
 

 

ESCOLA UNIVERSITÁRIA VASCO DA GAMA 

 

 

MESTRADO INTEGRADO EM MEDICINA VETERINÁRIA 

 

 

 

MAGNETIC RESONANCE IMAGING AND ITS 

APPLICABILITY IN VETERINARY CARDIOLOGY 

 

 

 

 

 

 

José Manuel de Seiça Ferreira 

Coimbra, Fevereiro de 2016  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Comum

https://core.ac.uk/display/75985097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

ESCOLA UNIVERSITÁRIA VASCO DA GAMA 

 

MESTRADO INTEGRADO EM MEDICINA VETERINÁRIA 

 

 

MAGNETIC RESONANCE IMAGING AND ITS 

APPLICABILITY IN VETERINARY CARDIOLOGY 

 

 

Coimbra, Fevereiro de 2016 

 

 

José Manuel de Seiça Ferreira 

Aluno do Mestrado Integrado em Medicina Veterinária 

 

Orientador Interno 

Professora Doutora Maria João Nobre de Matos Pereira Vieira 

 

Orientador Externo 

Dr. João Manuel Pimenta Ferreira de Oliveira 

Médico Veterinário 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dissertação do estágio curricular dos ciclos de estudo conducentes ao Grau de Mestre em Medicina 

Veterinária da EUVG 



 

iv 

 

Abstract 

Magnetic Resonance Imaging (MRI) is a technique whereby images are created by the manipulation 

of hydrogen atoms in magnetic fields; it is based on the principle of nuclear magnetic resonance (MR), 

which is non-invasive and non-ionising (Constantine, Shan, Flamm, & Sivananthan, 2004). Cardiac 

Magnetic Resonance Imaging (CMRI) uses the same principle: application of magnetic-field gradients 

that are adjusted to highlight desired tissue characteristics, producing a variety of sequences that 

allow detection of cardiac tissue and blood, and consequently anatomical and/or physiological 

abnormalities (Jeudy & White, 2008; Constantine et al., 2004). Basic pulse sequences used in CMRI 

are spin-echo and gradient-echo sequences, or their faster hybrids dark- or black-blood and bright-

blood respectively (Constantine et al., 2004). 

CMRI is rapidly developing and is now an important diagnostic tool in human clinical cardiology 

(Gilbert, McConnell, Holden, Sivananthan, & Dukes-McEwan, 2010). In veterinary medicine the use of 

CMRI is still sporadic; its limitations in this field include the need for general anaesthesia, the cost and 

availability of the equipment, the steep learning curve to obtain and analyse the images, and the time 

needed to manually trace endocardial borders if semi-automated analysis is not available (MacDonald, 

Kittleson, Garcia-Nolen, Larson, & Wisner, 2006). CMRI was considered to be the reference method in 

many veterinary studies (Eskofier, Wefstaedt, Beyerbach, Nolte, & Hungerbuhler, 2015; Fattal et al., 

2015; Sargent et al., 2015). Still, not many studies have been published or made available in this field. 

It is therefore essential to fully ascertain the clinical applications, advantages and limitations of CMRI 

in veterinary medicine. The aim of this review is to identify the potential applications of CMRI from a 

clinical point of view and compare it with echocardiography, which is still the gold standard in 

veterinary cardiology. We describe the principles and technique of MRI in small animal cardiology, and 

the diseases in which CMRI could be an important tool for diagnosis and prognosis. 
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Introduction 

MRI has become recognized as a useful referral diagnostic method in veterinary medicine, and is 

widely used in small animal brain and spinal diseases (Gavin, 2011; Gilbert et al., 2010), aural, nasal 

and orbital disorders, planning soft tissue surgery, oncology and small animal and equine 

orthopaedics (Gilbert et al., 2010). The use of MRI in these subjects has grown due to its unparalleled 

capability to image soft tissue structures (Gilbert et al., 2010) to a much better degree than other 

modalities (Constantine et al., 2004).  

During the past decade, the application of MRI to cardiology has provided new insights in the 

investigation of cardiovascular diseases. With technological advancements, we can now rapidly 

acquire large imaging datasets that are essential for imaging the heart (Constantine et al., 2004). This 

has been successfully applied to human cardiology where, despite the inherent difficulties in imaging a 

moving and contractile structure, CMRI has become the optimal technique for the morphological 

assessment and quantification of ventricular function (Gilbert et al., 2010; Vallee, Ivancevic, Nguyen, 

Morel, & Jaconi, 2004). It is also a clinically important technique for the assessment of cardiac 

structure, function, perfusion, and myocardial viability (Constantine et al., 2004; Vallee et al., 2004). In 

veterinary medicine, CMRI is considered to be the gold standard  technique for right ventricular 

volumetric measurement (Sieslack, Dziallas, Nolte, Wefstaedt, & Hungerbuhler, 2014) because of its 

high temporal and spatial resolution and its detailed soft tissue contrast, resulting in high accuracy and 

reproducibility of the measurements. CMRI has also been considered to be a reference method in 

many studies when compared with real-time two-dimensional and three-dimensional 

echocardiography; in dogs it was been used to the quantification of left ventricular volume (Eskofier et 

al., 2015; Sieslack et al., 2014), and function in anaesthetized dogs (Eskofier et al., 2015); to quantify 

right ventricular volume (Sieslack et al., 2014); to evaluate mitral regurgitation (Sargent et al., 2015); to 

study cardiac morphology and function in Boxer with arrhythmogenic right ventricular cardiomyopathy 

(ARVC) (Baumwart, Meurs, & Raman, 2009); to differentiate neoplastic and non-neoplastic pericardial 

effusion (Boddy et al., 2011); and in cats to study hypertrophic cardiomyopathy (MacDonald, Wisner, 

et al., 2005; Sugimoto, Fujii, Sunahara, & Aoki, 2015). 

CMRI is a promising diagnostic tool for the majority of cardiac pathologies. However, some studies are 

needed to compare the measurements and values obtained by CMRI and echocardiography to 

standardize the technique and establish reference values by animal breed, weight and age. It is 

essential to fully ascertain the clinical applications, advantages and limitations of CMRI in veterinary 

medicine in comparison to the more widespread and proven diagnostic tool that is echocardiography. 
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1. Principles and Technique of Magnetic Resonance Imaging 

MRI is a non-invasive and non-ionising radiation technique based on the principle of nuclear magnetic 

resonance, and has intrinsic attributes well suited for cardiac imaging as being a tomographic 

technique that can acquire images in virtually any orientation (Constantine et al., 2004). 

