
1

Application-Driven design to extend WSN
lifetime

Bruno F. Marques
Escola Superior de Tecnologia e Gestão

Instituto Superior Politécnico de Viseu, Portugal
bmarq@estv.ipv.pt

Manuel P. Ricardo
INESC Porto

Faculdade de Engenharia da
Universidade do Porto, Portugal

mricardo@inescporto.pt

Abstract—The lifetime of a WSN depends on the
energy of the nodes. As soon as nodes run out of
energy, they get disconnected from the WSN. This
paper proposes an Application Driven solution that
increases the WSN lifetime by limiting the routing
and forwarding functions of the network mainly to
nodes running the same applications. The solution
is evaluated against AODV, and the results obtained
show gains of about 30%.

Index Terms—Wireless Sensor Network (WSN);
6LoWPAN; IEEE 802.15.4; Low power routing
protocols; Application-Driven WSN.

I. INTRODUCTION

The growth of wireless networks has resulted in
part from requirements for connecting people and
advances in radio technologies. Wireless Personal
Networks (WPANs) are an example of these
networks, and Wireless Sensors Networks (WSN)
[1] are an example of WPANs. Sensing nodes
may be used to measure physical data for multiple
applications [2]. Millions of sensing nodes are
expected to be deployed in the coming years and
they are likely to be associated in networks, inter-
connected or not to the Internet. Sensor nodes are
known to be energy constrained, thereby routing
strategies capable of finding energy-efficient paths
are demanded.

Energy-efficiency has to be implemented also
in large WSN which tend to be self-managed
and self-configured. The behavior of these large
systems need to be information-aware, where

applications play the key role of waking up and
enabling parts of the system. Our work is focused
on Application-Driven WSN (ADWSN). We de-
fine an ADWSN as a cross-layer solution aimed
to help minimizing the energy consumed by a
network of sensors executing a set of applications.
We assume that sensors form a large network
and that a sensor is enabled to run one or more
applications. We also assume that the applications
and the nodes to which they are associated, are
not always active, alternating between on and
off states. By jointly considering the neighbors
of each node, the applications each node runs,
and the forwarding capabilities of a node, we
developed a communications solution which en-
ables the data of every application and node to
be transferred while keeping the overall energy
consumed low.

In our solution (AD6LoWER) we assume that
every node can participate in route discovery
and packet forwarding. However, the nodes for-
warding a given type of data, will be primarily
selected from the set of nodes running the same
application to which the data is associated. For
that purpose, each application is identified by a
tag, which is known by the nodes running that
application.

This paper provides three contributions. The
first contribution is the cross-layer solution which
uses the application layer tag in order to select
the set of nodes leading to minimum energy
consumption. The second contribution is a syn-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico de Viseu

https://core.ac.uk/display/75983074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


chronization mechanism defined at the application
layer, which synchronizes nodes with respect to
their application life cycles, enabling nodes to
wake up and going asleep in synchronism; this
mechanism uses an application layer beacon gen-
erated by sink nodes, used to inform the other
nodes about the time they should wake up in the
next time. The third contribution is an energy
model which estimates per packet energy con-
sumption; this model allows to compute energy
consumed in the transmission and reception of
packets, assuming that unicast packets are ac-
knowledged at the MAC layer, while broadcast
packets are not.

The paper is organized in eight sections. Sec.
II characterizes the problem addressed in this
work. Sec. III presents related work. Sec. IV
characterizes the applications selected for our
study. Sec. V describes our solution in detail.
Sec. VI describes the methodology adopted for
validating our solution. Finally, Sec. VIII draws
the conclusions, and presents the future work.

II. PROBLEM CHARACTERIZATION

WSN, being constituted by sensor nodes which
are known to be energy constrained, depend of
their nodes lifetime. Thus, in order to reduce
nodes energy consumption, routing strategies ca-
pable of finding energy-efficient paths are de-
manded. We assume that routing protocols must
find routes in which the nodes may be kept asleep
the maximum amount of time they can. For that
purpose, we introduce the concept of application
duty cycle time, characterized by states wake and
sleep, and their times. We also assume that WSN
forms a mesh network, and that nodes may run
multiple applications. Two main questions arise:
1) How to use mainly the nodes running the appli-
cation associated to the data being transferred, so
that the nodes associated with other applications
can continue sleeping? 2) How to synchronize
nodes so that they can wake and going asleep
simultaneously?

