A Bayesian Joint Dispersion Model With Flexible Links

Rui Martins

Egas Moniz Health School
Egas Moniz Interdisciplinary Research Center, Portugal

Summary

(1)

Background

- Longitudinal studies
- Outline
(2) HIV/AIDS Application
- Data
- Exploratory analysis
- Joint Model

Questions of interest

- Biomarker, Y_{1}
- e.g. CD4 counts, collected repeatedly over time (longitudinal data)
- time to an event of interest, Y_{2}
- e.g. death from any cause (survival data)
- Separate Analysis
- does treatment affect survival?
- are the average longitudinal evolutions different between males and females?
- Joint Analysis
- what is the effect of the missing information due to drop-out in assessing the trends of the repeated measures?
- what is the effect of the longitudinal evolution of CD4 cell count in the hazard rate for death?

Questions of interest

- Biomarker, Y_{1}
- e.g. CD4 counts, collected repeatedly over time (longitudinal data)
- time to an event of interest, Y_{2}
- e.g. death from any cause (survival data)
- Separate Analysis
- does treatment affect survival?
- are the average longitudinal evolutions different between males and females?
- Joint Analysis
- what is the effect of the missing information due to drop-out in assessing the trends of the repeated measures?
- what is the effect of the longitudinal evolution of CD4 cell count in the hazard rate for death?

Questions of interest

- Biomarker, Y_{1}
- e.g. CD4 counts, collected repeatedly over time (longitudinal data)
- time to an event of interest, Y_{2}
- e.g. death from any cause (survival data)
- Separate Analysis
- does treatment affect survival?
- are the average longitudinal evolutions different between males and females?
- Joint Analysis
- what is the effect of the missing information due to drop-out in assessing the trends of the repeated measures?
- what is the effect of the longitudinal evolution of CD4 cell count in the hazard rate for death?

Correlated data in longitudinal studies

If the two processes are associated \Rightarrow define a model for their joint probability distribution: $f\left(y_{1}, y_{2}\right)$

Analysing HIV/AIDS data through
 A Bayesian Joint Dispersion Model with Flexible Links

Data

- network of 88 laboratories located in every state in Brazil during Jan 2002 - Dec 2006;
- Sample: $n=500$ individuals; 2757 repeated measurements;
- Outcomes: CD4+ ${ }^{+}$lymphocyte counts, Y, and time-to-death, T;
- Covariates: age ($<50=0, \geq 50=1$); sex (Female=0, Male=1); PrevOl (previous opportunistic infection at study entry=1, no previous infection=0); measurement times; date of diagnosis; date of death; failure indicator, δ;
- Patients: 34 deaths. 88\% between 15 and 49 years old; 60\% males. 61\% no previous infection. Initial CD4 median: 269 cells $/ \mathrm{mm}^{3}$ (men- 250 cells $/ \mathrm{mm}^{3}$; women- 295 cells $/ \mathrm{mm}^{3}$).

Longitudinal outcome

CD4 - counting evolution per number of exam

Intra-individual variance (dispersion)

Individuals values of the $\sqrt{C D 4}$ vs Std. Deviation (ordered) suggests considerable within-subject variance heterogeneity. Individuals with higher $\sqrt{C D 4}$ values are associated with a higher variability.

Longitudinal specification

- Mixed-effects dispersion model (McLain et al. 2012)

$$
\begin{align*}
y_{i j} \mid \boldsymbol{b}_{i}, \sigma_{i}^{2} & \sim \mathcal{N}\left(m_{i}\left(t_{i j}\right), \sigma_{i}^{2}\right), \quad j=1, \ldots, n_{i} \tag{1}\\
m_{i}\left(t_{i j}\right) & =\boldsymbol{\beta}_{1}^{\top} \mathbf{x}_{1 i}\left(t_{i j}\right)+\boldsymbol{b}_{1 i}^{\top} \mathbf{w}_{1 i}\left(t_{i j}\right), \tag{2}\\
\sigma_{i}^{2} & =\sigma_{0}^{2} \exp \left\{\boldsymbol{\beta}_{2}^{\top} \mathbf{x}_{2 i}\left(t_{i j}\right)+\boldsymbol{b}_{2 i}^{\top} \mathbf{w}_{2 i}\left(t_{i j}\right)\right\}, \tag{3}
\end{align*}
$$