 

1.1. Magnetic Resonance Imaging physics 

The acquisition of MRI images depends on protons; images are derived from signals produced by the 

protons (hydrogen nuclei), which are mainly attached to water molecules. The proton behaves like a 

small magnet that spins when placed in a magnetic field; this produces a small magnetic field that can 

align with a superconducting magnet of a larger magnetic field (Constantine et al., 2004; Jeudy & 

White, 2008). Protons will align with the primary magnetic field, both parallel and antiparallel to its 

direction; in addition, a spatially applied field generates slightly different spins along a gradient. A 

radiofrequency pulse can then be applied in such a way that only protons spinning at the same 

frequency as the radiofrequency pulse will capture the radiofrequency energy and change the 

direction of their magnetization (figure 1) (Jeudy & White, 2008). The magnetization of these protons is 

then momentarily deflected away from the direction of the vector of the superconducting magnet. After 

the radiofrequency pulse ceases, these deflected protons relax back towards their original position 

(relaxation) releasing energy in the form of a radiofrequency signal (figure 2). This signal is captured 

by a radiofrequency receiver coil and forms the basis for images obtained on MRI (Jeudy & White, 

2008). The return of the net magnetisation vector to equilibrium has two components: the vector 

component parallel to the main field returns to equilibrium by interacting with surrounding molecules 

which is a relatively slow process and is known as T1 relaxation (longitudinal). The vector component 

transverse to the field is more rapid to decline, resulting from the interaction between individual spins, 

and is termed T2 relaxation (transverse) (Constantine et al., 2004). A series of radiofrequency pulses 

of varying duration or strength and application of magnetic-field gradients that are adjusted to highlight 

desired tissue characteristics produce a variety of sequences that are applicable to CMRI 

(Constantine et al., 2004; Jeudy & White, 2008). 

Cardiac and respiratory motion artifacts can be overcome in human awake subjects by 

electrocardiography-gating (using electrocardiogram (ECG) signal to synchronizing data acquisition 

with specific phases of the cardiac cycle to eliminate artifacts due to cardiac motion (Gilbert et al., 

2010; Mai, Badea, Wheeler, Hedlund, & Johnson, 2005)) and breath-hold navigation; this allowed for 

real-time techniques to be developed and refined to synchronise data acquisition and keep artifacts to 

a minimum or eliminate them, thus allowing for clear and precise images of morphology and function. 

However when using ECG-gating, cardiac dysrhythmias can significantly interfere with synchronised 

data acquisition (Constantine, Shan et al. 2004). 
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Figure 1: Representation of the application of radiofrequency (RF) and the transversal magnetisation. The 

application of a RF pulse in such a way that only protons spinning at the same frequency as the RF pulse will 
capture the radiofrequency energy and change the direction of their magnetization. 
Source: https://upload.wikimedia.org/wikibooks/en/9/97/InvRecov3.jpg; acessed on 13.02.2016 

 

 

 

Figure 2: Representation of the deflected protons returning to its original position. 
Source: https://upload.wikimedia.org/wikibooks/en/2/27/InvRecov6_1.jpg; acessed on 13.02.2016 

 

1.2. Sequences used in Cardiac Magnetic Resonance Imaging 

Most common pulse sequences used in CMRI are spin-echo and gradient-echo, or their faster hybrids 

dark- or black-blood and bright-blood respectively (Constantine et al., 2004). Spin-echo sequences are 

chosen for the assessment of morphology, and flowing blood appears black (figure 3); on the other 

hand gradient-echo sequences are used in the assessment of valvular lesions, shunts, great vessels, 

ventricular function and wall-motion characteristics (Constantine et al., 2004; Gilbert et al., 2010). 

Gradient-echo sequences have fairly low soft-tissue contrast compared with spin-echo sequences, in 

gradient-echo the flowing blood is represented by high signal intensity and turbulence as areas of 

signal void (figure 3) (Constantine et al., 2004). 
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1.2.1. Spin-echo pulse sequence: Black-Blood 

Black-blood imaging was conventionally done with multi-slice T1-weighted spin-echo sequences; this 

sequence frequently provides excellent high quality anatomic images of cardiac chambers, great 

vessels and pericardium, and is relatively unaffected by metallic artifacts. These sequences are of 

uttermost importance when precise anatomic detail is necessary (Jeudy & White, 2008) such as in the 

assessment of scar tissue formed in chronic infarct (Kali et al., 2014; Thajudeen et al., 2015). 

Recently, T1-weighted spin-echo imaging sequences have largely been supplanted by echo-train 

imaging with double inversion sequences because of its rapidity, this approach can be applied in a 

single slice per breath-hold fashion or images of the entire heart can be obtained in a single breath 

hold using a single-shot strategy (Jeudy & White, 2008), on the other hand fast T2-weighted images 

are used occasionally, especially for patients with cardiac masses or pericardial disease (Boddy et al., 

2011; Jeudy & White, 2008). The major disadvantage of this kind of sequences is the long imaging 

time of several minutes and the associated motion artifact that may occur (Jeudy & White, 2008). 

 

1.2.2. Gradient-echo pulse sequence: Bright-Blood  

Gradient-echo techniques are turbulence sensitive, and thus can be employed to detect areas of 

turbulent flow due to stenosis or regurgitation of blood flow around the lesions, as well as to explore 

the pattern of flow in shunts and vessels, and in the assessment of ventricular wall-motion 

(Constantine et al., 2004; Jeudy & White, 2008); turbulent blood appears black in these techniques, 

while laminar flow appears bright (Gilbert et al., 2010). The extent of stenosis or regurgitation can be 

quantified using velocity-encoded sequences (Jeudy & White, 2008). Using phase encoding velocity 

maps, flow volumes, and flow velocity, may then be quantified across valves or shunts (Constantine et 

al., 2004; Gilbert et al., 2010).Typically bright-blood images are placed in a cine-loop; this format 

allows good visualization of cardiac motion at a single level in any plane during the cardiac cycle, and 

is essential to determine cardiac ejection fraction and to assess wall motion (Jeudy & White, 2008). 

Important disadvantages of gradient-echo techniques include high sensitivity to inhomogeneity in the 

magnetic field, images’ propensity to artifacts from metal (Jeudy & White, 2008) and less contrast 

between blood and soft tissue being provide by these sequences (Constantine et al., 2004). 