III. RELATED WORK

We classified related work in three areas: node
energy consumption, routing protocols, and cross-
layering. Operating systems for wireless sensor
networks, such as Contiki [3] reduce energy con-
sumption by powering off the microcontroller and

hardware components when they are not used.
The on-line energy estimation mechanism [4]
defines the total energy consumption E (J) as

E = (Im×tm+Il×tl+It×tt+Ir×tr+

n∑
i=1

Ici × tci )×V (1)

being Im the current consumed by the micropro-
cessor in the time tm during in which the micro-
processor is running, Il and tl the current and time
when the microprocessor is in low power mode, It
and tt the current and the time the communication
device is in transmit mode, Ir and tr the current
and the time the communication device is in
receive mode, Ici and tci the energy consumed
by other components (eg. LEDs, ADCs, DACs),
and V the sensor supply voltage.

uAODV [5] is a simplified AODV [6] routing
protocol for WPANs. With AODV, HELLO mes-
sages are used to get information about neighbors.
When a source node needs to find a route to a
destination, it starts a route discovery process,
based on broadcast. The source node generates a
route request (RREQ) packet which intermediate
nodes forward until the packet reaches a node that
has a route to the destination, or the destination
node. Routes to the destination are updated upon
reception of a route reply (RREP) packet, orig-
inated either by the destination itself or by any
other intermediate node that has a route to the
destination. AODV also uses sequence numbers
to prevent the creation of loops. Expiry timers
are used to keep the route entries updated. Since
nodes reply to the first arriving RREQ packet,
AODV favors the least congested path instead of
the shortest path [7].

According to [8], cross-layer optimization in
WSN has been addressed by multiple studies
in different scenarios. The main idea is to de-
sign communication layers such that they can
share and react to information from other layers.
In recent years, cross-layer design was used to
increase the efficiency of WSN communication
systems. MiLAN [9], is an example of cross-
layering that receives a description of application
requirements, monitors network conditions, and
optimizes sensor and network configurations to
maximize application lifetime.

2



IV. APPLICATIONS CHARACTERIZATION

Two different applications are used in our ex-
periments: environment monitoring and structural
monitoring. These applications and their underly-
ing network are characterized by the following as-
pects: static, organized, pre-planned, no mobility,
16 nodes deployed in a square lattice topology,
all nodes are battery-powered. We also consider
multi-hop communication. The traffic pattern is
point-to-multipoint when data is queried, and
point-to-point when queries are replied.

The Environmental Monitoring Application
(Application A) aims to monitor gas emissions,
and acoustic noise in an urban tunnel. The queries
are made regularly, at a rate of one query per hour.
The Structural Monitoring Application (Applica-
tion B) aims at monitoring vibration levels on
facilities for safety purposes (e.g. tunnels). Nodes
are static and data is obtained regularly.

Fig. 1. Applications life cycle within the AD6LoWER
solution

Application A has a duty cycle of one hour.
Every node running this application wakes every
hour remaining awake during 15 seconds for
activity including asking for sensed data if it
is a sink, or replying to asked data if it is a
sensor node. Application B has a duty cycle of 15
minutes. The nodes also wake during 15 seconds
to sense data and to communicate. As shown
in Figure 1, the period of application A is 4
times the period of application B, thus a node of
Application B wakes up 4 times while a node of
application A wakes 1 time. All nodes are awake
when data is queried and replied, and sleeping
when there is no activity.

V. PROPOSED SOLUTION

The ADWSN paradigm assumes that each ap-
plication defines its own network and set of nodes
so that the exchanged information can be confined
to the set of nodes associated to the application.
The nodes are ”tagged” in order to mark them

with respect to the applications they run. Our
routing scheme tries to insure that data of an ap-
plication is relayed mainly by the nodes running
that application. When the sink node queries the
other nodes running the same application, routing
paths must be found. The routing scheme will
use mainly the nodes ”tagged” with that applica-
tion; the nodes not associated to this application
will not participate in routing process, in a first
attempt. The node is put asleep when there is
no activity related to its applications. The wake
up mechanism is based on the applications time
cycle, and in an application layer beacon which
is sent by the sink nodes. When a node receives a
query packet it knows exactly when it must wake
up on the next period.

