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I Dimensions

A [m2] Area

c, cp, cv [ J
kgK ] Specific heat capacity, isobar or isochoric

E [J] Energy

Eel
[
kWh
d

]
Electric energy

F [N] Force

h
[
J
kg

]
Specific enthalpy

hsolar [h] Solar hours

Isolar
[
W
m2

]
Solar radiation

m [kg] Mass

ṁ
[
kg
min

]
Mass-flow

n [pcs] Number, quantity

n [−] Polytrophic exponent

p [bar] Pressure

pa [bar] Ambient pressure

δp [bar] Pressure difference

P [W],
[
J
s

]
Power

Pa [W],
[
J
s

]
Adiabatic power

Q [J] Heat

Q̇, δQδt [W],
[
J
s

]
Heat-flow

Ri

[
J

kg·K

]
Individual gas constant

s [m] Distance

t [s] Time

T [K], [◦C] Temperature

Tsc [K], [◦C] Temperature state change
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U [J] Internal energy

u, v
[
m
s

]
Velocity

V [m3], [l] Volume

V̇
[
m3

min

]
Volume-flow

W [J] Work

Wt [J] Technical work

WU [J] Useful work

WV [J] Volumetric change work

Wa, La [J], [mkg] Adiabatic work

Wis, Lis [J], [mkg] Isentropic work

α
[
W
m2K

]
Heat transfer coefficient or convection coefficient

η [−] Efficiency

λ
[
W
m2K

]
Heat transfer coefficient or conduction coefficient

µ
[
m2

s

]
Kinematic viscosity

ν
[
kg
m·s

]
Dynamic viscosity

∇ [−] Nabla differential operator (here for divergence)

κ [−] Isentropic exponent

ρ
[
kg
m3

]
Density

ζ [−] Dimensionless pressure coefficient
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II Abbreviations

ASME American Society of Mechanical Engineers
CAES Compressed Air Energy Storage
CERN Conseil Européen pour la Recherche Nucléaire
DN Diamètre nominal in [mm]
HX Heat Exchanger
ISO International Standard Organisation or International Organisation for Standardization
PN Pressure nominal in [bar]
PV Photovoltaic
RPM Rounds Per Minute, drive or revolution
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IV Resumo

Este trabalho é o projeto final do Mestrado em Energia. A mudança de combustíveis
fósseis para energias renováveis é uma grande tarefa para a nossa e as futuras gerações
de modo a parar o aquecimento global e impedir mudanças drásticas no ambiente no
nosso planeta. Como o armazenamento de energia é um parâmetro muito importante na
utilização de energia renovável, este estudo tem por objetivo estudar em termos termod-
inâmicos um destes sistemas. Para a implementação de um sistema de armazenamento
de energia por ar comprimido este trabalho permite também fornecer uma base para o
estudo económico e de rentabilidade. Neste trabalho é calculado e dimensionado um sis-
tema adiabático de armazenamento de energia por ar comprimido (AA-CAES) para um
sistema fotovoltaico doméstico localizado em Lisboa, Portugal. Apresenta-se uma breve
história sobre a compressão de ar, estado da arte científico e os desenvolvimentos atuais.
O contexto teórico para a compressão de ar é explicado com base num sistema AA-CAES,
sendo apresentadas as fórmulas usadas para dimensionar um sistema doméstico e apre-
sentadas e explicadas as suposições assumidas. O sistema é dimensionado numa folha de
cálculo Microsoft Excel tendo sido selecionado um compressor de mergulho e estudado o
seu funcionamento com temperaturas ambiente entre 0 ◦C e 50 ◦C. As possibilidades de
armazenamento de calor são explicadas e o processo de expansão na válvula de redução
de pressão selecionada é simulado através de CFD.
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V Abstract

This work is the final Thesis for the Mestrado em Energia study.
Changing from fossil fuels to renewable energy is a big task for our and for future genera-
tions. Stop global warming to prevent our planet from drastic changes in the environment.
As energy storage is a big challenge in Renewable Energy, this study is made to estimate
the thermodynamic sense of such a system. In order to set up the system, this work also
gives a basis on which to make a rough economic calculation of the rentability of such
a system. Because of this, a possibility to store energy when it is produced for example
from photovoltaic cells until it is required is necessary. Does it make sense to sell energy
to the grid? Is the possibility to store energy in pressurised air meaningful? To compress
air with a compressor when there is energy to run it, and re-use the pressure energy via
a turbine when it is required sounds a little bit like a pump storage power plant with air
instead of water and without a mountain to get the potential energy. Air compressors
produce heat compared to water pumps which work almost isotherm because water is
incompressible. How can the waste heat of air compression be used to increase the sys-
tem efficiency - an adiabatic system? This study is made to estimate the thermodynamic
frame of such a system. How does the compression of air work? Which components are
required for the full system? Which would be the size of such a system for one person?
Does it fit in a cellar and how much Photovoltaic area does it need to be fed? How high
is the temperature, density, pressure in the different stages?
An Advanced Adiabatic - Compressed Air Energy Storage for a domestic photovoltaic
system in the Lisbon area, Portugal, is calculated and given dimensions in this work. A
brief overview over the history of air compression is given, actual scientific works and
developments are shown. The theoretical background for air compression is explained
with focus on an AA-CAES system. The formulas used to plan the dimensions of a do-
mestic system and all assumptions are shown and explained. The system is calculated in
Microsoft’s Excel for one chosen scuba dive compressor with surrounding temperatures
from 0 to 50 ◦C. The heat storage possibilities are explained. The expansion process in
the pressure reduction valve is calculated and simulated with CFD.
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1. Introduction

1.1. Technical

With the industrial revolution, many things changed in our lives. Machines were con-
structed to help people to do their work. People used machines to work more efficiently.
More things could be done in the same time. Machines were always controlled by humans
because they had no "brain". Technological development in the past decades brought
many faster, more precise and more efficient machines, but thanks to information tech-
nology, machines also gained something like intelligence. Simple machines just have a
measure control system, which compares a real value with a given setpoint. This must
come from humans who program the machine. This development goes on. The newest
machines have artificial intelligence. They are learning from past works and implement
this knowledge into new work. Nowadays some machines can totally replace humans in
some areas, but these are still defined actions in a given control volume. In the future,
machines will be more connected and share their "knowledge". This leads to a steep
learning curve. It is only a question of time until machines will make decisions about
how to act, and estimate and judge the influence of their decisions for the future.
Machines, tools, devices, or any technical equipment need energy. This energy is often
transferred as electricity, because electricity can be generated and transferred by wires
and cables over short and long distances. Machines don’t need to have their own energy
source, which makes them much more flexible and smaller.
One challenge, since the beginning of electricity is its storage.
Electricity flows when it is produced or generated by a generator, magnetic field or a
photovoltaic cell. When the generator, the magnetic field or the sun stops, the electricity
also stops.
The end user needs his energy source electricity, whenever it is required. Due to sleep
electricity is required less at night. During the day behaviour patterns like going to school
or work and having lunch-break at midday lead to typical average electricity needs. Fig-
ure 1.1 shows the typical electricity use in a German residential area over 24 hours. The
typical curve is different on weekdays and weekends, and variation is part of the daily
work of electricity suppliers. Curve "a" shows typical consumption on week days. The
peak is at midday, presumably because of food preparation. Curve "b" shows the av-
erage consumption on weekends. The consumption begins at equal time like week days
between midnight and midday but doesn’t rise so high. The curve also falls down after
midday with ups and downs until late evening when it drops down to the low night level.

Because of this requirement, the electric grid has been invented with central power
stations that run a big generator and produce electricity 24 hours a day, 365 days a

1



Figure 1.1.: Load course in german residential areas; a - working day, b - weekend
[24, p.20]

year. Traditionally they run with fossil fuels like coal, oil or nuclear power. These types
of power stations have the characteristic that they can’t be switched off and on within
seconds. The start up and shut down processes can take some hours. The problem
with electricity is that once produced and given into the grid, the electricity has to
be used. The grid can’t handle unrequired energy because it has no storage, it is just
the transporter. Thus, it is very important for the electricity provider, to have some
compensation zones. A very good possibility are pump storage power plants. If there is
too much currency in the grid, a generator is run which transports water from a lower
to a higher level, and creates potential energy. If the grid has a need of currency, water
from the higher basin forces the turbine and produces electricity. Because everywhere
does not have mountains, which are needed to create sufficient potential energy, and not
everywhere has enough water and space, the industry is looking for other possibilities to
save and release energy for short term use. One possibility is CAES.

1.2. General

This work corresponds to the technical energy sector. CAES (Compressed Air En-
ergy Storage) systems are a possibility to store energy, primarily from renewable energy
sources, when it is available for short or long term until it is required. Energy storage is
a big challenge of our time because there is not a one and only good technology. Fur-
thermore this challenge only appeared a few years ago. Our energy sector is constantly
changing from fossil fuels to renewable, more sustainable energy sources. While electric-
ity produced from fossil fuels can be regulated in time and amount, renewable energy

2



like sun and wind can’t be switched on and off. Thus, sustainable energy storages have
to be developed to support renewable energies to grow and be a reliant partner in our
daily life. CAES storages use electricity to run a compressor whenever it is available.
This compressor feeds an air storage with pressurised air. This pressurised air can be
expanded through a turbine to produce electricity, whenever it is required. The chal-
lenge of all energy storages is a good efficiency, reliability, economy and sustainability
to ensure ecological and political senses but also to ensure market acceptance. Com-
pressing air is an old technology compared for example to Information Technology and
Micro Electronics. This gives it a touch of antiquity, but it can be combined with new
technologies regarding noise emission, installation volume, efficiency, inspection intervals
and time of using. Until batteries are not further developed regarding infinite loading
cycles or high percentage of recyclability, other promising technologies like CAES should
be forced for technological development. In air compression there is one main task to
solve, which is that compression is an exothermal process. When air is compressed, a big
part of the compression work is transferred into heat. Thus, this heat must be used to
reach an acceptable efficiency. As shown later, warm air increases it’s volume which leads
again to more compression work. One option to use the compression heat is an adiabatic
system, called AA-CAES (Advanced Adiabatic CAES) System. Another set up is Quasi
Isothermal compression. Both technologies are shown in this work, an AA-CAES system
is designed for a domestic application.

3



2. Bibliographic Revision of CAES

2.1. Early Use of Pressurised Air as Energy Storage and
Power Source

Bern in Switzerland already used compressed air as energy source around the year 1900.
Air driven trams were used for public transport. They were charged in a charging station
and had a mobile tank in the rail cars. The city saw the gain in exhaust free streets.