Bright-blood sequences have increasingly become the backbone of human CMRI. Initially, bright-

blood imaging was performed with a spoiled gradient-echo sequence and a single view was obtained 

per cardiac cycle, requiring an acquisition time of several minutes; later on, further development of 

gradient-echo techniques allowed for the acquisition in a single breath-hold. Spoiled gradient 

techniques are also limited by relatively poor endomyocardial detail (Jeudy & White, 2008). Using 

bright-blood sequences allows for global and regional function to be evaluated, and parameters like 

ejection fraction or wall thickness being reproducibly extracted based on the high contrast between 

blood and the myocardium (Vallee et al., 2004). The current bright-blood sequence benchmark is 

steady-state free precession, which allows more reliable distinction of the endomyocardial border, 
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better contrast, and less sensitivity to slow flow. When compared with earlier techniques this new 

method employs a very short reaction time and is thus substantially faster than spoiled gradient echo 

techniques. The similarity between spoiled gradient sequences and steady-state free precession 

sequences is that they can be performed in a single breath-hold but with improved temporal 

resolution; such fast imaging is critical to obtain physiologic information regarding myocardial function 

(Jeudy & White, 2008). Steady-state free precession sequences can also be used to obtain non-gated 

free-breathing images, which may be advantageous in patients who have difficulty breath-holding or in 

individuals with arrhythmias that make gating difficult (Jeudy & White, 2008; Vallee et al., 2004). 

 

 

Figure 3: Comparison between black-blood (left) and bright-blood (right) axial images of the human 

hearth. In black-blood (left) the flowing blood appears black and in bright-blood (right) the flowing blood is 
represented by high signal intensity and turbulence as areas of signal void. Adapted from: Jeudy and 
White (2008). 

 

1.3. Performance of a Cardiac Magnetic Resonance Imaging examination under general 

anaesthesia 

In human subjects, there is no need for general anaesthesia for CMRI examinations as humans 

remain calm within the noisy and confined MRI environment, and can be instructed to hold their breath 

(Gilbert et al., 2010). This is not the case for infants and small children, who are routinely imaged 

under general anaesthesia or sedation (Jeudy & White, 2008), nor it is for animals, for whom general 

anaesthesia or sedation is always required (Gilbert et al., 2010; Sharpley et al., 2009). To perform the 

examination, the animal is intubated with a cuffed endotracheal tube, placed on dorsal recumbence 

with the hind limbs extended (Drees, Johnson, Stepien, Munoz Del Rio, Saunders, et al., 2015), 

electrodes are placed (MRI-compatible electrocardiography) and the appropriate surface coil is 

positioned on the thorax at the level of the heart (Gilbert et al., 2010) (figure 4). The animal kept 

anaesthetised with controlled rate infusion of propofol (MacDonald, Kittleson, et al., 2005) or on 

volatile anaesthesia and 100% oxygen with positive pressure ventilation (Drees, Johnson, Stepien, 
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Munoz Del Rio, Saunders, et al., 2015; MacDonald et al., 2006; Sharpley et al., 2009). The imaging 

can then be carried out during apnoea following hyperventilation (Gilbert et al., 2010). 

General anaesthesia in CMRI cases is often complicated by the presence of cardiac disease, and 

many animals will be geriatric, so the anaesthetic complexity is higher. In addition, the CMRI room 

environment imposes restrictions on the anaesthetic and monitoring equipment which must be safe for 

use near the magnet (i.e. must not contain ferrous metals) (Gilbert et al., 2010). In a retrospective 

study of infant and small children, Odegard et al. (2004), listed the difficulties in monitoring, and 

enumerated the anaesthetic protocols to be adopted. They concluded that CMRI could be performed 

safely under general anaesthesia in children with congenital cardiac disease despite the complexity 

and pathophysiology of many of the defects, the frequent breath-holding for image acquisition and the 

CMRI environment. Another important fact of this study was the fact that one child had moderate to 

severe left ventricular dysfunction and another child had a body mass of 1,3 kg, similarly to cats or 

small dogs (Gilbert et al., 2010).  

 

 

Figure 4: Positioning of the cat for CMRI examination. Adapted from: 
MacDonald, Kittleson, et al. (2005). 

 

1.4. Contrast agents used in Magnetic Resonance Imaging 

Gadolinium-based MRI contrast agents are by far the most commonly used; there are some 

gadolinium-based contrast agents commercialized for clinical use, primarily indicated for central 

nervous system, vasculature, and whole body exams. Typically, gadolinium-based contrast agents 

lower the T1 in vivo to create a higher signal in T1-weighted MRI scans (Hao et al., 2012). 

Administration of gadolinium contrast is also useful for tissue characterization and improved mass 

delineation, by means of differential enhancement due to variation in tumour vascularity and altered 
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capillary permeability at both dynamic and delayed imaging (Sparrow, Kurian, Jones, & Sivananthan, 

2005). These agents for use in CMRI are safer than the iodinated ones used in radiography: the 

majority of gadolinium agents are not nephrotoxic and have a lower rate of serious adverse events 

compared to iodinated contrast agents used on radiography contrast. Even so, they still present some 

risk, like nephrogenic toxicity and fibrosis (Constantine et al., 2004; Hao et al., 2012). 

In humans histological studies comparing late gadolinium images, macroscopic slices, and histologic 

samples showed concordance between the regions of enhancement and collagen (Moon et al., 2004). 

Rinkevich-Shop et al. (2013) did the same comparison in rats in a non-invasive assessment of 

experimental autoimmune myocarditis, also showing concordance. These results support the idea that 

late gadolinium enhancement in CMRI provides a means of quantifying fibrosis in vivo (figure 5). 

In a study by Moon et al. (2004) to identify the histological basis of late gadolinium enhancement 

CMRI in hypertrophic cardiomyopathy, a dose of 0.1 mmol/kg of gadolinium-diethylenetriamine 

pentaacetic acid as used, and the images acquired after 10 minutes, whereas in a case report of 

patent ductus arteriosus in a dog, done by Louvet, Duconseille, and Lazard (2010), a dose of 0,2 

mmol/kg was used. 

 

 

Figure 5: Late gadolinium enhancement imaging of a rat heart with myocarditis in short-axis (left) and 
four-chamber (right) views

1
. Image courtesy of Rinkevich-Shop et al. (2013). 

  

                                                      

1
 This figure shows typical epicardial late gadolinium enhancement (hyper-intense strip, yellow arrows), while 

sparing the sub-endocardium. Pericardial effusion is marked by red arrows.  
Legend: LV, left ventricle; and RV, right ventricle. 
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2. Cardiac Magnetic Resonance Imaging in veterinary medicine  

2.1. Echocardiography vs Magnetic Resonance Imaging 

Non-invasive imaging methods like echocardiography and MRI are very valuable in longitudinal follow-

up studies of cardiac function in small animals (Amundsen et al., 2011; Jeudy & White, 2008) and 

pericardial morphology, and is an excellent technique to use in left ventricle functional variables 

assessment (Jeudy & White, 2008). Regarding the evaluation of cardiomyopathies, CMRI is a 

reference standard imaging technique due to the accurate measurement of cardiac volumes and mass 

(Puntmann et al., 2013). In clinical routine, however, echocardiography is the standard first-line 

technique mainly due to its convenience and straightforwardness (Asferg, Usinger, Kristensen, & 

Abdulla, 2012; Puntmann et al., 2013). 

