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RESUMO 

Em Medicina Veterinária, a ecocardiografia tornou-se um exame complementar de extrema 

importância no diagnóstico definitivo de várias cardiopatias, sendo considerada como o método 

diagnóstico de eleição. Recentemente, novas modalidades ecocardiográficas têm sido estudadas com o 

intuito de melhorar a capacidade de diagnóstico e introduzir novos parâmetros no exame 

ecocardiográfico de rotina.  

Em Medicina Humana, as referidas ténicas de ecocardiografia mais avançadas, como o Doppler 

tecidular e o Speckle Tracking são já utilizadas na rotina da prática clínica, existindo diversos estudos que 

comprovam o seu valor e eficácia. Durante a última década estas ténicas têm vindo também a ser 

estudadas em Medicina Veterinária, sendo o Speckle tracking bi-dimensional considerado o mais recente. 

Tanto o Doppler Tecidular como o Speckle Tracking fornecem novos parâmetros de avaliação da 

performance do miocárdio, como a avaliação dos parâmetros de deformação (Strain e Strain Rate), 

torsão ventricular e sincronia mecânica do miocárdio.  

Nesta revisão será dada relevância às alterações destes parâmetros no estudo do ventrículo 

esquerdo. Desta forma, esta revisão tem como objectivo reunir os estudos feitos recentemente em 

diversas cardiopatias, assim como em animais saudáveis, podendo estes servir como referência na 

validação futura dos parâmetros de deformação. Será dado maior relevo à capacidade destas técnicas 

detectarem alterações  precocemente, possibilitanto ao clínico uma conduta terapêutica adequada, antes 

dos parâmetros obtidos na ecocardiografia convencional se apresentarem alterados. Este factor é de 

extrema importância para o desenvolvimento da abordagem terapêutica quer no prognóstico quer no 

diagnóstico definitivo das cardiopatias em Medicina Veterinária. 

 

 

 

 

 

 

Palavras-chave: Strain, Strain rate, Tissue Doppler Imaging, Bi-dimensional Speckel Tracking, 
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ABSTRACT  

Echocardiography has become a very important diagnostic exam in veterinary cardiology, being 

consider as the exam of choice in many of the small animals cardiopathies. Recently, new 

echocardiographic techniques have been studied with the intent of improving diagnostic accuracy, 

introducing new parameters on the routine echocardiographic exam.  

These techniques, namely Tissue Doppler imaging and Specke Tracking, are already well 

established in human medicine cardiology and many studies have proven their value and effectiveness. 

During the last decade, these techniques have also been studied in veterinary medicine. Tissue Doppler 

imaging and Bi-dimensional Speckle Tracking deliver new parameters in evaluating the myocardium 

performance, as the evaluation of the deformation indices (Strain and Strain Rate), ventricular torsion and 

synchrony.  

In this review, relevance will be given to these parameters and how they affect changes on the 

left ventricle. This will be achieved by gathering studies recently made in various cardiopathies, as well as 

the normal values for myocardial deformation in healthy animals. This review will also focus on these 

techniques’ ability to detect early changes, allowing the clinicians to use proper and timely therapeutic 

decisions. This is a very important factor, since it could have impact on definitive diagnosis and future 

prognosis of several diseases.  
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1. Introduction 

Echocardiography has become an essential diagnostic tool in the definitive diagnosis of many 

cardiopathies, decisively affecting the management of heart diseases both in human medicine and in 

veterinary medicine. 

Veterinary cardiologists have an ever-increasing array of imaging modalities available, and the 

clinical applications of these techniques are rapidly expanding (Artis, Oxborough, Williams, Pepper, & 

Tan, 2008).  

In small animal patients, standard transthoracic echocardiography has also become the most 

powerfull tool for the diagnosis and management of cardiovascular diseases (Valerie Chetboul, 2010). 

Cardiac ultrasound enables visualization of the heart, including the ventricles and atria, the 

auricular appendages, all the cardiac valves and main vascular structures (Boon, 2011). This modality 

also enables the evaluation of cardiac  kinetics (Madron, Chetboul, & Bussadori, 2015), with real-time 

visualization of the myocardium (Takano, Fujii, Yugeta, Takeda, & Wakao, 2011). For several reasons, 

standard transthoracic echocardiography is an attractive imaging tool, which is easily available and 

relatively inexpensive to perform by the operator (Artis et al., 2008). 

Noninvasive assessment of regional myocardial function is getting increasing attention, due to its 

ability to predict clinical outcomes and suggest proper therapeutic interventions (Gorcsan III & Tanaka, 

2011). 

The assessment of left ventricular function is one of the main reasons for using 

echocardiography (Artis et al., 2008). In this review we are going to approach the function of the left 

ventricle making use of the most recent advances in ultrasound technology. 

The need for quantitative assessment of regional myocardial function is increasing and there are 

emerging techniques that allow this kind of approach (Artis et al., 2008). Tissue doppler imaging (TDI) and 

bi-dimensional speckle tracking echocardiography (2D-STE) are techniques that allow the quantitative 

assessment of myocardial function by calculating regional velocities in real time, as well as myocardial 

segmental deformation (strain), and rate of deformation (strain rate) (Valerie Chetboul, 2010). TDI was the 

first method enabling the evaluation of strain, but 2D-STE is an even more recent ultrasound modality 

enabling not only strain (St) and strain rate (SR) assessment but also new parameters to assess 

myocardial performance, like ventricular twist, and mechanical synchrony (Valerie Chetboul, 2010). 2D-

STE is based on 2D gray-scale echocardiographic images and is based on a non-Doppler assessment of 

regional myocardial motion (Valerie Chetboul, 2010). 
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After the introduction and study of these new echocardiographic techniques in human medicine, 

some veterinary studies have also been published, either using TDI or 2D-STE for left ventricle (LV) 

functional evaluation (Pedro, 2013).  

The aim of this review is to describe these new echocardiographic techniques and their actual 

clinical implications. 

 

2. Left Ventricular Mechanics 

LV assessment is one of the major goals of an echocardiographic examination (Madron et al., 

2015). A multimodal approach allows us to take into account the complexity of the left ventricular 

geometry (Madron et al., 2015). 

First, it is important to understand that the distribution of stresses in the left ventricular wall is not 

only a function of the fiber tension but also of their spatial orientation (Steeter, Spotnitz, Patel, Ross, & 

Sonnenblick, 1969). LV anatomic studies reveal the coexistence of myocardial fibers oriented in a radial 

and longitudinal way, with a clear predominance of radially oriented fibers compared to longitudinal fibers 

at the base of the LV (Madron et al., 2015). Radial fibers occupy the middle layer of the ventricular wall, 

while longitudinal fibers are in the subendocardial and subepicardial regions (Streeter et al. 1969). It is 

well known that myocardial fibers have a relatively complex layout (Madron et al., 2015), in which they 

wrap around the LV chamber as spirals around the major axis (Lunkenheimer et al., 2006); they are 

“relatively” parallel, but gradually their orientation changes from one layer to the next layer, from a helix 

layout in the subendocardial layer, to a circular layout in the midwall layer and then back to a helix layout 

in the subepicardial layer, but in the opposite direction from the previous one (Madron et al., 2015). This 

results in ventricular torsion with a basal clockwise rotation and an apical counterclockwise rotation when 

the heart is observed from the apex (Streeter et al. 1969). 