2.2. State of the Art CAES Power Plants, Example Huntorf

At the moment there are two big commercially used compressed air energy storage power
plants. Power plant Huntorf in Germany which was installed in the 1970s with a capacity
of about 300 MW and McIntosh power plant in the USA installed around 1990 with 110
MW. In Sesta, Italy, in the 80s a test plant was installed with 25 MW, but after an
earthquake it was closed in the early 90s. There was a second planned CAES power
plant in Germany which should have been started in 2015 under the name ADELE.
The concept was to use the experience from the Huntorf power plant and improve the
efficiency with an adiabatic process. This means to store the heat during compression
and use this heat during the expansion instead of heating with gas, which decreases
the overall efficiency and environmental friendliness a lot. The Huntorf power plant is
located in the north west of Germany. It is an air storage gas turbine system with
a salt cavern as air storage. The power plant was built to store overproduced energy
which is produced but not required at this moment. This energy can be released into
the electric grid when peak needs are very high. This allows regular power plants to run
more constantly on a lower level. It takes about eight hours to fill the cavern with around
72.000 t pressurised air. The turbo-group is designed in one shaft, as you can see in figure
2.1. The synchronous machine is positioned in the middle and can be connected to the
thermal block on the left, or the compression group on the right side by a clutch, as you
can see in figure 2.2. The compression group has a 4:1 charge ratio with 60 MW nominal
power, a mass flow of 108 kg/s and 70 bar maximum pressure. The charge ratio is the
ratio between charging and discharging time. Economic operation is reasonable between
1:1 and 4:1, [17, p843]. The low pressure compressor has 20 stages which are connected
directly. The high pressure compressor runs at 7622 rpm with six radial stages. After the
low pressure compressor and after every second hp stage, air-water-coolers are installed.
The synchronous machine is a standard generator with water cooling in the stator and a
hydrogen cooled rotor. The most important parts of the thermal block are two turbine
groups in series each with a previous combustion chamber. The high pressure turbine has
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Figure 2.1.: The main shaft of the Huntorf compressed air power plant
[7, p.467]

an entrance pressure of 42 bar and 550 ◦C entrance temperature, the low pressure turbine
has 11 bar and 825 ◦C entrance pressure and temperature. The low pressure turbine is a
standard opened gas turbine with five stages and 76 MW. Instead of the combustion air
compressor, there is a six stage high pressure turbine before. The entrance temperatures
are made by two combustion chambers, fired with gas. Also a recuperator is used from
the exit of the low temperature turbine (400 ◦C) to preheat the stored air before the
entrance of the first combustion chamber. The whole system was built with known parts,
but because of the special use there where the following interesting points that had to
be proofed before. The two turbines on one axel, a combustion chamber with 42 bar,
initial firing with high combustion-air velocities, quick changing temperatures in the high
pressure turbine and the synchronous machine normally only used as generator is used
as motor.
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2.3. Heat Recovery

Heat recovery means a technique to recover waste heat from an outgoing mass flow of a
system. Recovering waste heat to use it for the same system or for another one, increases
the overall efficiency because the heat is not "lost" to the surrounding. The techniques can
be classified by their heat exchanger. There are for example regenerative and recuperative
systems. Recuperative heat recovery systems are transferring heat directly from exhaust
air to the fresh air through the wall of a heat exchanger. Regenerative systems are using
a liquid or solid intermediary thermal heat carrier. Heat is stored in a solid body and
later given to the inlet air.

2.4. Isothermal Compression with a Liquid - Company
CAEstorage

The Company CAEstorage developed a system which should work isothermal. Main
parts are gas cylinders, filled with air on one side and a hydraulic liquid on the other
side. In compression mode, a compressor increases the pressure of the liquid on the one
side of the cylinder. Thus, the piston moves in the other direction and minimises the
volume of the closed room with air, which leads to pressure increase. Reverse to generate
electricity the air presses the piston into the fluid which escapes through the turbine.
Because this process is on the one side an incompressible liquid and on the other side
very slow, the company speaks of an isothermal process.

2.5. AA-CAES

Adiabatic CAES Systems intend to use the heat which is produced during compression
for the pre heating of the pressurised air before the expansion. When no heat is lost to the
surrounding it is adiabatic. State of the art CAES power plants like Huntorf are loosing a
lot of energy because this heat is not used. Compression heat is given to the surrounding
with cooling fans to cool the compression temperature for better compression efficiency
and not overheating the compressor, but before the expansion pre heating is done with fire
from natural gas. This required heat has to be counted into the system efficiency which
drastically drops the overall efficiency and also the environmental friendliness. Advanced
Adiabatic CAES system promise a much better efficiency and sustainability. AA-CAES
power plants vary between 52 and 60 % after simulation and analysis of Hartmann et
al. [16, p.541], and reach a value of 70 % in literature [16, p.541]

2.6. Isothermal Compression with Water Injection -
Company LightSail

In California U.S., is a new company which is developing a compressed air energy storage
system, to store energy when the grid has more energy than there is demand. The
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approach of the company is the optimum isothermal process, without volume increases
as a result of the increasing temperature which leads to losses in the efficiency. The
website [1] explains “We inject a fine, dense mist of water spray which rapidly absorbs
the heat energy of compression and provides it during expansion.” Figure 2.3 shows the
scheme. This water is evaporating from liquid to gaseous directly when it is injected.
The phasechenge of a liquid to gaseous is an endothermic process. The company says
that the amount of water and the size of the drops for the surface is very important
for a good process. The warm water is injected into the expansion process to heat the
exothermal expansion, shown in figure 2.4. The whole process is shown schematic in
2.5 To get the warm water which is sprayed in during expansion, the compressed air
normally has to be dried with a condenser. The company also plans the transport of
the heat energy generated during compression for district air conditioning (heating and
cooling). Two prototypes were built until 2015. LightSail collected around 50 Mio.
dollars private capital for example from Bill Gates (CEO Microsoft) and Peter Thiel
(Famous Investor). [Quellegreen.wiwo] The compressor is a double piston boxer system
which is also working as turbine. During a presentation in the CERN, the CTO claims
it is the most efficient compressor ever built. Danielle Fong said that there will be five
prototype installations until 2016 in the U.S. and one in France.
According to the website “air can be stored in simple, low cost air storage tanks,

packed in a convenient shipping container from factor using industry standard pipes and
matching ASME and ISO safety standards.” This is shown by figure 2.6.
Furthermore, LightSail says that for “truly massive installations, air can be stored in

underground caverns which are the standard for large scale natural gas storages.” Light-
Sail claims that experimental results have offered 300+ hours of reliable operation, around
10 ◦C final temperature difference, 1000 RPM reciprocating piston compressor/expander
and 250 kW highest power achieved. LightSail says that they “achieve very high ther-
modynamic efficiencies without sacrificing performance. "We have achieved these high
thermodynamic efficiencies at higher RPMs than many thought possible. This is crucial
to achieve low cost: the higher the RPM, the higher the power of the same machine, and
the lower the cost per kW.” [1] According to the website, experimental results delivered
more than 300 hours energy, the final temperature difference is around 10 ◦C, the re-
ciprocating piston compressor/ expander operates with 1000 RPM and 250 kW was the
highest power achieved.
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Figure 2.2.: Technical scheme of the Huntorf power plant
[7, p.468]
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Figure 2.3.: LightSail compression system
[1]

Figure 2.4.: LightSail expansion system
[1]
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Figure 2.5.: LightSail scheme
[1]

Figure 2.6.: Lightsail storage tank
[1]
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3. Technical Background

For a better understanding of the following chapters, some key elements of a CAES
System and definitions are explained in this chapter. It is important to have knowledge
about the used techniques, the mathematical background and also the development of
the economics related to this specific topic, to design and then judge such a system.

3.1. Photovoltaic Cells

Photovoltaic cells are made of semiconductor materials. Semiconductors have the char-
acteristic, to be conductor or dielectric dependent on the temperature. The conductivity
rises with increasing temperature. The typical material to produce PV cells is silicon. Sil-
icon is made out of sand. It is possible to dope silicon with other elements, to change the
characteristic. To create a PV cell which means an electrical flow, potential difference is
required. That means, one side of the cell should be positive, the other negative. There-
fore it is possible to dope silicon with boron. The resulting material is called p-Type.
There are electron “wholes”, because boron has only two valence electrons. This means,
that there is space for two other electrons. A positive loaded side is created, because the
positive protons in the core predominate. When silicone is doped with phosphors, the
resulting material is called n-Type. In the n-Type, the 5th valence electron is not bound
with silicon, and can move free. This means a negative side with electron dominance.
When these two materials are put in contact, the free electrons from the n-Type will
bond the free holes in the p-Type. The n-Type loses electrons, and the p-Type loses
holes in the boundary layer. When the n-Layer is now emitted to the sun, electrons will
go out of the n-material (semiconductor characteristics), which is called photoelectric
effect. Because of the electron loss, the now also free “whole” goes back into the p-layer.
The escaping electron flows through a bulb into the p-layer, to re fill the free “whole”. See
therefore figure 3.1. The bulb will light because electric flow is generated. The efficiency
is steadily increasing, see diagram 3.2.

3.2. Economic Situation of Domestic PV Systems

Photovoltaic systems for domestic applications depend on the location and can be de-
signed by the needs of every owner. In Europe, based in the northern hemisphere, the
further south one goes, the more sun radiation one will find in average. Sun radiation
is transferred into electrical energy by the PV cells, depending on the cell area. That
means that one needs less cell area further south for the same amount of electricity, in
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Figure 3.1.: Function principle of a PV cell
[2]

Figure 3.2.: Development of average efficiencies of PV-modules based on mono or multi
crystalline cells

[21, p.40]
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Figure 3.3.: Global annual solar radiation map
[20]

average. There are times or regions when this rule can’t be used. Figure 3.3 shows the
average sun radiation in Europe in kWh

m2 per year and day.
Depending on the idea behind an installation (commercial, private or combined) and

the average consumption, it is possible to calculate the dimension of the photovoltaic
cell area and system size with map 3.3 and special tables available for each region . For
example for a given output Energy, an installation in the Sahara (Africa) needs roughly
2
3 of the cell area than in Portugal. And in Portugal roughly 2

3 of the area than required
in Germany. Formula 3.1 shows how to calculate the cell area required.

Eout = ηcells ·Acells · Isolar (3.1)

The following calculation shows an example for how much area is required for 5 kWh
per day in average in Portugal. According figure 3.3, mid Portugal has an average yearly
sun radiation of 1700 kWh

m2 . The average daily radiation is 4,6 kWh
m2d

. With an average cell
efficiency of 16 %, the required area is 18,4 m2. In the past years, when new installations
where supported by the European Union, installations where made to use the produced
electricity directly by the owner but also as small power plants to sell electricity to the
grid. The financial support for new installations, and guaranteed prices for 20 years after
the installation, politics wanted a change the whole energy sector to green energy with
less emissions and less nuclear power. After years of rentable selling of such produced
electricity, it is no longer rentable to sell PV produced electricity. Figure 3.4 shows this
development in Germany. The continuous lines are the governmental decided payments
for new PV installations secured for 20 years after installation by year. The dotted
lines is the development of electricity costs. The blue line is for small buildings, the
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Figure 3.4.: Development of electricity costs and payments under EEG (Renewable En-
ergy Act)

[21, p.10]

green line for installation on fields, the rose line is the average compensation. This line
is higher because the payments are guaranteed for 20 years after installation. The red
dotted line is the pre-tax price development for private households, the blue dotted line
for industry. These curves are very important for new installations nowadays because
they show the development to non rentability of selling electricity. New buildings with
new PV installations earn around 10 ct

kWh but pay around 30 ct
kWh . This is an efficiency

of 33,33 %. Compensations where supported by the politic in the beginning of the new
green technology to boost the development and installation of PV cells. Now that there
are enough capacities, financial support is restricted. It is almost to speak of penalties
for new installations, looking at the development.

3.3. Important Definitions

3.3.1. Heat Capacity

The heat capacity is a material property. Looking at a closed system with feed charge
of heat, and work, the internal energy will increase as the first thermodynamic law for
closed systems shows.

dQ+ dW = dU (3.2)
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When we bring heat into a system, it will react without phase change with an increase
of temperature.

dQ = C · dT = m · c · dT (3.3)

Q12 = m · c · (T2 − T1) (3.4)

If the state change has constant pressure, isobar, we use cp. For isochoric state changes
cv. The specific heat capacities cp and cv are temperature and pressure independent
constants. The definition of the isentropic exponent is

κ =
cp
cv

(3.5)

3.3.2. State Changes

Thermodynamic systems are divided in different phases or states between which state
changes are occurring. If enough variables are known (e.g input ant output pressure) and
the kind of state change is known, it is possible to calculate an unknown variable. Fol-
lowing are listed state changes and equations that are required to calculate the described
system. A basic formula for all state changes is the ideal gas rule.

p · V = m ·Ri · T (3.6)

Adiabatic State Change

At an adiabatic state change of a thermodynamic system, heat is not exchanged with
the surrounding. Work that is done on the system leads to higher inner energy U .