CMRI is more accurate than echocardiography in providing measurements of cardiac chamber 

volumes (Rinkevich-Shop et al., 2013), dimensions and wall thickness (Puntmann et al., 2013), 

regional and global function, perfusion, and tissue characterization, with high reproducibility 

(MacDonald, Kittleson, et al., 2005; Rinkevich-Shop et al., 2013). CMRI can also quantify functional 

abnormalities and characterize morphological changes such as fatty infiltration of the right ventricle 

and an excellent tool to demonstrate complex vascular anatomy, something that is limited in 

echocardiography because of its narrow acoustic window (Baumwart et al., 2009; Lopez-Alvarez et al., 

2011; MacDonald, Kittleson, et al., 2005). It is also more accurate and reliable in the measurement of 

the right heart, as shown by Shors and colleagues (2004) with a close agreement between right 

ventricular mass measurements at MRI and those observed at necropsy.  

Echocardiography is consistently used to assess mitral regurgitation severity but measures of mitral 

regurgitation in dogs have not been compared with other quantitative methods (Sargent et al., 2015). 

However, Kim et al. (2013) suggest that it is feasible to use contrast echocardiography in dogs in order 

to obtain left ventricular volume measurements in agreement with CMRI values, suggesting that 

echocardiography can still be used instead of CMRI as a diagnostic tool for certain pathologies. Still, 

three-dimensional echocardiography underestimates true left ventricles volumes and ejection fraction 

and has a substantial degree of variance, especially in patients with poor acoustic windows or large 

ventricles (Dorosz, Lezotte, Weitzenkamp, Allen, & Salcedo, 2012), even so this still the most 

widespread diagnosis tool in cardiology.  

 

2.2. Morphology and function 

A variety of canine congenital and acquired heart diseases may disturb hemodynamic balance and 

lead to volume overload and regurgitation with possible effects such as pulmonary oedema, ascites, or 

sudden death from heart failure (Meyer et al., 2013). High-frequency echocardiography tends to 

under-estimate left ventricular diameters in end-diastole, but not in end-systole, when compared to 

CMRI (Amundsen et al., 2011; Mor-Avi et al., 2008); in end-systole high-frequency echocardiography 
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also under-estimates wall thickness in the posterior wall, while there seems to be no difference in the 

anterior wall (Amundsen et al., 2011) (table 1). 

 

Table 1: Left ventricular planar measurements generated from echocardiographic exams 

obtained in 10 awaken dogs, as well as CMRI with two different anaesthetic protocols
2
. 

Adapted from: Drees, Johnson, Stepien, Munoz Del Rio, and Francois (2015). 

Variable Echocardiography 
Magnetic Resonance Imaging 

Protocol A Protocol B 

IVSd 
(cm) 

0.76 
(0.66-0.88) 

0.79 
(0.66-1.02) 

0.77 
(0.59-0.98) 

IVSs 
(cm) 

1.06 
(0.95-1.2) 

0.94 
(0.66-1.47) 

0.77 
(0.44-1.04) 

LVIDd 
(cm) 

3.25 
(2.79-3.63) 

3.19 
(2.97-3.45) 

3.41 
(2.84-3.63) 

LVIDs 
(cm) 

2.15 
(1.67-2.45) 

2.6 
(2.04-2.96) 

2.67 
(2.23-3.07) 

LVPWd 
(cm) 

0.68 
(0.53-0.79) 

0.76 
(0.52-0.94) 

0.73 
(0.7-0.94) 

LVPWs 
(cm) 

1.03 
(0.85-1.17) 

1.04 
(0.46-1.25) 

0.92 
(0.65-1.22) 

LA diam 3ch 
(cm) 

2.21 
(1.92-2.49) 

2.8 
(2.10-2.92) 

2.72 
(2.412.99) 

Mitral annulus 3ch 
(cm) 

- 
2.02 

(1.71-2.34) 
1.94 

(1.83-2.20) 

Ao annulus 3ch 
(%) 

1.71 
(1.55-1.97) 

1.17 
(0.94-1347) 

1.18 
(1.04-1.34) 

LA/Ao ratio 
1.27 

(1.18-1.49) 
2.41 

(1.93-3.04) 
2.35 

(1.8-2.64) 

Mitral annulus 4ch 
(cm) 

- 
2.13 

(1.69-2.23) 
2.04 

(1.8-2.34) 

prox Ao 
(cm) 

- 
1.28 

(1.07-1.6) 
1.32 

(1.18-1.56) 

MPA 
(cm) 

1.6 
(1.5-1.8) 

1.23 
(1.11-1.24) 

1.3 
(1.12-1.56) 

Ao/PA ratio 
0.99 

(0.86-1.31) 
1.03 

(0.96-1.22) 
1.09 

(0.98-1.19) 

 

                                                      

2
 All standard echocardiography studies were performed in awaken dogs. For CMRI all dogs were induced with 

propofol (2-6 mg/kg, intravenous) and maintained with isoflurane-oxygen mixture with an end-tidal concentration 
of 1-2%. Protocol A used fentanyl 5 μg/kg bolus for premedication followed by 10 μg/kg/h continuous rate infusion 
and midazolam 0.2 mg/kg bolus followed by 0.2 mg/kg/h constant rate infusion. Protocol B used 
dexmedetomedine 1–2 μg/kg bolus for premedication and 1–2 μg/kg/h constant rate infusion. 

Legend: IVSd, diastolic interventricular septal thickness; IVSs, systolic interventricular septal thickness; LVIDd, 

diastolic left ventricular internal diameter, measured just proximal to the papillary muscles; LVIDs, systolic left 
ventricular internal diameter, measured just proximal to the papillary muscles; LVPWd, diastolic left ventricular 
posterior wall thickness; LVPWs, systolic left ventricular posterior wall thickness; LA diam 3ch, left atrial diameter 
measured on three-chamber view; Mitral annulus 3ch, mitral annulus measured on approximated three-chamber 
view; Ao annulus 3ch, aortic annulus measured on three-chamber view; LA/Ao ratio, left atrium to aorta ratio; 
Mitral annulus 4ch, mitral annulus measured on four-chamber view; prox Ao, proximal aorta measured on 
transverse plane; MPA, main pulmonary artery transverse plane; Ao/PA ratio, aorta to pulmonary artery ratio. 
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Some of the observed discrepancies (table 1) could have been caused by different visualization of the 

endocardial trabeculations in the two methods. In echocardiography, the trabeculae are well visualized 

because of the difference in their echogenicity in relation to blood. CMRI using a bright-blood 

sequence likely leads to the disappearance of the trabeculae in end-diastole when the trabecular layer 

is filled with blood. In end-systole, the trabeculae will be compressed and squeeze out the blood, 

explaining why there was no difference in end-systole (Mor-Avi et al., 2008). 

