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Abstract   

Pine (Pinus pinaster) wood was heat treated in an autoclave for 2-12 hours at 190-210 ºC. 

Hemicelluloses were the first compounds affected by the treatment. In general, the sugar decrease 

was higher for arabinose and galactose followed by xylose and mannose. Lignin started to degrade 

for small mass losses but at a slower rate than hemicelluloses, and cellulose only degraded 

significantly for severe treatments. Almost all of the original extractives disappeared and new 

compounds arose like anhydrosugars and phenolic compounds. The compounds that might leach 

from heat treated wood were mainly those identified in the water and ethanol extracts, all of which 

were not harmful at the existing concentrations, thereby reinforcing the wood heat treatment as an 

environmental benign process. 

Introduction 

Heat treatment is by now a well known and commercial wood modification 

process that improves wood properties, changing low value species into higher 

value materials. The main known processes are Rectified Wood in France, 

Thermowood in Finland, Plato wood in Holland and OHT in Germany. 

All these treatments decrease equilibrium moisture content and increase 

dimensional stability of wood as reported by many authors (Jämsä and Viitaniemi 

2001; Yildiz 2002; Esteves et al. 2007a, b; 2008a). Durability is also enhanced 

mainly against rot (Kamdem et al. 2002; Hakkou et al. 2006) but termite 

resistance does not increase. The resistance against weathering shows a slight 

improvement (Jämsä et al. 2000) along with a decrease in wood wettability 

(Pétrissans et al. 2003; Hakkou et al. 2005). The major disadvantage of heat 

treatment is the reduction of wood strength mainly due to the decrease of bending 

strength (Kim et al. 1998; Bengtsson et al. 2002). A review on wood heat 

treatment with a description of the major publications in this field has been 

recently published by Esteves and Pereira (2009). 

The heat treatment causes a chemical change in the wood and studies on the 

chemical composition of treated wood have been reported by several authors. The 

chemical modification starts with the degradation of hemicelluloses by 

deacetylation followed by depolymerization catalyzed by the released acetic acid, 

giving origin to some low mass extractable compounds (Tjeerdsma et al 1998; 

Sivonen et al. 2002; Nuopponen et al. 2004). At the same time carbohydrate 

dehydration decreases the overall content of hydroxyl  groups (Weiland and 
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Guyonnet 2003) and leads to the formation of aldehydes like furfural and 

hydroxymethylfurfural, respectively from pentoses and hexoses (Tjeerdsma and 

Militz 2005).  

Although cellulose is more resistant than hemicelluloses, there is degradation of 

the amorphous cellulose and therefore an increase of cellulose crystallinity 

(Bhuiyan and Hirai 2000). Lignin is affected through cleavage of β-O-4 linkages 

and in softwood lignin there is also a reduction of methoxyl content leading to a 

more condensed structure (Wikberg and Maunu 2004; Tjeerdsma and Militz 2005; 

Boonstra and Tjeerdsma 2006).  

In relation to extractives, the most volatile compounds leave the wood while 

others are degraded. As a result of these reactions the overall content of hydrogen 

and oxygen is reduced in relation to carbon (Bourgois and Guyonnet 1988). The 

compounds that are volatilized during the treatment can be recovered and do not 

constitute an environmental hazard. Graf et al. (2005) analyzed the gaseous 

emissions from six woods (spruce, fir, larch, oak, ash and robinia) during thermal 

treatment and concluded that about 80% of the products were acetic acid, furfural, 

some furfuryl derivatives and also several mono-, sesqui- and diterpenes. There 

are still some emissions of volatile organic compounds from heat treated wood in 

service but in accordance with Manninen et al. (2002) for Scots pine wood they 

are about eight times less than those from air-dried untreated wood. One of the 

compounds released from treated wood, 2-furacarboxyaldehyde, is irritating for 

the respiratory system, but the same happens with the monoterpenes from 

untreated wood (Norbäck et al. 1995). Esteves et al (2008b) studied the extractive 

content and composition of heat treated Eucalyptus globulus wood and concluded 

that the extractive content increased in the beginning of the treatment and 

decreased afterwards. Almost all of the original extractives disappeared and new 

compounds were formed including monosaccharides and their dehydratation 

products, as well as syringaldehyde, syringic acid and sinapaldehyde as the most 

prominent compounds.  