Longitudinal specification

- Mixed-effects dispersion model (McLain et al. 2012)

$$
\begin{align*}
y_{i j} \mid \boldsymbol{b}_{i}, \sigma_{i}^{2} & \sim \mathcal{N}\left(m_{i}\left(t_{i j}\right), \sigma_{i}^{2}\right), \quad j=1, \ldots, n_{i} \tag{1}\\
m_{i}\left(t_{i j}\right) & =\boldsymbol{\beta}_{1}^{\top} \mathbf{x}_{1 i}\left(t_{i j}\right)+\boldsymbol{b}_{1 i}^{\top} \mathbf{w}_{1 i}\left(t_{i j}\right), \tag{2}\\
\sigma_{i}^{2} & =\sigma_{0}^{2} \exp \left\{\boldsymbol{\beta}_{2}^{\top} \mathbf{x}_{2 i}\left(t_{i j}\right)+\boldsymbol{b}_{2 i}^{\top} \mathbf{w}_{2 i}\left(t_{i j}\right)\right\}, \tag{3}
\end{align*}
$$

- $\mathbf{y}_{i}=\left(y_{i 1}, \ldots, y_{i n_{i}}\right) \rightarrow n_{i}$ observed repeated measures, $\sqrt{C D 4}$
- $\mathbf{t}_{i}=\left(t_{i 1}, \ldots, t_{i n_{i}}\right) \rightarrow$ visiting times
- $\mathrm{x}_{1 i}, \mathrm{x}_{2 i}, \mathrm{w}_{1 i}$ and $\mathrm{w}_{2 i} \rightarrow$ individual covariates (time-dependent?)
- β_{1} and $\beta_{2} \rightarrow$ population parameters
- $\left(\boldsymbol{b}_{1 i}^{\top}, \boldsymbol{b}_{2 i}^{\top}\right)=\boldsymbol{b}_{i} \mid \Sigma \sim \mathcal{N}_{p}(\mathbf{0}, \Sigma) \rightarrow$ time-independent random-effects

Longitudinal outcome

$$
\sqrt{\mathrm{CD4}}_{i j} \mid \boldsymbol{b}_{i}, \sigma_{i}^{2} \sim \mathcal{N}\left(m_{i}\left(t_{i j}\right), \sigma_{i}^{2}\right)
$$

- Longitudinal mean

$$
\begin{equation*}
m_{i}\left(t_{i j}\right)=\beta_{10}+\beta_{11} \text { sex }_{i}+\beta_{12} \text { age }_{i}+\beta_{13} \text { PrevOl }_{i}+\beta_{14} t_{i j}+b_{1 i, 1}+b_{1 i, 2} t_{i j} \tag{4}
\end{equation*}
$$

- Dispersion model (3) may assume:

$$
\begin{align*}
& \sigma_{i}^{2}=\sigma_{0}^{2} \exp \left\{\beta_{21} \text { sex }+\beta_{22} \text { age }+\beta_{23} \operatorname{PrevOI}+b_{2 i}\right\} \tag{5}\\
& \sigma_{i}^{2}=\sigma_{0}^{2} \exp \left\{b_{2 i}\right\} \tag{6}\\
& \sigma_{i}^{2} \tag{7}\\
& \sigma_{i}^{2}=\sigma_{0}^{2} \tag{8}
\end{align*}
$$

- Priors

Longitudinal outcome

$$
\sqrt{\mathrm{CD}}_{i j} \mid \boldsymbol{b}_{i}, \sigma_{i}^{2} \sim \mathcal{N}\left(m_{i}\left(t_{i j}\right), \sigma_{i}^{2}\right)
$$

- Longitudinal mean

$$
\begin{equation*}
m_{i}\left(t_{i j}\right)=\beta_{10}+\beta_{11} \text { sex }_{i}+\beta_{12} \text { age }_{i}+\beta_{13} \text { PrevOl }_{i}+\beta_{14} t_{i j}+b_{1 i, 1}+b_{1 i, 2} t_{i j} \tag{4}
\end{equation*}
$$

- Dispersion model (3) may assume:

$$
\begin{align*}
& \sigma_{i}^{2}=\sigma_{0}^{2} \exp \left\{\beta_{21} \text { sex }+\beta_{22} \text { age }+\beta_{23} \operatorname{PrevOI}+b_{2 i}\right\} \tag{5}\\
& \sigma_{i}^{2}=\sigma_{0}^{2} \exp \left\{b_{2 i}\right\} \tag{6}\\
& \sigma_{i}^{2} \tag{7}\\
& \sigma_{i}^{2}=\sigma_{0}^{2} \tag{8}
\end{align*}
$$