In veterinary cardiology, low-field magnetic resonance imaging of the heart can be useful, 

complementing the diagnostic information obtained by echocardiography (Garcia-Rodriguez et al., 

2009). Nevertheless, in human medicine cross-sectional imaging of the heart using MRI has been 

shown to be superior for the evaluation of cardiac morphology and systolic function, when compared 

to echocardiography (Drees, Johnson, Stepien, Munoz Del Rio, Saunders, et al., 2015). The clinical 

importance of CMRI in veterinary medicine is well established with regard to morphological 

assessment of cardiac anomalies and great vessels. This role is partly attributed to the large field of 

view of CMRI, its unlimited scanning planes, and good contrast between tissue and blood. In addition, 

CMRI is a precise and highly reproducible method for measurement of right and left ventricular mass 

(Constantine et al., 2004), function, and monitor pulmonary haemodynamic in patients with pulmonary 

hypertension (Roldan-Alzate et al., 2014) (figures 6 to 8). 

 

 

Figure 6: Short axis view of the left ventricle: end diastolic (left) and end systolic (right)
3
. 

Adapted from: Drees, Johnson, Stepien, Munoz Del Rio, Saunders, et al. (2015) 

 

                                                      

3
 This figure shows measurements of interventricular septum (IVS) and left ventricular posterior wall (LVPW) 

thickness and left ventricular internal diameter (LVID).  

Legend: RV, right ventricle 
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Figure 7: End systolic (left) and end diastolic (right) three-chamber view
4
. Adapted from: 

Drees, Johnson, Stepien, Munoz Del Rio, Saunders, et al. (2015). 

 

   

Figure 8: Approximate four-chamber view (left) and transverse plan (right)
5
. 

Adapted from: Drees, Johnson, Stepien, Munoz Del Rio, Saunders, et al. 
(2015). 

 

In veterinary medicine the use of CMRI has been limited, most likely because of the long examination 

times, the motion artifacts caused by heart activity and breathing, the need for anaesthesia and the 

high cost of the examination (Garcia-Rodriguez et al., 2009), these being its major disadvantages. 

Recently in veterinary medicine, problems due to cardiac and respiratory motion have been overcome 

through cardiac gating ECG, respiratory navigation and encoding strategies that speed up acquisition 

times to values compatible with in vivo imaging (Gilbert et al., 2010). The major advantage of using 

                                                      

4
 This figure shows measurement of the diameter of the left atrial (right, dark arrow) and aortic annulus (left 

smallest dark arrow).  

5
 These figures show measurement of the mitral annulus diameter (dark arrow) at end diastole (left) and 

transverse plane view for measurement of the diameter of the proximal aorta (Ao) and the main pulmonary artery 
(MPA) (right).  

Legend: LA, left atrium; LV, left ventricle; RV, right ventricle; Ao, aorta; RPA, right pulmonary artery; LPA, left 

pulmonary artery. 
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both high-frequency echocardiography and self-gated CMRI is the reduction of the examination time 

(Amundsen et al., 2011): this reduction of the anaesthetic time it’s very important in geriatric animals 

and animals with cardiac disease. 

 

2.3. Left ventricular myocardial mass, chamber volume and haemodynamic 

CMRI is the non-invasive method of reference for the determination of cardiac mass. 

Echocardiographic determination of myocardial mass has been based on measurements from two-

dimension standard views with extension to three-dimension on the basis of a geometrical model, 

while contrast MRI allows direct determination of cardiac mass from three-dimension data, providing 

more accurate mass and volume estimation without relying on any geometric assumptions (Gilbert et 

al., 2010) (table 2). 

 

Table 2: Right ventricular function variables comparing CMRI, computed tomography and three-dimensional 
echocardiography in dogs

6
. Adapted from: Kim et al. (2013), Sieslack et al. (2014) and Meyer et al. (2013) 

Variable CMRI CCT 3DE 2DE 

 
Kim et al. 

(2013) 

Meyer et 

al. (2013) 

Sieslack et 

al. (2014) 

Kim et al. 

(2013) 

Meyer et 

al. (2013) 

Kim et al. 

(2013) 

Sieslack et 

al. (2014) 

EDV 

(ml) 

47.73 ± 6.51 

(47.46) 

37.14 ± 

2.69 

34.13 ± 

1.26 

52.75 ± 9.83 

(50.05) 

32.40 ± 

4.15 

26.54 ± 6.87 

(26.20) 

32.88 ± 

1.17 

ESV 

(ml) 

28.45 ± 7.13 

(27.46) 

19.68 ± 

2.82 

16.38 ± 

0.92 

32.35 ± 9.45 

(30.709 

15.14 ± 

2.30 

13.38 ± 4.86 

(13.18) 

15.05 ± 

0.66 

SV  

(ml) 

19.27 ± 1.91 

(19.50) 
- 

17.72 ± 

0.98 

20.38 ± 1.78 

(20.15) 
- 

12.22 ± 2.89 

(12.40) 

17.92 ± 

0.96 

EF (%) 
41.13 ± 7.21 

(40.80) 

47.22 ± 

4.65 

51.92 ± 

2.02 

39.54 ± 6.04 

(41.10) 

53.25 ± 

2.80 

48.87 ± 7.13 

(50.25) 

53.33 ± 

1.69 

 

In a study by MacDonald, Kittleson, et al. (2005) on seven domestic cats they observed that the 

determination of left ventricular mass obtained by CMRI in end-systole was more accurate than 

echocardiography, with a significantly smaller difference between the measures obtain by CMRI and 

the measures obtained by echocardiography and true mass of the left ventricle. CMRI derived left 

ventricular mass closely approximated true left ventricular mass, but echocardiography 

underestimated true left ventricular mass in six of seven cats of the study, and echocardiography 

                                                      

6
 Legend: Mean ± standard deviation values for right ventricular function variables (end-diastolic volume = EDV, 

end-systolic volume = ESV, stroke volume = SV, ejection fraction = EF) obtained with cardiac magnetic 
resonance imaging (CMRI), cardiac computed tomography (CCT) and three-dimensional echocardiography (3DE) 
in 10 healthy anaesthetised beagles (Kim et al., 2013), 6 healthy anaesthetised beagles (Sieslack et al., 2014) 
and 10 healthy anaesthetised beagles (Meyer et al., 2013). 
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underestimated left ventricular mass quantified by CMRI in seven of seven cats. They conclude that 

CMRI using Simpson’s rule accurately quantifies left ventricular mass in normal cats and cats with 

mild left ventricular hypertrophy, and is more accurate and reproducible than the echocardiographic 

estimate of the same indices. Another recent study by Eskofier et al. (2015) shows the same: real-time 

three-dimensional echocardiography underestimates left ventricular volume in comparison with the 

gold standard CMRI. 