In our solution the nodes alternate between
the wake and sleep states. The amount of time
of each phase is determined by the applications
duty cycle. When a node is awake it performs
activities including waiting for a sink query and
forwarding packets to neighbors. When the wake
up time expires, the node switches to the sleep
state, waking up again by the time indicated by
the application beacon.

foreach (query to be sent) do
if (no route available) then

RREQ.oN ←− 0;
send RREQ(TAG, oN) packet;
activate PATH DISCOV ERY timer;

end
end
foreach (PATH DISCOV ERY timeout) do

if (RREQ.TAG != 0) then
if (RREQ.oN != 1) then

RREQ.oN ←− 1;
else

RREQ.TAG←− 0;
end
send RREQ(TAG, oN) packet;
activate PATH DISCOV ERY timer;

else
sleep and retry next wakeup time;

end
end
foreach (RREP packet received) do

if (first packet) then
update Neighbors Table;
install new route entry;

end
end

Algorithm 1: Pseudocode of the proposed
solution for the originator node

3



Our solution follows the AODV routing
scheme, except that in a first approach only
the nodes tagged with the same application will
be used. HELLO messages are sent regularly
to get information about neighbors and the ap-
plications they run, and kept in a Neighbors
Table. This information will further be used
by the routing scheme in order to choose, if
necessary, intermediate nodes which do not run
the application but whose forwarding function is
also demanded. For this purpose, route request
(RREQ) and route reply (RREP) packets have
a oN (OtherNode) flag. When a node needs to
send a packet, it must first find a route to the
destination. It then generates a RREQ packet and
waits for the correspondent RREP packet. If the
PATH DISCOV ERY time, which is the max-
imum amount of time to wait for the reception of
a RREP packet, times out, and no RREP packet
has been received, the sending node sets the
oN flag and sends again the RREQ packet. If a
second PATH DISCOV ERY timeout occurs,
the sender will set the tag to ”0” and send a third
RREQ packet. Intermediate nodes, upon receiving
the RREQ packet, will extract cross-layer infor-
mation about the application, and the time the
nodes running that application will wakeup next
time (”tag”,”Application beacon”). The nodes
running the same application will forward the
RREQ packet until it reaches its destination or it
reaches a node which has a route to the destina-
tion. If the oN flag is set, the nodes not running
the same application but having neighbors run-
ning the same application, will forward the RREQ
packet to neighbors, and reconfigure themselves
as running that application. If the tag is set to
”0”, any node, running or not this application,
will forward the RREQ packet, and the nodes
in the selected path will reconfigure themselves
as running this application. RREP packets are
sent back to the originator using reverse paths
and updating routes in intermediate. The pseu-
docode of the proposed solution for a originator,
and intermediate and destination nodes is shown
respectively in Algorithms 1 and 2.

In the normal AODV solution, when a sink
node issues a query it ”broadcasts” the entire
WSN, and when nodes reply, shortest paths are
used. In our case, mainly the nodes running the
application associated to the query will participate

foreach (HELLO packet received) do
process packet;
update Entry (Neighbor,TAG) in Neighbors Table;

end
foreach (RREQ packet received) do

process packet;
if ((node has same TAG) or (RREQ.oN = 1 and
node has neighbors with same TAG) or
(RREQ.TAG = 0)) then

if (route found) then
send back RREP packet;

else
forward RREQ packet to neighbors;

end
end
if ((RREQ.oN = 1 and node has neighbors with
same TAG) then

reconfigure as running the application;
end

end
foreach (RREP packet received) do

process packet;
if (first RREP packet) then

update Neighbors Table;
install new route entry;
send back RREP packet;
if (RREP .TAG = 0) then

reconfigure as running the application;
end

end
end

Algorithm 2: Pseudocode of the proposed so-
lution for intermediate and destination nodes

in packet forwarding.

