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Abstract We calculate life-table aging rates (LARs) for overall mortality by estimat-
ing a gamma-Gompertz-Makeham (Γ GM) model and taking advantage of LAR’s
parametric representation by Vaupel and Zhang [34]. For selected HMD countries,
we study how the evolution of estimated LAR patterns could explain observed 1)
longevity dynamics, and 2) mortality improvement or deterioration at different ages.
Surprisingly, the age of mortality deceleration x∗ showed almost no correlation with
a number of longevity measures apart from e0. In addition, as mortality concen-
trates at older ages with time, its characteristic bell-shaped pattern becomes more
pronounced. Moreover, in a Γ GM framework, we identify the impact of senescent
mortality on shape of the rate of population aging. We also find evidence for a
strong relationship between x∗ and the statistically significant curvilinear changes
in the evolution of e0 over time. Finally, model-based LARs appear to be consistent
with point b) of the “heterogeneity hypothesis” [12]: mortality deceleration, due
to selection effects, should shift to older ages as the level of total adult mortality
declines.
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1 Introduction

Horiuchi and Coale [11] propose a mortality measure, designated later [12, 13, 3]
as the life-table aging rate (LAR), which captures the age-specific rate of mortality
change for a given population. LAR, denoted by b̄(x) [34], is defined as

b̄(x) =
1

µ(x)
dµ(x)

dx
=

d ln µ(x)
dx

. (1)

The rate of individual aging, defined as the relative derivative of the baseline hazard
of death from senescent causes, is a different characteristic which is constant when-
ever the aging process is captured by a Gompertz curve (for further discussion on
the rate of individual aging, see [20, 19]).

Gampe [6] finds partial evidence for a leveling-off of human death rates at ages
110-114. If a mortality plateau actually takes place, then it speaks in favor of a
relative-risk model for adult mortality [20] with a Gompertz-Makeham baseline
µ(x) = aebx + c [8, 17], where a measures the mortality level at the starting adult
age, b is the rate of individual aging, and c captures the risk of dying that is not
associated with the aging process. Unobserved heterogeneity (frailty) can be cap-
tured by a gamma distribution with a unit mean and γ variance at the starting age
[31, 18, 20]. This leads to the gamma-Gompertz-Makeham frailty model [31], which
we will shortly address as Γ GM, whose force of mortality is given by

µ(x) =
aebx

1+ γa
b (ebx−1)

+ c . (2)

If we estimate its parameters a, b, c and γ , we can take advantage of the following
formula by Vaupel and Zhang (2010) to estimate the Γ GM model-based rate of
aging for populations:

b̄(x) = b
(

1− c
µ(x)

)
− γ

(
1− c

µ(x)

)
(µ(x)− c) . (3)

Horiuchi, Cheung and Robine [14] reconstructed model-based LARs by fitting a
three-parameter logistic model, the Kannisto model [30], for homogeneous popula-
tions. In this study we focus on a Γ GM heterogeneous model to reflect the percep-
tion that populations consist of individuals that share the same baseline risk of death
associated with age-related deterioration of physiological functions, by senescent
mortality (age-related deterioration of physiological functions), but have different
(random) susceptibility to it [31]. We also incorporate a Makeham term c to ac-
count for non-zero background mortality [9], i.e., mortality that cannot be directly
attributed to the aging process. If c is neglected, the estimates of all other Γ GM pa-
rameters will be biased [23]. Moreover, if c is left out of the model, LAR will also
be distorted, and it will be impossible to capture its bell-shaped pattern [11]. The
latter implies that, although age-specific mortality rates seem to follow a linear age
pattern on a logarithmic scale, the rate of mortality increase is slowing down at older
ages. Mortality deceleration is explained traditionally by either the heterogeneity or
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the individual-risk hypothesis [13]. The former explains observed mortality deceler-
ation as a consequence of the existence of frailer individuals that die out at younger
ages leaving a selected subpopulation of robust individuals at the older ages. This
assumption implies that at the oldest ages mortality rates register a slower increase
even though the hazard for individuals keeps growing exponentially [31, 33]. The
individual-risk hypothesis assumes a slowdown in the rate of individual aging at
older ages. In this article we assume that the heterogeneity hypothesis holds.

Ribeiro and Missov [29] show that Γ GM model-based LAR not only fits well
the observed LAR patterns after age 65, but it also captures the shift in x∗, the
age of mortality deceleration, with time. The latter might suggest a relationship
between the rate of increase in e0, the life expectancy at birth, and the estimated
corresponding x∗: statistically significant changes in the slope of life-expectancy
growth over time are accompanied by changes in the age of mortality deceleration.
Life expectancy at birth, though, is a mortality measure that is influenced by early-
life mortality. The modal age at death M, on the other hand, is a characteristic of
the distribution of adult deaths [25, 26, 16, 5, 4, 2, 21] and captures mortality shifts
more accurately than remaining life expectancies such as e65 [15]. In a Γ GM setting,
getting an exact expression (see section 2.4, eq. 10) for the age of mortality decel-
eration x∗, i.e., the age at which LAR reaches its maximum, facilitates the study of
the relationship between x∗ other longevity measures.