 

3. Left Ventricular Deformation analysis 
 

In order to fully understand the different echocardiographic modalities available to assess 

myocardial contractile function, it is important to make a distinction between myocardial wall motion and 

wall deformation (Sutherland et al., 1994). Velocity and displacement characterize wall motion, St and SR 

are parameters of wall deformation (Dandel & Hetzer, 2009). 

Concepts of motion (displacement and velocity) and deformation (St and SR), are inter related, 

but St and SR deformation analysis is more useful than wall motion analysis (displacement and velocity) 
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for assessing myocardial dysfunction (Urheim, Edvardsen, Torp, Angelsen, & Smiseth, 2000).  

Wall motion measurements alone (like velocity and displacement) can not differentiate active 

and passive movement of a myocardial segment, while deformation parameters (St and SR) can (Dandel 

& Hetzer, 2009). 

 

3.1.Deformation Parameters 

Recently, complementing the indices obtained by conventional ultrasound imaging, new indices 

of myocardial function emerged. St and SR are measurements of deformation that are descriptors of both 

nature and function of cardiac tissue motion (Marwick, 2006). 

The deformation parameters can be calculated from the instantaneous velocities which are the 

relative deformation (St) and deformation velocity (SR) (Madron et al., 2015). Specifying this, St 

represents the deformation of a myocardial segment over time and is expressed as the percentage (%) of 

change from its original size (Pellerin, Sharma, Elliott, & Veyrat, 2003), while SR is the temporal derivate 

from St and it describes the rate of deformation, i.e., how quickly a myocardial segment experiments 

shortening and lenghthening, and is expressed in s-1 (Valérie Chetboul, Serres, Gouni, Tissier, & 

Pouchelon, 2007). 

SR is described as the velocity at which deformation (Strain) occurs and is equal to the St 

divided by D/T . Thus, SR is the temporal derivate of the St (Madron et al., 2015). 

 

 

  

Figure 1 - Calculation of deformation (strain) and rate of deformation (strain rate). The initial myocardial 

length (at T0) is L0 (gray bar). One time interval (DT) later (at T0 + D/T ), the myocardial length increased 

from L0 to L0 + DT  (gray bar added to red bar). The strain (St, expressed in %) undergone by the 

myocardial segment is DT /L0 and is positive. Rate at which length changes occur is strain rate (St/D/T , 

expressed in s-1). Extracted from Chetboul 2010. 
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As the ventricle contracts the muscle shortens in the longitudinal and circumferential dimensions 

and this is negative St; in the radial direction the muscle shortens or lenghts and this is a positive St 

(Marwick, 2006). Thus, radial St is positive during myocardial tickening and negative during ventricular 

relaxation (Valerie Chetboul, 2010). 

Three types of deformation can be analysed: 

Radial - Correspond to myocardial thinning and thickening. Contraction in the short axis is 

perpendicular to both long axis and the epicardium. If the myocardial thickness development during the 

incoming motion in systole, the value is positive, during diastole it is negative. 

Circumferential - Defined as the change of the radius in the short axis, perpendicular to the 

radial and long axis. If the diameter of the left ventricular perimeter declines during systole the value is 

negative, the incoming in diastole have a positive value. 

Longitudinal - Designates the change in the length of the myocardium directed from the base to 

the apex. During systole the base prevail moves toward the apex, the length declines and this is 

expressed as a negative value; the incoming during diastole are expressed as a positive value (Pedro, 

2013) 

 

 

 

Figure 2 - Orthogonal Axes of the Left Ventricle. Diagram demonstrating the orientation of the 3 types of 

myocardial segmental deformation most commonly reported with strain imaging. Adapted from D’Hooge et 

al. 2000.  
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3.2. Tissue Doppler Imaging  

TDI is a special doppler technique that quantifies the regional myocardial function by measuring 

myocardial motion velocities throughout the entire cardiac cycle (Valérie Chetboul, 2002).  

During the last two decades, thanks to the improvement of computer technology, TDI has been 

more intensively studied in human cardiology, giving not only sensitive information about myocardial 

function but helping to improve the early diagnosis of many heart diseases (Valérie Chetboul, 2002). 

Recently this tool has been increasingly investigated in veterinary medicine and the first small animal TDI 

studies appeared a few years after the human ones (Valérie Chetboul, Bussadori, & Madron, 2015). 

To understand how TDI can provide information, it is important to understand the physical 

basics. The physical basics are similar to conventional doppler imaging, the main difference being that 

TDI is based on the ability to eliminate doppler information coming from the blood flow and keep what is 

coming from the myocardial wall (Valérie Chetboul, 2002).  

TDI quantifies regional tissue motion velocity (Valérie Chetboul, 2002) and this method employs 

simultaneous acquisition of myocardial velocities in multiple segments and assesses intrinsic myocardial 

contraction or relaxation velocities (Vieira, Teixeira, Goncalves, & Gersh, 2014). 

TDI allow the quantitative assessment of segmental myocardial deformation (stretching or 

contraction) and rate of deformation respectively (Andersen & Poulsen, 2003).  

TDI has been demonstrated to provide relevant information in LV systolic and diastolic 

performance (Gulati, Katz, Follansbee, & Gorcsan, 1996); to be reproducible in awaken dogs (Valerie 

Chetboul, Athanassiadis, et al., 2004); to be superior detecting systolic LV disfunction (Valerie Chetboul, 

Carlos, et al., 2004) and early asymptomatic myocardial abnormalities in a dog model with Duchenne’s 

cardiomyopathy (Valerie Chetboul, Escriou, et al., 2004); it has also proven to be an important tool in 

small animals in the detection of regional myocardial abnormalities before occurrence of LV dilation and 

dysfunction, compared with classical ultrasound (Valerie Chetboul, 2010; Takano et al., 2011).  

Some studies had shown that TDI is more sensitive than classical echocardiography, revealing 

abnormalities that were not detected with a previous assessment by conventional echocardiography. 

Althrough TDI has some limitations, its angle dependancy is the major one with some risk of 

underestimation of myocardial velocities (Valérie Chetboul, 2002; Takano et al., 2011). Moreover, TDI 

variables can be affected by breed, age and heart rate (Valerie Chetboul, Sampedrano, Testault, & 

Pouchelon, 2004). Other aspect is the time consuming steps for data acquisition and processing, and the 

need of expert readers. Good images, tracking through at least three cycles and technical settings 
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(concerning the gray-scale image, gain control, alignement to the wall, frame rate, sample volume, and 

others) can prolong the time that is necessary to obtain results (Dandel & Hetzer, 2009).  