VI. SOLUTION EVALUATION

In order to evaluate the proposed solution, a
square lattice of 4x4 nodes was chosen. The nodes
are distributed as shown in Figure 2, where the
four scenarios evaluated are also shown. In those
scenarios the network supports two applications,
A and B, each running in eight nodes. Each node
runs a single application. Sink nodes placements
where chosen in order to allow long routing
paths, since long paths consume more energy.
There is a cost associated to the transmission and
reception of packets. In scenario 1, the nodes
running application A were selected so that a
long path could be obtained. In the scenario 2,
both applications have the same node distribu-
tion; in these scenarios we want to investigate
the influence of the application duty cycle in
energy consumption. Scenarios 3 and 4 are used

4



Fig. 2. Nodes deployment in different square lattice mesh topologies

to investigate situations where at least one node
from other application is required to relay data.

Fig. 3. Applications life cycle within the AODV solution

Since our solution constrains the paths to the
nodes associated to the application, a node needs
to be waked up only when its applications run and
not for generic routing and forwarding purposes.
In contrast, AODV was used as shown in Figure
3; in this case despite the applications having
different periods, nodes would have to wake up
every 15 minutes in order to process routing
messages.

In our solution, when the sink node issues
a query, it is ”multicasted” only to the nodes
associated to the application and not the entire
WSN. When the application nodes reply, only
the nodes running the application will reply to
the data query and forward layer 3 packets. So,
with the our solution, the routing paths are chosen
not only according to the minimum hop, but also
considering the constraint of a node belonging to
an application. At least in a first attempt.

Figure 2.c shows a particular node deployment,
where nodes H, L, and P running application B
are unable to receive sink queries in a first attempt
because they are isolated. In this case, the nodes
K and O will be selected, in a second attempt, to
participate in the routing and forwarding process

of application B. Figure 2.d shows a second case
of node deployment where some of the nodes of
application A (nodes L and P) are also isolated.

As described before, the nodes of application
A are awake for 15s every hour while nodes of
application B are wake for 15s every 15 minutes.
During a period a node may be sending or re-
ceiving a packet, idle, or sleeping. The energy
consumed when a node is sending a packet is
computed as the time required to send the packet,
times the current consumption by the node in
transmitting mode (times de voltage); the energy
consumed when a node is receiving a packet
is computed as the time required to receive the
packet, times the current consumption of the node
in receiving mode; the energy consumed when a
node is idle is computed as the amount of time
the node is idle, times the current consumption in
idle mode; the energy consumed when a node is
sleeping is computed as the amount of time the
node is sleeping, times the current consumption
of the node in sleep mode.

Considering that a node is implemented as
a CrossBow TelosB [10] sensor hardware, and
the consumption of its CPU and RF transceiver,
the total energy consumed can be described as
follows:
E = Eon + ETXBcast

+ ERXBcast
+ ETXUcast

+ ERXUcast
+ EIdle + ESleep

(2)

where Eon is the energy consumed during the
time the node waked, ETXBcast

is the energy con-
sumed when sending broadcast packets, ERXBcast

is the energy consumed when receiving broad-
casted packets, ETXUcast

is the energy consumed

5



when sending unicast packets, ERXUcast
is the

energy consumed when receiving unicast packets,
EIdle is the total energy consumed when the node
is in the idle state (the state where a node has its
radio on and waiting to send or to receive a data
packet), and ESleep is the total energy consumed
when the node is sleeping.

Nominal
Current in Transmit (0 dBm) mode (mA) 19.5

Current in Receive mode (mA) 21.8
Current in MCU on, radio off (mA) 1.8

Current in MCU on, radio on - idle mode (µA) 365
Current in Sleep mode (µA) 5.1

Power supply (V) 3.6
Transmit bit rate (kbit/s) 250

Transmit symbol rate (ksymbol/s) 62.5

TABLE I
TELOSB SPECIFICATION

The energy consumed by a node in idle state
is computed as EIdle = IIdle(A) × V × tIdle(s),
considering IIdle = 365µA, V = 3.6 V , and
tIdle the time the node is idle, which depends on
the scenario. The energy consumed by a sleeping
node is computed as ESleep = ISleep(A) × V ×
tSleep(s), considering ISleep = 5.1µA, V = 3.6
V, and tSleep the total time the node is sleeping.
The values are extracted from Table I, extracted
from [11].