We fit the Γ GM model to mortality data from six selected countries to reflect
different types of mortality experience: steady increase (France, Sweden and Japan),
increase at a changing pace (USA) and fluctuation (Russia and Ukraine) of age-
specific death rates over time. The Γ GM fits the data with high accuracy, and for the
chosen countries we find evidence for point b) of the heterogeneity hypothesis1 by
Horiuchi and Wilmoth [13]. Using segmented regression to identify the curvilinear
structure of the three longevity measures over time, we find evidence for a plausible
relationship between LAR patterns and the changes in the rate of life-expectancy
increase over time, also reflected in x∗. Finally, the age of mortality deceleration x∗

seems to be strongly influenced by changes in the overall pattern of mortality.
This study not only revisits recent mortality deceleration patterns by calculating

LARs for overall mortality from a Γ GM model, but also evaluates mortality dy-
namics by focusing on longevity development across time as a result of possible
improvement or deterioration at different ages.

2 Data and Methods

This section presents the methodological foundations of the analysis carried out in
section 3. Section 2.1 identifies the source and format of analyzed data as well as

1 The hypothesis states that a) deceleration occurs for the most major causes of death (COD), being
less pronounced for CODs with lower death rates and should start at earlier ages for CODs with
higher death rates; and b) mortality deceleration, due to selection effects, should shift to older ages
as the level of total adult mortality declines
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defines the time horizon of the study. Section 2.2 revisits formal definitions of re-
maining life expectancy ex, the median age at death Md, and the modal age at death
M. Section 2.3 presents an empirical approximation of LAR, while 2.4 introduces
the LAR formula in a Γ GM setting. Section 2.5 presents a modified version of the
Γ GM LAR by re-parameterizing the Gompertz force of mortality in terms of M.
Finally, section 2.6 provides an overview of segmented regression, a tool that we
use to single out different time intervals of linear increase in M over time.

2.1 Data

We use overall death counts D(x,y) and exposures E(x,y) from the Human Mortality
Database (http://www.mortality.org/ [10]). We focus on the period from
1970 to the last available year for each country to have, on the one hand, a common
study period and, on the other hand, to avoid potential data quality problems in one
or more of the selected countries (e.g., data for Ukraine [28] need to be handled
carefully before 1970).

Figure 1 presents period female life expectancy at birth e0 for the six selected
countries: France, Japan, Sweden, Russia, Ukraine, and USA. Qualitatively we can
identify three different patterns of e0 over time: steady increase at almost constant
pace (Sweden, Japan, France), steady increase at a changing pace (USA), and stag-
nation with periods of strong fluctuation (Russia, Ukraine). In the 1970s life ex-
pectancy at birth varies from 73.4 in Russia to 77.2 in Sweden. France registers
the second highest value from the group with 75.8, while Japan, Ukraine, and USA
share an almost identical life expectancy at birth (74.7, 74.4 and 74.7, respectively).
In the end of the observed period, Japan is leading with 86.5, while Russia and
Ukraine are still on the bottom (both with 74.8 years of life expectancy at birth in
the end of each correspondent series). However, USA’s e0 lags further behind the
Swedish and French, and the latter surpasses the former. The selection of coun-
tries with different patterns of e0 increase reflects our aim to understand how LAR
patterns may explain (at least partially) the observed changes in the “longevity hier-
archy”.

For completeness of the study, we also consider cohort mortality data. However,
we focus on Sweden and France, cohorts 1800–1900 only as data for these countries
are characterized by both high quality and availability over a long time horizon.

2.2 Measuring Longevity

The age distribution of deaths is usually bimodal, representing the distinctive pat-
terns of early and adult mortality. The distribution of adult deaths is skewed to the
left and this results in e0 < Md < M. In most developed countries the gap among
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Fig. 1 Female life expectancy at birth for the studied countries from 1970 to the last available year
(source: HMD 2015).
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these three longevity indicators narrows down, and Md is located approximately at
the midpoint between M and e0 [15].

Remaining life expectancy ex at age x can be calculated from a single-decrement
life table by [27]

ex =
Tx

lx
, (4)

where lx is the proportion of individuals alive at age x and Tx denotes the person-
years lived at age x and above.

The median age at death Md is the age by which half of the population is dead,
i.e., when the survival function equals 0.5: lMd = 0.5. If lMd = 0.5 in [x,x+1), then
the median age at death is calculated by

Md = x+
0.5− lx
lx+1− lx

. (5)

The modal age at death M is the age when most adult deaths occur:

M =
{

max
x

dx,x > 5
}
, (6)

where dx is the life-table density function of the distribution of deaths. Kannisto [16]
proposed a formula that uses life-table input to calculate the modal age at death with
decimal precision. If x is the age with the highest number of deaths in the life table,
then
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M = x+
dx−dx−1

(dx−dx−1)+(dx−dx+1)
. (7)

2.3 The Life-Table Aging Rate (LAR)

If data are available for single-year age groups, the empirical rate of population
aging (LAR) can be obtained by the formula [11]

b̄∗(x) = ln(M(x))− ln(M(x−1)) , (8)

where M(x) is the central death rate at age x. The small number of deaths at very old
ages, though, leads to large stochastic variation of death rates and, consequently, a
two-step procedure needs to be employed [11]:

1. applying a five-year moving average to the central death rates M(x) and then
calculating LAR using (8);

2. taking subsequently a triangularly weighted nine-year moving average, i.e, being
the weight distributed triangularly over nine values:

b̄emp(x) =
4

∑
n=−4

5−|n|
25

∗ b̄∗(x+n) . (9)

2.4 LAR in a Γ GM Framework

Human populations are comprised of different heterogeneous subpopulations in
which individuals, despite sharing the same rate of increase in the hazard of death
at adult ages, are described by different levels of susceptibility [31]. Within this
framework, we assume that the baseline hazard follows a Gompertz-Makeham pat-
tern [8, 17]: aebx + c.