Despite all these limitations, this technique was initially validated with sonomicrometry and with 

magnetic resonance imaging (the “gold strandard” for deformation analysis in human medicine) (Dandel & 

Hetzer, 2009).  

Some of these limitations may in part, be overcome by non-doppler methods such as 2D-STE 

(Valerie Chetboul, 2010). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - Examples of normal regional radial strain (A) and strain rate (B) profiles recorded within the left 

ventricular free wall in a healthy dog (right parasternal transventricular short-axis view). (A) The radial 
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strain profile (expressed in %) is positive and maximal in end systole (arrows) reflecting regional systolic 

thickening of the left ventricular free wall. (B) The strain rate profile (expressed in s-1) is positive during 

systole (SRS), indicating regional thickening, then features 2 negative diastolic peaks during early filling 

and atrial contraction (SRE and SRA) corresponding to a biphasic thinning phase. The color displays of 

strain and strain rate are superimposed on the right parasternal transventricular short axis views (left 

upper panels). Strain length  = 12 mm. Region of interest size = 6/3 mm. AVC, aortic valve closure; AVO, 

aortic valve opening; LV, left ventricle. Extracted from Chetboul 2010. 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 - Examples of radial (1A) and longitudinal (1B) strain profiles obtained from 2 dogs with dilated 

cardiomyopathy during 3 cardiac cycles. (1A) The radial strain profile is positive and maximal in end-

systole; however, its maximal value (arrows) is very low as compared to the control group. (1B) The 

longitudinal strain profile obtained in a basal segment is negative and maximal in end-systole; however, its 
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maximal absolute value (arrows) is low compared to the control group. AVO: aortic valve opening; AVC: 

aortic valve closure; LA: left atrium; LV: left ventricle. Extracted from Chetboul et al. 2007. 

 

 

3.3. Speckle tracking echocardiography 

2D-STE is the most recently developed ultrasound technique to simultaneously assess regional 

myocardial function in multiple segments (Madron et al., 2015), providing a new approach to the 

assessment of LV function in humans and animals (Amundsen et al., 2006). 

This imaging technique is based on the tracking, frame to frame, of speckles (natural acoustic 

markers). This tracking of speckle patterns is obtained by interference between the ultrasound beam and 

the myocardium on gray scale bi-dimensional (2D) images (Valerie Chetboul, 2010). These speckles 

appear as bright and small dots within the myocardium and represent natural acoustic tissue markers that 

can be tracked from frame to frame during the cardiac cycle (Valerie Chetboul, 2010). 

In order to perform 2D-STE studies, special software is need, allowing to process spatial and 

temporal data on the 2D ultrasound images. The geometric shift of the speckles reflects local tissue 

movement and when a frame rate is known, the change in the position of the speckle determines its 

velocity (Dandel & Hetzer, 2009).  

2D-STE St and SR analyzis has five steps until it’s complete: (1) delimitating the myocardial 

borders on the 2D image; (2) automatic detection of the region of interest (ROI) where the tracking is 

performed; (3) ROI is separated in six segments of same size, numbered from 1 to 6; (4) calculation of the 

chosen parameteres; (5) display of the six strain trackings as a function of time using a graphic (Madron et 

al., 2015). Systolic St and SR can be used as an index of global performance of the LV, by averaging all 

the segments, or as a regional deformation indicator, if we assess the 6 myocardial segments individually 

(Voigt et al., 2003). 

Compared to TDI and its derived techniques, 2D-STE is independent of angle and of cardiac 

translation (once this method tracks the myocardium on the 2D image, it follows the direction of the wall 

and not the direction of the ultrasound beam), allowing any region of the heart to be assessed (Takano et 

al., 2011).  

One more advantage is that it requires only one cardiac cycle. However it needs high-resolution 

image quality at high frame rates (Perk, Tunick, & Kronzon, 2007). In human medicine, the need for high 

image quality is a limitation for its use in patients with tachycardia and during stress echocardiography 

(Dandel & Hetzer, 2009).  
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2D-STE can be used to assess the complex pattern of regional myocardial motion in several 

segments and provide similar values to the TDI (velocity) and its derived techniques (St and SR), but can 

also allow to obtain more LV function parameters, such  rotation and torsion angles, and segmental 

synchronism (Madron et al., 2015). 

Regarding LV assessment, the reproducibility of 2D-STE strain measurements is considered to 

be better than TDI derived St, also, the intraobserver and interobserver variability between 2D-STE St and 

SR were found to be low (3,6% to 5,3% to 2D-strain and 7% to 11,8% to SR) (Perk et al., 2007). Ingul et. 

al also found lower values for interobserver variability regarding 2D-STE St measurements compared with 

TDI derived St and moreover 2D-STE also appeared significantly less time consuming as we described 

before (Ingul et al., 2005).  

However, 2D-STE has known technical limitations, including its dependence on frame rate and 

image resolution, the decreasing of the reliability of the speckle tracking process and the potential out-of-

plane movements of the speckles (Nesser & Winter, 2009). 

In the following table, comparative advantages and disavantages using TDI and 2D-STE are 

shown. 

Table 1 - Major advantages and disadvantages of 2D-STE imaging in comparison to TDI-derived St and 

SR imaging. Modified from: Dandel 2009. 

 

Bi-dimensional speckle tracking (2D-STE) Tissue Doppler Imaging (TDI) 

Advantages 

Deformation analysis in 2 dimensions High temporal resolution 

Tissue movement assessment relative to adjacent 

segments 
Image quality less important 

Angle independent  

Better spatial resolution in comparison to the TDI 

technique 
 

Less sensitive to signal noise  

Better measurement reproducibility in comparison 

to the TDI technique 
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In comparison to the TDI technique, less time 

consuming data acquisition and easy data 

processing. The automated tracking system allows 

accurate measurements even for inexperienced 

observers 

 

Disavantages 

Temporal resolution limited in comparison with TDI 

technique 
1-dimension measurements 

Dependent on high-resolution image quality 
Tissue movement assessment in relation to the 

transducer 

The lower optimal frame rate for speckle tracking 

(compared to TDI technique) technique limits the 

reliability of measurements in patients with 

tachycardia 

Measurement dependent on angle between 

ultrasound beam and direction of myocardial 

movement 

 Limited spatial resolution 

 
Highly sensitive to signal noise; reduced to 

signal-to-noise ratio 

 Higher interobserver variability with 2D-STE 

 
Time consuming steps for data acquisition and 

processing. Important learning curve; necessity 

of expert readers 

Important: Althrough 2D-STE and TDI calculations correlate well, they do not yield the same 
values. 

