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Abstract - This paper explores the detection of 

landmines using thermal images acquired in military 

context. The conditions in which the images are 

obtained have a direct influence on the methods used 

to perform the automatic detection of landmines 

through image processing techniques. 

The proposed methodology follows two main 

phases: acquisition of thermal images and its 

processing. In the first phase, four different 

experiences were prepared to analyze the factors that 

influence the quality of the detection. In the second 

phase was conducted the image processing on a set of 

images based on classification techniques using the K-

Nearest Neighbor (KNN) and Support Vector 

Machine (SVM) algorithms. The classification was 

performed on a set of features extracted from ROI’s 

obtained by a sliding window. A second approach was 

also implemented based on segmentation using 

thresholds.  

The results achieved allow to identify factors 

that influence the detection of the mines: the burial 

depth, the presence of vegetation on the surface and 

the time of the day at which images were obtained. 

The optimal classification was obtained with the 

KNN classifier with 40 features selected with 

Sequential Backward Selection (SBS), and using the 

distance metric of correlation. 
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I. INTRODUCTION 

his paper presents a study on the detection of 

landmines using thermography. The problem of 

landmine clearance is current, complex and 

demanding due to a multiplicity of factors to consider at 

the time of detection. Allied to this complexity, the 

problem is further compounded by the constant danger of 

specialized engineers responsible for the landmine’s 

inactivation and removal. This problem results in human 

victims, time and money invested in demining. 

Furthermore, the mines also cause inaccessibility of large 

areas of fertile land and access that might be used 

regularly by the local population. 

In the last decade many types of technology have 

been studied in the area of the physics of sensors, signal 

processing and robotics for the detection of landmines. 

 

II. BACKGROUND 

Roughan [1] uses the fusion of two sets of images, 

each set corresponding to a different infrared spectral 

range. One range is located between3 − 5 𝜇𝑚 and the 

other one between 8 − 12 𝜇𝑚. The obtained images 

allowed the extraction of features based on grayscale 

statistics and rotationally invariant statistics. Five 

classification algorithms were applied, two based on a 

single sensor (one for each spectral range) and three based 

on fusion techniques. The algorithms based on a single 

sensor use a threshold based on the best feature extracted 

in the feature extraction phase. Thus, the difference 

between the two algorithms that use only one sensor is the 

resulting threshold of the best feature extracted for each 

spectral range. The classification algorithms based on 

fusion techniques are the parzen window, fisher 

discrimination and logical AND of the thresholds 

obtained from the two spectral ranges. An improvement 

in performance was demonstrated by the use of fusion 

techniques. This approach allows the classification of 

landmines with 99.998% certainty. 

According to Paik et. al. [2] the detection of 

landmines can be performed through volume effect and 

surface effect. The volume effect can be obtained through 

the temperature curve over time, which in the case of 

landmine presence will be different from the surrounding 

soil. The surface effect is a disorder in the soil resulting 

from the burying of a landmine. Thermal images were 

obtained with a sensor that detects infrared radiation in 

the spectral range between 3 − 5 𝜇𝑚. The techniques 

used for the detection of landmines were: filtering, feature 

extraction, contrast enhancement and segmentation. As 

filtering is applied morphological contrast enhancement, 

histogram equalization e Wiener filter (for noise 

reduction). The next stage is the features extraction using 

Kitller-Young transformation (KYT). At the segmentation 

stage is used watershed algorithm, reaching results of 

approximately 70% for landmine detection and 30% of 

false alarm. 

Padmavathi et. al. [3] considers the ambiguity of 

target signal due to low contrast as one of the most 

serious problems in landmine detection applications. The 

algorithms used for contours detection and noise removal 

that allow contrast enhancement are Gaussian and Sobel 

filters, respectively. The signature of a buried landmine in 

an infrared image depends on external factors such as 

weather, soil composition, solar radiation, burial depth 

and time. All of these factors complicate the task of 

segmenting the pixels of landmines from the remaining 
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pixels in an infrared image. To do the segmentation was 

applied the H-maxima transformation algorithm. The 

features of the objects are extracted from segmented 

regions, helping in the classification of possible landmine 

targets. This phase improves the accuracy rate of the 

classifier. The relevant features for landmine 

identification in infrared images are divided into 

statistical and structural features. The KNN classification 

algorithm uses these features in the classification stage, 

considering one class for landmine presence and other for 

the background. This classification allowed 100% 

accuracy on object that effectively were landmines and 

0% of false alarm. These results are not as clear as they 

seem to be, because the original images (256x256 pixels) 

allowed the detection without processing the regions that 

effectively were landmines. 