The rate of individual aging in a Γ GM setting is captured by the relative deriva-
tive of the Gompertz part aebx, while the rate of aging for the entire population, i.e.,
LAR, equals the relative derivative of µ(x) in (2). If the former is constant over age,
corresponding to a constant b in (2), the latter varies age-wise and its pattern is bell-
shaped [11, 12, 13, 34]. LAR has been widely studied, both for human [12, 13] and
non-human populations [3]. In addition, Vaupel and Zhang [34] derive in a Γ GM
setting an explicit relationship between b, the rate of individual mortality increase,
and the LAR (see eq. 3).

The age at which the relative derivative of µ(x) reaches its maximum is the age
when mortality starts decelerating. In a Γ GM framework we can derive a closed-
form expression for the age of mortality deceleration:
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x∗ =
1
b

ln

(
(b+ cγ)c

2ab
+

√
(b+ cγ)cγ [(b+ cγ)c−4b(aγ−b)]

2abγ

)
. (10)

To capture accurately mortality dynamics across different periods we fit model (2).
As a result, in year y, we capture the overall force of mortality by [32]:

µ(x,y) =
a(y)eb(y)x

1+ γ(y−x)a(y)
b(y)

(
eb(y)x−1

) + c(y) , (11)

where, in year y, a(y) is the starting level of mortality, b(y) is the rate of individual
aging, c(y) is the Makeham term, γ(y−x) the variance of frailty at the initial age of
analysis x0 (x0 < x) among survivors from cohort y− x.

The fitting procedure is based on the assumption that death counts D(x,y) are
Poisson-distributed: D(x,y) ∼ Poisson(E(x,y) · µ(x,y)) [1], where E(x,y) denotes
the corresponding exposure. For each year y we maximize a Poisson log-likelihood:

ln L(a(y),b(y),γ(y),c(y)) = ∑
x
[D(x,y) ln µ(x,y)−E(x,y)µ(x,y)] . (12)

LAR follows a bell-shaped pattern at older ages [11, 12, 13] which is well-
captured by a Γ GM model [34]. If the LAR pattern is not bell-shaped, the Γ GM
approximation is not accurate (see Figure 2). As a result, it is important to identify
the onset of this pattern and select it as the starting age to fit the Γ GM from. Fig-
ure 2 presents observed and Γ GM model-based (with four different starting ages)
LARs for France. For both sexes, the higher the starting age of fitting the Γ GM, the
better the accuracy of approximating the empirical LAR. As we aim at the best fit
for both sexes and across all the selected countries, we decide to start all our fitting
procedures at age 65. Note that Γ GM estimates are less accurate if a substantial pro-
portion of the deaths in the study population occurs prior to age 65 (Russia, Ukraine
and males in comparison to females, in general).

2.5 Model-Based Modal Age at Death

Death rates at young ages decline substantially during the first half of the 20th cen-
tury [24]. This results in a steeply increasing life expectancy at birth. From that point
in time on, “the extension of length of human life in low-mortality countries is pri-
marily due to improvements in old-age survival” [15]. Consequently, the modal age
at death becomes a convenient lifespan indicator as it is not influenced by mortality
at younger ages [15, 16].

Different stochastic models, e.g., the Gompertz, logistic and Weibull models, as
well as their extensions accounting for the Makeham term [15], explain well the
variation in observed adult lifespans. The Gompertz part aebx can be expressed us-
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Fig. 2 Empirical and corresponding model-based LAR resulting from fitting a Γ GM with different
starting ages: 50 (Model-Based 1), 55 (Model-Based 2), 60 (Model-Based 3) and 65 (Model-Based
4) for French males (a) and females (b) (Data source: HMD 2015; own estimation).
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ing M as2 beb(x−M), and the Gompertz-Makeham force of mortality can also be
re-parameterized via the Gompertz old-age mode M: beb(x−M)+ c.

2 For a detailed description please see Horiuchi et al. [15], appendix D.
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The difference between overall M and the Gompertz-Makeham mode (senescent
M), is very small in practice. Due to the fact that at old ages the estimated level
of senescent mortality is considerably higher than background mortality, the latter
registers slightly higher values than the former (especially for males).

In a Γ GM framework the force of mortality can be expressed via M as

µ(x) =
beb(x−M)

1+ γ
(
eb(x−M)− e−bM

) + c , (13)

where

M =
1
b

ln
b
a
. (14)

Representing the Gompertz force of mortality in terms of M rather than a has also
statistical advantages as the maximum-likelihood estimators of M and b are much
less correlated than the ones of a and b (for broader discussion see [21]).