 

LV global and regional wall deformation can be better described by assessing normal and shear 

strains, and 2D-STE is a powerfull noninvasive method to analyze the three components of strain: 

longitudinal, circumferential and radial (Kusunose, Zhang, Mazgalev, Thomas, & Popovic, 2013). 

In humans, several studies have demonstrated the efficacy of this technique in the diagnosis of 

various cardiac diseases and hemodynamic condicions such hyperthrophic cardiomyopathy (HCM) 

coronary disease and ventricular dyssynchrony (Amundsen et al., 2006). 

Also in human medicine, the most commonly assessed strain parameter is global longitudinal 

strain, which is more sensitive than LV ejection fraction (EF) as a measure of systolic function and could 

be used to identify LV dysfunction in cardiomyopathies (Smiseth, Torp, Opdahl, Haugaa, & Urheim, 2016). 
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In veterinary medicine myocardial St and SR derived by 2D-STE have also been studied and 

established as a reliable method regarding several diseases and conditions: assessment of left ventricular 

regional function in affected and carrier dogs with duchenne muscular dystrophy (DMD) (Takano et al., 

2011); radial and circumferential St analysis in cats with HCM (Takano, Isogai, Aoki, Wakao, & Fujii, 

2015); assessment of left ventricular function in small breed dogs with hyperadrenocorticism (HAC) 

(Chen, Lien, & Huang, 2014); assessment of systolic myocardial deformations in dogs with chronic mitral 

valve insufficiency (CMVI) (Suzuki, Matsumoto, Teshima, & Koyama, 2013) and assessment of left 

ventricular function quantified by myocardial St imaging in small-breed dogs with chronic mitral 

regurgitation (MR) (Smith, Bonagura, Culwell, & Schober, 2012).  

The recognition of earlier subclinical cardiac systolic and diastolic dysfunction could allow for an 

early medical approach and this could improve long-term cardiovascular outcomes (Takano et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 - Examples of normal left ventricular radial strain (A) and strain rate (B) profiles recorded in 6 

myocardial segments using 2D-STE in a dog (right parasternal transventricular short-axis view). The 

software algorithm has automatically defined 6 equidistant myocardial segments within the interventricular 

septum and the LVFW. (A) The 6 corresponding LV radial strain versus time curves are shown on the 

right. All 6 LV segments undergo a homogeneous and coordinated systolic myocardial thickening during 
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systole (positive strain, maximal at end systole [ES], pink arrow); this may also be observed on the 2D and 

M-curves color-coded views (left) showing a positive strain during systole (red). (B) The 6 LV radial strain 

rate versus time curves, including a positive systolic wave (SRS) and 2 diastolic negative waves (SRE and 

SRA), are shown on the right; this may also be observed on the M-curves color-coded views (left) showing 

a positive strain rate during systole (red) and negative strain rate during diastole (green and blue). LV, left 

ventricle; LVFW, left ventricle free wall; 2D-STE, bi-dimensional speckle tracking. Extracted from Chetboul 

2010. 

 

 

4. Reference Values of Deformation  

Despite the lack of validated reference values in veterinary medicine, studies in healthy animals 

have been performed. In attachment 1 a table with some of the values obtained in studies made in the 

past few years can be found. Some of them were obtained in healthy animals of different breeds, others 

were obtained from specific breeds, such as beagles and doberman pinschers.  

However, even though these measurements provide new insights into ventricular motion and 

deformation, providing us with a more complete quantification of myocardial function in animals, further 

studies should be performed in a larger population of healthy individuals to evaluate the reliability and the 

possible role of this technique in animals (Mantovani et al., 2012). 

 

5. Clinical Implications of Left Ventricular deformation assessment 

St and SR measurements are increasingly popular in veterinary medicine, probably because of 

its promising results in human medicine.  

These measurements appear to be a sensitive indicator of sub-clinical diseases in human 

medicine, such as diabetes, myocardial ischemia, aortic regurgitation, systemic sclerosis, arterial 

hypertension, isolated MR and non-ischemic cardiopathies. They also seem to be useful in the 

assessment of myocardial damage after infarction, in the evaluation of myocardial revascularization 

efficiency and prediction of heart failure (HF) (Marciniak et al., 2009; Yu, Sanderson, Marwick, & Oh, 

2007), in sports medicine for the quantification of the LV systolic function in athletes, in sports with 

endurance, giving differentiation of physiologic hypertrophy from asymptomatic nonobstructive HCM (the 

major cause of sudden death in young athletes) (Poulsen et al., 2007) and also to differentiate 

hypertensive cardiac hypertrophy from cardiac hypertrophy (also known as “athlete’s heart) (Saghir, 

Areces, & Makan, 2007).  
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Also, in human medicine St and SR measurements are a preferred method for early detection of 

myocardial involvement in asymptomatic patients with amyloidosis, Duchenne’s progressive muscular 

dystrophy and Kawasaki syndrome (Arnold, Goebel, Ulmer, Gorenflo, & Poerner, 2007; D’Andrea et al., 

2007). 

Recently it was also found that 2D-STE is highly sensitive for the early detection of doxorubicin 

induced cardiac injury and radial St reduction in patients who undergo chemotherapy with histologic 

markers of doxorubicin cardiomyopathy (Migrino et al., 2008). 

In veterinary medicine, some studies have been made, with healthy dogs, healthy cats, in dogs 

with DCM (Pedro, 2013), dogs with MR (Smith et al., 2012), cats with CHF (Sugimoto, Fujii, Sunahara, & 

Aoki, 2015), dogs with HAC (Chen et al., 2014), also in specific breeds, such Great Danes (Pedro, 2013), 

Irish Wolfhound (Westrup & McEvoy, 2013), or even wild canid like maned wolf (Mantovani et al., 2012). 

Studies in equines have also been made (Berli, Jud Schefer, Steininger, & Schwarzwald, 2015; Decloedt, 

Verheyen, Sys, De Clercq, & van Loon, 2011). 

 
5.1. Cardiomyopathies 

5.1.1. Dilated Cardiomyopathy 

In human medicine it has been reported that patients with dilated cardiomyopathy (DCM) have 

significant changes in radial, circumferential and longitudinal St and SR, when compared with healthy 

individuals. In order to find if these changes are also a feature of canine DCM, some studies have been 

carried out in recent years (Pedro, 2013).  

With the recognition of a genetic basis for DCM in some breeds (Meurs, 1998), the importance 

of prospective screening in lines with familiar prevalence of the disease is important (Valerie Chetboul et 

al., 2007), with the goal of obtain information in early stages. 

