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Abstract

We prove a Theorem on homotheties between two given tangent sphere bundles S, M of a Rie-
mannian manifold M, g of dim > 3, assuming different variable radius functions r and weighted
Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with
constant positive or with constant negative scalar curvature which are not Einstein. Recalling re-

G

sults on the associated almost complex structure I¢ and symplectic structure w® on the manifold

T M, generalizing the well-known structure of Sasaki by admitting weights and connections with
torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds
TM and S,.M.

Key Words: tangent sphere bundle, isometry, characteristic classes.

MSC 2010: Primary: 55R25; Secondary: 53A30, 53C07, 53C17, 57R20

The author acknowledges the support of Fundacao Ciéncia e Tecnologia, Portugal, Centro de
Investigacio em Matemética e Aplicacdes da Universidade de Evora (CIMA-UE) and the sabbatical
grant SFRH/BSAB/895/2009.

1 Introduction

arXiv:1012.4135v3 [math.DG] 28 Jan 2014

This article consists of a study of the main properties which identify the tangent sphere bundles
Sy M ={ueTM : |ul]| =r} of a Riemannian manifold (M, g) with variable radius r and induced
weighted Sasaki metric ¢/v/2 = fin*g @ for*g, where fi, fo are RT-valued functions on M and
7 : TM — M is the bundle map. Recall the well-known Sasaki metric on T'M is just ¢° = g"!
induced by the Levi-Civita connection splitting of TT'M. Our main results are as follows.

We consider a conformal change Ag by some function A on M, then take both Levi-Civita
connections of g and A\g and consider, accordingly, the lifts of these metrics to TM. We obtain
very different weighted Sasaki metrics on 7'M and induced metrics on the sphere bundles, since the
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horizontal subspaces are very different when A is non-constant. So one wishes to compare the S, M,
with radius functions r,s : M — RT and within the same conformal class of M, through the map

S

h,
u +—
rvA

u. For M connected and of dimension > 3 we prove:
(S, M, g//2) is homothetic via h to  (SsM, (Ag)/1%2) (1)

if and only if %A = f—i;—é, the function A is constant and one of the following conditions holds: (i)
s/r is constant or (ii) rs is constant.

Equation (ii) is quite interesting, and reassuring if the reader suspects it is true. As a corollary
it says that, for any positive function r on M, (S,M, g°) is isometric to (S1 M, gl”’4).

We give some applications in the treatment of the S;Mp of the spacer—form Mg, the locus of
o34 2?2 11 = R?, which has constant sectional curvature +1/R2. Using [7], we prove in
Theorem 23] that, for dim Mz = m > 3, no matter the sign + or the constants R, f1, fo > 0, we can
always find a radius s > 0 suficiently small such that S;Mp has constant positive scalar curvature
or suficiently large such that the same space has constant negative scalar curvature. These are
examples of manifolds with constant Scal but which are not Einstein.

Proceeding with the weighted metric G = ¢/:/2 on TM, we define a compatible almost Hermitian
structure (G, I G wG), which is a generalization of the canonical or Sasaki almost Hermitian structure
on TM. In our case we also allow V to have torsion. Then the integrability equations of I and w®
reserve distinguished roles for the functions f1/fs and fifo respectively, both implying the torsion
to be of certain so-called vectorial type. In principle having no relation, notice the similarity of these
equations with the two cases (i) and (ii) above! Finally, the two functions only have to be both
constant, the curvature of V flat and the torsion zero if and only if we require the defined structure
on T'M to be Kéhler.

We also determine the characteristic classes of the manifold TM. The Chern classes of (TM, %)
are proved to agree with the Pontryagin classes of M. Moreover, they do not depend on the metric
connection V. The Stiefel-Whitney characteristic classes of S, M are also found. In particular we
conclude that any tangent sphere bundle of an oriented manifold is a spin manifold.

The motivation for the present article is the discovery of a natural Go-structure on S M, for any
M oriented of dimension 4, which is having many developments and good expectations, cf. [4] [5].
However, here we just complete an independent study of the S, M initiated in [6], [7].