- Priors
- $\beta_{1 p} \sim \mathcal{N}(0,100) ; p=0, \ldots, 4$ and $\beta_{2 q} \sim \mathcal{N}(0,100) ; q=1, \ldots, 3$
- $\boldsymbol{b}_{i} \mid \Sigma \sim \mathcal{N}_{p}(\mathbf{0}, \Sigma) ; \quad \Sigma^{-1} \sim \mathcal{W} \operatorname{ish}(R, \xi)$
- $\log \left(\sigma_{0}\right) \sim \mathcal{U}(-100,100)$; or $\log \left(\sigma_{i}\right) \sim \mathcal{U}(-100,100)$
- Other options: $1 / \sigma_{0}^{2} \sim \mathcal{G}(\epsilon, \epsilon)$ and $\sigma_{0} \mid \varpi \sim \mathrm{h}-\mathcal{C}(\varpi), \varpi \sim \mathcal{U}(0,100)$.

Survival specification

- Time-dependent coefficients (Penalized cubic B-Splines)

$$
\begin{equation*}
h_{i}\left(t \mid \boldsymbol{b}_{i}, \sigma_{i}\right)=h_{0}(t) \exp \left\{\boldsymbol{\beta}_{3}^{\top} \mathbf{x}_{3 i}+\mathcal{C}_{i}\left\{\boldsymbol{b}_{i}, \sigma_{i} ; \boldsymbol{g}(t)\right\}\right\}=h_{0}(t) \exp \left\{\varrho_{i}(t)\right\} \tag{9}
\end{equation*}
$$

Survival specification

- Time-dependent coefficients (Penalized cubic B-Splines)

$$
\begin{equation*}
h_{i}\left(t \mid \boldsymbol{b}_{i}, \sigma_{i}\right)=h_{0}(t) \exp \left\{\boldsymbol{\beta}_{3}^{\top} \mathbf{x}_{3 i}+\mathcal{C}_{i}\left\{\boldsymbol{b}_{i}, \sigma_{i} ; \boldsymbol{g}(t)\right\}\right\}=h_{0}(t) \exp \left\{\varrho_{i}(t)\right\} \tag{9}
\end{equation*}
$$

- $\mathcal{C}_{i}\{.\} \rightarrow$ specifies which components of the longitudinal process are related to $h_{i}($.
- Link \rightarrow Shared parameters - b_{i}, σ_{i}

Survival specification

- Time-dependent coefficients (Penalized cubic B-Splines)

$$
\begin{equation*}
h_{i}\left(t \mid \boldsymbol{b}_{i}, \sigma_{i}\right)=h_{0}(t) \exp \left\{\boldsymbol{\beta}_{3}^{\top} \mathbf{x}_{3 i}+\mathcal{C}_{i}\left\{\boldsymbol{b}_{i}, \sigma_{i} ; \boldsymbol{g}(t)\right\}\right\}=h_{0}(t) \exp \left\{\varrho_{i}(t)\right\} \tag{9}
\end{equation*}
$$

- $\mathcal{C}_{i}\{.\} \rightarrow$ specifies which components of the longitudinal process
- Link \rightarrow Shared parameters
- $\mathrm{x}_{3 i} \rightarrow$ baseline covariates
- $\beta_{3} \rightarrow$ population parameters
- $h_{0}(t) \rightarrow$ parametric (e.g. Weibull); P-Splines; Piecewise constant function.
- $\boldsymbol{g}(t)=\left(g_{1}(t), \ldots, g_{L}(t)\right) \rightarrow$ suitable vector of smooth functions (P-Splines) representing the time-dependent coefficients

Time-to-death

$$
\begin{equation*}
h_{i}\left(t \mid \boldsymbol{b}_{i}, \sigma_{i}\right)=h_{0}(t) \exp \left\{\boldsymbol{\beta}_{3}^{\top} \mathbf{x}_{3 i}+\mathcal{C}_{i}\left\{\boldsymbol{b}_{i}, \sigma_{i} ; \boldsymbol{g}(t)\right\}\right\}=h_{0}(t) \exp \left\{\varrho_{i}(t)\right\} \tag{10}
\end{equation*}
$$