∆U = W (3.7)

p1V
κ

1 = p2V
κ

2 (3.8)

With ideal gas equation 3.6 results

T1

T2
=

(
V2

V1

)κ−1

(3.9)

T1

T2
=

(
p1

p2

)κ−1
κ

(3.10)

ρ1 = ρ2

(
p1

p2

) 1
κ

(3.11)
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Isotherm State Change

The temperature stays constant at an isothermal state change.

T1 = T2 = const. (3.12)

With ideal gas equation 3.6 results
V1

V2
=
p2

p1
(3.13)

W = p1 V1 ln

(
V1

V2

)
(3.14)

Polytropic State Change

Polytropic state change means the pressure p times specific volume to the power of the
polytropic exponent V n is constant.

p · V n = const. (3.15)

Isothermal and adiabatic state changes are both perfect and thus reversible state
changes without heat losses. Adiabatic compression means that the walls surround-
ing the compression room are perfect insulated. This is not or not yet reached in reality.
Real compression is somewhere between isothermal and adiabatic. Figure 3.5 shows the
T-s Diagram of polytrophic state changes. Isothermal state changes are horizontal and
adiabatic changes vertical in the T-s Diagram, see figure 3.6.

Figure 3.5.: Polytropic state change in the T-s diagram
[14, p.28]
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Figure 3.6.: State changes in the T-s diagram
[14, p.29]

3.4. Minor Losses in Pipe Systems

"The losses might not be so minor; e.g., a partially closed valve can cause a greater
pressure drop than a long pipe." [18, p. 367]
The following equation describes the overall minor loss for a system with constant

diameter.

δptot =
ρu2

2

(
λ
l

d
+
∑

ζ

)
(3.16)

To improve the CAES system efficiency, it is important to look at every single part of
the system. One part where normally a lot of energy is lost, is the pressure reduction
valve (PRV).

3.5. Compression

Compression means to take a given volume with it’s amount of a fluid inside, and com-
press it to a smaller volume. A solid material is normally incompressible because the
density is much higher and atoms are much closer. For compression, it is necessary to
perform volumetric change work WV . From the outside mechanical point of view, you
can say that work is force times distance.

W = F · s (3.17)

From the inside mechanical point of view, force is pressure times area.
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F = p ·A (3.18)

Figure 3.7 shows volume change work on a simple example.

Figure 3.7.: Volume change work on the example of a closed pump
[9, p.64]

A bicycle tire inflator or air-pump is working with an inside air volume, given by the
circular area A = Π·d2

4 times the hub s. If an axial force F is given on the shaft, the
inside pressure p(s) is increasing constantly with the force because of the closed exit by
the finger in the picture. We want to change the volume of a body against it’s pressure.
With these two formulas and the knowledge that area times distance is volume, it is
possible to write the following universal formula for volume change work.

W = p(s) ·As = p(s) ·∆V (3.19)

To respect the energy balance, on one side we bring positive counted work into the
system (a negative amount work means work generation), and on the other side we
minimise the volume which means negative sign. Referred to two stages, the formula
gets the following.

WV,12 = −
2∫

1

p(s)Ads = −
2∫

1

p(s)dV (3.20)

In difference to volume change work, effective work also includes the surrounding pres-
sure. For example if you want to fill the bike tyre. The Pressure which is already inside
the tyre works against the pump force.

WU,12 = WV,12 − pa(V1 − V2) = −
2∫

1

p dV − pa(V1 − V2) (3.21)

With constant surrounding pressure pU

WU,12 = −p(V2 − V1)− pa(V1 − V2) = (pa − p)(V2 − V1) (3.22)

The previous examples show closed systems. If we want to use the pump example for
an opened system like we have it in a compressor, we have to introduce the technical
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work. It is the pressure difference which a moved fluid experiences. Figure 3.8 shows the
same example as previous but without the thumb. Technical work has to be made to let
flow a volume against the ambient pressure.

Figure 3.8.: Technical work on the example of an opened pump
[9, p.66]

Wt,12 =

2∫
1

V dp (3.23)

As the power is the derivation of work, technical power can be written as follows.

Pt,12 =
Wt,12

dτ
=

2∫
1

V̇ dp (3.24)

A compressor brings work into our system. In the boundaries we want to stay with our
CAES system, we can suppose that air is an ideal gas. [14, p.8] Because of the inserted
work, our gas makes a state change according the ideal gas rule 3.6 which makes it much
easier to calculate with. Because of the gauge pressure compared to the surrounding, the
gas is later able to perform work. Compression is a state change and exothermal process.
The air increases temperature during this process according to the ideal gas equation.
Higher ambient and process temperatures lead to expansion of air which leads to volume
increases. Higher volume of air leads to a higher amount of compression work, as you
can see in equation 3.23 that work is a function of volume. The p-V diagram 3.9 shows
this also qualitative. The work is the area beneath the curves.
A piston compressors can’t pull out the whole air it soaked in, the detrimental space V ′

stays inside. When no heat transfer from this compressed air is done with the surrounding
(adiabatic), the whole more compression work is gained back during the back expansion,
see therefore figure 3.10. The indicator diagram shows the real compressor diagram
for one stage compression. More work compared to the theoretical optimum must be
done because of resistances in suction ducts and control ducts during compression and
expansion. This more work is pictured hatched in the p-V diagram figure 3.11. The
proportion of the hatched area to the theoretical white area is the compression efficiency
ηcompression
The pressure ratio is the relation between the initial pressure pa and the pressure after

compression pe and calculated as follows.
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Figure 3.9.: Adiabatic efficiency of uncooled turbo fans in the p-V diagram
[14, p.20]

Figure 3.10.: Theoretical compression in the p-V diagram with the influence of detrimen-
tal space

[14, p.12]

pr =
pe
pa

(3.25)

From the theoretical point of view, the optimum compression and expansion cycle
should be isothermal. Due to lower temperatures during the compression, less volume of
air has to be compressed which leads to less technical work to reach the same pressure
level. Also for machine parts it is good to deal with "normal" temperatures. Normal
should be between 0 ◦C and 50 ◦C. Very high or very low temperatures always mean pos-
sible problems with rubber parts like sealing gaskets or viscosity of lubricants. Normal
compressors like screw or reciprocating compressors run with asynchronous machines.
Due to the net frequency, asynchronous machines have around 1500 rpm. That means
that without transmission, a reciprocating compressor compresses it’s compression vol-
ume 1500 per minute, which means that one compression cycle has 0,02 s because the
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Figure 3.11.: The real compression p-V diagram (indikator diagram)
[14, p.13]

compression is only 180 ◦ from a full 360 ◦axle rotation. This means that the air doesn’t
have enough time in the compression or expansion chamber to transfer the heat to the
outside. It is otherwise possible that even more heat comes inside because the compressor
heats up because of friction in the system, especially the sealing gaskets with high surface
speeds. For example the Bauer PE 100 compressor has a piston stroke of 24 mm and a
cylinder bore in the first stage of 60 mm, which gives a volume of round about 68.000
mm3 with surrounding pressure. Compressed to 7 bars in the first stage, we increase
the temperature around 200 ◦ C. That gives an amount of heat of about 13 W. Also
with perfect convection in the inside of the cylinder and perfect heat conduction in the
solid material of the cylinder, around 325 W have to be carried away on the outside of
the cylinder body with ventilation by forced convection. By perfect forced convection
this means a mass of 1,6 kg air or volume of 1,6 m3 in 1 s. With a ventilator of 25 cm
diameter, this means an air speed of around 33 m

s ideal, which is around 120 km
h . This

speed would causes a lot of noise on the outside edges of the compressor. With cooling
blades the speed can be reduced, but it still is a lot of heat that has to be carried away.
The compression temperature is defined by the ambient temperature and the pressure
ratio psc

pa
. If the inter-cooling is made completely to ambient temperature Ta, the stage

compression temperature Tsc of each stage is the same, if the pressure ratio is constant.
In the previous example, which is a three stage compressor PE-100 from Bauer, stage
one pressure ratio is

pr1 =
psc
pa

(3.26)

The pressure ratio of n compression stages is

pr,n = n

√
p

pa
(3.27)

For a domestic house, a compressor with 2.2 kW nominal power like the Bauer PE 100
is a possible pressure source which can be driven by Photovoltaic Cells. The compressor

21



is working in three steps, compressing air to 200 or 300 bar. The schematic figure 3.12
shows the construction of the PE 100. The inter and after cooler is working with an air
ventilator.

Figure 3.12.: BAUER PE 100 compressor schematic
[13, p.3]

3.5.1. Isentropic Compression

The optimum and reversible isentropic process is without any losses to the surrounding.
Isentropic means with constant entropy. In figure 3.13 shows compression in the T-s
diagram. From the start point 0 we go vertically up until we cross the p − e line. If
we want to let the gas work for us now, we can expand it isentropic, and get out the
same amount of work that we had to use for the compression. In reality this process is
unfortunately not possible because of dissipation work like friction which leads to heat
losses.
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Figure 3.13.: Compression in the T-s diagram of an uncooled turbo fan
[14, p.20]

The optimum compression is isothermal or isentropic with a relative low ambient tem-
perature, which is not to see on the p-V diagram. A gas in initial conditions T0, p0 and s0

is compressed by work through the compressor. The pressure rises to pe. Because com-
pression is an exothermal process the temperature rises to Te, and entropie ∆s = se − s
is generated to se. The arising entropy is mostly caused by friction losses.

3.5.2. Isothermal Compression

As shown in figure 3.13 from initial point 0 we go horizontally to the left side until we cross
the pe line. Isothermal means the temperature stays constant. A very slow compression
and expansion process without friction would perform like this. The process has to be
very slow because of the generated heat during compression, and fluctuating heat during
expansion which has to be carried away or brought into the compressor or turbine. If
these processes are very slow, the compressor walls have enough time to transport the
heat to the surrounding to stay isotherm. The process is also shown in the p-V diagram
3.9. As technical work is the integral of volume over the pressure, see equation 3.23,
if the pressure difference is the same, the work is less if the volume is less. It is the
difference of the areas under the curves "Adiabatic" and "Isothermal" in figure 3.9.As
you can see, the isothermal compression means the minimal possible technical work,
which increases the efficiency of such a system. A possibility to compress isothermal in
a normal gas compressor with very fast compression times is to inject or spray water
into the compression room during the process. The water evaporates immediately which
leads to a cooling effect, because evaporating is an endothermic process. This technology
has already been discussed in [14, p.31] in 1927: "In practice it was tried to approach the
ideal, isothermal compression by spaying in water during the compression. But the fast

23



wearout of the grinding parts led to be content with a cooling jacket." Compressors can
also get serious problems like explosion when incompressible media is in the compression
chamber. That’s why compressors are always designed to stay above the dew-point of
air. That means that the spayed in water must totally change into gaseous phase. For
example the German carmaker BMW is using this technology in the new 2015 M4 Safety
Car to increase the efficiency of the combustion engine. Water is directly sprayed into
the combustion chamber. The water comes out of a separate tank in the car. If it is
empty, the power of the engine decreases. The workload of an isothermal compressor is

Lis =

p∫
p0

V dp = p0 V0

∫
dp

p
(3.28)

Lis = p0 V0 ln
p

p0
mkg (3.29)

The isothermal workload is very important to know, because this value is the theoret-
ical minimum workload for a compressor to compress in specific conditions. This value
can then be compared to get the isothermal efficiency as follows.