This work focus on the extractives that are present in Pinus pinaster heat treated 

wood and that might leach when wood is in service. This is an important aspect 

since heat treated wood is considered environmentally benign because no toxic 

chemicals are added to wood as in traditional preservation methods but the 
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chemical changes induced by the heat treatment may originate new compounds, 

which may be unsafe to humans or to the environment.  

Experimental 

Heat treatment and sample preparation  

Cubic sapwood samples with approximately 40 mm edge of maritime pine (Pinus 

pinaster Aiton.) wood from the Portuguese region of Águeda were submitted to a 

heat treatment in an autoclave during 2 to 12 h at 190 ºC, 200ºC and 210ºC. Four 

replicates were made for each treatment condition. The autoclave with 0.5 m 

height and square area of 1 m2 was heated by a mixture of superheated and 

saturated steam to the desired temperature. A sleeve with a flow of superheated 

steam was used to maintain temperature at a constant value. After the treatment 

the samples were put in a dry environment, cooled and weighted. Mass loss was 

determined in relation to dry wood. 

Samples of untreated and heat treated wood were milled, screened and the 40-60 

mesh fraction was used for chemical analysis, in accordance with Tappi T 264 

MAC-88. 

Extractive content 

The extractive content was determined by successive Soxhlet extraction of about 

3 g of each sample using dichloromethane, ethanol and water. Extractions were 

made in 250 ml soxhlets with 150 ml of solvent during 10 h for dichloromethane 

and 20 h for ethanol and water. The extracts were concentrated in a rotary 

evaporator, dried in an oven at 40 ºC overnight, and followed by 1 hour at 100 º C.  

The percentage of extractives in each solvent was determined gravimetrically in 

relation to initial dry mass, according to Tappi T 204 Mac-88. All samples were 

analysed in duplicate. 

Extractive composition 

The composition of dichloromethane, ethanol and water extractives of the heat 

treated pine wood samples that were analysed corresponded to treatments at 

190ºC during 2, 6 and 12 h and at 210ºC during 12 h, with mass losses of 0.4%, 
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3.5%, 3.7% and 6.7%, respectively. For ethanol and water extracts only the 

samples with 3.5% and 6.7% mass loss were analysed. The samples were 

analysed in duplicate. 

The volume of the dichloromethane, ethanol and water solutions necessary to 

contain about 3 mg of solid extract was evaporated in a rotary evaporator under 

vacuum until a volume of about 1 ml. The bath temperature was kept below 40 ºC, 

with a 65 mbar vacuum for water, 175 mbar for ethanol and 900 mbar for 

dichloromethane. The sample was moved to a vial and dried under a nitrogen 

flow. The vials were kept overnight in an oven at 40ºC with a Petri dish 

containing P2O5, cooled in a desiccator and weighed in an analytical Mettler 

H31AR balance, with a precision of ± 0.0001g.  

Samples were derivatized with 10 μl of pyridine and 10 μl of BSTFA (N, O-bis-

trimethilsylil-trifluoroacetamide) for each mg of dry extract. The vials were closed 

and kept for 20 min in an oven at 60ºC, cooled down and injected in a 

chromatograph HP6890A with a mass detector 5973 Agilent and an Agilent Db-

5ms column. The injection of 1 μl was made in splitless mode. The injector was 

kept at 320 ºC and column and detector at 325 ºC. The program used for 

dichloromethane and ethanol extractives was similar, starting at 100 ºC during 5 

min, followed by an increase of 5ºC/min until 320 ºC and remaining at this 

temperature for 15 min. For water extractives the initial temperature was 145ºC 

during 3 min, followed by an increase of 5 ºC/min up to 310 ºC and 2 min at this 

temperature.  

Extractive compounds were identified by comparing their EI mass spectra with 

library published spectra, and with the spectra obtained from standard compounds. 

Extractive composition was determined by peak area integration with no further 

correction for eventual differences in their response factors 

Klason lignin determination 

The samples for lignin determination were kept in an oven at 60 ºC overnight, 

followed by 1 hour at 100 ºC. After that 350 mg were weighed into a small glass 

vessel and 3 ml of iced sulphuric acid at 72% were added. The vessels were kept 

in a thermostatic bath at 30ºC during one hour, mixing every 10 minutes. The 

samples were transferred to 100 ml Schott flasks and 84 ml of distilled water was 

added. After autoclaving during one hour at 120ºC, the flasks were cooled with 
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ice and the samples filtered with a nr. 4 crucible, dried and weighed. The filtered 

solution was kept for sugar determination. The determination of soluble lignin 

was done by removing 2 ml of the filtered solution, diluting to 20 ml and 

measuring the absorbance at 205 nm in a spectrophotometer in accordance with 

Tappi UM 250 “Acid-soluble lignin in wood and pulp”. The analyses were made 

in duplicate. 

