

Instituto Politécnico de Coimbra

Instituto Superior de Engenharia de Coimbra

Departamento de Engenharia Informática e de Sistemas

Machine-to-Machine Emergency

System for Urban Safety

André Filipe Gomes Duarte

Mestrado em Engenharia Informática

Coimbra, dezembro, 2015

 Instituto Politécnico de Coimbra

Instituto Superior de Engenharia de Coimbra

Departamento de Engenharia Informática e de Sistemas

Mestrado em Engenharia Informática

Estágio

Relatório Final

Machine-to-Machine Emergency

System for Urban Safety

André Filipe Gomes Duarte

21200791

Orientador: Professor Doutor Jorge Bernardino

Orientador da Empresa: Engenheiro Carlos Oliveira

Ubiwhere

Coimbra, dezembro, 2015

Machine-to-Machine Emergency System for Urban Safety

i

Acknowledgments

I would like to express the deepest appreciation to my supervisor at Ubiwhere, Carlos

Oliveira, for his availability, motivation and knowledge shared during the internship.

To Professor Jorge Bernardino for his accessibility and enthusiasm not only during the

internship, but also during the entire degree.

To Ricardo Vitorino for his availability, knowledge and sharing useful inputs while the

writing of the report.

To the remainder of my professors at ISEC which shared their knowledge and experience.

To the Ubiwhere team, which provided an excellent working environment where it was

possible to share knowledge and learn many new things.

To my friends and colleagues not only for their support but also for sharing experiences

and knowledge.

To my family and girlfriend for supporting me in another stage of my life, providing

strength and willpower to overcome every challenge.

Machine-to-Machine Emergency System for Urban Safety

ii

Resumo

Atualmente a maioria das pessoas vive em áreas urbanas. Com o crescimento das

populações a exigência sobre os ecossistemas da cidade aumenta, afetando diretamente as

entidades responsáveis pelo seu controlo. Desafios como este, fazem com que os

responsáveis das cidades adotem maneiras de se interligar com o meio envolvente,

tornando-os mais preparados e conscientes para a tomada de decisão. As decisões que

tomam não só afetam diretamente a cidade a curto prazo, mas são também um recurso

para melhorar o processo de tomada de decisão.

Este trabalho teve como objetivo desenvolver um sistema que pode agir como supervisor

de emergência e de segurança numa cidade, gerando alertas em tempo real, que fornecem

às entidades responsáveis novas competências para garantir a segurança. Este sistema é

capaz de monitorizar os dados de sensores e fornecer conhecimento útil a partir deles.

Este trabalho apresenta uma arquitetura para a recolha de dados na Internet das Coisas

(IoT), proporcionando ainda a análise das ferramentas utilizadas e as escolhas feitas sobre

o sistema implementado. Além disso, fornece os elementos necessários para que novos

colaboradores possam vir a participar no projeto, uma vez que descreve todas as técnicas,

linguagens, estratégias e paradigmas de programação utilizados.

Finalmente, descreve o protótipo que recebe os dados e os processa para gerar alertas com

o objetivo de avisar equipas de emergência, descrevendo ainda a futura implementação de

um módulo de previsão que pode agir como uma ferramenta útil para melhorar a gestão

de equipas de emergência.

A realização do estágio permitiu a aprendizagem de novos conceitos e técnicas, bem

como o desenvolvimento daqueles que já estavam familiarizados. No que diz respeito à

empresa, o sistema desenvolvido irá integrar a plataforma Citibrain funcionando como

um ponto central, no qual, cada aplicação (por exemplo, gestão da água, gestão de

resíduos) se poderá subscrever para receber alertas.

Machine-to-Machine Emergency System for Urban Safety

iii

Abstract

Nowadays most people live in urban areas. As populations grow, demand on the city

ecosystem increases, directly affecting the entities responsible for the city control.

Challenges like this make leaders adopt ways to engage with the surroundings of their

city, making them more prepared and aware. The decisions they make not only directly

affect the city in short term, but are also a means to improve the decision making process.

This work aimed to develop a system which can act as an emergency and security

supervisor in a city, generating alerts to empower entities responsible for disaster

management. The system is capable of monitoring data from sensors and provide useful

knowledge from it.

This work presents an architecture for the collection of data in the Internet of Things

(IoT). It delivers the analysis of the used tools and the choices made regarding the

implemented system. Also, it provides the necessary inputs for developers to participate

in the project, since it describes all the techniques, languages, strategies and programming

paradigms used.

Finally, it describes the prototype that receives data and processes it to generate alerts

with the purpose of warning emergency response teams and the future implementation of

a prediction module that can act as a useful tool to better manage the emergency

personnel.

The completion of the internship allowed the learning of new concepts and techniques, as

well as the development of those that were already familiar. With regard to the company,

the developed system will integrate the company’s Citibrain platform and will act as a

central point, in which, every application (e.g. water management, waste management)

can be subscribed to receive alerts.

Machine-to-Machine Emergency System for Urban Safety

iv

Keywords:

Disaster Management

Emergency Systems

Smart Cities

Urban Safety

Machine-to-Machine Emergency System for Urban Safety

v

Index

1. INTRODUCTION .. 1

1.1 Main Contributions ... 2

1.2 Ubiwhere ... 3

1.3 Structure of the Report .. 3

2. STATE OF THE ART .. 5

2.1 Smart City ... 5

2.2 Smart Cities Examples .. 6

2.3 Internet of Things (IoT) .. 9

2.4 Emergency Management ... 10

2.5 Smart Emergency Systems .. 11

3. PROPOSED ARCHITECTURE .. 13

3.1 Citibrain ... 13

3.2 Background ... 14

3.3 Architecture Example .. 18

3.4 System Architecture .. 19

3.5 Use Case .. 21

3.6 Technologies Used .. 24

4. SYSTEM DATABASE EVALUATION ... 27

4.1 Overview .. 27

4.2 Cassandra .. 28

4.2.1 Data Model .. 28

4.2.2 Architecture ... 30

4.2.3 Replication ... 30

4.2.4 Writing and Reading .. 32

4.3 Experimental Setup ... 33

4.4 Query execution evaluation ... 35

4.4.1 Querying an alert of a specific type (Q1) .. 36

4.4.2 Querying an alert for a rule (Q2) ... 37

4.4.3 Querying an alert on a time range (Q3) ... 38

Machine-to-Machine Emergency System for Urban Safety

vi

4.5 Summary ... 39

5. ALERTS MODULE IMPLEMENTATION .. 41

5.1 Alerts Module Overview ... 41

5.2 Alerts Module Architecture ... 42

5.3 API endpoints .. 46

5.4 How to receive alerts? ... 47

5.5 Summary ... 48

6. PREDICTIVE ANALYTICS MODULE ... 49

6.1 Predictive Analytics Overview.. 49

6.2 Predictive Analytics Module Architecture .. 51

6.3 Dataset ... 53

6.4 Predictive Analytics Module Implementation... 54

7. CASE STUDY: URBAN SAFETY SYSTEM WITHIN OPORTO’S CITIBRAIN

NODE .. 57

8. CONCLUSIONS AND FUTURE WORK ... 61

REFERENCES .. 65

ANNEXES ... 71

ANNEX A – INTERNSHIP PROPOSAL .. 73

ANNEX B – SMART CITIES: AN ARCHITECTURAL APPROACH 79

ANNEX C – CASSANDRA FOR INTERNET OF THINGS: AN EXPERIMENTAL

EVALUATION.. 93

Machine-to-Machine Emergency System for Urban Safety

vii

Index of Figures

Figure 1 - Participatory Sensing - Use Case Diagram (adapted from (Description of

implemented IoT services, 2014)) ... 8

Figure 2 - Smart Rescue Platform (Radianti, Gonzalez and Granmo, 2014) 11

Figure 3 - Citibrain Platform (Citibrain, 2015) .. 14

Figure 4 - Storm Topology (Apache Storm, 2014) .. 17

Figure 5 - Middleware Architecture (Cecchinel et al., 2014) .. 19

Figure 6 - Proposed Architecture ... 20

Figure 7 - Example application .. 22

Figure 8 - Data layer possible architectures ... 28

Figure 9 - Cassandra's Data Model (Charsyam, 2011) .. 29

Figure 10 - Cassandra Architecture (Strickland, 2014) ... 30

Figure 11 - Simple Strategy ... 31

Figure 12 - Network Topology Strategy .. 31

Figure 13 - Cassandra Writing ... 32

Figure 14 - Cassandra Reading .. 33

Figure 15 - Row prototype ... 34

Figure 16 – Query execution time of Q1 ... 36

Figure 17 - Query execution time of Q2 .. 37

Figure 18 - Query execution time of Q3 .. 38

Figure 19 - Alerts module architecture .. 43

Figure 20 - Alerts module event flow .. 46

Figure 21 - Steps to receive alerts .. 47

Figure 22 - PredictionIO high level architecture (PredictionIO, 2015) 50

Figure 23 - PredictionIO event server architecture (PredictionIO, 2015) 51

Figure 24 - Prediction module architecture ... 52

Figure 25 - Citibrain Applications ... 57

Figure 26 - Temperature data ... 58

Figure 27 - Citibrain dashboard ... 59

Figure 28 - Smart Environment events dashboard ... 60

file:///C:/Users/Andre/MEOCloud/Relatorio/Relatorio/Relatorio_vFinalFinal2.docx%23_Toc435813489
file:///C:/Users/Andre/MEOCloud/Relatorio/Relatorio/Relatorio_vFinalFinal2.docx%23_Toc435813490
file:///C:/Users/Andre/MEOCloud/Relatorio/Relatorio/Relatorio_vFinalFinal2.docx%23_Toc435813491
file:///C:/Users/Andre/MEOCloud/Relatorio/Relatorio/Relatorio_vFinalFinal2.docx%23_Toc435813492
file:///C:/Users/Andre/MEOCloud/Relatorio/Relatorio/Relatorio_vFinalFinal2.docx%23_Toc435813495
file:///C:/Users/Andre/MEOCloud/Relatorio/Relatorio/Relatorio_vFinalFinal2.docx%23_Toc435813499
file:///C:/Users/Andre/MEOCloud/Relatorio/Relatorio/Relatorio_vFinalFinal2.docx%23_Toc435813500
file:///C:/Users/Andre/MEOCloud/Relatorio/Relatorio/Relatorio_vFinalFinal2.docx%23_Toc435813505
file:///C:/Users/Andre/MEOCloud/Relatorio/Relatorio/Relatorio_vFinalFinal2.docx%23_Toc435813510

Machine-to-Machine Emergency System for Urban Safety

viii

CHAPTER 1 – INTRODUCTION

1

1. INTRODUCTION

Nowadays most people live in urban areas. The growth in population directly affects the

city ecosystem and the entities responsible for the city control. City leaders must be aware

of these changes and approve ways to engage with the surroundings of their city,

enhancing their awareness and preparedness. The decisions they make not only directly

affect the city in a short term, but are also a means to improve the decision making

process. The growth in the number of human beings in urban areas comes with a

significant increase in data. This data comes from sensor networks scattered around the

city or from the sensors in a smartphone. As data production and availability increased, so

did the need to integrate it and provide value added services to citizens.

As smart cities mature, legacy systems already in place are trying to evolve to become

smarter, although these systems have many specific requirements that need to be

attended. An architecture which is scalable, adaptable and interoperable for the Internet

of Things (IoT) is necessary, therefore existing architectures will be analysed as well

as the algorithms that make them work.

In this work we propose an architecture that is scalable, adaptable and interoperable for

the Internet of Things (IoT) environment. It will be used as a basis to develop a system

that will integrate the company’s Citibrain Platform. Using sensors this system will

monitor parameters such as temperature, humidity, atmospheric pressure, ultraviolet

radiation, fire detection and flooding in various points of a city. With this data comes the

ability of providing useful knowledge that will lead to the alerting of the safety experts.

These alerts are generated by the system when it analyses the information, which can

provide indicator trends or make predictions for future events (e.g. fires, floods). The

alerts intend to provide the ability for authorities to act as soon as possible upon an

imminent danger.

This internship aims to develop a system that monitors city parameters, such as

temperature, humidity, ozone, amongst others. The main idea behind the monitoring of

these parameters is to understand whether the security thresholds are in risk of being

overtaken and raise alerts that will notify the security personnel of a forthcoming danger.

In short, one of the main goals is to create an intelligent support system, which monitors

city parameters, generates alerts and facilitates the decision-making process.

CHAPTER 1 – INTRODUCTION

2

With the purpose of improving the citizen’s quality of life and quickly and

efficiently make informed decisions, authorities try to monitor all the information of

city systems. Smart cities provide the integration of all systems in the city via a

centralized command centre, which provides a holistic view of it. With the intent to suit

the needs of specific systems the focus of this work is to gather viable information that

leads to the analysis and presentation of solutions to address their current shortcomings. A

system, based on the the developed architecture, will be implemented and integrated with

the company’s Citibrain platform. The applications that are already deployed in the

platform will provide information in real time, therefore the role of the system is to

analyse this raw data, fire alerts and make predictions in order to mitigate future dangers.

From a practical standpoint, this work intends to develop a Machine to Machine (M2M)

prototype to act as an emergency and security supervisor.

1.1 Main Contributions

The main contributions of this work are:

 An Application Program Interface (API), which intends to gather data from

sensors scattered around the city;

 An engine capable of receiving, processing and dispatching the alerts to

emergency personnel;

 A predictive analytics module which provides the capability of estimating future

events;

 The documentation of the best possible way to develop a smart system that

receives streams of data from many sources and provides knowledge from it;

 The creation of a prototype, based on the lambda architecture (Lambda

Architecture, 2014), which provides tools to work both with streams and batches

of data, empowering cities with the necessary knowledge to avoid some types of

disasters;

 A generic IoT architecture for anyone to use or improve;

 A prototype that analyses data and provides indicators and alerts to experts.

CHAPTER 1 – INTRODUCTION

3

1.2 Ubiwhere

Ubiwhere is a software company, created in 2007, based in Aveiro and with offices in

Coimbra and São João da Madeira, which specializes in research and innovation, idea to

product and user-centred solutions. There are many brands under Ubiwhere’s name such

as Citibrain, rprobe and Playnify.

This project is integrated in Citibrain, which is “a consortium which specialises in smart

solutions for today's cities. Headquartered in Aveiro, Portugal, the consortium's main

purpose is to create desirable and liveable places, bringing together cities and citizens to

improve metropolitan life. Creativity, knowledge and innovation are at the core of

Citibrain's strategy” (Citibrain, 2015).

1.3 Structure of the Report

The rest of this report is divided in the following chapters:

2 State of The Art – This chapter will cover the most important concepts related to

smart cities and smart emergency systems;

3 Proposed Architecture – This chapter describes the proposed architecture for an

Internet of Things system;

4 System Database Evaluation – This chapter explains how the database in the

system is structured and handles the data;

5 Alerts Module Implementation – This chapter provides a technical approach to the

main component of the system, which is the module that generates all the alerts. A

broad perspective of the system is given to provide a better understanding on how

the modules work;

6 Predictive Analytics Module – This chapter describes the predictive analytics

module, which aims to make predictions for future disasters (e.g. fire, floods);

7 Case Study: Urban Safety system within Oporto’s Citibrain node – This chapter

shows a use case of the developed prototype with the data available from the

Oporto’s network of environmental sensors;

8 Conclusions and Future Work – This chapter addresses the general conclusions

and developed work, also including a note on work to be done in the future;

Annex A – Internship proposal – This annex refers to the internship document

proposed by Ubiwhere;

CHAPTER 1 – INTRODUCTION

4

Annex B – Smart Cities: An architectural approach – This is the paper published

and presented at the International Conference on Enterprise Information Systems

(ICEIS), which was held at Barcelona from the 27th to the 30th of April 2015.

Annex C – Cassandra for Internet of Things: an experimental evaluation – This

paper was submitted to the International Conference on Internet of Things and Big

Data (IoTBD), which will be held at Rome from the 23th to the 25thof April 2016.

CHAPTER 2 – STATE OF THE ART

5

2. STATE OF THE ART

The area surrounding Internet of Things (IoT), Smart Cities and Smart Emergency

Systems is vast and very much in its early stages. In this chapter we will attempt to

analyse the most relevant parts of this ecosystem. The addressed problem has been

partially developed in the past years with other studies and projects. To understand the

basis of the developed work the necessary background shall be provided. It is important

to acknowledge that the documented analysis will be high-level, although it covers as

much information as possible.

2.1 Smart City

Smart cities are usually defined as modern cities with smooth information

processes, streamlined mechanisms for creativity and innovativeness and sustainable

solutions promoted through service platforms.

A smart city depends on the provision of information, communication technologies and

services to the population via web based services (Alazawi et al., 2014). However, this

formulation of Smart City can be misleading. In order to be smart, a city does not need

state of the art technology, but interoperability between various key aspects of the city,

such as governance, finance, transportation and many others. The kind of changes that

smart cities will bring to the current world are many times said to be as similar to those

seen in the industrial revolution. The motivation behind the concept is the ability to

improve the city’s ecosystem while focusing on people and allowing technology to work

for them and not with them, thus resulting in a greater vision of society.

There is a wide variety of city concepts that have built a new horizon for cities in their

challenging tasks in an increasingly cost-consciousness, competitive and environmentally

oriented setting. Irrespective of whether the concept is smart city, intelligent city,

sustainable city, knowledge city, creative city, innovative city, ubiquitous city, digital city

or city 2.0 (e.g. (Komninos, 2002; Aurigi, 2005; Carrillo, 2006; Hollands, 2008)) they all

define a standard of a modern city with smooth information processes, facilitation

mechanisms for creativity and innovativeness, plus smart and sustainable service

solutions and platforms (Anttiroiko et al., 2014). However, there is still a general absence

of joint planning by city governments with utility providers (e.g. water, in respect of

environmental sustainability) and other public services (e.g. health care). Cultural barriers

CHAPTER 2 – STATE OF THE ART

6

include commercial confidentiality, whereas social media user groups work with open

data systems, causing problems for joint working of cities with the private sector. This

may create problems for collaborative ventures between city governments and businesses,

and even with other public sector agencies, as well as with voluntary and community

organisations.

The smart city concept can vary from the technologies and infrastructures of a city to an

indicator that measures the education level of its inhabitants (Vakali et al., 2014).

Furthermore this work intends to analyse the SEN2SOC (SENsor to SOCial) experiment

for its impact in the current context of this topic. The SEN2SOC experiment promotes

interactions between sensors and social networks to enhance the quality of data in the city

of Santander. The concept of smart city is also referred and conceptualized in (Chourabi

et al., 2012). The work enlists some success factors for smart cities, which are: (1)

management and organization; (2) technology; (3) governance; (4) policy context; (5)

people and communities; (6) economy; (7) built infrastructure; (8) natural environment.

These factors provide a solid basis for the comparison of how cities are defining their

smart initiatives. Also they represent the key areas for the success of every smart city.

A theoretical definition of Smart City is yet to be found, although cities are developing

and shaping for a not so distant future (Piro et al., 2014). Furthermore this work enlists

some of the current definitions for the concept, that there is yet to be completely defined.

In (Piro et al., 2014) it is also referred the necessity of Information and Communication

Technology (ICT) services, with the intent to integrate them in a generic scenario of a

smart city. The approach is from a service point of view, which means that it emphasises

the role of the services in the city. It is also important to refer that real world cases are

shown to prove the importance of the topic.

2.2 Smart Cities Examples

There are many examples of smart cities such as Amsterdam (Amsterdam Smart City,

2014), Santander (Santander Facility, 2014) and Barcelona (Barcelona Open Cities

Challenge, 2014). These cities, due to constant innovation projects and investments, have

a tendency to be pioneers in the adoption of new standards for smart cities. These cities

use smart applications to facilitate the decision making process of their leaders.

In Finland, the city of Helsinki is running a cooperation cluster called Forum Virium

Helsinki (Forum Virium Helsinki, 2014) to provide a platform to develop ICT-based

CHAPTER 2 – STATE OF THE ART

7

services in cooperation with enterprises, public authorities and citizens as end-users.

Although the work presents five project areas, the most relevant for our work is a smart

city initiative focusing on the development of mobile phone services to facilitate urban

travelling and living. It also opens up public data so that companies and citizens can

create new services by combining and processing the data in innovative ways. This

resembles the LivingLab movement that has spread across Europe in the 2000s (European

Network of Living Labs, 2014).

In the city of Santander there are sensors to monitor the environment, parking areas,

parks, gardens and irrigation systems. These sensors are scattered around the city in order

to produce alerts that will notify end users with the status of the key aspects of the city.

The data is captured by an IoT node that monitors indicators such as temperature, noise

level or luminosity. This data then flows through repeaters positioned in higher grounds,

which send it to gateways. Lastly, this data is stored in a database or sent to other

machines where it is needed.

Regarding the environmental scenario, from a user’s point of view, the available

indicators are the temperature, Carbon dioxide (CO2) level, luminosity and noise, which

allow them to receive useful inputs for their wellbeing throughout the day. These

indicators are integrated in the environmental monitoring system, which intends to

monitor the status of the city.

The environmental monitoring system is important because it shows how sensors interact

with the server and how the server communicates back to the sensors and other

subscribers that need this type of information.

The Santander City provides another system, named “Participatory Sensing” (Description

of implemented IoT services, 2014). This system allows users to actively participate in

the city ecosystem (e.g. by publishing an event in the platform). The information is then

sent to the SmartSantander platform. Additionally, users become subscribers of the city

systems and are able to receive updates of the current status of the road they have to cross

to reach their destination. This type of instant real-time information directly affects the

city from a user’s point of view due to its constant availability and usefulness. An

application is available for smartphones and users without smartphone can interact with

the platform via SMS.

Figure 1 illustrates the concept of participatory sensing from a user’s point of view, which

helps to understand how a typical user interacts with this kind of technologies and also

CHAPTER 2 – STATE OF THE ART

8

how they provide useful inputs to understand the type of data a user needs during

application usage. It is possible to visualise that a user can, in this case, publish events,

search for events, visualise historical data, subscribe and unsubscribe to events and

receive notifications.

Figure 1 - Participatory Sensing - Use Case Diagram (adapted from (Description of implemented IoT services, 2014))

The components of the participatory sensing system are: a mobile client for end users to

utilise; a server, capable of iterating through data and providing links between the apps

and the SmartSantander platform also known as “Pace of The City Server”; and a module

that allows devices to register onto the platform. Also, there is a system called “Universal

Alert System” (UAS) system, which aims to fire user notifications.