The methodology presented by Suganthi et. al. [4] 

is based in a retro propagation neural network. As neural 

network inputs are used texture features based on gray 

level co-occurrence matrix. The processing performed 

includes contrast enhancement, filtering, segmentation, 

features extraction and classification. Thus, initially a pre-

processing is performed with histogram equalization and 

Wiener filter to improve the contrast and remove the 

noise, respectively. If an image smoothing is needed, it 

can be applied an average filter. After this stage, it is used 

segmentation to perform the selection of the regions of 

interest through a region growing algorithm. Then, 

feature's extraction is applied to segmented regions for 

further recognition and classification. The features 

extracted were the contrast, homogeneity, correlation and 

energy based on Grey Level Co-occurrence Matrix 

(GLCM). The classification is performed through an 

Artificial Neural Network (ANN) with retro-propagation 

using a multilayer perceptron (MLP) topology. This ANN 

was trained for two classes (mine and background). The 

results were compared through a quality metric based on 

the mean square error (MSE). The classification of those 

segmented regions allows the identification of all 

landmine targets and 0% detection of false alarm. 

Lee [5] presents similar processing techniques to 

those presented by [2]. However, such processing was 

applied to four different case studies. The images were 

obtained with three different sensors. AGEMA sensor 

detects infrared radiation in the spectral range 

between3 − 5 𝜇𝑚, obtaining images with a spatial 

resolution of 256x256 pixels and 100% of targets 

detection that actually correspond to landmines. A TICM2 

sensor that detects infrared radiation in the spectral range 

between8 − 12 𝜇𝑚, obtaining images with a special 

resolution of 256x256 pixels and 50% detection of 

landmines installed. Finally, an Amber Galileo LWR 

sensor that detects infrared radiation in the spectral range 

between 8 − 9 𝜇𝑚, obtaining images with a special 

resolution of 222x140 pixels. The latter allowed the 

identification of all landmines installed, in an experiment 

that simulated a real situation, with irregularities in the 

soil and the presence of vegetation. 

The goal of this paper is to develop and implement 

methods for the detection of landmines in thermal 

imaging based on some of the techniques mentioned 

above. 

 

III. METHODS  

This section includes some image processing 

techniques that are used in landmine detection 

applications. These techniques allow the optimization of 

landmine detection rate when thermal information is 

acquired. Initially were acquired thermal images which 

are crucial for the analysis of the several factors that 

influence the quality of landmine’s signatures. The data 

acquisition was possible only after knowing the main 

factors which influence the thermal imaging in such 

applications[6],[7],[8]. 

A)  MINEFIELDS’ CREATION 

The objective on this phase is to create a set of 

data by performing various experiments such that on one 

hand will be the medium on which the image processing 

techniques will be tested and on the other hand, it is 

possible to perform an analysis of the factors which 

determine the quality of the resulting thermal images. In 

order to achieve this goal four experiments in different 

conditions were designed. 

 
Table 1: Main factors to be considered when detecting buried 

objects using thermal sensors  

Soil conditions 

Presence of vegetation and/or  

covered soil 

Soil homogenization  

Human intervention 

Soil characteristics 

Granularity 

Type 

Humidity 

Climate Variation Time of the day 

Characteristics of the  

buried object 

Dimension 

Shape 

Material Emissivity 

Position of the buried 

object 

Depth 

Orientation 

Thermal energy 

Natural (Solar) 

Infrared illuminator 

 

Four experiments were conducted so as to be able 

to study some of the factors presented in table 1, with the 

aim of the use of multiple experiments being to reduce 

analytical complexity.  

The first experiment seeks to compare what 

influence different types of soils and different materials 

have in conditions where there is a lower thermal energy. 

The influence of soil type on the quality of thermal 

imaging is in fact quite complex, and depends on factors 

such as soil humidity which affect its conductivity, 

dielectric and heating capacities. The exterior region to be 

simulated is one without direct solar exposition, so as 

ascertain if, without solar heating or cooling, it is possible 

to detect landmines. As such, three boxes measuring 

0.8x0.8x0.25m were made, simulating three different 

minefields, each with a different soil type. One box has 

black soil, another sandy soil and the last organic soil [9]. 
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The different soils are considered dry as they remained 

within a room for several days at room temperature 

(approximately 24ºC). The granularity of each soil type is 

homogenous, so as to reduce the irregularity of the soil 

grains. Within each box four objects were placed that, due 

to their weight and sizes, were to simulate anti-personnel 

landmines. 