Parts of this article were written during a sabbatical leave at Philipps Universitdt Marburg. The
author wishes to thank the hospitality of the Mathematics Department of Philipps Universitat and
specially expresses his gratitude to Ilka Agricola.

2 Riemannian geometry of the tangent bundle

2.1 The tangent bundle

Let M be an m-dimensional smooth manifold without boundary. Let # : T"M — M be the tangent
bundle so that m(u) = =, Vu € T, M, v € M. Then V = kerdr is known as the vertical bundle
tangent to T'M. There is a canonical identification V' = #*T'M and an exact sequence over the
manifold T'M:

00—V —TTM 5 2*TM — 0. (2)
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The tangent bundle T'M is endowed with a natural vertical vector field, denoted &, which is succinctly
defined by &, = u.

Let V be a connection on M. Then there is a complement for V'
H={XeTTM: n*Vx¢& =0} (3)

Indeed H is m-dimensional and 7%V . is the vertical projection onto V. For any vector field X over
TM we may always find the unique decomposition (V* denotes the pull-back connection)

X =X"+ XV = x" 4 Vvie. (4)

Now, dm induces a vector bundle isomorphism between H and #*TM, by ([2]), and we have V =
7 T'M. Hence we may define an endomorphism

B:TTM — TTM (5)

sending X" to the respective BX" € V and sending V to 0. We also define an endomorphism,
denoted B, which gives B* X" € H and which annihilates H. In particular B*BX" = X" and
B? = 0. Sometimes we call BX" the mirror image of X h'in V. The map B appears also in []. We
endow TT'M with the direct sum connection V* @ V*, which we sometimes denote by V*. We have
in particular that V*B = V*B2d = (.

Notice the canonical section & can be mirrored by B2? to give a horizontal canonical vector field
B¢, In the torsion free case, the latter is known as the spray of the connection, cf. [9, 3], or the
geodesic field, cf. [I0]. Tt has the further property that drm,(B*¢) = u, Yu € TM. Away from the
zero section, we have a line bundle R¢ C V' and therefore a line sub-bundle too of H.

2.2 Natural metrics

Suppose the previous manifold M is furnished with a Riemannian metric g and a linear connection.
We also use (, ) in place of the symmetric tensor g; this same remark on notation is valid for the
pull-back metric on 7*T'M. We recall from [9] [14] the now called Sasaki metric in TTM = H @ V:
it is given by ¢° = n*g @ 7*¢g (originally, with the Levi-Civita connection). With ¢°, the map
B|: H — V is an isometric morphism and B2 corresponds with the adjoint of B. We stress that
(, ) on TTM always refers to the Sasaki metric.

Let @1, @2 be any given functions on M and let

G=g"P = finr"g @ for*g (6)

with
fl = 62901’ f2 262<p2. (7)

Obviously, we convention all these functions to be composed with 7 on the right hand side when
used on the manifold T'M.

Remark. With the canonical vector field £ we may produce other symmetric bilinear forms over
TM: first the 1-forms n = £ and § = £ 0 B = (Badg)b and then the three symmetric products of
these. Actually one may see that 6 does not depend on a chosen connection which is metric; cf. last
remark in section 3.1l The classification of all g-induced natural metrics on 7'M may be found e.g.

in [11 2].
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2.3 Metric connections

Let us assume from now on that the connection on M is metric, which implies V*¢® = 0. It is
well-known that V/1 = V + €}, with

C1(X,Y) = X(p1)Y +Y(p1)X — (X,Y)grad o1, (8)

is a metric connection for fig on M, with the same torsion as V since C' is symmetric.
For any function ¢, recall the usual identities X (¢) = de(X) = (grad ¢, X), adopted throughout.
On T'M we shall use the functions dp(u) = d@x(y)(u), Yu. In other words,

Oy = (Brgrad ¢, §) (9)

where B is the mirror map (B). And we agree on lifting gradient vector fields only to H.
We have that V*/1 = V* + 7*C| makes fi7*g parallel on H. On the vertical side, V*2, defined
by
VY = VLY + Br*Cy(X, BMY) (10)

VX,Y vector fields on T M, makes for*g parallel. Henceforth, the connection V*/1 @ V*72 is metric
for G = g/v/2.