2.6 Identifying the Curvilinear Structure of Longevity Measures
Over Time

To elaborate on the dynamics of the relationship between the estimated x∗ and the
three longevity measures (M, Md, and e0) we differentiate between different period
segments, i.e., we estimate a piece-wise linear model for M over calendar time [22].
If we denote a break-point, i.e., a point at which the longevity measure LM changes
its slope, by ψi, i = 1,2, . . ., then

LM = α +β0y0 +βi(yi−ψi)+ , (15)

where α is the intercept, β0 is the first segment slope, βi measures the difference
in slopes between the first and the i-th segment, ψi denotes the breakpoint, and
(yi−ψ)+ = (yi−ψi) · I(yi > ψi) [22]. The indicator function I(·) equals one when
the condition in its argument is true. When the model does not detect a breakpoint,
we end up with a simple linear regression, i.e., ψi do not exist and βi are statistical
zeroes.

3 Results

In this section we use the methodological framework presented in section 2 to recon-
struct model-based LAR patterns and to elaborate on the link between the evolution
of x∗ and the three longevity measures (e0, M and Md) over time for the selected
countries. Section 3.1 revisits and discusses the shape of empirical LAR patterns on
human mortality surfaces. Section 3.2 studies the correlations between e0, M, Md,
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and the age of mortality deceleration x∗. Section 3.3 focuses on Γ GM model-based
LAR patterns. Section 3.4 searches for possible relationships between the curvilin-
ear structure of longevity measures and the corresponding old-age period mortality
deceleration patterns. Finally, section 3.5 studies the connection between x∗ and e0
on a cohort perspective.

3.1 Revisiting Empirical LAR Patterns

Previous studies [11, 12, 13] acknowledge the fact that LAR follows an approxi-
mately bell-shaped pattern at ages 40+. We take advantage of LAR’s Γ GM repre-
sentation [34] (see eq. 3) to obtain a smooth parametric approximation of eq. 9. Our
main goal is to reexamine empirical LAR patterns on human mortality surfaces to
get better understanding about their structure and evolution over time.

According to the heterogeneity hypothesis [13], high mortality rates should yield
LAR patterns with weaker curvature, and more pronounced LAR peaks should shift
to later ages as mortality becomes almost exclusively concentrated at these ages
(mortality compression).

Figures 3 and 4 present empirical LAR patterns at ages 30-94 for USA and
Ukraine (see Appendix for LAR patterns of the other four study countries). Es-
pecially for females (USA 3(a) and Ukraine 3(b)), two LAR peaks can be identified
– one at younger and another at older adult ages. Increases in LAR at young-adult
ages is perhaps related to the contribution of background mortality at that stage of
human life. If the first observed peak for young adults can be associated with ex-
ternal risks of mortality, the one at older ages reflects the increase of age-related
(senescent) mortality.

In section 2.4, which focuses on selecting the best starting age, we show that it
is even harder to construct accurate Γ GM model-based LARs in the absence of a
“well-defined” bell-shaped pattern, i.e., when LAR patterns are fluctuating. Conse-
quently, the analysis of empirical LAR already anticipates possible fitting accuracy
issues.

Figures 3 and 4 show that Ukrainian mortality is characterized by higher fluctu-
ation in its LAR patterns when compared with the ones of the USA. In fact these
patterns are not exclusive of Ukraine only, but are also observed in Russia (see Ap-
pendix), while the differences between males and females observed in these two
figures are representative for all countries.

Figure 4 presents empirical LAR patterns for males in USA and Ukraine. In
comparison with females (Figure 3), males register a much flatter and fluctuating
LAR pattern in early years, while in most recent decades the peak at older ages
becomes more easily distinguishable. These patterns are a consequence of higher
male-associated mortality rates that, like in the female case, decrease over time as a
result of mortality improvements.

Flatter LAR patterns for males in comparison with females suggests that the
Γ GM model accuracy might be higher for females. As a result, the empirical LAR
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Fig. 3 Empirical LAR for females aged 30-94 in USA 1970-2010 (a) and Ukraine 1970-2009 (b)
(source: HMD 2015, own calculation).
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pattern may foresee the existence of possible issues when LAR is specified in a
Γ GM framework, not only due to empirical fluctuations, but also because there is
more than one peak (resulting from recent mortality improvements). One can expect,
though, that in more recent years the concentration of mortality at older ages results
in more accurate fits.
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Fig. 4 Empirical LAR for males aged 30-94 in USA 1970-2010 (a) and Ukraine 1970-2009 (b)
(source: HMD 2015, own calculation).
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3.2 Correlations of Longevity Measures

Rather than explore all possible relationships between statistically significant changes
in the rate of increase across the selected longevity measures identified by the em-
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ployment of (15) and the age at which mortality starts to decelerate x∗ we perform
a preliminary and exploratory evaluation of all possible relationships by calculating
the correlation coefficient between each pair of measures (Table 1).

The correlation coefficient can be defined as a normalized measurement to eval-
uate possible linear relationships between two variables. A correlation coefficient
close to 1 indicates a clear positive linear relationship between the two variables
under analysis, while for values closer to −1, it indicates a presence of a negative
slope, i.e., a negative correlation. Consequently, correlation values closer to 0 indi-
cates a weak or almost null linear relationship.

