
\end{aligned}
$$

Longitudinal submodel

Assumes observations of a normally distributed longitudinal marker for each time,

$$
y_{i}(t) \mid \boldsymbol{\theta} \sim \mathcal{N}\left(m_{i}(t), \sigma_{e}^{2}\right)
$$

- the mean level trajectory (linear mixed-effects model)

$$
m_{i}(t)=\mathbf{x}_{i}^{\top}(t) \boldsymbol{\beta}_{1}+\mathbf{z}_{i}^{\top}(t) \boldsymbol{b}_{i}
$$

- random-effects

$$
\boldsymbol{b}_{i} \sim \mathcal{N}\left(0, \Sigma_{b}\right)
$$

- more flexibility through polynomials or splines in \mathbf{x}_{i} and \mathbf{z}_{i}.

Survival submodel

Estimates T_{i}^{*}, but using only $T_{i}=\min \left(T_{i}^{*}, C_{i}\right)$ and δ_{i}. Assumes the following hazard model,

$$
h_{i}(t)=h_{0}(t) \exp \left\{\mathbf{v}_{i}^{\top} \boldsymbol{\beta}_{2}+\gamma \times m_{i}(t)\right\}
$$

- where $h_{0}(t)$ is the baseline hazard function (Weibull, piecewise exponential, splines...)
- \mathbf{v}_{i} is a vector of time-independent baseline covariates with an associated vector of log hazard ratios, $\boldsymbol{\beta}_{2}$
- $\gamma \times m_{i}(t)$ represents the linking structure.

How can we link longitudinal and survival data?

- Use the observed baseline biomarker values
- We're ignoring all the repeated measures and measurement error
- Use the repeated measures as a time-varying covariate
- We're still ignoring the measurement error
- Model the longitudinal outcome, and use predictions as a time-varying covariate
- Uncertainty in the longitudinal outcome is not carried through
- Model both processes simultaneously in a joint model, defining a joint probability distribution
- Reduce bias and maximize efficiency

Linking structure

What are the main characteristics of the longitudinal trajectory associated with the Survival?

- Current value parameterisation

$$
h_{i}(t)=h_{0}(t) \exp \left\{\mathbf{v}_{i}^{\top} \boldsymbol{\beta}_{2}+\gamma \times m_{i}(t)\right\}
$$

- Time-dependent slope

$$
h_{i}(t)=h_{0}(t) \exp \left\{\mathbf{v}_{i}^{\top} \boldsymbol{\beta}_{2}+\gamma_{1} \times m_{i}(t)+\gamma_{2} \times m_{i}^{\prime}(t)\right\}
$$

Linking structure II - shared parameters

A time-independent association Longitudinal submodel

$$
m_{i}(t)=\left(\beta_{0}+b_{0 i}\right)+\left(\beta_{1}+b_{1 i}\right) t
$$

Survival submodel

$$
\begin{aligned}
h_{i}(t) & =h_{0}(t) \exp \left\{\mathbf{v}_{i}^{\top} \boldsymbol{\beta}_{2}+\gamma\left(b_{0 i}+b_{1 i}\right)\right\} \\
h_{i}(t) & =h_{0}(t) \exp \left\{\mathbf{v}_{i}^{\top} \boldsymbol{\beta}_{2}+\gamma_{1} b_{0 i}+\gamma_{2} b_{1 i}\right\}
\end{aligned}
$$

random-effects: $\boldsymbol{b}_{i}=\left(b_{0 i}, b_{1 i}\right)$ with density $f\left(\boldsymbol{b}_{i}\right)$; usually a Gaussian

Linking structure III - random-effects

Random-effects parameterisation

$$
\begin{gathered}
m_{i}(t)=\left(\beta_{0}+b_{0 i}\right)+\left(\beta_{1}+b_{1 i}\right) t \\
h_{i}(t)=h_{0}(t) \exp \left\{\mathbf{v}_{i}^{\top} \boldsymbol{\beta}_{2}+\gamma\left(b_{2 i}\right)\right\}
\end{gathered}
$$

random-effects: $\boldsymbol{b}_{i}=\left(b_{0 i}, b_{1 i}, b_{2 i}\right)$ with density $f\left(\boldsymbol{b}_{i}\right)$; usually a Gaussian

Joint likelihood

$$
L(\boldsymbol{\theta}, \mathbf{b} \mid \mathcal{D})=\prod_{i=1}^{N}\left(\prod_{j=1}^{n_{i}} p\left(y_{i}\left(t_{i j}\right) \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}\right)\right) p\left(T_{i}, \delta_{i} \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}\right)
$$