The second experiment was conducted in the 

exterior, in the barracks of the Military Academy in 

Amadora. The three boxes used in experiment 1, as well 

as the same types of soil that were placed within each, 

were also used in this experiment, with two main 

differences: (i) the boxes had to be filled to the brim to 

ensure there was no shade inside, as solar movement 

could affect any results obtained; (ii) exterior insulation 

was placed next to the sides of the boxes to avoid that any 

heating of the wooden boxes through solar radiation  also 

heated the soil, which might affect the detection of each 

buried mine. After researching different options, the 

thermal insulation used in the insulation of the boxes was 

an XPS based ROOFMATE, a material which has a 

thermal conductivity of around 0.034 W/mk [10], and 

effectively isolates the wooden boards of the boxes from 

the soil within. The aim of the experiment is to analyse 

the thermal detection capacity of each object using the 

same thermal sensor but for different depths.  

One of the factors meant to be studied in the third 

experiment is the capacity of the thermal sensor to 

observe moved soil resulting from burying a mine. As 

such, this experiment was conducted using unmoved soil, 

one that had had no intervention for several months. By 

doing this, hopefully any alteration would be detected by 

the thermal sensor. The experiment consisted in using two 

minefields with varying dimensions and geometries. Field 

1 consists of flat sparse vegetation, with four objects 

being placed on each vertex of a 1.2 by 1.2m square, with 

one also being placed in the centre. This field was 

photographed from the base of a structure and at a 

distance of 1.50m. In field 2 this distance is increased to 

6.9m, and only two aligned objects placed 1.20m from 

each other are used, on soil with high dense vegetation. 

Images were obtained at 2m, 5m and 9.30m height, so as 

to be able to compare the detection capacity of the mine 

signatures for different image resolutions. In field 1 

metallic objects and aluminium were used. The size of the 

square was chosen so that the objects would fit into the 

corners of the images so as to obtain a first position at 

height of 2m. Field 2 simulates a minefield of two 

metallic mines placed on the kerb of a route that has high 

dense vegetation. 

In experiment 4, the minefields were designed to 

simulate as much as possible now-a-days scenarios. With 

this in mind, the experiment was elaborated by sappers 

(personnel specialised in mining and demining) from the 

Regimento de Engenharia nº1 in Portugal. Four 

minefields measuring 5x5m and using real mines were 

created, and the soil used had some vegetation and 

irregularities, as well as being located in a transition area. 

These characteristics are meant to enable a study of the 

capacity of the thermal sensor to detect landmines in 

different situations that can realistically occur. In each 

field five mines were installed, with one being placed in 

each corner and one in the centre of the minefield. Each 

mine was buried by the sappers at a depth considered to 

be realistic. 

 

B)  MINE DETECTION 

Detection of landmines through thermal infrared 

images is obtained through the differences in temperature 

and/or spectral colour between landmine pixels and those 

of the background. The techniques that are used for this 

comparison combine algorithms that follow the main 

phases used in pattern recognition problems solving, and 

include the extraction of characteristics, classification and 

segmentation.  

1. CHARACTERISTIC EXTRACTION 

In this stage characteristics that help identify mine 

attributes are calculated. These characteristics are 

calculated in regions contained in superROI’s
1
, 

designated ROI’s, which are obtained through a sliding 

window of varying pixels and sizes. Each ROI is a region 

of NxN pixels centred on the ROI's respective central 

pixel. Characteristics extracted are based on the intensity 

of the pixels and the texture, considered to be first and 

second order characteristics. First order characteristics 

are: arithmetic mean, standard deviation, maximum and 

minimum intensity, median, asymmetry, kurtosis, mode 

and interval between maximum and minimum intensity. 

The second order characteristics are based on Gray Level 

Co-occurrence Matrix (GLCM) [11]. These 

characteristics are based on the assumption that the 

textural information of an image is contained in the global 

spatial relation that greyscales of neighbouring pixels 

have with each other. Three distances (1, 2 and 3 pixels) 

from neighbouring pixels were used, as well as four 

directions (0º, 45º, 90º and 135º). From the co-occurrence 

matrix correlation, homogeneity, contrast and energy can 

be calculated. 

2. CLASSIFICATION 

The problem with classifying mine regions or the 

background is that it is binary as there are only two 

classes. To solve this problem, techniques involving 

supervised classification were used, which consist in 

allocating each class to a testing sample, so as to be able 

to determine the parameters of a classifier. K-Nearest 

Neighbours (KNN) and Support Vector Machine (SVM) 

were used. The SVM classifies the information through 

the calculation of the best hyper plane that separates all of 

the samples of one class from the samples of another 

class, whilst the K-Nearest Neighbours (KNN) classifier 

uses all of the testing samples. New samples are classified 

by choosing the class with the largest number of samples 

among the K samples closest to those of the testing 

samples [12]. 