Determination of monosaccharides  

After the hydrolysis, distilled water was added to the filtered solution until 

reaching 250 ml and 100 ml were removed to a 250 ml Erlenmeyer adding 2 ml of 

1% inositol as internal standard. The solution was neutralized with barium 

hydroxide and centrifuged. Sodium borohydride was added to the clean solution 

and after 2 h glacial acetic acid was joined until gas release stopped. The resulting 

solution was evaporated in a rotator evaporator at 40ºC between 800 and 30 mbar 

vacuum until syrup. After that 10 ml of methanol were added and evaporated at 

45ºC and 250 mbar. The last step was repeated with another 10 ml of methanol. 

After evaporation the samples were dried in an oven at 100 ºC during 15 min.  

The samples were derivatized by acetylation and injected in a gas chromatograph 

HP 5890A with a S2330 column and ionization flame detector. The injector and 

detector were kept at 250ºC while the temperature of the oven initiated at 225 ºC 

during 1 min, followed by an increase of 5 ºCmin-1 up to 250 ºC and remaining at 

this temperature for 3 min.  

The content of monosaccharides was determined according to Tappi 249 cm-00. 

The response factors were 1.17 for arabinose, 1.03 for xylose, 0.99 for mannose, 

1.00 for galactose and 0.91 for glucose. The analyses were made in duplicate.  

Ecotoxicity 

For the ecotoxicity tests 2 g of dried wood were extracted as mentioned before 

and the extracts were concentrated to 50 ml. The strain of Bacillus 

stearothermophilus and the conditions for its maintenance and growth have been 

described previously (Jurado et al. 1987; Monteiro et al. 2008). Liquid cultures 

were started with an early stationary inoculum and were grown in 300 ml 

Erlenmeyer flasks containing 50 ml of growth medium (diluted L-Broth), at 65 ºC 
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and shaken at 100 rpm in a GFL 1083 water bath shaker. Water and ethanol pine 

wood extracts were added to the growth medium in order to obtain the 

concentrations indicated in the figures. No ecotoxicity tests were made with 

dichloromethane extracts because the preliminary tests showed that 

dichloromethane itself was very toxic to the bacteria. A 2% (v/v) concentration 

represents 2 ml of extract for 100 ml of medium solution. In experiments with 

ethanol pine wood extracts, control cultures were grown in a medium without pine 

wood extractives, but with 2% (v/v) ethanol (e.g. the maximum amount of solvent 

used). The bacterial growth was measured by turbidimetry at 610 nm in a Jenway 

6505 UV/vis spectrophotometer. 

Results and discussion 

Chemical composition 

Chemical composition was determined for untreated and for heat treated wood 

and the results are presented on Table 1. Although 3% mass loss is considered as 

the least mass loss necessary to improve wood properties by heating, the treated 

wood samples were selected to represent different severities of the heat treatment, 

from mild (< 1% mass loss) to more severe conditions (> 6% mass loss). In 

general, heat treated wood had more extractives, apparent lignin and cellulose and 

less hemicelluloses. The wood chemical composition changed with the heat 

treatment, as a result of the different thermal resistance of the chemical 

compounds. 

Hemicelluloses were the first compounds to degrade. The degradation of 

hemicelluloses starts by deacetylation followed by depolymerization catalyzed by 

the released acetic acid as reported earlier. Even for small mass loss (0.4%) there 

was a decrease of arabinose and galactose content resulting from the degradation 

of pine arabinogalactan and possibly arabinan even thought this last one 

represents less than 0.3%. By increasing treatment severity, xylose and mannose 

content decreased, corresponding to the degradation of arabinoglucuronoxylan 

followed by galactoglucomannan. For instance at 3.5% mass loss, xylose content 

decreased about 21% in relation to initial content while mannose decreased only 
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5%. The higher degradation of xylan in relation to mannan is in accordance with 

several authors (Alén et al 1995; Nuopponen et al 2004).  