Proposition 2.1. i) The torsion of V* @ V* is TV + RE.
ii) The connection V}h’ Y = VLY + X(92)Y is metric on (V, fan*g).

The proof of this result is immediate. The vertical part in i) is defined via the curvature,
RE(X,Y) = 7*RY(X,Y)¢. We remark it is V*/1 and the connection in ii) which enter in the
Levi-Civita connection V& of G. Formulas for the curvature are well-known, cf. [2 [7, [9, [IT].

2.4 Homotheties of T'M

Suppose we have a conformal change of the metric g on the base M. With A = ¢?? and ¢ € C37 we
pass to the metric

d=Xg=X\,). (11)
Let us distinguish by 7'M the tangent manifold of M with the metric ¢/, when necessary. For the
rest of the section we restrict to the Levi-Civita connection

V=V (12)

Notice TTM = H®V = H' &V and we conform to our previous remarks on notation.
Let also t : M — R\{0} be a smooth function. Then we may consider the isomorphism (letting
h = e %t)
h:TM — T'M, h(u) = e ¥tu = hu =: ' . (13)

We treat all given scalar functions like ¢ or ¢, depending on the context, as functions composed with
7. This implies, for example,

X(p) = dp(X) = X"(p) . (14)
Recall the 1-form 6 on T'M given by 0(X) = (BX, ).
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Proposition 2.2. Let X be any vector field on T M and consider the differential map hy : TTM —
R*TT'M. It satisfies the identities he(X") = hX" and, more generally,

hX = X"+ B(@g + X"+ 0p.BX — 0(X)Bgrad ¢) (15)

where B refers to the decomposition H & V.

Proof. We know that V' = V + C where CxY = dp(X)Y 4+ dp(Y)X — (X,Y)grad ¢ (here X,Y
denote vector fields on M or on TM). Since 7o h = 7, then (h,X)" = (dr) ' (dx(X)) and this is
the same as X", the H'-part of X. Writing &’ for the very same canonical vector field & on 7'M,
so that h*¢ = £ o h = hE, and computing,

TVh.of = W (V4 O)xht¢
= 7*Vx(hé) + Br*C(X, B*(h¢))
= dh(X)E + hViE + hBr*C(X, B*¢)
= —X(p)he +e X ()¢ + hXY + hX (p)¢ +
+h(B*¢)(p).BX — h(BX,¢)Bgrad ¢
X(t)
t

= iL( £+ X"+ 0p.BX — 0(X)Bgrad ¢)

we find the vertical part. [ |

Remark. Notice any tangent vector X = X"+ X? = X" 4+ X' has two decompositions. We have,
cf. figure 1,

/

XV = V¢ = Vxé+ BrO(X, BY)
= X"+ 0p.BX + X(p)§ — 0(X)Bgrad ¢, (16)
X" = X - XV = X"~ 9p.BX — X(¢)¢ +0(X)Bgrad o .

Now we suppose TM is endowed with the metric G = ¢f'/2 introduced in previous sections and
we let T'M have the metric G/ = (\g)” 1f2 (the four weight functions are just smooth, positive and
defined on M).

Theorem 2.1. The map h is a homothety (ie. h*G' = G for some function 1) if and only if t
and A are constants and satisfy %)\ = tQ%. In this case, the latter is the value of 1.

Proof. We write h,X = X" + hE(X) defining F from ([5). Then solving the equation above with
vertical vector fields X7, Xo we immediately find

G (X1, Xo) = pG(X1, Xo) if and only if Nh2fh = fy ie. t2f5 = fo.
In particular, ¢ is only defined on M. Notice we may write

Eu(X") =aE, (X",  VaeR,
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V
X"
X
XV
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N
H' X

Figure 1: The connection induced projections

because ¢ is also hidden linearly in dy and 6. Picking two horizontal lifts and having in mind that
t and v are only defined on M, it is then easy to deduce that a necessary condition for h to be a
homothety is that E(X") = 0 for all H-horizontal X. Now

ot
HE(B™€),€) = H{—¢ + 0p.€ — ||¢]* Barad i, €) = (9t + tdp — t0p) €]

and hence 0t = dt(B*4¢) = 0. Choosing any X horizontal and orthogonal to B¢ (recall m > 1),
we find 0 = (F(X), BX) = 9¢||X||* = 0 & 9¢ = 0, as we wished. In particular, V = V’. Finally,
solving the equation above for horizontal vector fields X7, X5 we get f{\ = ¢ f1. For generic vectors
the result follows. u

