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We introduce a covariant approach in Minkowski space for the descrip-
tion of quarks and mesons that exhibits both chiral-symmetry breaking and
confinement. In a simple model for the interquark interaction, the quark
mass function is obtained and used in the calculation of the pion form fac-
tor. We study the effects of the mass function and the different quark pole
contributions on the pion form factor.
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1. Introduction

The high-precision measurements at the Jefferson Lab accelerator after
its 12 GeV upgrade will provide new data on the pion form factor which
cover the interesting region up to momentum transfer Q2 ≈ 6 GeV2, where
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the pion form factor scaled with Q2 has a maximum [1]. Together with the-
oretical calculations, they will narrow the uncertainty about the smallest Q2

at which the description based on asymptotic parton distribution functions
is still valid and they will clarify the mismatch between experiment and per-
turbative QCD predictions in the region around Q2 ≈ 6 GeV2 [2]. This will
also help to resolve the current discrepancy between the results for the πγ∗γ
transition form factor obtained by the BaBar and Belle collaborations.

In this article, we focus on the theoretical calculation of the pion form
factor in the spacelike (Q2 > 0) region. Here, the small-Q2 region is of
particular interest because of its vicinity to the timelike (Q2 < 0) sector.
The pion form factor enters into the evaluation of baryon form factors near
Q2 ≈ 0, and its behavior in the timelike region can help in the interpretation
of dilepton production data from heavy-ion collisions.

Various modern theoretical approaches have addressed the non-pertur-
bative dynamics underlying the pion and other hadronic bound states. For
instance, QCD simulations on the lattice [3], quantum field theory for-
mulated on the light front [4], as well as models based on the Dyson–
Schwinger/Bethe–Salpeter (DSBS) approach, and the mass gap equation [5]
have made significant contributions to our understanding of hadron phe-
nomenology.

We use a framework similar to the DSBS approach, the Covariant Spec-
tator Theory (CST) [6], in which a quark mass is dynamically generated in
a way consistent with the quark–antiquark dynamics by satisfying the axial-
vector Ward–Takahashi identity (AVWTI) [7]. In contrast to the DSBS
approaches, the CST equations are solved in Minkowski space, which al-
lows, for instance, a straightforward extension of pion form factor results
from the spacelike to the timelike Q2 region.

2. CST model for qq̄ mesons

Within the charge-conjugation invariant CST framework [8,9], the CST-
Dyson equation (CST-DE) for the dressed quark propagator is obtained from
the Dyson equation by keeping only the quark propagator pole contributions
in the loop four-momentum integration. Its diagrammatic representation is
given in Fig. 1. The CST-DE describes the dynamical generation of the
quark self-energy Σ(p) ≡ Σ+(p) + Σ−(p) = A(p2) + /pB(p2) in the dressed
quark propagator S(p) = [m0+Σ(p)−/p− iε]−1, where m0 is the bare quark
mass, p is the off-shell quark momentum and the dynamical quark mass
function is defined by

M
(
p2
)
=
A
(
p2
)
+m0

1−B (p2)
. (1)
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Fig. 1. (Color online) Diagrammatic representation of the CST-DE. The thick
arrowed (red) lines with and without black (red)/white crosses represent posi-
tive/negative on-shell quark projectors and dressed off-shell quark propagators S,
respectively. The thin arrowed black lines are the bare quark propagators S0 and
Σ+ (Σ−) are self-energy contributions from the positive/negative energy quark
pole. The gray (orange) zigzag line is the interaction kernel V.

