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Abstract

Joint analysis of longitudinal and survival data has received increasing atten-

tion in the recent years, especially for analyzing cancer and AIDS data. As both

repeated measurements (longitudinal) and time-to-event (survival) outcomes are

observed in an individual, a joint modeling is more appropriate because it takes

into account the dependence between the two types of responses, which are often

analyzed separately. We propose a Bayesian hierarchical model for jointly modeling

longitudinal and survival data considering functional time and spatial frailty effects,

respectively. That is, the proposed model deals with nonlinear longitudinal effects

and spatial survival effects accounting for the unobserved heterogeneity among indi-

viduals living in the same region. This joint approach is applied to a cohort study of

patients with HIV/AIDS in Brazil during the years 2002–2006. Our Bayesian joint

model presents considerable improvements in the estimation of survival times of the

Brazilian HIV/AIDS patients when compared with those ones obtained through a

separate survival model and shows that the spatial risk of death is the same across

the different Brazilian states.
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1169-056 Lisboa, Portugal.
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1 Introduction

In several biomedical studies, longitudinal and survival data are collected simultaneously

but often separately analyzed. A joint analysis of these type of data has some advantages

compared to the corresponding separate data analysis (Tsiatis and Davidian [1]). Concep-

tually a joint model assumes that a latent structure links both kinds of data. For instance,

in clinical trials to evaluate new treatments in patients with the human immunodeficiency

virus (HIV) the number of CD4+ T lymphocyte (CD4 counts for short) has been pro-

posed as a surrogate biomarker (Tsiatis et al. [2]). In a blood transfusion safety study

involving AIDS-free survival times and longitudinal CD4 counts, Faucett and Thomas [3]

concluded that the relative risk of AIDS was larger than those ones obtained by analysis

of the component sub-models separately. Most joint models have been applied in AIDS

and cancer contexts (see e.g. [4, 5, 6, 7]), but also in environmental and health studies,

e.g., radiation dose level [8], psychiatric disorder scale [9] and quality-of-life index [10].

Apart from incorporating the repeated measures into the survival model by regarding

them as time-dependent covariates measured with error [8] there are other approaches to

joint modeling. Namely link longitudinal and time-to-event outcomes via a subject-level

[2] or a cluster-level [11] random effects. Another approach is to consider an unknown

time-varying latent variable to link the two outcomes [4, 9]. Tsiatis and Davidian [1] is

a comprehensive review of these models prior to 2004. Chapter 7 in Ibrahim et al. [12]

devotes special attention to the subject, summarizing some of the most important joint

models, including both Bayesian and frequentist perspectives. Rizopoulos published a

book on joint models for longitudinal and time-to-event data with applications in R [13],

and two R packages on this matter (JM [14] and JMbayes [15]), which are not able to

work with structured spatial components. Recently, Gould et al. [16] reviewed currently

available methods and software tools for carrying out joint analysis, including issues of

implementation and interpretation.

Although many works have been published on joint analysis, it has not yet been routinely

applied to the analysis of individuals who share an unobserved heterogeneity within a

local health region (spatial frailty), as well as other functional effects of the longitudinal

outcome. Usually, survival models with frailties assume independent random effects but

we here consider that those effects are spatially correlated representing clusters of indi-

viduals living in a given region (see Chapter 9 in Banerjee et al. [17]). In this paper we

focus on spatial survival analysis jointly modeled with a longitudinal biomarker that can

have a functional effect (e.g. polynomial) providing more flexibility in the longitudinal
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trajectories. The model has a fully Bayesian approach being inspired in Henderson et

al. [9] who proposed a likelihood-based joint model using the EM algorithm, linking the

longitudinal and survival responses with a zero-mean latent bivariate Gaussian process

and in Guo and Carlin [6] who addressed the problem of joint analysis without a spa-

tial frailty by proposing a Bayesian hierarchical model using Markov chain Monte Carlo

(MCMC) methods. Notice that models linked by random effects, which induces correla-

tion between the longitudinal and survival components, are more friendly to implement

via MCMC methods than via EM algorithm. However they are time consuming due to

the high number of parameters.

The remainder of this paper evolves as follows. In Section 2 we describe the HIV/AIDS

data set that motivated our joint modeling approach, whereas Section 3 outlines the spatial

joint model with longitudinal and survival components. Section 4 discusses the related

Bayesian model assessment by employing Cox-Snell residuals and multiple-imputation-

based residuals, random visiting times and prediction of future values. In Section 5 we

conduct an analysis of the HIV/AIDS data applying the proposed joint model, including

residuals and predictions. Concluding remarks and discussion of important related issues

are presented in Section 6. Finally some additional notes on sensitivity and predictive

performance analysis as well as additional figures and tables are given in Supplementary

Material (SuppMat).

2 The HIV/AIDS data

Brazilian National AIDS Program generated three major electronic databases [18]: (i)

SINAN-AIDS (Information System for Notifiable Diseases of AIDS Cases) which is the

most important electronic AIDS surveillance database, with all cases reported since 1980;

(ii) SISCEL (Laboratory Test Control System) designed to monitor laboratory tests, such

as CD4 counts and viral load tests for HIV/AIDS patients followed in the public health

sector since 2002; (iii) SICLOM (System for Logistic Control of Drugs) developed to

control the logistic for the AIDS treatment deliveries; it shares the patients list with

SISCEL since 2002. These three databases have been previously combined in a single

database with both HIV and AIDS cases using a process called record linkage, which

was adopted by the Surveillance Unit of the Brazilian National AIDS Program [18]. This

linkage strategy has been increasingly used in AIDS surveillance and research [19] to verify

under-reporting of cases and eliminate the duplicated ones. In Brazil, that procedure has

improved the quality of HIV/AIDS data information [18]. Notice that 2002–2006 can be
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considered as the first period with substantial information on both HIV/AIDS survival

and CD4 exams, where 88 laboratories located in all twenty-seven Brazilian states were

using SISCEL, covering 90% of all CD4 and viral load exams carried out by the public

health sector. Cases diagnosed before 2002 were excluded because personal identifiers

were not available in the mortality database for the entire country before that date [18].

For institutional reasons, we had access only to a simple random sample of the combined

database, henceforth called HIV/AIDS data. The related information includes N = 4,653

patients, corresponding to 10% of the total number of diagnosed individuals during the

period 2002–2006. The time-to-event after HIV/AIDS diagnosis is defined as the time

period, in years, between the date of diagnosis and the date of death (available if death

happened before December 31st 2006, and censored otherwise). A longitudinal measure

of immunologic and virologic status (CD4 counts) was collected. Apart from those two

outcomes, the explanatory variables included were: (i) age, coded 0 (15–49 years) and 1

(at least 50 years); (ii) gender, coded 0 (female) and 1 (male); (iii) previous opportunistic

infection (PrevOI) at study entry, coded 0 (without PrevOI) and 1 (with PrevOI); (iv)

patient’s Brazilian state of residence (state). As referred by Souza-Jr et al. [20], the age

cut-off was chosen based on the Ministry of Health recommendations, as the group aged

over 50 showed a higher proportion of delayed initiation of the therapy when compared

to the population group aged 15-49 years.

The CD4 counts distribution by gender, age and PrevOI indicates a high degree of skew-

ness toward high CD4 counts (Figure 1 – SuppMat), suggesting a power transformation

for that outcome to achieve the normality (see Taylor and Law [21] for a discussion about

the power transformation of CD4 counts). There were about 7% of dead patients, 88%

were between 15 and 49 years, 60% of patients were males of whom 8% died, and 61%

had no previous infection, whereas 6.7% lived in the Central-West region, 11.5% in the

Northeast, 4.8% in the North, 60% in the Southeast region and 16.7% in the South (Table

5 – SuppMat). The median of the CD4 counts was 245 cells/mm3 (226 cells/mm3 for

males and 263 cells/mm3 for females). All patients made on average 4.62 CD4 exams

resulting in a total of 21,508 observations (Figure 2 – SuppMat).