Additionally, Santander provides other interesting case studies, which are “Precision

Irrigation” and “Smart Metering”.

Precision irrigation is a service that intends to provide a useful way of monitoring plants’

necessities and guarantee that they are fulfilled. Rather than being applied to a whole

park, this system is applied to sections or individual plants. Also, the system not only

focuses on water management but also on other plant needs, considering their species and

growth patterns to minimize the staff effort. This system showed the necessity of

designing a solution which accepts communications with REST and WebSockets, due to

being two of the most important protocols and well-accepted service patterns when

dealing with data in smart cities.

CHAPTER 2 – STATE OF THE ART

9

Smart Metering system aims to provide IoT based solutions to monitor energy usage in

offices. To address this problem new components have been added to the architecture to

generate, collect and store the data and information. In addition to these, intelligent

components have also been created in order to provide useful information in a user-

friendly way. These components provide data analysis in real-time and consequent

knowledge extraction to identify energy failures and generate reports on energy

consumption.

2.3 Internet of Things (IoT)

According to (Friess and Vermesan, 2013) the Internet of Things (IoT) “is a concept and

a paradigm that considers pervasive presence in the environment of a variety of

things/objects that through wireless and wired connections and unique addressing

schemes are able to interact with each other and cooperate with other things/objects to

create new applications/services and reach common goals. In this context the research and

development challenges to create a smart world are enormous. A world where the real,

digital and the virtual are converging to create smart environments that make energy,

transport, cities and many other areas more intelligent.”

Internet of Things is a concept reflecting a connected set of anyone, anything, anytime,

anyplace, any service, and any network (Islam et al., 2015). The IoT is a megatrend in

next-generation technologies that can impact the whole business spectrum and can be

thought of as the interconnection of uniquely identifiable smart objects and devices within

today’s Internet infrastructure with extended benefits. Benefits typically include the

advanced connectivity of these devices, systems, and services that goes beyond machine-

to-machine (M2M) scenarios (Höller et al., 2014). Therefore, introducing automation is

conceivable in nearly every field. The IoT provides appropriate solutions for a wide range

of applications such as smart cities, traffic congestion, waste management, structural

health, security, emergency services, logistics, retails, industrial control, and health care.

The Internet of Things comprises the full ecosystem of data in smart cities, which in other

words means that IoT generates massive amounts of data that need to be processed by

algorithms and tools with the intent to be useful for a city (Jara et al., 2014). This will

also provide new ways to interact with intelligent devices and create homogeneous

platforms that include both machines and humans working together. Still according to

(Jara et al., 2014) this new paradigm will shape the world and create a new concept of

CHAPTER 2 – STATE OF THE ART

10

Internet and how people interact with it, due to the constant interconnectivity between

people and the world. It will also provide the necessary resources for the creation of new

applications and data driven platforms that will, hopefully, improve the citizen’s quality

of life. This new way of reinventing the Internet will not only provide endless

possibilities to improve the overall interaction between humans and machines but also

create new challenges, which need to be tackled, to cities themselves. Furthermore, the

work aims to develop data-driven models based on human actions to act as a proof of

concept for Smart Cities. Additionally, the work concludes that the devices in the Internet

of Things are able to gather data and provide knowledge and that a new age of interaction

is about to appear, due to the increasing demand for smart applications.

2.4 Emergency Management

Emergency Management is the process that continuously prepares for a disaster even

before it happens (Feng and Lee, 2010), intending to protect people from natural or man-

made disasters. It is expected that it can integrate many emergency sources to provide the

best possible outcome for the situation. In (Feng and Lee, 2010) the authors conclude that

emergency management is of extreme importance in the nowadays world.

In (Benkhelifa et al., 2014) the authors listed the current disaster management projects.

The purpose of this work is to summarize existing projects regarding this matter. This

work is relevant due to its diversity and detail while presenting the projects, which is

extremely important to have a baseline of what has already been studied and how it can, if

possible, be improved. It is important to state that the focus of this work is wireless sensor

networks, being the most relevant outputs the knowledge and awareness of the projects in

this area. Also, the work delivers a wider perspective about the topic and led to

discoveries regarding the State of the Art projects, which by itself ignited the discovery of

solutions and use cases for each problem.

One of the major problems encountered when dealing with large amounts of data is the

system’s vertical scalability. It is also important to understand how similar systems

operate when larger amounts of data are in place so implementation choices can be made

to avoid problems (Albtoush et al., 2011). This also enhances the overall viability and

feasibility of the system.

Emergency Systems are growing at fast pace (Alazawi et al., 2014). In contrast to

(Benkhelifa et al., 2014), (Alazawi et al., 2014) focuses on Vehicular Ad hoc Networks

CHAPTER 2 – STATE OF THE ART

11

(VANETs), sensors, social networks and Car-to-X, where X can either be infrastructures

or other cars. These technologies are shaping the future with the objective of giving a

ubiquitous sensing of the surroundings. These systems produce large quantities of data,

changing the context of looking at them from small, simple solving problems, to big data

problems that require stronger and more capable algorithms (Alazawi et al., 2014).

2.5 Smart Emergency Systems

Smart emergency systems are an extremely important piece for the welfare and wellbeing

of people. These systems provide computational ways of responding to dangers. When

they are in place, the probability of anticipating man-made or natural disasters increases.

In (Radianti et al., 2014), the authors present emergency systems and then start to develop

a platform that intends to mimic these systems in a smarter way. Figure 2 illustrates a

smartphone based publish-subscribe system to accomplish this. The platform helps users

by sensing their surroundings and assessing the current disaster scenario, providing them

with a safer way to exit the building. It is interesting to analyse the communication that

was developed as it takes the data from devices and delivers it, via a web-based broker, to

managers and interested parties. The broker also forwards the data to a database where it

is processed in order to retrieve sensor information in useful ways (e.g. charts, reports).

Figure 2 - Smart Rescue Platform (Radianti, Gonzalez and Granmo, 2014)

In our work, we intend to present an architecture for a generic smart system that collects,

processes and delivers useful data to users. A smart emergency system will be developed

CHAPTER 2 – STATE OF THE ART

12

and will integrate information from many places, process it and then retrieve it to

interested parties.

CHAPTER 3 – PROPOSED ARCHITECTURE

13

3. PROPOSED ARCHITECTURE

This chapter presents our proposal for an architecture for an IoT system. The background

on the subject and the required technologies to implement a system using this architecture

are also provided.

The systems already in place are decentralized, which means that they do not

communicate between each other, making it almost impossible to prevent disasters. Most

of the times these systems are designed to address a specific case or to work as an

independent system that may receive information from many parts, although without the

aim to deliver information to the necessary parties. With the intent to address these

shortcomings, an architecture for a smart system in the context of smart cities will be

provided. This architecture has been created with awareness of the system’s possibility to

scale and to adapt itself to different contexts. It will address the problem of receiving the

data, process it and then retrieve useful outputs to any party that subscribes to a specific

type of content. This architecture can then be tuned to fit different use cases and

scenarios.

3.1 Citibrain

The architecture we are proposing will integrate Ubiwhere’s Citibrain platform. This

platform already provides solutions such as:

 Smart Waste Management – which intends to manage urban waste from a city

with sensors placed in trash containers;

 Smart Water Management – intends to manage water leakages in a city, aiming to

prevent, detect and correct these type of problems;

 Smart Traffic Management – intends to solve the traffic problem in urban

environments.

Figure 3 illustrates the current offerings of the Citibrain platform. These offers are

divided in five main areas, which are:

 Mobility;

 Environment;

 Monitoring;

 Payments;

 Connectivity and Interoperability.

CHAPTER 3 – PROPOSED ARCHITECTURE

14

The main purpose with this platform is to provide the necessary tools to empower a city

and make it smart. Therefore, it can be divided in areas which intend to segment

applications, regarding their characteristics and usefulness in specific use cases.

The prototype we aim to develop will integrate the platform as a core component,

providing unified access to alerts generated by other applications. For example, a user

that subscribes the Smart Water Management Application and the Smart Waste

Management Application will have access to a unified control centre. This control centre

will monitor every application providing useful metrics from it.

3.2 Background

Systems in the IoT field require different technologies in order to be fully addressed,

therefore this section aims to cover and introduce some of them which are, in some cases,

the ones that have used.

Big Data is referred to as “(…) the processing and analysis of large data repositories, so

disproportionately large that is impossible to treat them with the conventional tools of

analytical databases” (Friess and Vermesan, 2013). The authors also explain that this data

is produced by machines, which are much faster than human beings, and according to

Figure 3 - Citibrain Platform (Citibrain, 2015)

CHAPTER 3 – PROPOSED ARCHITECTURE

15

Moore’s Law this data will grow exponentially (e.g. web logs, RFID, sensor networks,

social data, etc…) (Friess and Vermesan, 2013).

It is also referred that Big Data requires different technologies to process the massive

amount of data within an acceptable amount of time, therefore some tools are presented in

order to show the current standards in this field.

With the appearance of new technologies there is a new way of interaction between

humans and the Internet via smart devices, which presents a challenge. This challenge

exists because of the way that the Internet was created. Until now the Internet was based

on a human to human kind of interaction, because it delivers content produced by humans

for other humans. This kind of communication will not disappear, however new types of

interactions will appear as smart objects integrate the nowadays world. These new types

of interactions produce large amounts of data, which Big Data helps to store, with the

objective of being analysed by intelligent algorithms and tools to extract information and

provide knowledge. At this point it’s possible to conclude that Big Data requires special

treatment as it is larger and contains more information than typical data.

Regarding this topic, the authors in (Friess and Vermesan, 2013) explain that major

companies in the big data topic have a tendency to use Hadoop (Gu and Li, 2013) due to

its reliability, scalability and distributed computing. Hadoop is a framework that

processes big data in a distributed environment (Apache Hadoop, 2014). The Hadoop

framework (Gu and Li, 2013; Apache Hadoop, 2014) is planned to scale up from single to

multiple machines, where each of them provides storage and computational power,

therefore it is a good way to implement the system. However, in more recent works Spark

(Gu and Li, 2013) started to be used instead of Hadoop. Spark (Spark, 2015) is a general

purpose, in-memory, big data processing framework that provides APIs in Java, Python

amongst others. It also provides other tools important for machine learning (e.g. MLib,

SparkSQL).

It is important to understand that Hadoop is an implementation of the MapReduce

framework developed by Google. Hadoop is not designed to support applications with

iterative nature, as it cannot keep data during execution time (Gu and Li, 2013), because

of this, at each iteration, it needs to access the disk. On the other hand, Spark, despite

being a MapReduce-like framework, is designed to address its current shortcomings

regarding iterative applications. Also it is an in-memory technology, which allows for

faster performance.

CHAPTER 3 – PROPOSED ARCHITECTURE

16

Finally the authors concluded that both frameworks are good, but their application

depends on the situation. If there is a lot of memory to run the application, Spark is

definitely faster than Hadoop, on the other hand Hadoop uses less memory but much

more space in disk.

Other types of data processing are also interesting in the Internet of Things (IoT) context,

due to their ability of processing data streams. For instance we can point out Complex

Event Processing (CEP) (Chen et al., 2014) and Storm (Toshniwalet al., 2014). Notice

that CEP is only a method of analysing and processing streams of data, while on the other

hand Storm is a distributed computation framework that helps with the processing of

large streams of data.

CEP is defined as an effective mechanism that analyses data and its context to trigger

events (Chen et al., 2014). CEP can, for example, analyse streams of temperature and

determine if changes in that temperature are normal or abnormal and can also relate

different types of events that lead to a single complex event, such as: (1) flames; (2)

temperature spike; (3) sudden humidity decrease. From these three events the system

could infer that a fire was happening. Additionally (Chen et al., 2014) aims to develop an

architecture for the IoT based on distributed complex event processing. The intent behind

distributed CEP is to shorten the bandwidth and the necessary computation for event

detection. The leading tool for CEP is Esper (Esper, 2015) which is an open source Java

implementation of a CEP engine, which allows for real time stream processing.

Storm (Toshniwalet al., 2014) is a real-time distributed data processing and stream data

processing engine that manages data streams. It was designed to be scalable, resilient,

extensible, efficient and easy to administer which makes it a very robust and usable

structure. Figure 4 presents a storm topology, which is the real time component that runs

all the logic. Topologies are then divided in spouts and bolts. Spouts, represented by the

water tap in Figure 4, and are the source of the streams of data. Bolts, represented by bolts

in the topology, intend to consume the data sent by spouts, process it and then produce

processed outputs.

CHAPTER 3 – PROPOSED ARCHITECTURE

17

Furthermore, Figure 4 illustrates a fault tolerant and scalable architecture for handling

data (Apache Storm, 2014). Additionally, this architecture provides the concept of worker

that can be interpreted as a node which is programmed to execute a specific task. These

tasks may vary, although a good example can be the use of a worker to process the stream

with the Esper queries, which are statements similar to SQL which allow the processing

of events in real time.

Additionally, Esper and Storm can help one another: Esper needs something to organize

and provide data, which means that some system needs to be implemented to provide data

to Esper. This is where Storm can be useful as it can handle the data management while

Esper handles the queries. This approach will join both systems to enhance both of their

main capabilities when dealing with these types of data.

To access the data from cities, sensors and other devices are required. These devices and

the communication protocols are comprised in the concept of Machine-to-Machine

(M2M) (Wan et al., 2012). M2M refers to the automatic communication between

computers, sensors and other devices in the surroundings (Wan et al., 2012). This topic is

relevant because it makes sensor-to-server communication and sensor-to-sensor possible.

This allows the system to constantly check for new data and vice-versa. This concept

leads us to publish-subscribe services. According to (Ordille et al., 2009) these services

broadcast information to the subscribed parties and in these types of systems, a subscriber

is a device that will receive information from the publisher. This translates into a much

more transparent system, because the publisher can send information to the subscribers

and vice versa. In (Radianti et al., 2014) the publishers are treated as the ones that

generate information in the form of events, subscribers are treated as the ones that

Figure 4 - Storm Topology (Apache Storm, 2014)

CHAPTER 3 – PROPOSED ARCHITECTURE

18

subscribe to arbitrary flows of information and brokers are a middle layer between the

two participants to pass along the information.

3.3 Architecture Example

In this subsection, current use cases of similar systems will be addressed. This will result

in a better knowledge base for the current standards in the area. For this, not only

examples of smart cities will be presented but also examples of emergency systems that

became smarter with the inclusion of these new concepts.

Beyond the systems studied in chapter 2, one more was analysed. The system which was

analysed was the SMARTCAMPUS that aims to equip the SophiaTech campus, in

France, with sensors to inspire the creation of new applications (Cecchinel et al., 2014).

Once more the system was chosen due to its usefulness and value in terms of possible

inputs for our system.

SMARTCAMPUS deals with many types of sensors to collect the data. To tackle this

challenge the authors propose the architecture illustrated on Figure 5. This architecture is

divided in two main focal points: the message collector which intends to collect all data

from the Internet or sensor networks, to further store in a database that acts as a message

queue; and the message processing that aims to process the messages stored in the queue.

These components then store the processed information in a database. Furthermore the

architecture contains a configurator, which acts as a routine that can be called periodically

to propagate a specific sensor configuration through the network. It also contains a

database that contains the current sensor parameters, an API to provide an administrator

interface to connect with sensors and a data API that directly accesses data to provide

statistics or other types of knowledge.

CHAPTER 3 – PROPOSED ARCHITECTURE

19

3.4 System Architecture

After gathering all this information it is important to clarify the requirements for the

system we aim to develop. These requirements were assembled by reviewing the state of

the art systems. Below a list of requirements will be presented:

 Handle, process and store streams of data from sensors;

 Generate alerts from the incoming stream of data;

 Generate predictions from history data;

 Provide KPIs (Key Performance Indicators) and historical data;

 An API for users and developers to connect.

Thus, we have come up with a proposal for an architecture. This architecture will provide

a way to gather information from many sources, process it and provide useful information

to the interested parties.

One of the most important things to understand is that nowadays data comes mostly in

streams, which presents an issue due to the tools needed to process it. The tool that is

projected to be used is Storm, which has already been described. Even though Storm, by

itself, cannot retrieve the most accurate results in real time, due to the processing time

needed, it is planned to overcome this problem by implementing a parallel processing

block with Hadoop. This will not only provide exact results when the large amount of

data is processed, but also provide a better knowledge of the data.

The approach was inspired by the lambda architecture (Lambda Architecture, 2014) with

the publish/subscribe pattern. The background from other related projects allowed us to

Figure 5 - Middleware Architecture (Cecchinel et al., 2014)

CHAPTER 3 – PROPOSED ARCHITECTURE

20

perceive that some technologies may not suit very well the collection and direct

processing of data. Thus, we opted for a more complex approach that allows a more

scalable and reliable system.

This type of approach also led us to extend the capability of receiving data from multiple

sources, which is extremely important in the context of IoT.

In Figure 6 our proposal for the architecture is presented.

Our architecture is projected to act as an API to provide a connection between data in the

IoT and the end user, with the intent of providing relevant information regarding

emergency situations.

The system will receive a data stream from IoT nodes, which is then split in two parts to

be processed by the batch layer, responsible for demanding calculations and the speed

layer which delivers results in real time. After that, the data is merged with the intent of

providing the result with the biggest confidence level associated. When the data is merged

a bottleneck can happen, although this situation will be prevented by accepting the first

result to appear with the highest confidence level. This can happen in two ways: (1) the

stream layer finishes and the batch layer continues to process; (2) the stream and batch

layer finish almost at the same time. In the first scenario the stream layer result will be

Figure 6 - Proposed Architecture

CHAPTER 3 – PROPOSED ARCHITECTURE

21

returned with a confidence level attached to it. In this second case the data will be merged

to provide the most accurate output.

After the data is merged, it reaches another processing block, which intends to filter and

redirect the acquired knowledge to the subscribed parties. Additionally this block sends

the processed data to the statistical data block. The latter block not only keeps track of

statistical data to help understand patterns along the year but also provides data to

construct KPIs, charts and reports.

After all the processing is done, users can access the data in two ways: (1) via the API,

which is projected for developers who want to build applications around this context; (2)

via the data output, which will serve to return the data to the subscribed parties.

Additionally, the API will provide a way of notifying other sensors, which means that if a

sensor sends an alert, other sensors around it will be asked for their current situation to

locate the hazard with maximum precision. This type of communication is also important

if the alert is located, for example, near a road, since the system can be prepared to notify

street lights to prevent drivers from entering the affected road and in highways a lane can

also be closed being the traffic redirected to other lanes or roads.

3.5 Use Case

Our architecture can be applied in many different scenarios; one of them will be

addressed so that we can establish an example to explain some of its functions.

Figure 7 illustrates a simple example of a possible use case. Let’s assume we have three

types of sensors: smoke, flames and temperature. These sensors are constantly sending

streams of data to the system and the idea is to process this data in order to figure out

whether we are in the presence of a fire or not. The system has a threshold that serves as a

maximum possible value for a normal event, when crossed they trigger events that can

lead to an alert.

CHAPTER 3 – PROPOSED ARCHITECTURE

22

Figure 7 - Example application

Having different types of sensors allows us to better understand whether the fire is

happening and different combinations of events can occur, thus the system must have

something to divide the ones that are indeed problematic. Furthermore an example shall

be presented:

 If there is smoke, flames and the temperature passes the threshold, then we have a

fire;

 If there is smoke, no flames and the temperature is rising, it is possible that we

will have a fire.

Many more combinations can be presented, although these explain the concept that we

are trying to achieve.

On the IoT data comes mostly in streams, hence we need to account for the data stream

that is arriving. For instance, the architecture should use a publish-subscribe messaging

system, which handles the stream and splits it into events that can be processed by the rest

of the modules. The events that have been split will be processed by both layers. At this

point, in the speed layer, there are two important things to acknowledge: (1) it is advised

to use a complex event processing tool due to the event driven nature of the system; (2) a

database with high write speed for storing alarming events is also useful, because of the

high demand from the system. This will provide an event based approach which will

detect event correlations and deal with the data stream that is constantly changing. This

approach will also provide the ability of integrating many types of events at once, this

will expand system acceptance in terms of receiving events and inevitably prepare it to

explore further sensor integrations.

In the batch layer, algorithms with predictive capabilities should be added to enhance the

system overall quality and usefulness. This will provide ways to calculate KPIs, draw

CHAPTER 3 – PROPOSED ARCHITECTURE

23

charts and predict whether it is important or not for emergency response teams to be

prepared. From a high level perspective this type of inputs seem to have a great

importance, such as divide a specific fire protection team to a zone which is prone to

peaks of fire during the summer or redirect traffic because a particular road is more likely

to be affected by the floods in the winter.

The rest of the components do not need to be a specific technology, although we point out

some advices for when choosing the technologies to work with.

The processing components in the system can be executed with any programming

language and should withstand the volume and velocity of data, also the code should be

optimized to minimize overheads and bottlenecks. The database should be chosen

according to the needs of each specific scenario. It is important to understand that many

database systems can be chosen to incorporate the solution, although for each specific

situation a brief analysis of the problem should be made in order to perceive the best

possible choice. As a practical example we can point out that the database in the speed

layer should be in-memory due to its velocity, while on the other hand the statistical

storage could be a NoSQL database that supports large quantities of data to enhance

overall system scalability.

Moreover other important aspect to discuss is the communication. The way the system is

designed, and from the lessons learned from the use cases (e.g. Santander city systems),

the best technologies should be REST, WebSockets and AMQP. REST will provide an

easy and consistent way to access the API, providing endpoints for events and the ability

to execute filters in the queries; WebSockets are useful due to their ability in terms of

real-time communication and the AMQP protocol is important to establish connection

between the system, sensors and actuators scattered in the city in order to extract

information.

Additionally, another important aspect is the inclusion of a message broker, which will

accept raw data from the source and divide the stream in messages that are easier to

process and correlate for a more useful and more accurate output, which is delivered to a

consumer.