In spite of DCM being diagnosed easily by 2D and M-mode echocardiography, with the 

identification of reduced contractility, dilatation of cardiac chambers and increased sphericity of the LV 

(Dukes-McEwan, Borgarelli, Tidholm, Vollmar, & Haggstrom, 2003), diagnosis of the early phase of the 

disease still remains a challenge for veterinary cardiologists because morphological and functional cardiac 

alterations may be equivocal or even absent at this asymptomatic phase (Dukes-McEwan et al., 2003). 

This explains the need for other more sensitive noninvasive indices, which can be used for early 

assessment of deterioration of myocardial disease or the beneficial effects of medication management 

(Valerie Chetboul et al., 2007).  
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Case reports and clinical studies evaluating TDI, showed that it’s a promising technique for the 

detection of early myocardial dysfunction in preclinical stages of dogs with DCM (Wess, Keller, 

Klausnitzer, Killich, & Hartmann, 2011).  

Chetboul et al. 2007, did a study using TDI technique combined with St imaging, with the aim to 

provide sensitive indices for early detection and treatment of CMD. They used TDI and St imaging in dogs 

with overt DCM with a prerequisite before using these new criteria in prospective screenings of families 

predisposed or in clinical trials. In this study, radial and longitudinal right and left myocardial motion was 

assessed by TDI and St variables with the hypothesis of being altered in dogs with DCM. The results 

indicates that the DCM group reveals decreases in radial and longitudinal systolic velocity values of the 

LVFW, longitudinal and radial absolute values of peak systolic St of the LVFW, and longitudinal systolic 

right ventricular velocities (all of them P<.001 versus control) associated with post systolic contraction 

waves in 7 of the 14 dogs. Also early diastolic LVFW velocities were decreased for radial (P<.05) and 

longitudinal (P<.01) motions, being all the values negatively correlated with heart rate. Thus, this study 

reveals clinical importance showing that LV contractility assessed by TDI St imaging along both short and 

long axis is impaired in dogs with spontaneous DCM, as is diastolic LVFW function and systolic right 

ventriclular. However, the impact of these findings (sensitivity and prognostic values of these diastolic and 

systolic TDI St myocardial indices) should be assessed in future prospective studies to determinate the 

sensitivity of TDI and St variables for the early detection of canine DCM (Valerie Chetboul et al., 2007). 

While in human medicine it has been reported that patients with DCM have significant changes 

when compared to healthy indiviaduals, until the study made by Pedro 2013,  similar studies have not 

been performed in veterinary medicine. This study has been made with the goal to assess the function of 

the LV using 2D-STE in Great Danes to identify and report the differences in the left ventricular mechanics 

of normal dogs and dogs with DCM. The major objective of this study was to consider dogs that had two 

or more echocardiographic examinations and tried to detect changes in the left ventricular mechanics that 

could identify dogs that will develop DCM in the future. The results obtained was that when assessing the 

mechanics of the LV in healthy dogs, an increase magnitude and rate of deformation has been noticed 

from the base towards the apex of the LV and the same was noted in dogs with DCM. This contrasts with 

human medicine once even dogs with DCM demonstrated lower rate and magnitude of deformation, only 

a few variables were considered significant between them, supporting that more studies with different 

breeds and large groups are needed in veterinary medicine. 
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5.1.2. Hyperthrophic Cardiomyopathy 

HCM is considered as the most common heart disease in cats (Ferasin et al., 2003). It is 

characterized by concentric left ventricle hyperthrophy (LVH) and both diastolic and systolic dysfunction. 

Diastolic dysfunction is the main feature of the disease, being the main cause of left atrium enlargement 

and subsequent congestive heart failure (CHF) (Sugimoto et al., 2015). 

The definitive diagnosis of HCM is based on classical echocardiography, which is the method of 

choice to evaluate dysfunctions and to observe structural changes. (Brizard, Amberger, Hartnack, Doherr, 

& Lombard, 2009). Classical echocardiography is mainly the main  tool in guiding clinicians in the 

management of the disease (A. Silva, Muzzi, Oberlender, Nogueira, & Muzzi, 2013).  

In the early stages of the disease, cats are asymptomatic (Trehiou-Sechi et al., 2012), and the 

myocardial dysfunction evolves with the progression of the disease (Kittleson et al., 1999). HCM is still a 

challenging disease for veterinarians and remains as the major cardiac cause of mortality and morbidity in 

cats, with an associated risk of sudden death, arterial thromboembolism and heart failure (HF) (Valerie 

Chetboul, Blot, et al., 2006).  

Although classical echocardiography is considered as the gold standard for he diagnosis of 

HCM, recent techniques such as TDI and 2D-STE have provided new parameters to assess myocardial 

function, including regional myocardial velocities and deformation, ventricular synchrony and torsion 

(Valerie Chetboul, 2010). One study has been published regarding these new parameters and their 

usefulness on the early diagnosis of HCM. Chetboul et al. 2006, using affected cats and carriers of 

dystrophin-deficient hyperthrophic muscular dystrophy as a model of HCM demonstrated that TDI could 

detect radial and longitudinal LVFW dysfunction in cats, even in those who didn’t presented significant left 

myocardial hyperthrophy.  

Another study of Chetboul et al. 2006 demonstrated that classical echocardiography was unable 

to detect HCM in a young Maine Coon cat while TDI identified LVFW dysfunction. One year later, using 

classical echocardiography, the diagnosis of HCM was confirmed. Given that finding, it was suggested 

that TDI could have good sensitivity for detection of early stage HCM (A. Silva et al., 2013).  

Silva et al. 2013, did a study using 2D-STE to evaluate LV longitudinal St and SR in non-sedated 

healthy cats, as well as longitudinal displacement and velocity. This study demonstrated that 2D-STE 

could be feasible for measuring LV longitudinal St and SR, velocity and displacement, establishing 

preliminary reference values for non-sedated healthy cats, which can provide feasibility of this technique 

in clinical context.  
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In 2015, Sugimoto et al. did a study, with the aim to assess global and segmental LV myocardial 

function using 2D-STE in cats with HCM whose TDI variables were within the reference range. Although 

impaired cardiac function using TDI in cats with HCM was previously shown, reference ranges using TDI 

in cats with HCM and in normal cats have been reported as widely variable. This study used 2D-STE 

since it was proven to be useful in the assessment of cardiac function in human patients with HCM but the 

clinical utility had not been validated in cats. Conventional echocardiography, TDI and segmental and 

global 2D-STE indices were evaluated and compared, and the results suggested that 2D-STE parameters 

are more sensitive compared with TDI parameters to detect early myocardial dysfunction in cats with 

HCM. They concluded that in addition to genetic screening, 2D-STE can be used in the preclinical 

diagnosis of HCM, providing the opportunity to prevent development of LVH using drug management in 

the future and to avoid unfavorable breeding programs.  

