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Abstract 
Sapwood and heartwood samples of Pinus pinaster were treated in an oven at 190ºC and 200ºC for 

2-6h. Dimensional stability, measured as Anti Shrinking Efficiency (ASE) between 0% and 65% 

relative humidity, durability against fungi, mechanical resistance (MOE and MOR), hardness and 

chemical composition were determined for treated and untreated sapwood and heartwood. Radial 

ASE reached 52% for sapwood and 50% for heartwood while tangential ASE reached 50% and 

40% respectively. MOE increased slightly at the beginning of the treatment decreasing afterwards. 

No significant differences were found between sapwood and heartwood. MOR decreased by 50% 

and 30% for sapwood and heartwood respectively. A significant increase in durability against 

Rhodonia placenta was found for both heartwood and sapwood at the higher temperature and for 

heartwood only at 190º for 4h.    

 

Keywords:  Dimensional stability; durability; heartwood; heat treatment; 

mechanical properties; sapwood 
 

Introduction 

 

 Thermal modification is a well known process to improve some of the 

most important wood properties. The main changes are the reduction of 

equilibrium moisture content, the increased dimensional stability (Esteves et al. 

2006, Esteves et al. 2008a, Esteves et al. 2007a) and the increased resistance 

against fungi (Dirol and Guyonnet, 1993; Tjeerdsma et al 2002; Hakkou et al. 

2006; Boostra et al 2007c). Due to the treatment there is also a darkening of wood  

(Esteves et al. 2007b) and a decrease of wettability (Pecina and Paprzycki 1988; 

Kamdem et al 2002; Pétrissans et al. 2003; Hakkou et al. 2005; Kocaefe et al. 

2008). The main problem of this treatment is, however, the degradation of some 

mechanical properties, mainly bending strength (Kim et al 1998) but also 

compression strength parallel to grain, modulus of elasticity in bending, janka 

hardness, impact bending strength, and tension strength perpendicular to the grain 

decrease (Korkut et al. 2008).  

Thermal modification is probably the most successful modification process at the 

moment, especially in some Nordic countries, probably due to its low cost in 

relation to chemical and impregnation modifications, which use significant 

amounts of chemicals that make the final product more expensive. The thermal 

modification processes that reached the marketing stage with greater or lesser 

success are: ThermoWood ® in Finland (Viitaniemi et al 1997), Plato ® in the 

Netherlands (Boonstra et al 1998), Perdure, developed in France and later sold to 

a company in Canada (Kocaefe et al. 2008), Rectification in France (Dirol and 

Guyonnet, 1993) and Oil Heat Treatment in Germany (Sailer et al 2000). Thermal 
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modification is a treatment performed at elevated temperatures (160-260 ºC) 

during a short time in an environment free from, or with low oxygen content using 

steam (ThermoWood ®, Plato ® and Perdure), an inert gas (Rectification) or oil 

(OHT). The processes generally consist of three stages: heating, cooling and 

stabilizing. A more complete description of the processes can be found at Esteves 

and Pereira (2009).  

It has been said that one of the major advantages of heat treatment is the 

possibility to be applied to all species and to both sapwood and heartwood which 

is not possible with wood impregnation based modifications. Nevertheless most 

papers on heat treatment focus only on sapwood and no treatment is made with 

heartwood samples. One exception is the work of Metsä-Kortelainen et al. (2006) 

that reported the water absorption of sapwood and heartwood of heat-treated Scots 

pine (Pinus sylvestris) and Norway spruce (Picea abies) at 170°C, 190°C, 210°C 

and 230°C. These authors studied water absorption by a floating test and 

concluded that water absorption decreased for sapwood only with a treatment at 

230ºC, the heat-treatment at temperatures of 170 ◦C, 190 ◦C and 210 ◦C increased 

the water absorption. In relation to heartwood heat-treated samples at 210 ◦C 

absorbed more water than heat-treated samples at 170 ◦C and 190 ◦C. For spruce, 

water absorption decreased similarly for heat treated sapwood and heartwood. 