Using steady-state free precession sequences, left ventricular ejection fraction can be calculated; end-

diastolic and end-systolic volumes are determined for each section, allowing determination of a global 

left ventricular ejection fraction using a modification of Simpson’s rule. Wall motion can be assessed 

on short- and long-axis images either qualitatively or quantitatively, focal wall motion abnormalities 

suggest possible ischemia, whereas global hypokinesis may occur with a nonischemic 

cardiomyopathy (Jeudy & White, 2008). Roldan-Alzate et al. (2014), using the three-directional 

velocity information, found a strong correlation between: the ratio of the peak tricuspid regurgitation 

velocity to the flow through the pulmonary arteries, and pulmonary vascular resistance determined at 

right heart catheterization, in a canine model of acute thromboembolic pulmonary hypertension.  

 

2.4. Valvular heart disease 

As mentioned before, echocardiography is the primary non-invasive tool for initial evaluation and 

longitudinal monitoring of patients with significant valvular heart disease, however echocardiography 

can be impaired by poor acoustic windows, and is dependent on the skill and experience of the 

technician (Looi, Kerr, & Gabriel, 2015).  

CMRI can provide a comprehensive non-invasive assessment of valvular morphology, quantification of 

the severity of valvular dysfunction, determination of its aetiology, assessment of the consequences 

for the heart from the valve lesion including measurement of ventricular volumes and function, 

evaluation of haemodynamic abnormalities (Looi et al., 2015), measure pulmonary artery flow, 

tricuspid valve regurgitation velocity, and thereby estimate pulmonary vascular resistance (Abbas et 

al., 2003). This is a useful adjunct, but is unlikely to replace echocardiography as the first line 

diagnostic tool for valvular disease in animals with adequate acoustic access (Gilbert et al., 2010). 

CMRI is reliable for the assessment of regurgitant blood volume and semi-quantitative grading of 

regurgitated jets and hence for the diagnosis of aortic and mitral regurgitation (Asferg et al., 2012; 

Gilbert et al., 2010). However, subjective visual assessment of jet properties is of limited value as their 

characteristics vary depending on CMRI sequences and scanning variables; pressure gradients can 

be determined and correlate well with echocardiography and catheterisation (Gilbert et al., 2010). 

Aortic valve disease can manifest as aortic regurgitation, aortic stenosis or a mixture of both. 

Structural abnormalities of the valve, congenital or acquired, or disease of the aorta can cause aortic 

valve disease (Looi et al., 2015). In some diseases, like myxomatous mitral valve disease the 

advances in CMRI have enabled researcher and clinicians to determine the earliest remodelling 
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changes that occur (Burchell & Schoeman, 2014). Recently Sargent et al. (2015) concluded that, 

although technically challenging, CMRI is a feasible method to quantify mitral regurgitant fraction in 

small dogs. To the best of our knowledge there are no reports describing the assessment of valvular 

disease by CMRI in small animals. The techniques (quantitative flow) should be applicable to clinical 

veterinary medicine, but may be more challenging in cats due to small cardiac size and faster heart 

rates. Additionally, the effects of anaesthetic protocols on systolic function may affect valve dynamics 

(MacDonald et al., 2006). 

 

2.5. Cardiomyopathies 

CMRI is well established in the early diagnosis and follow-up of human cardiomyopathies, where it is 

valuable for both tissue characterisation and assessment of function. Accurate measurement of 

myocardial mass and function can be used to differentiate physiological and pathological hypertrophy 

or dilatation (Gilbert et al., 2010). In small animals, one of the strengths of CMRI are the accuracy 

when measuring myocardial function (Vallee et al., 2004) and tissue morphology (Fattal et al., 2015). 

 

2.5.1. Hypertrophic cardiomyopathy 

CMRI has proved to be a useful tool for assessing a hypertrophic heart, especially when 

echocardiography is inconclusive or suboptimal. This technique allows for a better and more precise 

characterization of heart volumes and function, tissue morphology (Fattal et al., 2015) and distribution 

of myocardial hypertrophy (Chun et al., 2010; Fattal et al., 2015), particularly in apical hypertrophic 

cardiomyopathy (Wigle, 2001). CMRI either makes it possible to exclude other diseases’ aetiology that 

could perhaps mimic hypertrophic cardiomyopathy when assessed by other imaging modalities; CMRI 

can also detect features related to sudden death, apical aneurysms, and clots, and provides new 

information for prognosis stratification which helps in treatment planning (Chun et al., 2010). 

Currently, it appears that gradient echo CMRI is not useful for measuring diastolic function in cats, the 

easier and faster method of tissue doppler imaging seems to be a more accurate, less expensive, and 

also a safer, non-invasive assessment method of diastolic function in cats (MacDonald et al., 2006). In 

a study by MacDonald, Wisner, et al. (2005) using a family of Main Coon cats with familial 

hypertrophic cardiomyopathy, contrast enhancement CMRI was not useful for quantification of 

myocardial fibrosis. 

In animals, CMRI was established as an accurate method to quantify the left ventricular mass in cats, 

and a difference in left ventricular mass can be observed between cats with hypertrophic 

cardiomyopathy and normal cats (Fattal et al., 2015; MacDonald et al., 2006). 
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2.5.2. Dilated cardiomyopathy 

To the best of our knowledge there are no published studies on dilated cardiomiopathy with CMRI, 

though based on echocardiographic findings, some diagnosis criteria can be used; CMRI has yet to 

show advantages over echocardiography in dogs. 

 

2.5.3. Arrhythmogenic Right Ventricular Cardiomyopathy 

ARVC is a myocardial disease characterized by fibrofatty replacement of the right ventricular 

myocardium and ventricular tachyarrhythmia being reported most commonly in the Boxer dog. 

Although ARVC is characterized as a myocardial disease and the impact of the disease on the 

function of the right ventricle has not been well studied (Baumwart et al., 2009). A spin echo technique 

allows for the identification of the characteristic high signal intensity associated with fat infiltration, 

diffuse and focal thinning (figure 9), focal aneurysms and systolic and diastolic dysfunction. Fat 

suppression techniques can be used in order to diminish the high fat signal and confirm fatty infiltration 

(Constantine et al., 2004). 