ηis =
Lis
L

(3.30)

3.5.3. Adiabatic Compression

The previous chapter shown that the technical work of isothermal compression is less
than the work of adiabatic compression. In an ideal compression and expansion process,
the amount of compression heat that leads to higher volume and due to that higher work
decreases the efficiency of the process. As written in the previous chapter, isothermal
compression is not possible for normally used compressors like screw compressors or re-
ciprocating compressors because of the high rotation speed. Heat doesn’t have the time
to flow out or in.
Adiabatic compression means that no heat is transferred with the surrounding of the sys-
tem. When compressed isentropic, which the ideal compressor does, temperature of the
working fluid increases as shown before in figure 3.13. When expanded isentropic, which
the ideal turbine does to produce electricity, temperature decreases because expansion is
an endothermic process. The heat amount which is produced during the compression is
exactly the same like it is negatively counted during expansion. It means that the fluid
comes out of the turbine with the same surrounding temperature like it was soaked in
before the process. In the p-V diagram 3.9 the compression is also compared with isother-
mal compression. The area between the two curves ("Adiabate" and "Isotherme") is the
heat which is produced. This heat will be re-given into the adiabatic CAES process with
the heating of the gas before the expansion, so that this energy is not lost for the system.
Because heated gas needs more space than colder gas with the same pressure, it is more
economic to store cold gas, because then it is possible to store more mass in the same
volume. Normally the volume is limited by space factors and it is necessary to store as
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much energy as possible in a given volume, which is called energy density.
To store cold gas, it has to be cooled after the compression with a heat exchanger and
give the heat into a heat storage. The heat storing material must have good thermal
characteristics like a high specific heat capacity.
Putting

V = V0

(
p0

p

) 1
κ

(3.31)

into equation 3.23 , we can convert to the following expression

La = p
1
κ
0 · V0

2∫
1

p
−1
κ dp (3.32)

La is adiabatic work calculated after Hinz [14].

La = p
1
κ
0 · V0

κ

κ− 1

[
p
κ−1
κ − p

κ−1
κ

0

]
(3.33)

La = p0 · V0
κ

κ− 1

[(
p

p0

)κ−1
κ

− 1

]
mkg (3.34)

The unit [mkg] is the old unit "meter-kilogram". The force is expressed in [kg] instead
of [N ]. A Joule can be expressed as follows.

1[Nm] = 1

[
kg ·m2

s2

]
= 1[J ] (3.35)

[mkg] can be transferred into the standard unit nowadays [J ] as follows.

W [mkg] = 9.81[J ] (3.36)

W [kJ ] = W [mkg] · 9.81[J ] · 10−3

[
kJ

J

]
· 1

60

[
min

s

]
(3.37)

The given volume flows are always per minute, the equation for the power is.

P [kW ] =
W

60

[
kJ

s

]
(3.38)

The compression temperature T1 (Tz in figure 3.15) can be calculated as follows ac-
cording to Hinz [14]

T = T1 = T0
p1

p0

κ−1
κ (3.39)

With n compression stages and inter-cooling, the compression temperature which is
equal for every stage can be calculated as follows.

T = T1 = T0
n

√
p1

p0

κ−1
κ (3.40)
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The power consumption for the first stage is according to Hinz [14]

La,sc1 = p0 · 105 · V0
κ

κ− 1

 n

√(
p

pa

)κ−1
κ

− 1

 (3.41)

The total power consumption is [14]

La,nsc = n · p0 · 105 · V0
κ

κ− 1

 n

√(
p

pa

)κ−1
κ

− 1

 (3.42)

3.5.4. Stage Compression and Inter Cooling

In practice was tried to reach the ideal isothermal compression by spraying in cold water
into the compression chamber. The rapid wear-out of the frictional parts led to only use
a cooling jacket. The positive influence of a cooling jacket is only measurable at small
compressor dimensions. The time during compression is too short for the cold from the
outside to influence the temperature in the centre. That means in big machines with
a diameter bigger than 500 mm [14, p.31] is the compression process adiabatic despite
cooling. The air is almost stagnating during the compression in a piston, which means
heat flux is only out of free convection with low heat conduction coefficient α. Roughly
interpolating the h-s diagram of air (Figure 3.14), isentropic compression to 100 bar leads
already to a temperature of round about 500 ◦C. Compression up to 200 bar or more
leads to very high temperatures which can exceed 1000 ◦C. That can only be handled
with special materials which would make the system very expensive and would lead to
very low efficiencies due to the volume or pressure increase.
Because this problem already exists since a long time, stage compression with inter-

cooling has been developed. To compress a gas to higher pressures and reduce the
temperatures, volumes and the technical work it is possible to use stage compression
with inter-cooling. This means that the compressor has two or more compression stages,
where the pressure increases to e.g. 7 bar in the first stage, is then cooled down to ambient
temperature and then compressed to 50 bar in the second stage. Figure 3.15 shows the
T-s diagram. If you start compression at T0 and p0 and than straight compress until final
pressure p, a horizontal line in the point of interception marks the high temperature in
the axis of ordinate. Then temperature decreases in the storage after some time. The
area (Integral of V dp) underneath these lines is the technical work, see equation 3.23. If
you compress to p2 (with T2), then intercool back to T0 and then compress in a second
compression stage to final pressure p, the area under the curves is smaller which means
less technical work for the same pressure ratio or a better efficiency.
The cooling jacket, often constructed as cooling blades with an air fan, has to keep the

frictional walls and the lubricant cool. After the compression during the ejection cooling
is much better because of smaller pipe circumferences and turbulences in the fluid. Lid
cooling prevents heating of the inflowing air into the cylinder and thus increases the
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Figure 3.14.: The h-s diagram of air, data from VDI [15]
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Figure 3.15.: The T-s diagram for two stage compression
[14, p.31]

volumetric efficiency. It is possible to calculate the temperature of each stage compression
with the following equation according to Hinz [14].

Tsc = T0
psc
p0

(3.43)

During the compression and therefore temperature rise and therefore volume or pres-
sure increase

3.5.5. Incomplete Inter-Cooling

If the outlet air temperature of one stage is higher than the inlet temperature was, the
following stage has to do more work because of the higher volume. Incomplete intercool-
ing only matters with stage compression. Figure 3.16 shows the increased workneed in
the T-s Diagram. Because the temperature range of compression is usually in the region
between 27 and 300 ◦C, around 3 ◦C less back cooling means around 1 % more volume
work in the next stage, vis versa. More work for the same amount of pressurised air
means reduced compression efficiency. Because all stages make almost the same work,
in a two stage compression 6 ◦C more or less back cooling lead to 1 % more or less
work [14, p.37] .
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Figure 3.16.: Incomplete intercooling in the T-s diagram
[14, p.37]

3.6. Expansion

The provided work at adiabatic expansion of a gas from pressure p to p0 has the same
amount which is required to compress adiabatic from pressure p0 to p. The end volume
at the expansion is in accordance to the initial volume of compression. [14, p.12]

La = p · V̇ κ

κ− 1

[(
1− p0

p

)κ−1
κ

]
mkg (3.44)

To calculate the volume flow which is required for a given turbine power in adiabatic
expansion, the formula is

V̇ =
La

p κ
κ−1

[(
1− p0

p

)κ−1
κ

]
mkg

(3.45)

The T-s diagram for isothermal, adiabatic and polytropic expansion are shown in figure
3.17.

3.7. Energy Needs

Some basic equations are required to know how many compressors are required to cover
the electricity needs, or how much electricity can be produced during one average day,
see the following equations.

Eel = npers · Eel,capita (3.46)
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Figure 3.17.: Expansion in the T-s diagram
[14, p.29]

ncompressors =
V̇hp storage out

V̇hp storage in
(3.47)

Wtotal = ncompressors ·Wcompressor (3.48)

Wday = hsolar ·Wtotal (3.49)

3.8. Mixtures

Mean average temperature of three different mass-flows of the same substance for example
in warm water storages can be calculated with the following formula.

T2 =
T1a ·m1a + T1b ·m1b + T1c ·m1c

m1a +m1b +m1c
(3.50)

Including heat energy.

T2 = T1 +
Q̇1−2

ṁ1 · cp
(3.51)
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4. Study of Heat Storages for CAES
Applications

For the adiabatic CAES energy storage it is very important to find a good heat storage.
Good means

high energy density to store much heat in a small volume

high thermal conductivity inside for fast charging and discharging

fast heat transfer means a good heat transfer coefficient and the possibility to form
lamellas

cycle stability to use the storage over a long time

harmless material for the whole life cycle

good insulation to store the heat energy for long time

cheap material to be economic

high temperature differences to store heat in all required temperatures

Heat can be stored in different materials and with different techniques. It is possible
to store heat in solid, liquid or gaseous materials. E.g. stone is a good heat storer. One
of it’s good characteristics is that it can store very high temperatures. Water for example
is a very cheap heat storage that is totally harmless and perfectly adopts itself to any
geometry to transfer heat. Figure 4.1 gives an overview over typical heat storages. All
the previously counted materials store heat in one phase, which means latent. There is
also the possibility to store sensible heat in a phase change of a material. Normally the
phase change is from solid to liquid (endothermic process) and liquid to solid (exothermic
process). The advantage of phase changing heat storages is that the material doesn’t
heat up during the heating process. all of the heat is stored in the phase change. This
means that we don’t have hight temperature differences compared to our environment,
and according to the thermodynamic laws, only a few losses. A disadvantage of these
materials is the price. Also the poisonousness, phase change temperature and cycle
stability have to be proofed. A new way of storing thermal energy are metal organic
frameworks (MFOs), which are highly porous and can store more than 1.4 times it’s
own weight with water. This water than can be released in form of vapour to cool, and
in the opposite direction to bound humidity from the surrounding to heat [12]. This
material seems to be made for building climatisation. The energy density and maximum
temperature seem to be very low for technical systems.
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State Substance cp

[
kJ
kgK

]
Gaseous Air 1.012

Argon 0.520
Helium 5.193
Methane (at 2 ◦C) 2.191
Nitrogen 1.040

Liquid Ethanol 2.44 0
Gasoline (Octane) 2.22 0
Mercury 0.140
Methanol 2.140
Oil ∼ 2
Water 4.181

Solid Aluminium 0.897
Concrete ∼ 1
Copper 0.385
Gold 0.129
Granite 0.790
Lead 0.129
Polyethylene 2.303
Steel 0.466
Uranium 0.116

Table 4.1.: Specific isobaric and volumetric heat capacities at 25 ◦ C for selected materi-
als, data from wikipedia

4.1. Sensible Heat Storage

Thermal energy or heat that changes directly the temperature is called sensible heat.
For example water between 0 ◦C and 100 ◦C in a closed tank will directly change the
temperature when thermal energy is injected. This is shown by the equation 3.3 for
heat capacity. With constant heat energy input, the temperature will increase constant,
until a phase change occurs. If one material e.g. water has a specific heat capacity
of 4,182 kJ

kgK , the temperature will increase less than a material with a lower specific
heat capacity. For example concrete wit a specific heat capacity of around 1 kJ

kgK . The
temperature of the water will increase around four times less than the temperature of
concrete. Typically, solid materials have a lower specific heat capacity than liquids, see
Table 4.1
Gaseous materials have a wide value range from low to high numbers. Because gasses

have the characteristic of a very low density, they not recommendable for cheap and easy
solutions in heat storage applications. Low density means that the system has to be
very tight. Leaking connections are also hard to determine because the gas is not visible
after the exit. As written before, the energy density of solid materials is very high, which
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makes these materials interesting to store heat. Also the normally very high phase change
into liquid guarantees high maximum storage temperatures. The characteristic that solid
materials are not leaking (because they are solid) is a good for heat storage applications
because materials don’t disappear or contaminate the environment anyhow. A problem
that solid materials have is how to transfer the heat into them. If a concrete heat storage
cube is positioned near the compressor, it is not possible to transfer heat as typically
done with water or air - forced convection around the outer shelf of the compressor,
because for this it is necessary to have a moving material. There are theoretically two
options how heat can be transferred. First with very long blades from the compressor
into the depth of the store with a lot of surface, that only heat conductivity is high
enough for the application. Second is a circulating heat transport medium like water or
oil. Because of the toxically harmlessness of water, an acceptable heat capacity, good
circulating systems, accessibility , known characteristics and good price compared to
other material prices, water is a good compromise. There are definitely better materials
according to the technical requirements, but they might be more expensive, more toxic
or harder to handle. If high energy density of a storage is a must, solid material might
have better properties, which could be combined with water as transferring media.