CHAPTER 3 – PROPOSED ARCHITECTURE

24

3.6 Technologies Used

In this section we intend to list and introduce the technologies that are needed to develop

this architecture. Thus, the list bellow contains all of the technologies used to develop the

system:

 RabbitMQ (RabbitMQ, 2015) – This is an open source messaging broker, which

implements AMQP (Advanced Message Queueing Protocol). It was written in

Erlang language which allows it to guarantee messaging failover. RabbitMQ is

currently owned and maintained by Pivotal. RabbitMQ provides two different

ways of communication, which are queues and exchanges:

o Queue – A queue is a mechanism that provides asynchronous

communication between a sender and a consumer. It can be seen as an

infinite buffer of messages that await processing;

o Exchange – An exchange is a mechanism that allows queues to be

connected and to receive the events that are sent to it. This is an important

concept because it allows the consumer to connect multiple queues.

In our prototype RabbitMQ is the messaging system used for all communications.

 Meshblu (Meshblu, 2015) – This is an open source M2M messaging tool that

allows data from the sensors and machines to be sent in an understandable way. It

is used in our prototype to send the data from sensors to RabbitMQ;

 REST (REST, 2015) – Although not considered a technology, REST is very

important so it was decided to include here. REST is an architectural style that

allows web services to scale and communicate. It uses the HTTP verbs such as

GET, POST, and DELETE. REST is used to expose an API, which handles the

system’s overall functions;

 Java (Oracle, 2015) – It is an object oriented programming language that allows

developers to create robust and secure enterprise applications. It is known for

allowing to “write once, run anywhere”, as it is present in desktop, mobile and

even web applications. This programming language is used to build almost every

component of the prototype;

 Spring (Spring, 2015) – It is a framework that delivers a set of programming and

configuration modules that allow developers to abstract themselves from the

programming language and focus on the problem. In our work this framework

CHAPTER 3 – PROPOSED ARCHITECTURE

25

facilitated web development with Java. It is used to manage REST calls,

dependency injection and HTTP responses;

 Socket.io (SocketIO, 2015) – It is a JavaScript library to implement WebSockets

on real time web applications. Therefore, it enables real time, bidirectional

communication. It is very popular because it has multiple fall-backs which

guarantee the delivery of the message. In our prototype Socket.io is used to

guarantee WebSocket connections to the generated events;

 Esper (Esper, 2015) – It is an open source Java implementation of a Complex

Event Processing (CEP) engine, which allows for real time stream processing. For

the stream processing it uses Event Processing Language (EPL) which is very

similar to SQL. Esper is, in our prototype, the chosen CEP engine to generate

events from the incoming data;

 Node.js (NodeJS, 2015) – It is an open source runtime for server-side JavaScript

code. It is widely used in real time web applications due to its event driven

architecture. Furthermore it uses the Google V8 engine (Google Developers,

2015), which compiles JavaScript to machine code. Node.js is the second

programming language used by our prototype. It was used to create the

WebSocket server and can be used to create the clients as well.

In the next chapter we shall discuss the database that was used in the system.

CHAPTER 3 – PROPOSED ARCHITECTURE

26

CHAPTER 4 – SYSTEM DATABASE EVALUATION

27

4. SYSTEM DATABASE EVALUATION

In this section we describe the NoSQL database Cassandra, chosen to integrate our

system. To the best of our knowledge, a perfect solution for the Internet of Things data

layer is yet to be found. With this in mind we aim to find the best possible solution for

these type of systems. Thus, we started exploring which database would be the most

suitable to provide a production ready environment. The database will be used in an

Internet of Things system which needs to be production ready and receive enormous

amounts of events in real time. This system intends to gather data from a city and process

it in order to find events that are considered dangerous.

4.1 Overview

Systems on the IoT scope that deal with sensors is becoming gradually difficult to scale

due to the amount of sensors and clients that extract data from them (van der Veen et al.,

2012). Therefore it is important not only to pay attention to the velocity of the data, but

also to the probable volume that it will gain during the time the system is deployed. With

the inclusion of social mining it can even reach new dimensions in terms of volume and

variety.

According to (Abramova et al., 2014a, 2014b, 2014c) Cassandra seems to have a clear

advantage in terms of the needed characteristics to be implemented in our system.

“Cassandra system was designed to run on cheap commodity hardware and handle high

write throughput while not sacrificing read efficiency” (Lakshman and Malik, 2010), also

the decision of choosing Cassandra is related to the market share and popularity

(DBEngines Ranking, 2015).

In addition to storing data, every system needs to provide it in order to query and filter

later. It is important to understand that we will be receiving events from external

applications which are registered to our system. Although the usage of Cassandra with

these reading characteristics seems sub optimal, the main focus is the insert rate and on

that Cassandra does a great job (DBEngines Ranking, 2015). It is important to keep in

mind that systems included in the IoT context tend to be stream oriented, rather than

batch. For this reason, the database to be chosen needs to accept data in streams, or at

least support a high rate of data insertions, and have the necessary mechanisms to

withstand this.

CHAPTER 4 – SYSTEM DATABASE EVALUATION

28

The main reason for this analysis is to understand which architecture for the data layer

would best suit the needs of an IoT platform in terms of querying performance, without

sacrificing the write speed. There were two ways which we have thought would be

relevant in terms of implementation. First, a single table with all the data, which would

then be filtered and dealt with when needed. A second approach is multiple tables for

each specific application that sends events. From a theoretical standpoint it seems that the

best way of organizing our data is through the creation of a table per application. This

will result in smaller tables which, in comparison to a centralized table that stores

everything is a lot faster because they have significantly less records. In the coming

sections some experiments were documented for better understanding. Figure 8 illustrates

the two cases, where on the left we can find the single table and on the right the multiple

table configuration.

Figure 8 - Data layer possible architectures

4.2 Cassandra

Cassandra is a distributed storage system that manages large amounts of data across

servers (Lakshman and Malik, 2010). Still according to the authors Cassandra uses a

combination of well-known procedures that grant scalability and availability.

4.2.1 Data Model

Cassandra’s data model provides a high processing speed when writing the data, this is

due to the indexing.

CHAPTER 4 – SYSTEM DATABASE EVALUATION

29

Cassandra indexes data by key, this key is a unique representation of the row which

contains the data. Each row contains columns, which are attributes and finally these

columns make up a column family.

Figure 9 illustrates the data model, which is composed by rows, column families and

keyspaces.

Furthermore we shall address the two important concepts which make up the data

representation in Cassandra, which are the column families and the keyspaces.

 Colum Family – A column family is a container for a group of rows (Hewitt,

2011). Column families are not defined, which means that the structure can be

changed at any desired time, this improves the system’s readiness to change and

adapt during time;

 Keyspace – In Cassandra the keyspace is the equivalent to a database in the

relational paradigm. The keyspace contains the column families which make up the

full database. The keypaces contain attributes that can be tuned to enhance the

overall performance of the database, these attributes are:

o Replication factor – which refers to the number of physical copies of the

data. For example if the replication factor is set to two data will be

replicated twice;

o Replica placement strategy – this attribute is used for defining the strategy

of how data is placed in the cluster. There are some possibilities to define

the replicas. As examples we can point out the SimpleStrategy which is

most used when we have a single group of nodes in the cluster and

NetworkTopologyStrategy which is more used when the cluster is working

across multiple machines providing a way of managing the replicas in all

the machines.

Figure 9 - Cassandra's Data Model (Charsyam, 2011)

CHAPTER 4 – SYSTEM DATABASE EVALUATION

30

Lastly, Cassandra provides the notion of Super Column Families which are useful to

define new types of data or more complex data structures which are not yet defined by the

default types. The Super Column Families are organised in Super Columns which contain

a name and the new columns that are needed. For example, if a new type “Address” is to

be defined the Super Column should contain the new type name, in this case “Address”

and then a key-value map which contains the attributes of the type (e.g. “Street”, “Street

Name”).

4.2.2 Architecture

In this section is given an overview of the Cassandra architecture. Cassandra uses a peer-

to-peer architecture, which means that all nodes within a cluster can receive a request and

respond to it (Strickland, 2014). This provides better availability when the database is

online. Also, this provides redundancies which help to keep the data safe and horizontal

scalability. In Figure 10 we can observe the Cassandra peer-to-peer architecture.

Figure 10 - Cassandra Architecture (Strickland, 2014)

Furthermore, this architecture provides high availability to the database, this means that

the system does not have a big downtime period, providing constant access to the data.

4.2.3 Replication

Replication is very important in Cassandra because it provides ways of copying the data

within or across nodes. This is done by storing the replicas on the keyspace they belong

to.

CHAPTER 4 – SYSTEM DATABASE EVALUATION

31

Cassandra provides two different replication strategies:

 Simple Strategy – This strategy is normally used for single data centre

deployments (Datastax, 2015). When this strategy is done, Cassandra will find the

first replica and then will perform a clockwise movement to store the next replica.

When creating this strategy the number of replicas must be defined. Figure 11

illustrates this strategy. The first replica is the original inserted value, the rest are

copies placed in a clockwise fashion to replicate the data. The replication factor

used was 3.

 Figure 11 - Simple Strategy

 Network Topology Strategy – This strategy is used when the cluster spans across

multiple data centres (Datastax, 2015). It places the replicas the same way as the

Simple Strategy, although it places them in different physic groups (racks) to

enhance the safety of the data in case of sudden crashes. When creating this

strategy the number of replicas and the number of data centres to keeps those

replicas must be defined. Figure 12 explains this strategy by providing an

example. This example creates the copies in two different Data Centres with a

replication factor of 3.

Figure 12 - Network Topology Strategy

CHAPTER 4 – SYSTEM DATABASE EVALUATION

32

4.2.4 Writing and Reading

Cassandra is a Column Family NoSQL database, which translates into a data format

storage which is vertical oriented. The appropriateness of this database for logging

systems (Abramova et al., 2014a), led us to acknowledge that it could be used in IoT.

Additionally (Abramova et al., 2014a) provides an architectural overview stating that

Cassandra divides each received request into stages to enhance the capabilities while

handling and serving a high number of simultaneous requests. This allows Cassandra to

improve its performance, however it is limited by the host machine characteristics, mainly

by the memory available. Finally, and because RAM memory is a lot faster than the

standard HDDs and SSDs Cassandra needs to have a mechanism that will handle writing

all this data to disk, in background. According to (Abramova et al., 2014a) this

mechanism is called memory mapping and consists in two similar mechanisms: the Key

Cache and Row Cache. Key Cache handles in memory mapping of the stored keys and

it’s solely responsible for storing in RAM these keys, providing fast read/write speeds on

them. On the other hand, Row Cache is the memory mapping for each row.

To better demonstrate the life cycle of a record being written in Cassandra we will

provide an overview of the writing architecture. Figure 13 explains how Cassandra writes

a record. First it writes every arriving row in the commit log, then it replicates this data on

the Memtable. The data is replicated in the commit log to ensure that there are no records

lost. The data which is now on the Memtable will only be written to disk when a flush

happens. A flush can happen when: (1) it reaches the maximum allocated memory; (2)

after a specific time in memory; (3) manually by the user. When flushed, the Memtable

becomes an immutable Sorted String Table (SSTable) which stores all the data (Ordille,

Tendick and Yang, 2009).

Figure 13 - Cassandra Writing

CHAPTER 4 – SYSTEM DATABASE EVALUATION

33

Figure 14 explains how Cassandra reads the data within one cluster. A request is made to

any node in the cluster, the chosen node will become responsible for handling the

requested data. The request is then processed and all the SSTables for a specific column

family will be searched and the data will be gathered to merge data. Merge data is useful

because of the replication factor of the tables, for instance nothing guarantees that the

data is all stored in the same table. When a read request is made it might need to gather

data from multiple tables, merge data allows this data to be combined.

4.3 Experimental Setup

The experiments that will be made will allow to learn which approach is better when

storing data in the IoT. As mentioned before we have decided that there were two ways to

organize the database which would be relevant in terms of implementation. A single table

with all the data, which would then be filtered and dealt with when needed, or multiple

tables for each specific application that sends events.

The experimental setup was created with the following characteristics: (1) The operating

system was Ubuntu 14.04 LTS 64bit; (2) The machine had a dual core, Core i5 480m

with 6GB of RAM and an HDD; (3) Cassandra ran in a single node to understand the

minimum possible requirements when running the system.

We have decided not to use a benchmark tool because we have concluded that most tools

available nowadays do not provide the necessary requirements to test the database system

with the necessary characteristics. Also with this approach we guarantee that the

performances we see are more accurate and can be replicated in a production

environment.

The chosen queries intend to illustrate regular situations during the usage of the system,

which reflect the better approaches to the problem, keeping in mind that attention to the

Figure 14 - Cassandra Reading

CHAPTER 4 – SYSTEM DATABASE EVALUATION

34

write speed is also needed. To analyse them, different queries will be created, matching

the needs while the system is in place. These queries may vary from time to time,

although some of them will be a recurrent task that needs to be performed. Additionally,

it is important to keep in mind that these queries are to be performed in an IoT system,

which generates alerts with the data that comes from the sensors scattered around a city.

The idea is that these alerts are filterable and searchable throughout the lifecycle of the

system.

In the experiments we have the following queries:

Q1: Alert selection from a specific type – This query is performed to provide the

number of alerts of each type (e.g. Number of ‘warning’ alerts);

Q2: Alert selection for a submitted rule – This query will be used to see how many

alerts were raised by a submitted rule (e.g. how many alerts were generated by

rule X);

Q3: Alert selection in a range of time – This query serves to select a type of alerts

(e.g. ‘warning’, ‘critical’) in a period of time.

These queries give a broad perspective of the system in terms of querying performance.

To query the database we use the Cassandra CQL shell, to record the times we have

enabled tracing which allow us to have a detailed view of the query and created indexes

to allow filtering to happen. Figure 15 shows the row prototype.

Figure 15 - Row prototype

The row is composed by the following columns:

 alert_uuid – This field is of the type UUID, it represents the universal id of the

alert to keep each alert unique;

 config_id – This field is of the type UUID, it represents the application id which

created this alert;

 event_query – This field is of type TEXT and it represents the rule needed to fire

the alert;

 alert_type – This field is of the type VARCHAR and represents the type of alert

which was generated (e.g. Critical, Warning);

CHAPTER 4 – SYSTEM DATABASE EVALUATION

35

 event_type – This field is of the type VARCHAR and represents the type of event

to be processed (e.g. Environment, Traffic);

 event_window – This field is of the type TEXT and represents the event window

which triggered the alert;

 event_body – This field is of the type TEXT and represents the full event which

triggered the alert;

 created_on – This field is of the type TIMESTAMP and it represents the

timestamp on which the alert was triggered.

On the next section we will present the results of the experiments.

4.4 Query execution evaluation

In this section we evaluate the query processing time. Each chart contains, in the Y axis,

the “Query Time (ms)” which represents the time the queries took to be processed. In the

X axis, we have “Table Name” which represents the table where the query was made. The

tables are divided by configuration and each represents an application. The “Table Name”

axis uses the following notation:

 App1-App5: correspond to applications with data that comes from environmental

sensors. Each of these applications have 100.000 records;

 All: corresponds to the single table containing all the information. This table will

have 500.000 records.

The values presented in the experiments were obtained by executing the same query five

times and then calculating the average value. Also, the first three queries of each run were

discarded due to the possibility of cold boots. In the figures the dots represent the average

value of the query speed and the error bars represent the standard deviation to that value.

For a better approximation of a real system, the queries were made in no specific order.

This has to do with the Cassandra reading architecture which is faster if the table is in

memory.

In the next sections we will show the values obtained during the experiments and present

a summary of the values obtained.

CHAPTER 4 – SYSTEM DATABASE EVALUATION

36

4.4.1 Querying an alert of a specific type (Q1)

In the experiment we use this query to select all the alerts of type ‘warning’ from the

applications. Using the CQL language the query looks like this:

SELECT * FROM query_performance.alerts_<config_id> WHERE alert_type =

<alert_type>;

For the table with all of the data the query used was:

SELECT * FROM query_performance.alerts_full WHERE config_id =

<config_id> AND alert_type = <alert_type> ALLOW FILTERING;

This a very simple query, since it only lists the alerts of type ‘warning’ that were

generated by the application. However it is expected to see an enormous change in terms

of performance, due to the amount of data in the “All” table.

Figure 16 – Query execution time of Q1

When analysing the results of Q1, present on Figure 16, we can conclude that the separate

tables were, in general, the best choice. Although in the second application we saw a little

deviation from the average value, this is related with the reading architecture of

Cassandra which is faster if the table is in memory. As explained before, we have tried to

make queries to different tables in order to provide results which are useful for people

who want to know if this database is a liable option for a production system.

CHAPTER 4 – SYSTEM DATABASE EVALUATION

37

4.4.2 Querying an alert for a rule (Q2)

This query intends to list every alert for a specific rule created by the user. The query,

using the CQL language, will look like this:

SELECT * FROM query_performance.alerts_<config_id> WHERE event_query =

<rule>;

For the full table the query looks like this:

SELECT * FROM query_performance.alerts_full WHERE config_id =

<config_id> AND event_query = <rule> ALLOW FILTERING;

The query on the full table could not be completed because the operation timed out. The

operation quitted when filtering the data with the where clause, this is due to the amount

of data it needed to filter. We have tried to change the environment settings for Cassandra

to try to overcome this situation, but the error persisted. This led to the removal of this

query from the charts. Due to this problem, the comparison was made only between the

applications. Furthermore, we can conclude that this query cannot be made in a

production environment because the system cannot be stuck waiting for the query to end.

On a real world system, and because IoT systems require near real time responses, it is

impossible to implement this query because of the error it kept raising.

Figure 17 - Query execution time of Q2

With the results of the execution of Q2, seen on Figure 17, we conclude that every

application has similar performances when dealing with this query. The main conclusion

CHAPTER 4 – SYSTEM DATABASE EVALUATION

38

to draw from this experiment is that the table with all the data could not be queried

because it kept raising an out of time error. This is due to the amount of data which is

stored in that table which Cassandra cannot filter.

4.4.3 Querying an alert on a time range (Q3)

This query selects all the alerts of each application in a time range. In the real system this

query is important because it delivers a query that provides a time based approach to the

data. Using the CQL language the query looks like this:

SELECT * FROM query_performance.alerts_<config_id> WHERE created_on <=

<timestamp> AND config_id = <config_id> ALLOW FILTERING;

The query made on the table with all of the information will look like this:

SELECT * FROM query_performance.alerts_full WHERE created_on <=

<timestamp> AND config_id = <config_id> ALLOW FILTERING;

This is a simple date query, it only filters data by timestamp. However, it is expected to

see an enormous change between the applications and the “All” table.

Figure 18 - Query execution time of Q3

The query Q3, in Figure 18, had comparable performance across all of the separate tables,

the standard deviation on the first application is more due to discrepancy between the

performances of when the table is in memory and needs to be loaded to memory. We can

also see that the average time for the table with all the data is much higher than the others,

once again proving that an architecture where the data is separated is better.

CHAPTER 4 – SYSTEM DATABASE EVALUATION

39

4.5 Summary

The results show that, as expected, the single table had the worst performance. This is due

to the amount of data that Cassandra has to filter, which cannot be placed in memory all

at once. Although the results of the “All” table were not five times worse we conclude

that the best implementation is with separate tables which not only give a better

performance, but also provide a better overall data separation.

The performance changes between the first two applications are a little bit different, this

might be due to the size of the string that is being searched. The main differences are

between the “All” table, which was finished on Q1 but not on Q2. This is due to the fact

that, on these tables, data is sequentially organized which means that if the query results

are not on the first records, Cassandra cannot load all the data to memory and initiate the

filtering process.

The average query processing time in Q3 is a lot less than on the others, this is related to

the fact that the dataset is not heterogeneous enough in terms of dates because the values

of the applications were recorded on a single day. Also, filtering is made by primary key

because in Cassandra to make a time range query the column with the date needs to be on

the primary key of the table.

In short, we think that these queries, although very straightforward, give a quick and

simple performance overview to a data layer architecture in the IoT. The results show that

the single table had the worst performance. This is due to the amount of data that

Cassandra has to filter, which cannot be placed in memory all at once. From this, we

conclude that the best implementation is with separate tables, which not only give a better

performance, but also provide a better overall data separation.

CHAPTER 4 – SYSTEM DATABASE EVALUATION

40

CHAPTER 5 – ALERTS MODULE IMPLEMENTATION

41

5. ALERTS MODULE IMPLEMENTATION

In this chapter we provide an overview of the alerts module implementation. This module

is responsible for processing the incoming data from the sensors, process it in real time

and raise alerts for each user. It was decided that the most suitable technology for our

needs was Complex Event Processing (CEP) (Chen et al., 2014; Itria et al., 2014) and for

the implementation of the CEP engine the chosen project was the Java based Esper

(Esper, 2015).

5.1 Alerts Module Overview

According to (Itria et al., 2014) CEP “consists of the processing of events generated by

the combination of data from multiple sources and aggregated in complex-events

representing situations or part of them”. CEP is a very interesting system in the IoT world

because it can process streams of incoming data and be aware of events that can be

specified with the usage of rules.

We have used Esper for the implementation because it is the leading CEP software in the

open source market. Also, Ubiwhere already had projects which used the Esper engine,

therefore we concluded it would be a good idea to follow up on a tool which has been

used and is well documented. Esper is an open source software written in Java used for

CEP. It analyses series of events and provides meaningful conclusions from them. It uses

a standard language for building rules. These rules are called Esper queries and can be

made with Event Processing Language (EPL) (Esper EPL, 2015), which is very similar to

SQL but contains some additions that allow it to create time windows (e.g. an amount of

data given in a confined range of time) in the data stream. Also, it is possible to specify a

pattern that will return an event when the query is activated.

Our approach to the Esper system was made by recurring to a listener, which is

instantiated for each application registered. This listener is then able to raise an alert

every time one or more queries are activated.

As mentioned, this module acts as a service that generates alerts for each registered

application in the system. These alerts need to be subscribed so the application will

receive them. Later in this chapter we shall discuss the flow of the subscription to the

alerts service.

CHAPTER 5 – ALERTS MODULE IMPLEMENTATION

42

5.2 Alerts Module Architecture

This subsection describes how the alerts are subscribed and generated. An overall

architecture of the alerts module will be presented, as well as a simple use case of the

system flow. For better understanding we have decided to grey out the least important

parts in the overall architecture leaving the components used by this module in colour,

this should provide a better understanding in terms of how everything comes together in

the end. Additionally, we have added all the intermediary modules that were too specific

to include in the high level architecture, with the intent of providing a more technical

approach to this chapter as it documents the implementation of the alerts module. Figure

19 illustrates the general architecture of the system which includes the alerts module.