Also using 2D-STE, Takano et al. 2014, proposed a study to investigate St analysis in cats with 

HCM. They measure circumferential and radial St and SR variables in healthy cats and global St and SR, 

and also segmental assessment of LVFW in cats with HCM were performed. Differently from the previous 

study, buprenorphine and acepromazine was used as sedation, which did not affected any global St nor 

SR variables. Finally, it was concluded that 2D-STE analysis using short axis images of LV appeared to 

be clinically feasible in cats, bringing the possibility to be useful for detecting myocardial dysfunctions in 

cats with heart disease. 

These studies suggest that conventional echocardiography alone could be unable to identify the 

myocardial changes occurring in the early stages of the disease, and the association of recent modalities 

could improve diagnostic accuracy. In this regard, TDI and 2D-STE parameters have been found to be 

most promising in the recently available studies. However, more studies must be carried out in order to 

validate the role and reliability of this techniques in cats with cardiomyopathies (A. C. Silva et al., 2013). 

 

5.1.3. Duchenne Muscular Dystrophy  

DMD is related to a dystrophin mutation providing a dysfunctional protein (Valerie Chetboul, 

Escriou, et al., 2004). Dystrophin is a key linker protein between the sarcolemma of the myocyte and the 

contractile apparatus, the sarcomere (Cohn & Campbell, 2000). In pathologies like this, 

dystrophinopathies, in addition to the skeletal muscle disease it is common that patients suffer from 

cardiac changes over a variable period of time, before the occurrence of DCM, resulting in fatty infiltration 

with fatal outcome (Cullen & Mastaglia, 1980; Nigro, Politano, Nigro, Petretta, & Comi, 1994). Myocardial 
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dysfunction has been estimated to be responsible for 20% of the total mortality in human patients with 

DMD (Nigro, Comi, Politano, & Bain, 1990). 

Conventional echocardiography is one of the noninvasive methods to assess cardiac function in 

patients and animals with DMD (Danilowicz, Rutkowski, Myung, & Schively, 1980). Some studies have 

demonstrated the usefulness of TDI to detect subclinical myocardial diastolic and systolic dysfunction in 

patients with normal parameters in classical echocardiography. In 2004, Chetboul et al determined the 

accuracy of TDI to detect dystrophin mutant Golden Retriever Muscular Dystrophy (GRMD) dogs early, 

before the occurence of CHF and myocardial dysfunction as determinated by conventional 

echocardiography. This study has proved that TDI is able to detect early changes in myocardial function 

that are not detectable with classical echocardiography. Also, other recent studies have confirmed that 

myocardial velocities, myocardial wall-ticknening velocities, myocardial velocity gradients and strain during 

systole and early diastole in LVFW were reduced in human patients (Mori et al., 2004) and in dogs with 

DMD (Valerie Chetboul, Carlos, et al., 2004).  

Takano et al. 2011, did a study with the aim of demonstrating the applicability of 2D-STE to 

assess LV regional myocardial dysfunction in DMD model dogs without clinical signs of HF. They 

performed conventional echocardiography with systolic and diastolic function assessment by Doppler 

echocardiography, TDI and St indices with 2D-STE, and comparing all of them. The results obtained were 

significant differences in body weigh and trasmitral St and SR derived by TDI among the 3 groups 

(affected dogs, carrier dogs and controls), but no significant difference in global St indices. Althrough in 

segmental analysis, the peak radial SR in the early diastole in posterior segment at chordae the 

tendinease level appeared signifcant differences in the 3 groups. This study concluded, that the myocadial 

SR by 2D-STE could detect the impaired cardiac diastolic function in dogs with DMD without any LV 

dilation or clinical signs, thus, radial SR must be an important parameter to detect early myocardial 

impairment in dogs with this disease.  However, more studies are needed to clarify the sensitivity of these 

new technique. 

 

5.2. Valvular Disease 

5.2.1. Mitral Valve Disease 

Mitral valve disease (MVD) is considered as the most common cardiac disease in dogs. These 

patients are affected with volume overload caused by MR (Tidholm, Ljungvall, Hoglund, Westling, & 

Haggstrom, 2009). MR caused by MVD is the most common cause of HF and LV remodeling in dogs 

(Haggstrom, Duelund Pedersen, & Kvart, 2004). 
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Some dogs with MVD develop myocardial dysfunction as well as remodeling and enlargement of 

the heart (Richards, 2012). The presence of LV systolic dysfunction can influence the therapy and the 

prognosis of dogs with MVD and the assessment of LV function in MR by classical echocardiography is 

difficult, mainly by the changes in ventricular loading (Smith et al., 2012). Progressive increases in LV 

preload and reductions in LV afterload typically create an hyperdinamic LV with increases in EF and in the 

rate of early diastolic ventricular filling (Yared, Lam, & Hung, 2009). Consequently, conventional measures 

like EF and fractional shortening (FS) are insensitive for measuring early LV dysfunction (McGinley et al., 

2007) becoming abnormal only in severe stages of the disease, suggesting that measurements of 

segmental deformation (St and SR) could provide increased sensitivity (Marwick, 2006).  

McGingley et al. 2007, investigated the mechanics of contractile dysfunction in MVD, and found 

that even with a preserved EF, chronic severe MR results in a significant reduction in intrinsic contractile 

function and reserve and this is relevant for prognosis, helping the clinicians with the management of the 

disease. 

Suzuki et al. 2013, did a study to clinically assess myocardial deformations in dogs with CMVI 

using 2D-STE. They placed the dogs into 1 of 3 classes based on the International Small Animal Cardiac 

Health Council classification and the dogs were examined for myocardial deformation (St and SR) in the 

circumferential, longitudinal and radial planes. They obtained results showing that Class II and III dogs 

had higher circumferential St than Class I (P=0.002 and P=0.001 respectively) and control dogs 

(P<0.001). Moreover, Class III dogs had higher radial St and SR than Class I dogs (P=0.006) and controls 

(P=0.001), and other deformations like longitudinal were not significantly different between classes of 

CMVI dogs and the controls. Suzuki and collegues, conluded that in the clinical progression of CMVI, 

myocardial deformations assessed by 2D-STE differed according with the myocardial contractile direction 

and with that, assessments of multidirectional myocardial deformations must be important for better 

assessment of clinical cardiac funtion in these dogs. 

Another study, made by Zois et al. 2012, with the hypothesis that global St and SR are decresed 

in dogs with clinical signs of CHF due to MVD compared with healthy dogs and associated with classical 

echocardiography indices due MVD severity, obtained that assessed by 2D-STE, LV function appeared 

augmented in moderate-to-severe disease. 

However, Smith et. al, 2012, congruous with the findings of Tidholm and associates who have 

used both TDI (Tidholm et al., 2009) and 2D-STE (Zois et al., 2012) for assessing myocardial St in dogs 

with spontaneous MR, demonstrated that there is no obvious advantage in applying mycoardial St 

imaging for the detection of LV systolic dysfunction in asymptomatic dogs with stage B2 MR, once 

myocardial contractility is preserved or St and SR analysis are perturbed by the hemodynamic factors that 
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cause hyperdynamic conventional indices seen in small-breed dogs with chronic MR, even with CHF. 