The thermal degradation of hemicelluloses usually yields small mass 

carbohydrates and other compounds, depending on the temperature. Some 

extractable compounds that were found in all of the extracts from heat treated 

samples, even for small mass loss (0.4%), seem to result from the degradation of 

hemicelluloses, e.g. galactosan and two C5 anhydrosugars identified in the 

dichloromethane extract that probably come from galactose, arabinose and xylose 

degradation. Mannosan, probably from mannose degradation, was only found for 

higher mass losses (Tables 3-4). These sugars can be found in a compilation of the 

main compounds resulting from polysaccharide pyrolysis (Faix et al. 1991a, b) 

showing that despite the lower temperature used for these treatments, heat 

treatment might be considered a low temperature pyrolysis.   

Cellulose was little affected by the mild treatments, as confirmed by the increase 

of glucose content. Moreover, levoglucosan which is often considered as the main 

product of cellulose thermal degradation (Gao et al. 2003) was found only in 

small amount in the heat treated samples with small mass losses. In the heat 

treated samples with mass losses higher than 6.7%, levoglucosan was noticeable, 

corresponding to 15.3% of the dichloromethane extract and 28.3% of the ethanol 

extract (Tables 3-5). This means that pine wood cellulose will only be 

significantly attacked for heat treatments that induce mass losses of this order of 

magnitude. Therefore cellulose content increased with the treatment not because 

of an increase on cellulose content but rather due to the relative higher 

degradation of hemicelluloses.  

Acid insoluble lignin of treated pine wood increased with the severity of the heat 

treatment. This does not mean that there is an increase on the amount of lignin 

itself, but instead that the reduction of polysaccharides was higher. Also this 

increase may derive from humidification products of carbohydrates and 

condensation reactions that increase the amount of acid insoluble material in heat 

treated wood ( Tjeerdsma et al. 1988). This explains also the increase of the sum 

of chemical composition between untreated and treated wood.  

The increase in phenolic compounds in the dichloromethane extract for small 

mass losses (0.4%) suggests that there was already lignin degradation at this stage 

as reported by some authors (Windeisen et al. 2007, Esteves et al. 2008b). Several 
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extractable phenolic compounds appeared in this extract like catechol, vanillin, 

vanillic acid, 3-vanillyl propanol and coniferyl aldehyde. These compounds are 

generally referred as resulting from lignin pyrolysis (Faix et al. 1990a, b) and are 

not found in polysaccharide pyrolysis (Faix et al. 1991a, b), which means that 

there was already some lignin degradation for small mass losses. The majority of 

these compounds can also be identified in the smoke of forest fires and 

surrounding air ( Graham et al. 2002).  

 Figure 1 presents the variation of pine wood extractives in function of 

mass loss with the heat treatment. In untreated pine wood, extractives were mainly 

polar compounds: on average untreated wood had 1.2%, 0.8% and 0.6% 

extractives soluble in water, ethanol and dichloromethane respectively. With 

heating, the total content of extractives increased, reaching maximal values of 

7.8% in heat treated samples at about 3-4% mass loss. After that, the content of 

extractives decreased. Similar results were reported for heat treated eucalypt wood 

by Esteves et al. (2008b). This increase followed by a decrease suggests that there 

is an equilibrium between the degradation or volatilization of original extractives 

and the appearance of extractable compounds resulting from lignin and 

polysaccharide degradation. With the increase of treatment severity, the newly 

formed compounds will degrade to volatiles that leave the wood leading to a 

decrease on extractable compounds. This can be confirmed by the number of 

compounds identified in the samples with 6.7% mass loss which is much higher 

than those found in samples with smaller mass losses. 

The content in dichloromethane extractives increased to a maximal value of 2% 

until about 3.5% mass loss, decreasing afterwards. The ethanol extractives 

increased to a maximum amount of 2.5%. The major increase in extractive content 

was due to water extractives, possibly due to the formation of polar compounds 

resulting from the degradation of cell wall components, as reported by Rosa and 

Pereira (1994) for the thermal degradation of cork.  

 

Extractive composition 

Table 2 presents the extractive contents in dichloromethane, ethanol and water of 

the analysed samples. The results obtained for the extractive composition are 

summarised in Tables 3-5 where the percentages shown at the head of the tables 
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represent the respective mass losses due to heat treatment. Since extractives were 

determined by GC-MS after derivatization, the non derivatizable compounds were 

not taken into account. Also, the extraction method did not allow full recovery of 

the extremely volatile compounds.  