3 Joint modeling framework

Suppose a set of N subjects coming from K regions with nk patients each,
∑K

k=1 nk = N ,

followed over a certain time period for which were collected both longitudinal and survival
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response variables, as well as a set of explanatory variables. Our goal is to understand

the relation of all these variables modeling the true value of the longitudinal outcome at

time point t, y∗ik(t), and the survival component, T ∗
ik, to a certain endpoint for the ith

patient living in the kth region, i= 1, . . . , nk, k = 1, . . . , K. Time-to-event, T ∗
ik, may be

subject to the usual right censoring mechanism and then only the minimum, Tik, of the

time-to-event and censoring time, Cik, is observed, Tik ≡ min(T ∗
ik, Cik). We define the

event indicator as δik, where δik = 1 indicates a failure (T ∗
ik ≤ Cik) and δik = 0 indicates

a right censored observation (T ∗
ik > Cik).

Longitudinal outcomes are collected on each subject intermittently at some set of times

{tikj ≤ Tik : i = 1, . . . , nk; k = 1, . . . , K; j = 1, . . . , nik} producing the observed vector

yik = (yik1, . . . , yiknik
)⊤, where yikj ≡ yik(tikj) and nik is the repeated measurements

number of the longitudinal outcome for the ikth individual. Note that the observed value

of the longitudinal response at time tikj, yik(tikj), is the true value with error, i.e.

yik(tikj) = y∗ik(tikj) + eik(tikj), (1)

where eik(tikj) ≡ eikj is an intra-subject error, j=1, . . . , nik, i=1, . . . , nk and k=1, . . . , K.

Now, as in Henderson et al. [9], and Guo and Carlin [6], we introduce the joint model

starting with the longitudinal and survival components separately.

3.1 Longitudinal component

We postulate a mixed effects model to describe the longitudinal latent process in (1),

y∗ik(tikj), by specifying it as a function of “fixed” and random effects,

y∗ik(tikj) = µik(tikj) +Wik(tikj), (2)

where µik(tikj) is the “fixed” component that can be described by a curve (polynomial)

growth model, providing more flexibility in the longitudinal trajectories, and Wik(tikj) is

the random component for which can be considered a zero mean latent Gaussian process.

Specifically we will define: µik(tikj) = x⊤
1ik(tikj)β1, where β1 is the population parameters

vector (fixed effects) related to a covariate vector x1ik(tikj), and Wik(tikj) = z⊤1ik(tikj)bik,

where z1ik(tikj) denotes a design vector corresponding to a random effects vector, bik,

i=1, . . . , nk, k=1, . . . , K, j=1, . . . , nik.
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3.2 Spatial survival component

A traditional framework to link a longitudinal process to a disease outcome is the relative

risk model (Kalbfleisch and Prentice [22]),

hik(t | Y∗
ik(t),x2ik) ≡ lim

dt→0
P{t ≤ T ∗

ik < t+ dt | T ∗
ik ≥ t,Y∗

ik(t),x2ik}dt−1

= h0(t) exp{β⊤
2 x2ik + γ y∗ik(t)}, (3)

where Y∗
ik(t) = {y∗ik(u), 0 ≤ u < t} denotes the history of the true and unobserved

longitudinal process up to time point t, β2 is the vector of regression parameters associated

to the vector of covariates x2ik, h0(t) is the baseline risk function and γ quantifies the effect

of the underlying longitudinal outcome to the risk for an event. For instance, it measures

the effect of CD4 counts to the risk of death in the HIV/AIDS data.

A common criticism to the model (3) has been its dependence regarding the history of the

longitudinal biomarker up to time t, Y∗(t). First, it can include improper extrapolation

beyond the range of the longitudinal measurements because the last registration of the

biomarker may be quite temporally distanced from the moment of failure. Second, it

is not obvious that the imputed value for the longitudinal variable is the more relevant

biological summary. For example, changes in the slope of the trajectory may be more

predictive of patient’s survival time than the current value of the marker.

Alternatively, one can induce the association between the survival and longitudinal pro-

cesses by using only the Gaussian process Wik(t) in (2). In addition, assuming a Weibull

baseline hazard function, i.e., h0(t) = ata−1, model (3) can be replaced by

hik(t) = ata−1 exp{x⊤
2ik(t)β2 + γ⊤g(Wik(t))}, (4)

where g(·) is a link function specifying which components of the longitudinal process are

related to hik(.), β2 represents the vector of regression coefficients associated with the

vector of the possibly time-dependent explanatory variables, x2ik(t) (may coincide with

x1ik(t)); γ denotes a vector of parameters which measure the association between the

survival and longitudinal components, and a > 0 is the shape parameter of the Weibull

distribution, denoted by W(a, λ), being λ the exp(·) function in (4).

Sometimes individuals are clustered in a hierarchical structure such that subjects within

the same cluster share a common frailty, for example, the incidence of some diseases is

lower or higher in regions with better health services or more environmental problems,

respectively. We consider here a special case of the frailty survival model, introducing

region-specific random effects exhibiting spatial dependence (Banerjee et al. [17]). In

6



order to accommodate this spatial extra-variation we extend our survival model by adding

appropriate random effects into its hazard function (4). Let Qk be the spatial effect of

latent risk factors related to the kth region, k=1, . . . , K. Thus, the spatial survival model

is defined by

hik(t) = ata−1 exp{x⊤
2ik(t)β2 + γ⊤g(Wik(t)) +Qk}, (5)

where Qk captures the residual or unexplained log-relative risk of an event (e.g. death)

in the kth region.

The HIV/AIDS data described in Section 2 have well-defined spatial boundaries associated

with the residence geographic regions (Brazilian states) which is a typical example of

areal or lattice data. In addition, we believe that there exists a “neighborhood effect”,

where neighboring locations have a similar risk-of-death, and also a “grouping effect”,

where subjects living in the same region are assumed to have identical risk. We will

develop this matter more deeply in Subsection 3.4, namely discussing the appropriate

prior distributions for Qk.

The introduction of the spatial random effects in (5) serves three main purposes: (i)

capturing the unexplained risk-of-death in each of the 27 Brazilian states; (ii) mapping

the spatial risk-of-death for an epidemiological interpretation purpose (Figure 2) and (iii)

investigate the need to include spatially varying covariates (vide Subsection 5.2).

3.3 Likelihood

We propose a spatial joint model assuming that the longitudinal (2) and spatial survival

(5) components share the same set of time-independent random effects, bik. We will define

Wik(t) = z⊤1ik(t) bik (6)

and

g(Wik(t)) = Z2ik(t) bik, (7)

where z1ik(t) and Z2ik(t) are appropriate design vector and matrix, respectively. For

instance, considering bik = (b1ik, b2ik)
⊤, γ = (γ1, γ2)

⊤ and Z2ik(t) an identity matrix, we

may have z⊤1ik(t) bik = b1ik + b2ik t and γ⊤Z2ik(t) bik = γ1b1ik + γ2b2ik. This specification

allows different subjects to have different baseline repeated measures and different time

trends for longitudinal responses during the follow-up. Note that γ = 0 means a separated

analysis of the longitudinal and survival data.

For the spatial joint model hereafter cited by joint model (6)-(7), we are assuming that

the repeated measures and time-to-event are independent given the random effects and
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the covariates of interest. We also assume a normal distribution, N (0, σ2), for the mea-

surement errors, eikj. Due to the significant separation in time between observations,

correlation among residuals over time is assumed to be negligible, so the error eikj be-

longs to a sequence of independent and identically distributed random variables assumed

as independent of the random effects, bik. Rizopoulos et al. [23] remarked that as the

number of repeated measurements per subject increases, a misspecification of the random

effects distribution has a minimal effect in the parameter estimates and their standard

errors. Under a matrix approach, we assume that bik|Σ ∼ Np(0,Σ). The structure of

the p × p covariance matrix, Σ, describes the association between repeated measures of

the observed longitudinal data. Because bik links both the longitudinal and survival pro-

cesses it accounts for both the association between the two model components and the

correlation between the repeated measurements in the longitudinal process.