For theoretical evaluation purposes, we assume
the simplest case of having no collisions and
all the packets being correctly received. We also
assume that a unicast packet is acknowledged at
the MAC Layer, whilst a broadcast packet is not.
The energy consumed per packet considering the
information of Table I, and the IEEE 802.15.4
specification [12], can be computed as follows:

• Transmission of broadcast packet: non-
beacon enabled IEEE 802.15.4 networks
use an unslotted CSMA-CA channel access
mechanism [13], [14]. We assume that each
time a device needs to transmit, it waits for
a random number of unit backoff periods in
the range {0, 2BE − 1} before performing
the Clear Channel Assessment CCA. If the
channel is found to be idle, the device trans-
mits. If the channel is found to be busy, the
device waits another random period before
trying to access the channel again. Assuming
the channel is found to be free, and also
assuming that the backoff exponent BE is
set to macMinBE which has the default value

of 3, and the access time can be computed
as

TCA = InitialBackoffPeriod+ CCA
= (23 − 1)× aUnitBackoffPeriod× CCA
= 7× 320µs+ 128µs
= 2.37ms

(3)
The CCA detection time is defined as 8 sym-
bol periods. aUnitBackoffPeriod is defined as
20 symbol periods, corresponding 1 symbol
to 16 µs.

Fig. 4. Energy consumed by a node when transmitting a
broadcast packet of size S

As shown in Figure 4, the energy consumed
is computed as ETXBcast

= Ei + EPTX
; Ei

is the energy consumed during the Channel
Access period (CA) which is TCA × PIdle;
PIdle is the power consumed by the node in
the idle mode which is 1.31mW. EPTX

is the
energy consumed during the time required to
send the packet of size S (in octets). EPTX

=
S×Toctet×PTX ; Toctet is the time required
to send one octet, which is 32µs, and PTX

is the power consumed in the transmission
of the same octet, which is 70.2mW.

• Reception of broadcast packet: when a

Fig. 5. Energy consumed by a node when receiving a
broadcast packet of size S

node receives a broadcast packet of size
S, the energy consumed corresponds to the
energy consumed during the time required to
receive the packet of size S (in octets) which
is ERXBcast

= EPRX
= S × Toctet × PRX ;

Toctet is the time required to receive one

6



octet, which has the same value as the time
required to send one octet. PRX = 78.5 mW
is the power consumed by receiving the same
octet, as shown in Figure 5.

• Transmission of unicast packet: When

Fig. 6. Energy consumed by a node when transmitting a
unicast packet of size S

a node sends a unicast packet, the amount
of energy consumed is computed as the
energy required to transmit the packet plus
the energy consumed during the reception of
the acknowledge frame. The transmission of
an acknowledgment frame in a non-beacon
enabled network commences aTurnaround-
Time symbols after the reception of the data
frame, where aTurnaroundTime is equal to
192µs. This gives the device enough time to
switch between transmit and receive mode.
As shown in Figure 6, the total energy con-
sumed is ETXUcast

= Ei +EPTX
+ETAck

+
EMAck

; Ei is the energy consumed during
the Channel Access period; EPTX

is the
energy consumed during the time required
to transmit the packet of size S; ETAck

is
the energy consumed while waiting for the
reception of the acknowledgment, which is
0.252µJ, and corresponds to aTurnaround-
Time times the power consumed in the idle
mode which is 1.31 mW; EMAck

is the
energy consumed during the time required to
receive the complete MAC acknowledgment
frame which has a size of 11 bytes, and
corresponds to 27.6µJ.

• Reception of unicast packet: the energy
consumed to receive a unicast packet of size
S is ERXUcast

= EPRX
+ ETAck

+ EMAck
.

EPRX
is the energy consumed during the

time needed to receive the packet of size
S; ETAck

is the energy consumed during
the TAck time to wait before sending the
acknowledge packet (this value is the same
as the waiting time before receiving the

Fig. 7. Energy consumed by a node when receiving a
unicast packet of size S

acknowledge packet); EMAck
is the energy

consumed during the time of the transmis-
sion of the acknowledge MAC frame - TMack

times the power consumed in the transmis-
sion mode which is 70.2mW, corresponding
to 24.7µJ, (see Figure 7).