Baumwart et al. (2009) found an abnormal global right ventricular systolic function and little to no 

morphological changes in dogs with ARVC compared with healthy control dogs. The observation of 

abnormal right ventricular function is consistent with the presence of a myocardial disease but has not 

been previously demonstrated in Boxers with ARVC because of the difficulty in imaging and assessing 

the right ventricle. The findings observed in that study are similar to human CMRI studies of young 

individuals with mild ARVC. Supporting the close resemblance of the canine disease and human 

ARVC, both diseases share a profile of sudden death, ventricular arrhythmias of probable right 

ventricular origin, syncope, right ventricular chamber enlargement, aneurysm, right ventricular 

myocyte loss, fatty replacement, myocarditis and apoptosis, Basso et al. (2004) proposed Boxer 

ARVC as a new animal model for human ARVC. These authors concluded that in vivo CMRI should 

allow for the diagnosis of the condition and the assessment of its progression. In the same study, all 

14 hearts with ARVC displayed high transmural signal intensity in the anterolateral and/or infundibular 

regions of the right, corresponding anatomically to those areas of right ventricle where fat was 

identified by histopathology. 
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Figure 9: Pathological changes in boxer dogs with ARVC
7
. Source: Basso et al. (2004). 

 

2.5.4. Myocarditis and myocardial viability 

Currently, CMRI is the preferred non-invasive imaging tool in the workup of myocarditis in humans 

(Rinkevich-Shop et al., 2013), CMRI is being used in ischemic and nonischemic myocardial disease to 

assess myocardial perfusion, viability (Jeudy & White, 2008) and infarct size (Amado et al., 2004). 

Rinkevich-Shop et al. (2013) found that CMRI accurately identified the location and the extent of 

myocardial damage, which corresponded with the histopathology of myocarditis and detected regional 

and global left ventricular dysfunction and an increase in wall thickness that most likely reflects 

inflammation and oedema (figure 10). 

                                                      

7
 A, B, and C are from a boxer dog with ventricular tachycardia and sudden death during physical activity. A, 

Gross heart specimen cut in cross section. B, T1-weighted post-mortem MRI corresponding to same cross-
sectional plane as shown in A, presenting dilatation of right ventricle cavity however the wall thickness is normal. 
C, histopathological section of right ventricle wall from region of bright MRI signals (delineated by the box in B); 
this histological preparation shows marked transmural fatty replacement. D and E are from other boxer dog with 
ventricular tachycardia and congestive heart failure. D, Cross-sectional MRI image shows bright, high-intensity 
signal in right ventricle infundibulum. E, Panoramic histopathological section from region of bright MRI signals 
demonstrating massive, diffuse fatty replacement of atrophic myocardium. Inset shows small islands of a few 
surviving myocytes surrounded by fat. F and G are from a normal control dog. F, Cross-sectional MRI showing 
absence of bright MRI signals in RV wall. G, Panoramic histopathological section demonstrates normal right 
ventricle myocardial architecture, from a healthy dog. 
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Figure 10: Late gadolinium enhanced (LGE) distribution in left ventricle (LV) of rats with myocarditis
8
. Image 

courtesy of Rinkevich-Shop et al. (2013). 

 

2.6. Congenital heart disease 

Diagnosis of extracardiac intrathoracic vascular anomalies is of clinical importance but remains 

challenging. Traditional imaging modalities, such as radiography, echocardiography, and angiography, 

are inherently limited by the difficulties of a two-dimension approach to a three-dimensio object 

(Henjes, Nolte, & Wefstaedt, 2011). Recently, MRI has been introduced as a cardiac diagnostic tool 

and has gained increasing importance in the non-invasive examination of congenital heart defects in 

humans (Garcia-Rodriguez et al., 2009; Sieslack et al., 2014), playing a key role in the diagnostic of 

infantile congenital heart disease, even in complicated cases (Garcia-Rodriguez et al., 2009; Gilbert et 

al., 2010). 

Another study by Lopez-Alvarez et al. (2011) showed that echocardiography did not identify an 

aberrant vessel entering the caudal right atrium, apart from the coronary sinus. Also, the echocontrast 

study was negative (as no contrast was detected in the caudal right atrium). However, CMRI showed 

that the coronary sinus and caudal vena cava converged into the caudal right atrium. This negative 

echocontrast study may be the consequence of insufficient contrast administered, but was most likely 

due to the large derivation of the flow to the azygous vein, with contrast arriving in the cranial right 

atrium, indicating disruption of caudal venous caval flow to the heart.  

Ranjan et al. (2014) used MRI and magnetic resonance angiography to further characterize a rare 

venous anomaly in a goat, the persistent left cranial vena cava. This is the first report including MRI 

and magnetic resonance angiography characterization of persistent left cranial vena cava and 

prominent coronary sinus with successful cardiac pacemaker implantation using the persistent left 

cranial vena cava. Contrast-enhanced magnetic resonance angiography offers an additional non-

invasive method of patent ductus arteriosus examination especially when transthoracic 

                                                      

8
 (B) The short-axis view of representative late gadolinium enhanced images of a rat heart with typical epicardial 

late gadolinium enhanced (white strip, yellow arrows). (C) Equivalent heart section shows a high correlation in the 
location of fibrosis between histopathology and CMRI.  
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echocardiography is unable to provide precise measurements of the duct and most importantly from 

the moment that an interventional procedure is anticipated. The wide field of view, multiplanar imaging 

and the ability to reconstruct complicated anatomical information in three-dimensional are all valuable 

attributes of magnetic resonance angiography (Louvet et al., 2010). 

 

2.7. Ischemic disease 

Imaging of human ischaemic heart disease including the coronary arteries, coronary flow and 

myocardial viability is of increasing importance in human medicine, but is unlikely to be important in 

clinical veterinary medicine (Gilbert et al., 2010).  

In animal experiments, excellent agreement between the extent of hyperenhancement on contrast-

enhanced MRI and the histologically determined infarct size was demonstrated. The major advantage 

of contrast-enhanced MRI is superior spatial resolution, which allows differentiation between 

transmural necrosis and subendocardial necrosis (Schinkel, Poldermans, Elhendy, & Bax, 2007), as 

was confirmed by Rinkevich-Shop et al. (2013). A paramagnetic contrast agent, gadolinium 

meglumine, is administered intravenously and becomes distributed in the extracellular space before 

reabsorption by the myocardial capillary bed (and final excretion via the kidneys). In abnormal 

myocardial fibrosis, the extracellular space is expanded resulting in pooling of the contrast agent with 

slow washout. This appears as hyperintense bright areas on T1-weighted gradient echo images – a 

phenomenon known as ‘delayed enhancement’(Gilbert et al., 2010). 

Thajudeen et al. (2015) demonstrated that the high-resolution mapping system and the multielectrode 

catheter accurately localize ventricular scar and abnormal myocardial tissue in an experimental canine 

infarct model. The system helps to rapidly map and identify abnormal electrocardiograms and 

delineates the presence, location and timing of isolated late potentials. Using the high-resolution 

bipolar and unipolar voltage maps may allow to differentiate between scar types and degree of 

transmurality. 