CHAPTER 5 – ALERTS MODULE IMPLEMENTATION

43

Figure 19 - Alerts module architecture

CHAPTER 5 – ALERTS MODULE IMPLEMENTATION

44

The alerts module intends to generate alerts in case something is not right in the incoming

data. Furthermore we shall explain the role of each component, providing a deeper and

more technical approach. The components are:

 Internet of Things – This component represents all the hardware layer that

provides the data;

 M2M Messaging – This component is responsible for bridging the incoming data

from the hardware layer to a meaningful and standardized event. In this

component a technology that accepts multiple M2M protocols is of extreme

importance, therefore we have chosen to integrate Meshblu (Meshblu, 2015),

which is a M2M communication tool that contains these characteristics;

 Event Queue – This component intends to queue the incoming events to provide

scalability and fault tolerance to the system. For this we have used RabbitMQ

(RabbitMQ, 2015), which is one of the most popular messaging systems;

 REST API + CEP – This component is responsible for handling all the API calls,

exposing REST endpoints and starting Esper engines that will receive and process

the incoming data independently, for each subscribed application. Furthermore

this component is also designed to persist the data that passes on the system. This

data varies from application subscriptions, which can be made by sending a POST

to the API, to the events coming from the hardware layer that need to be persisted

for further processing by the analytics module;

 Application – This is an external component to the system, although it is

important to include it in the overall architecture so that everyone can

acknowledge how the system is started. Any application that wants to subscribe

the system needs to do a POST in the provided API to become registered in the

system. After that a configuration ID is generated and assigned to the requesting

application;

 Internal Exchange – This component is responsible for the internal messaging

between modules, metaphorically speaking it can be treated as a “modules

bridge”. It intends to guarantee that all the components receive the alerts that are

being generated by the Esper engine. Notice that the component is an exchange

rather than a queue, this is supported by the fact that to each exchange multiple

CHAPTER 5 – ALERTS MODULE IMPLEMENTATION

45

queues can be added, these queues will then act as “listeners” to the internal

modules that need to receive alerts;

 Internal Database – This component is responsible for storing all of the data. We

have chosen to use Cassandra for its great abilities when writing, without

sacrificing reading performance. Moreover we have conducted experiments, as

described in chapter 4;

 Alerts – This is the module which handles the generated alerts by the Esper engine

and delivers it to the users via AMQP, REST, WebSockets, WebHooks and

Meshblu which intends to provide M2M communication. It is arguable that this

module didn’t need to be separated from the Esper engine, which allowed for the

inexistence of messaging overhead between the two modules. Although from a

scalability standpoint, being separated allows for a better and more controlled

growth. Also, as the user can subscribe this module with many technologies (e.g.

email, WebSockets, WebHooks, AMQP, amongst others), different paradigms are

present. Let’s assume that the user subscribed the alerts module and wants to

receive data via AMQP and WebHooks, when an alert was generated it would be

seamlessly published to the queue due to its non-blocking nature, on the other

hand WebHooks are a blocking technology, which means that while the message

is not delivered the system cannot resume its current operation. Thus, we have

decided to implement a new module which is created from scratch for each

application, which means that each application will have its own Alerts module.

At runtime the Alerts module connects to the Internal Exchange via AMQP to

receive the alerts that are being generated, then it publishes the alerts for that

application via the registered technologies. As mentioned before there are

different technologies at play in this module to overcome this, a thread is created

and becomes responsible for sending alerts to the destination. In practical terms,

this means that if the user has requested the alerts to be sent with AMQP and

WebHooks, each of these technologies will have a thread specific to them

responsible for sending the alerts;

 WebSocket Server – This component intends to provide WebSocket access to the

alerts raised by the application. Although this intends to provide access to the

alerts, it is separated from the module because it would be more complex to

implement alongside the other technologies. A WebSocket server needs to have its

CHAPTER 5 – ALERTS MODULE IMPLEMENTATION

46

own message interpretation logic, it needs to expose endpoints for its clients to

connect, to handle events and to be lightweight and real time. This was the main

reason to separate the WebSocket server from the Alerts module;

 Alert Exchange – This component intends to provide AMQP access to the alerts.

Once again an exchange was implemented for easier more dynamic connection, in

other words if the user needs to have the alerts being sent to two distinct

applications it can simple connect two queues to the exchange;

 REST Endpoint – This component is not a module by itself, it only represents the

exposure of a REST endpoint for the alerts to be received via API calls.

Figure 20 shows the lifecycle for an event to be considered an alert of any type. The flow

starts by receiving the event to which are then applied the rules defined by the user. For

this specific use case, we have decided to implement only three rules which are illustrated

by the three decision blocks in the diagram. These three rules intend to fire an alert if: (1)

a user defined time is reached, this will result in a monitor alert; (2) a user defined

threshold is reached, which results in a warning alert; (3) a user defined set of events is

reached, which results in a critical alert. Note that these rules are provided by the

application which is registered in the system in a format which is similar to SQL, but

specific to the Esper engine that is EQL (Esper Query Language) (Esper, 2015).

Figure 20 - Alerts module event flow

5.3 API endpoints

An endpoint is the entry point to a service or a process, usually seen on REST APIs.

This subsection lists the endpoints that are available via the API. For a clear

understanding we have decided to do a list with the endpoints, explaining each one of

them:

 POST /api/configuration – This endpoint is used to register a new configuration. It

receives a JSON POST, with the configuration details. This endpoint will then

CHAPTER 5 – ALERTS MODULE IMPLEMENTATION

47

respond with a token (configuration_id) that needs to be used when accessing

other endpoints on the API;

 POST /api/business_rule – This endpoint receives a JSON POST request. It is

used to store the rules that each registered application needs to have. It

automatically starts a listener on the queue that was registered in the endpoint

configuration;

 GET /api/rules/{configuration_id} – This endpoint allows the application to

retrieve the rules that have been registered, it is useful for a better management of

each application rules;

 GET /api/alerts/{configuration_id} – This endpoint is used to retrieve the alerts

that each application fires, it is useful if managers want to list the alerts that have

been raised during the system deployment;

 POST /api/alert/access_method – This endpoint intends for the application to

register with which technologies it wants to access the alerts.

5.4 How to receive alerts?

This subsection intends to explain how it is possible for an application to register in the

system and start receiving alerts. Figure 21 illustrates the necessary steps to start

receiving alerts.

Figure 21 - Steps to receive alerts

As we can see in Figure 21 the flow is very simple:

1. Register a configuration that will have the source of the incoming real time data;

2. Register the rules that need to be listening in the data for patterns. If a

configuration already exists queries can be added to it, without needing to create a

different configuration;

3. Register the desired access methods to receive the alerts generated by the supplied

rules. More access methods can be added after rules are registered (e.g.

WebSockets, AMQP);

4. Create one or more clients that will receive and process the alerts that are being

generated.

CHAPTER 5 – ALERTS MODULE IMPLEMENTATION

48

5.5 Summary

This module is the central part of the system, providing a Complex Event Processing

engine to generate alerts based on user defined criteria. It is a very important piece of the

Citibrain platform because it provides a unified control centre responsible for monitoring

every other application of the platform. Beyond generating alerts, this module provides an

elegant, seamless and easy way to get access to the alerts via different technologies that

will empower any system. These applications range from a simple email that can be sent

to a technician, to a more complex M2M system that can warn other machines when an

alert is generated and initiate an emergency protocol.

In short, the Alerts Module is responsible for generating alerts when anything is out of the

ordinary and guarantee that these alerts are sent to people so they can act on the

emergency.

CHAPTER 6 – PREDICTIVE ANALYTICS MODULE

49

6. PREDICTIVE ANALYTICS MODULE

This chapter presents information on the predictive analytics module, which will be

implemented with the purpose of providing useful knowledge to emergency response

teams.

For the predictive analysis module it was decided that the PredictionIO (PredictionIO,

2015) machine learning server would be the chosen because it is open-source and

provides a good platform, also it uses Apache Spark as its main machine learning data

processing engine.

This module intends to empower the system by providing:

 Trends which inform experts on indicators tendency (e.g. temperature rising,

water level rising);

 Predictions which allow for better prepared emergency teams.

6.1 Predictive Analytics Overview

Predictive Analytics (Finlay, 2014) is a business intelligence technology that aims to

predict a result for each business case. In other words, it is the process of extracting

information from datasets with the intention to discover hidden patterns and predict future

outcomes and trends. It is important to understand that predictive analytics does not

predict the future, it only estimates what might happen in the future with an associated

degree of confidence.

Furthermore, according to (Finlay, 2014) Predictive Analytics “is not new”, it is stated

that the earliest applications were credit scoring in the 1950s, which became, by the mid-

1980s, the main decision-making tool in financial services. A good example of how

Predictive Analytics work is in the banking business. When a person asks for a loan in a

bank, the bank manager will test the characteristics of this person against old data, which

will predict if the loan will be successfully paid, or not. Although this type of analyses is

very useful, most of the times it needs input from experts in the field, thus these

predictions must always be analysed by domain experts.

The main idea behind this type of analysis is to forecast future events based on past data.

Thus, it is necessary to use the past data to build a predictive model, which will be used to

test the new events.

CHAPTER 6 – PREDICTIVE ANALYTICS MODULE

50

PredictionIO (Chan et al., 2014; PredictionIO, 2015) was the tool chosen to do the

prediction module. PredictionIO is an open-source machine learning server with the

ability to deploy predictive analytics in a short period of time, built on top of Apache

Spark. According to PredictionIO it “eliminates the friction between software

development, data science and production deployment” (PredictionIO, 2015).

Furthermore, according to PredictionIO consists on the following components:

 PredictionIO platform, which is composed by all the tools for building, evaluating

and deploying machine learning engines. Figure 22 shows PredictionIO's high

level architecture.

Figure 22 - PredictionIO high level architecture (PredictionIO, 2015)

It is important to note that this architecture has a multiple engine configuration,

which means that each engine is independent from the others and can be assigned

to a specific task, such as clustering or classification;

 Event Server collects the data from the user’s application. The engine will then

build the model using the chosen algorithm. Figure 23 gives a very good

perspective of this module.

CHAPTER 6 – PREDICTIVE ANALYTICS MODULE

51

Figure 23 - PredictionIO event server architecture (PredictionIO, 2015)

In contrast to Figure 22 where there was a multiple engine configuration, in Figure

23 there is only one engine which is assigned to do a specific machine learning

task (e.g. running a prediction algorithm to forecast the temperature in a specific

place) in the requesting application.

6.2 Predictive Analytics Module Architecture

In this subsection we show how the predictions are made. An overall architecture of the

predictive analytics module will be presented.

The module architecture will be described using the same approach as in the alerts

module chapter. For better understanding we have decided to grey out the least important

parts in the overall architecture leaving the components used by this module in colour,

this should provide a better understanding in terms of how everything comes together in

the end. Additionally, we have added all the intermediary modules that were too specific

to include in the high level architecture, the intent is to provide a more technical approach

to this chapter as it documents the implementation of the predictive analytics module.

CHAPTER 6 – PREDICTIVE ANALYTICS MODULE

52

Figure 24 - Prediction module architecture

CHAPTER 6 – PREDICTIVE ANALYTICS MODULE

53

In Figure 24 we can observe the system’s overall architecture although, for this case, we

shall focus on the predictive analytics module, which allows users to receive predictions

based on past data. The explanation of the modules in this chapter will not be as extensive

as in the alerts module, because the general internal processes of each of them is the

same. Thus, we shall explain the two new modules that have been added:

 Prediction Analytics – this module is responsible for making predictions based on

the dataset provided by the user. These predictions can be for different types of

events, such as environment, traffic, water, amongst others. The intention behind

this module is to allow the users to be better prepared for a future problem. This

module will consume the data from the internal exchange to analyse with a

prediction algorithm. The algorithm will analyse the request made by the user and

estimate based on past data, which is the most probable scenario for that specific

case. The generated prediction is of extreme importance for emergency response

teams as it can actively estimate when a disaster is more likely to occur;

 REST Endpoint – the REST endpoint serves as a way for the user to get the

predictions from the application, these predictions are pre computed by the

algorithm.

6.3 Dataset

The dataset used is from sensors that are already in place in a city. The intention behind

using real data is to approximate the model that will be trained to a real scenario,

providing a better approach to what we are trying to achieve.

The data provided in the dataset comes from environmental sensors. It measures units

such as temperature, precipitation, noise level, carbon dioxide, amongst others.

The data on this dataset is not pre-processed, which means some processing might be

needed, because it might contain empty values, or outliers which might reflect errors on

the sensor, or the sensor reading. To overcome this, a clustering algorithm will be used,

the intention is to label the data. Clustering was chosen because it is a very relevant

technique when dealing with unlabelled data. It creates clusters which aggregate similar

items, these clusters are then assigned with a label which will later serve to classify each

new incoming item.

After being pre-processed and labelled, data will act as an input for the algorithm being

used at that time. As an example, regression can be used on this case. Regression is useful

CHAPTER 6 – PREDICTIVE ANALYTICS MODULE

54

for predicting a future value because it is based on a statistical method that estimates

relationships among variables. This is advantageous because, from past data, the

algorithm is able to estimate which is the most probable value for a given point.

For a better understanding an example shall be presented: let's assume it is winter and we

have a garden which, for the sake of this example, only receives water when it rains and

we want to predict how fast the grass will grow. Based on previous data we know that

during the winter it rains more, therefore the grass should grow a lot faster. The algorithm

analyses the past data and encounters a similar case and for it the grass has grown 0.3 of

its original size. From this we can assume that the grass will grow about the same.

From a mathematical standpoint linear regression analysis is nothing more than an

association between two variables, which can be translated by the equation of a straight

line, 𝑦 = 𝑚𝑥 + 𝑏 where 𝑦 is the value we want to predict, 𝑚 is the line slope, 𝑥 is the

value from which we want to predict and 𝑏 the interception of the 𝑦 axis.

Furthermore, an implementation overview shall be made to clarify some aspects of the

tools used.

6.4 Predictive Analytics Module Implementation

From an implementation standpoint it was decided to use clustering for the classification

of the dataset, which allows for the classification of unlabelled data. This provides labels

to the data which will be very important when applying other modules. These other

modules serve to classify each new incoming event and were trained with the labelled

dataset from the clustering output. Labelling the dataset allows for the usage of

supervised learning algorithms, which only work on labelled datasets.

Furthermore we shall present algorithms that can be used for each step. Keep in mind

that, due to this part of the system is still in development phase, these are not necessarily

the choices that will be made, but are great contenders to be included:

 Clustering – k-means, DBSCAN;

 Classification – Support Vector Machines, Neural Networks;

 Prediction – Regression, Gradient Boosting Machines, Random Forests.

As these algorithms were designed for different tasks, the implementation needs to be

made on different phases and from different perspectives. For instance clustering is only

needed when the dataset is unlabelled, with the intention of labelling it. On the other

hand, classification will be a recurrent task for each incoming event. Regression can be

CHAPTER 6 – PREDICTIVE ANALYTICS MODULE

55

used iteratively, or at each request, depends on user’s interaction. It is also important to

note that the predicted value can be accessed via the technologies mentioned in the alerts

chapter.

At this point the system is still in development phase, therefore results are not available.

Although from this module it is expected to receive results such as:

 Trend indicators for the temporal analysis of data, which allow for a better

decision making process;

 Predictions on future events (e.g. fire, floods, traffic congestions);

 The most affected areas by certain event (e.g. which city area is more likely to

have a traffic congestion);

 The most affected periods of time by event (e.g. which time of the day is more

likely to have a traffic congestion).

These results will provide the necessary knowledge to boost the system’s overall

capabilities, providing a way of estimating future events.

CHAPTER 6 – PREDICTIVE ANALYTICS MODULE

56

CHAPTER 7 – CASE STUDY: URBAN SAFETY SYSTEM WITHIN OPORTO’S CITIBRAIN NODE

57

7. CASE STUDY: URBAN SAFETY SYSTEM WITHIN OPORTO’S

CITIBRAIN NODE

In this chapter we aim to provide a use case to describe the usage of the prototype. Before

the development of this project, Citibrain lacked a solution that could monitor the data

which was being produced by its applications. With this in mind, a system that could

monitor city parameters such as temperature, humidity, ozone, amongst others was

considered. The project aimed to develop a prototype that could generate alerts based on

thresholds provided by users. These thresholds come in the form of a rule which

generates the alerts.

Citibrain is a consortium specialized in smart solutions, which aims to create desirable

and liveable places, bringing together cities and citizens to improve the quality of life

through technology. This is achieved with the implementation of applications in different

sectors. Figure 25 shows the current applications offered by the Citibrain platform.

Figure 25 - Citibrain Applications

This case study is focused on the Smart Environmental Quality application. This

application uses small sensing stations installed in the current urban infrastructure,

making possible the collection of indicators on air quality, noise pollution levels,

temperature, atmospheric pressure, humidity and luminosity (Citibrain, 2015).

The Oporto city was chosen because it was one of the first cities to have sensors and to

provide data to the Citibrain platform. Oporto’s network of environmental sensors

provides real time data of the environmental status of the city (e.g. noise levels,

CHAPTER 7 – CASE STUDY: URBAN SAFETY SYSTEM WITHIN OPORTO’S CITIBRAIN NODE

58

temperature readings, ozone levels, carbon dioxide levels). Figure 26 shows two hours of

temperature data from a sensor in Oporto. This data comes from a real sensor deployed on

Oporto and is feeding the Citibrain platform. The bars do not represent the temperature

values, they represent the number of gathered temperature events at every five minutes.

Figure 26 - Temperature data

With the developed prototype it is now possible to analyse the data stream and generate

alerts when anything abnormal is happening. For example, with the temperature data it is

possible to alert entities of a sudden temperature increase, if the value passes the defined

threshold. This could help prevent dangers related to the temperature (e.g. fire). These

alerts are very important as they provide a feasible way to be in control of the indicators

that come from the sensors around the city. Also, entities responsible for the city safety

will be more prepared to act in case of any problems.

The system is ready to receive multiple streams of data, which provides a way of

preventing dangers with more accuracy.

A temperature sensor alone is not an exact way of preventing a fire, because it can send

data which is not related to a fire (e.g. direct sunlight could have made the temperature

rise). With the addition of a smoke sensor the system can provide more accurate results

because it contains two sources of information.

Another feature that the prototype brings to the platform is the capability of predicting

future events based on past data. In other words, the platform is capable of analysing

historical data and deliver conclusions from it. For example, the prototype is able to

predict if a certain set of events will result in a disaster (e.g. temperature rising resulting

in a fire). These predictions allow for the responsible entities to plan ahead and take

measures to avoid disasters, also predictions will make possible to manage and organize

emergency teams in a more efficient way.

The system has a control centre which will aid users when looking for a convenient,

elegant way of managing their data. Figure 27 shows the dashboard for the Citibrain

control centre. The control sensor contains information from all the applications which

are being used by the user. The information is shown on cards which are customizable,

this means that the user can drag and drop the wanted cards to enhance the overall view

CHAPTER 7 – CASE STUDY: URBAN SAFETY SYSTEM WITHIN OPORTO’S CITIBRAIN NODE

59

of the data. In Figure 27 we can see four cards: on the top left, we can see a map with

parking spots, this data comes from the Smart Parking application; on the top right we can

see the live water pressure for a pipe, this data comes from the Smart Water application;

on the bottom left we see live water pressure from another pipe; on the bottom right we

can observe waste containers on a map. This data comes from the Smart Waste

application.

Another important aspect of Figure 27 is the menu on the left side, which helps for quick

and easy access to:

 Events – This menu shows alerts in real time. The developed prototype will be

integrated in this module, providing a way for users to see their alerts in real time.

 Dashboards – This menu shows the custom dashboards created by the user. It

helps for quick access all the dashboards;

 Management – This menu gives the user the possibility to manage the general

settings of the dashboard;

 Apps – This menu serves as a quick way to go to any subscribed application and

see what is happening in real time.

Figure 27 - Citibrain dashboard

This control centre will also act as a manager for the applications of that user. Figure 28

shows a Smart Environment application which is receiving data from sensors. The list in

Figure 28 is composed by data sent by the sensors to the application. The list is filled by

data from different types of sensors. In this example we can see data from:

 Temperature Sensors – These measure the temperature on a specific place;

CHAPTER 7 – CASE STUDY: URBAN SAFETY SYSTEM WITHIN OPORTO’S CITIBRAIN NODE

60

 Precipitation Sensors – These measure the amount of precipitation on a specific

place;

 Wind Speed Sensors – These measure the velocity of the wind for a specific site.

Furthermore the list also contains values from processed data, this means that these

indicators were already processed by algorithms that analyse if the value is within the

acceptable thresholds or not.

Figure 28 - Smart Environment events dashboard

This case study helped to understand the importance of the alerts module in the Citibrain

platform. The module is important to capture the data coming from streams and generate

alerts to make the entities responsible for city safety more aware of incoming dangers.

The module is a central piece in the Citibrain platform and will be integrated as a core

functionality. The integration with the rest of the platform will be seamless, this means

that the module is prepared for handling data from every subscribed application providing

an elegant and effortless way of monitoring city problems.

CHAPTER 8 – CONCLUSIONS AND FUTURE WORK

61

8. CONCLUSIONS AND FUTURE WORK

The demands placed on the city ecosystem by the population are increasing. This directly

affects the entities responsible for the city safety and control. The existing systems do not

provide the necessary tools to engage with city surroundings, which can difficult the

decision making process of city leaders.

This work aimed to develop a system which would monitor city parameters such as

temperature, humidity, ozone, amongst others. The main goal of the system is to generate

alerts based on thresholds provided by users, which can raise their awareness of a

forthcoming danger.

The implementation of this system made possible the accomplishment of the proposed

main contributions:

 An Application Program Interface (API), which intends to gather data from

sensors scattered around the city;

 An engine capable of receiving, processing and dispatching the alerts to

emergency personnel;

 We have shown a way to develop a smart system which receives streams of data

from many sources and delivers knowledge;

 The presentation of an architecture for the collection of data in the IoT;

 The creation of a system which generates alerts to inform experts and enhance the

overall city safety.

After the internship, the prototype will be tested and integrated in the Citibrain platform

as one of its components. It will add new capabilities to the platform such as the

generation of alerts and ways of estimating future events that are likely to happen.