4.2. Latent Heat Storage

Latent heat is the amount of heat, which is hidden or latent in the phase changing
process of a material, body or system with constant temperature as shown in Figure
4.2. The quasi vertical red lines "∆PCM", temperature in the x-axis doesn’t increase
but the specific enthalpy does. The amount of heat can be written with a positive or
negative prefix, depending on the direction of the process. For example boiling water
is an endothermic process which means cold is generated, heat is required and water
temperature remains constant at 100 ◦C under normal conditions. Figure 4.2 sows a PCM
material schematic with a phase change temperature of 40 ◦C. The specific enthalpy
difference, which mirrors the thermal energy amount, is much higher with the latent part
where the temperature is not increasing than the water line in the same temperature
range between 30 and 60 ◦C. To be suited as a PCM (phase changing material) for heat
storage applications in domestic houses, a phase changing temperature should be very
roughly between 40 and 60 ◦C. If it is for a thermal solar panel or for a CAES system,
the boundaries are comparable. The phase change should not be initiated from high
surrounding temperatures, but close to the maximum surrounding temperatures so that
only a small delta T is required to run such a system.

4.3. Thermo Chemical (and Sorption) Heat Storage

Thermochemical heat storages are storing thermal energy in reversible chemical reactions.
They are charged or loaded with heat by an endothermic reaction, and discharged by
exothermal reactions. There are function principles based on van der Waals forces and
chemical reactions. For example Sorption storages are based on van der Waals forces. A
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Figure 4.1.: Scheme of the storage capacity of a phase changing material compared with
water

[22, p.4]
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Figure 4.2.: Different storage materials - salt hydrates, paraffins and carboxylic acids; x
- latent starage capacity, y - melting temperature

[23, p.29]

35



hygroscopic silica gel based granulate which is highly porous has a big inner surface (1
g has around 600 m3 of surface). This material has the characteristic to attract water
vapour which is adsorbed on the surface while heat is set free. In the opposite direction
heat has to be used to dry silica gel, while cold is set free. A real example is tested by
the German Research Centre for Air and Space Travel: "If calcium hydroxide, known
as slaked lime, is heated, this creates calcium oxide at a temperature of approximately
450 degrees Celsius, because water is removed from the calcium hydroxide. During
this reaction, around 80 percent of the input energy is stored in the form of chemical
energy." These types of thermal storages are really good for long time storage. The
chemically energy can be stored indefinitely without losses. To release the energy, water
vapour is added and the strong exothermic reaction happens. For CAES systems, this
storage might be too high-tech because of the required machinery like a vaporiser and the
temperatures are very high, but further developments might bring more opportunities in
the future. For example de-and rehydration of a Ca(OH)2 at high H2O partial pressures
has high storage capacities at high temperatures like [11].
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5. Theoretical Analysis of an AA-CAES
System for Domestic Photovoltaic
Installations

This chapter shows the thermodynamic states of one possible CAES system. After the
boundary conditions, the calculated system is presented before discussing the single parts
of it. A very important number for the whole system regarding energy density, capacity,
costs and dangers is the maximum pressure. With the previous basic thermodynamic
knowledge and information about state of the art commercialised pressurised air systems,
a machine with 200 to 300 bar seems realistic. Scuba compressors produce around 300
bar maximum pressure. The PE 100 compressor from Bauer with 220 V voltage, 2.2 kW
nominal power, 225 or 330 bar and around 2700 EUR seems to be a good machine for
a domestic CAES system. The higher starting power has to be analysed and provided
for example with a bypass system for the compressor, star-delta switch, a battery or
capacitor. The heat transfer from the three inter coolers of the compressor to the warm
water cycle have to be realised for example with three heat exchangers, which could be
mounted instead of the metal coils used as standard. Standard gas cylinders can be used
as pressure storage. Depending on the size and number, different storage volumes can
be arranged. The storage system is also flexible regarding its volume. If one needs more
capacity than the installed compressed air bottles allow, it is possible to install more
bottles. The water volume must also be enlarged then because of the required amount
of heat storage for the expansion process. The turbine can be an extra part, or the
compressor working backwards, depending on the type. Every expansion reduces the
temperature so that inter-heating could be an option to increase the efficiency.

5.1. Boundary Conditions

The following system is designed for one average Portuguese person (in matters of elec-
tricity use) in the Lisbon area. The data of one person is good to scale. In Table 5.1
some estimations are made to calculate the dimensions of the system.

5.2. Example User Type

To tailor a good system, it is important to know the behaviour of the user.

• If the user is not at home most of the working week and doesn’t need a lot of elec-
tricity from Monday to Friday, but has many friends at home during the week ends
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State Assumption

Location Portugal, Lisbon
Average sun radiation per year 1750

[
kWh
m2a

]
Average solar hours 8 h
PV collector efficiency 20 %
Average ambient temperature 15 ◦C
Domestic Electricity consumption 2014 Portugal [4, p.36] 11’908 [GWh]
Portuguese population 2014 [19] 10.401 · 106 people
Domestic Electricity consumption 2014 per capita 3.137

[
kWh
d

]
Compressor Baur PE 100-T
System pressure 200/ 300 bar
CAES System electricity cover 100 %
Maximum outlet turbine power 2 kW

Table 5.1.: Assumed environment conditions and example configuration

that he reaches the average consumption Sunday evening, the storage capacities for
heat and air have to be bigger because they have to store more air and heat energy,
than the storage capacities of somebody who needs the same amount of electricity
every day. Also the turbine has to produce more electricity than the average. The
PV cell area must be the same.

• If a user is absent all week, and only needs the average daily electricity at the
weekends, the compressor, the storage and the PV cell area can be smaller but the
turbine needs the average dimension.

For the following system design we assume an average electricity consumption with
equal balances all over the week. Our "client" has the same behaviour from Monday to
Sunday.

5.3. System

Figure 5.1 shows the system scheme consisting of the three stage compressor (stage 0-1)
Bauer PE 100-T, the legend is shown in Table 5.3 . Each of the three compression stages
transfers the heat into the heat exchanger for inter cooling (stage 0.1-0.2 0.3-0.4 0.5-1)
which cools down the compressed air and stores the heat in the water heat storage. The
high pressure storage (stage 2) stores the pressurised air at ambient temperature. Until
this stage, half of the system can be calculated and designed with the data from Bauer,
see figure 5.11. When electricity is required, pressurised air is released (stage 3) through
the heat exchanger to be pre heated (stage 4). The warmer air has more volume and
can do more volume work in the turbine, and is not getting so cold in the following high
pressure regulation valve (stags 4-5) that it can freeze and block its function. The low
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Figure 5.1.: The CAES System scheme, component description in table 5.2
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pressure storage (stage 6) has more flow in (stage 5) than flow out (stage 7), that the
high losses in the high pressure reduction valve which occur because of the geometry of
the valve for the big pressure and temperature drop can be excluded from a efficiency
calculation. The low pressure valve (stage 7-8) reduces the pressure to optimal turbine
pressure (stage 8-9) and is released back into the surroundings at ambient temperature
and pressure. Table 5.3 explains the Numbers for the diagrams, Figure 5.2 shows the
referring h-s diagram.

System state Diagram state CAES System scheme

0 1 inlet
0.1 2 1st compression stage
0.2 3 1st inter-cooling
0.3 4 2nd compression stage
0.4 5 2nd inter-cooling
0.5 6 3rd compression stage
1 7 3rd inter-cooling and outlet compressor
2 8 main high pressure storage
3 9 hp storage exit
4 10 warm water HX outlet
5 11 high pressure reduction
6 12 low pressure storage
7 13 low pressure reduction
8 14 turbine
9 15 outlet

Table 5.2.: Explanation of state numbers "air system" in the System Diagrams

Following are shown the System diagrams which could be made after the complete
system calculation. To speak about the different parts, the diagrams are first shown and
explained because this knowledge has to be used for the specific components. The dia-
grams have a slightly different numbering of the stages compared to the system scheme,
beginning with one and continuing straight. Figure 5.3 shows the pressure progression,
Figure 5.4 the temperature progression for 15 ◦C surrounding temperature. The tem-
perature rises to 229 ◦C in the first compression stage at 7 bar, 232 ◦C and 50 bar in
the second compression stage, and 155 ◦C in the third compression stage at 200 bar.
Operating at 300 bar outlet pressure, the third compression stage reaches 208 ◦C. The
temperature in the compressor increase with higher surrounding temperature. With 25
◦C surrounding temperature, the temperature in the second compression stage reaches
250 ◦C. With 50 ◦C surrounding temperature, the compression temperature in the sec-
ond compression stage reaches 294 ◦C. Compared with 0 ◦C surrounding temperature,
second stage compression temperature reaches 206 ◦C. The high pressure storage works
with ambient temperature. The required pre heating temperature for diagram state 10
is the theoretically required temperature, to reach surrounding temperature at the exit
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Figure 5.2.: The h-s diagram of air for the chosen system, data from VDI [15]
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Figure 5.3.: Pressure Diagram

of the turbine. Because it is only calculated with one heat exchanger at the very begin-
ning of the expansion process, the temperature must be very high. 893 ◦C for the 200
bar system and 1036 ◦C for the 300 bar system. These temperatures are not reachable
with the water storage system, nor with the compression temperatures. But as we know
from formula 3.3, the amount of heat is constant, delta Temperature is smaller in reality,
which leads to more mass. More mass at lower temperature has to exchange its heat
with the air in more steps. Therefore it is also possible to heat the pressure reduction
valves. The most important point for the efficiency of the system is that the air is as hot
as possible in the turbine. Going on with point 5 after the high pressure reduction valve,
temperature then drops to 222 ◦C and 10 bar in the small pressure tank. This heat must
stay constant with insulation of the storage. This storage should not lose too much heat
because it is only refilled when air flows out, and because of the small volume the air
doesn’t stay very long in the tank, that it does not have the time to cool down after
standing for too long. The low pressure reduction valve reduces the pressure to 7 bar
turbine operation pressure and 174 ◦C. In the turbine the pressure is reduced to 1.5 bar
(assumption) and surrounding temperature. Very important and used as calculation
control is the continuum of mass, the mass-flow, which is constant from inlet to outlet.
Because of different temperatures and pressures, the volume flow varies as shown in 5.5.
Interesting is the increase of Volume-flow with decreasing temperature. To reach 200 bar
at 15 ◦C ambient temperature, 3.45 m3

min are required. At 10 ◦C, 4.5 m3

min are required,
and at 0 ◦C 7.7 m3

min . To reach 300 bar at 0 ◦C, 18.26 m3

min are required. Figure 5.6 shows
the enthalpy diagram for the adiabatic CAES cycle. Enthalpy exceeds 200 kJ

kg in the first
and second compression stage. The third stage 119 kJ

kg for 200 bar and 178 kJ
kg for 300

bar. After heating the enthalpy level reaches 955 kJ
kg for 200 bar and 1125 kJ

kg for 300 bar.
The high pressure reduction valve leads to an enthalpy level of 200 kJ

kg at 10 bar. The
inlet enthalpy of the turbine is 151 kJ

kg and -10 kJ
kg at the outlet. The density increases
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Figure 5.5.: Volume Flow Diagram
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with pressure as shown in Figure 5.7. The maximum is 225 kg
m3 at 200 bar. The heat

capacity increases with pressure and temperature as shown in Figure 5.8.