The obtained correlation coefficients presented in Table 1 indicate that in all the
countries under study, exists a strictly positive relationship between e0 and Md.
Nevertheless, concerning the pairwise relationship e0 Vs M and Md Vs M, except
the generally high positive correlation coefficients, we find a very weak linear re-
lationship in what concerns Russian and Ukrainian females. This weak pairwise
relationship foresees the existence of an almost parallel evolution with time of the
three widely used longevity measures within each relationship. Nevertheless, the
small positive outcomes also suggest that in the near future longevity will possibly
increase.

The statistical relationship between e0 Vs x∗, Md Vs x∗ and M Vs x∗ in Russia and
Ukraine is captured by a negative correlation, especially in the male case. As it could
be seen in the previous subsection, LAR for males in Russia and Ukraine registered
high fluctuation peaks at young adult ages as a result of higher mortality rates reg-
istered at those ages. This influences all three longevity measures as they decrease
while x∗ increases due to more distinctive old-age LAR peaks. Despite being neg-
ative, the female correlation coefficients associated with those two pairwise com-
parisons are smaller. This situation can be explained by the male-female longevity
gaps and sex-related pace of mortality improvements. Nevertheless, a weak positive
relationship can be found between M and x∗ for females, suggesting that female
mortality improvements in Russia and Ukraine occur faster than the ones for males.

After the examination of possible pairwise relationships between the trends over
time of “typical” longevity measures (e0, Md and M) we focus on the possible re-
lationship between the age at which LAR reaches its maximum x∗ and the three
considered longevity measures. In a broader perspective, it can be seen that the rela-
tionship between M and x∗ follows a weaker linear pattern. However, females living
in France, Japan, Sweden and USA show high positive linear relationships for e0 Vs
x∗, Md Vs x∗ and M Vs x∗. In Russia and Ukraine, independently of sex and consid-
ering the same two last pairwise relationships, the obtained results suggest a weak
negative linear relationship.

The strictly positive and highly significant linear relationship between e0 and Md
in Table 1 may suggest that the obtained correlation coefficients for e0 Vs x∗ and Md
Vs x∗ might not differ significantly or add significant information. A closer look at
these two pairwise relationships reveals, though, that for e0 Vs x∗, in presence of
significant correlation values, they are slightly higher than the ones for Md Vs x∗.
Thus, in order to evaluate the presence of a possible connection between LAR peaks
(x∗) and longevity measures by applying (15), our choice fell on e0.
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Table 1 Correlation coefficients between the different considered longevity measures: life ex-
pectancy at birth e0, median Md and modal M age at death and the age at which mortality starts to
decelerate x∗ (source: HMD 2015, own calculation).

Country Sex e0 Vs Md e0 Vs M e0 Vs x∗ Md Vs M Md Vs x∗ M Vs x∗

France
Male 1.00 0.95 0.84 0.95 0.84 0.80

Female 1.00 0.97 0.98 0.97 0.98 0.96

Japan
Male 1.00 0.97 0.65 0.97 0.65 0.70

Female 1.00 0.98 0.99 0.98 0.99 0.96

Russia
Male 0.97 0.79 -0.24 0.85 -0.40 -0.39

Female 0.98 0.34 -0.19 0.26 -0.20 0.11

Sweden
Male 1.00 0.90 0.66 0.90 0.65 0.60

Female 1.00 0.92 0.84 0.92 0.84 0.79

Ukraine
Male 0.99 0.71 -0.61 0.74 -0.65 -0.25

Female 0.98 0.05 -0.36 0.06 -0.34 0.11

USA
Male 1.00 0.96 0.72 0.96 0.75 0.68

Female 1.00 0.93 0.97 0.94 0.95 0.90

3.3 Model-Based Patterns

By fitting a Γ GM model from age 65 onwards we estimate the population’s rate
of aging b̄(x) (see eq. 3) by country and gender. The onset of mortality deceler-
ation observed when age-specific death rates are plotted on a logarithmic scale is
reflected in the peak of the corresponding LAR pattern at age x∗. As postulated by
the heterogeneity hypothesis, a fast drop-off of frailer individuals leads to a lower
corresponding age of mortality deceleration. Reversely, if deaths occur later in time,
x∗ increases, while the variability in the ages at death decreases. Due to this concen-
tration of deaths in a narrow age range, the survival curve of the population becomes
steeper and rectangular [35]. Like e0 and Md, the age of mortality deceleration is
strongly influenced by changes in the overall pattern of mortality, while M is highly
affected by old-age mortality.

Figure 5 presents empirical and model-based Γ GM LAR patterns for females in
the six studied countries. As already presented in Figure 2, model-based LAR cap-
tures well empirical values. However, not so well-pronounced bell-shaped patterns
are associated with less accurate estimates of the Γ GM LAR. The Γ GM captures
well the evolution of LAR over time (Figure 5): the flatter patterns at the beginning
of the study period and the shifted patterns with stronger curvature after the 1970s.
The captured shift of the age of mortality deceleration to older ages reflects point b)
of the heterogeneity hypothesis: as lifespans increase, mortality deceleration occurs
at older ages. Figure 5 also shows that countries with higher life expectancy register
not only later mortality deceleration, but also more pronounced bell-shaped patterns
(i.e., France (a), Japan (b), Sweden (c) and USA (f)). In addition, the observed (em-
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pirical) LAR values plotted after age 65 indicate that smaller population countries
(such as Sweden) or countries with smaller populations after age 65 due to higher
mortality rates at younger ages, present higher fluctuation patterns.