The extractive content and composition of pine wood samples were similar to the 

values reported for this species by several authors (Hemingway et al. 1973; 

Esteves et al. 2005). The dichloromethane extractives were mainly resin acids, 

fatty acids, small amounts of phenolic compounds, some glycerides and cyclic 

sugars. The major compounds identified in the dichloromethane extracts of 

untreated and heat treated wood samples are presented in Table 3. 

Of the original compounds in the dichloromethane extract of untreated wood, fats 

were the first compounds to disappear with the heat treatment, followed by fatty 

acids, although some were still found for the most severe treatments. Resin acids 

content increased in treated samples in the beginning of the treatment as a result 

of the decrease of other compounds, decreasing afterwards. These results are in 

accordance with Nuopponen et al. (2003) who reported that for heat treated Pinus 

sylvestris wood at 200 ºC resin acids leave the heartwood to the sapwood and at 

higher temperatures disappear from the wood.  

New compounds were already detected in the dichloromethane extract of heat 

treated wood samples with only 0.4% mass loss, mainly phenolic compounds such 

as catechol, vanillin, vanillic acid, 3-vanillyl propanol  and coniferyl aldehyde, as 

well as anhydrosugars, such as levoglucosan (vestiges), two C5 anhydrosugars 

which probably correspond to 1-5-anhydroarabinofuranose and 1-5-anhydro-β-D-

xylofuranose and galactosan (1,6-anhydro-α-D-galactopyranose) . With the 

increase of treatment severity, both phenolic compounds and anhydrosugars 

contents increased.  

Table 4 presents the composition of the ethanol extracts of untreated and heat 

treated wood. 

The increase of ethanol extractives was mainly due to phenolic compounds and 

anhydrosugars. The increase of phenolic compounds until about 3.5% mass loss 

was due to the increase of vanillin, vanillic acid, 3-vanillyl propanol and over all 

to the appearance of coniferyl aldehyde. The content of anhydrosugars in the 

ethanol extract of heat treated wood increased due to the C5 anhydrosugars, 

already identified in the dichloromethane extract. Some 3-deoxy acid sugars were 
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also found in this extract, such as 3-deoxy-D-erythro-pentoic- acid-γ- lactone, 3-

deoxy-D-ribo-hexonic- acid-γ- lactone and 3-deoxy-D-arabino-hexonic acid. In 

accordance with Luijkx et al. (1995), hydrothermolysis of cellulose can lead to the 

formation of 3-deoxy-D-hexonic acid sugars since these compounds result from 

the heat degradation of glucose, mannose and fructose by adding a water 

molecule.  

Table 5 presents the composition of water extracts for untreated and heat treated 

pine wood. The water extract corresponded to 1.2% of untreated wood and 2.3% 

and 3.8% of treated wood with 3.5% and 6.7% mass loss. 

The water extract was only partially derivatizable and an insoluble residue 

remained at the bottom of the vial. The derivatizable compounds of untreated 

wood were mainly phenolic compounds and sugars and the increase in water 

extractives in the treated samples was due to mono and disaccharides constituents 

of hemicelluloses in open and close forms. The identified compounds represented 

small amounts but most of the nonderivatizable compounds were probably 

oligosaccharides resulting from the degradation of polysaccharides that could not 

be volatilized due to their high mass.  

The properties of heat treated wood imparted by the treatment are a result of 

chemical modification. The lower amount of hemicelluloses, which are the most 

hygroscopic compounds in wood, and the dehydratation reactions occurring in the 

matrix are responsible for the steep decrease on equilibrium moisture content and 

consequent increase on dimensional stability in conjunction with the higher 

cellulose crystallinity. The extensive decrease on hemicellulose content is also the 

reason for the high reduction on mechanical properties mainly bending strength as 

reported before for decayed wood (Winandy and Lebow 2001). Other mechanical 

properties like MOE or compression strength are less affected since they depend 

more on cellulose and lignin content. 

Ecotoxicity 

Ecotoxicity tests are important to evaluate the effects of chemical compounds that 

leach from wood. The major leachable compounds are found in the water and 

ethanol extracts so the tests were made with both extracts for untreated and heat 

treated pine wood using a thermophilic eubacterium Bacillus stearothermophilus. 