Metsä-Kortelainen et al. (2012) also studied the wettability of heat treated 

sapwood and heartwood of Pinus sylvestris and Picea abies by measuring the 

contact angle: generally wettability of pine sapwood was higher than that of pine 

heartwood and the water repellency of sapwood only increased for wood treated at 

230ºC. For treatments at lower temperatures of 170 and 190°C the wettability 

increased for all samples except for pine heartwood. In fact the sample treated at 

170°C, was the most water-repellent material in the whole study. No significant 

differences were obtained for spruce sapwood and heartwood where wettability 

increased at lower temperatures, decreasing for wood treated at 230ºC. 

The decay resistance of sapwood and heartwood of untreated and 

thermally modified Scots pine was reported by Boonstra et al. (2007): heartwood 

showed a higher resistance against brown rot (Coniophora puteana and Rhodonia 

placenta) and white rot (Coriolus versicolor). Metsä-Kortelainen and Viitanen 

(2009) also reported on the heat treated heartwood durability of Scots pine and 
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Norway spruce and concluded that the treatment increased the durability of all the 

wood materials.  

This paper intends to enlighten the differences between heat treated Pinus 

pinaster sapwood and heartwood, and to discuss the feasibility and the difficulties 

in treating heartwood samples. 

Experimental 

Treatment 

  

The samples for the treatment were cut from two central boards of pine 

(Pinus pinaster Ait.) mature trees. Sapwood and heartwood were separated and 

the transition zone cut off. Three types of samples were prepared: cubic samples 

with approximately 40 mm edge with clear radial, tangential and transversal faces 

(3 samples for each temperature/time treatment+ 4 untreated samples) totalizing 

22 samples, for dimensional stability; samples with 340 x 20 x 20 mm3 (axial x 

radial x tangential) for static bending (4 samples for each treatment + 4 untreated 

samples); and 40x10x10 mm3 (axial x radial x tangential) samples (6 samples for 

each treatment) for biodegradation tests. All the samples were kept in an incubator 

at 65 ± 5% relative humidity and 20 ± 1ºC before the treatment.  

The heat treatment was made at atmospheric pressure inside an oven for 2 

to 6 hours, and at 190 ºC and 200 ºC. The warm-up period was about one hour to 

reach the desired treatment temperature, which was kept constant at ±5ºC. At the 

end of each treatment, the samples were cooled in a dry environment and 

weighted. Weight loss was determined in relation to dry wood. 

Equilibrium moisture and Dimensional stability 

After the treatment, the cubic samples for dimensional stability (treated 

and untreated) were kept in an oven at 100ºC overnight, cooled in a dry 

environment, weighed and measured in radial, tangential and longitudinal 

directions. After that, the samples were kept in an oven at 65 ± 5% relative 

humidity (RH) and 20 ± 1ºC for at least 5 weeks or until stabilization was 

achieved. Afterwards, the samples were weighed and measured in radial, 

tangential and longitudinal directions. Equilibrium moisture content was 

determined for 65% RH as the mass difference between 65% and dry state. 

Dimensional stability was determined by the Anti-Shrinking Efficiency (ASE) 
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method used by Stamm et al. (1946) and described in Esteves et al (2007a, b; 

2008a). This method gives the shrinking difference between treated and untreated 

samples calculated in percent, and determined between 65% RH and the dry state.  

Bending strength 

Bending strength and modulus of elasticity were determined by a three point 

bending device. Measurements were made using a constant velocity of 40 

kgf/min. MOE and bending strength were determined according to NP 619: 

MOE(N/mm2) =  
3

3

**4*

*

hbx

LF




 

Bending strength (MPa) =
6/10**2

*3
hb

LF máx
    

where Fmáx is the load on rupture in N, 
x

F




 is the slope of the elastic zone in 

N/mm, L is the arm length, h the height and b the width all expressed in mm.  

 

Durability 

A brown rot fungi, Rhodonia placenta (Fr.) Lars et Lomb. was used to evaluate 

the resistance to decay by the method described in CEN/TS 15083-1 (2005) 

though with specimens of smaller dimensions (15mm x 25 mm x 50 mm). The 

number of test specimens was 4 to 6 replicates per variable tested, and the 

exposure period was 8 weeks. 

 

Janka Hardness  

Janka hardness was measured according to ISO 3350 (1975) standard with minor 

changes. The force used was the force required to penetrate a steel ball of 11.28 

mm in wood up to a quarter of its diameter (2.82 mm), instead of half as 

mentioned in the standard due to the softness of Pinus pinaster wood. 