Generalizing the Theorem for the case of two conformal changes we have: the map h from
(AM1g)702 to (Aag)175 is a homothety if and only if

fide _ 2 /s

t,i—i are constants and i % (17)
2.5 Homotheties of S, M
Let 7,5 € C37(R™) and recall the tangent sphere bundle of radius r
Sy M ={ueTM: Hu||§ =r?} (18)

submanifold of T'M, for which we have
S.M = S|M (19)
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using the metric \g to define S.M with A = r—2? = . Consider the smooth function N = r~2||¢||?
on TM, cf. formula (). Then S,M = N~3(1) = {u € TM : G(&,,&) = 1} where G = gftr™”
with fi any positive function. Using Proposition 2.1l to differentiate N = G(&, ), it is easy to deduce

TS,M = {X e TTM : (X,£) =rX(r)}. (20)

We have to assume @2 = ¢ = —log 7. But of course one just applies V* to [|£]|? — 72 = 0 to easily
find the same information. Notice X € T'S,M < (XV,£) = rX"(r).

We shall consider a more general setting: with r and ¢ independent.

Let Ag be any conformal change of the given metric, A = e??. Let s be another positive function
on M and consider the map h from Proposition with an appropriate chosen t. It restricts to a
diffeomorphism

h:S.M — S.M, h(u) = e u=hu. (21)
r

When is h a homothety for the induced metrics? For a start, only the metrics G, G’ constructed as
in section 2.4] are relevant, i.e. those induced from V = V9 the Levi-Civita connection.

Remark. Recall the metric on the right hand side arises from H'@®V. Since h, : T,,S, M — TingM ,
it is true that we have

rX(r) = (X,6) & s(hX)(s) = (hX,he)
Indeed, we may write h, X = X" + hE(X) where E(X) is given in () as

X(t)

EX = T£ + XY + 0p.BX — 0(X)Bgrad ¢. (22)

but now with the function .
t=—. (23)

r

Also, on vertical vector fields the metrics agree up to the scale, so we find

(heX,he) = W*(EX,€)
= e X (1) + XY +tdp.BX — t0(X)Bgrad o, £)
= t(wllal2 + X", &) + t0p.0(X) — t0(X)Dp)
= ;(T‘X(S) —sX(r)+ ;rX(r))
= sX(s) = s(h.X)(s)

since on S, M we have [¢? = r2.

In the next Theorem we prove that each tangent sphere bundle S, M with metric G induced from
that of T'M is quite unique, independently of any of the metric transformations above and up to the
straightforward coincidences expressed in the corollaries. The reader may notice the impossibility
of adapting the arguments used for Theorem 21 We also remark we were not able to prove the
cases of dim M =1, 2.

We let A = e?% and 7, s, f1, fa, f1, f4 be any positive functions on M.

Until the end of this section we assume M is connected and dim M > 3.
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Theorem 2.2. Let S, M have the induced metric G = g/72 and let S'M have the induced metric
G = ()\g)f{’fé. Then the following are equivalent:

1. h: S, M — S.M is a homothety, ie. h*G' =G for some function 1.

2. X is constant, ¥ verifies simultaneously ¢ = %A = f—;{c—é and one of the following hold:

(i) s/r is constant
(ii) rs is constant.

For the case of the identity (fL = 1), we have that it is a homothety if and only if X\ = s?/r? is a

1 _
constant and f_i = f—z

Proof. First we notice

G'(hX,hY) = fIUXM Y'Y + W2 f(EX, EY)
= FfINX" Y™+ B2AfYEX,EY).

Now consider the equation h*G’(X,Y) = 9G(X,Y). Choose one vector X = & vertical and
orthogonal to &, and a vector Y = (gradr)’ horizontal and orthogonal to gradr. Then both
X, Y € TS, M. Indeed, (X,§) =0 =rX(r) and (Y,¢) = 0 = r(Y,gradr) = rY(r). Then for two

For X|Y we have EX = X"V and FY = @g + 0. BY — 6(Y)Bgrad ¢, hence
0=9G(X,Y) = G'(hX,hY) = flAh2(99p(X, BY) — 0(Y)(X, Bgrad ¢)) .