5.4. Compression

The electricity needs are, as shown in figure 5.1, 3.137 kWh
d and the CAES system should

cover the needs with 100 %. In this boundary conditions, if the compressor runs the
whole day with 8 h sunshine it produces 5.192

[
kWh
d

]
. This means that the users needs

are covered with 165 %. One could think that it would be possible to use a smaller com-
pressor, which is possible, but the situation changes with the surrounding temperature.
The warmer it gets, the smaller is the pressurised air production is. Between 20 and
25 ◦C ambient temperature is the equalisation point for this installation. With higher
temperatures, one single compressor can’t enable the electricity production anymore. If
the energy of one compressor is not sufficient, a second or a bigger one has to be installed.
So it is important to also keep in mind the possible changing situations of an installation
that also in the worst case will be enough air to feed the turbine. Figure 5.9 shows the
power the compressor needs related to ambient temperature on the abscissa, and because
calculated ideal, the usable energy.
The continuous curve shows the characteristic for our model user with 200 bar com-

pressor pressure. The broken curve represents the characteristic for 300 bar compressor
pressure. It shows that operate the compressor on 300 bar has a great effect on the
workload in the lower temperature levels. At 0 ◦C it brings more than the double per-
formance or 18.4 kWh

d more absolute. The curves also shows the logarithmical decrease
with higher ambient temperatures. One compressor can fulfil higher energy needs with
lower ambient temperatures which means a cheaper installation. The pressure ratio in
stage one is 7.0, stage two 7.1 and stage three 200 bar 4.0, stage three 300 bar 6.0.

Figure 5.11 shows the final exit conditions of the Bauer scuba compressor PE 100-T

45



0	

1	

2	

3	

4	

0	 10	 20	 30	 40	 50	 60	

W
co
m
pr
es
so
r	[
kW

] 	

tambient	[°C]	

Nominal	power	of	a	single	compressor	

200	bar	

300	bar	

Figure 5.9.: Nominal power per day of PE 100-T compressor related to ambient temper-
ature

Figure 5.10.: Intercoolers of Baur compressor
[13, p.2]

with 2,2 kW nominal power, which is the basis for the calculation.
Figure 5.12 shows the T-s diagram of three stage compression.

5.5. Pressure Storage

The pressurised air can be stored in standard bottles. The example system stores 8.6 m3

air at 200 bar and outlet temperature of the compressor. The system is equipped with
steel bottles made for 300 bar with 50 l volume each, 1.5 m height and 23 cm diameter.
The weight is 75 kg. 173 such bottles are required to store the compressed air. 10 x 17
bottles need an area of 2.3 x 3.9 m.
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Figure 5.11.: Bauer PE-100T outlet conditions
[13, p.20]

Figure 5.12.: Three stage compression in the T-s diagram
[14, p.34]
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5.6. Heat Storage

Water is chosen as cheap, non-toxic and universally available heat storage medium. Stor-
age mediums are discussed in the previous chapter. As said before, the cooling coils of
the Bauer compressor see figure 5.10 have to be changed into a heat exchanger. The
water is stored in one tank which feeds all three inter cooling heat exchangers with the
same temperature, see figure 5.13. Because the compression stages have small divergent
temperature outlets (stage 0.1, 0.3 and 0.5) the mass-flow in the three heat exchangers
has to be different to ensure the same cooling effect, back to surrounding temperature.
The water will heat up by system working time. Because Q̇ must be constant to ensure
the same cooling effect, the mass-flow of the water pump must increase it’s flow rate.
The formulas in chapter 3.8 show how the temperature mix and mass-flow is calculated
after the three heat exchangers (stage T3b). The volume flow in the three heat exchangers
could also be equal, if the compression stage with the highest cooling needs would dictate
the system. Then the energy consumption of the circulating pump would be higher, but
the cooling effect in the other stages would also be better. The best system efficiency
point has to be determined with different tests. The system capacity is physically reached
when the water in the tank reaches the temperature of the compressor. The CAES sys-
tem is limited by safety reason at less than 100 ◦C. A leakage in a pipe or system part
with water inside over 100 ◦C can be really dangerous because of the danger of explosion
danger. The more water is stored in a tank, the slower the system will heat up. It is
a question of system design how much heat must be stored to satisfy the user’s needs.
With increasing storage temperature, ∆T decreases, and so the mass flow of the pump
must increase to transport the same amount of heat to the outside. Figure ?? shows the
system behaviour with 58 l storage water. Warmer storage temperature means increasing
compressor inlet temperature, which also leads to decreasing system efficiency. Other-
wise, warmer storage temperature means warmer air before the expansion which leads
to a better system efficiency. When the system pressure is reached, the warm water heat
storage should have 100 ◦C. Figure ?? shows that the 58 l tank matches perfect in the
system needs. After eight hours, the heat storage has 100 ◦C and the system switches
of because it is totally loaded. Also the pump to circulate the water is still working in
normal conditions. Starting with 0,124

[
kg
min

]
mass-flow, it has a maximum mass-flow

of 0.245
[
kg
min

]
. More volume flow means more electricity need for the pump and so less

system efficiency for the whole system.
Figure 5.15 shows how a system with under dimensioned heat storage is collapsing.

The mass-flow of the pump increases exponentially. The pump tries to carrie away the
amount of heat with higher revolution speed, but as the cooling water strives for the
compression temperature, ∆ T is getting smaller and smaller the the mass-flow has to
strive for infinity. It would be also possible to have a separate cold and warm water tank
and not a circulating system. The disadvantage here is double of the installation volume
and tanks, and the abrupt inability of the system to work if one tank is totally full or
empty.
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Figure 5.13.: Scheme of a circulating water storage tank in combination with the CAES
system, sections named in table 5.3

5.7. Pressure Reduction

Minor losses in piping systems are a result of different influences. As formula 3.16 shows,
minor losses are a result of pipe geometry, fluid density and velocity squared. To minimise
these losses, a small low pressure storage (no. 6 in Figure 5.1 ) of 10 bars is included
into the system. Minor losses only appear when a fluid is flowing continuously or has a
velocity. If the flow from the main pressure storage is divided into two sections before it
reaches the turbine, by a secondary pressure storage, the first sections is not counted in
the minor loss equation. To reach quasi static pressure in point 7, low pressure storage
outlet, more mass flow has to flow into the tank from the pressure side 5, than it flows
out to the turbine side 7. To calculate the dimensions of the system, the maximum
flow at the turbine has to be known. Thus it is decided to have a maximum electricity
generation of k

5.8. Expansion

Calculated as average daily electricity needs per person in domestic homes are 3.137[
kWh
d

]
. 3.137

[
kWh
d

]
is the average electricity need, but this won’t be used constantly

within 24 hours. A maximum outlet power of 2 kW is assumed and therefore the expan-
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System state Scheme number

0 inlet compressor air
0.1 1st compression stage
0.2 1st inter-cooling
0.3 2nd compression stage
0.4 2nd inter-cooling
0.5 3rd compression stage
1 3rd inter-cooling and outlet compressor
3 hp storage exit
3.1 water tank
3a water tank outlet
3a1 inlet HX compression stage 1
3a2 inlet HX compression stage 2
3a3 inlet HX compression stage 3
3b1 outlet HX compression stage 1
3b2 outlet HX compression stage 2
3b3 outlet HX compression stage 3
3b water tank inlet
4 warm water HX outlet

Table 5.3.: Explanation of state numbers "water system" in the System Diagrams

sion side of the system is calculated.

5.9. PV Cells

The required PV cell area can be calculated wit formula 3.1. In this case, 5.4 m2 are
sufficient when the sun is shining the average time with average intensity. It has to be
proved how the system behaves when there are clouds or shadows on the cells. A bigger
cell surface as safety factor seems to make sense, this could be 50 % estimated, but has
to be calculated in detail. To reach the nominal power of the compressor, 2.2 kW, 18.4
m2 PV cells are required.

5.10. Summary

The Table 5.4 gives the overview of the CAES system designed for the example user. The
full calculation is in the appendix B for compression to 200 and 300 bar with surrounding
temperatures from 0 to 50 ◦C. Around 95% of the compression energy is converted into
heat [10]. If this heat would not be used, a big part of the system energy would be lost to
the surrounding which leads to less efficiency. The calculated temperatures to pre heat
the air in one step before the expansion are really high, and not to reach with the sensible
water heat storage. The following chapter simulates this expansion problem numerically.
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Multiple heat exchangers could be a solution to bring the same amount oh heat into the
system, but this has to be proofed in reality.

State T [◦C] V
[
m3

min

]
p [bar] ρ

[
kg
m3

]
cp

[
kJ
kgK

]
Pa/

δQ
δt [kW ]

0 15 3.456 1 1.21 1.0063
0.1 229 0.861 7 4.8774 1.0340 0.216
0.2 15 0.494 7 8.5043 1.0168 -0.254
0.3 232 0.121 50 34.13 1.0542 0.216
0.4 15 0.069 50 61.48 1.0948 -0.281
0.5 155 0.026 200 149.04 1.1304 0.216
1 27 0.018 200 225.03 1.2771 -0.184
2 27 0.018 200 225.03 1.2771
3 27 0.106 200 225.03 1.2771
4 893 0.106 200 59.9 1.1465 1.972
5 222 0.900 10 7.1 1.0357
6 222 0.900 10 7.1 1.0357
7 222 0.425 10 7.1 1.0357 0.133
8 174 0.548 7 5.5 0.0284 0.517
9 15 1.648 1.5 1.82 1.0071 2.0

Table 5.4.: CAES System Calculation at 15 ◦ C Ambient Temperature

The theoretical isothermal compressor power Pis,15◦C is 0.5 kW. The adiabatic com-
pressor of the example is 0.65 kW . After formula 3.30 ηis is 77 %. Compressing to 300
bar, ηis is 75 %. In theory the isothermal compressor is 25 % more efficient than the
adiabatic of our system. It has to be proved in reality, which efficiency an isothermal
compressor can reach, and if the expected more costs justify such a system. The amount
of pressurised air bottles is relative high which leads to high initial investments. Also
enough space has to be given for the installation. The amount of water to store the
heat is really small compared with the air volume. In the example, a maximum storage
capacity of 5.2 kWh

d is possible from the compressor in eight hours of work which leads
to 173 bottles. The system can be reduced regarding installation volume to around 130
pressurised air bottles, if also in lower ambient temperatures, where more nominal power
is possible to produce, the goal of the system is not to store as much as possible but only
as much as required, which is 3.137 kWh

d . In the characteristic curves of the circulating
water heat storage the volume flow line shows that below 100 ◦C a system collapse be-
cause of overcharging the water pump is not an option because the system is not allowed
to exceed 100 ◦C. Also in this case if the pump is for example designed for double the
maximum volume flow, safe operation until 130 ◦C is secured.