This bacterium is frequently used to determine the toxic effects of lipophilic 
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compounds, e.g. citostatics (Luxo et al. 2000), antiarrythmics (Rosa et al. 2000) 

and pesticides ( Monteiro et al. 2005) and is considered an indicator of the impact 

on the soil and aquatic ecosystems. The grown and the adaptive process of this 

bacterium were well characterized by Jurado et al. (1987). This bacterium presents 

several advantages from the commonly used Vibrio fischeri. This is a 

thermophilic bacterium that is not contaminated by common bacteria, it exists in 

the soil participating on the biodegradation of compounds and it is representative 

of both soil and aquatic ecosystems while Vibrio fischeri is more adequate for 

salted mediums. Another advantage is that the wood extracts are coloured and so 

less suitable for luminescence measurements.  

The comparison between untreated and heat treated wood extracts was made with 

the same amount of extracted wood (2 g) concentrated in 50 ml, in order to 

compare the eventual increase in toxicity for the same wood mass.  

Figure 2 represents the effects of the increasing concentrations of water (A, B) 

and ethanol (C, D) extracts of untreated (A, C) and heat treated pine wood (B, D) 

on the optical density (O.D.) of  the liquid cultures of B. stearothermophilus, as a 

function of time. The optical density is proportional to the cell density in the 

liquid cultures and therefore represents the bacterial growth. 

No significant effects on the bacterial growth were observed for both untreated 

(A) and heat treated pine wood (B) showing that the water soluble compounds of 

both extracts were not toxic for bacteria. This was to be expected since the water 

extractives presented on Table 5 are mainly sugars, which are not toxic to 

bacteria. Some of these compounds might even provide additional nutrients for 

bacteria growth.  

In relation to the ethanol extracts of untreated and heat treated wood, the 

increasing concentrations affected the bacterial growth. The specific growth rate 

and the final cell density decreased with the increase of extract concentration for 

untreated pine wood. The addition of 2% (v/v) of ethanol extract of untreated pine 

wood led to an inhibition of the specific growth rate of 23.8 % (in relation to 

initial) and a decrease of the optical density in the stationary phase.  Differently, 

for heat treated pine wood, the increased extract concentration led to a gradually 

increase of the lag phase length and a decrease of the specific growth rate. For 

instance, an addition of 2% (v/v) of ethanol extract for heat treated pine wood 

doubled the length of the lag phase and decreased the specific growth rate with a 
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19.7% inhibition without any effects on the final cell density (Table 6). The 

different behaviour of bacterial growth for untreated and heat treated wood 

reflects the differences in extract composition presented in Tables 3 to 5. Even 

though there were some effects on bacterial growth due to the increased heat 

treated ethanol extracts they were not significant, because after a while bacteria 

adapted themselves to the new media and regained a normal growth.  The effects 

of untreated wood extracts on bacterial growth were even more pronounced than 

for treated wood, confirming the benign nature of heat treatment. 

Conclusions 

Pinewood chemical composition changed with the heat treatment by the 

degradation of both structural and extractable compounds. Hemicelluloses were 

the first to degrade simultaneously with the removal of fats and fatty acids 

followed by resin acids. Lignin degraded already for mild heat treatments with 

small mass losses, leading to formation of soluble phenolic compounds, while 

cellulose degradation required heat treatments with higher mass losses with the 

formation of levoglucosan. The increase in extractive content was due to water 

extractives, representing more than 50% of the total, mostly sugars. The overall 

toxicological results obtained with water and ethanol extracts indicate that the 

heat treatment of pine wood does not induce additional toxicity to bacteria. These 

results reinforce the environmental benign nature of heat treated wood and the fact 

that the potentially leachable compounds are not harmful.  
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Fig. 1 Variation of extractive content in dichloromethane, ethanol, water and total for heat 

treated pine wood versus mass loss resulting from the treatment  

Fig. 2 Effects of the water extractives of untreated (A) and heat treated (B) pine wood on the 

growth of cultures of Bacillus stearothermophilus. C and D show, respectively, the effects of 

the ethanol extractives of untreated and heat treated pine wood on bacterial growth 

Table 1. Chemical composition of untreated and heat treated pine wood to different mass 

losses. 

 

 

 

Table 2. Extractive contents in dichloromethane, ethanol and water of the analysed samples. 

Treatment mass loss (%) Dichloromethane Ethanol Water Total 
0.0 0.6 0.8 1.2 2.6 

0.4 0.6 1.4 2.8 4.8 

3.5 1.6 2.0 2.3 5.9 
3.7 1.4 1.6 4.9 7.8 

6.7 0.4 2.0 3.8 6.2 

 

 

 

Table 3. Dichloromethane soluble extractives of untreated and oven and autoclave heat 

treated pine wood ordered by retention time (Rt) and analyzed as trimethylsilyl derivatives 

by GC chromatography. Vest=vestigial amounts, less than 0.1%. 