Let θ be a generic vector of all parameters of the spatial joint model and L(θ|D) the related

likelihood function, where D = {yik, Tik, δik; i = 1, . . . , nk, k = 1, . . . , K} represents the

observed data, composed of the survival (Tik, δik) and longitudinal yik = (yik1, . . . , yiknik
)⊤

components, whose elements are observations from the normal distribution, N (y∗ikj, σ
2).

Covariates in D have been suppressed to facilitate the exposition. Lik(θ|D) denotes the

contribution of the ikth individual to the likelihood, L(θ|D), defined as

Lik(θ|D) = L1ik(bik,β1, σ
2|D)× L2ik(bik,β2,γ, Qk|D), (8)

where L1ik(·|D) and L2ik(·|D) denote the corresponding contributions for the longitudinal

and survival components, respectively. The related longitudinal contribution, L1ik(bik,β1,

σ2|D), is
nik
∏

j=1

1√
2πσ2

exp

{

−
[

yikj − x⊤
1ik(tikj)β1 − z⊤1ik(tikj)bik

]2

2σ2

}

, (9)

and the corresponding survival contribution, L2ik(bik,β2,γ, Qk|D), is

hik(Tik|bik,β2,γ, Qk)
δik × exp

{

−
∫ Tik

0

hik(s|bik,β2,γ, Qk)ds

}

, (10)

where hik(·) is the hazard function (5). Consequently, the likelihood of the spatial joint

model (6)-(7) is the product of all N individual contributions to the likelihood:

L(θ|D) =
K
∏

k=1

nk
∏

i=1

Lik(θ|D) =
K
∏

k=1

nk
∏

i=1

L1ik(bik,β1, σ
2|D)× L2ik(bik,β2,γ, Qk|D). (11)

For example, if bik = (b1ik, b2ik)
⊤, γ = (γ1, γ2)

⊤, x2ik(t) = x2ik ∀ t, z⊤1ik(t) bik = b1ik+b2ik t,

γ⊤Z2ik(t) bik = γ1b1ik+γ2b2ik, and a = 1 in Equation (5), corresponding to an exponential
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distribution, the likelihood (11) is expressed as

∏K

k=1

∏nk

i=1

∏nik

j=1
1√
2πσ2

exp
{

− 1
2σ2

[

yikj − x⊤
1ik(tikj)β1 − b1ik − b2iktikj

]2
}

×
×∏K

k=1

∏nk

i=1

{

exp[x⊤
2ikβ2 + γ1b1ik + γ2b2ik +Qk]

}δik ×
× exp

{

−∑K

k=1

∑nk

i=1 Tik exp[x
⊤
2ikβ2 + γ1b1ik + γ2b2ik +Qk]

}

.

(12)

3.4 Bayesian approach

For a Bayesian approach of the spatial joint model (6)-(7), we added prior distributions for

all model parameters. In particular, for the longitudinal component we took, respectively,

multivariate normal, Np1(0,V
∗
1), and inverse gamma, IG(c1, d1), priors for the vector of

fixed effects, β1, and the measurement error variance, σ2. For the survival component,

we designated normal priors for both β2 and γ, respectively denoted by Np2(0,V
∗
2) and

Np3(0,V
∗
3). A gamma prior distribution, G(c2, d2), for the Weibull shape parameter,

a, and an inverse Wishart prior, IWish(V ∗
4 , κ), for the covariance matrix, Σ, of the

random effects, bik, with V ∗
4 representing a p× p positive definite matrix prespecified and

with κ degrees of freedom. In consonance with Guo and Carlin [6], we chose very low

precision (high variance) for these priors, including an inverse Wishart prior that is vague

but does provide at least some shrinkage of the random effects toward 0, ensuring good

identifiability of the main effects.

Concerning the spatial frailty, Qk, we incorporated that dependence by specifying an

intrinsic conditionally autoregressive (ICAR) prior proposed in [24], i.e. the prior on

Q = (Q1, . . . , QK) is specified as a set of K univariate full conditional distributions,

Qk|σ2
Q ∼ ICAR(σ2

Q), allowing us to deal with the risk’s spatial autocorrelation, capturing

the “local” extra-variability in the log-relative risk so that nearby regions will have more

similar risks [17] (structured effect). For the spatial frailties variance, σ2
Q, we assigned an

inverse gamma prior, IG(c3, d3), similarly assumed with high variance.

Although the convenience of the ICAR prior, one may certainly employ independent

priors for each spatial random effect. For instance replacing Qk by Vk in (5) we may

consider an exchangeable normal prior, Vk|σ2
V ∼ N (0, σ2

V ), if independence across areal

units is a plausible assumption (unstructured effect). This specification is appropriate

if the covariates included in (5) account for all of the spatial structure, leaving Vk to

account for the “global” region heterogeneity. We can also allow for both structured and

unstructured random effects, however, it requires two random effects to be estimated for

each region, whereas only their sum is identifiable from the data. Another problem is

the decrease in algorithm performance because identifiability problems [17]. Discussion of
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these issues is given in [25].

The joint posterior distribution of the Bayesian hierarchical spatial joint model (6)-(7),

denoted by p(θ|D), is proportional to

L(θ|D)× π(β1|V∗
1)× π(β2|V∗

2)×
∏K

k=1

∏nk

i=1 π(bik|Σ)×∏K

k=1 π(Qk|σ2
Q)×

×π(γ|V∗
3)× π(Σ|V ∗

4 , κ)× π(σ2|c1, d1)× π(a|c2, d2)× π(σ2
Q|c3, d3),

(13)

where L(θ|D) is defined in (11) and π(·|·) generically denotes a prior distribution spec-

ified in the previous paragraphs. Typically, the marginal posterior distributions cannot

be carried out in closed form and, therefore, to avoid the analytic intractable integral

problem involved in the marginalized functions, we propose to apply MCMC methods in

OpenBUGS ([26]).

4 Model assessment

Due to recent computational advances, sophisticated techniques for Bayesian model as-

sessment are becoming increasingly popular (see some summary in [12, 17, 27]). The next

two Subsections are devoted to two of those techniques in a joint models context. First,

the prediction of future values and then a residual analysis.

4.1 Prediction of future values

The ability to incorporate the trajectory of the longitudinal biomarker over time in a

survival model gives to joint models the possibility to act as a dynamic prognostic tool,

which can drive to a more accurate clinical decision. For example, the full history of

CD4 counts observed in a patient with HIV/AIDS can be used to predict his survival

probability in the coming years, from the time of the last visit or after censoring. If the

CD4 trajectory indicates an increasing risk of death, the physician may decide to change

the therapy in order to slow the progression of the disease.

Proust-Lima and Taylor [7] proposed a dynamic prognostic tool for joint models provid-

ing a measure of variability obtained from the parameters asymptotic distribution and

validating this prognostic tool based on predictive accuracy measures. Rizopoulos [28]

focused particularly on the assessment of the predictive ability of the longitudinal out-

come for the survival outcome, assessing how well the former is capable of discriminating

between subjects who will experience or not the event within a certain period. Sweeting
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and Thompson [29] have compared shared random effects models with two approximation-

based approaches, concluding that these latter should be avoided since they can severely

underestimate any association between the longitudinal and event processes.