Figure 5.16 shows the related system dimensions for different ambient temperatures.
The nominal power is increasing with colder ambient temperature. To feed increasing
nominal power, the cell area has to be bigger, as well as the number of pressurised
air storage bottles and heat storage water volume. One compressor produces enough
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electricity for two persons until 10 ◦C ambient temperature. Over 35 ◦C, also one person
needs multiple compressors to produce enough pressurised air. With 50 ◦C ambient
temperature and storage pressure of 300 bar, one needs 46 compressors which seems
definitely uneconomic. The amount of cooling water is little compared with the amount
of required air bottles. Because the compressor looses efficiency with incomplete inter-
cooling (around 1 % each stage each 3 ◦C), and the amount of water volume is very little,
the usage of a two storage system should be considered. As 2.3 · 3.9 m2 the required
area for the pressurised air vessels should be the biggest part regarding installation area.
It is assumed that the whole system can be installed in 3 · 4 · 2 m or 24 m3.
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Figure 5.16.: Equipment size for different ambient temperatures
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6. Numerical Study of the CAES
Pressure Control Valve

The high gradient pressure reduction from 200 or 300 bar storage pressure to 10 bar
low pressure pressure of the small pressure tank is interesting to analyse because the
valve has an important effect on the system‘s functionality and also efficiency. As seen in
chapter 5 the theoretically required temperature for pre heating of the air of around 800
◦C is not reachable. In this case positive is the fact that the real system is not absolute
adiabatic. Initialising the pressure and thus temperature drop from 50 ◦C, temperatures
in the gap of the valve will drop into the minus region. The temperature difference
with the surroundings then will lead to temperature flow into the fluid with a heating
effect. According Mr. Scheffner from Samson who is introduced in the next passage, this
pressure reduction can definitely be handled within two steps, which means two PRVs
and less pressure drop. The functionality with just one PRV has to be tested in reality.
A smaller pressure drop means smaller temperature differences and the possibility, to
heat again between the two steps. This simulation is made with constant valve body
temperature of 50 ◦C. Fluent flow simulation programs calculate given problems by
iterative proceeding from knot to knot of the grid, modelled into the flow area or volume.
The essential kinematic and state quantities or variables of fluid mechanics which describe
a flow field are

• pressure p

• flow velocity in all directions vx, vy and vz

• temperature T

The essential fluid properties are

• density ρ

• kinematic viscosity µ

• dynamic viscosity ν

Fundamentals of computational fluid dynamics are

• mass conservation equation, for a newtonian incompressible fluid with constant
density and viscosity

∂ρ

∂t
+∇x,y,z(ρ · vx,y,z) =

∂ρ

∂t
+
∂(ρ · vx)

∂x
+
∂(ρ · vy)
∂y

+
∂(ρ · vz)
∂z

= 0 (6.1)
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• momentum conservation on base of the Navier-Stokes equation

ρgx −
∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= ρ

du

dt
(6.2)

ρgy −
∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
= ρ

dv

dt
(6.3)

ρgz −
∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
= ρ

dw

dt
(6.4)

• energy conservation

∂h

∂t
+∇x,y,z(h·vx,y,z) = λ∆T =

∂h

∂t
+
∂(h · vx)

∂x
+
∂(h · vy)
∂y

+
∂(h · vz)
∂z

= λ

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
(6.5)

• turbulence conservation with Reynolds averaging of the Navier-Stokes equation, Z
represents the Reynolds stress which can be interpreted as an additional apparant
viscosity due to turbulence

∂vmeanx,y,z
∂t

+(vmeanx,y,z·∇x,y,z)vmeanx,y,z = ρgx,y,z−
1

ρ
∇x,y,zpmean+µ∆vmeanx,y,z+Zx,y,z

(6.6)

A numerical simulation is made based on the calculated theoretical system values.
Dipl. Ing. Manfred Scheffner from Samson AG, a company based in Germany specialised
in metal valves, chose a pressure reduction valve for the previously calculated System.
Asked was to select a valve for air (gaseous) with initial pressure of 200 bars reduced to 10
bars. According to the theoretical calculation with 2 kW output on the turbine, the mass
flow must be 0,141 kg

s or 8,5 kg
min . The dimensioning of Samson is shown in the appendix

see figure ??. The result is a two step pressure reduction each with δp = 95 bar. The
valve can be heated with a secondary connection by the warm water, which flows around
the valve body. The dimension is DN 25 with 15 mm hub. It may be possible to use only
one PRV because it can handle these pressure differences but the real temperatures have
to be proved in practice. The valve function (shaft movement up and down to reduce the
flow) can be affected negatively by icing when the air is cooling down too much during
expansion. The valve is version 250 Type 3251. It is available from PN16 to 400 and
from -196 to +550 ◦ C. This valve is regulated by a pneumatic actuator. Figure 6.1
shows the cross section of the valve. There exists also medium pressure actuated PRVs
but Samson prefers the actuated version in these extreme pressure drops. Figure 6.2
shows another PRV from Samson where the valve body as well as the shaft connection
to the actuator is heated by a secondary cycle. The shaft heating can be necessary in
extreme conditions when gases expand with big pressure drops with the danger of icing
inside the valve which can lead to shaft blockage. This simulation is done on the second
PRV with maximum reduction from 105 to 10 bar. To get a "feeling" for the system, it
is better to perform a simulation not with the extreme numbers, where convergence is
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harder to achieve, especially with compressible flow. Also in reality, the plug is moving to
control the outlet pressure, which can’t be simulated in this relatively simple simulation.
Because of this, a pressure drop in the middle range (70 to 10 bar) and therefore pre
heating in the middle dimension (50 ◦C) is done. If the system is only half full, also the
heat storage has only around half of the temperature of the maximum values.

6.1. Geometry

The dimensions of the Samson PRV Type 3251 are known from the data sheet from
Samson. Inside measures must be estimated by proportion from the cross section be-
cause they are not published by the manufacturer. The maximal shaft hub is 15 mm
according Mr. Schaeffner. To simplify the simulation, the PRV is constructed in 2d.
The simulation in 3d would take more time for the computer to calculate each iteration
and reach convergence. The gap between the plug and the housing is the most interest-
ing spot where the gradients change the most. Because the plug is round, the model is
built as axis symmetric so as not to lose the expanding effects into radial direction. The
cross section can not be used directly to setup the construction. Therefore, the vertical
shaft and plug of figure 6.1 have to be turned clockwise into horizontal position. The
mirrored S-shape, the air has to pass through the valve, is lost in the 2D axisymmetric
model. Also the exact wall contact surface areas which heat the air with assumed 50 ◦ C
constant wall temperature are not included exactly because some area is lost during the
transformation. Figure 6.3 shows the dimensions used for the simulation and figure 6.4
shows the 2d model with the named sections. The valve is 1 % or 0,15 mm opened. 1
% opening is the estimated value to reach a relative high pressure step to show different
effects like velocity increase and temperature drop in the simulation. Different input
conditions showed that with the inlet pressure of 70 bar results an outlet pressure of
10 bar with suitable volume flow. This figure also shows that the outlet of the valve is
elongated to get a more homogeneous outlet without backflow effects, like they appeared
without elongation.

6.2. Meshing and Simulation Setup

The valve geometry is divided into three parts to refine the mesh with high gradients.
Behind the gap is the finest mesh with element size of 0,006 mm. The highest gradients
appear directly after the gap between the wall and the plug. Before the gap, velocities
can’t exceed mach numbers 1 because of the stagnation pressure. After this gap area,
extreme turbulences are expected and therefore the element size is still small with 0,05
mm. The inlet and outlet has elements between 0,3 and 1,2 mm. To calculate thermal
wall effects accurate, the walls are dissolved with 15 to 17 layers. The gap is dissolved
only by 7 layers because the gap is very small with 0,15 mm and there is not enough
space for many knots. Expansion effects in the middle of the flow are more important
in the gap than wall effects. Figure 6.5 shows the whole net, Figure 6.6 shows the gap
situation.
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Figure 6.1.: Cross section of Samson’s PRV type 3251 with pneumatic actuator typ 3271
[6, p.2]
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Figure 6.2.: Samson’s PRV type 3241 with heating jacket and boot heating
[5, p.16]

Figure 6.3.: Dimension of Samson Typ 3251 in 2d transferred to axissymmetric

Figure 6.4.: Named sections for the 2d simulation
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Figure 6.5.: Meshed PRV

Figure 6.6.: Mesh detail of the gap, element size 0,006 mm
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6.3. Numerical Settings in Ansys Fluent

The simulation in calculated as steady state conditions. Double precision is activated
to minimise the decimal number errors. The pressure based solver is used. The density
based solver is better with compressible overall high speed systems. The PRV has partial
high speed areas.

Turbulence Model

The k − ε model with SST and enhanced wall treatment is used.

Materials

The PRV body walls and plug is out of steel. The walls have constant temperature of
50 ◦C . The fluid is air as ideal gas with constant viscosity.

Boundary Conditions

• Inlet
Pressure inlet with 70 bar, initial pressure 60 bar. Temperature 50 ◦C

• Walls
Constant temperature 50 ◦C

• Plug
No heat flux

• Outlet
Pressure outlet 10 bar

Solution Controls

The Courant number is set to 1,5 as advised in the Ansys Fluent handbook. The time
step is finally set to 0,1 after trying different settings.

Run Calculation

The residuals had the default value of 10−3. As they reached this convergence criteria,
the calculation was continued because the results were not yet stationary.

6.4. Solution

6.4.1. Verification

Qualitative Evaluation

The Plots can show a possible solution by judging the flow direction. If the solution
would have been calculated without a rotation axis, the stream direction would be more
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Figure 6.7.: Monitor of massimbalance

or less 45 ◦C. Also the calculated mass-flow of 0,167 kg
s seems realistic. Mr. Schaeffner

chose this valve for 0,141 kg
s which is required for a 2 kW turbine.

Imbalances Strive for 0

The mass imbalance is shown in figure 6.7. The value is oscillating striving for 0 and
reaches this value with a difference from inlet to outlet of 0,0015

[
kg
s

]
which is equivalent

to 0,1 %. This value is acceptable.

Stationary Solution

The convergence history is stationary which means that the values are not changing with
more iterations. Stationary convergence is reached with constant small oscillations. The
Convergence history is shown in appendix C.2. The mass imbalance is shown in 6.7, the
static temperature is shown in the appendix in Figure C.3 and the maximum velocity
is shown in Figure C.4. The values are oscillating in a straight range which remains
constant.

Residuals Decline 10−3

The residuals all declined minimum 10−3 and then stayed constantly oscillating at one
level as you can see in the appendix Figure C.1.
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Figure 6.8.: Simulation of PRV DN25 - static pressure

Inflation Layers

The Y+ value is reduced to maximum 98,7 which means that the wall resolution is
accurate.

6.4.2. Plots of the Solutions

Static pressure

The static pressure is reduced from 70 to 10 bar as you can see in figure 6.8.

Total Pressure

The total pressure drops from 75 to 15 bar.