 

Extractives 

Samples of treated sapwood and heartwood with weight loss around 3%  and 

4.5% were chosen for the determination of the extractive content since the weight 

loss necessary to improve significantly the wood properties is generally 

considered as 3% (Boonstra 2008). All samples (including the untreated controls) 
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were ground in a Retsch SMI mill and a Thomas mill and then sieved with a 

Retsch AS200 basic sieve for 20 min at a 50 rpm speed. The 40-60 mesh fraction 

was used for chemical analysis following Tappi T 264 cm-97.  

 The extractive content was determined by successive Soxhlet extraction of 

about 3 g of each sample with 150 ml of dichloromethane (DCM), ethanol, and 

water during 10 h for DCM and 20 h for ethanol and water. The extracted solution 

was evaporated, dried in an oven at 40ºC overnight, followed by 1 h drying at 

100ºC, except for water where the extract was dried directly in an oven at 100ºC. 

The percentage of extractives in each solvent was determined gravimetrically in 

relation to initial dry mass according to Tappi 204 Mac-88. 

 

Klason Lignin 

For the determination of insoluble Klason lignin 350 mg of each sample were 

weighed and placed in a 100 ml goblet to which  3 ml of iced sulphuric acid at 

72% were added and the goblet placed in a thermostatic bath at 30 ºC for one 

hour, stirring the mixture with a glass rod every 10 minutes. Afterwards, 84 ml of 

distilled water were added and the mixture transferred to a 100 ml Schott flask. 

The flasks were then placed in an autoclave with water at the bottom. The samples 

remained in the autoclave for one hour at a temperature of 120° C and were then 

removed and cooled with ice. The samples were filtered with a pre weighed No 4 

crucible and washed with tepid water. The crucibles containing the lignin were 

placed in an oven at 60° C overnight, followed by one hour at 100° C, cooled 

down and weighed. Lignin was determined in relation to initial dry wood. 
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Results and discussion 

Treatment 

 
Weight loss increased with the treatment intensity for both sapwood and 

heartwood. At the earlier stages, heartwood seems to lose more weight than 

sapwood but as the treatment continues weight loss of sapwood increases reaching 

10.7% against 5.1 % for heartwood at the same treating conditions (Fig 1). 

Heartwood is more resistant to heat since sapwood weight loss is considerably 

higher than that of heartwood for longer treatments. 

At the beginning of the treatment, most of the weight loss is probably due 

to wood resin that travels to the surface of the samples and then leaves the wood, 

as reported earlier (Esteves et al. 2008b, Esteves et al. 2011). Heartwood has 

much higher resin content and therefore the weight loss is higher at the beginning. 

When most of the resin was thermally degraded or left the wood, weight loss is 

due to the degradation of polysaccharides and lignin, starting by hemicelluloses 

followed by cellulose and lignin (Esteves et al. 2008b, Esteves et al. 2011). This is 

in accordance with the initial decrease of DCM extractives that can be observed in 

Figure 2.  

At about 3% weight loss (Fig 2), total extractives increased for sapwood 

and decreased for heartwood. The main reason might be that in heartwood the 

evaporation of volatile compounds from wood resin is higher than the amount of 

new extractable compounds formed by hemicelluloses degradation. Since 

sapwood has lower resin content, the amount of new compounds is higher than the 

loss of original extractable compounds. Even thought total extractives increase for 

heat treated sapwood, dichloromethane extractives decrease. This decrease means 

that the amount of non-polar compounds like fat and resin acids is lower for 

treated wood. The observed increase is due to the ethanol and largely to water 

extracts.  

These results are in accordance to the results presented by Esteves et al. 

(2008b, 2011) who attributed the increase in ethanol and water extracts to sugars, 

mainly anhydrosugars resulting from hemicelluloses degradation.  

In relation to heartwood the results show that the amount of extractives is 

very variable due to the high resin content. The initial decrease of DCM 

extractives is followed by an increase while water extracts decrease. Ethanol 
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extractives however increase throughout the treatment. One of the main reasons 

for the different behaviour between heartwood and sapwood extractives might be 

the higher heartwood resistance to heat. If heartwood degradation is lower than 

that of sapwood (Fig 1), it is expectable to have less extractable polar compounds 

in heartwood since ethanol and water extractives increase due to polysaccharides 

and lignin degradation.  