Suppose we have a series of repeated measurements from a new individual, along with its

survival information up to time t. Let D̃ = {ỹ, T̃ = t, δ̃=0} be the summarized data for

this individual. Inferences on a future longitudinal value for this individual at time s > t,

denoted by ỹ(s), can be obtained from its posterior predictive distribution conditional on

the existing data, D, and the new data, D̃ [7, 28, 29],

p(ỹ(s) | D, D̃) =

∫∫

p(ỹ(s)|D̃, b̃,θ) p(b̃|D̃,θ) p(θ|D)dθ db̃, (14)

where b̃ represents the random effects vector of the new individual, p(b̃|D̃,θ) is here

the posterior distribution of the new random effects and p(θ|D) is the joint posterior

distribution defined in (13). Similarly, the posterior predictive probability for the time-

to-event, T̃ ∗, of the new individual at time s given survival up to time t, is expressed

as

p(T̃ ∗ > s | D, T̃ ∗ > t, ỹ) =

∫∫

S̃(s | ỹ, b̃)
S̃(t | ỹ, b̃)

p(b̃|D̃,θ) p(θ|D) dθ db̃, (15)

where S̃(· | ỹ, b̃) is the survival function for the new individual [7, 28, 29].

4.2 Residual analysis

Because model selection measures provide no information about the absolute adequacy of

the models, other diagnostic tools (e.g. residuals analysis) are needed to assess the model

adequacy. In checking model assumptions via the inspection of residuals, Dobson and

Henderson [30] pointed out some properties of the residuals conditioned by the dropout

information and Zhu et al. [31] developed a series of influence measures to quantify the

degree of perturbation introduced into the model during a sensitivity analysis. Recently,

for longitudinal and survival joint models Zhang et al. [32] developed a novel decomposi-

tion of the well-known model selection criteria AIC and BIC in order to assess the fit of

each component of the joint model, whereas Park and Qiu [33] discussed several model

selection criteria applying them to the joint model for comparing two crossing hazard

rate functions proposing hypothesis testing and graphical methods for model diagnostics.

Rizopoulos et al. [34] discussed the difficulty in using standard model diagnostics in joint

models because of the nonrandom dropout in the longitudinal outcome caused by the
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occurrence of events proposing a multiple-imputation-based approach as diagnostic and

model-assessment tool.

For the residual analysis of the survival component of the spatial joint model (6)-(7),

we can employ Cox-Snell residuals [35] by using the well-known relationship rCS
ik (t|θ) ≡

∫ t

0
hik(s|θ)ds = − log Sik(t|θ). Conforming to Rizopoulos and Ghosh [36], we get rCS

ik (t)

calculating the expected value for rCS
ik (t|θ) averaged over the parameters posterior distri-

bution, p(θ|D), i.e.

rCS
ik (t) = Eθ|D

[

rCS
ik (t|θ)

]

=

∫

rCS
ik (t|θ) p(θ|D)dθ. (16)

In practice, we compute rCS
ik (t) at the observed event times Tik, being censored if the

event of interest did not occur for the related individuals. In order to check the fit of

the survival model taking into account the censoring times, we can graphically compare

the associated Kaplan–Meier estimate for rCS
ik (Tik) with the survival function of the unit

exponential distribution [36].

Regarding the residual analysis for the longitudinal component of the joint model, we

can make use of the widely used standardized marginal and standardized subject-specific

residuals for mixed models [37], respectively defined by

rymik = V̂
− 1

2

ik

[

yik −X1ikβ̂1

]

and rysik = σ̂−1
[

yik −X1ikβ̂1 − Z1ikb̂ik

]

, (17)

where β̂1, σ̂, b̂ik and V̂ik are posterior estimates (e.g. mean or median), respectively, for

the vector of regression coefficients β1, the residual standard deviation σ, the vector of

the random effects bik and the covariance matrix of the repeated measurements yik, i.e.,

Vik = Z1ikΣZ⊤
1ik+σ2I, with I denoting the identity matrix of appropriate dimensions, and

X1ik and Z1ik are design matrices whose rows are, respectively, x⊤
1ik(tikj) and z⊤1ik(tikj).

Rizopoulos et al. [34] pointed out some issues in using the residuals (17) in joint models,

especially because the occurrence of events causes a nonrandom dropout in the longitu-

dinal outcome. Accordingly, they proposed to augment the observed longitudinal data

with a multiple-imputation-based scheme, under the assumed joint model. The main ad-

vantage of using both the augmented and observed data is to calculate residuals, such as

(17), that inherit now the properties of the complete data model and, therefore, they can

be directly used in diagnostic plots without requiring to take dropout into account.

Let ym
ik = {yik(tikj) ≡ yikj : tikj ≥ Tik, j=1, . . . , n′

ik} be the missing part of the longitu-

dinal response vector, where n′
ik is the total of augmented measurements concerning the

ikth individual. The multiple-imputation-based method consists of sampling from the
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posterior predictive distribution of ym
ik

p(ym
ik | D) =

∫

p(ym
ik|θ) p(θ|D)dθ. (18)

Notice that (i) we are assuming that ym
ik and D are independent, conditionally on θ; (ii)

the predicted ym
ik and observed yik values form the complete longitudinal data.

If the visiting times, tikj, of the repeated measurements are determined by the patients

themselves, we should model that random visiting process before obtaining the multiple-

imputation-based residuals (Rizopoulos et al. [34]). Let uikq denote the time elapsed

between (q−1)th and qth visits for the ikth subject with nik measures/visits, q=2, . . . , nik.

Assuming that all subjects have at least one measurement and the visiting process is non-

informative, we can let the distribution of the elapsed time, uikq, to depend only on the

last observed longitudinal measurement, i.e., p(uikq|yik(q−1);θv), where θv is the vector of

the visiting process parameters and tikq = tik(q−1)+uikq (see [34] for different formulations

of the visiting process and for a comprehensive simulation scheme of the elapsed times).

We propose to model the elapsed times vector, uik = (uik2, . . . , uiknik
)⊤, by using a Weibull

model, W(av, λv), with individual and spatial frailties expressed in terms of its hazard

function

hv(uikq|xvik,θv) = avu
av−1
ikq exp(x⊤

vikβv +Qk)ωik, (19)

where βv is the vector of regression coefficients associated with the design vector xvik

containing possibly a functional form of the last observed longitudinal response, yik(q−1);

ωik is an individual frailty taking a gamma distribution, G(η, η), and Qk is a spatial

frailty as in (5). We note that in Rizopoulos et al. [34] there is not a spatial frailty in the

visiting process definition. In order to obtain the estimates of the various elapsed times,

we propose to resort to the posterior distribution of θv given all the visit data, Dv,

p(θv | Dv) ∝
K
∏

k=1

nik
∏

i=1

Lvik(θv|uik,xvik)× π(θv)

=
K
∏

k=1

nik
∏

i=1

nik
∏

q=2

{[hv(uikq|xvik,θv)] [Sv(uikq|xvik,θv)]} × π(θv), (20)

where Lvik(.|.) is the ikth individual contribution to the likelihood, Sv(.) is the Weibull

survival function and π(θv) is the prior distribution on θv. Then we carry on using the

posterior distribution, p(θv|Dv), to simulate the future elapsed times, uikq, q = nik+q′,

q′=1, . . . , n′
ik, from its posterior predictive distribution

p(uikq | Dv) =

∫

p(uikq|θv) p(θv|Dv) dθv, (21)
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in order to get the missing ymikq’s at times tikq = tik(q−1)+uikq, q = nik+n′
ik, q

′ = 1, . . . , n′
ik,

via its predictive distribution (18). Along with the observed data, yik, we calculate the

residuals (17) for the complete longitudinal data of the spatial joint model (6)-(7).

5 Analysis of the HIV/AIDS data

5.1 Spatial joint model

The HIV/AIDS data described used in this work have well-defined spatial boundaries

associated with the residence geographic regions (Brazilian states) which is a typical

example of areal or lattice data. In addition, we believe that there exists a “neighborhood

effect”, where region’s risk-of-death is similar to that of neighboring locations, and also a

“grouping effect”, where subjects living in the same region are assumed to have identical

risk. The methodology developed in Section 3 is now applied to the HIV/AIDS data

described in Section 2. Based on exploratory analysis partially introduced in Section 2,

we assumed a square root transformation of the longitudinal measures (i.e.
√
CD4), as

well as the particular case (a = 1) of the Weibull survival model (exponential survival

model). Those practical considerations are in agreement with other AIDS joint analysis,

such as Guo and Carlin [6].