Thus, while radial St and SR can be measured in dogs with significant MR, these values are increased 

with ventricular remodeling, probably influenced by the same loading conditions that confound other 

echocardiography indices. So, a clear clinical application for this technique in dogs in stage B2 with MR is 

not evident considering the results of these studies. 

To conclude, the clinical relevance of these results, including the relation to survival time and 

medication and an evaluation of the timing when the decrease in these deformation variables, should be 

investigated further using large groups of animals in differentes stages of the disease (Zois et al., 2012). 

 

5.3. Cardiac Involvment in Systemic Diseases 

5.3.1. Hyperadrenocorticism  

HAC is a condition characterized by chronically elevated circulating glucocorticoid concentration 

and in human patients it is prooven that in response to stimulation of the regin-angiotensin system, 

glucocorticoid and mineralocorticoid receptors of myocytes are the responsible for the development of 

systemic hypertension, LVH (Chen et al., 2014),  and myocardial fibrosis which are commonly observed 

(Brilla & Weber, 1992). Cardiac hyperthrophy resulting from hypertension and chronic exposure to excess 

circulating cortisol may also contribute to LV concentric remodeling in human patients and subsequently, 

to other functional abnormalities such as diastolic dysfunction (Muiesan et al., 2003). Sixty-eight to eighty-

five percent of human HAC patients developed hypertension (Boscaro, Barzon, Fallo, & Sonino, 2001). In 

dogs, hypertension occurs in 47 to 86% of the cases (Ortega, Feldman, Nelson, Willits, & Cowgill, 1996), 

but more studies of cardiac function in dogs with HAC are needed to fully understand the consequences 

of such changes. 

Hung-Yin Chen et al 2014, did a study with the aim of reporting the prevalence of LVH and 

assess LV systolic and diastolic function using 2D-STE in small breed dogs with HAC. They used 9 age-

matched healthy dogs, 10 dogs with pituitary-dependent HAC and 9 dogs with adrenal-dependent HAC, 

and classical echocardiography, global circumferential and longitudinal St and SR were performed using 

2D-STE. In this study, 2D-STE revealed changes in LV mechanics despite a preserved systolic function 

detected by conventional echocardiography. The indices of LV systolic function derived by conventional 

echocardiography were not significantly different between the HAC group and controls, but decreased 

systolic function was revealed by 2D-STE. These findings suggest that dogs with HAC may have 

subclinical systolic dysfunction that could remain hidden using conventional echocardiography. This is 
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also reported in human patients which subclinical LV diastolic dysfunction when using 2D-STE but with 

preserved FS and EF by conventional echocardiography (Muiesan et al., 2003). 

In 2015, Oui et al., investigated the changes in longitudinal and radial LV function using TDI St 

imaging in beagles using 11 normal dogs, they administrated 2mg/kg of prednisone orally every 12 hours 

for 28 days which 7 out of 11 dogs to induce iatrogenic HAC. In this study, they measured the myocardial 

wall velocity of LV using color TDI and determinated the myocardial deformation by St and SR imaging. 

The results obtained were that conventional echocardiography revealed that diastolic LVFW and 

interventricular septum in the HAC group were tickened when compared with the control group and the St 

values in the HAC group were significantly lower than the values on the control group, particularly for the 

longitudinal wall. With the results obtained, they concluded that the lower values of myocardium from TDI 

and St imaging could be used to investigate subclinical LV systolic and diastolic dysfunction in dogs with 

iatrogenic HAC.  

In the available publications, the limitations found were usually the low number of dogs, which 

suggests that more studies with larger group of animals are needed. 

 

5.4 Congenital heart diseases 

5.4.1. Patent Ductus Arteriosus 

Patent ductus arteriosus (PDA) is one of the most common congenital heart defects in dogs, 

with an estimated prevalence of 21-32% of all the congenital heart diseases in dogs (Oliveira et al., 2011). 

PDA is a fetal vascular structure connecting the aorta to the main pulmonary artery and usually closes 

shortly after birth by a complex hemodynamic and neurohormonal process (Clyman, 2006). 

The main hemodynamic effect of a left-to-right PDA is LV volume overload, causing an increase 

in preload, which in turn increases contractility following Starling’s law. The LV compensates this increase 

in preload by increasing stroke volume, and many times by developing eccentric hyperthrophy to 

normalize wall stress (Spalla, Locatelli, Zanaboni, Brambilla, & Bussadori, 2016a). Previous studies have 

analyzed the consequences of ductal patency and its closure on cardiac indices by M-mode and B-mode 

parameters (Saunders, Gordon, Boggess, & Miller, 2014). 

Spalla et al. 2016, compared cardiac function and contractility by 2D-STE in dogs with PDA and 

in normal control dogs, suggesting that conventional parameters routinely used to assess systolic 

function, such as EF and FS, were not different between the 2 groups, while 2D-STE identified subtle 
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changes in cardiac systolic function and contractility between them. Based on this, 2D-STE may be a 

more appropriate tool to assess cardiac contractility in dogs with PDA. 2D-STE can also provide further 

insight into the effect of PDA closure on cardiac mechanics in dogs with PDA (Spalla, Locatelli, Zanaboni, 

Brambilla, & Bussadori, 2016b). 

Concluding, dogs with PDA showed a marked increase in conventional echocardiographic 

parameters and an even more increase in advanced echocardiography parameters (longitudinal, 

circumferential and radial St and SR), whereas FS and EF were not different between the two techniques 

(Spalla et al., 2016a). However, the limitations of this recent study are related to a small sample size , 

which points to the need of additional investigation to clarify the clinical relevance. 

The scientific literature regarding the use of TDI and 2D-STE to assess strain parameters in the 

mentioned diseases is summed up on the next table. 

 
 
 
Table 2 - Strain imaging clinical studies 
 

Clinical Applications – Strain and Strain Rate 

Study Population Methodology Main findings 

Dilated Cardiomyopathy 

Chetboul 
et al. 2007 

14 dogs with DCM and 12 
healthy controls TDI 

Using St imaging, LV contractility along both 
the short and long axis is impaired in dogs 
with spontaneous DCM, as is systolic RV 
and diastolic LVFW function. These 
myocardial alterations are associated with 
an inverse force-frequency relationship. 

Feline Hyperthrophic Cardiomyopathy 

Sugimoto 
et al. 2015  

35  cats of different breeds, 
22 with HCM and 13 clinically 
healthy 

2D-STE 

2D-STE parameters are the more sensitive 
variables compared with conventional TDI 
parameters to detect early myocardial 
diastolic dysfunction in cats with HCM. 