Joint likelihood

$$
L(\boldsymbol{\theta}, \mathbf{b} \mid \mathcal{D})=\prod_{i=1}^{N}\left(\prod_{j=1}^{n_{i}} p\left(y_{i}\left(t_{i j}\right) \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}\right)\right) p\left(T_{i}, \delta_{i} \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}\right)
$$

where

$$
p\left(y_{i}\left(t_{i j}\right) \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma_{e}^{2}}} \exp \left\{-\frac{\left[y_{i}\left(t_{i j}\right)-m_{i}\left(t_{i j}\right)\right]^{2}}{2 \sigma_{e}^{2}}\right\}
$$

Joint likelihood

$$
L(\boldsymbol{\theta}, \mathbf{b} \mid \mathcal{D})=\prod_{i=1}^{N}\left(\prod_{j=1}^{n_{i}} p\left(y_{i}\left(t_{i j}\right) \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}\right)\right) p\left(T_{i}, \delta_{i} \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}\right)
$$

where

$$
\begin{aligned}
p\left(T_{i}, \delta_{i} \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}\right)= & {\left[h_{0}\left(T_{i}\right) \exp \left\{\mathbf{v}_{i}^{\top} \boldsymbol{\beta}_{2}+\gamma \times m_{i}\left(T_{i}\right)\right\}\right]^{\delta_{i}} \times } \\
& \exp \left\{-\int_{0}^{T_{i}} h_{0}(u) \exp \left\{\mathbf{v}_{i}^{\top} \boldsymbol{\beta}_{2}+\gamma \times m_{i}(u)\right\} d u\right\}
\end{aligned}
$$

Prediction

Probably the most "marketable" feature of Joint Models

- A growing interest in a tailored made medical decision
- Personalized Medicine
- Shared Decision Making
- This is of high relevance in various diseases
- cancer research, cardiovascular diseases, HIV research ...
- Bayesian approach

Physicians are interested in accurate prognostic tools that will inform them about the future prospect of a patient to adjust medical care

Dynamic Predictions

Example: HIV/AIDS patients receiving HAART therapy

- Interest in predicting survival probabilities for a new patient i that has provided a set of CD4 measurements up to a specific time point t
- What do we know for the patient?
- a series of CD4 and/or viral load
- is event-free up to the last measurement
- General Questions:
- Can we utilize CD4 or viral load measurements to predict survival?
- When to plan the next visit for a patient?
- Survival probabilities and the visiting plan can be dynamically updated as additional information is recorded - Dynamic
Predictions (Rizopoulos 2011)

Predictions (Bayesian)

Suppose a new individual data, $\tilde{\mathcal{D}}=\{\tilde{\mathbf{y}}, \tilde{T}=t, \tilde{\delta}=0\}$

- Future longitudinal values at time $s>t$

$$
p(\tilde{y}(s) \mid \mathcal{D}, \tilde{\mathcal{D}})=\iint p(\tilde{y}(s) \mid \tilde{\mathcal{D}}, \tilde{\boldsymbol{b}}, \boldsymbol{\theta}) p(\tilde{\boldsymbol{b}} \mid \tilde{\mathcal{D}}, \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathcal{D}) d \boldsymbol{\theta} d \tilde{\boldsymbol{b}}
$$

- Future survival probabilities at time $s>t$

$$
p\left(\tilde{T}^{*}>s \mid \mathcal{D}, \tilde{T}^{*}>t, \tilde{\mathbf{y}}\right)=\iint \frac{\tilde{S}(s \mid \tilde{\mathbf{y}}, \tilde{\boldsymbol{b}})}{\tilde{S}(t \mid \tilde{\mathbf{y}}, \tilde{\boldsymbol{b}})} p(\tilde{\boldsymbol{b}} \mid \tilde{\mathcal{D}}, \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathcal{D}) d \boldsymbol{\theta} d \tilde{\boldsymbol{b}}
$$

Software

- R - JM, joineR, frailtypack, INLA
- WinBUGS, Stan, JMBayes
- STATA - stjm command

Computationally intensive

Software

```
jointModel(lmeObject, survObject, timeVar,
    parameterization = c("value", "slope", "both"),
    method = c("weibull-PH-aGH", "weibull-PH-GH", "weibull-AFT-aGH",
        "weibull-AFT-GH", "piecewise-PH-aGH", "piecewise-PH-GH",
        "Cox-PH-aGH", "Cox-PH-GH", "spline-PH-aGH", "spline-PH-GH",
        "ch-Laplace"),
    interFact = NULL, derivForm = NULL, lag = 0, scaleWB = NULL,
    CompRisk = FALSE, init = NULL, control = list(), ...)
jointModelBayes(lmeObject, survObject, timeVar,
        param = c("td-value", "td-extra", "td-both", "shared-betasRE", "shared-RE"),
    extraForm = NULL, baseHaz = c("P-splines", "regression-splines"),
    transFun = NULL, densLong = NULL, lag = 0, df.RE = NULL,
    estimateWeightFun = FALSE, weightFun = NULL, init = NULL,
    priors = NULL, scales = NULL, control = list(), ...)
```


Database - Martins, Silva, Andreozzi (2016) Stat. Med.