Fig. 5 Model-based LAR patterns and goodness of fit for females in France (a), Japan (b), Sweden
(c), Russia (d), Ukraine (e) and USA (f) (Data source: HMD 2015; own estimation). Empirical pat-
terns are represented by shapes - 1970: inverted triangles, 1980: diamonds, 1990: regular triangles,
2000: asterisks and 2010 (2009 for Ukraine): squares - and estimates by solid lines.
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Figure 6 shows the empirical and model-based Γ GM LAR patterns for males. In
comparison to females (Figure 5), males are characterized by flatter LAR curves.
Nevertheless, for almost all countries and for both sexes the age of mortality de-
celeration shifts to older ages with time. Deceleration starts at older ages for fe-
males, which might be connected with the longevity gap between the sexes: while
female mortality is mainly concentrated at older ages, there is still “excessive” male
mortality at younger ages. Estimated flatter LAR patterns, almost exclusively for
males, can also be explained by higher turbulence in death rates. This is strongly
pronounced in Russia and Ukraine where life expectancy has been fluctuating in the
last couple of decades: Russian and Ukrainian males (6 (d) and 6 (e), respectively)
are subjected to substantial turbulence in their (fairly high) mortality rates in com-
parison to females (Figures 5 (d) and 5 (e), respectively). As a result, LAR patterns
for Russian and Ukrainian males are flat, the corresponding Γ GM approximation is
quite inaccurate, and the associated age of mortality deceleration x∗ is poorly cap-
tured by equation (10). Nevertheless, Γ GM LARs capture well the shift of mortality
deceleration to older ages, as well as the observed steeper LAR curves as mortality
rates decrease with time.

As described previously, flatter LAR patterns impose additional difficulties to
estimate the age of mortality deceleration x∗. Figure 7 shows model-based LARs and
the corresponding x∗ estimates (black circles). Although the Γ GM model captures
in general x∗ accurately, it is less problematic to identify x∗ for females than for
males mainly due to the higher number of female survivors at older ages and country
mortality dynamics. The estimates for Russia (7(b) and 7(d)) in Figure 7 illustrate
well the estimation difficulties associated with highly fluctuating empirical LARs
(see Figure 14 in the Appendix).
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Fig. 6 Model-based LAR patterns and goodness of fit for males in France (a), Japan (b), Sweden
(c), Russia (d), Ukraine (e) and USA (f) (source: HMD 2015, own calculation). Empirical patterns
are represented by shapes - 1970: inverted triangles, 1980: diamonds, 1990: regular triangles, 2000:
asterisks and 2010 (2009 for Ukraine): squares - and estimates by solid lines.
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3.4 LAR and Longevity for Periods

While in section 3.1 we presented the empirical patterns of mortality deceleration,
in section 3.2 we evaluate possible correlations between three of the most employed
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Fig. 7 Model-based LAR and the age of mortality deceleration (x∗) for Females and Males in
France ((a) and (b)) and Russia ((c) and (d)) (source: HMD 2015, own calculation). Image surface
denotes LAR over age and year, and black circles x∗.
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longevity measures and the age of mortality deceleration x∗, and in section 3.3 one
can find the Γ GM parametric estimates of LAR. To provide a complementary per-
spective, in this section we study the evolution of longevity in the selected countries
and investigate possible connections between old-age mortality deceleration pat-
terns and life expectancy at birth e0 (identified previously as the longevity measure
with higher correlation coefficients regarding x∗).

In comparison to other widely-used measures of longevity like life expectancy at
birth e0, the median Md and the modal age at death M, the age of mortality decel-
eration x∗ undergoes greater fluctuations: for females (Figure 8) x∗ is closer to e0
(with the exception of USA), while in the male (Figure 9) case x∗ is closer to Md
for Sweden and Japan, and to M in France and USA.

Figures 8 and 9 not only present the age at which mortality starts to decelerate
x∗ together with three longevity measures (e0, Md and M), but also the results from
fitting a segmented regression to life expectancy at birth. It seems that estimated
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Fig. 8 Model-based LAR surface, segmented life expectancy at birth e0 (dashed lines), median
Md (inverse triangles) and modal age at death M (asterisks) and the age of mortality deceleration
x∗ (circles) for Females in France (a), Japan (b), Sweden (c) and USA (d). Vertical solid lines refers
to statistically significant breaks in e0. (source: HMD 2015, own calculation)
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(b) Japan
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(c) Sweden
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LAR’s and the segmented dynamics of e0 share quite high connection. Statistically
significant breaks obtained for e0 are almost always accompanied by changes in
the rate of increase in x∗. Even without a strong association between significant
changes in the pace of increase of e0 and x∗, it seems that whenever a break occurs,
the characteristic bell-shaped pattern curvature becomes more pronounced.
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Fig. 9 Model-based LAR surface, segmented life expectancy at birth e0 (dashed lines), median
Md (inverse triangles) and modal age at death M (asterisks) and the age of mortality deceleration
x∗ (circles) for Males in France (a), Japan (b), Sweden (c) and USA (d). Vertical solid lines refers
to statistically significant breaks in e0. (source: HMD 2015, own calculation)
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3.5 LAR and Longevity for Cohorts