Now we choose a point u € S.M orthogonal to gradr. Then we may take X = Bgradr and
Y =u € H. We have (BY, X) = 0 and 6(Y) = (u,u) = 72, so our equation yields (X, Bgrad ) = 0.
Equivalently, we must have gradr | grad ¢.

Now suppose gradr = 0 on all points of M, ie. r is constant. Then H C TS.M. Take any
non-vanishing Zy € H. Then we may furtherEl let Zy € H N {grad s, grad p}*. In fact, in dimension
> 3, we may find a point u in each fibre of S,.M such that (J¢), = 0 and a vector Zy € H,, such
that Zy(s) = Zo(p) = 0 and 6(Zy) = 0. Then on the chosen point u we get E(Zy) = 0 and so
hsZy = ZSLI. Hence our main equation yields the necessary condition fi\ = ¢ f1. Going back a
little, we then consider any point v and any Zy € H perpendicular to u, ie. such that &, 1 BZj.
Then we deduce

s (7 2
& (2o, 2) = FMZol? + i (P02 o2y = vz

This immediately implies Zy(s) = 0, dp = 0. Since Zp and u may now be put in general position,
we conclude s and ¢ are constant on M, a connected manifold by assumption, and the Theorem
follows.

So now we admit grad r # 0 at some point x € M. Recall gradr L grad¢ and let € = ||grad r||
and 0 = ||grad ¢||.

IThis last assumption is not plausible in dimension 2 since we want Zy # 0, hence the hypothesis on the dimension;
although here we may assume that grad ¢ together with grad s constitute a basis of H and then try to solve the system
of two quadratic equations and 4 unknowns, in the components of u and Zy in that basis, given by Zo(t)§ +t0p.BZo —
t0(Zo)Bgrad ¢ = 0, for that is all we need - here, because ahead the dimension hypothesis is required again.
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Hence u; = Egradr € S, M. Notice d¢,, = dp(u1) = 0. Consider the vector Xy = gradr and
X = Xy + eBXy. It is tangent to our sphere bundle at u; since

(X,€) = eLe® = (X0, Xo) = rX(r).
€
And we have that

! ~ / -~ X t
hX=X"+hEX = XM+ h(T()ful + eBX — 0(X)Bgrad ¢)
roa X(t A
= XMy h(#f + e)BXO — hre Bgrad .
€
Consider also the tangent vector at uy, Z = Bgrade. Then h,Z = hZ. And thus VG(X,Z) =
Y fae(BXy, Z) = 0; on the other hand

~y X
WG(X,Z) = fé)\h2<(T(t)z—|—6)BX0—reBgradg0,Bgradg0>
€
= —fiNhZerd®.

This implies § = 0, ie. ¢ and hence A = ¢?% are constants.

Therefore the map h verifies h, X = X" +B(@£+X”), for any vector field X € T'S, M. Now we
consider any horizontal vector X € ker drNkerds, in particular also tangent to .S, M and orthogonal
to gradt (recall n > 2). Then X(¢) = 0 and, just as we had the result sz)\fé = 1 fo using vertical
vectors, we have the similar result with horizontal: \f{ = fi.

Next, we use two generic tangent vectors X,Y € TS.M. It is easy to see the conformality
equation h*G’ = G is finally equivalent to

X(t)Y( ) 2 (t) Y(r)  Y@)rX(r) _
2 7 + : =0

or

XOY#®)r+XO)Y(r)t+X(r)Y ()t = 0.

Notice this last equation only involves the horizontal part of the vectors, so we assume X, Y as such.
Now if we take X orthogonal to gradt, ie. satisfying X (¢) = 0, and take Y = grad ¢, then we find
that X (r) = 0 or that X is also orthogonal to grad r. Henceforth, grad ¢ and grad r are proportional,
ie. lie on the same line. In other terms,

dt = adr

for some function a on M. Clearly the equation above may be written as
rdt @ dt +tdt @ dr +tdt @ dr = 0.