Rt    Extract (%) 

(min) Compound Initial 0.4% 3.5% 3.7% 6.7% 

16.32 Glycerol 1.5 1.6 Vest 0.6 - 

17.80 Catechol  - 1.2 0.6 3.1 2.8 

22.70 Anhydrosugar (C5) - 1.5 0.4 3.7 7.4 

23.22 Anhydrosugar (C5) - 2.8 0.7 7.1 10.6 

23.31 4-Hydroxy-pentanoic acid  - 0.6 0.1 1.5 0.6 

23.83 Vanillin - 1.4 0.6 4.7 17.4 

24.97 Maleic acid - Vest - 1.0 - 

25.90 4-Hydroxybenzoic acid  - - - Vest 0.3 

26.45 Galactosan - 0.5 0.2 1.6 6.3 

27.00 Levoglucosan  - Vest 0.1 0.4 15.3 

27.10 
3-Deoxy-D-erythro-pentoic-acid- γ- 
lactone - - - Vest 0.6 

27.44 Mannosan - - - 0.1 0.9 

28.90 Vanillic acid  Vest 0.4 0.2 1.0 3.2 

29.55 Azelaic acid 0.4 Vest Vest 0.3 - 

30.03 3-Vanillyl propanol  - 1.2 0.5 2.9 6.0 

30.86 Coniferyl aldehyde - 6.6 3.2 19.3 7.3 

Treatment Chemical composition (%) 

mass loss  Extractives Klason Soluble Total Glucose Xylose Mannose Galactose Arabinose 

 (%)   lignin lignin lignin           

0.0 2.6 27.1 0.47 27.5 42.9 4.3 12.6 2.1 1.5 

0.4 4.8 28.3 0.51 28.8 44.7 4.3 12.8 2.0 1.2 

3.5 5.9 29.7 0.53 30.3 46.9 3.5 12.3 1.6 0.7 

7.7 4.8 33.7 0.66 34.4 48.6 2.4 10.8 1.0 0.4 
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31.60 Syringic acid Vest - - 0.1 0.3 

32.67 Pentadecanoic acid Vest - - - - 

34.63 Palmitic acid 5.7 0.9 0.2 0.6 0.2 

37.68 Linoleic acid  1.0 Vest - 0.1 - 

37.83 Oleic acid+11-trans-octadecenoic acid 28.8 5.1 0.9 2.3 0.3 

38.20 Stearic acid 0.2 Vest Vest 0.1 - 

39.70 Pimaric acid 3.6 3.6 2.8 1.4 - 

39.96 Sandaracopimaric acid 0.4 Vest 0.3 0.2 - 

40.26 Isopimaric acid 3.0 2.8 2.1 1.4 0.2 

40.52 Resin acid 0.5 10.5 17.9 5.4 1.5 

41.00 Dehydroabietic acid 39.3 52.8 48.7 26.5 7.0 

41.54 Abietic acid 0.5 - 0.1 0.7 - 

  Non identified compounds (%) 15.1 6.5 20.4 14.0 11.9 

  Identified compounds (%) 84.9 93.5 79.6 86.0 88.1 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Ethanol soluble extractives of untreated and oven and autoclave heat treated pine 

wood ordered by retention time (Rt) and analyzed as trimethylsilyl derivatives by GC 

chromatography. Vest=vestigial amounts, less than 0.1%. 

  Extract (%) 