Static Temperature

The static temperature drops from 65 ◦C inlet temperature to minimum -142 ◦C directly
after the gap. Already after some millimetres, temperature reaches 0 ◦C. With the
extreme turbulences which force the convective heat exchange and bring warmer air into
the colder regions, the exit temperature is around 40 ◦C which is only 10 ◦C below inlet
temperature. Figure 6.10 shows that the wall after the pressure drop has a big influence
in temperature. The air is heated from the warmer wall at a constant 50 ◦C until it
reaches wall temperature at the valve outlet in the wall close boundary layers. This is a
very important finding because the theoretical calculation for the system design is done
adiabatic. The heat load is known from the system without losses. The heat that goes
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Figure 6.9.: Simulation of PRV DN25 - total pressure

out during compression is the same that comes in during expansion. But it is not known
if the exchange area in the valve is enough to bring in enough heat because the absolute
temperature of the warm water which heats the valve is not very high, compared with
the very low expanding temperatures in the gap (around -142 ◦C). This simulation shows
that the area is sufficient for this pressure drop and warm water temperature, because
the real valve has even more contact surface. Figure 6.11 shows an enlargement of the
temperatures in the gap. The heat transfer rate which is transported from the walls into
the fluid is 33,4 W .

Velocity

The maximum velocity in the valve reaches 614 [ms ] or a mach number of 2,67. Figure
6.12 shows the velocity vectors and figure 6.13 the velocity in the valve. Figure 6.14
shows the highest velocities appearing after the gap enlarged. The vectors show that in
the section after the gap and before the constant outlet geometry are strong turbulences.
One vortex is in the middle of the room, rotating clockwise with the same direction as the
main flow close to the wall. A second vortex close to the plug turns anti clockwise and
seems to block the main flow after the gap. Because this vortex has higher temperature
than the expanding air after the gap, it could explain the strong increase of temperature
after the first cold temperature field shown in figure 6.11 and the velocity decrease and
increase after the gap in flow direction.
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Figure 6.10.: Simulation of PRV DN25 - static temperature

Figure 6.11.: Simulation of PRV DN25 - static temperature in the gap
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Figure 6.12.: Simulation of PRV DN25 - velocity magnitude vectors

Figure 6.13.: Simulation of PRV DN25 - velocity magnitude
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Figure 6.14.: Simulation of PRV DN25 - velocity magnitude gap

6.5. Critical Statement

The values of the calculated solution by simulation seem to be realistic. It is which
was expected from the theoretical calculation. The convergence history could be better
without the oscillating curves. It seems like changing one value has an influence on the
other value in the other direction and vice versa. This could be a result of the solver
system of Ansys Fluent. The kinematic and state equations are calculated after each
other. This could explain the oscillating system behaviour. This could be proved by
simulating the same setup in Ansys CFX because the kinematic and state equations are
calculated in the same time. The real values of momentum, temperature, energy, mass
and pressure seem to be somewhere between the oscillating curve range, but it can not
be totally eliminated.
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7. CAES System Improvements

Technical systems can very often be optimised for efficiency, rentability, space, lifetime,
and many more. Here are two examples specifically chosen with good optimisation op-
tions for a CAES system.

7.1. Pre-Cooling the Air on the Suction Side of the
Compressor

As shown in figure 5.9 one compressor can bring much more performance in lower ambient
temperatures. One possibility to use this characteristic is to cool down the air before the
compressor inlet. This could be done with the cold in the expansion cycles. The temper-
ature in the turbine exit should not be decreased too much, because this would mean the
same decrease of performance of the turbine. The characteristic shows that already small
temperature decreases lead to high performance increases. This performance increase is
an increase of the system economics, not an efficiency increase. To use this approach, a
cold storage should be used, because if there is no turbine work (electricity use) during
the compression, no cold is produced. If cold could be stored whenever the user generates
electricity it could be used to pre-cool whenever the compressor runs. Special storage
techniques should be considered in exchange for water, because when temperatures drop
below 0 ◦C water is freezing and heat won’t be transported anymore.

7.2. Combined Cycles for Overall Low Energy Houses

Nowadays, in times of engagement for low energy demand and high efficiency installa-
tions, it is common to use waste energy from one process for another where it is required.
For example cogeneration in thermal power plants like fossil power plants. Heat is emit-
ted during electricity generation because some parts and processes have to be cooled.
Instead of "wasting" this heat to the environment via cooling towers for example, it is
possible to use this heat with a heat exchanger and a transportation system like pipes
to a nearby place like a neighbourhood, school or hospital where heat is required. It is
possible to do the same overall energy effective combination of different systems with a
CAES installation. Due to predictable heat losses of the warm water storage over time
with not optimal insulation, the outflow of the used air will be colder than the surround-
ing temperature. The colder outlet temperature could be used in this case to cool for
example the house in which the CAES system is installed, instead of using an extra AVAC
installation. In cold winter months it could also be possible to use the compression heat
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for heating the building, depending on the CAES system. Especially the PRVs and tur-
bine have to manage low temperatures without freezing. In this case the efficiency of the
CAES system would decrease because of lower volume work in the turbine of colder air,
but the whole house as focused system could profit from combinations like this. Further
analyses have to be done to find out the optimum user points for each installation.

7.3. Liquid Air for Less Storage Volume

Air can change its state as other substances from gaseous, as it is in normal conditions
(20 ◦ C, ambient pressure), to liquid by cooling or extreme isothermal compression. The
advantage of liquid air compared to gaseous air as storing media is obvious. The volume
decreases considerably with the state change from gaseous to liquid. Less volume means
less space for storage and higher energy density. As air consists of different gases, they
have different boiling points. The boiling point of oxygen lies at -183 ◦ C, the boiling
point of nitrogen lies at -196 ◦ C at ambient pressure. In 1895 Carl von Linde developed a
technical method to separate gases which enables the separation of atmospheric gases like
oxygen, nitrogen and argon in large amounts. The Linde process is based on the Joule-
Thomson-Effect of real gases. With this process it is possible to liquify air constantly.

Figure 7.1.: Scheme of the Linde-Hampson cycle
[8]

Figure 7.1 shows a simplified scheme of the process. Surrounding air (20 ◦C, 0 bar) is
soaked in and compressed to around 200 bar. The increased temperature is afterwards
cooled down back to surrounding temperature with a heat exchanger to the surroundings.
The pressurised air is cleaned by a molecular sieve from water vapour, dust, hydrocarbon,
nitrous oxide and carbon dioxide. Hydrocarbon and nitrous oxide can lead to deflagration
and explosion. Because of the decreased temperature δT it is afterwards possible to
expand the pressurised air through a turbine, which cools the air to little above the point
of liquification. Then pressure is reduced by a Joule Thomson valve, which decreases the
air temperature according the Joule-Thomson effect. If the temperature difference is big
enough, air will change its state from gaseous to liquid. If the pressure step was too small

69



and therefore the temperature drop, the exiting cold air is used to cool afterwards the
incoming air before expanding in the expansion valve with a counter-flow heat exchanger.
The returned air goes through the cycle again. The temperature decrease may now be
big enough to reach the liquid state. In an opened vessel, temperature of liquid water
stays constant at around -190 ◦C because it is boiling in these conditions. The vessel is
not allowed to be totally closed because of the gas which is generated by boiling. The
pressure would increase until some part of the storage would break. It has to be proved,
depending on the surrounding conditions, if it is possible to store this liquid several
hours or several days. Around the year 1900 an American English joint project produced
and demonstrated an automobile driven by liquid air with the claim of a range of 160
kilometres.

70



8. Conclusion

Nowadays a CAES system becomes meaningful. In the first years of commercial Photo-
voltaic installations it was highly rentable to sell electricity to the grid. Compensations
were artificially high because politics wanted to push the green energy production. For
one sold kWh could be bought far more than one kWh which means an economic effi-
ciency > 100 %. The actual development shows that these guaranteed compensations
decreased extreme. Nowadays much more kWh electricity have to be sold to buy back
one kWh back. In Germany around three kWh for one, which means 33 % economic effi-
ciency, see chapter 3.2. It is impossible to see where this development is going to in the
future, but the tendency that it is economically reasonable to store the energy instead of
selling it is clear. 33 % efficiency should be beatable by a CAES system. Because around
95 % of the compressor power are transferred into heat [10] it is not very promising to
build a CAES system without heat storage, see chapter 2.2. Not only that heat is lost
during normal air compression to the surrounding, the air must be heated before and
during the expansion in a turbine, because warmer air means more volume means more
turbine work see equation 3.23. According the first law of thermodynamic, energy can’t
be lost in a closed system, the heat which is required to reach initial conditions after the
turbine, is exactly the same amount of heat that has to be removed during compression.
There are two "good" possibilities to compress air efficiently, adiabatic or isotherm.
Isothermal compression is theoretically the best way to compress air, because the com-
pression volume does not increase during compression - which is an exothermal state
change of ideal gases, see equation 3.6. Isothermal means, that the heat has to be car-
ried away as soon as it appears, which makes it impossible to cool over the surrounding
surfaces. After the second law of thermodynamics therefor temperature gradients are
required which are not allowed in the definition of isothermal. The most promising way
is to spray water mist directly into the compression chamber, because water will then
evaporate, which is an endothermic process. This technique has already been discussed
and tested in 1927, but has been dismissed because of technical problems during the
grinding parts [14, p.32]. Today there are two examples of isothermal or quasi isother-
mal processes, the compressor of LightSail chapter 2.6 and the carmaker BMW which
injects water in the combustion chamber in it’s M4 safety car. One indirect system is also
presented from the company CAEstorage chapter 2.4 which reaches a quasi isothermal
process because it works extreme slow. These systems seem technically very good, but
the complexity is relative high. Also the costs of such an installation should be relative
high. It is always important to have a good balanced between technological advance,
robustness and price. The future will show if they can establish successful in the market.
The second "good" possibility is Advanced Adiabatic - CAES which is thermodynami-
cally researched in this work, chapter 5. Adiabatic means that no heat is exchanged with
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the surrounding. Because the compressor has to be cooled, the waste heat has to be
transferred into a special heat storage, see chapter 4. A standard scuba compressor with
2,2 kW nominal power, three compression stages and inter-cooling is used to compress
air up to 300 bar. A circulating water heat storage stores heat until 100 ◦C. Pressurised
air is stored in standard gas bottles. A heat exchanger pre heats the high pressurised
air before the heated pressure reduction valve. This PRV is chosen by a specialist of
the company Samson and also numerically simulated in chapter 6. A second small low
pressure air storage equalised the flow losses in the previous piping system. A small low
pressure PRV reduces the air for a turbine to produce electricity. The technical conclu-
sion of the example system, based in the great Lisbon area, is written in chapter 5.10.
Key statements are

• The 2,2 kW scuba compressor is sufficient for one average domestic person in
Portugal who needs

• around 3.137 kWh
d

• Circulating water heat storage with 60 l needs very little space and could be replaced
ba a continuous heat storage with two tanks

• The amount of pressurised-air-bottles is high with 173 is relative high and needs
an assumed total installation space of 24 m3

• The pneumatic actuated PRV seems relative complex

• Theoretically required temperatures before PRV unreachable, around 1000 ◦C

• Simulations shows good function of PRV with constant jacket temperature of only
50 ◦C

• Isentropic efficiency around 77 %

• According to actual studies, the efficiency of AA-CAES systems is between 50 and
70 % [16, p.541]

• PV cell area 5 - 20 m2 for the example user

There are still many questions opened because the topic is extensive with many differ-
ent specialisation possibilities, that future works could be

• Exact system design incl. pipes etc. and drawing, maybe scaled for a prototype

• Total costs of installation of this system

• Search of financial sources for a prototype

• Build a prototype and research the system like start behaviour, noise or efficiency

• Further Flow simulations
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• Feasibility of a liquid air storage

• Combined minimum energy houses

• System improvements
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A. PRV Selection by Company Samson
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B. AA-CAES System Dimensioning
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C. Ansys Fluent Simulation

Figure C.1.: Simulation residuals
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Figure C.2.: Simulation convergence history
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Figure C.3.: Simulation temperature convergence
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Figure C.4.: Simulation maximum velocity convergence
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