VII. RESULTS AND DISCUSSION

We characterized the energy consumed by the
nodes running simultaneously both applications,
the number of broadcast and unicast packets, and
the time the nodes are wake, sleeping, and in
idle mode. We compared our solution with the
generic on-demand routing solution. The analysis
was performed based on packets of 127 octets
(application data size of 81 octets, plus the 2.4
GHz IEEE 802.15.4 MAC layer header, and
PHY layer header size of 46 octets) as there
is a energy cost associated to packet sizes: the
size chosen reflects worst cases in the analysis
performed. Also, MAC layer collisions were not
considered; for simplicity, we assumed that all
packets were sent and received with no errors and
no retransmissions. The calculus was made using
a C program that implements both solutions.

Figure 8 shows the distribution of the broad-
cast packets generated by each node in the four
scenarios considered. As shown, the number of
broadcast packets sent using our solution is lower
than the number of packets sent using the AODV
solution. In scenarios 3 and 4, the AD6LoWER
(our) solution needs node K and node H, re-
spectively, to forward packets. Node K and node
H forward 5 broadcast packets, respectively in
scenario 3 and scenario 4. The total number of
broadcast packets sent in each scenario corre-
sponds to the packets sent by the sink nodes
when they issue queries. In our solution, only
the nodes belonging to the application forward
the packets, thus network flooding is bounded

7



Fig. 8. Total number of broadcast packets generated in each
scenario for the AD6LoWER and the AODV solutions

to the nodes of the application. In the case of
the AODV solution, when a sink issues a query
the packets are broadcasted to the network. Since
there are two applications running, the network
is broadcasted twice. As an example look at
scenario 1. Our solution sends 40 packets, while
the AODV solution sends 80 packets. Figure 9
also shows the distribution of broadcast packets
received by each node. As shown, the number of
broadcast packets received with our solution is
lower than the number of packets received using
the AODV solution. For the AODV solution, in
the scenarios considered, 4 nodes are used more
often (nodes F, G, J, and K). They are placed
in the middle of the topology and receive more
packets than the others, since they have more
neighbors. With the AD6LoWER solution, the
distribution of the nodes inside the topology has
influence. Looking at scenario 1, node J receives
more packets than the others nodes (16 packets).
This node runs application B, thus it is used 4

Fig. 9. Total number of broadcast packets received in each
scenario for the AD6LoWER and the AODV solutions

times per hour. It also receives more packets since
has more neighbors. In the case of scenario 4,
there are 3 nodes (J, K, and N) which receive
12 packets, because node K relays packets from
nodes running application A.

When analyzing Figures 8 and 9, we also
conclude that, with the AD6LoWER solution,
application B generates more broadcast packets
than application A, since queries are four fold.
With AODV, all nodes are waked in order to
receive and to send broadcast packets, so the
node distribution does not influence the number of
broadcast packets. With AODV, queries are issued
5 times per hour (one from application A, and 4
from application B). Figures 8 and 9 also show
the broadcast hotspots, that is, the nodes that send,
and receive more broadcast packets.

Figure 10 shows the distribution of unicast
packets sent by each node in the four scenarios
considered. We can verify that the total number
of unicast packets sent in each scenario is higher

8



Fig. 10. Total number of unicast packets transmitted in
each scenario for the AD6LoWER and the AODV solutions

for AD6LoWER than for AODV. AD6LoWER
needs to send more unicast packets in scenarios 1
and 3. In these scenarios nodes need to forward
more packets in order to reply to a sink query.
In scenario 2 and 3, node I sends more packets
(28). Since AD6LoWER uses mainly the nodes
belonging to the applications, node I is more
often used. In the scenarios considered, the paths
selected by the AD6LoWER solution are longer
than those selected by the AODV solution, that
makes no distinction between nodes. In scenario
4, nodes G and K are also used to forward
packets from nodes running other application. In
this situation, node G transmits 28 packets, while
node K transmits 24 packets. Since for the AODV
solution all nodes must be awake, in scenario 4,
node L is the node with more activity, and it
transmits 21 packets.

The number of the unicast packets received in
our solution is smaller than in AODV, as shown in
Figure 11). In case of scenario 1 the total number

of unicast packets received for the AD6LoWER
solution is 209, while for the AODV solution is
298.