Let yikj denote the square root of the jth CD4 count measurement on the ith patient

living in the kth Brazilian state, j = 1, . . . , nik, whereas (Tik, δik) represents both the

AIDS survival time and the death indicator of the patient, i = 1, . . . , nk, k = 1, . . . , 27.

Several spatial joint models were fitted. For the longitudinal measures, an individual

polynomial trajectory inside the random effects model was considered to account for

patient-specific
√
CD4 counts over time (see e.g. Wu and Zhang [38] for some discussion

on polynomial mixed-effects models for longitudinal data). Particularly, we assumed

yikj|bik,β1, σ
2 ∼ N (y∗ikj, σ

2), where y∗ikj = µik(tikj) +Wik(tikj), and

µik(tikj)=β11 + β12tikj + β13t
2
ikj + β14t

3
ikj + β15genderik + β16ageik + β17PrevOIik

Wik(tikj)=b1ik + b2iktikj + b3ikt
2
ikj + b4ikt

3
ikj.

(22)

In regard to the survival times, we assumed T ∗
ik|bik,β2, Qk ∼ W(1, λik(t)) ≡ E(λik(t)),

where

log(λik(t)) = β21 + β22genderik + β23ageik + β24PrevOIik +
∑4

s=1γsbsik +Qk, (23)

being the latent parameters, bsik, s = 1, . . . , 4, random effects related to the intercept,

slope, curvature and rate of change of the curvature. Notice that the γs coefficients,
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s=1, . . . , 4, quantify the extent to which each of the random effects influences the hazard

of death. For example, γ3 = −0.5 means that an individual with a positive curvature will

have a negative association with the hazard function implying a lower risk of death.

For the parameters of the various fitted spatial joint models, we assumed vague but proper

prior distributions because we had little prior information about them. In particular, we

considered: β1 = (β11, β12, β13, β14, β15, β16, β17)
⊤ ∼ N7(0, 1000 I); β2 = (β21, β22, β23, β24)

⊤

∼ N4(0, 1000 I); bik = (b1ik, b2ik, b3ik, b4ik)
⊤ ∼ N4(0,Σ); Σ ∼ IWish(1000 I, κ); γs ∼

N (0, 100), s=1, . . . , 4. 0 and I denote the null vector and identity matrix of appropriate

dimensions, respectively, and κ = N/20 ≈ 233 as stated in Guo and Carlin [6] to ensure

good identifiability of the main effects; for the spatial structured random effects we use

the ICAR prior distribution, Qk|σ2
Q ∼ ICAR(σ2

Q).

In some scenarios assuming a Gamma prior for the precision (inverse of the variance) can

be problematic, because of its sensitivity to prior choices of the parameters causing it to be

inappropriately biased away from 0 [39]. For instance, if we want to allow for the possibility

of no within-individual variability or a negligible spatial dependence between areas this

prior should not be the way forward! Although in our dataset having an individual with

zero variance, σ2 = 0, is implausible, so in accordance we assume σ−2 ∼ G(0.01, 0.01).
Concerning the prior for the precision of the spatial structured frailties, σ−2

Q , Kelsall and

Wakefield [40] circumvented the problem suggesting an alternative prior for the precision

parameter, σ−2
Q ∼ G(0.5, 0.0005), expressing the prior belief that the spatial random effects

standard deviation is centered around 0.05 with a 1% prior probability of being smaller

than 0.01 or larger than 2.5.

Initial values for the parameters β1 and β2 were obtained by modeling the longitudinal

and survival data individually. The choice of the prior distributions for σ2, β1, β2, Σ

and σ2
Q were motivated by their conjugacy, assuming that they are independent a priori.

The covariates gender, age and PrevOI were always included into both longitudinal and

survival components of the fitted spatial joint models. Estimates of the parameters were

obtained through MCMC simulation within the OpenBugs [26] (vide SuppMat Section

5), based on sampling chains of 100,000 iterations following the 20,000 iterations of “burn-

in” period. In order to eliminate autocorrelation among samples within the chains, we

selected every 50th iteration of the chains. A study of the trace and density plots of the

posterior distributions indicated no convergence problems concerning these samples.
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5.2 Model selection

There are several summary measures for model comparison and selection. Namely, we

choose the Deviance Information Criterion (DIC) (Spiegelhalter et al. [41]) and the so-

called Watanabe-Akaike Information Criterion (WAIC) (Watanabe [42] and Gelman et

al. [43]) which is a recent penalized likelihood-based measure. DIC and WAIC handle

Bayesian models of any degree of complexity and smaller values indicate a better ad-

justment. The computation of these measures is straightforward using MCMC methods

because it is particularly convenient to compute them from posterior samples.

Table 1 reports DIC and WAIC values for a variety of fitted joint models with different

forms for the latent processes, W (t), for the linking structure, g(W (t)), and for the spatial

random effect, Q. We noted some inability of our data to reliably identify both the shape

parameter, a, and the survival intercept, β21, in the model (23), exhibiting strong nega-

tive correlation between the two-parameter samples and strong positive autocorrelations

in their individual samples. That was already mentioned by Guo and Carlin [6]. Mean-

while, we fitted a few models from Table 1 including these two parameters, but increasing

both the thin and the number of iterations per chain. After one day running in a Quad

core desktop computer, the posterior mean of a was 1.04 being similar to consider the

exponential survival model.

Based on the model selection measures in Table 1, considering only the first ten rows,

(linear) models sharing both random effects (individual intercept and time trend) result in

the best scenario. Models IX and X, which extend models VII and VIII by introducing the

spatial frailty, exhibit better comparison measures values. That can suggest some latent

spatial effect in the HIV/AIDS data. Models XI-XVIII assume higher degree polynomial

functions in order to look for more flexible time trends, being extensions of the models

VIII, IX and X. The decreasing values of model selection measures for the current models

set indicate that
√
CD4 longitudinal profile is better captured by a non-linear trajectory,

especially for Models XIV and XVIII. The latter has the lowest DIC and WAIC values

among all joint models and therefore is the selected spatial joint model (6)-(7). Other joint

models were fitted, namely considering only unstructured spatial random effects, where

Vk’s are assumed to have an exchangeable Gaussian prior; and simultaneously considering

both structured and unstructured spatial heterogeneity (vide Subsection 3.2 and SuppMat

at Section 2). Despite the values of the summary measures for these models being very

close to the ones in Table 1 we note that they are always larger. Furthermore we can also

note that considering both Qk and Vk at the same time (SuppMat models XXV–XXX)
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has virtually no impact on DIC or WAIC (compared to models XIII–XVIII) which means

that Qk are accounting for virtually all the residual variation between the states.

For the selected joint model (Model XVIII), we present the posterior mean and the 95%

credibility interval (CI) for their parameters of interest in Table 2. Additionally, in order

to compare separate and joint HIV/AIDS data analysis, we include the corresponding

estimates for Model IV that was the best separate model i.e. g(W (t))=0 and for Model

XIV, which is the same as Model XVIII but without the spatial component, Qk. Notice

that, for Model XVIII, the (symmetric) covariance matrix, Σ, is presented in terms of its

components: σb
11, σ

b
12, σ

b
13, σ

b
14, σ

b
22, σ

b
23, σ

b
24, σ

b
33, σ

b
34, and σb

44. Based on the posterior

estimates we conclude that: (i) gender, age and PrevOI have “significant” effect both in

the CD4 count mean and the relative risk of death; (ii) male patients have lower CD4

counts and higher death risk during the follow-up than female ones; (iii) both patients

aged above 50 and with previous opportunistic infectious disease at study entry have

lower CD4 counts and higher death risk than patients in the opposite category of each

group. Moreover, the posterior estimates of the parameters γ1, γ2, γ3 and γ4 provide

strong evidence of a negative (latent) association between the two components. In fact, as

these coefficients represent the strength of the influence that each longitudinal individual

random effect, bi, has on the survival time we can say that if the individual trajectory is

above the population mean trajectory, that individual will have a good survival prognostic.