                                                           

 
1
 The superROI’s are regions selected from the images that enable each 

class of mines to be specifically distinguished from the background. 
These regions are then attributed to a specific class. 
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The parameters of the learning algorithms are 

ascertained through cross validation, a statistical 

technique used to evaluate and compare learning 

algorithms by dividing the samples into two parts: one 

that is used to teach or train the model, and one for 

validation. The most basic form of cross-validation is k-

fold cross-validation. In this form, the samples are first 

divided into k equal (or approximately equal) segments. 

These training and validation k  iterations are done 

sequentially so that for each iteration a different sample 

segment is used for validation whilst the remaining 1k   

are used for training. To be able to compare the efficiency 

of the models used by the different classifiers a confusion 

matrix was used which allowed to show the percentage of 

correct classifications for each class. table 2 shows the 

structure of the matrix used in binary classification. 

According to table 2, 
p

T  is the number of samples 

correctly classified in class C


 and 
p

F  is the number of 

samples wrongly classified in class C


. T
n
 is the number 

of samples correctly ascertained in class 


C  and F
n

 is 

the number of samples wrongly ascertained in class 


C . 

P
c

is the accuracy of each class, whilst OA refers to the 

overall accuracy of both classes (overall accuracy). The 

value n = T T  F F
p n p n

. 

 
Table 2: Confusion matrix for binary classification problems. 

Class C+  C-  
C

P  OA 

C+  

True 

Positives, 

pT  

False 

Negatives, 

nF  

Tp

T Fp p

 

p nT T

n


 

C-  

False 

Positives, 

pF  

True 

Negatives, 

nT  

n

n n

T

F T
 

 

There are some SVM classification problems 

where it is not possible to obtain a linear separation 

between the classes because of data distribution. For these 

problems, a class of functions, kernels, is used which 

allows a problem with a non-linear separation to be 

separated linearly through a non-linear transformation of 

samples within a space of larger dimensions. The kernel 

functions tested were: linear, Radial Basis Function 

(Gaussian) and polynomial. 

When calculating the proximity of the KNN 

classifier varying metrics are used, of which the Euclidian 

distance is the most prevalent. However, other distance 

metrics are used depending on the type of samples that 

need classifying. Of these alternative metrics, cityblock, 

correlation and chebychev are according to references 

[13], [14] and [15] those most worth referring to. 

It is also important to mention that the 

performance of this classifier depends considerably on the 

value of k and the distance metric that is chosen. 

3. SEGMENTATION 

The main objective of segmentation is to divide an 

image into segments that have similar characteristics and 

properties [16]. Each pixel in the image is allocated to one 

of these segments. 

The detection of landmines through imaging 

obtained through thermal infrared is made through 

analysing the differences in temperature and/or spectral 

colours between the mine pixels and the background 

pixels. It is therefore essential to use a segmentation 

technique that is based on thresholding, and is meant to 

only identify the regions that correspond to the mines that 

supposedly have a greater intensity when compared to the 

background. 

As such, and as a solution to the problem that is 

detecting landmines using thermal infrared imaging, a 

selection method of thresholds based on greyscale 

histograms was used. This method aims to find the 

optimal cut-off point for the global threshold and is based 

on maximising class variance. 

IV. RESULTS AND DISCUSSION 

This chapter analyses the images obtained in the 

experiments so as to be able to extract conclusions on the 

factors that influence the quality of thermal infrared 

imaging. The results of the classification algorithms are 

also presented, and the performance of the classifiers and 

the segmentation through mine class accuracy, as a 

function of the number of characteristics, is also 

discussed. Furthermore, there is also a study of the best 

distance metric for the KNN algorithm as a function of 

the number of characteristics. 

A)  MINEFIELD CREATION 

Four different experiments were conducted with 

the aim of studying factors that affect mine detection via 

thermal imaging. The first experiment was conducted in a 

room where three boxes that had objects simulating three 

minefields were placed. The second experiment was a 

replica of the first one with the difference being that it 

was in the exterior. The third experiment, also conducted 

in the exterior, aimed to study the effect of the surface 

using two prepared minefields, whilst in the fourth 

experiment four minefields were prepared but this time 

using real mines. 

Experiment 1 was conducted in a room with the 

objective of simulating an exterior situation where there 

was no direct exposure to sunlight. All of the images were 

obtained at a height of approximately 2m, and the 

resolution of the images about 12 pixels per 
2

cm  of 

terrain. Soil conditions in each box were considered 

constant throughout the experiment: absence of 

vegetation, homogenous soil, soil that was disturbed due 

to the burying process of different objects, and for each 

object at different depths. In terms of the characteristics of 

the soil, granularity was constant and the soil considered 

as dry. 

The only source of thermal heating present in the 

experiment was a low energy lamp.  
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The following figure shows the thermal imaging of 

one of the fields with the objects on the surface. 