Klason lignin percentage increased for sapwood with the increase in 

treatment intensity. For heartwood, even thought lignin content is higher for 

treated wood the increase is smaller and somewhat inconstant (Table 1)  

The treatment induced colour changes on sapwood and on heartwood that 

became darker as the treatment proceeded. This is a well known fact reported by 

several authors (Mitsui et al 2001; Esteves et al. 2007b). Visually, no significant 

differences between heartwood and sapwood were observed (Fig 3). One of the 

main differences between treated sapwood and heartwood surface was the 

presence of resin on the surface of the heartwood treated samples. Even though 

there was also some resin on the surface of sapwood samples (Fig 3), the surface 

appeared smoother and without pitch. These stains might give wood an aesthetic 

look which would depreciate is value. To eliminate or at least mitigate this 

problem, the treatment may be made at smaller temperatures but during longer 

time. Nevertheless if the boards are processed after the treatment it will be 

possible to remove the stains from the surface. 

 

Equilibrium moisture 

 

Equilibrium moisture content (EMC) for untreated wood was about 12% for both 

sapwood and heartwood at 65% relative humidity (Fig 4). EMC decreased rapidly 

with the treatment until about 3% weight loss, decreasing then much more slowly. 

The minimum EMC was about 7.0% for sapwood and 7.4% for heartwood, 

corresponding to 42% and 39% improvement in relation to untreated wood. No 

significant differences were obtained between sapwood and heartwood although 

at the same weight loss equilibrium moisture content decreased more for 

sapwood. Similar results were reported by Metsä-Kortelainen(2011). According to 

this author equilibrium moisture content for spruce decreased from 10.6% to 5.9% 

and from 10.3% to 5.3%, and for Scots pine from 10.1% to 5.4% and 9.8% to 
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4.7% for sapwood and heartwood respectively. In both cases there were no 

significant differences between sapwood and heartwood. 

Dimensional stability 

 

Dimensional stability measured as ASE is presented in Figure 5 in radial and 

tangential directions. Radial ASE increased with the increasing intensity of the 

treatment with a higher slope in the beginning of the treatment reaching about 

52% for sapwood and 50% for heartwood. No differences between heartwood and 

sapwood could be determined. Tangential ASE increased similarly to radial ASE 

reaching about 50% for sapwood and 40% for heartwood, respectively. At the 

same weight loss, sapwood seemed to have a higher ASE in the tangential 

direction (Fig 5, right). For the same treatment conditions, the dimensional 

stability had a similar improvement for softer treatments, but for wood treated at 

200ºC for 6 h the improvement was higher for sapwood than for heartwood. This 

was to be expected since for longer treatments heartwood proved to be more heat 

resistant (Fig 1). With less degradation there is also less improvement in 

dimensional stability. 

Mechanical properties 

 
MOE increased slightly at the beginning of treatment, decreasing afterwards. No 

significant differences were found between sapwood and heartwood (Fig 6). MOR 

decreased reaching almost a 50% and 30% decrease for sapwood and heartwood 

respectively. Similar results were earlier reported for sapwood (Esteves et al. 

2006). Although the decrease in MOR was smaller for heartwood, at the same 

weight loss there were no significant differences between heartwood and 

sapwood. MOR decreased almost linearly in sapwood presenting a coefficient of 

determination of R2=0.9909. The MOR values for heartwood were more scattered 

probably due to the high variation on extractive content due to the accumulation 

of resin in some parts of the samples which might have influenced the bending 

strength determination. This high decrease in the mechanical strength makes this 

wood unsuitable for structural applications, nevertheless a decrease of 30% for 

wood with about 3% weight loss is acceptable for most applications like cladding, 

sound barriers or decking.  

 



10 

 

 

Janka Hardness 

 

Figure 7 presents the hardness variation for heat treated sapwood and heartwood 

in relation to weight loss. In the initial treatment stage, there appears to be a slight 

increase in hardness, followed by a decrease for higher weight losses. The 

maximum decrease in relation to untreated wood reached 20% for sapwood and 

13% for heartwood. Similarly to bending strength, hardness of heartwood samples 

presented a higher dispersion which in this case can be justified due to the resin 

content near and on the wood surface that increases hardness.  