Hence we have (ra® + 2ta)dr ® dr = 0. Recalling r is not constant, we either have ¢ constant or
ra + 2t = 0. We have both

2t 2s rds — sdr

dt = ——dr = ——dr and dt =
r r2 r2

Hence —2sdr = rds — sdr < rds + sdr = 0, from which we find sr =constant.
Finally all conditions are fulfilled for h to be the expected homothety of ratio ¢). The identity
map case is trivial. [ |
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Let ¢° = gY! denote the induced Sasaki metric on the tangent sphere bundle and recall we are
only considering dim M > 3.

Corollary 2.1. The Riemannian manifold (S,M,g°) is homothetic to (S.M,(\g)®) via h if and
only if v = \ = i—; and this is a constant. In this case, h is the identity and s = /Ar; in other
words S, M = S.M. In particular, two tangent sphere bundles both with the induced Sasaki metric
are homothetic if and only if they have exactly the same radius function, ie., they coincide.

Corollary 2.2. Other particular cases are as follows: the Riemannian manifold (S,M,g'/2)
is isometric via h to (S.M,(A\g)"/2) if fi = X is constant. And (S,.M,g/"/2) is isometric to
(S{M, (A\g)2""F2) if f = X and both r,f1 are constant. Moreover, (S,M,¢5) is isometric to
(S1M, g>*) if v is constant.

We have used the metric G = g/ 17 on S, M. So we study this case separately.

Corollary 2.3. Let S, M be given the metric G = gl’r% and let SIM be with the metric G' =

7 1
()\g)f sz, Then the following three conditions are equivalent:

1. the map h : S, M — S.M 1is a homothety.
2. the functions verify: 1 = fi\ =1, X is a constant and s/r or sr is a constant.

3. the map h is an isometry.

In particular, for any s,r positive constants, (S, M, 91’7"72) ~ (S M, 91’572) ~ (S1 M, g%).

[
%%

Proof. Indeed we have ¢ = fiA = 55 = 1. [ |

Corollary 2.4. Let r be any function on M. Then (S,M,g°) is isometric to (S1 M, 91’7"4).

Proof. This is due to the second particular case found in the Theorem. We are taking A = 1 and
s = % and indeed ¢ = %)\ =1= :—i = f—z% Also notice we have sr constant. [ |

2.6 Applications to space-forms

Formulas for the curvature of tangent sphere bundles of space-forms are finally studied here. Let
R > 0 and let
Mp={zeR™": af+ - +al £a2 =R’} (24)

be an m-dimensional space-form with the induced metric g from Euclidean space. Mg has constant
sectional curvature 4+1/R?. If we conformally change the metric g ~ Ag by a constant, then clearly
57 ~ 53

\RZ"
Having another Ry > 0, the map F : Mp, — Mg defined by z € R™! — F(x) = %CE
induces the following isometry through differentiation. Writing f1 = fo = g—; and s = %, we have
i s R
F (SSMRUQ ’ ) - (STMRag )a F*(x’u) = R_l(xau) (25)

Indeed, (F,)*g® = g/*/2. This isometry and corollaries Z2J2Z3] give us the next quite interesting
result.
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Proposition 2.3. We have the following isometries
($1Mr,g%) == (S M, g H) 2= (8, My, (R)1) = (S{01, (R2g)M) = (S1Ma, (R29)®).  (26)

Now we apply a general formula from [7, Proposition 1.6] on the scalar curvature Scal of
(SsM, g1:72) for any given constants fi, fo:

1 f2 2 (n — 1)n
Scal(g, g, gf1.52) = ESC&I(M,g) - mijzk;(Rgijk) + T s (27)
Since 22737,?:1(7251-]»;6)2 = E—i2n, where n = m — 1, we have
nn+1) fo s? (n—1)n

Scal =t — o 28
ca (SSMRyfl’fQ) f1R2 4f12 RA n —+ f282 ( )

n(n+1) _n
R? 2R*
see the same value in (28] for any of the forms in (26). Notice we can also write the scalar curvature

of (8;Mp, %) = (S Mp,g""").