 

 
Figure 1: Box with organic soil in experiment 1, 

with objects on the surface (thermal imaging). 

figure 1 shows that is not possible to clearly 

identify the edges of the objects that are on the surface. 

This means that the absence of relevant natural or 

artificial thermal vibration leads to poor object 

identification through its thermal signature.  

Experiment 2 is a replica of the previous 

experiment, except that it is conducted in the exterior. 

This means that it is subject to natural thermal heating 

through solar radiation, and images for each depth used 

were obtained after having been in the required position 

for 40 minutes.  

The use of the ROOFMATE thermal insulation 

ensured that the soil adjacent to the wooden structure did 

not overheat.  

This experiment followed the same procedures as 

experiment 1. figure 2 illustrates the thermal imaging for 

objects at a depth of 1.5 cm. At this depth just the box 

with sandy soil allows the regions where the objects are 

buried to be cleared identified. 

 

 

 

The soil type influences the obtained results when 

thermal heating is natural (solar radiation), because the 

boxes with organic and black soil did lead to the buried 

objects being identified, unlike what happened with the 

sand box, as illustrated in figure 2. However, this fact is 

not only due to the soil type but also its composition. 

Although all of the soils have an approximately constant 

granularity, the sandy soil box is the one that has the 

fragments that are most alike. As well as the similarity 

between fragment dimensions, it is also important to note 

that the sandy soil was also the purest as it was solely 

composed of sand. This contrasts with the other two 

boxes, in which their sand had small traces of other 

elements such as small stones and roots, which introduce 

distortion in the results that are obtained through thermal 

imaging.  

The only object that cannot be identified is the 

aluminium one, due to its low emissivity. This fact 

confirms the relationship between the thermal sensor and 

the emissivity of the materials it tries to detect. 

However, in the upper left hand corner there is a 

temperature that is much higher than the rest of the box. 

The overheating in this region camouflaged the mine's 

heat signature leading to it not being identified. The 

reason for the overheating in this region is due to the 

direction of the wind at the time the images were 

obtained, as the wind was blowing from the bottom right 

towards the top left, and there were thermal convection 

transfers from one region to the other.  

In experiment 3 the influence of surface vegetation 

was studied. This experiment was conducted in two 

distinct locations. The first was in terrain that had low and 

sparse vegetation, whilst the other had high and dense 

vegetation. Image resolution was also studied to try to 

ascertain which is the best resolution for future 

processing. 

figure 3 refers to the first field in experiment 3 in 

which five elements were placed within the field, four in 

each corner and one in the centre. 

 

 

 

figure 3 shows one of the images obtained in position one, 

at a vertical distance of 2m and at a horizontal distance of 

1.5m, with an approximate resolution of 5 
2

[píxels / cm ] . 

The images obtained in position 2 were at a vertical 

distance of 5m and at a horizontal distance of 1.5m, with 

an approximate resolution of 2 
2

[píxels / cm ] . Lastly, the 

images obtained in position 3 were at a vertical distance 

of 9.30m and at a horizontal distance of 1.5m, with an 

approximate resolution of 1 
2

[píxels / cm ] . These 

resolutions were obtained by dividing the total number of 

pixels by the area of the photographed terrain, in 
2

cm . 

Considering that some anti-personnel mines can reach up 

to 
2

6 cm , then for position 3 the thermal images would 

present heat signatures, if detected, with 6 pixels in an 

image with a total of 76800 pixels, which is the resolution 

of images obtained with the thermal camera. Based on 

this, detection for position 3 based on classification 

algorithms can be complex. 

The images obtained in position 2 and 3 enable 

object signatures to be clearly identified, however, these 

zones are, in terms of the number of pixels when 

compared to the identifying background, far too small, 

and as such identification through a classifying algorithm 

can lead to results that do not allow regions to be clearly 

classified. 

The aluminium objects, located in the upper left 

and upper right corners, appear black in the thermal 

imaging, indicating that they are at a much lower 

Figure 2: Box with sandy soil with objects at a depth of 1.5 

cm (Thermal imaging). 

Figure 3: Field 1 photographed from position 1 (thermal 

imaging) 
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temperature than the corresponding metallic object. This 

fact is due to aluminium's low emissivity when compared 

to the other metallic objects. 

Holes were then opened in the same relative 

position where the objects at the surface had been. This 

meant to test the capacity of detecting the surface effect. 

Below is an image obtained from position 2, chosen 

because of having a lower perspective effect. 

 

 

Through visual inspection it is possible to clearly 

identify the places where the holes were opened and the 

objects placed in. As such, the interior is at a higher 

temperature than the surface, leading to its detection via 

the thermal sensor, as the soil has not been moved for a 

long time. 