Rt (min) Compound Initial 3.5% 6.7% 

10.2 2-Hydroxypropanoic 4.3 3.5 0.9 

10.6 Acetic acid - 4.1 1.2 

16.3 Glycerol 19.5 2.1 Vest 

17.6 Butanedioic acid 0.2 0.6 Vest 

22.7 Anhydrosugar C5 - 9.5 7.4 

23.2 Anhydrosugar C5 - 6.7 3.3 

23.8 Vanillin 0.1 0.8 0.6 

25.2 Arabinofuranose 1.3 0.8 0.9 

25.5 Arabinofuranose - 0.2 0.1 

25.9 4-Hydroxybenzoic acid 0.1 - - 

26.5 Galactosan 0.1 6.4 9.7 

27.0 Levoglucosan 0.1 2.2 28.3 

27.1 
3-Deoxy-D-erythro-pentoic  acid- γ- 

lactone - 0.2 0.5 

27.4 
3-Deoxy-D-erythro-pentoic-acid- γ- 

lactone 0.3 0.3 0.4 

27.4 Mannosan - 0.4 1.7 

27.7 Cyclic sugar 18.2 - - 
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28.9 Vanillic acid 0.2 0.8 0.6 

29.0 3-Deoxy-D-ribo-hexonic-acid - 0.9 3.4 

29.1 Homovanillic acid - Vest - 

29.1 3-Deoxy-D-arabino-hexonic acid - 1.8 5.3 

29.4 3-Deoxy-D-arabino-hexonic acid - 3.0 6.3 

29.5 D- Fructose 1.2 0.4 - 

30.0 3-Vanillyl propanol   0.2 2.0 1.4 

30.2 Inositol  40.5 32.6 19.1 

30.9 Coniferyl aldehyde - 4.8 0.3 

31.4 Glucopyranose 0.2 - - 

31.5 Galactonic acid 0.2 - - 

32.2 Glucose 1.4 0.4 - 

35.3 Inositol 0.3 0.2 0.2 

37.7 Linoleic acid 0.2 - - 

37.8 Oleic acid 1.6 - - 

40.9 Dehydroabietic acid 0.1 0.7 0.2 

  Non identified compounds (%) 9.9 14.6 8.1 

  Identified compounds (%) 90.1 85.4 91.9 

 

 

 

 

 

 

 

 

 

 

Table 5. Water soluble extractives of untreated and oven and autoclave heat treated pine 

wood ordered by retention time (Rt) and analyzed as trimethylsilyl derivatives by GC 

chromatography. * Base peak. Vest= vestigial amounts less than 0.1%. 

Values correspond to percentage 

  Extract (%) 

Rt (min) Compound Initial 3.5% 6.7% 

12.94 2-Hydroxypentanodioic acid - - 1.0 

13.64 Arabinofuranose 21.8 44.4 9.2 

14.35 β-L-Arabinopyranose 3.1 8.1 3.4 

14.72 Arabinofuranose - - 3.1 

14.83 α-D-Arabinopyranose 5.3 10.9 2.0 

15.31 Mannosan - - 2.2 

15.70 Anhydrosugar C6 - - Vest 

15.84 D-Xylopyranose - - 0.6 

16.06 Non identified compound (97)* 1.2 6.3 3.0 

16.82 Glucuronic acid - - 1.0 

17.07 Vanillic acid Vest 2.8 2.0 

17.23 Homovanillic acid - - 0.5 

17.65 D-Galactose - - 3.0 

17.84 β-D-Galactofuranose - - 0.8 

18.20 3-Vanillyl propanol  1.9 4.0 1.2 

18.52 3-Deoxy-arabinohexonic acid - - 0.7 
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18.63 3-Deoxy-arabinohexonic acid - - 1.0 

18.73 3-Deoxy-arabinohexonic acid - - 3.0 

19.44 Glucose - - 0.5 

19.61 Arabinose - 1.9 1.5 

19.70 Glucose - - 1.7 

20.98 D-Galactose - - 0.5 

22.69 Hexadecanoic acid - 3.6 2.2 

22.73 Myo-inositol  4.1 - - 

26.18 Octadecanoic - 7.6 5.5 

30.18 4-Hydroxymandelic acid 2.4 - - 

30.39 α-4-Benzeneacetic acid 1.6 - - 

31.16 Vanillyl ethanediol 17.7 5.4 0.4 

31.41 Vanillyl ethanediol 20.0 5.0 0.6 

 - Disaccharides 6.7 0.0 20.6 

  Non identified compounds (%) 15.5 6.3 31.6 

  Identified compounds (%) 84.5 93.7 68.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Specific growth rate inhibition by water and ethanol extracts 

                           Specific growth rate inhibition (% of control) 

Extract % (v/v) Water Ethanol 

 Untreated Heat treated Untreated Heat treated 

0.0 0 0 0 0 

0.2 -6.1 -4.3 -1.6 2.4 

0.6 0.4 -3.1 -7.7 -6.6 

1.0 0.8 -3.9 -3.9 -11 

1.5 -0.8 1.1 -11.6 -16.7 

2.0 -4.9 1.9 -23.8 -18.7 

 

 

 