Fig. 11. Total number of unicast packets received in each
scenario for the AD6LoWER and the AODV solutions

Figure 12 shows the total energy consumed by
each node. Our solution always consumes less
energy. The total of energy consumed is computed
as the sum of the energies consumed by individual
nodes. The energy consumed by each node is
given by Eq. 2. Figure 13 shows the total of
energy gains using de AD6LoWER solution in
each scenario. The gain is computed as:

Gain =
EAODV − EAD6LoWER

EAODV
× 100 (4)

where EAODV is the total of energy consumed
by the nodes for the AODV solution, and
EAD6LoWER is the total of energy consumed
by the nodes for our solution. In the selected
scenarios the mean energy consumed for the
AD6LoWER solution is 5.96J, and for the AODV
solution is 8.76J. The mean gain, considering the
4 scenarios, is 31.9%. Concerning to the time

9



Scenario 1 Scenario 2 Scenario 3 Scenario 4
AD6LoWER AODV AD6LoWER AODV AD6LoWER AODV AD6LoWER AODV
Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx

BCast (packets) 40 94 80 240 40 90 80 240 44 88 80 240 41 90 80 240
UCast (packets) 87 209 90 298 100 238 100 326 108 234 100 306 108 281 108 336
Time waked (s) 600 960 600 960 600 960 600 960

Time sleeping (s) 57,000 56,640 57,000 56,640 57,000 56,640 57,000 56,640
Time idle (s) 597.8 955.8 597.0 955.5 641.9 955.7 596.7 955.4

Energy consumed (J) 5.87 8.75 5.87 8.76 6.22 8.75 5.89 8.77
Energy Gain (%) 32.9 33.0 28.9 32.8

TABLE II
SIMULATION RESULTS

Fig. 12. Total of energy consumed in each scenario for the
AD6LoWER and the AODV solutions

the nodes are sleeping, results show that, for
the AD6LoWER solution, nodes sleep more time
than for the AODV solution. For the selected
scenarios, and for the AD6LoWER solution, the
sum of time the nodes are sleeping is 57,000 s,
while for the AODV solution is 56,640 s. In the
idle mode energy is also consumed. The results
are summarized in Table II. They show that,
for the scenarios studied, our solution provides
significant energy gains.

Fig. 13. AD6LoWER energy gains in each scenario (in %)

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes a solution (AD6LoWER)
to reduce the energy consumed by WSN nodes.
The work presented reflects a theoretical analy-
sis of a solution which assumes that the nodes
may run different applications inside the same
large WSN with mesh connectivity. The solution
tackles the problem by restricting routing and
forwarding functions mainly to the nodes running
the same applications, letting other nodes sleep-
ing and avoiding their utilization. AD6LoWER
was evaluated against AODV. Our results show
that when designing WSN applications with the
AD6LoWER solution, the nodes will not retrans-
mit data packets from applications which they
do not run; nodes not involved in communi-
cations are kept sleeping as much as possible.
The overall energy consumption is lower than
with AODV, and the final results prove that with
the AD6LoWER solution the WSN lifetime is
extended.

Since this evaluation was not performed on
real sensor nodes, the results obtained still are
theoretical, and may not yet reflect realistic issues

10



associated to MAC collisions or packet retrans-
missions caused by errors, and delay added due
to application tagging and routing based on such
tagging. We will address theses issues in future
studies, as well as the study additional of topolo-
gies, including sensors capable of performing
two different applications at the same time. We
expect to implement a testbed in ContikiOS, and
compare it against the RPL routing protocol using
COOJA [15] as simulation tool.

REFERENCES

[1] I. F. Akyildiz, M. C. Vuran, O. B. Akan, and W. Su,
“Wireless sensor networks: a survey revisited,” Com-
puter Networks Journal (ELSEVIER SCIENCE), 2006.

[2] M. D. (Ed.), T. W. (Ed.), and F. T. (R&D), “Urban
wsns routing requirements in low power and lossy net-
works,” Routing Over Low power and Lossy networks
(Active WG), April 2008, iETF, draft-ietf-roll-urban-
routing-reqs.