On a more practical note, the internship made possible the development of a M2M

prototype which acts as an emergency and security controller. The main outputs of the

internship are an API which intends to register applications which retrieve data from the

sensors and an engine capable of handling, processing and dispatching the alerts to

emergency personnel.

On a personal and professional level, the student considers the internship to be a rich

experience. The choice for an auto proposed internship on a company was made because

CHAPTER 8 – CONCLUSIONS AND FUTURE WORK

62

it is an essential complement to the degree since it allows learning in a professional

environment providing a better, more prepared future employee.

To the intern the result of this internship was very positive. It was given the possibility of

integration in a business environment where there were real situations which need to be

given rapid responses. Also, working with qualified professionals with extensive

knowledge allowed me to acquire some of extra skills and work customs.

From a practical standpoint, during the internship, the tasks that where presented allowed

me to enhance technical skills, as well as the learning of new ones. The knowledge that

was shared was rewarding and provided motivation for a future entrance in the

professional world.

In short the internship, allowed the learning of new skills at a technical and personal

level, as well as the application of already acquired skills during the degree. The proposed

solution appears to meet the expectations of both the intern and the company. The

difficulties related to the new technologies and the new work methodology have been

overwhelmed and provided a more prepared vision for the future in the area.

Generally speaking a software is never ended and has always something more to add, this

is also the case with the developed system. As future work we aim to provide some

notions of how the system can evolve and which features we think are the best for future

implementation.

An interesting addition to be developed in the future, is the inclusion of social mining.

Due to the importance of social networking in nowadays society seems like and excellent

way to complement the inputs of the system. This is important to complement the system

because it can detect disasters via a post in a social network. The post does not need to be

in a specific format, the algorithms will only be looking for keywords that will trigger the

attention of the system. Although this data is extremely relevant, it is important to

guarantee that it isn’t false. A possible solution for this problem can be a request to the

sensors that are placed in that specific site.

Another interesting module to add to the system would be outlier detection. Outliers are

observation points that are distant from the rest of the dataset. This would provide a way

to detect whether the sensors are calibrated or stopped sending the information feed. This

is only possible because an event of ‘null’ would be considered a distant value from the

average. In the overall architecture, the outlier detection module could be inserted

CHAPTER 8 – CONCLUSIONS AND FUTURE WORK

63

immediately after the event queue sends the events for processing, this would allow the

outlier detection module to send an alert in case of any problems with the hardware.

In short, many more features could be added to a complex system such as this one, we

have decided to point out these two, because they might be the most important to

implement in a near future.

CHAPTER 8 – CONCLUSIONS AND FUTURE WORK

64

REFERENCES

65

REFERENCES

Abramova, V. and Bernardino, J. (2013). NoSQL databases. Proceedings of the

International C* Conference on Computer Science and Software Engineering -

C3S2E '13.

Abramova, V., Bernardino, J. and Furtado, P. (2014a). Evaluating Cassandra Scalability

with YCSB. Database and Expert Systems Applications, pp.199-207.

Abramova, V., Bernardino, J. and Furtado, P. (2014b). Which NoSQL Database? A

Performance Overview. Open Journal of Databases (OJDB), Volume 1(Issue 2).

Abramova, V., Bernardino, J. and Furtado, P. (2014c). Testing Cloud Benchmark

Scalability with Cassandra. 2014 IEEE World Congress on Services.

Albtoush R., Dobrescu R., Ionescou F., A Hierarchical Model for Emergency

Management Systems, 2011.

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel,

Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj

Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. Storm@twitter. In Proceedings of the

2014 ACM SIGMOD international conference on Management of data (SIGMOD

'14) 2014

Anttiroiko, A., Valkama, P. and Bailey, S. J., (2014). Smart cities in the new service

economy: building platforms for smart services. AI Soc. 29(3): 323-334

Apache Hadoop - http://hadoop.apache.org/ [Accessed 5 Aug. 2015]

Apache Storm - http://storm.apache.org/ [Accessed 5 Aug. 2015]

Athena Vakali, Leonidas Anthopoulos, and Srdjan Krco. Smart Cities Data Streams

Integration: experimenting with Internet of Things and social data flows. In

Proceedings of the 4th International Conference on Web Intelligence, Mining and

Semantics (WIMS14) 2014.

Aurigi, A. (2005) Making the digital city. The early shaping of urban internet space.

Ashgate, Aldershot

Benkhelifa, I.; Nouali-Taboudjemat, N.; Moussaoui, S., "Disaster Management Projects

Using Wireless Sensor Networks: An Overview," Advanced Information Networking

and Applications Workshops (WAINA), 2014 28th International Conference on, vol.,

no., pp.605, 610, 13-16 May 2014.

REFERENCES

66

Carillo FJ (ed) (2006) Knowledge cities. Approaches, experiences, and perspectives.

Elsevier, Amsterdam

Cecchinel, C.; Jimenez, M.; Mosser, S.; Riveill, M., "An Architecture to Support the

Collection of Big Data in the Internet of Things," Services (SERVICES), 2014 IEEE

World Congress on , vol., no., pp.442,449, June 27 2014-July 2 2014.

Charsyam - Cassandra Data Model - https://charsyam.wordpress.com/tag/cassandra-data-

model/ [online] Available at: [Accessed 08-01-2015].

Ching Yu Chen; Jui Hsi Fu; Sung, T.; Ping-Feng Wang; Jou, E.; Ming-Whei Feng,

"Complex event processing for the Internet of Things and its applications,"

Automation Science and Engineering (CASE), 2014 IEEE International Conference

on , vol., no., pp.1144,1149, 18-22 Aug. 2014.

Chourabi, H.; Taewoo Nam; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.; Nahon, Karine;

Pardo, T.A.; Scholl, Hans Jochen, "Understanding Smart Cities: An Integrative

Framework," System Science (HICSS), 2012 45th Hawaii International Conference

on , vol., no., pp.2289,2297, 4-7 Jan. 2012

Citibrain.com, (2015). Citibrain. [online] Available at: http://citibrain.com [Accessed 10

Aug. 2015].

DataStax, (2014). ALLOW FILTERING explained. [online] Available at:

http://www.datastax.com/dev/blog/allow-filtering-explained-2 [Accessed 5 Jul. 2015].

DB-Engines Ranking [online] http://db-engines.com/en/ranking [Accessed 22 April of

2015]

Description of implemented IoT services –

http://smartsantander.eu/downloads/Deliverables/D4.2.pdf.

Docs.datastax.com, (2015). Apache Cassandra™ 2.0. [online] Available at:

http://docs.datastax.com/en/cassandra/2.0/cassandra/architecture/architectureDataDist

ributeReplication_c.html [Accessed 25 Oct. 2015].

Esper-epl-tryout.appspot.com, (2015). EsperTech - Esper Enterprise Edition: Enterprise

ready Event Processing and CEP platform. [online] Available at: http://esper-epl-

tryout.appspot.com/epltryout/index.html [Accessed 15 Aug. 2015].

Espertech.com, (2015). Chapter 5. EPL Reference: Clauses. [online] Available at:

http://www.espertech.com/esper/release-5.2.0/esper-

reference/html/epl_clauses.html#epl-intro [Accessed 5 Aug. 2015].

REFERENCES

67

Espertech.com, (2015). EsperTech - Products - Esper. [online] Available at:

http://www.espertech.com/products/esper.php [Accessed 5 Aug. 2015].

 European Network of Living Labs, (2014). [online] Available at:

http://www.openlivinglabs.eu/ [Accessed 5 Aug. 2015]

Finlay, S. (2014). Predictive analytics, data mining and big data. Palgrave Macmillan.

Forum Virium Helsinki, (2014). Available at: http://forumvirium.fi/en [Accessed 5 Aug.

2015]

Google Developers, (2015). Chrome V8 | Google Developers. [online]. Available at:

https://developers.google.com/v8/ [Accessed 5 Sep. 2015].

Hewitt, E. (2011). Cassandra The definitive guide. Beijing. O’Reilly.

Hollands RG (2008) Will the real smart city please stand up? Intelligent, progressive or

entrepreneurial? City 12(3):303–320

Höller, J.,,Tsiatsis, V., Mulligan, C., Karnouskos, S. Avesand, S. and Boyle D.,, From

Machine-to-Machine to the Internet of Things: Introduction to a New Age of

Intelligence. Amsterdam, The Netherlands: Elsevier, 2014.

http://amsterdamsmartcity.com/?lang=en [Accessed 5 Aug. 2015]

http://opencities.net/barcelona [Accessed 5 Aug. 2015]

http://www.smartsantander.eu/index.php/testbeds/item/132-santander-summary

[Accessed 5 Aug. 2015]

Ics.uci.edu, (2015). Fielding Dissertation: CHAPTER 5: Representational State Transfer

(REST). [online] Available at:

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm [Accessed 27

Aug. 2015].

Islam, S.M.; Kwak D., Kabir H., Hossain, M., Kyung-Sup Kwak, "The Internet of Things

for Health Care: A Comprehensive Survey," in Access, IEEE , vol.3, no., pp.678-708,

2015

Itria, M. L., Daidone, A., Resiltech, S. R. L., & Ceccarelli, A. A Complex Event

Processing Approach for Crisis- Management Systems Exploiting Crowd Sourcing

and Crowd Sensing Information for Situational Awareness. 2014.

Jara, A.J.; Genoud, D.; Bocchi, Y., "Big Data in Smart Cities: From Poisson to Human

Dynamics," Advanced Information Networking and Applications Workshops

(WAINA), 2014 28th International Conference on , vol., no., pp.785,790, 13-16 May

2014

REFERENCES

68

Jiafu Wan; Di Li; Caifeng Zou; Keliang Zhou, "M2M Communications for Smart City:

An Event-Based Architecture," Computer and Information Technology (CIT), 2012

IEEE 12th International Conference on , vol., no., pp.895,900, 27-29 Oct. 2012.

Joann J. Ordille, Patrick Tendick, and Qian Yang. 2009. Publish-subscribe services for

urgent and emergency response. In Proceedings of the Fourth International ICST

Conference on Communication System software and middleware (COMSWARE '09),

2009.

Komninos N (2002) Intelligent cities. Innovation knowledge systems and digital spaces.

Spon Press, London

Lakshman, A. and Malik, P. (2010). Cassandra. SIGOPS Oper. Syst. Rev., 44(2), p.35.

Lambda Architecture - http://lambda-architecture.net/ [Accessed 5 Aug. 2015]

Lei Gu; Huan Li, "Memory or Time: Performance Evaluation for Iterative Operation on

Hadoop and Spark," High Performance Computing and Communications & 2013

IEEE International Conference on Embedded and Ubiquitous Computing

(HPCC_EUC), 2013 IEEE 10th International Conference on , vol., no., pp.721,727,

13-15 Nov. 2013.

Meshblu, (2015). Meshblu. [online] Available at: https://developer.octoblu.com/

[Accessed 5 Aug. 2015].

Nodejs.org, (2015). Node.js. [online] Available at: https://nodejs.org/ [Accessed 27 Aug.

2015].

Oracle.com, (2015). New to Java Programming Center - Downloads. [online] Available

at: http://www.oracle.com/technetwork/topics/newtojava/downloads/index.html

[Accessed 27 Aug. 2015].

P. Friess and O. Vermesan, Internet of Things: Converging Technologies for Smart

Environments and Integrated Ecosystems. Aalborg, Denmark: River Publishers, 2013.

Piro G., Cianci I., Grieco L. A., Boggia G., and Camarda, P. 2014. Information centric

services in Smart Cities. J. Syst. Softw. 88

PredictionIO - Open Source Machine Learning Server. [online] Available at:

http://prediction.io [Accessed 25 Aug. 2015].

Rabbitmq.com, (2015). RabbitMQ - Messaging that just works. [online] Available at:

https://www.rabbitmq.com/ [Accessed 5 Aug. 2015].

Radianti, J.; Gonzalez, J.J.; Granmo, O.-C., "Publish-subscribe smartphone sensing

platform for the acute phase of a disaster: A framework for emergency management

REFERENCES

69

support," Pervasive Computing and Communications Workshops (PERCOM

Workshops), 2014 IEEE International Conference on, vol., no., pp.285, 290, 24-28

March 2014.

Simon Chan, Thomas Stone, Kit Pang Szeto, and Ka Hou Chan. 2013. PredictionIO: a

distributed machine learning server for practical software development. In

Proceedings of the 22nd ACM international conference on Conference on information

& knowledge management (CIKM '13).

Socket.io, (2015). socket.io. [online] Available at: http://socket.io/ [Accessed 27 Aug.

2015].

Spark.apache.org, (2015). Overview - Spark 1.4.1 Documentation. [online] Available at:

http://spark.apache.org/docs/latest/index.html [Accessed 5 Sep. 2015].

Spring.io, (2015). spring.io. [online] Available at: http://spring.io/ [Accessed 27 Aug.

2015].

Strickland, R. (2014). Cassandra high availability. Birmingham. Packt Publishing.

van der Veen, J.S.; van der Waaij, B.; Meijer, R.J., "Sensor Data Storage Performance:

SQL or NoSQL, Physical or Virtual," Cloud Computing (CLOUD), 2012 IEEE 5th

International Conference on , vol., no., pp.431,438, 24-29 June 2012 doi:

10.1109/CLOUD.2012.18

Yi-Heng Feng; Lee, C.J., "Exploring Development of Service-Oriented Architecture for

Next Generation Emergency Management System," Advanced Information

Networking and Applications Workshops (WAINA), 2010 IEEE 24th International

Conference on , vol., no., pp.557,561, 20-23 April 2010.

Zubaida Alazawi, Omar Alani, Mohmmad B. Abdljabar, Saleh Altowaijri, and Rashid

Mehmood. 2014. A smart disaster management system for future cities. In

Proceedings of the 2014 ACM international workshop on Wireless and mobile

technologies for smart cities (WiMobCity '14), 2014.

REFERENCES

70

ANNEXES

71

ANNEXES

ANNEXES

72

ANNEXES

73

ANNEX A –

INTERNSHIP PROPOSAL

ANNEXES

74

ANNEXES

75

PROPOSTA DE ESTÁGIO
Ano Letivo de 2014/2015

em Mestrado em Informática e Sistemas (Business Intelligence)

TEMA

M2M Emergency System & Urban Safety

SUMÁRIO

Pretende-se desenvolver um sistema que monitorize parâmetros como
temperatura, humidade, pressão atmosférica, radiação ultra-violeta, nível de
ozono e CO2, detecção de incêndios e de inundações, em vários pontos de uma
cidade em que o risco de os limiares de segurança serem ultrapassados seja
elevado, e se crie então suporte para um sistema inteligente de apoio à decisão
dos organismos de protecção civil.
Tendo este sistema informação em tempo quase real, podem observar-se
tendências e fazer previsões (Data Analytics, Complex Event Processing,
Inteligência Aritificial) para que sejam tomadas medidas preventivas ou
reativas face à possibilidade de emergências ambientais ou civis. Estes sistemas
de apoio à decisão podem então despoletar mecanismos de alarmística que por
sua vez poderiam ser integrados com a restante infraestrutura da cidade,
nomeadamente sinalização vertical, luminárias, sistemas de irrigação,
sinalização de evacuamento, entre outras. Pretende-se ainda que este sistema
esteja integrado com outros sistemas M2M em desenvolvimento na Ubiwhere,
podendo partilhar dados com estes, de forma a possibilitar a gestão unificada
de um cenário urbano.

O presente trabalho visa o desenvolvimento de um protótipo M2M para gestão
de emergência e segurança em ambiente urbano. Pretende-se criar uma API
para obter dados de sensores reais, dispersos através de uma cidade, bem como
de API third-party e efectuar o tratamento e agregação dos mesmos para assim
fornecer dados relevantes, em tempo-real, aos responsáveis pela segurança
pública e protecção civil.
Pretende-se também investigar mecanismos de actuação, para que assim se
possam criar acções automáticas que possam auxiliar na resolução das situações
identificadas. Um exemplo destes mecanismos é a automatização da sinalização
vertical para permitir a passagem de veículos de emergência com segurança até
ao seu destino.

1. ÂMBITO

Contexto e justificação da validade do estágio proposto.

http://www.deis.isec.pt/curso_mei.aspx

ANNEXES

76

2. OBJECTIVOS

Pretende obter-se, no final da dissertação:

- Estudo do Estado da Arte em sistemas análogos
- Documento de Requisitos e Arquitectura da Aplicação Vertical M2M
- Módulo de Interoperabilidade com o Middleware M2M
- Camada de Integração com sensores em ambiente experimental
- Protótipo de User Interface simples para apresentação dos resultados

3. PROGRAMA DE TRABALHOS

O estágio consistirá nas seguintes atividades e respetivas tarefas:

 T1 – Elaboração do estudo do Estado da Arte

 T2 – Levantamento e Especificação de Requisitos

 T3 – Desenvolvimento da solução

 T4 – Testes

 T5 – Elaboração da Dissertação

4. CALENDARIZAÇÃO DAS TAREFAS

As Tarefas acima descritas, incluindo os testes de validação de cada módulo,

serão executadas de acordo com a seguinte calendarização:

O plano de escalonamento dos trabalhos é apresentado em seguida:

 Meses

Tarefa
s

09/1
4

10/1
4

11/1
4

12/1
4

01/15 02/1
5

03/1
5

04/1
5

05/1
5

06/1
5

07/15

T1

T2

T3

T4

T5

Metas INI M1 M2/M
3

 M4 M5/M
6

ANNEXES

77

INI Início dos trabalhos
M1 Tarefa T1 terminada
M2 Tarefa T2 terminada
M3 Tarefa T3 terminada
M4 Tarefa T4 terminada
M5 Tarefa T5 terminada

5. RESULTADOS

Os resultados dos estágios serão consubstanciados num conjunto de documentos

a elaborar pelo estagiário de acordo com o seguinte plano:

M1

R1.1: Relatório de Estado da Arte

M2:

R2.1: Relatório de Definição de Requisitos.

M3:

R3.1: Relatório de Especificação

M4:

R4.1: Relatório de Desenvolvimento

M5:

R5.1: Relatório de Testes

M6:

R6.1: Relatório de Estágio

6. LOCAL DE TRABALHO

Creativity Lab Ubiwhere – IPN-Incubadora - Rua Pedro Nunes — Quinta da Nora

3030–199 Coimbra (Portugal)

7. METODOLOGIA

O aluno será enquadrado numa equipa de projecto focada na área de Machine-
to-Machine, no âmbito de um projecto de I&D a decorrer na Ubiwhere, em
conjunto com empresas parceiras, sendo seguida uma aproximação à
metodologia ágil SCRUM, validada pela certificação da empresa em CMMI-DEV
L2 e ISO 9001.

8. ORIENTAÇÃO

ISEC:

ANNEXES

78

Nome (nome@isec.pt)
Categoria

Entidade de Acolhimento:
Nome (coliveira@ubiwhere.com)
Cargo: R&D Manager

9. CARACTERIZAÇÃO E REMUNERAÇÃO

 15/09/2014

 31/07/2014

 Horário flexível, a acordar com o aluno (8h / dia quando em full-time)

 Bolsa de apoio - 6.83€/dia de trabalho

 Integração do estagiário nas actividades correntes e possibilidade de
participação no plano de formação da empresa

mailto:nome@isec.pt
mailto:coliveira@ubiwhere.com

ANNEXES

79

ANNEX B –

SMART CITIES: AN ARCHITECTURAL APPROACH

This is the paper published and presented at the International

Conference on Enterprise Information Systems (ICEIS), which

was held at Barcelona from the 27th to the 30th of April 2015.

ANNEXES

80

ANNEXES

81

SMART CITIES: AN ARCHITECTURAL APPROACH

André Duarte1,2, Carlos Oliveira2 and Jorge Bernardino1,3

1 Instituto Superior de Engenharia de Coimbra

Polytechnic of Coimbra, Portugal
2 Ubiwhere, Lda. Coimbra, Portugal

3 CISUC – Centre for Informatics and Systems of the University of Coimbra

a21200791@isec.pt, coliveira@ubiwhere.com, jorge@isec.pt

Keywords: Smart Cities; Machine to Machine (M2M); Machine Learning; Internet of Things (IoT).

Abstract: Smart cities are usually defined as modern cities with smooth information processes, facilitation

mechanisms for creativity and innovativeness, and smart and sustainable solutions promoted through service

platforms. With the objective of improving citizen’s quality of life and quickly and efficiently make

informed decisions, authorities try to monitor all information of city systems. Smart cities provide the

integration of all systems in the city via a centralized command centre, which provides a holistic view of it.

As smart cities emerge, old systems already in place are trying to evolve to become smarter, although these

systems have many specific needs that need to be attended. With the intent to suit the needs of specific

systems the focus of this work is to gather viable information that leads to analyse and, present solutions to

address their current shortcomings. In order to understand the most scalable, adaptable and interoperable

architecture for the problem, existing architectures will be analysed as well as the algorithms that make

them work. To this end, we propose a new architecture to smart cities.

1 INTRODUCTION

Nowadays most people live in urban areas. As
populations grow, they place increasing demand on
the city ecosystem and directly affect the entities
responsible for the city control. These challenges
make leaders adopt ways to engage with the
surroundings of their city, making them more
prepared and aware. The decisions they make not
only directly affect the city in a short term, but are
also a means to improve the decision making
process. With the growth of human beings in urban
areas comes a significant growth in data. This data
comes from sensor networks scattered around the
city or from the sensors in a smartphone. As data
was produced there seemed to be a constant need to
integrate all of this data to provide services,
therefore, smart cities materialised.

There is a wide variety of city conceptions that
have built a new horizon for cities in their
challenging tasks in an increasingly cost-
consciousness, competitive and environmentally
oriented setting. Irrespective of whether the concept
is smart city, intelligent city, sustainable city,
knowledge city, creative city, innovative city,
ubiquitous city, digital city or city 2.0 (e.g.