- network of 88 laboratories located in every state in Brazil during 2002-2006;
- Sample: $n=4654$ individuals;
- Outcomes: CD4+ ${ }^{+}$lymphocyte counts and survival time;
- Covariates: age ($<50=0, \geq 50=1$); gender (Female=0, Male=1); prevoi (previous opportunistic infection at study entry=1, no previous infection=0); region (the 27 states of Brazil); time;
- Patients: 320 deaths. 88% between 15 and 49 years old; 60% males. 61\% no previous infection. Initial CD4 median: 245 cells $/ \mathrm{mm}^{3}$ (men- 226 cells $/ \mathrm{mm}^{3}$; women - 263 cells $/ \mathrm{mm}^{3}$).

Exploratory trajectory plots

CD4 - counting evolution per number of exame

CD4 transformation

CD4 by PrevOI

CD4 by region

CD4 by gender

Adjusted joint model

Longitudinal specification

$$
\begin{aligned}
\sqrt{\mathrm{CD} 4} \mid \boldsymbol{b}_{i k}, \boldsymbol{\beta}_{1}, \sigma_{e}^{2} \sim & \mathcal{N}\left(m_{i k j}, \sigma^{2}\right) \\
m_{i k j}= & \beta_{11}+\beta_{12} t_{i k j}+\beta_{13} t_{i k j}^{2}+\beta_{14} t_{i k j}^{3}+ \\
& b_{1 i k}+b_{2 i k} t_{i k j}+b_{3 i k} t_{i k j}^{2}+b_{4 i k} t_{i k j}^{3}+ \\
& \beta_{15} \text { gender }_{i k}+\beta_{16} \text { age }_{i k}+\beta_{17} \text { PrevOl }_{i k}
\end{aligned}
$$

Survival specification

$$
\begin{aligned}
& T_{i k} \mid \boldsymbol{b}_{i k}, \boldsymbol{\beta}_{2}, Q_{k} \sim \mathcal{W}\left(1, \lambda_{i k}(t)\right) \equiv \mathcal{E}\left(\lambda_{i k}(t)\right) \\
& \lambda_{i k}(t)=\exp \left\{\beta_{21}+\beta_{22} \operatorname{gender}_{i k}+\beta_{23} \text { age }_{i k}+\beta_{24} \operatorname{PrevOI}_{i k}+\sum_{s=1}^{4} \gamma_{s} b_{s i k}+Q_{k}\right\} \\
& Q_{k} \mid \sigma_{Q}^{2} \sim \operatorname{ICAR}\left(\sigma_{Q}^{2}\right), \quad k=1, \ldots, 27
\end{aligned}
$$

Separate vs Joint

- two patients:
- male, 31 years old, without previous opportunistic infection and censored time 1645 days
- male, 29 years old, with previous opportunistic infection and censored time 1508 days
- Posterior median survival time: joint model improves the survival estimates

Predictions

Spatial relative risk

Faucett, C. L., and Thomas, D. C.

Simultaneously modelling censored survival data and repeatedly measured covariates: a gibbs sampling approach.
Statistics in Medicine 15, 15 (Aug 1996), 1663-1685.
Gould, A., Boye, M., Crowther, M., Ibrahim, J., Quartey, G., Micallef, S., and Bois, F.
Joint modeling of survival and longitudinal non-survival data: current methods and issues. report of the dia bayesian joint modeling working group.
Statistics in Medicine 34, 14 (Jun 30 2015), 2181-2195.
Ibrahim, J. G., Chen, M. H., and Sinha, D.
Bayesian Survival Analysis.
Springer-Verlag, 2001.
Martins, R., Silva, G. L., and Andreozzi, V.
Bayesian joint modeling of longitudinal and spatial survival aids data.
Statistics in Medicine (2016), n/a-n/a.
sim. 6937.
Proust-lima, C., and Taylor, J.
Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment psa: a joint modeling approach.
Biostatistics 10, 3 (2009), 535-549.
Rizopoulos, D.
Jm: An r package for the joint modelling of longitudinal and time-to-event data.
Journal of Statistical software 35 (9) (2010), 1-33.
Rizopoulos, D.
Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data.
Biometrics 67 (2011), 819-829.
Rizopoulos, D.
Joint Models for Longitudinal and Time-to-Event Data With Applications in R.
Chapman and Hall/CRC, 2012.

Obrigado!