In simple terms, if a particular bi with each of its elements being positive, i.e., bi =

(bi1 > 0, bi2 > 0, bi3 > 0, bi4 > 0), then his
√
CD4 longitudinal trajectory will be above

the population mean trajectory implying that his survival time will be greater than the

population survival mean because he has a lowering in the risk of death.

We also conclude that our joint model present improvements over the survival time when

compared with a separate modeling. To illustrate this we considered Model IV, Model

XVIII and two patients: (i) Patient 85 - male, 31 years old, without previous opportunis-

tic infection and censored time 1,645 days; (ii) Patient 105 - male, 29 years old, with

previous opportunistic infection and censored time 1,508 days. Figure 1 shows patient

105 with a relatively “good” CD4 trajectory (starts relatively low and then increases),

while Patient 85 has a “not so good” one (starts low and do not increase much). Joint

results substantially differ from the separate ones, increasing the posterior median sur-

vival time for Patient 105, and decreasing it for Patient 85. Moreover, the joint model

actually reverses separate models findings, in the sense that the patient with the “good”

CD4 trajectory is now predicted to survive much longer than the patient with the “bad”

trajectory. For the median survival times of the patients 105 and 85, we obtained esti-
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mates of roughly 39 and 15, respectively. One referee suggested to provide information on

the performance of this phenomenon by summarizing all the subjects studied, by means of

the percentage of subjects with this right “reverse pattern”when considering his/her CD4

trajectory. We conduct a series of simulations, whose results are summarized in SuppMat

Section 3.

Figure 2 shows two maps for the HIV/AIDS data by Brazilian states, representing the

posterior spatial mean risk (left) and posterior spatial relative risk (right) based on model

XVIII, respectively defined by λ̄k =
∑nk

i=1 λik/nk and exp(Qk), with λik and Qk as in

Equation (23), k=1, . . . , 27. For convenience, the posterior means of these state-specific

quantities were ordered according to the quintiles of their distributions. The Brazilian

states with higher HIV/AIDS spatial mean risk are located in North region (3 out of

7 states: Acre, Amazonas, Pará) and Northeast region (2 out of 9 states: Paráıba,

Sergipe), being these states more distant from the most populous states in Brazil, espe-

cially the first set of states. It is interesting to note that when we are not considering the

covariates effects and only the unobserved spatial variation (map on the right) the colors

are reversed indicating an increasing spatial relative risk for the South region (3 states:

Paraná, Santa Catarina, Rio Grande do Sul), Central-West region (2 out of 4 states:

Goiás, Mato Grosso do Sul) and North region (1 out 7 states: Acre). Apart from

the last, the first five states have moderate population density and economic growth and,

even expecting to have better Public Health conditions, they still have some latent risk

factors for HIV/AIDS issue. As reported by Teixeira et al. [44], AIDS epidemic in Brazil

was only found to be expanding in the North and Northeast regions, while declining in

the rest of the country, especially in the Southeast. Similar maps for models XXIV and

XIV can be found on SuppMat Figure 3 and Figure 4, respectively.

Finally, note (Figure 2 - right panel) that the values of Qk’s are in the range (log(0.98),

log(1.04)) = (−0.02, 0.04) suggesting that missing regional covariates have nearly a null

impact (around to 2% to 4%) on the hazard. Such a small value suggests that covariates

like, for example, region economic status, quality of health care or population total per

region might not be needed in explaining the spatial epidemiology.

In order to investigate the influence of the spatial specification we carried out a sensitivity

analysis with respect to the hyperprior distribution for the spatial variance component,

σ2
Q, of the selected model in Subsection 5.2, assuming several different inverse gamma

priors [45]. Change the distribution of the spatial variance, σ2
Q, does not seem to affect

the value of the summary measures and therefore the selected model should not change

with that variation (see SuppMat – Section 1).
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5.3 Residual analysis

To assess Model XVIII, we employed residual analysis as presented in Subsection 4.2. For

the survival outcome the posterior estimates of the Cox-Snell residuals (16) were analyzed.

To be easier to understand we plotted the Kaplan–Meier curve for the posterior mean

of the Cox-Snell residuals (thick line) in Figure 3 (bottom panel), along with the unit

exponential distribution (thin line), corresponding to a perfect fitting model. Although

there is some deviation at the middle of the curves, the majority of the estimates are close

to the “perfect” survival curve. Actually, this deviation represents only a small percentage

of the total observations, about 7% of the sample size. Further examination reveals

that most of these observations correspond to individuals with only one CD4 measure.

Therefore, considering again that most individuals have two or more CD4 measurements,

model adequacy may be deemed reasonable.

Concerning the longitudinal outcome, we combined the standardized marginal and subject-

specific residuals (17) with the multiple-imputation-based residual approach (18). To

generate the random visiting process, we consider the Weibull model (19), whose hazard

function hv(uikq|xvik,θv) is given by

avu
av−1
ikq exp(βv0 + βv1ageik + βv2genderik + βv3PrevOIik + βv4 yik(q−1) +Qk)ωik. (24)

We assigned vague prior distributions to the regression coefficients, βvs, s = 0, . . . , 4,

to the Weibull shape parameter, av, and to the individual frailty, ωik. Namely, each

βvs ∼ N (0, 1000), av ∼ G(0.01, 0.01) and ωik ∼ G(0.01, 0.01). As mentioned before

σ2
Q ∼ IG(0.5, 0.0005).

Aiming to get an easier reading of the residual analysis of the longitudinal component,

we produce plots of the corresponding residuals using L = 5 imputations and check for

systematic trends using weighted loess fits, with weight one for the observed residuals,

and 1/L for the imputed ones (see Rizopoulos et al. [34]). The plot of the standardized

subject-specific residuals in Figure 3 (left top panel) shows a slight but systematic growing

for the observed residuals (dark gray line). That behavior is alleviated when we consider

the imputed residuals (light gray line) and, therefore, the homoscedasticity of the errors

eikj is verified. In Figure 3 (right top panel), the plot of the standardized marginal

residuals point out that the fitted weighted loess curve, based on the observed data alone

versus the fitted values of
√
CD4, shows a slight systematic decrease (dark gray line)

but that behavior is not present when we look to the imputed residuals (light gray line),

indicating that after taking dropout into account the fitted joint model seems to be a

plausible model for this data set.
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Finally, the little differences observed between the dark gray and the light gray lines may

be due to the visits frequency of our follow-up. In a CD4 counts context Geskus R. [46]

shows that if follow-up is frequent the nonrandom dropout may not be a source of bias.

5.4 Prediction of future values

We performed predictions among patients in HIV/AIDS data as stated in Subsection 4.1,

for 11 individuals who died and had 6 or more CD4 repeated measures. We aimed to

obtain the conditional probability of surviving for some time later relatively to the last

CD4 measurement time considering that the individual was censored immediately after

it, in order to verify the time-to-event predictive ability of the model. In this sense, we

have removed these 11 individuals from the data before obtaining its posterior quantities.

Predictions were made such that each individual presented 20 CD4 measurements. Figure

4 shows plots with the two types of predictions: (i) CD4 median trajectory obtained

accordingly to (14) (dashed line) and its 95% CI (gray area); (ii) conditional survival

probability (solid line) obtained accordingly to (15).