The area indicated by the arrow is soil that has 

approximately the same composition as the ones of the 

holes that show having a higher temperature. This is due 

to the opening of the holes and the removal of the soil in 

the same area, leading to local overheating and a thermal 

variance between soils of similar composition. 

The objects were then placed in the holes and 

covered so as to be buried. They had a lower temperature 

when compared with parts of the surface that had not 

human intervention. The thermal difference between this 

soil and the surface is due to this soil being at a lower 

temperature than the surface soil. Furthermore, the 

composition of this soil is slightly different to the surface 

soil and therefore does not have the same emissivity This 

means that the regions were the mines were detected by 

the thermal sensor will be done so differently to that of 

the surface soil, reinforcing the contrast presented in 

figure 4  

Images of the same fields taken 11 days after were 

also taken, so as to be able to reach some conclusions as 

to the effect of the surface. This time period was 

randomly chosen, however, according to references the 

influence of the surface is, as a rule, only perceptible 

between one and two months. From the images obtained 

of the three positions, only one referring to position 2 is 

shown. 

 

 

 

The images obtained in position 1 and in position 3 

do not allow the buried objects to be clearly identified. 

The image presented above correspond to the best result 

obtained during this phase. The thermal imaging shows 

that there are regions that have an apparent higher 

temperature, pointed to by the black arrows. All of the 

corresponding targets are visible in the thermal imaging, 

despite the edges not being clearly defined enough to 

allow an exact correspondence between the mine heat 

signatures and the background. This illustrated that the 

surface effect is detected 11 days after the objects were 

buried in the soil. However, as time passed these became 

less perceptible.  

The second field aims to analyse the influence of 

the vegetation. In this phase the objects that are not 

identified are camouflaged by the vegetation. This result 

was the same to all three positions, meaning that mines 

that are camouflaged by high and dense vegetation are not 

identifiable via infrared thermal imaging. 

In a second phase the capacity to detect the effect 

of the surface for this type of vegetation and for the same 

relative position than in the previous phase was tested. In 

this phase, the effect of the surface was also undetectable, 

leading to the conclusion that in high and dense 

vegetation surface effect is not identifiable via infrared 

thermal imaging. 

In the fourth experiment four minefields were 

made to be as close to reality as possible. Each field was 

5x5m, and had five mines in each. The terrain used had 

irregularities, some vegetation and human intervention. 

figure 6 presents the image of one of the minefields.  

 

 

It is possible to visually identify in the previous 

minefield the mine in the centre and the mine in the lower 

left hand corner and which are indicated by the black 

arrows. The mine in the centre is on the surface and 

camouflaged by vegetation. The vegetation used in this 

camouflage is different to that used in the other regions, 

and this indicates that this central mine was detected due 

to its difference in vegetation. The second mine is also at 

the surface, and it is primarily metallic. 

On the other hand, there are zones without 

vegetation that appear to have much higher temperatures 

in the thermal imaging than areas with vegetation. This 

image distortion is another factor that makes buried mine 

detection harder. 

Figure 4: Field 1 photographed from position 2 (thermal imaging). 

Figure 5: Field 1 photographed from position 2 (thermal 

imaging) 

Figure 6: Camp photographed in the morning without an 

infrared illuminator 
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Images obtained with an infrared illuminator
2
 did 

not present any visual differences, when compared to 

those without an illuminator. Images were also obtained 

during two periods of the day (morning and afternoon), 

and it was during the afternoon that a greater range in 

temperatures (a bigger difference between maximum and 

minimum temperatures) was detected. However, due to 

the higher temperatures during the afternoon, the areas 

without vegetation had an even higher thermal signature, 

which overshadowed the mine's already low thermal 

signatures. 

B)  PROCEDURE FOR MINE DETECTION 

In this section the results of the processing of some 

of the images obtained during the previously described 

experiments are presented. From the complete set of 

images obtained from all the experiments, the ones 

chosen were those that presented positive visual 

identification of the objects. This criteria is based on the 

fact that it is only possible to correctly identify the mine's 

heat signatures in the thermal imaging by using 

classification algorithms when these are at least partially 

visually identifiable. 

1. SET OF EXPERIMENT DATA 

From all of the images that were obtained, five that 

enabled mines to be visually identified were chosen. 

However, the heat signatures of the mines become 

progressively less clear so as to be able to test the applied 

algorithms on regions where the heat signature is not so 

well defined. 

All of the thermal images have a dimension of 

225x300 pixels. The resolution of these images 

corresponds to 12 pixels per 
2

cm  of terrain. 

Two classes were defined: mine and background. 

For these five images, nine training set superROI’s 

were selected, and these had a variable size as the 

corresponding mine areas were all different. The chosen 

superROI’s allow both classes to be clearly identified. 