Komninos 2002; Aurigi 2005; Carillo 2006;
Hollands 2008, 305) they all paint a picture of a
modern city with smooth information processes,
facilitation mechanisms for creativity and
innovativeness, and smart and sustainable service
solutions and platforms (Anttiroiko et al. 2014).
However, there is still a general absence of joint
planning by city governments with utility providers
(e.g. water, in respect of environmental
sustainability) and other public services (e.g. health
care). Cultural barriers include commercial
confidentiality, whereas social media user groups
work with open data systems, causing problems for
joint working of cities with the private sector. This
may create problems for collaborative ventures
between city governments and businesses, and even
with other public sector agencies, as well as with
voluntary and community organisations. According
to (Alazawi et al., 2014) a smart city depends on the
provision of information, communication
technologies and services to the population via web
based services. However, the concept of smart city
can, many times, be mistaken. In order to be smart, a
city does not need state of the art technology, what it
needs is interoperability between various key aspects

ANNEXES

82

of the city, such as governance, finance,
transportation and many others. The kind of changes
that smart cities will bring to the current world are
many times said to be as similar to those seen in the
industrial revolution. The motivation behind the
concept is the ability to improve the city ecosystem
while focusing on people, allowing technology to
work for them and not with them, this will result in a
greater vision of society.

Furthermore this data brings many possibilities
to the cities because it makes smart systems’
proliferation possible. One of these cases can the
smart emergency management system, which is an
extremely important piece for the welfare and
wellbeing of people. According to (Feng and Lee,
2010) emergency management is a dynamic and
continuous process that involves preparing for
disaster before it happens. If these systems are in
place the probability of anticipating man-made or
natural disasters increases.

The systems already in place are decentralized,
which means that they do not communicate between
each other, making it almost impossible to prevent
disaster. This decentralization is due to the
objectives of the development. Most of the times
these systems are designed to address a specific case
or to work as an independent system that may
receive information from many parts, although
without the aim to deliver information to the
necessary parties.

With the intent to address these shortcomings
our work will provide an architecture to a smart
system in the context of smart cities. This
architecture will be created with awareness of the
system’s possibility to scale and to adapt itself to
different contexts. This architecture will address the
problem of receiving the data, process it and then
retrieve useful outputs to any party that subscribes to
a specific type of content. This architecture can then
be tuned to fit different use cases and scenarios.

The remainder of this paper is structured as

follows. Section 2 presents related work on the topic

and aims to cover as much information as possible;

Section 3 is discusses related technologies and

intends to cover technological key aspects regarding

the theme; Section 4 shows functional use cases with

the objective of creating a baseline to support some

of the decisions made during the work; Section 5

presents an architecture for future practical

application of the analysed concepts and serves to

document it. Finally, section 6 presents our main

conclusions and suggests future work.

2 RELATED WORK

The problem presented in this paper, has been
partially developed in the past years with other
studies and projects. This section provides the
necessary background to understand the basis of the
developed work. It is important to acknowledge that
the documented analysis in the paper will be high-
level, in spite of covering as much information as
possible.

There are many papers that present solutions for
the issue that we are working on. The rest of this
section will address part of them, which we think to
be the best fit for our work.

In (Vakali, Anthopoulos and Krco, 2014) the
concept of smart city is discussed due to its current
vagueness. Still, according to (Vakali, Anthopoulos
and Krco, 2014) this concept can vary from the
technologies and infrastructures of a city to an
indicator that measures the education level of its
inhabitants. Furthermore the work intends to analyse
the SEN2SOC experiment for its impact in the
current context of this topic. The SEN2SOC
(SENsor to SOCial) experiment promotes
interactions between sensors and social networks to
enhance the quality of data in SmartSantander.

The concept of smart city is also referred and
conceptualized in (Chourabi et al., 2012). The work
intends to create a framework that will sketch
practical implications for governments. Furthermore
the work enlists some success factors for smart
cities, which are: (1) management and organization;
(2) technology; (3) governance; (4) policy context;
(5) people and communities; (6) economy; (7) built
infrastructure; (8) natural environment. The
proposed framework will provide integration to all
of these factors and explain correlations between
them.

Although the smart city concept began to be
defined in the previous work, more recent works
seem to extend this concept and provide different
definitions for it.

In (Piro et al., 2014) discuss that there is yet to
exist a theoretical definition of Smart City, although
cities are developing and shaping for not so distant
future. Furthermore the work enlists some of the
current definitions for the concept, that there is yet
to be completely defined.

 The work also enlightens the necessity of
Information and Communication Technology (ICT)
services, with the intent to integrate them in a
generic scenario of a smart city. The approach is
from a service point of view, which means that it
emphasises the role of the services in the city. It is
also important to refer that real world cases are
shown to prove the importance of the topic.

ANNEXES

83

Alongside with smart cities there are many other
concepts that need to be addressed, one of them is
the Internet of Things (IoT).

According to (Jara et al., 2014) this concept
comprises the full ecosystem of data in smart cities,
which in other words means that IoT generates
massive amounts of data that need to be processed
by algorithms and tools with the intent to be useful
for a city. This will also provide new ways to
interact with intelligent devices and create
homogeneous platforms that include both machines
and humans working together.

Still according to (Jara et al., 2014) this new
paradigm will shape the world and create a new
conception of the Internet and how people interact
with it, due to the constant interconnectivity between
people and the world. It will also provide the
necessary resources for the creation of new
applications and data driven platforms that will,
hopefully, improve the citizen’s quality of life.

This new way of reinventing the Internet will not
only provide endless possibilities to improve the
overall interaction between humans and machines
but also create new challenges, which need to be
tackled, to cities themselves.

Furthermore, the work aims to develop data-
driven models based on human actions to act as
proof of concept for Smart Cities. The system was
developed using the SmartSantander testbed, which
contains real-time systems and sensors scattered
around the city.

Additionally the work concludes that the devices
in the Internet of Things are able to gather data and
provide knowledge and that a new age of interaction
is about to appear, due to the increasing demand for
smart applications.

In (Benkhelifa, Nouali-Taboudjemat and
Moussaoui, 2014) the authors listed the current
disaster management projects. The purpose of this
work is to summarize existing projects regarding this
matter. This work is relevant due to its diversity and
detail while presenting the projects, it is extremely
important to have a baseline of what was already
studied and how it can, if possible, be improved. It is
important to state that the focus of this work is
wireless sensor networks. The most relevant outputs
of this work in this context were the knowledge and
awareness of the projects in this area. This listing
provided a wider perspective about the topic and led
to discoveries regarding the State of the Art projects,
which by itself ignited the discovery of solutions and
use cases for each problem.

One of the major problems encountered when
dealing with large amounts of data is the system’s
scalability. In order to understand how similar
systems operate when larger amounts of data are in

place (Albtoush, Dobrescu and Ionescou, 2011)
explains implementation choices that should be
made in order to avoid problems. This provides
useful outputs for the viability and feasibility of the
system. This work also explains the necessity of risk
assessment of the system, not only during the
implementation but also during the working phase.
Finally it is also important because it defines a
framework for emergency management, which
includes risk assessment and disaster prevention in a
multilevel and multidimensional architecture.

With the intent of presenting the role of today’s
technologies in this field in (Alazawi et al., 2014) it
is stated that this type of systems is growing at fast
pace. In contrast to (Benkhelifa, Nouali-
Taboudjemat and Moussaoui, 2014), this work
focuses on Vehicular Ad hoc Networks (VANETs),
sensors, social networks and Car-to-X, where X can
either be infrastructures or other cars. These
technologies are shaping the future with the
objective of giving a ubiquitous sensing of the
surroundings. Later on the work it is identified that
these systems produce large quantities of data,
changing the context of looking at them from small,
simple solving problems, to big data problems that
require stronger and more capable algorithms to be
solved. Lastly it is presented a problem regarding the
interoperability of these systems, which is yet to be
solved. The interoperability of these systems is
important due to the necessity of presenting a
holistic view of the problems in the city.

In the literature there are already some papers
that address the need to create a smart emergency
system. A good example of this is (Radianti,
Gonzalez and Granmo, 2014), where the authors
present emergency systems and then start to develop
a platform that intends to mimic these systems in a
smarter way. The authors used a smartphone based
publish-subscribe system to accomplish this. The
platform helps users by sensing their surroundings
and assessing the current disaster scenario, providing
them with a safer way to exit the building. It is
interesting to analyse the communication that was
developed as it takes the data of devices and delivers
it, via a web-based broker, to managers and
interested parties. The broker also forwards the data
to a big database where it is processed in order to
retrieve sensor information in useful ways (e.g.
charts, reports).

There is also another important topic to cover
that is emergency management. According to (Feng
and Lee, 2010) it’s a process that continuously
prepares for disaster even before it happens. It
intends to protect people from natural or man-made
disasters. It is expected that it can integrate many
emergency sources to provide the best possible

ANNEXES

84

outcome for the situation. The main purpose of this
paper is to explore the possibility of a service-
oriented architecture for emergency systems. The
authors propose an architecture for this scenario and
conclude that these type of systems are of extreme
importance in the nowadays world.

In our work we intend to present an architecture
for a generic smart system that collects, processes
and delivers useful data to users. In the future a
smart emergency system will be developed and will
integrate information from many places, process it
and then retrieve it to interested parties. It is
important to understand that this work is a necessary
step to accomplish a system with the minimum
possible flaws. Also we will integrate technologies
that lead us to a more prepared system.

3 SMART CITIES

TECHNOLOGIES

Systems related with smart cities require
different technologies in order to be fully addressed,
therefore this section aims to cover and introduce
some of them.

It is important to understand that these types of
technologies are of extreme importance in this topic,
some of them are directly related to the data
collection and storing, while others focus on the
processing part of the data lifecycle. Although this
section will cover most of them, it will provide more
information regarding the processing part.

To begin with, the concept of Big Data (Friess
and Vermesan, 2013) shall be addressed. It is
understandable that having so many information
inputs (sensors, smartphones, etc.) leads to a huge
amount of information that needs a new type of
treatment.

In (Friess and Vermesan, 2013) the authors refer
to big data as “(…) the processing and analysis of
large data repositories, so disproportionately large
that is impossible to treat them with the conventional
tools of analytical databases.” The authors also
explain that this data is produced by machines, that
are much faster than human beings, and according to
Moore’s Law this data will grow exponentially.
Furthermore the authors start pointing out the major
contributors for data production (e.g. web logs,
RFID, sensor networks, social data, etc…).

It is also referred that Big Data requires different
technologies to process the massive amounts of data
within a comprehensive amount of time thus, some
tools are presented in order to show the current
standards in this field.

Additionally, regarding this topic, the authors
explain that major companies in the big data topic
have a tendency to use Hadoop (Gu and Li, 2013)
due to its reliability, scalability and distributed
computing.

In (Jara et al., 2014) the authors present a
challenge to Big Data, which is of great relevance
for our work. This challenge is, perhaps, one of the
most important concepts correlated with Big Data
not only because of the large amount of data but also
because of the IoT paradigm.

The challenge presented is the new way of
interaction between humans and the Internet via
smart devices. This challenge exists, because of the
way that the Internet was created, until now the
Internet was based on a human to human kind of
interaction, because it delivers content produced by
humans for other humans. This kind of
communication will not disappear, however new
types of interactions will appear as smart objects
integrate the nowadays world.

These new types of interactions produce large
amounts of data, this is where Big Data comes into
play. As has been described in this section Big Data
helps us to store this large amounts of data, with the
objective of being analysed by intelligent algorithms
and tools to extract information and provide
knowledge that will empower the applications made
recurring to it.

At this point it’s possible to conclude that Big
Data requires special treatment as it is bigger and
contains more information than typical data. For that
some algorithms and tools shall be addressed with
the intent to choose the most suitable to the
presented system.

As posted above major companies around the
world to process big data are utilizing Hadoop.
Hadoop is a framework that processes big data in a
distributed environment (Apache Hadoop, 2014).

Also, it is planned to scale up from single to
multiple machines, where each of them provides
space and computational power. This framework can
also handle failures in applications. It seems like a
good way to implement the system. However, in
more recent works, despite being around since 2009,
Spark (Gu and Li, 2013) started to be used instead of
Hadoop.

In (Gu and Li, 2013) the authors made a
comparison between the Spark and Hadoop aiming
to show which was more suitable for production. It
is important to understand that Hadoop is an
implementation of the MapReduce framework
developed by Google. According to (Gu and Li,
2013) this framework is not designed to support
applications with iterative nature, as it cannot keep
data during execution time. Because of this, at each

ANNEXES

85

iteration, it needs to access disk. On the other hand,
Spark, despite being a MapReduce-like framework,
is designed to address its current shortcomings
regarding iterative applications.

Finally the authors concluded that both
frameworks are good, but their application requires a
good analysis of the situation. If there is a lot of
memory to run the application Spark is definitely
faster than Hadoop, on the other hand Hadoop uses
less memory but a lot more space in disk.

Other types of data processing are also
interesting in the Internet of Things (IoT) context,
due to their ability of processing data streams. For
instance we can point out Complex Event Processing
(CEP) (Chen et al., 2014) and Storm (Toshniwalet
al., 2014). Notice that CEP is only a method of
analysing and processing streams of data, on the
other hand Storm is a distributed computation
framework that helps with the processing of large
streams of data.

CEP is defined in (Chen et al., 2014) as an
effective mechanism that analyses data includes it in
a context and triggers events. CEP can, for instance,
analyse streams of temperature and determine if the
changes in that temperature are normal or abnormal.
It can also relate different types of event that lead to
a single complex event, such as: (1) flames; (2)
temperature spike; (3) sudden humidity decrease.
From these three events the system could infer that a
fire was happening. Additionally (Chen et al., 2014)
aims to develop an architecture for the IoT based on
distributed complex event processing. The intent
behind distributed CEP is to shorten the bandwidth
and the necessary computation.

Storm (Toshniwal et al., 2014) is a real-time
distributed stream data processing engine that
manages data streams. It was designed to be
scalable, resilient, extensible, efficient and easy to
administer which makes it a very robust and usable
structure. Figure 1 presents a storm topology, which
is the real time component that runs all the logic.
Topologies are then divided in spouts and bolts.
Spouts, represented by the water tap in Figure 1, and
are the source of the streams of data. Bolts,
represented by bolts on the topology, intend to
consume the data sent by spouts, process it and then
produces processed outputs.

 Furthermore Figure provides a fault tolerant
and scalable architecture for handling data.
Additionally this architecture provides the concept
of worker that can be interpreted as a node which is
programmed to execute a specific task. These tasks
may vary, although a good example can be using a
worker to process the stream with the Esper queries.
In other words each Bolt is associated with a query
to be applied in the stream. This will create an

efficient a quick way to process the incoming stream
and query it for different types of alarming events.

Additionally this two technologies together help
one another, in other words Esper needs something
to organize and provide data which means that some
system needs to be implemented to provide Esper
with the data. This is where Storm is useful, it can
handle the data management and Esper will handle
the queries. This approach will join both systems to
enhance both of their main capabilities when dealing
with these type of data.

Figure 1 - Storm Topology (Apache Storm, 2014).

A very interesting aspect of Storm and CEP, is
that they both can work together to provide an
excellent way of processing and analysing data in
our scenario.

To access this data, sensors and other devices are
required. With the intent of making a more
transparent communication, the concept of Machine
to Machine (M2M) (Wan et al., 2012) emerged.
According to (Wan et al., 2012) M2M refers to the
automatic communication between, computers,
sensors and other devices in the surroundings. This
topic is relevant because it makes sensor-to-server
communication and sensor-to-sensor possible. This
allows the system to constantly check for new data
and vice versa.

This concept leads us to another one related to
the communication that is publish-subscribe
services. According to (Ordille, Tendick and Yang,
2009) these services broadcast information to the
subscribed parties. In these types of systems a
subscriber is a device that will receive information
from the publisher. This translates into a much more
transparent system, because the publisher can send
information to the subscribers and vice versa.
Finally in (Radianti, Gonzalez and Granmo, 2014)
their publishers are treated as the ones that generate
information in the form of events. Subscribers are
treated as the ones that subscribe to arbitrary flows

ANNEXES

86

of information. And brokers are a middle layer
between the two participants to pass along the
information.

In short, these technologies, due to their
relevance in this topic, seem to be an absolute need.
They provide a coherent and robust ecosystem to
help developers create and deploy their applications.
The combination between Storm and Esper seems to
be very interesting, since it provides an elegant
approach to the topic.

In the latter sections some of these technologies
will be addressed again, from an implementation
point of view, the main goal is to provide ideas for a
future implementation, leaving comments on which
technology is the most suitable choice for a specific
component of the architecture.

4 USE CASES

In this section current use cases of similar
systems will be addressed. This will result in a better
knowledge base for the current standards in the area.
For this, not only examples of smart cities will be
presented but also examples of emergency systems
that became smarter with the inclusion of these new
concepts.

Lately many smart cities have emerged, such as
Amsterdam (Amsterdam Smart City, 2014),
Santander (Santander Facility, 2014), Barcelona
(Barcelona Open Cities Challenge, 2014), and many
others. These cities, due to constant innovation
projects and investments, have a tendency to be
pioneers in the adoption of new standards in this
field. These cities use smart systems help the
decision and facilitate the decision making process.

In Finland, the city of Helsinki is running a
cooperation cluster called Forum Virium Helsinki
(Forum Virium Helsinki, 2014) to provide a
platform to develop ICT-based services in
cooperation with enterprises, public authorities and
citizens as end-users. The platform is concentrated
on five project areas, one of them being a smart city
initiative focusing on the development of mobile
phone services to facilitate urban travelling and
living. It also opens up public data so that companies
and citizens can create new services by combining
and processing the data in innovative ways. This
resembles the LivingLab movement that has spread
across Europe in the 2000s (The European Network
of Living Labs, 2014).

The city of Santander, for instance, uses sensors
to monitor the environment, parking areas, parks,
gardens and irrigation systems. These sensors are
scattered around the city in order to produce alerts

that will notify end users with useful knowledge of
the situation.

The data is captured by an IoT node that
monitors indicators such as temperature, noise or
light. This data then travels through repeaters
positioned in higher grounds, which send it to the
gateways. Lastly this data is stored in a database or
sent to other machines where it’s needed.

Regarding the environmental scenario, from a
user’s point of view, the available indicators are the
temperature, CO level, luminosity and noise, this
allows them to receive useful inputs for their
wellbeing throughout the day.

The environmental monitoring system is
important because it shows how sensors interact
with the server and how the server communicates
back to the sensors and other subscribers that need
this type of information. To summarise, we will
discuss the “Participatory Sensing” concept
(Description of implemented IoT services, 2014) to
obtain a better knowledge about how users interact
with the platform, and in which way is it relevant to
their day-to-day life.

Figure illustrates the concept of participatory
sensing from a user’s point of view, which helps us
understand how a typical user interacts with this
kind of technologies and also how they provide
useful inputs to understand the type of data a user
needs during application usage. It is possible to
visualise that a user can, in this case, publish events,
search for events, visualise historical data, subscribe
and unsubscribe to events and receive notifications.

Figure 2 - Participatory Sensing - Use Case Diagram

[Adapted from (Description of implemented IoT services,

2014)].

The components of the participatory sensing
system are: a mobile client for end users to utilise; a
server, capable of iterating through data and
providing links between the apps and the
SmartSantander platform also known as “Pace of
The City Server”; and a module that allows devices
to register onto the platform. Also, there is a system
called “Universal Alert System” (UAS) system,
which aims to fire user’s notifications.

ANNEXES

87

The “Participatory Sensing” concept allows
users to actively participate in the city ecosystem.
The information is then sent to the SmartSantander
platform. The concept starts to get even more
interesting when users become subscribers of the
city systems and are able receive updates of the
current status of the city or the road they have to
cross to reach their destination. This type of instant
real time information directly affects the city from a
user’s point of view due to its constant availability
and usefulness. The system is available for
smartphone via the app and for none smartphone
users, via SMS or call.

Additionally Santander city provides other
interesting case studies, which are “Precision
Irrigation” and “Smart Metering”.

Precision irrigation is a service that intends to
provide a useful way of monitoring plants
necessities and guarantee that they are fulfilled.
Rather than being applied to a whole park, this
system is applied by sections or individual plants.
Also, the system not only focus on water
management but also in other plant needs and their
species and growth patterns to minimize the effort
from the staff. Even though it looks a bit off the
topic this system allowed to realise the necessity of
designing the system to accept communications with
REST and WebSockets, which are the
communication technologies used by it.

Smart Metering system aims to provide IoT
based solutions to monitor energy usage in offices.
To address this problem new components have been
added to the architecture to generate, collect and
store the data and information. In addition to these,

intelligent components have also been created in
order to provide useful information in user-friendly
way. These components provide real time analysis
of data and consequent knowledge extraction. With
this it can identify energy failures and reports on
energy consumption that can be drilled down to a
specific case.

The last system analysed was (Cecchinel,
Jimenez, Mosser and Riveill, 2014), which is a
prototype, named SMARTCAMPUS that aims to
equip the SophiaTech campus with sensors to inspire
the creation of new applications. Once more the
system was chosen due to its usefulness and value in
terms of possible inputs for our system.

The SMARTCAMPUS deals with many types of
sensors to collect the data. To tackle this challenge
the authors propose the architecture seen on Figure
3. This architecture divides in two main focal points:
the message collector which intends to collect all
data from the internet or sensor networks, to further
store in a database that acts as a message queue; and
the message processing that aims to process the
messages stored in the queue. These components
then store the processed information in a database.

Furthermore the architecture contains a
configurator, which acts as a routine that can be
called periodically to propagate a specific sensor
configuration through the network. It also contains a
database that contains the current sensor parameters,
an API to provide an administrator interface to
connect with sensors and a data API that directly
accesses data to provide statistics or other types of
knowledge.

Figure 3 - Middleware Architecture (Cecchinel, Jimenez, Mosser and Riveill, 2014).

ANNEXES

88

Figure 4 – Proposed Architecture.

5 PROPOSED ARCHITECTURE

This section aims to present our architecture to
address the typical Smart City scenario. This
architecture will provide a way to gather information
from many sources process it and provide useful
information to the interested parties.

One of the most important things to understand
is that nowadays data comes mostly in streams,
which presents an issue due to the tools needed to
process it. The tool that we projected to use, to
process streams of data is Storm, which has already
been documented in this paper. Even though Strom,
by itself, cannot retrieve results one hundred percent
accurate, due to being stream oriented, we plan to

overcome this problem by implementing a parallel
processing block with Hadoop. This will, not only
provide exact results when the large amount of data
is processed, but also provide a better knowledge of
the data.

The approach was inspired by the lambda
architecture (Lambda Architecture, 2014) with a
concrete direction of using the publish/subscribe
pattern. The background from other related projects
allowed us to perceive that some technologies may
not suit very well the collection and direct
processing of data. Thus, we opted by a more
complex approach that allows to a more scalable and
reliable system.