In particular the scalar curvature of (26]) is + (n—1)n. We may say it is rewarding to

Theorem 2.3. For any m > 3 and both cases £, for any scalars R, f1, fo > 0, we can always find
a sufficiently small or large radius s in order to have (SsMpg, g//2) with, respectively, positive or
negative scalar curvature.

The proof is clear just by looking at s in (28]); the result is partially corroborated by two Theorems
in [I1].

We further remark that the formulas in [7] show the Riemannian metrics we are considering are
never Einstein, though Scal( Sy Mg 1:72) is constant.

3 Characteristic classes

We know not of any reference for the fundamental questions solved in this section. We extend our
study to problems of topology of the tangent and tangent sphere bundles. The first stems from the
Riemannian structure.

3.1 Almost Hermitian structure on T'M

The pair TM, g° admits a compatible almost complex structure, also attributed to Sasaki. It was
first studied in [9], 14] and gave origin in [I5] to an almost contact structure on the unit tangent
sphere bundle S1M. For M oriented and dimension 4 we discovered a natural Go-structure always
existing on S1 M with the very same metric, cf. [4 [5].

We continue the study of TM with the metric G = ¢g/12 where f; = €2?! and fo = e2%2. We let
V denote a metric connection on M with torsion 7V. The almost complex structure of Sasaki may
be now written as the bundle endomorphism ¥ = B*d — B.

Let

P =3 — 1, P =@+ 1. (29)

We then define
I¢ =e¥B* — VB, (30)
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It is easy to see the endomorphism I¢ is an almost complex structure compatible with the metric
G. We consider also the associated non-degenerate 2-form w® defined by w®(X,Y) = G(I9X,Y),
VX,Y € TTM. Since fie¥ = foe ™% = ew, it follows that wC = e¥wS where w’ is the 2-form
associated to the Sasaki structure ¢g° and I° = B* — B,

The next Theorem is shown for completeness of exposition. For the Cartan classification of
torsions of metric connections see [3]. Notice the presence again of the quotient and product of the
Weights fl, fg'

Theorem 3.1 ([6]). i) The almost complex structure I€ is integrable if and only if V is flat and
has the vectorial type torsion TV = di A 1. In particular, if V is torsion free, then I¢ is integrable
if and only if M is Riemannian flat and fa/ fi =constant.

i) (TM,w®) is a symplectic manifold if and only if TV = di) A 1. In particular, with V the
Levi-Civita, dw® = 0 if and only if fof1 =constant.

We observe that in the strict case of the Sasaki metric we have TV = 0 as necessary condition
for both integrability of I° and dw® = 0. In the general case, the two equations are distinguished,
as they should, by 1 and 1. Clearly we may draw the following conclusion.

Corollary 3.1 ([6]). The almost Hermitian structure (TM,G, 19, w%) is Kihler if and only if M
is a Riemannian flat manifold (TV =0, RY =0) and f1, f2 are constants. In this case, TM is flat.

The last assertion follows indirectly from Proposition 211

Remark. Recall T*M has a natural symplectic structure. It arises as dA where A is the Liouville
1-form ([I0]): the unique 1-form A on T*M such that on a section «

Ao = O, (31)

When we introduce the metric, the tangent and cotangent (sphere) bundles become isometric
bundles. With a little computation we find that the 1-form § = £” o B = (Badg)b corresponds with
the Liouville form, so it does not depend on the connection. Knowing the torsion of V* & V* for
any metric connection on M, it is easy to deduce, cf. [4], that for any radius function we have:

df =w® +00TV. (32)

The same is to say w® corresponds with the pull-back of the Liouville symplectic 2-form if and only
if 7V = 0. Then a Hamiltonian theory of the geodesic flow is manageable. We also remark that
the geodesic vector field in the sense e.g. of [I0], i.e. the vector field B*I¢ in our setting, is just the
same as the geodesic spray in the sense e.g. of [9, [13].

3.2 Chern and Stiefel-Whitney classes of T'M

Let us continue with the structures G, I¢ on the tangent bundle, induced from any metric connection
V, and the same notation from above.