From the selected training images, 92 

characteristics were calculated for each ROI. Each ROI 

was obtained using a 8x8 pixels window, sliding 2 pixels 

per iteration. Consequently, 2292 ROI's from the total 

superROI’s were selected. The size of the window and the 

number of pixels for each iteration was chosen based on 

various tests, and these were the specifications that gave 

the best results. The size of the window was also chosen 

according to region size that corresponded to the mine 

class used. 

After obtaining all of the characteristics of the 

ROI's they were then specifically selected. So as to study 

the performance of the KNN classifier as a function of the 

parameter K and the metric used the Sequential Forward 

Selection (SFS) and Sequential Backward Selection 

(SBS) was applied. The parameters of the previously 

referred to learning algorithms were obtained using 10-

                                                           

 
2 Infrared illuminator AEGIS SuperLED Infrared has power of 

90W. 

fold cross-validation. The cross-validation algorithm 

allows the K parameter and NN classifier to be studied by 

having a lower value of K (between 1 and 30), which 

minimises general errors obtained through cross 

validation. 

ROI's with the same parameters as the window 

used in the training phase were extracted from the test 

images. As such, and considering the 5 images to be 

classified, characteristics were obtained from 19200 

ROI’s.  

2. ANALYSIS OF THE PERFORMANCE OF THE 

ALGORITHMS  

The analysis of the performance of the algorithms 

is done using confusion matrix, from which the accuracy 

of the classification obtained from the samples through 

segmentation/classification algorithms. This accuracy is 

calculated based on the equations indicated in table 2 

from section III.A.2. The average accuracy consists of the 

average of the five images used during the testing phase 

of the classifiers. 

During a first phase different distance metrics were 

analysed. The metrics used were: Euclidian, chebychev, 

correlation and cityblock. The K value of the NN 

classifier was automatically chosen by selecting the value 

that minimised the cross validation generalization error. 

The maximum number of characteristics selected 

was defined as 40, as empirically beyond this value 

accuracy tends to decrease. 

The analysis of the performance of mine detection 

using the KNN classifier and characteristics selected by 

SFS showed that chebychev distance metric was the one 

that gave the largest correct number of classifications, and 

for the five images, had an average accuracy of 85% for 

two characteristics. 

On the other hand, the same analysis was applied 

to the performance of other metrics as a function of the 

number of characteristics, but now selected with SBS. 

Using SBS led to a maximum accuracy of approximately 

90% for 40 characteristics with the correlation matrix. An 

interesting result is related to the accuracy obtained for 

two characteristics, as with SFS the accuracy for two 

characteristics was almost always better throughout, but 

with SBS the precision for two characteristics was the 

worst. This result suggests that the first order 

characteristics enable the samples to be better classified 

than the second order ones. This is because of the array of 

the obtained characteristics, as the first order 

characteristics were extracted before the second order 

ones. Given this, if the second order characteristics 

allowed the samples to be clearly identified, at least one 

second order characteristic would be chosen, but this did 

not happen. 

In a second phase, the performance of the SVM 

classifier for the different kernels was evaluated. The best 

result was for two results, selected by SFS, with linear 

kernel giving an accuracy of 87%, compared to using 

Gaussian kernel with 35 characteristics, which gave a 

maximum accuracy value of 85%.  

Comparing the accuracy values obtained using the 

KNN and the SVM classifier, the KNN classifier is the 
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one that gave the best results, having had an accuracy 

value of 90%. 

In the huge majority of cases both the KNN and 

the SVM classifiers had an overall accuracy above 90%. 

This result indicates that the percentage of false alarms to 

be very low. 

The accuracy for two characteristics using SFS 

was the highest for almost all of the algorithms. In this 

case the two characteristics were: average pixel intensity, 

and correlation based on the co-occurrence matrix. The 

reason for this is that when representing two 

characteristics in a bi-dimensional space and using a 

linear function it was possible to separate the samples of 

two classes with a general low risk of error.   

Lastly, the performance of the segmentation 

algorithm that was based on thresholds was tested. 

For each image that was converted to greyscale, a 

threshold was automatically selected. The average 

performance for mine detection in the five images was 

90.4%. 

By comparing the results obtained using 

classification and segmentation algorithms, the 

classification algorithms performed slightly better than 

the segmentation algorithms. Nonetheless, the processing 

time for classification algorithms is far greater. Despite 

processing time not being a factor in civilian demining 

(which this methodology is for), in military demining 

time taken is one of the most important factors. 

V. CONCLUSIONS 

Demining is a current, complex and demanding 

problem because of the many factors that have to be taken 

into consideration during mine detection.  