[3] A. Dunkels, “Contiki OS, open source, highly portable,
multi-tasking operating system for memory-efficient
networked embedded systems and wireless sensor net-
works ,” available at http://www.sics.se/contiki/.

[4] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He,
“Software-based on-line energy estimation for sensor
nodes,” in EmNets ’07: Proceedings of the 4th work-
shop on Embedded networked sensors. New York,
NY, USA: ACM, 2007, pp. 28–32.

[5] F. O. (ed, RWTH) and B. G. (SICS), “Reconfig-
urable Ubiquitous Networked Embedded Systems:
D1.8 Contiki development report,” SIXTH FRAME-
WORK PROGRAMME PRIORITY 2 - Information
Society Technologies, September 2007.

[6] IETF Network Working Group, “Ad-hoc on-demand
distance vector (aodv) routing algorithm,” Nokia Re-
search Center, University of California, Santa Barbara
and University of Cincinnati, available at http://tools.
ietf.org/html/rfc3561.

[7] G. Ferrari, S. A. Malvassori, M. Bragalini, and O. K.
Tonguz, “Physical layer-constrained routing in ad-hoc
wireless networks: A modified aodv protocol with
power control,” in Proc. Int. Workshop on Wireless Ad-
hoc Networks 2005 (IWWAN’05), May 2005, pp. 2–2.

[8] M. R. H. Khan, M. A. Hossain, and M. S. H.
Mukta, “Zigbee cross layer optimization and protocol
stack analysis on wireless sensor network for video
surveillance,” in International Conference on Elec-
tronics, Computer and Communication (ICECC 2008).
Bangladesh: University of Rajshahi, 2008, pp. 795–
799.

[9] W. Heinzelman, A. Murphy, H. Carvalho, and M. Per-
illo, “Middleware to support sensor network applica-
tions,” Network, IEEE, vol. 18, no. 1, pp. 6 – 14, jan/feb
2004.

[10] “Wireless Modules, TelosB,” available at http://www.
xbow.com/Products/productdetails.aspx?sid=252.

[11] Chipcon Products and Texas Instruments, “2.4 GHz
IEEE 802.15.4 / ZigBee-ready RF Transceiver,” 2006,
document SWRS041.

[12] IEEE Computer Society, “IEEE Standard for Informa-
tion technology - Telecommunications and information
exchange between systems Local and metropolitan
area networks Specific requirements - Part 15.4:
Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (WPANs),” September 2006.

[13] JENNIC, “Calculating 802.15.4 data rates,” Jennic,
August 2006, application Note: JN-AN-1035.

[14] B. Latré, P. D. Mil, I. Moerman, B. Dhoedt, P. De-
meester, and N. V. Dierdonck, “Throughput and Delay
Analysis of Unslotted IEEE 802.15.4,” JNW, vol. 1,
no. 1, pp. 20–28, 2006.

[15] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and
T. Voigt, “Cross-level sensor network simulation with
cooja,” in Local Computer Networks, Proceedings 2006
31st IEEE Conference on, 14-16 2006, pp. 641 –648.

ACKNOWLEDGMENT

The authors would like to thank the sup-
port from the Portuguese Foundation for Sci-
ence and Technology (FCT) under the fellowship
SFRH/BD/36221/2007, to thank the support from
the INESC Porto, and to thank the support from
the School of Technology and Management of
Viseu’s Electrical Engineering Department. Also,
they would like to thank to the anonymous re-
viewers for their valuable comments that did
contribute to improve the quality of the paper.

Bruno Marques received a BsC de-
gree in 1994, and a Diploma degree
in 1998, all in Electrical Engineering
from Polytechnic Institute’s School
of Technology of Viseu, Portugal. In
2001 he received an M.S in Electri-
cal and Computer Engineering from
University of Porto, Portugal. He is
presently studying for a Ph.D degree.

He is an assistant professor at School of Technology and
Management of Viseu, where he gives courses in industrial
and computer networks, and embedded systems.

Manuel Ricardo received a Diploma
degree in 1988, an M.S. in 1992,
and a Ph.D. in 2000, all in Electri-
cal and Computers Engineering from
University of Porto, Portugal. He is
an associate professor at University
of Porto, where he gives courses in
mobile communications and computer
networks. He also leads the Wireless

Networks Area at INESC Porto.).

11