For period mortality the age of mortality deceleration shifts to older ages with calen-
dar time. This reflects the improvement of age-specific death rates and the associated
selection of frail individuals at later ages in each participating cohort. For a com-
plete overview of (empirical and model-based) LAR patterns and their evolution
over time, this section focuses on cohort LAR patterns in a Γ GM setting. It aims to
check whether the latter are characterized by the same evolution over time as period
LAR patterns. In addition, it studies the relationship between the age of mortality
deceleration for cohorts and cohort life expectancy.

To reconstruct LAR patters over a longer period we focus on single cohorts from
1800 to 1900 in France and Sweden. In comparison to empirical LAR patterns for
periods, the ones for cohorts are characterized by greater fluctuation, especially for
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earlier cohorts in which the number of survivors to age 65 and above is small. This
is associated with lower accuracy of the Γ GM fit (see Figure 10). LAR patterns with
stronger curvature can be observed for females, but unlike the period case for earlier
cohorts, the only exception being French males (see Figures 10 and 11). However,
the age of mortality deceleration follows an erratic and, in the case of Sweden, even
decreasing pattern (Figures 11 and 12) unlike x∗ for periods that increases steadily
with calendar time. This might be due to the aforementioned greater fluctuation of
cohort LAR patterns in comparison to the period ones and, on the other hand, the
improvements in age-specific death rates that an aging cohort is exposed to.

Fig. 10 Empirical and Γ GM model-based LAR patterns for France (males (a) and females (b))
and Sweden (males (c) and females (d)) for cohorts born in 1800, 1825, 1850, 1875, and 1900
(data source: HMD 2015, own calculation). Empirical patterns are represented by inverted trian-
gles (1800), diamonds (1825), triangles (1850), asterisks (1875), and squares (1900), while Γ GM
estimates are shown by solid lines.
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Figure 12 presents the age of mortality deceleration x∗ for cohorts along with co-
hort life expectancy at birth e0 and the breaks identifying the segments with different
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Fig. 11 Model-based Γ GM LAR patterns for France (males (a) and females (b)) and Sweden
(males (c) and females (d)) for all cohorts born between 1800 and 1900. Lighter colors represent
earlier cohorts (data source: HMD 2015, own calculation).
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rates of linear increase in cohort life expectancy. The breaks for Sweden are similar
between sexes, while French males and females share a common change in the rate
of life expectancy increase in 1875. Like in the period case, estimated LAR pattern
and the corresponding x∗ for cohorts seem to be linked to the segmented linear dy-
namics of e0: statistically significant breaks for cohort e0 are always accompanied
by changes in the rate of increase in cohort x∗, the only exception being perhaps
French males (Figure 12(a)). Figure 12(d) clearly illustrates this connection: in the
first segment, the slight decrease in e0 is accompanied by decreasing x∗; in the sec-
ond segment, e0 starts to steeply increase, while x∗ seems to stay stable; in the third
segment, as the pace of increase in e0 lowers, x∗ starts to decline slowly; and in the
last segment, e0 starts to increase steeply again, while x∗ starts following the inverse
pattern. Although the evolution of the two measures might be different in direction
and scale, the breaks of the applied segmented regression seem to identify periods
of different behavior for both measures simultaneously.
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Fig. 12 Cohort Γ GM model-based LAR surface, segmented cohort life expectancy at birth e0
(solid line) and the cohort age of mortality deceleration x∗ (circles) for France (males (a) and
females (b)) and Sweden (males (c) and females (d)). Vertical solid lines refers to statistically
significant breaks in cohort e0. (source: HMD 2015, own calculation)
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4 Discussion

A constant life-table aging rate for a population corresponds to a linear mortality
increase on a logarithmic scale. LAR patterns, however, detect mortality decelera-
tion resulting from selection of frailer individuals: in agreement with previous stud-
ies [11, 12, 13, 34], estimated and observed empirical LAR follow a bell-shaped
pattern, even though the rate of individual aging, the relative derivative b of the
Gompertz function, is constant. An explicit relationship between the rates of indi-
vidual and population aging is presented in [31, 34].

We choose to work in a gamma-Gompertz-Makeham setting for two reasons:
first, the Γ GM model captures with high accuracy both extrinsic mortality at
younger ages (given that is convexly increasing) and mortality deceleration at older
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ages (both “tails” of the S-shaped adult-mortality curve), and, second, the Γ GM pro-
vides adequate smooth parametric approximation to the life-table aging rate [34].

The selection of countries reflects three types of mortality experience over the
last decades: steady increase, increase at a varying pace, and fluctuation of life ex-
pectancy. The inclusion of Japan in our study is important as Japan has not only
registered the highest rates of mortality improvement for the last 60 years, but is
also well-known for the different mortality risk factors in comparison to the ones in
the European and North American countries [12]. Russia and Ukraine also deserve
special attention as mortality trajectories have undergone major fluctuations for the
last decades.