As well as the human toll, time, money invested in 

demining, mines also restrict access to large areas of 

terrain that could be used by the local population. It is 

therefore crucial that new methods are found so as to 

solve this global problem, both in terms of sensors and 

processing algorithms. 

In this dissertation two areas related to mine 

detection were studied: thermal imaging obtained from 

experimental cases and minefields, and image processing 

based on classification and segmentation techniques. In 

the former four experiments were conducted, in which 

mine fields were set up so as to obtain a set of images that 

would enable the capacity to detect landmines to be 

studied. Among others, some factors considered in each 

experiment was mine depth and components, natural or 

artificial thermal energy, presence/absence of vegetation, 

and soil type, so as to be able to analyse how each factor 

influences mine detection in thermal imaging. In the 

latter, a set of images were processed using classification 

and segmentation techniques. The classifiers used were 

KNN and SVM, whilst the segmentation was based on 

selection of thresholds from greyscale histograms. For the 

KNN classifier different distance metrics were tested, and 

different kernels were tested for the SVM classifier, with 

training and test samples being obtained via the use of a 

sliding window. 

In an initial phase experiments were conducted to 

confirm the influence of specific factors which, according 

to references, are relevant to the quality of visually 

inspected thermal imaging. These factors are studied so as 

to better understand signal ambiguities in terms of the 

mines and the background. This is important because 

improvements that can be made to image processing are 

useless if the information (images) that are to be 

processed cannot allow visual identification. As such, a 

prior study of the factors that affect the quality of thermal 

imaging should be done before improvements are made to 

the image processing techniques that are frequently used 

to solve the problem tackled within this dissertation, that 

of landmine detection using infrared imaging. 

From the results obtained, it was concluded that 

without external thermal stimulation, landmine detection 

is not possible as the corresponding signature is in most 

cases lower if not equal to the background. Equally 

important, however, is that the sensor measures thermal 

imaging as a function of emissivity. Aluminium objects 

gave weak heat signatures and were practically 

indistinguishable in the images. 

Sandy soil gave better results than either black or 

organic soil. This is essentially because the sandy soil is 

more homogenous which gave images with less distortion 

which in turn enabled better image processing and a better 

classification of areas which corresponded to mine 

placements. 

Soil influence was another factor studied, and at 

high environmental temperatures the heat signature 

emitted by the background is higher than that of the 

mines, making these more difficult to detect. 

On the other hand, for future experiments in this 

field, it is noteworthy that it is vital the use of thermal 

insulation in experiments where wooden boxes are used to 

simulate a minefield. Not using insulation means that 

adjacent soil will contribute towards it heating 

excessively, mitigating the mine's heat signature making 

it impossible to detect. 

The effect of moving the surface soil when burying 

a mine is clearly detected by a thermal sensor, and this 

feature can be an asset when detecting landmines using 

thermal imaging. However, when sappers place mines 

they follow procedures that disturb the terrain as little as 

possible, and this has a distinct effect on detection. 

According to references, an average period of two months 

is recommended for detecting this type of effect, whilst in 

the conducted experiments a period of 11 days still 

enabled detection. Given, however, that civilian demining 

typically occurs a long time after mines are installed; this 

type of detection becomes considerably more complex. 

The presence of vegetation camouflages mine heat 

signatures, especially of those that are buried, making it 

so that they cannot be clearly identified. This is further 

compounded when vegetation is tall and dense. However, 

even with short vegetation it is common for the heat 

signature of some landmines to not be detected. 

In the images obtained in experiments using real 

mines, there was no significant improvement in mine 

detection when compared to those simulating mines. 

When a terrain has more irregularities it leads to a greater 

distortion of the images obtained by the sensor, 

decreasing detection capacity. The use of an infrared 

illuminator did not lead to better results than those 

obtained with the thermal sensor. This means that thermal 
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energy in this range is not detected by sensors in the 

infrared range. 

In terms of image processing, segmentation 

algorithms had a similar performance when compared to 

the classification algorithms. Forty was found to be the 

best number of characteristics that produce the best 

performance when selected by SBS, and using KNN and 

correlation metric evaluation. In this case, the average 

accuracy for the five images of 91%. The overall accuracy 

was also above 90%, which means there were very few 

false alarms. This low rate of false alarms is an essential 

characteristic of any landmine detection algorithm. 

When using SFS, the classifications obtained for 

two characteristics were almost always above 80%. These 

were the sample average and the correlation, obtained 

using GLCM, allowed both classes to be, with a low 

general error rate, to be clearly distinguished. 

When characteristics of a different order were 

used, they gave results with higher performances. On the 

other hand, first order characteristics (statistics) allow 

mine samples to be classified with greater precision than 

second order characteristics (texture).  
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