Generally subjects are predicted to live longer than what occurred in reality. This can be

justified by the small percentage of death in the data, resulting in a shrinkage of these

individuals towards the overall mean of the survival time. For individuals with the lowest

CD4 counts, after 1 or 2 years the predictions are very inaccurate because the 95% CI for

the CD4 counts is very large (e.g. individuals 242 and 329). We note that what seems

to have the most influence on survival time prediction is the overall time trend. When

there is an upward trajectory, the survival curve remains almost constant and equal to 1

(e.g. individuals 329, 767, 1349 and 1415). The longitudinal component of the selected

model seems to capture the variations in the longitudinal trajectory because the most

part of the observations lies within the 95% CI (gray area). It should be noted that the

patients who died were not necessarily those ones with the worst CD4 trajectory, i.e.,

a decreasing overall slope in that trajectory. Possibly this caused some difficulties in

performing predictions.

We also run a few more simulations, namely to compare the longitudinal predictive per-

formance of our model XVIII against the separated model IV, the simple joint model IX

and two other models without and with unstructured spatial random effects, models XIV

and XXIV, respectively (vide SuppMat Section 4). Model XVIII always outperforms its

competitors in terms of coverage.
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6 Concluding remarks

The introduction of functional time and spatial frailty effects in longitudinal and survival

joint models adds new tools for analyzing them. The associated maps provide visual

representations of the regions in study, allowing to identify areas of high spatial relative

risk that should receive more attention and resource from the public health policy. From

this point of view it is of a great value to know that apparently there are no spatial

differences in the risk of death. It means that patients across all regions have e.g. access

to different health cares and their survival depends on the region where they live.

For our HIV/AIDS data, i)
√
CD4 longitudinal profile is better captured by a non-linear

trajectory; ii) joint analysis substantially differs from the separate ones, increasing (de-

creasing) the posterior median of the survival times for patients with a relatively “good”

(“not so good”) CD4 trajectory; iii) gender, age and PrevOI have “significant” effect both

in the CD4 count mean and the relative risk of death, for instance, male patients have

lower CD4 counts and higher death risk during the follow-up than female ones; iv) for the

prediction of future values, we note that the overall time trend seems to have the most

influence on survival time prediction and the patients who died were not necessarily those

ones with the worst CD4 trajectory.

In addition, the Brazilian states with higher HIV/AIDS spatial mean risk are located

in North region (Acre, Amazonas, Pará) and Northeast region (Paráıba, Sergipe), being

these states more distant from the most populous states in Brazil. Although we have

found small spatial unobserved heterogeneity at state level in Brazil, taking into account

the spatial dependence structure improves the corresponding predictions of both the CD4

trajectory and the HIV/AIDS survival curve. (vide Subsection 5.4 and Sections 3 and 4

in SuppMat). In order to detect more spatial extra-variation in the Brazilian HIV/AIDS

data, we should have used another area definition instead of states which, unfortunately,

was not available in the database that has been provided.

Some of the posterior estimates from the non-spatial separate model IV, non-spatial joint

model XIV and the selected one (XVIII) are similar (Table 2). This could hide the

advantages in use the spatial model, but there are indeed important issues associated with

the proposed model and its results. For instance, i) some apparent overall stabilization

of the AIDS epidemic in Brazil tends to mask regional disparities and the susceptibility

of given specific locations and should, thus, be evaluated carefully through analyses with

lower levels of aggregation such as municipalities and micro-regions instead of states [44];

ii) motivated by the absence of past AIDS studies or expert conjectures in Brazil, we have
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used non-informative prior for spatial variance components. That assumption is well-

accept with a prior sensitivity analysis but not consensual, e.g. Gelman [39] discussed prior

distributions for variance parameters in hierarchical models illustrating some problems

with the inverse-gamma family of non-informative prior distributions.

With more biomedical studies taking measures of various outcomes over time in an effort

to evaluate a patient’s health or risk to some event, a joint modeling approach is indeed

useful to link these longitudinal and survival outcomes. Despite the reasonable ease of

implementing Bayesian joint models, they have some potential limitations, for example,

slow convergence of MCMC methods due to the large number of parameters that need

to be estimated. Alternative methods are the integrated nested Laplace approximation

methods (INLA), proposed by Rue et al. [47], which is a recent approach to statistical

inference based on latent Gaussian Markov random field models.

There is an undeniable appeal in applying joint models, but there is still a long way to

address issues such as identification of the appropriate association structure [48, 49]. Joint

models are on the front line of the statistical methods applied to a personalized medicine

mainly because of its ability in deriving individualized predictions both in the longitudinal

and survival responses, such the ones in Subsection 5.4.

AIDS is regarded today as a chronic disease. Indeed, because of the small percentage of

death in our database we could investigate a possible cure fraction in HIV/AIDS Brazilian

population, especially in Southwest region. It would be interesting to include other longi-

tudinal measures along with CD4 counts (e.g. viral load), thus generating a multivariate

longitudinal component of the spatial joint model.
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[24] Besag J, York J, Mollié A. Bayesian image restoration with two application in spatial

statistics. Annals of the Institute of Statistical Mathematics 1991; 43(1):1–59.

[25] Eberly LE, Carlin BP. Identifiability and convergence issues for markov chain monte

carlo fitting of spatial models. Stat. Med. Sep 2000; 19(17-18):2279–94, doi:10.1002/

1097-0258(20000915/30)19:17/18<2279::AID-SIM569>3.0.CO;2-R.

[26] Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution, critique,

and future directions. Statistics in Medicine 2009; 28(25):3049–3067, doi:10.1002/

sim.3680.

[27] Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian Data

Analysis. 3rd edn., CRC Press: London, 2013.

[28] Rizopoulos D. Dynamic predictions and prospective accuracy in joint models for

longitudinal and time-to-event data. Biometrics 2011; 67(3):819–829, doi:10.1111/j.

1541-0420.2010.01546.x.

[29] Sweeting MJ, Thompson SG. Joint modelling of longitudinal and time-to-event data

with application to predicting abdominal aortic aneurysm growth and rupture. Bio-

metrical Journal 2011; 53(5):750–763, doi:10.1002/bimj.201100052.

[30] Dobson A, Henderson R. Diagnostics for joint longitudinal and dropout time model-

ing. Biometrics 2003; 59(4):741–751, doi:10.1111/j.0006-341X.2003.00087.x.

[31] Zhu H, Ibrahim JG, Chi YY, Tang N. Bayesian influence measures for joint models

for longitudinal and survival data. Biometrics 2012; 68(3):954–964, doi:10.1111/j.

1541-0420.2012.01745.x.

[32] Zhang D, Chen MH, Ibrahim JG, Boye ME, Wang P, Shen W. Assessing model fit

in joint models of longitudinal and survival data with applications to cancer clinical

trials. Statistics in Medicine Nov 30 2014; 33(27):4715–4733, doi:10.1002/sim.6269.

[33] Park KY, Qiu P. Model selection and diagnostics for joint modeling of survival and

longitudinal data with crossing hazard rate functions. Statistics in Medicine 2014;

33(26):4532–4546, doi:10.1002/sim.6259.

25



[34] Rizopoulos D, Verbeke G, Molenberghs G. Multiple-imputation-based residuals and

diagnostic plots for joint models of longitudinal and survival outcomes. Biometrics

2010; 66(1):20–29, doi:10.1111/j.1541-0420.2009.01273.x.

[35] Cox DR, Snell EJ. A general definition of residuals. Journal of the Royal Statistical

Society (Series B) 1968; 30(2):248–254.

[36] Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint model for

multiple longitudinal outcomes and a time-to-event. Statistics in Medicine 2011;

30(12):1366–1380, doi:10.1002/sim.4205.

[37] Nobre JS, Singer JM. Residual analysis for linear mixed models. Biometrical Journal

2007; 49(6):863–875, doi:10.1002/bimj.200610341.

[38] Wu H, Zhang JT. Local polynomial mixed-effects models for longitudinal data.