This type of approach also led us to extend the
capability of receiving data from multiple sources,
which is extremely important in the context of IoT.
Furthermore, we shall analyse the proposed
architecture, present in Figure 4.

ANNEXES

89

Our architecture is projected to act as an API

to provide a connection between data in the IoT
and the final user, with the intent of providing
relevant information regarding emergency
situations.

The system will receive a data stream from
IoT nodes, which is then duplicated to be
processed by the batch and the speed layer. After
that the data is merged with the intent of
providing the result with the biggest confidence
level associated. When the data is merged a
bottleneck can happen, although this situation
will be prevented by accepting the first result to
appear with the highest confidence level. This
can happen in two ways: (1) the stream layer
finishes and the batch layer continues to process.
With this scenario the stream layer result will be
returned with a confidence level attached to it;
(2) the stream and batch layer finish at the same
time. In this case the data will be merged to
provide the most accurate output.

After the data is merged it reaches another
processing block, which intends to filter and
redirect the acquired knowledge to the
subscribed parties. Additionally this block sends
the processed data to the statistical data block.
The latter block not only keeps track of statistical
data to help us understand patterns along the year
but also provides data to construct KPI’s, charts
and reports.

After the processing is all done, users can
access the data in two ways: (1) via the data API,
which is projected for developers who want to
build applications around this context; (2) via the
data output, which will serve to return the data to
the subscribed parties. Additionally the API will
provide a way of notifying other sensors in the
field, which means that if a sensor sends a fire
alert, other sensors around it will be asked for
their current situation to localize the hazard with
maximum precision. This type of communication
is also important if the fire is located near a road
since the system can be prepared to notify street
lights to prevent drivers from entering the
affected road. Also in the highways a lane can be
closed and the traffic redirected to other lanes or
even roads.

This architecture can be applied in many
different scenarios; one of them will be
addressed so that we can establish an example to
explain some of its functions. Let’s assume we
have three types of sensors: smoke, flames and
temperature. These sensors are constantly
sending a stream of data into our system, the idea
is to process this data in order to figure out
whether we are in the presence of a fire or not.
The system has a threshold that serves as a
maximum possible value for a normal event,
when crossed they trigger events that can lead to,
in this case, a fire. Having different types of

sensors allows us to better understand whether
the fire is happening. Different combinations of
events can occur, thus the system must have
something to divide the ones that are indeed
problematic. Furthermore we shall materialise
this example:

 If there is smoke, flames and the

temperature passes the threshold,

then we have a fire;

 If there is smoke, no flames and the

temperature is rising, it is possible

to have a fire.

Many more combinations can be presented,
although these explain the concept that we are
trying to achieve.

Furthermore each module of the presented
architecture should be accounted for when
choosing the right technologies, in order to access
the full potential of it. Hence we need to account
for the data stream that is arriving. For instance, it
should use a publish-subscribe messaging system,
which will handle the stream and split it into
events that can be processed by the rest of the
modules. The events that have been split will be
processed by the both layers. At this point, in the
speed layer, there are two important things to
acknowledge: (1) it is advised to use a complex
event processing system due to the nature of the
system, this will provide an event based approach
which will necessarily climax with event
correlations and a smarter way of dealing with the
data stream that constantly change. This approach
will also provide the ability of integrating many
types of events at once, this will expand system
acceptance in terms of receiving events and
inevitably prepare it to explore further sensor
integrations; (2) an in memory database for
storing alarming events is also useful, because of
the high demand from the system.

In the batch layer algorithms with predictive
capabilities should be added to enhance the
system overall quality and usefulness. This will
provide ways to calculate KPI’s, draw charts and
predict whether it is important or not to be in
maximum alert level. From a high level
perspective this type of inputs seem to have a
great importance, with applications such as divide
a specific fire protection team to a zone which is
prone to peaks of fire during the summer or
redirect traffic because a particular road is more
likely to be affected by the floods in the winter.

The rest of the processing components in the
system can be executed with any programming
language and should withstand the volume and
velocity of data, also the code statements should
be optimized to minimize overheads and
bottlenecks. The databases should be chosen
according to the needs of each specific scenario.
It is important to understand that many database
systems can be chosen to incorporate the solution,
although for each specific situation a brief

ANNEXES

90

analysis of the problem should be made in order
to perceive the best possible choice. As a
practical example we can point out that the
database in the speed layer should be in-memory,
on the other hand the statistical storage could be
an NO-SQL database that supports large
quantities of data to enhance overall system
scalability and has a good read mechanism due
that its main focus is reads.

Moreover other important aspect to discuss
is the communication. The way the system is
designed, and from the lessons learned from the
use cases, the best technologies should be REST,
WebSockets and MQTT. REST will provide an
easy and consistent way to access the API,
providing endpoints for events and the ability to
execute filters in the queries. WebSockets are
useful because due to the facilitations in terms of
real-time communication. The MQTT protocol is
important to establish connection between the
system and sensors and actuators scattered in the
city in order to extract real-time information.

Additionally other important aspect is the
inclusion of a message broker, which will accepts
messages from the source divide the stream of
data in messages that are easier to process and
correlate for a better, more useful and more
accurate output, which is delivered to a consumer.

6 CONCLUSIONS AND

FUTURE WORK

This paper intends to document the current
state of the art in smart city systems and their
related technologies. Over the coming sections
the problem has been documented and some use
cases were studied to provide the most possible
inputs with the intent to understand which
challenges existed and needed to be tackled.

The analysed documents provided several
useful outputs to establish a good baseline in
terms of architecture and tools to be used. For
instance the concept of participatory sensing,
from SmartSantander, led us to think that with so
much user data available the system could be
adapted to process it with the intent of retrieving
knowledge from it. Another example of a good
tool to process data in IoT is the lambda
architecture, which provides the best of the
stream layer processing allied with the batch layer
that provides more accurate results.

The knowledge extracted from the state of the
art systems and technologies guarantees that our
contributions were, as expected, scalable,
adaptable, feasible and viable.

Furthermore, we aim to develop a system that
will address the current shortcomings in this
context. This system will be more directly related
to emergency management. Therefore we aim to

construct a platform that receives disaster data
from many sources, process it via established
components and lastly retrieves it to any party
that subscribed to the specific type of event.
Consequently this paper also serves as a
document to establish an architecture for that type
of system, serving as a first practical application
of it. An initial overview of the technologies that
can be used was also made with the intent of
providing the necessary steps to implement a
similar system, or at least provide some additional
knowledge regarding this topic.

A smart emergency system is important in the
current context due to its usefulness and
transparency while dealing with data, as it can
provide predictions and problems before they
happen to managers. Thus, with the use of this
type of system data becomes clearer and leads to
a more prepared and quicker response to any
emergency or disaster.

Another interesting application, which
empowers the system, is social mining, which due
to the importance of social networking in
nowadays society seems like and excellent way to
complement the inputs of the system.

This is important to complement the system
because it can detect disasters via a post in a
social network. The post does not need to be in a
specific format, the algorithms will only be
looking for keywords that will trigger the
attention of the system. Although this data is
extremely relevant, it is important to guarantee
that it isn’t false. A possible solution for this
problem can be a request to the sensors that are
placed in that specific site.

In short, Internet of Things is successfully
thriving in the current world, therefore these type
of systems will continue to emerge alongside it.
An excellent way to evolve and prepare future
cities is to be more interconnected and aware, in
essence enabling better decision-making.

ACKNOLEDGMENTS

This work was partially financed by iCIS –
Intelligent Computing in the Internet Services
(CENTRO-07- ST24 – FEDER – 002003),
Portugal.

This work was also made possible with the
help of Ubiwhere, Lda, which provided useful
inputs in discussions and also the facilities.

REFERENCES

Alazawi, Z., Alani, O., Abdljabar, M. B., Altowaijri,

S., and Mehmood, R.. 2014. A smart disaster

management system for future cities.

In Proceedings of the 2014 ACM international

ANNEXES

91

workshop on Wireless and mobile technologies for

smart cities (WiMobCity '14).

Albtoush R., Dobrescu R., Ionescou F., (2011) A

Hierarchical Model for Emergency Management

Systems.

Amsterdam Smart City, (2014). [online] Available at:

http://amsterdamsmartcity.com/?lang=en.

Anttiroiko, A., Valkama, P. and Bailey, S. J., (2014).

Smart cities in the new service economy: building

platforms for smart services. AI Soc. 29(3): 323-

334

Apache Hadoop, (2014). [online] Available at:

http://hadoop.apache.com.

Apache Storm, (2014). [online] Available at:

http://storm.apache.com.

Aurigi, A. (2005) Making the digital city. The early

shaping of urban internet space. Ashgate,

Aldershot

Barcelona Open Cities Challenge, (2014). [online]

Available at: http://opencities.net/barcelona.

Benkhelifa, I., Nouali-Taboudjemat, N. and

Moussaoui, S. (2014). Disaster Management

Projects Using Wireless Sensor Networks: An

Overview. 2014 28th International Conference on

Advanced Information Networking and

Applications Workshops.

Carillo FJ (ed) (2006) Knowledge cities. Approaches,

experiences, and perspectives. Elsevier,

Amsterdam

Cecchinel, C.; Jimenez, M.; Mosser, S.; Riveill, M.,

(2014). An Architecture to Support the Collection

of Big Data in the Internet of Things Services

(SERVICES).

Chen, C., Fu, J., Sung, T., Wang, P., Jou, E. and Feng,

M. (2014). Complex event processing for the

Internet of Things and its applications. 2014 IEEE

International Conference on Automation Science

and Engineering (CASE).

Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J.,

Mellouli, S., Nahon, K., Pardo, T. and Scholl, H.

(2012). Understanding Smart Cities: An

Integrative Framework. 2012 45th Hawaii

International Conference on System Sciences.

Description of implemented IoT services, (2014).

[online] Available at:

http://smartsantander.eu/downloads/Deliverables/

D4.2.pdf.

European Network of Living Labs, (2014). [online]

Available at: http://www.openlivinglabs.eu/

Feng, Y. and Lee, C. (2010). Exploring Development

of Service-Oriented Architecture for Next

Generation Emergency Management System. 2010

IEEE 24th International Conference on Advanced

Information Networking and Applications

Workshops.

Forum Virium Helsinki, (2014). [online] Available at:

http://forumvirium.fi/en

Friess, P. and Vermesan, O., Internet of Things:

Converging Technologies for Smart Environments

and Integrated Ecosystems. Aalborg, Denmark:

River Publishers, 2013.

Gu, L. and Li, H., "Memory or Time: Performance

Evaluation for Iterative Operation on Hadoop and

Spark," High Performance Computing and

Communications & 2013 IEEE International

Conference on Embedded and Ubiquitous

Computing (HPCC_EUC), 2013 IEEE 10th

International Conference on , vol., no.,

pp.721,727, 13-15 Nov. 2013.

Hollands RG (2008) Will the real smart city please

stand up? Intelligent, progressive or

entrepreneurial? City 12(3):303–320

Jara, A.J.; Genoud, D.; Bocchi, Y., "Big Data in Smart

Cities: From Poisson to Human

Dynamics," Advanced Information Networking

and Applications Workshops (WAINA), 2014

28th International Conference on , vol., no.,

pp.785,790, 13-16 May 2014

doi: 10.1109/WAINA.2014.165

Komninos N (2002) Intelligent cities. Innovation

knowledge systems and digital spaces. Spon Press,

London

Lambda Architecture, (2014). [online] Available at:

http://lambda-architecture.net/

Ordille, J., Tendick, P. and Yang, Q. (2009). Publish-

subscribe services for urgent and emergency

response. Proceedings of the Fourth International

ICST Conference on COMmunication System

softWAre and middlewaRE - COMSWARE '09.

Piro G., Cianci I., Grieco L. A., Boggia G., and

Camarda, P. 2014. Information centric services in

Smart Cities. J. Syst. Softw. 88

Radianti, J., Gonzalez, J. and Granmo, O. (2014).

Publish-subscribe smartphone sensing platform for

the acute phase of a disaster: A framework for

emergency management support. 2014 IEEE

International Conference on Pervasive Computing

and Communication Workshops (PERCOM

WORKSHOPS).

Santander Facility, (2014). [online] Available at:

http://www.smartsantander.eu/index.php/testbeds/i

tem/132-santander-summary

Toshniwal A., Taneja, S., Shukla, A., Ramasamy, K.,

Patel, J. M., Kulkarni, S., Jackson, J., Gade, K.,

Fu, M., Donham, J., Bhagat, N., Mittal, S., and

Ryaboy, D., Storm@twitter. In Proceedings of the

2014 ACM SIGMOD international conference on

Management of data (SIGMOD '14).

Vakali, A., Anthopoulos, L. and Krco, S. (2014).

Smart Cities Data Streams Integration.Proceedings

of the 4th International Conference on Web

Intelligence, Mining and Semantics (WIMS14) -

WIMS '14.

Wan, J., Li, D., Zou, C. and Zhou, K. (2012). M2M

Communications for Smart City: An Event-Based

Architecture. 2012 IEEE 12th International

Conference on Computer and Information

Technology.

ANNEXES

92

ANNEXES

93

ANNEX C –

CASSANDRA FOR INTERNET OF THINGS: AN

EXPERIMENTAL EVALUATION

This paper was submitted to the International Conference on

Internet of Things and Big Data (IoTBD), which will be held at

Rome from the 23th to the 25thof April 2016.

ANNEXES

94

ANNEXES

95

Cassandra for Internet of Things: an experimental evaluation

André Duarte1, Jorge Bernardino1, 2
1 CISUC – Centre of Informatics and Systems of the University of Coimbra

FCTUC – University of Coimbra, 3030-290 Coimbra, Portugal
2 ISEC – Superior Institute of Engineering of Coimbra

Polytechnic Institute of Coimbra, 3030-190 Coimbra, Portugal

duarte.andre00@gmail.com, jorge@isec.pt

Keywords: NoSQL; SQL; Internet of Things (IoT); Cassandra.

Abstract: The proliferation of the Internet of Things (IoT) increases the amount of data that is being produced.

Therefore it is extremely important to find the best possible storage engine to process these huge amounts of

data. With the intent of discovering which database engine better supports the characteristics of an IoT

system it is essential to analyse the existing databases and test them in a practical context. With this

objective we decided to use one of the most popular databases, Cassandra, to evaluate it on an IoT

environment. We evaluate the querying processing time of Cassandra using queries of an IoT real time

environment and comparing it with different types of data architectures. The main focus of this work is to

investigate if Cassandra can provide good performance.

1 INTRODUCTION

Nowadays the world is evolving and producing large

amounts of data due to the growth of Internet of

Things (IoT). This constant and fast evolution leads

developers to pursuit the best possible solutions to

handle large amounts of data. Even though the need

for intelligent data mining tools is extremely

important, we also need to pay attention to the way

this data is stored and which type of engine better

fits the needs of an IoT system.

To the best of our knowledge, a perfect solution for

the Internet of Things data layer does not exists.

With this in mind we aim to find out the best

possible solution for this type of environment.

Therefore an investigation was conducted to

understand which database would be the most

suitable to provide a production ready environment.

It is important to keep in mind that, generally

speaking, these kind of systems need to handle large

amounts of data, real time insertion of records and

huge data diversity.

The database will be used in an Internet of Things

environment that needs to receive massive amounts

of events in real time. This system intends to gather

data from a city and process it in order to find events

that are considered dangerous. The system collects

data from sensors and provides alerts to each

subscribed application. It is important to understand

that this system will act as a demonstrator for the

data layer.

In (van der Veen, van der Waaij and Meijer, 2012) it

is discussed that scaling systems that deal with

sensors is becoming gradually difficult due to the

amount of sensors and clients that extract data from

them. Therefore it is significant to not only pay

attention to the frequency of the data, but also to the

huge volume that it will obtain.

According to (Abramova et al., 2014a, 2014b,

2014c) Cassandra seems to have a clear advantage in

terms of the characteristics necessary to implement

this system because it provides good writes speeds

without sacrificing performance.

Furthermore, Cassandra system was designed to run

on cheap commodity hardware and handle high

write throughput while not sacrificing read

efficiency (Lakshman and Malik, 2010).

Additionally the decision of choosing Cassandra is a

result of its popularity and market share (DB-

Engines Ranking, 2015). With all of this in mind,

Cassandra seems to be a solid choice for this use

case.

In addition to storing data, every system needs to

provide it in order to query and filter later. It is

ANNEXES

96

important to keep in mind that systems included in

the IoT context tend to be stream oriented, rather

than batch. For this reason, the database to be chosen

needs to accept data in streams, or at least support a

high rate of data insertion, and have the necessary

mechanisms to withstand this.

We aim to test which architecture for the data layer

would best suit the needs of an IoT platform in terms

of querying performance, without sacrificing the

write performance. There were two relevant ways in

terms of implementation. First, a single table with all

the data, which would then be filtered and dealt with

when needed. A second approach is multiple tables

for each specific application that sends events.

From a theoretical standpoint it seems that the best

way of organizing our data is through the creation of

a table per application. This will result in smaller

tables which, in comparison to a centralized table

that stores everything are a lot faster because they

have much less records.

In a nutshell, we aim to understand which data

architecture will have the best performance while

querying the data.

The remainder of this paper is structured as follows.

Section 2 gathers background on important concepts

such as the IoT concept and the description of

Cassandra. Section 3 describes Cassandra and its

general characteristics. Section 4 defines the setup

on which the tests were made. Section 5 presents the

performance tests that were made. Finally, section 6

presents our main conclusions and suggests future

work.

2 BACKGROUND

This section aims to present the most important

concepts when referring to the general topic where

the system will be implemented. On the other hand it

also intends to provide the necessary background on

Internet of Things and Databases.

We aim to understand which architecture is most

suitable when dealing with data in an IoT

environment.

2.1 Internet of Things

According to (Friess and Vermesan, 2013) the

Internet of Things (IoT) “is a concept and a

paradigm that considers pervasive presence in the

environment of a variety of things/objects that

through wireless and wired connections and unique

addressing schemes are able to interact with each

other and cooperate with other things/objects to

create new applications/services and reach common

goals.”

The IoT is a concept reflecting a connected set of

anyone, anything, anytime, anyplace, any service,

and any network (Islam et al., 2015). The IoT is a

megatrend in next-generation technologies that can

impact the whole business spectrum and can be

thought of as the interconnection of uniquely

identifiable smart objects and devices within today’s

Internet infrastructure with extended benefits.

Benefits typically include the advanced connectivity

of these devices, systems, and services that goes

beyond machine-to-machine (M2M) scenarios

(Höller et al., 2014). Therefore, introducing

automation is conceivable in nearly every field. The

IoT provides appropriate solutions for a wide range

of applications such as smart cities, traffic

congestion, waste management, structural health,

security, emergency services, logistics, retails,

industrial control, and health care.

The Internet of Things extends even beyond

communications and new services, it will allow for a

future where, with everything connected, people can

feel more integrated with the world and let IoT do

the day-to-day recurring tasks for them.

The IoT provides a new paradigm that will shape the

world and create a new conception of the Internet

and how people interact with it, due to the constant

interconnectivity between people and the world (Jara

et al., 2014). It will also provide the necessary

resources for the creation of new applications and

data driven platforms that will, hopefully, improve

the citizen’s quality of life. This new way of

reinventing the Internet will not only provide endless

possibilities to improve the overall interaction

between humans and machines but also create new

challenges, which need to be tackled, to cities

themselves.

In short, Internet of Things is successfully thriving in

the current world, therefore intelligent systems will

continue to emerge alongside it.

2.2 Databases

A database can be treated as a related set of

information, which allows the developer to access

the data via queries that intend to express his/her

needs regarding that set of data in that specific

timeframe, either by using simple statements or

complex filtering to enhance the granularity of the

search. For this data to be queried it needs to be

inserted during the time that the database is in place.

Nowadays there are many types of databases,

however in this paper we will focus on Cassandra.

ANNEXES

97

Moreover there are a lot more databases, for

example we can point out some of them:

 SQL databases – these are the traditional

databases that intend to store data in a

structured way. Famous SQL engines are

(DB-Engines Ranking, 2015): MySQL, MS

SQL Server and Oracle;

 NoSQL databases – NoSQL “is used to refer

to the databases that attempt to solve the

problems of scalability and availability

against that of atomicity or consistency”

(Vaish, 2013). NoSQL databases are

divided in four main groups according to

each use case and architecture, these

groups are:

 Key-Value databases – These are the

simplest NoSQL databases, which are

based in a key-value organization that

allows the developers to make CRUD

(Create, Read, Update, and Delete)

operations only with a key. The type of

storage is BLOB (Binary Large Object)

and the data structure is not organized

in any fashion. According to

(Redmond, Wilson and Carter, 2012)

these databases have a very good

performance, although aren’t good for

complex querying and aggregation.

Examples of these databases are:

Memcached (Memcached, 2015),

Couchbase (Couchbase, 2015) and

DynamoDB (DynamoDB, 2015);

 Document databases – As the name

implies this type of database stores and

retrieves document like files, which

can be XML, JSON amongst others.

According to (Redmond, Wilson and

Carter, 2012) a document is a hash

with a unique ID which has more

values related to it. Examples of these

databases are: MongoDB (MongoDB,

2015) and CouchDB (CouchDB,

2015);

 Column Family databases – These

databases store data um column

families which are tables with columns

that are frequently accessed together.

According to (Redmond, Wilson and

Carter, 2012) a columnar structure “is

about midway between relational and

key-value”. Databases of this type are:

HBase (HBase, 2015) and Cassandra;

 Graph databases – According to

(Robinson, Webber and Eifrem, 2013),

graph databases “are normally

optimized for transactional

performance, and engineered with

transactional integrity and operational

availability in mind”. Famous

databases of this type include (DB-

Engines Ranking, 2015): Neo4j

(Neo4j, 2015), OrientDB (OrientDB,

2015) and Titan (Titan, 2015).

In our case we opted for NoSQL databases because

they seem the more appropriate fit for systems in the

IoT paradigm. On the NoSQL databases we have

opted for Cassandra, the next section will serve to

explain our choice while introducing important

topics related to Cassandra.

3 CASSANDRA DATABASE

Cassandra is a distributed storage system that

manages large amounts of data across servers

(Lakshman and Malik, 2010). Still according to this

author Cassandra uses a combination of well-known

procedures that grant scalability and availability.