These results are in accordance with the results presented by Poncsák et al. (2006) 

who reported a slight hardness increase followed by a decrease with increasing 

holding time for heat treated birch. The same initial increase was mentioned by 

Sundqvist et al. (2006) and attributed to condensation reaction in lignin and 

cellulose. However this increase was not found by Korkut et al. (2008) who 

studied heat-treated Scots pine wood and concluded that Janka hardness decreased 

with the increase in temperature and time of treatment. The same was reported by 

Korkut and Hiziroglu (2009) for hazelnut wood with a 60% reduction for Janka 

hardness.  

 

Durability 

 

Durability against Rhodonia placenta was evaluated by a mini-block method for 

sapwood and heartwood samples treated at 190ºC and 200ºC for 2h and 4h. The 

results showed a significant decrease of weight loss with the temperature used and 

with the time of treatment (Figure 8). A significant increase in durability was 

found for both heartwood and sapwood at the higher temperature and for 

heartwood only at 190º for 4h.  The pattern of mass decrease was similar for 

sapwood and heartwood but the highest level of protection against R. placenta 

was achieved for sapwood treated at 200ºC for 4 hours. At the same treatment 

conditions weight loss due to thermal treatment is higher for sapwood, as seen on 

Figure 1. Only at 200ºC/4h mass loss was lower than 5% but all treated samples 

had lower mass loss than untreated meaning that some protection could be 

achieved.  
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In accordance with  Metsä-Kortelainen and Viitanen (2009) heat treatment 

increased significantly the decay resistance of pine and spruce heartwood and 

sapwood samples. However, heat treatment had to be done at temperatures higher 

than 230ºC to reach durability class 1 or 2 against soft-rot. The differences 

between sapwood and heartwood were more significant for pine than for spruce. 

Boonstra et al. (2007) treated Scots pine sapwood and heartwood and concluded 

differently that heartwood showed a higher resistance against Coniophora 

puteana, Rhodonia placenta and the white rot fungus Coriolus versicolor. 

Conclusions 

 

1. The heat treatment is equally efficient for pine sapwood and heartwood when 

comparing at the same weight loss. Since temperature and treatment time 

influenced differently on heartwood and sapwood i.e. on weight loss, the 

extent of improvements varied between sapwood and heartwood with the 

same treatment conditions i.e. the improvement was higher for sapwood. 

2. Radial ASE reached 52% for sapwood and 50% for heartwood while 

tangential ASE reached 50% and 40% respectively.  

3. MOE increased slightly at the beginning of the treatment decreasing 

afterwards. No significant differences were found between sapwood and 

heartwood.  

4. MOR decreased for both heartwood and sapwood, reaching almost a 50% and 

30% decrease for sapwood and heartwood respectively.  

5. A significant increase in durability against Rhodonia placenta was found for 

both heartwood and sapwood at the higher temperature, and for heartwood 

only at 190º for 4h.   

6. The presence of resin in the surface of heartwood samples may lead to some 

aesthetic problems.  
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Fig.1. Weight loss of heartwood and sapwood samples due to heat treatment. 

Fig.2. Extractive content of untreated and heat treated sapwood and heartwood. 

Fig.3. Color changes for heat treated sapwood (bottom) and heartwood (top) 

Fig.4. Equilibrium moisture content vs weight loss due to heat treatment of sapwood and 

heartwood samples. 

Fig.5. Dimensional stability of heat treated sapwood and heartwood measured as ASE in the radial 

and tangential directions at 65% Relative humidity 

Fig.6. MOE and MOR vs weight loss for heat treated sapwood and heartwood. 

Fig.7. Janka Hardness vs weight loss for heat treated sapwood and heartwood. 

Fig.8. Durability against Rhodonia placenta. 

Table 1-Klason lignin for untreated and heat treated sapwood and heartwood. 
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 Sapwood Heartwood 

Weight loss (%) 0,0 3,0 4,5 0,0 3,0 4,5 

Lignin (% od mass) 24,12 25,30 26,74 23,20 25,20 24,15 

 