By a deformation retract on the fibres of m : TM — M, there is an identification of cohomology
spaces H*(M) = H*(TM). This is valid for any coefficient ring. In particular H*(TM) = 0, Vi > m.
Let w; denote the j-th Stiefel-Whitney class of M — which is a Stiefel-Whitney class of TM as a
vector bundle. Let w = ) w; denote the total Stiefel-Whitney class.
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Theorem 3.2. For any manifold M of dimension m, the Euler class of the manifold T M vanishes
and the total Stiefel-Whitney class is

w(TTM) =w’ =Y w?. (33)

Proof. Being a top degree class, the Euler class must vanish. Since TTM = 7#*TM & n*TM, the
Whitney product Theorem and the naturality of the characteristic classes ([12]) immediately give
w(TTM) = w(TM)w(TM) = w?. Recall the coefficients are in Zg, hence the second identity in

@3). M

Theorem 3.3. The Chern classes of the manifold TM with almost complex structure I are the
Chern classes of the complexified tangent bundle, TM ®@r C — M.

Proof. The complex structure I¢ in TTM is equivalent to I°. One complex isomorphism is given
by f: X — X" +e¥X?. Indeed, VX € TTM,

IS0 f(X)= (B - B) (X" +e¥X") = —BXh 4 e¥Bodxv
= e¥BYMXY —e¥e VBX" = fol%(X).

By the functorial properties, we just have to compute the Chern classes of I°. (Another argument:
the homotopy induced by ti, t € [0, 1], preserves the Chern classes.) Now, the Chern classes of
an almost complex manifold (N,J) are the Chern classes of the C-vector bundle TTN, the +i-
eigenbundle of J where i = /—1. In our case,

TYTM = H¢ = n*TM*¢

where ¢ denotes complexification, because of the C-isomorphism induced from X € H — X +iBX €
TH+TM. Indeed I°(X +iBX) = —BX 4 iB*BX = i(X + iBX). Finally, by trivial reasons, we
have ¢;(TTTM) = ¢;(TM°). [ |

We recall the Chern classes cy; define the Pontryagin classes of M, cf. [12],
pi(M) = (=1)!e3;(TM © C). (34)
Moreover, the Chern classes of (T'M, %) do not depend on the connection V.

3.3 Stiefel-Whitney classes of S, M

Now let m = n+1 and let r > 0 be a scalar function on M. We continue to denote by w = Z;”Zl w;j
the total Stiefel-Whitney class of M.

Theorem 3.4. The total Stiefel-Whitney class of the manifold S, M is
w(S,M) = Zw*w]z (35)
j=0

and in particular its mod 2 Euler class vanishes.
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Proof. First suppose r is constant. Then the n-vector bundle x := ¢+ C V sits in TS, M = H & k
where we assume e.g. the Sasaki metric. We have w(n*T'M) = w(H) = m*w. Clearly w(r*TM) =
w(k & RE) = w(k). Hence

w(TS, M) =w(H & k) = w(r*TM)? = n*w?.

Notice wy, (k) = 0 due to rank of x being just n. Independently, 0 = waop4+1(S,M) = e(S, M) mod 2.
Using the homeomorphism h : S1M — S, M, h(u) = ru, we have the result for any function r. M

Remark. 1. The results show that the odd degree Stiefel-Whitney classes of the manifolds T'M
and S,M vanish.

2. We observe the independence of ([BH) from r. Moreover, always wq(S,M) = 0, as expected
because T'M is always oriented and ¢ induces an orientation on the submanifold.

3. If M has a finite good cover, is oriented, and admits a non-vanishing vector field, then we deduce
H*(S,M) = H*(M) ® H*(S™) by the Theorem of Leray-Hirsh (cf. [8]). In particular 7* is an
isomorphism H*(S,.M) = H*(M) of cohomology spaces up to degree i < n—1 = m—2. By contrast,
we have proved 7*(w,,) = 0.

Since wy(S, M) = w?, we have the following conclusion.
Corollary 3.2. For any oriented Riemannian manifold M, the manifold S,.M is spin.

Recall wy is also the obstruction for a closed 7-manifold to admit a Go-structure. We have
explicitly constructed a natural Go-structure on S; M, for any oriented Riemannian 4-manifold M,
cf. [, 5] and the references therein.
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