- all models

$$
\begin{equation*}
\boldsymbol{\beta}_{3}^{\top} \mathbf{x}_{3 i}=\beta_{31} \operatorname{sex}_{i}+\beta_{32} \text { age }_{i}+\beta_{33} \text { PrevOl }_{i} \tag{11}
\end{equation*}
$$

- \mathcal{C}_{i} (.) may assume:

$$
\begin{aligned}
& \mathcal{C}_{i}(.)=g_{1}(t) b_{1 i, 1}+g_{2}(t) b_{1 i, 2}+g_{3}(t) b_{2 i} \\
& \mathcal{C}_{i}(.)=g_{1}(t) b_{1 i, 1}+g_{2}(t) b_{1 i, 2}+g_{3}(t) \sigma_{i} \\
& \mathcal{C}_{i}(.)=g_{1}(t) b_{1 i, 1}+g_{2}(t) b_{1 i, 2}
\end{aligned}
$$

- $g_{1}(t), g_{2}(t), g_{3}(t) \rightarrow$ Penalized Splines with 19 internal knots.
- 3 scenarios for $h_{0}(t)=\log \left(g_{0}(t)\right) \rightarrow$ Weibull, Penalized Splines or piecewise constant

Time-to-death

$$
\begin{equation*}
h_{i}\left(t \mid \boldsymbol{b}_{i}, \sigma_{i}\right)=h_{0}(t) \exp \left\{\boldsymbol{\beta}_{3}^{\top} \mathbf{x}_{3 i}+\mathcal{C}_{i}\left\{\boldsymbol{b}_{i}, \sigma_{i} ; \boldsymbol{g}(t)\right\}\right\}=h_{0}(t) \exp \left\{\varrho_{i}(t)\right\} \tag{10}
\end{equation*}
$$

- all models

$$
\boldsymbol{\beta}_{3}^{\top} \mathbf{x}_{3 i}=\beta_{31} \operatorname{sex}_{i}+\beta_{32} \text { age }_{i}+\beta_{33} \operatorname{PrevOl}_{i}
$$

- $\mathcal{C}_{i}($. $)$ may assume:

$$
\begin{align*}
& \mathcal{C}_{i}(.)=g_{1}(t) b_{1 i, 1}+g_{2}(t) b_{1 i, 2}+g_{3}(t) b_{2 i} \tag{12}\\
& \mathcal{C}_{i}(.)=g_{1}(t) b_{1 i, 1}+g_{2}(t) b_{1 i, 2}+g_{3}(t) \sigma_{i} \tag{13}\\
& \mathcal{C}_{i}(.)=g_{1}(t) b_{1 i, 1}+g_{2}(t) b_{1 i, 2} \tag{14}
\end{align*}
$$

- $g_{1}(t), g_{2}(t), g_{3}(t) \rightarrow$ Penalized Splines with 19 internal knots.
- 3 scenarios for $h_{0}(t)=\log \left(g_{0}(t)\right) \rightarrow$ Weibull, Penalized Splines or piecewise constant

Time-to-death

$$
\begin{equation*}
h_{i}\left(t \mid \boldsymbol{b}_{i}, \sigma_{i}\right)=h_{0}(t) \exp \left\{\boldsymbol{\beta}_{3}^{\top} \mathbf{x}_{3 i}+\mathcal{C}_{i}\left\{\boldsymbol{b}_{i}, \sigma_{i} ; \boldsymbol{g}(t)\right\}\right\}=h_{0}(t) \exp \left\{\varrho_{i}(t)\right\} \tag{10}
\end{equation*}
$$

- all models

$$
\boldsymbol{\beta}_{3}^{\top} \mathbf{x}_{3 i}=\beta_{31} \operatorname{sex}_{i}+\beta_{32} \text { age }_{i}+\beta_{33} \operatorname{PrevOl}_{i}
$$

- $\mathcal{C}_{i}($.$) may assume:$

$$
\begin{aligned}
& \mathcal{C}_{i}(.)=g_{1}(t) b_{1 i, 1}+g_{2}(t) b_{1 i, 2}+g_{3}(t) b_{2 i} \\
& \boldsymbol{c}_{i}(.)=g_{1}(t) b_{1 i, 1}+g_{2}(t) b_{1 i, 2}+g_{3}(t) \sigma_{i} \\
& \boldsymbol{C}_{i}(.)=g_{1}(t) b_{1 i, 1}+g_{2}(t) b_{1 i, 2}
\end{aligned}
$$