In this section we will start by introducing

Cassandra’s data model in Section 3.1. In Section

3.2 we will explain Cassandra’s data model and

architecture.

3.1 Data Model

The data model of Cassandra provides a high

processing speed when writing the data, this is due

to the indexing.

Cassandra indexes data by key, which is a unique

representation of the row that contains the data. Each

row contains columns, which are attributes and

finally these columns make up a column family.

Figure 1 illustrates the data model, which is

composed by rows, column families and keyspaces.

Figure 1 - Cassandra's Data Model (Charsyam, 2011)

Furthermore we shall address the two important

concepts that make up the data representation in

Cassandra, which are the column families and the

keyspaces.

ANNEXES

98

 Column Family – A column family is a

container for a group of rows (Hewitt, 2011).

Column families are not defined, which

means that the structure can be changed at

any desired time, this improves the system’s

readiness to change and adapt during time;

 Keyspace – In Cassandra the keyspace is the

equivalent to a database in the relational

paradigm. The keyspace contains the column

families which make up the full database.

The keyspaces contain attributes that can be

tuned to enhance the overall performance of

the database, these attributes are:
o Replication factor – which refers

to the number of physical copies
of the data. For example if the
replication factor is set to two data
will be replicated twice;

o Replica placement strategy – this

attribute is used for defining the

strategy of how data is placed in

the cluster. The possibilities to

define the replicas are, Simple

Strategy which is most used when

we have a single group of nodes in

the cluster and Network Topology

Strategy which is more used when

the cluster is working across

multiple machines providing a

way of managing the replicas in all

the machines.

3.2 Architecture

In this section is given an overview of the Cassandra

architecture. Cassandra uses a peer-to-peer

architecture, which means that all nodes within a

cluster can receive a request and respond to it

(Strickland, 2014). This provides better availability

when the database is online. Also, this provides

redundancies which help to keep the data safe and

horizontal scalability. In Figure 2 we can observe the

Cassandra peer-to-peer architecture.

Figure 2 - Cassandra Architecture (Strickland, 2014)

Furthermore, this architecture provides high
availability to the database, which means that the
system does not have a large downtime period,
providing constant access to the data.
In Section 3.2.1 we address the concept of
replication, which allows copies of data to be stored
across cluster nodes. Section 3.2.2 explains how
Cassandra reads and writes the data.

3.2.1 Replication

Replication is very important in Cassandra because

it provides ways of copying the data within or across

nodes. This is done by storing the replicas on the

keyspace they belong to. Cassandra provides two

different replication strategies:

 Simple Strategy – This strategy is normally

used for single data centre deployments

(Datastax, 2014). When this strategy is done

Cassandra will find the first replica and then

will perform a clockwise movement to store

the next replica. When creating this strategy

the number of replicas must be defined.

Figure 3 illustrates this strategy. The first

replica is the original inserted value, the rest

are copies placed in a clockwise fashion to

replicate the data. The replication factor used

was 3.

ANNEXES

99

Figure 3 - Simple Strategy

 Network Topology Strategy – This strategy is

used when the cluster spans across multiple

data centres (Datastax, 2014). It places the

replicas the same way as the Simple Strategy,

although it places them in different physic

groups (racks) to enhance the safety of the

data in case of sudden crashes. When creating

this strategy the number of replicas and the

number of data centres to keeps those replicas

must be defined. Figure 4 explains this

strategy by providing an example. This

example creates the copies in two different

Data Centres with a replication factor of 3.

 Figure 4 - Network Topology Strategy

3.2.2 Writing and Reading

Cassandra is a Column Family NoSQL database,

which translates into a data format storage which is

vertical oriented. The appropriateness of this

database for logging systems (Abramova et al.,

2014a), led us to acknowledge that it could be used

in IoT.

Cassandra divides each received request into stages

to enhance the capabilities while handling and

serving a high number of simultaneous requests

(Welsh et al., 2001). This allows Cassandra to

improve its performance, however it is limited by

the host machine characteristics, manly by the

memory available. Finally, and because RAM

memory is a lot faster than the standard HDDs and

SSDs Cassandra needs to have a mechanism that

will handle writing all this data to disk, in

background. This mechanism is called memory

mapping and consists in two similar mechanisms:

the Key Cache and Row Cache. Key cache handles

in memory mapping of the stored keys and it’s

solely responsible for storing in RAM these keys,

providing fast read/write speeds on them. On the

other hand, Row Cache is the memory mapping for

each row (Abramova et al., 2014a).

To better demonstrate the life cycle of a record being

written in Cassandra we will provide an overview of

the writing architecture.

Figure 5 explains how Cassandra writes a record.

First it writes every arriving row in the Commit Log,

then it replicates this data on the memtable. The data

is replicated in the Commit Log to ensure that there

are no records lost. The data which is now on the

memtable will only be written to disk when a flush

happens. A flush can happen when: (1) reaches the

maximum allocated memory; (2) after a specific

time in memory; (3) manually by the user. When

flushed the memtable becomes an immutable Sorted

String Table (SSTable) which stores all the data

(DZone, 2015).

Figure 5 - Cassandra Writing

Figure 6 explains how Cassandra reads the data

within one cluster. A request is made to any node in

the cluster, the chosen node will become responsible

for handling the requested data. The request is then

processed and all the SSTables for a specific column

family will be searched and the data will be gathered

to merge data. Merge Data is useful because of the

replication factor of the tables, for instance nothing

guarantees that the data is all stored in the same

table. When a read request is made it might need to

gather data from multiple tables, Merge Data allows

this data to be combined.

ANNEXES

100

Figure 6 - Cassandra Reading

Furthermore, Cassandra provides other important

features such as durability and indexing.

The durability allows Cassandra to perpetually save

data, even after system crashes. Cassandra achieves

this because it uses an intermediary write

mechanism, which is called the commit log. Data is

appended to the commit log and then saved in the

database (Hewitt, 2011).

Indexing allows the queries to be faster. Cassandra

stores the indexes of each column family in the node

it belongs to (Abramova and Bernardino, 2013). It is

also important to understand that indexing is a

technique of extreme importance, especially in the

IoT because it provides a way to improve the query

performance.

Cassandra isn’t the best storage system from a

querying standpoint, although other requirements

also need to be met. From the already referred

approaches we quickly conclude that, from a

theoretical standpoint, the most inefficient model for

the data layer is the single table. This is due to the

amount of data in the table which cannot be all in

memory at once. In fact and from a technological

standpoint Cassandra is not optimized for reading

and filtering, to illustrate this we shall present an

example. On a blog post from the Datastax

documentation (Datastax, 2014), the author explains

that when querying a table with one million records

for two records, Cassandra will load the remaining

999.998 rows for nothing. This reflects in an overall

performance drop while reading and filtering data.

In the next section we will explain the experimental

setup which was used in the tests.

4 EXPERIMENTAL SETUP

The experiments that will be made will allow to

learn which approach is better when storing data in

the IoT. As mentioned in section 1 we have decided

that there were two ways to organize the database

which would be relevant in terms of implementation.

A single table with all the data, which would then be

filtered and dealt with when needed, or multiple

tables for each specific application that sends events.

From a theoretical standpoint it seems that the best

way of organizing our data is through the creation of

a table per application. This will result in smaller

tables which, in comparison to a centralized table

that stores everything is considerable faster because

they have significantly less records. Figure 7

illustrates the two different approaches.

Figure 7 - Data layer possible architectures

The experimental setup was created with the

following characteristics: (1) The operating system

was Ubuntu 14.04 LTS 64bit; (2) The machine had a

dual core, Core i5 480m with 6GB of RAM and an

HDD; (3) The database ran in a single node to

understand the minimum possible requirements

when running the system.

We have decided not to use a benchmark tool

because we have concluded that most tools available

nowadays do not provide the necessary requirements

to test our database system with the necessary

characteristics. Also with this approach we

guarantee that the performances we see are more

accurate and can be replicated in a production

environment.

The chosen queries intend to illustrate regular

situations during the usage of the system, which

reflect the better approaches to the problem, keeping

in mind that attention to the write speed is also

needed. To analyse them, different queries will be

created, matching the needs while the system is in

place. These queries may vary from time to time,

although some of them will be a recurrent task that

needs to be performed. Additionally, it is important

to keep in mind that these queries are to be

performed in an IoT system, which generates alerts

with the data that comes from the sensors scattered

around a city. The idea is that these alerts are

filterable and searchable throughout the lifecycle of

the system.

ANNEXES

101

In the experiments we have the following queries:

Q1: Alert selection from a specific type – This

query is performed to provide the number

of alerts of each type (e.g. Number of

‘warning’ alerts);

Q2: Alert selection for a submitted rule – This

query will be used to see how many alerts

were raised by a submitted rule (e.g. how

many alerts were generated by rule X);

Q3: Alert selection in a range of time – This

query serves to select a type of alerts (e.g.

‘warning’, ‘critical’) in a period of time.

These queries give a broad perspective of the system

in terms of querying performance.

To query the database we use the Cassandra CQL

shell, to record the times we have enabled tracing

which allow us to have a detailed view of the query

and created indexes to allow filtering to happen.

Figure 8 shows the row prototype which is

composed by the following columns:

 alert_uuid – This field is of the type UUID, it

represents the universal id of the alert to

keep each alert unique;

 config_id – This field is of the type UUID, it

represents the application id which created

this alert;

 event_query – This field is of type TEXT and

it represent the rule needed to fire the alert;

 alert_type – This field is of the type

VARCHAR and represents the type of alert

which was generated (i.e. Critical,

Warning);

 event_type – This field is of the type

VARCHAR and represents the type of

event to be processed (i.e. Environment,

Traffic);

 event_window – This field is of the type

TEXT and represents the event window

which triggered the alert;

 event_body – This field is of the type TEXT

and represent the full event which triggered

the alert;

 created_on – This field is of the type

TIMESTAMP and it represents the

timestamp on which the alert was triggered.

On the next section we will present the results of the

experiments.

5 EVALUATION

In this section we evaluate the query processing
time. Each chart contains, in the Y axis, the “Query
Time (ms)” which represents the time the queries
took to be processed. In the X axis, we have “Table
Name” which represents the table where the query
was made. The tables are divided by configuration
and each represents an application. The “Table
Name” axis uses the following notation:

 App1-App5: correspond to applications with
data that comes from environmental
sensors. Each of these applications have
100.000 records;

 All: corresponds to the single table
containing all the information. This table
will have 500.000 records.

The values presented in the experiments were
obtained by executing the same query five times and
then calculating the average value. Also, the first
three queries of each run were discarded due to the
possibility of cold boots. In the figures the dots
represent the average value of the query speed and
the error bars represent the standard deviation to that
value.
For a better approximation of a real system, the

queries were made in no specific order. This has to

do with the Cassandra reading architecture which is

faster if the table is in memory.

In the next sections we will show the values

obtained during the experiments and present a

summary of the values obtained.

5.1 Querying an alert of a specific type
(Q1)

In the experiment we use this query to select all the
alerts of type ‘warning’ from the applications. Using
the CQL language the query looks like this:

SELECT * FROM query_performance.alerts
_<app_id> WHERE alert_type = 'warning';

For the table with all of the data the query used was:

SELECT * FROM query_performance.alerts_full
WHERE config_id = <app_id> AND alert_type =
'warning' ALLOW FILTERING;

This a very simple query, since it only lists the alerts

of type “warning” that were generated by the

application. However it is expected to see an

enormous change in terms of performance, due to

the amount of data in the “All” table. Figure 9 shows

the performances for Q1.

Figure 8 - Row prototype

ANNEXES

102

Figure 9 - Execution of Query 1

When analysing the results of Q1, shown on Figure ,

we can conclude that the separate tables were, in

general, the best choice. Although in the second

application we saw a little deviation from the

average value, this is related with the reading

architecture of Cassandra which is faster if the table

is in memory. As explained before, we have tried to

make queries to different tables in order to provide

results which are useful for people who want to

know if this database is a liable option for a

production system.

5.2 Querying an alert for a rule (Q2)

This query intends to list every alert for a specific

rule created by the user. The query, using the CQL

language, will look like this:

SELECT * FROM query_performance.alerts_
<config_id> WHERE event_query=<rule>;

For the full table the query looks like this:

SELECT * FROM query_performance.alerts_full
WHERE config_id = <app_id> AND
event_query=<rule> ALLOW FILTERING;

The query on the full table could not be completed

because the operation timed out. The operation

quitted when filtering the data with the where clause,

this is due to the amount of data it needed to filter.

We have tried to change the environment settings for

Cassandra to try to overcome this situation, but the

error persisted. This led to the removal of this query

from the charts. Due to this problem, the comparison

was made only between the applications.

Furthermore, we can conclude that this query cannot

be made in a production environment because the

system cannot be stuck waiting for the query to end.

On a real world system, and because IoT systems

require near real time responses, it is impossible to

implement this query because of the error it kept

raising. Figure 10 shows the performances for Q2.

Figure 10 - Execution of Query 2

With the results of the execution of Q2, seen Figure

10, we conclude that every application has similar

performances when dealing with this query. The

main conclusion to draw from this experiment is that

the table with all the data could not be queried

because it kept raising an out of time error. This is

due to the amount of data which is stored in that

table which Cassandra cannot filter.

5.3 Querying an alert on a time range (Q3)

This query selects all the alerts of each application in

a time range. In the real system this query is

important because it delivers a time based approach

to the data. Using the CQL language the query looks

like this:

SELECT * FROM query_performance.alerts_

<config_id> WHERE created_on <= <timestamp>

AND config_id = <config_id> ALLOW

FILTERING;

The query made on the table with all of the

information will look like this:

SELECT * FROM query_performance.alerts_full

WHERE created_on <= <timestamp> AND

config_id = <config_id> ALLOW FILTERING;

Figure 11 shows the processing execution time for
Q3.

ANNEXES

103

Figure 11 - Execution of Query 3

The query Q3, had comparable performance across
all of the separate tables, the standard deviation on
the first application is more, due to discrepancy
between the performances of when the table is in
memory and needs to be loaded to memory. We can
also see that the average time for the table with all
the data is much higher than the others, once again
proving that an architecture where the data is
separated is better.

5.4 Results summary

The results show that, as expected, the single table

had the worst performance. This is due to the

amount of data that Cassandra has to filter, which

cannot be placed in memory all at once. Although

the results of the “All” table were not five times

worse we conclude that the best implementation is

with separate tables which not only give a better

performance, but also provide a better overall data

separation.

The performance changes between the first two

applications are a little bit different, this might be

due to the size of the string that is being searched.

The main differences are between the “All” table,

which was finished on Q1 but not on Q2. This is due

to the fact that, on these tables, data is sequentially

organized which means that if the query results are

not on the first records, Cassandra cannot load all

the data to memory and initiate the filtering process.

The average query processing time in Q3 is a lot less

than on the others, this is related to the fact that the

dataset is not heterogeneous enough in terms of

dates because the values of the applications were

recorded on a single day. Also, filtering is made by

primary key because in Cassandra to make a time

range query the column with the date needs to be on

the primary key of the table.

In short, we think that these queries, although very

straightforward, give a quick and simple

performance overview to a data layer architecture in

the IoT.

6 CONCLUSIONS AND FUTURE

WORK

To the best of our knowledge, a complete solution

for the IoT data layer does not exist. With the intent

to find a suitable and workable solution we have

tested two different architectures for the data layer,

which provide two different approaches when

dealing with data. For this we have evaluated the

NoSQL database Cassandra, which will be applied

in an Internet of Things platform. The queries that

were made gave us, not only an initial perspective of

how Cassandra will handle the system workloads,

but also will provide knowledge for whoever wants

to have an idea of how Cassandra handles data in the

IoT environment.

To run the tests we have tried to make constant

changes to the query order to enhance the credibility

of the results, this was done because the system will

not have a constant pattern of querying, when

deployed. This has a great impact in terms of query

performance because, as we have seen before, if a

table is queried twice in a row the second time it will

be in memory. Additionally, it is important to refer

that the tests were made on a personal computer,

which makes the RAM management a lot more

difficult, due to other processes that might be

running at the same time.

The results show that the single table had the worst

performance. From this, we conclude that the best

implementation is with separate tables, which not

only give a better performance, but also provide a

better overall data separation. In the IoT, data is

produced continuously by each application, which

means that the separate tables would also be a good

choice, providing an independent way for each

application to store its data and be able to scale

without sacrificing performance.

In summary, from this work we can conclude that

Cassandra can be used on an IoT platform as the

main database system because it contains the

necessary characteristics to handle the overall

requirements of these platforms.

The dataset used could be larger and more

heterogeneous, although the results have shown

differences between the two approaches.

Nevertheless, tests with larger datasets and with a

bigger variety of data are needed in order to

understand if scalability is an issue.

As future work we suggest that similar tests can be

made with sharding, which is a horizontal division

of data that improves the overall performance of the

queries. The main goal is to divide the applications

ANNEXES

104

by shard, providing a similar approach to the

separate tables we have seen. We also would like to

distribute the system testing it for better availability.

REFERENCES

Abramova, V. and Bernardino, J. (2013). NoSQL

databases. Proceedings of the International C*

Conference on Computer Science and Software

Engineering - C3S2E '13.

Abramova, V., Bernardino, J. and Furtado, P. (2014a).

Evaluating Cassandra Scalability with YCSB.

Database and Expert Systems Applications, pp.199-

207.

Abramova, V., Bernardino, J. and Furtado, P. (2014b).

Testing Cloud Benchmark Scalability with Cassandra.

2014 IEEE World Congress on Services.

Abramova, V., Bernardino, J. and Furtado, P. (2014c).

Which NoSQL Database? A Performance Overview.

Open Journal of Databases (OJDB), Volume 1(Issue

2).

Charsyam - Cassandra Data Model -

https://charsyam.wordpress.com/tag/cassandra-data-

model/ [online] Available at: [Accessed 08-01-2015]

Couchbase.com, (2015). Couchbase. [online] Available

at: http://www.couchbase.com/ [Accessed 25 Sep.

2015].

Couchdb.apache.org, (2015). Apache CouchDB.

[online] Available at: http://couchdb.apache.org/

[Accessed 25 Sep. 2015]

DataStax, (2014). ALLOW FILTERING explained.

[online] Available at:

http://www.datastax.com/dev/blog/allow-filtering-

explained-2 [Accessed 5 Jul. 2015].

DB-Engines Ranking [online] http://db-

engines.com/en/ranking (Accessed 22 April of 2015)

Docs.aws.amazon.com, (2015). What Is Amazon

DynamoDB? - Amazon DynamoDB. [online]

Available at:

http://docs.aws.amazon.com/amazondynamodb/latest/

developerguide/Introduction.html [Accessed 25 Sep.

2015].

Docs.datastax.com, (2015). Apache Cassandra™ 2.0.

[online] Available at:

http://docs.datastax.com/en/cassandra/2.0/cassandra/a

rchitecture/architectureDataDistributeReplication_c.h

tml [Accessed 25 Oct. 2015].

DZone, (2015). DZone Database. [online] Available at:

https://dzone.com/articles/introduction-apache-

cassandras [Accessed 21 Jul. 2015].

Hbase.apache.org, (2015). Apache HBase – Apache

HBase™ Home. [online] Available at:

http://hbase.apache.org/ [Accessed 25 Sep. 2015].

Hewitt, E. (2011). Cassandra The definitive guide.

Beijing. O’Reilly.

Höller, J.,,Tsiatsis, V., Mulligan, C., Karnouskos, S.

Avesand, S. and Boyle D.,, From Machine-to-

Machine to the Internet of Things: Introduction to a

New Age of Intelligence. Amsterdam, The

Netherlands: Elsevier, 2014.

Islam, S.M.; Kwak D., Kabir H., Hossain, M., Kyung-

Sup Kwak, "The Internet of Things for Health Care:

A Comprehensive Survey," in Access, IEEE , vol.3,

no., pp.678-708, 2015

Jara, A.J.; Genoud, D.; Bocchi, Y., "Big Data in Smart

Cities: From Poisson to Human Dynamics,"

Advanced Information Networking and Applications

Workshops (WAINA), 2014 28th International

Conference on , vol., no., pp.785,790, 13-16 May

2014

Lakshman, A. and Malik, P. (2010). Cassandra.

SIGOPS Oper. Syst. Rev., 44(2), p.35.

Memcached.org, (2015). memcached - a distributed

memory object caching system. [online] Available at:

http://memcached.org/ [Accessed 25 Sep. 2015].

MongoDB, (2015). MongoDB. [online] Available at:

http://mongodb.com [Accessed 25 Sep. 2015].

Neo4j Graph Database, (2015). Neo4j, the World's

Leading Graph Database. [online] Available at:

http://neo4j.com [Accessed 25 Sep. 2015].

OrientDB Multi-Model NoSQL Database, (2015).

OrientDB - OrientDB Multi-Model NoSQL Database.

[online] Available at: http://orientdb.com/orientdb/

[Accessed 25 Sep. 2015].

P. Friess and O. Vermesan, Internet of Things:

Converging Technologies for Smart Environments

and Integrated Ecosystems. Aalborg, Denmark:

River Publishers, 2013.

Redmond, E., Wilson, J. and Carter, J. (2012). Seven

databases in seven weeks. Dallas, Tex.: Pragmatic

Bookshelf.

Robinson, I., Webber, J. and Eifrem, E. (2013).

Graph databases. Sebastopol, Calif.: O'Reilly Media.

Strickland, R. (2014). Cassandra high availability.

Birmingham. Packt Publishing.

Thinkaurelius.github.io, (2015). Titan: Distributed

Graph Database. [online] Available at:

http://thinkaurelius.github.io/titan/ [Accessed 25 Sep.

2015].

Vaish, G. (2013). Getting started with NoSQL.

Birmingham: Packt Publishing.

van der Veen, J.S.; van der Waaij, B.; Meijer, R.J.,

"Sensor Data Storage Performance: SQL or NoSQL,

Physical or Virtual," Cloud Computing (CLOUD),

2012 IEEE 5th International Conference on , vol., no.,

pp.431,438, 24-29 June 2012

doi: 10.1109/CLOUD.2012.18

Welsh, M., Culler, D., Brewer, E.: SEDA: an

architecture for well-conditioned, scalable internet

services. In: Proceedings of the Eighteenth ACM

Symposium on Operating Systems Principles (SOSP

2001), pp. 230–243. ACM, New York (2001)