The constituent quark mass m is defined as the value of the mass function,
where S has a pole, i.e., M(m2) = m. We use an interaction kernel of the
form

V
(
p, k̂
)
=
(
1⊗ 1+γ5 ⊗ γ5

)
VL

(
p, k̂
)
+γµ⊗γµh2(p)

C

2m
(2π)3Ekδ

3
(
~p− ~k

)
,

(2)
where VL(p, k̂) is the CST generalization in momentum space of the linear
confining potential satisfying [6]∫

d3k

Ek
VL

(
p, k̂
)
= 0 , where Ek =

√
m2 + ~k2 and k̂ =

(
Ek,~k

)
. (3)

The second term in Eq. (2) is the CST generalization of the constant po-
tential, where C is its strength and h(p2) is a strong quark form factor. It
has been shown [7] that the kernel V(p, k̂), when applied in both CST-BSE
and CST-DE, satisfies the AVWTI and complies with the Adler-zero con-
straint [10] in π–π-scattering imposed by chiral symmetry. This is because
the linear confining term of V(p, k̂) does not contribute to the CST-DE. Fur-
ther, B = 0 in this simple model, and the dynamical quark mass function
in the chiral limit, where C = m assumes the form

M
(
p2
)
= mh2

(
p2
)
. (4)

The strong quark form factor h(p2) depends on m and a cutoff parameter,
which are determined by a fit of M(p2) at negative p2 to the lattice QCD
data [11] extrapolated to the chiral limit. In the timelike region (p2 > 0),
for which no lattice data are available, we adopt a piecewise form. Varying
the shape of h in this region will allow us to study the sensitivity of the pion
form factor to the functional form of h. Figure 2 shows the mass function
together with the lattice data in the chiral limit.
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Fig. 2. The chiral limit mass function with 3 different possible shapes in the timelike
region compared with the lattice data [11] extrapolated to the chiral limit.

3. Triangle diagram and the pion form factor

The elastic electromagnetic pion form factor is obtained in impulse ap-
proximation from the sum of two triangle diagrams, in which the photon
couples either to the quark or the antiquark. The first of these diagrams
is depicted in Fig. 3. In order to evaluate the triangle diagram using the
charge-conjugation invariant CST prescription of how to perform the energy-
contour integration requires taking all quark propagator-pole contributions
into account, i.e. the 4 poles of the active quark at p2+ = m2 and p2− = m2,
and the 2 spectator quark poles at k2 = m2 [12].

q = P+ − P−

P−P+

S(p+) S(p−)

S(k)

Γ̄ Γ

jµ

Fig. 3. (Color online) The triangle diagram which describes the interaction of the
virtual photon with the quark (black/blue), with the antiquark as a spectator
(gray/red).

One ingredient of the pion form factor calculation is the pion vertex
function Γ . Instead of solving the full CST-BSE, we use the approxi-
mated pion vertex function near the chiral limit of the form Γ (p1, p2) ∝
h(p21)h(p

2
2)γ

5 [12]. The other ingredient is the quark current which should
also be calculated from solving the inhomogeneous CST-BSE. Here we use,
however, for simplicity, the current proposed in Ref. [12] which applies the
framework by Riska and Gross [13] to ensure gauge invariance.
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4. Results and conclusions

In Fig. 4, we present the ratio of the spectator pole contributions F sπ
and active pole contributions F aπ calculated with fixed and running quark
masses, and different values of the pion mass mπ.
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Fig. 4. (Color online) The ratio F sπ/F aπ for fixed (dashed lines) and running (solid
lines) quark masses, and different values of mπ. The pairs of curves, from top to
bottom, are the results obtained with mπ = 0.6 (brown), 0.42 (orange), and 0.14

GeV (purple).

In Fig. 5, we compare the results for F aπ when calculated with different
mass functions in the timelike region of Fig. 2. Note that the computation
of F sπ tests the mass function only in the spacelike region and thus all curves
coincide in this case. We conclude that for the present simple model for
small mπ, the active quark contributions are as important as the spectator
contributions, over the whole range of Q2. For large mπ and large Q2, the
active pole contributions are suppressed as compared to the spectator con-
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Fig. 5. F aπ when calculated with the mass functions of Fig. 2.
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tributions by about 30%. This suppression is slightly stronger for running
than for fixed quark masses. For small mπ, the spectator and active pole
contributions are nearly identical, not only in magnitude but also in shape,
even for large Q2. Furthermore, we find that the pion form factor is surpris-
ingly insensitive to the functional form of the strong quark form factors and
quark mass function.
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