- $g_{1}(t), g_{2}(t), g_{3}(t) \rightarrow$ Penalized Splines with 19 internal knots.
- $g_{l}(t)=\sum_{q=1}^{19} \gamma_{l q} B_{l q}(t), \quad l=1,2,3$
- $\gamma_{l 1} \sim \mathcal{N}(0,1000), \quad \gamma_{l q} \mid \tau_{l}^{2} \sim \mathcal{N}\left(\gamma_{l, q-1}, \tau_{l}^{2}\right), \quad q=2, \ldots, 19$
- $1 / \tau_{l}^{2} \sim \mathcal{G}(0.001,0.001), l=0,1,2,3$.
- 3 scenarios for $h_{0}(t)=\log \left(g_{0}(t)\right) \rightarrow$ Weibull, Penalized Splines or piecewise constant

Time-to-death

$$
\begin{equation*}
h_{i}\left(t \mid \boldsymbol{b}_{i}, \sigma_{i}\right)=h_{0}(t) \exp \left\{\boldsymbol{\beta}_{3}^{\top} \mathbf{x}_{3 i}+\mathcal{C}_{i}\left\{\boldsymbol{b}_{i}, \sigma_{i} ; \boldsymbol{g}(t)\right\}\right\}=h_{0}(t) \exp \left\{\varrho_{i}(t)\right\} \tag{10}
\end{equation*}
$$

- all models

$$
\beta_{3}^{\top} \mathbf{x}_{3 i}=\beta_{31} \operatorname{sex}_{i}+\beta_{32} \text { age }_{i}+\beta_{33} \operatorname{PrevOl}_{i}
$$

- \mathcal{C}_{i} (.) may assume:
- 3 scenarios for $h_{0}(t)=\log \left(g_{0}(t)\right) \rightarrow$ Weibull, Penalized Splines or piecewise constant

Joint likelihood

We consider:

- $\mathbf{y}_{i}\left|\boldsymbol{b}_{i} \perp T_{i}\right| \boldsymbol{b}_{i} ; \quad y_{i j}\left|\boldsymbol{b}_{i} \perp y_{i l}\right| \boldsymbol{b}_{i}, j \neq l$
- non-informative right censoring

$$
L(\boldsymbol{\theta}, \mathbf{b}, \boldsymbol{\sigma} \mid \mathcal{D})=\prod_{i=1}^{N}\left(\prod_{j=1}^{n_{i}} p\left(y_{i}\left(t_{i j}\right) \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}, \sigma_{i}^{2}\right)\right) p\left(T_{i}, \delta_{i} \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}, \sigma_{i}\right)
$$

where

- $\mathcal{D}=\left\{\mathcal{D}_{i}\right\}_{i=1}^{N}=\left\{\left(\mathbf{y}_{i}, \mathbf{t}_{i}, T_{i}, \delta_{i}\right)\right\}_{i=1}^{N} \rightarrow$ observed data for the N independent individuals
- $\boldsymbol{\theta} \rightarrow$ other parameters;
- $p(.) \rightarrow$ suitable density function

Joint likelihood

We consider:

- $\mathbf{y}_{i}\left|\boldsymbol{b}_{i} \perp T_{i}\right| \boldsymbol{b}_{i} ; \quad y_{i j}\left|\boldsymbol{b}_{i} \perp y_{i l}\right| \boldsymbol{b}_{i}, j \neq l$
- non-informative right censoring

$$
L(\boldsymbol{\theta}, \mathbf{b}, \boldsymbol{\sigma} \mid \mathcal{D})=\prod_{i=1}^{N}\left(\prod_{j=1}^{n_{i}} p\left(y_{i}\left(t_{i j}\right) \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}, \sigma_{i}^{2}\right)\right) p\left(T_{i}, \delta_{i} \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}, \sigma_{i}\right)
$$

where

$$
p\left(y_{i}\left(t_{i j}\right) \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}, \sigma_{i}^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left\{-\frac{\left[y_{i}\left(t_{i j}\right)-m_{i}\left(t_{i j}\right)\right]^{2}}{2 \sigma_{i}^{2}}\right\}
$$

Joint likelihood

We consider:

- $\mathbf{y}_{i}\left|\boldsymbol{b}_{i} \perp T_{i}\right| \boldsymbol{b}_{i} ; \quad y_{i j}\left|\boldsymbol{b}_{i} \perp y_{i l}\right| \boldsymbol{b}_{i}, j \neq l$
- non-informative right censoring

$$
L(\boldsymbol{\theta}, \mathbf{b}, \boldsymbol{\sigma} \mid \mathcal{D})=\prod_{i=1}^{N}\left(\prod_{j=1}^{n_{i}} p\left(y_{i}\left(t_{i j}\right) \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}, \sigma_{i}^{2}\right)\right) p\left(T_{i}, \delta_{i} \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}, \sigma_{i}\right)
$$

where

$$
\begin{aligned}
p\left(T_{i}, \delta_{i} \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}, \sigma_{i}\right)= & h\left(T_{i} \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}, \sigma_{i}\right)^{\delta_{i}} \times S\left(T_{i} \mid \boldsymbol{\theta}, \boldsymbol{b}_{i}, \sigma_{i}\right) \\
= & {\left[h_{0}\left(T_{i}\right) \exp \left\{\boldsymbol{\beta}_{3}^{\top} \mathbf{x}_{3 i}+\mathcal{C}_{i}\left\{\boldsymbol{b}_{i}, \sigma_{i} ; \boldsymbol{g}(t)\right\}\right\}\right]^{\delta_{i}} \times } \\
& \exp \left\{-\int_{0}^{T_{i}} h_{0}(u) \exp \left\{\boldsymbol{\beta}_{3}^{\top} \mathbf{x}_{3 i}+\mathcal{C}_{i}\left\{\boldsymbol{b}_{i}, \sigma_{i} ; \boldsymbol{g}(t)\right\}\right\} d u\right\}
\end{aligned}
$$

Models comparison

MCMC simulation within WinBUGS.

Longitudinal model		Survival model			
m_{i}	σ_{i}^{2}	$\varrho_{i}(t)$	h_{0}		
			Weibull	P-Spline	Piecewise
(4)	(5)	$(11)+(12)$	14671	12573	14317
(4)	(6)	(11) + (12)	14700	12848	14483
(4)	(5)		14307	12605	13365
(4)	(6)	$+(13)$	14452	12917	13571
(4)	(7)	+ (13)	13134	12104 \%	12921
(4)	(8)		13956	12887	13533
(4)	(5)		14811	13334	14463
(4)	(6)	$(11)+(14)$	14923	13688	14599
(4)	(7)	+(14)	14314	13144	13968
(4)	(8)		14627	13553	14355
(4)	(8)	$(11)+g_{1} b_{1 i, 1}+g_{2} b_{1 i, 2}$	16984	15779	16383

Tabela: WAIC values for the 33 joint models.
Best fit \Rightarrow share the individual random-effects and the individual std-deviation considered as a covariate for the hazard model (Model \&). The heteroscedasticity is related to the survival time.

Posterior estimates for the time-dependent coefficients

Figure 1: Posterior mean estimates, together with the corresponding 95\% Credible Bands (CB), for the selected model \%. The top left panel shows $g_{0}=\log \left(h_{0}\right)$ and the subsequent panels have the time-varying regression coefficients as a function of time in years, t.

Brezger, A., and Lang, S.

Simultaneous probability statements for bayesian p-splines.
Statistical Modelling 8, 2 (2008), 141-168.
Faucett, C. L., and Thomas, D. C.
Simultaneously modelling censored survival data and repeatedly measured covariates: a gibbs sampling approach. Statistics in Medicine 15, 15 (Aug 1996), 1663-1685.

Ibrahim, J. G., Chen, M. H., and Sinha, D.
Bayesian Survival Analysis.
Springer-Verlag, 2001.
Lang, S., and Brezger, A.
Bayesian p-splines.
Journal of Computational and Graphical Statistics 13, 1 (2004), 183-212.
Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D.
Winbugs - a bayesian modelling framework: Concepts, structure, and extensibility.
Statistics and Computing 10 (2000), 325-337.
McLain, A. C., Lum, K. J., and Sundaram, R.
A joint mixed effects dispersion model for menstrual cycle length and time-to-pregnancy.
Biometrics 68, 2 (Feb 2012), 648-656.
Rizopoulos, D.
Joint Models for Longitudinal and Time-to-Event Data With Applications in R.
Chapman and Hall/CRC, 2012.

Thank you!