 

2.8. Pericardial disease 

CMRI is widely applied in human medicine in the imaging of pericardial disease, and this is likely to be 

in the same way applicable to dogs and cats (Gilbert et al., 2010). CMRI also has the potential to yield 

clinically relevant information in many cases of canine pleural and pericardial effusion (Boddy et al., 

2011). 

In a recent study to differentiate benign and neoplastic causes of pleural effusion, performed by Boddy 

et al. (2011) CMRI did not substantially improve diagnosis of cardiac tumours compared with 

transthoracic echocardiography in the cases on the study, but it yielded useful descriptive information 

regarding extent, anatomic location, and potential tumour type and confirmed that CMRI requires 

extensive additional training for tumour identification.  
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2.9. Other applications 

A current development in human clinical practice is interventional CMRI – the application of CMRI as 

an imaging modality in interventional cardiology (Gilbert et al., 2010) as an alternative real-time 

technique to conventional fluoroscopy (Constantine et al., 2004).  CMRI has inherent advantages over 

fluoroscopy in interventional imaging: it is three-dimensional, has better soft tissue contrast, provides 

pathological information, and does not expose the operator and subject to ionising radiation (Gilbert et 

al., 2010). In 2014 Markovic et al. (2014) showed the utility of multiple imaging modalities for 

assessment of anomalies of the ascending aorta, main pulmonary artery, and dissecting main 

pulmonary artery aneurysms. This information is particularly useful in planning surgical treatment of 

these disorders. Even though CMRI has shown to be reliable and accurate in human cardiology 

diagnosis, the need for general anaesthesia, CMRI compatible monitoring equipment and the time 

required for a CMRI study means it is not likely to be a first line tool in small animal the near future 

(Lopez-Alvarez et al., 2011; MacDonald, Kittleson, et al., 2005). 

 

3. Specific difficulties with transposition of human Cardiac Magnetic Resonance 

Imaging to veterinary cardiology 

The vast majority of the existing studies are human clinical studies and experimental small rodent 

studies, hence the need for more research in veterinary medicine. 

 

4. Cardiac Magnetic Resonance Imaging studies in cats and dogs – experimental or 

clinical? 

MRI was adopted slowly by veterinary schools because of the expense and uncertainty about its real 

life applications in animals (Constantine et al., 2004; Gilbert et al., 2010). Initially, MRI was considered 

mainly as a research tool, and relatively few clinical studies were performed. However, with the 

increasing numbers of veterinary specialists and referral practices, greater public awareness of MRI, 

decreasing operating costs of MRI units, and – in some countries – increased popularity of veterinary 

health insurances, veterinary MRI has become increasingly available. The growing tendency is for 

veterinary schools and referral practices to install MRI systems for their exclusive use (Constantine et 

al., 2004; Gavin, 2011). 
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5. Future perspectives 

Future use and clinical utility of CMRI in the evaluation of small animal patients with congenital or 

acquired cardiac disease has being assessed in recent studies (Drees, Johnson, Stepien, Munoz Del 

Rio, & Francois, 2015). Other emerging techniques based on MRI, is cardiac magnetic resonance 

elastography (this is a novel imaging technique to noninvasively quantify myocardial stiffness) (da 

Silveira et al., 2014), and magnetic resonance angiography (Contreras et al., 2008). 

A methodology for the simulation of heart function that combines an MRI-based model of cardiac 

electromechanics with a Navier–Stokes-based hemodynamic model is in development. This technique 

accurately describes ventricular geometry and fiber orientation (Choi, Constantino, Vedula, 

Trayanova, & Mittal, 2015). 
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Conclusion 

CMRI has a strong potential for cardiac imaging in small animals (Vallee et al., 2004). MRI technology 

will surely continue to develop and magnetic resonance scanners will become more readily available 

to the veterinary curricula, requiring more teaching and training on this subject in veterinary curricula 

and at postgraduate level; veterinary radiologists must develop and participate in educational 

programs in MRI, in order to optimally support colleagues in first opinion and referral practices who 

need guidance selecting patients for MRI, and help interpreting magnetic resonance scans (Gavin, 

2011). MRI is an alternative to many existing imaging modalities and veterinarians must take decisions 

concerning its benefits on their patients. It is important that these choices are made according to 

evidence acquired from well-designed studies of diagnostic performance and clinical impact (Gavin, 

2011). 

CMRI is still an emerging technique and has become an important diagnostic methodology in human 

clinical cardiology. Echocardiography will not be replaced by CMRI but this offers distinct advantages 

in imaging when three-dimensional organisation of the vasculature is required, when precise volume 

measurements are needed or when myocardial characterisation is indicated (Gilbert et al., 2010). The 

main generic advantages of CMRI include a wide field-of-view, absence of ionizing radiation, a variety 

of imaging sequences to optimize contrast and highlight specific structures, and for some applications, 

avoidance of intravenous contrast medium (Constantine et al., 2004; Jeudy & White, 2008). One of the 

major disadvantages of CMRI and other magnetic resonance techniques has been the need to 

anaesthetize the animal for the examinations (Sieslack, Dziallas, Nolte, & Wefstaedt, 2013). In 

comparison with echocardiography, CMRI provides a better understanding of the anatomy of intra- or 

para-cardiac abnormalities. A recent study in dogs suggest that echocardiography is a good technique 

for detecting heart base tumours, but CMRI provides a better assessment of the exact relationship of 

the tumour with the surrounding great vessels and general hemodynamic consequences, such as 

alternate venous return through the azygos vein (Mai, Weisse, & Sleeper, 2010). CMRI also provides 

improved resolution and better soft tissue contrast (Sparrow et al., 2005). 

Advanced techniques like perfusion imaging, delayed enhancement or tag imaging look promising, but 

an effort is still needed to standardize the acquisition protocols and data analysis (Vallee et al., 2004). 

More recently, veterinary clinical studies have validated left ventricular mass determination by CMRI 

as an effective diagnostic and clinical research tool, and ‘delayed enhancement’ techniques have 

shown promising results. Diastolic function assessment by CMRI has been proven to be useful in the 

cat thus far, but this should be investigated in further studies (Gilbert et al., 2010).  

In conclusion, we can affirm that CMRI is a well developed and useful diagnostic tool in human 

cardiology. In small animal cardiology it poses some additional obstacles that impair its feasibility, 

mainly the need for general anaesthesia of the patient and relative cost of the technique for the owner. 

Also, it is a technique with a relatively difficult learning curve and maintenance costs. We hope that in 

the near future these obstacles can be overcome and this technique can be made widely available for 

veterinary patients worldwide.  
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