Stochastic variation in LAR estimates increases when the number of deaths is
small [12]. The latter occurs in our study when either the country of interest has a
small population size, e.g., Sweden, or a substantial proportion of deaths in a given
country takes place prior to age 65, e.g., Russia. In general, the Γ GM fits for females
are better than the ones for males as at ages 65+ the number of women exceeds the
number of men. The Γ GM also captures better LAR patterns with stronger curva-
ture.

The estimates of the Γ GM parameters a(y), b(y), γ(y) and c(y) in each year y
aid understanding the evolution of senescent and background mortality over calen-
dar time. The estimated starting level of mortality â(y), i.e., mortality at age 65,
declines over time, while estimated background mortality ĉ(y) increases with y.
Note, however, that at ages 65+ the share of background mortality in total mortality
becomes smaller and smaller.

The increasingly higher share of senescent mortality at older ages results in a
steeper bell-shaped LAR curve. However, estimating c(y) is essential to capture
the latter [12], and the smaller the estimates of c(y), the weaker is the associated
LAR’s curvature (see estimates for Russia and Ukraine). Steady improvements in
life expectancy result in bell-shaped patterns with stronger curvature that aid esti-
mating LAR patterns by a Γ GM model with high accuracy (see results for France
and Japan).

The estimation accuracy for the age of mortality deceleration depends on LAR’s
curvature: detecting x∗ for flatter the LAR patterns is more problematic. If x∗ is well
approximated, the obtained results suggest a stronger correlation between this mea-
sure and both life expectancy at birth e0 (see also [29]) and the median age at death
Md. The high correlations in these pairs can be attributed to the fact that all three
measures (e0, Md and x∗) are sensitive to mortality at younger ages as opposed to
M, the modal age at death. This study identifies the following relationship between
statistically significant piece-wise changes in e0 and x∗: every change in the slope
of e0’s linear increase is reflected in steeper LAR patterns and higher associated x∗.

Γ GM LAR patterns for cohorts provide important insight, too. First, they con-
firm that mortality deceleration does not pertain (as previously hypothesized [7]) to
period mortality only. Second, Γ GM LAR patterns seem to be flatter for more re-
cent cohorts. This can be explained, on the one hand, by the lower estimates of the
Makeham term for the latest cohorts and, on the other hand, by the steady mortality
improvements at ages 65+ on a period basis (especially after 1950) that postpones
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deaths in each cohort to later ages. Finally, the evolution of cohort life expectancy
seems to be related to the cohort age of mortality deceleration. Although the changes
in the two mortality measures might not be the same in direction and magnitude,
the statistically significant segments of curvilinear increase in e0 correspond to seg-
ments of different functional behavior for x∗. Finding a formal relationship that links
changes in x∗ to changes in life expectancy requires future study.

5 Conclusion

Empirical and model-based period LARs are consistent with point b) of the hetero-
geneity hypothesis by Horiuchi and Wilmoth [13] as mortality deceleration shifts
to older ages while the level of total adult mortality declines. The age of mortal-
ity deceleration x∗, as well as life expectancy e0 and the median age at death Md
seem to be strongly influenced by changes in the overall pattern of mortality, while
M, the modal age at death, is highly affected by old-age mortality. Following the
preliminary findings in [29], this study finds a relationship between changes in the
rate of life-expectancy increase with time and the corresponding LAR patterns: each
breakpoint in the curvilinear evolution of e0 results in steeper LAR patterns. A sim-
ilar pattern is observed for cohort LAR patterns, too. However, the evolution of the
age of mortality deceleration for cohorts is more erratic, and, in the case of Sweden,
x∗ is even decreasing. Nevertheless mortality deceleration is clearly seen for both
periods and cohorts, and the link between its onset and different longevity measures
is still to be formalized.
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Appendix

Fig. 13 Empirical LAR for females aged 30-94 in Japan (a) and France (b) 1970-2012, Sweden
(c) 1970-2011 and Russia (d) 1970-2010 (source: HMD 2015, own calculation).
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Fig. 14 Empirical LAR for males aged 30-94 in Japan (a) and France (b) 1970-2012, Sweden (c)
1970-2011 and Russia (d) 1970-2010 (source: HMD 2015, own calculation).

Ye
a
r

Age

L
A

R

0.02

0.04

0.06

0.08

0.10

0.12

(a) France

Ye
a
r

Age

L
A

R

0.04

0.06

0.08

0.10

(b) Japan

Ye
a
r

Age

L
A

R

0.00

0.02

0.04

0.06

0.08

0.10

0.12

(c) Sweden

Ye
a
r

Age

L
A

R

0.03

0.04

0.05

0.06

0.07

0.08

(d) Russia



28 Filipe Ribeiro and Trifon I. Missov

Fig. 15 Model-based LAR and the age of mortality deceleration (x∗) for females in Japan (a), Swe-
den (b), Ukraine ((c) and USA (d) (source: HMD 2015, own calculation). Image surface denotes
LAR over age and year, and black circles x∗.
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Fig. 16 Model-based LAR and the age of mortality deceleration (x∗) for males in Japan (a), Swe-
den (b), Ukraine ((c) and USA (d) (source: HMD 2015, own calculation). Image surface denotes
LAR over age and year, and black circles x∗.
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