Takano et 
al. 2014 

16 clinically healthy cats and 
17 with HCM 

2D-STE 

2D-STE analysis using short axis images of 
LV appeared to be clinically feasible in cats, 
having the possibility to be useful for 
detecting myocardial dysfunctions in cats 
with heart disease. 
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Duchenne Muscular Dystrophy 

Takano et 
al. 2011  

6 affected dogs, 8 carrier 
dogs with GRMD, 8 control 
dogs 

2D-STE 

The myocardial SR by 2D-STE served to 
detect the impaired cardiac diastolic function 
in DMD model dogs without any obvious 
dilation or clinical signs. The radial SR may 
be a useful parameter to detect early 
myocardial impairment in this disease. 

Yamato et 
al. 2008 

24 Golden Retriever dogs, 
divided in affected, carrier 
and controls 

TDI 

Differences observed in some variables of 
systolic and diastolic function especially 
between control and affected groups. It was 
possible to confirm that Golden Retriever 
Dogs, affected by CMD and without clinical 
signs of congestive heart failure, present 
changes of systolic and diastolic indices, 
detected by TDI, St and SR. 

Mitral valve disease 

Suzuki et 
al. 2013 

87 dogs with chronic mitral 
valve insufficiency 2D-STE 

In the clinical progression of CMVI in dogs, 
myocardial deformations, as assessed by 
2D-STE, differed according to myocardial 
contractile direction. Thus, assessments of 
multidirectional myocardial deformations 
may be important for better assessment of 
clinical cardiac function in dogs with CMVI. 

Smith et 
al. 2012 

40 healthy dogs: 20 controls, 
20 with MR and LV 
remodeling (Stage B2) 

2D-STE 

LV diastolic diameter, diastole area, SF, 
average peak systolic and early diastolic 
radial St, global circumferential St, and 
average radial SR were significantly greater 
in the MR group. 

Zois et al.  
2012 

93 dogs with different mitral 
MVD severities 

2D-STE 
Assessed by 2D-STE, LV function appeared 
to be augmented in moderate-to-severe 
disease. 

Hyperadrenocorticism 

Chen et al. 
2014 

9 healthy dogs, 10 dogs with 
pituitary-dependent HAC, 9 
dogs with adrenal-dependent 
HAC 

2D-STE 

2D-STE revealed significant decreases in 
systolic functions that were undetected 
using conventional echocardiography in the 
adrenal-dependent HAC and pituitary-
dependent HAC. 

Oui et al. 
2015 

11 3-year-old healthy male 
beagles 

TDI 

The St values from TDI strain imaging could 
be use to investigate subclinical LV systolic 
and diastolic dysfunction in dogs with 
iatrogenic HAC. 

Patent Ductus Arteriosus 
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Spalla et 
al. 2016 

34 dogs with PDA, 10 
healthy controls 2D-STE 

2D-STE parameters identified subtle 
changes in cardiac systolic function and 
contractility. 2D-STE may be a more 
appropriate tool to assess cardiac 
contractility in dogs with PDA. 

Spalla et 
al. 2016 25 dogs with PDA 2D-STE 

2D-STE can provide further insight into the 
effect of Patent Ductus Arteriosus closure 
on cardiac mechanics in dogs affected by 
PDA. 

Others 

Arita et al. 
2007 

12 dogs without HF; 9 dogs 
with HF; 8 dogs with induced 
HF 

TDI and 2D-
STE 

Radial St by 2D-STE is more accurate than 
TDI velocity to detect cardiac dyssynchrony 
in a canine model of dyssynchrony 

Nakata et 
al. 2016 

6 healthy female beagles 
instrummented with 
externally programmable 
pacemaker (EV4543 Pace 
Medical Inc., MA, USA) 

2D-STE 

2D-STE strain demonstrated to be a reliable 
tool for evaluation of LV myocardial 
deformation in tachycardia-induced cardiac 
dysfunction canine model showing an earlier 
significant wall motion abnormalities using 
radial strain and later using circumferential 
strain 

Hamabe et 
al. 2013 

5 female beagles with 
implanted pacemakers 

2D-STE 

The results revealed the ability of 2D-STE to 
measure radial and circumferential strain in 
dogs with sustained high-electrical pacing, 
and allowed assessment of global and 
regional myocardial function and the degree 
of dyssynchrony 

TDI: tissue Doppler imaging; 2D-STE: bi-dimensional speckle tracking; St: strain; SR: strain rate; HF: 
heart failure; LV: left ventricle; RV: right ventricle; LVFW: left ventricle free wall; CMVI: chronic mitral valve 
insufficiency; PDA: Patent Ductus Arteriosus DCM: dilated cardiomyopathy; HCM: hypertrophic 
cardiomyopathy; GRMD: golden retrievers muscular dystrophy; MVD: mitral valve disease; FS: fractional 
shortening 
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6. Conclusions and Future Perspectives 

St and SR imaging are promising tools for the evaluation of myocardial function. These recent 

modalities are one of the most significant advances in cardiac ultrasound imaging. 

In small animal studies, TDI, a noninvasive and precise quantification technique has been one of 

the most significant advances in cardiac ultrasound imaging, showing better sensitivity when compared to 

conventional echocardiography in both the prognosis and diagnosis of focal myocardial dysfunction 

(Madron et al., 2015).  

These facts make TDI a powerful tool for cardiovascular research (Madron et al., 2015). 

TDI-derived St measurements are less dependent of image quality, but the angle dependency is 

a major limitation when assessing certain regions of the myocardium (Dandel & Hetzer, 2009). 

An even more recent method, 2D-STE, that uses grayscale imaging, is starting to be assessed 

through research and development studies, but the evidence for the utility of this modality is accumulating 

and it does offer major advantages over TDI, mainly its angle independency and its better signal to noise 

ratio (Artis et al., 2008).  

Many authors have already shown that 2D-STE is a reproducible and repeatable method not 

only in Human Medicine but also in Veterinary Medicine, and it can be used for assessing the LV function 

(Westrup & McEvoy, 2013). 

The high sensitivity of both TDI derived techniques and 2D-STE for the early detection of 

myocardial dysfunction is proven in some recent studies, arising interest in veterinarians. 

New studies on large groups of animals with heart disease are needed to compare the 

diagnostic benefits of these new imaging techniques, as well as their adittional value in the prognosis and 

in therapeutic decision making (Madron et al., 2015). Currently these techniques are not yet considered 

part of a routine clincal echocardiographic study. We need more studies, particularly those focused on 

small animals and their most common cardiopathies, to be able to judge these techniques applicability 

and usefulness. The St imaging methodology is still undergoing improvement, and further clinical trials are 

needed to determine if clinical decisions based on these techniques result in a better outcome (Smiseth et 

al., 2016). 
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Attachment 1 - Strain Imaging Values obtained in healthy animals.	
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