Journal of the American Statistical Association 2002; 97(459):883–897, doi:10.1198/

016214502388618672.

[39] Gelman A. Prior distributions for variance parameters in hierarchical models.

Bayesian Analysis 2006; 1(3):1–19, doi:10.1214/06-BA117A.

[40] Kelsall J, Wakefield J. Discussion of “Bayesian models for spatially correlated disease

and exposure data” by Best, N.G. and Waller, L.A. and Thomas, A. and Conlon,

E.M. and Arnold, R. Sixth Valencia International Meeting on Bayesian Statistics,

Bernardo J, Berger J, Dawid A, Smith A (eds.), Oxford University Press: London,

1999.

[41] Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A. Bayesian measures of model

complexity and fit (with discussion). Journal of the Royal Statistical Society (Series

B) 2002; 64(4):583–639, doi:10.1111/1467-9868.00353.

[42] Watanabe S. Asymptotic equivalence of Bayes cross validation and widely appli-

cable information criterion in singular learning theory. J. Mach. Learn. Res. 2010;

11(455):3571–3591.

[43] Gelman A, Hwang J, Vehtari A. Understanding predictive information criteria

for Bayesian models. Statistics and Computing 2014; 24(6):997–1016, doi:10.1007/

s11222-013-9416-2.

26



[44] Teixeira TRA, Gracie R, Malta MS, Bastos FI. Social geography of AIDS in

Brazil: identifying patterns of regional inequalities. Cadernos de Saúde Pública 2014;
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Table 1: Candidate Bayesian joint models for the HIV/AIDS data analysis.
Model W (t) g(W (t)) Q DIC WAIC

Part I - None or one degree polynomial function:

no random effects

I 0 0 0 139004 215495

random intercept

II b1 0 0 119686 196486

III b1 γ1b1 0 119359 195970

random intercept and random slope

IV b1 + b2t 0 0 112251 189537

V b1 + b2t γ1b1 0 112026 189069

VI b1 + b2t γ2b2 0 112228 189433

VII b1 + b2t γ(b1 + b2) 0 111948 188984

VIII b1 + b2t γ1b1 + γ2b2 0 111907 188863

spatial random effects

IX b1 + b2t γ1b1 + γ2b2 Q 111891 188883

X b1 + b2t γ(b1 + b2) Q 111952 188960

Part II - Two or more degree polynomial function:

no spatial random effects

XI b1 + b2t+ b3t
2 γ1b1 + γ2b2 + γ3b3 0 108992 185051

XII b1 + b2t+ b3t
2 + b4t

3 γ1b1 + γ2b2 0 108483 184680

XIII b1 + b2t+ b3t
2 + b4t

3 γ1b1 + γ2b2 + γ3b3 0 108372 184492

XIV b1 + b2t+ b3t
2 + b4t

3 γ1b1 + γ2b2 + γ3b3 + γ4b4 0 108100 183649

spatial random effects

XV b1 + b2t+ b3t
2 γ1b1 + γ2b2 + γ3b3 Q 108983 185005

XVI b1 + b2t+ b3t
2 + b4t

3 γ1b1 + γ2b2 Q 108475 184703

XVII b1 + b2t+ b3t
2 + b4t

3 γ1b1 + γ2b2 + γ3b3 Q 108388 184555

XVIII b1 + b2t+ b3t
2 + b4t

3 γ1b1 + γ2b2 + γ3b3 + γ4b4 Q 108083 183568
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Table 2: Posterior parameters estimates for separate (IV) and joint (XIV and XVIII)

models.
Model IV Model XIV Model XVIII

Parameter Mean 95% CI Mean 95% CI Mean 95% CI

Longitudinal:

Intercept (β11) 17.39 (17.14, 17.66) 16.93 (16.66, 17.2) 16.94 (16.66, 17.21)

Time (β12) 1.81 (1.71, 1.90) 4.26 (4.01, 4.52) 4.27 (4.01, 4.53)

Time2(β13) − − −1.68 (−1.85,−1.51) −1.68 (−1.87,−1.51)

Time3(β14) − − 0.24 (0.20, 0.28) 0.24 (0.20, 0.28)

Gender (β15) −0.63 (−0.93,−0.32) −0.64 (−0.93,−0.35) −0.65 (−0.93,−0.36)

Age (β16) −0.51 (−0.96,−0.05) −0.59 (−1.0,−0.14) −0.59 (−1.05,−0.14)

PrevOI (β17) −2.01 (−2.33,−1.71) −2.01 (−2.32,−1.70) −2.01 (−2.32− 1.72)

σ2 7.04 (6.87, 7.20) 5.48 (5.33, 5.64) 5.47 (5.32, 5.63)

σb
11

26.92 (25.64, 28.21) 30.45 (29.02, 31.93) 30.44 (29.01, 31.93)

σb
12

−4.72 (−5.28,−4.14) −13.56 (−15.34,−11.9) −13.55 (−15.29,−11.82)

σb
13

− − 3.89 (2.88, 4.98) 3.85 (2.78, 4.94)

σb
14

− − −0.25 (−0.47,−0.03) −0.23 (−0.46, 0.01)

σb
22

5.20 (4.82, 5.59) 25.10 (21.9, 28.73) 25.42 (22.13, 28.32)

σb
23

− − −8.20 (−10.19,−6.48) −8.38 (−9.94,−6.61)

σb
24

− − 0.71 (0.41, 1.07) 0.74 (0.43, 1.02)

σb
33

− − 3.19 (2.38, 4.23) 3.29 (2.42, 4.10)

σb
34

− − −0.34 (−0.50,−0.21) −0.35 (−0.48,−0.22)

σb
44

− − 0.15 (0.12, 0.16) 0.14 (0.12, 0.16)

Survival:

Intercept(β21) −4.30 (−4.54,−4.07) −5.91 (−6.37,−5.47) −5.90 (−6.40,−5.44)

Gender (β22) 0.33 (0.10, 0.59) 0.48 (0.17, 0.79) 0.47 (0.18, 0.78)

Age (β23) 0.62 (0.33, 0.88) 0.88 (0.53, 1.25) 0.87 (0.51, 1.23)

PrevOI (β24) 0.87 (0.63, 1.10) 1.09 (0.82, 1.38) 1.09 (0.81, 1.39)

γ1 − − −0.21 (−0.25,−0.17) −0.21 (−0.24,−0.17)

γ2 − − −0.46 (−0.61,−0.32) −0.45 (−0.58,−0.30)

γ3 − − −1.57 (−2.05,−1.13) −1.55 (−1.95,−1.08)

γ4 − − −5.95 (−6.84,−5.08) −5.94 (−6.88,−5.02)

σ2

Q − − − − 0.014 (0.001, 0.120)
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Figure 1: CD4 trajectory for patients 85 and 105 (left) and the posterior distributions of

the median survival time for the patients 85 (middle) and 105 (right) using model XVIII

(solid line) and model IV (dashed line).
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Figure 2: Maps of the spatial mean (left) and relative (right) risks based on model XVIII.
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Figure 3: Standardized subject-specific (top left) and standardized marginal (top right)

residuals (black circles), augmented with all the multiply imputed residuals produced by

the L = 5 imputations (gray points). The superimposed dark gray and light gray lines

represent a loess fit based only on the observed residuals and a weighted loess fit based

on all residuals, respectively. The empirical survival curves (bottom panel) based on

the Kaplan-Meier posterior estimates of the Cox-Snell residuals (thick line) and the unit

exponential distribution (thin line).
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Figure 4: Predictions of the
√
CD4 trajectory and the survival curve for 11 patients

(first eleven panels) and all patients (bottom right panel) based on model XVIII. Median√
CD4 trajectory (dashed line) and predicted survival curve (solid line) after last CD4

measurement. Gray area delimits the 95% CI, whereas vertical line is the observed survival

time for each patient.
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