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Abstract

We prove a Theorem on homotheties between two given tangent sphere bundles SrM of a Rie-

mannian manifold M, g of dim ≥ 3, assuming different variable radius functions r and weighted

Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with

constant positive or with constant negative scalar curvature which are not Einstein. Recalling re-

sults on the associated almost complex structure IG and symplectic structure ωG on the manifold

TM , generalizing the well-known structure of Sasaki by admitting weights and connections with

torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds

TM and SrM .
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grant SFRH/BSAB/895/2009.

1 Introduction

This article consists of a study of the main properties which identify the tangent sphere bundles

SrM = {u ∈ TM : ‖u‖ = r} of a Riemannian manifold (M,g) with variable radius r and induced

weighted Sasaki metric gf1,f2 = f1π
∗g ⊕ f2π

∗g, where f1, f2 are R
+-valued functions on M and

π : TM → M is the bundle map. Recall the well-known Sasaki metric on TM is just gS = g1,1

induced by the Levi-Civita connection splitting of TTM . Our main results are as follows.

We consider a conformal change λg by some function λ on M , then take both Levi-Civita

connections of g and λg and consider, accordingly, the lifts of these metrics to TM . We obtain

very different weighted Sasaki metrics on TM and induced metrics on the sphere bundles, since the
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horizontal subspaces are very different when λ is non-constant. So one wishes to compare the SrM ,

with radius functions r, s : M → R
+ and within the same conformal class of M , through the map

u
h7→ s

r
√
λ
u. For M connected and of dimension ≥ 3 we prove:

(SrM,gf1,f2) is homothetic via h to (SsM, (λg)f
′

1
,f ′

2) (1)

if and only if
f ′
1

f1
λ = s2

r2
f ′
2

f2
, the function λ is constant and one of the following conditions holds: (i)

s/r is constant or (ii) rs is constant.

Equation (ii) is quite interesting, and reassuring if the reader suspects it is true. As a corollary

it says that, for any positive function r on M , (SrM,gS) is isometric to (S 1

r
M,g1,r

4

).

We give some applications in the treatment of the SsMR of the space-form MR, the locus of

x21 + · · · + x2m ± x2m+1 = R2, which has constant sectional curvature ±1/R2. Using [7], we prove in

Theorem 2.3 that, for dimMR = m ≥ 3, no matter the sign ± or the constants R, f1, f2 > 0, we can

always find a radius s > 0 suficiently small such that SsMR has constant positive scalar curvature

or suficiently large such that the same space has constant negative scalar curvature. These are

examples of manifolds with constant Scal but which are not Einstein.

Proceeding with the weighted metric G = gf1,f2 on TM , we define a compatible almost Hermitian

structure (G, IG, ωG), which is a generalization of the canonical or Sasaki almost Hermitian structure

on TM . In our case we also allow ∇ to have torsion. Then the integrability equations of IG and ωG

reserve distinguished roles for the functions f1/f2 and f1f2 respectively, both implying the torsion

to be of certain so-called vectorial type. In principle having no relation, notice the similarity of these

equations with the two cases (i) and (ii) above! Finally, the two functions only have to be both

constant, the curvature of ∇ flat and the torsion zero if and only if we require the defined structure

on TM to be Kähler.

We also determine the characteristic classes of the manifold TM . The Chern classes of (TM, IG)

are proved to agree with the Pontryagin classes of M . Moreover, they do not depend on the metric

connection ∇. The Stiefel-Whitney characteristic classes of SrM are also found. In particular we

conclude that any tangent sphere bundle of an oriented manifold is a spin manifold.

The motivation for the present article is the discovery of a natural G2-structure on S1M , for any

M oriented of dimension 4, which is having many developments and good expectations, cf. [4, 5].

However, here we just complete an independent study of the SrM initiated in [6, 7].

Parts of this article were written during a sabbatical leave at Philipps Universität Marburg. The

author wishes to thank the hospitality of the Mathematics Department of Philipps Universität and

specially expresses his gratitude to Ilka Agricola.

2 Riemannian geometry of the tangent bundle

2.1 The tangent bundle

Let M be an m-dimensional smooth manifold without boundary. Let π : TM →M be the tangent

bundle so that π(u) = x, ∀u ∈ TxM, x ∈ M . Then V = ker dπ is known as the vertical bundle

tangent to TM . There is a canonical identification V = π∗TM and an exact sequence over the

manifold TM :

0 −→ V −→ TTM
dπ−→ π∗TM −→ 0. (2)
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The tangent bundle TM is endowed with a natural vertical vector field, denoted ξ, which is succinctly

defined by ξu = u.

Let ∇ be a connection on M . Then there is a complement for V

H = {X ∈ TTM : π∗∇Xξ = 0}. (3)

Indeed H is m-dimensional and π∗∇·ξ is the vertical projection onto V . For any vector field X over

TM we may always find the unique decomposition (∇∗ denotes the pull-back connection)

X = Xh +Xv = Xh +∇∗
Xξ. (4)

Now, dπ induces a vector bundle isomorphism between H and π∗TM , by (2), and we have V =

π∗TM . Hence we may define an endomorphism

B : TTM −→ TTM (5)

sending Xh to the respective BXh ∈ V and sending V to 0. We also define an endomorphism,

denoted Bad, which gives BadXv ∈ H and which annihilates H. In particular BadBXh = Xh and

B2 = 0. Sometimes we call BXh the mirror image of Xh in V . The map B appears also in [4]. We

endow TTM with the direct sum connection ∇∗ ⊕∇∗, which we sometimes denote by ∇∗. We have

in particular that ∇∗B = ∇∗Bad = 0.

Notice the canonical section ξ can be mirrored by Bad to give a horizontal canonical vector field

Badξ. In the torsion free case, the latter is known as the spray of the connection, cf. [9, 13], or the

geodesic field, cf. [10]. It has the further property that dπu(B
adξ) = u, ∀u ∈ TM . Away from the

zero section, we have a line bundle Rξ ⊂ V and therefore a line sub-bundle too of H.

2.2 Natural metrics

Suppose the previous manifold M is furnished with a Riemannian metric g and a linear connection.

We also use 〈 , 〉 in place of the symmetric tensor g; this same remark on notation is valid for the

pull-back metric on π∗TM . We recall from [9, 14] the now called Sasaki metric in TTM = H ⊕ V :

it is given by gS = π∗g ⊕ π∗g (originally, with the Levi-Civita connection). With gS , the map

B| : H → V is an isometric morphism and Bad corresponds with the adjoint of B. We stress that

〈 , 〉 on TTM always refers to the Sasaki metric.

Let ϕ1, ϕ2 be any given functions on M and let

G = gf1,f2 = f1π
∗g ⊕ f2π

∗g (6)

with

f1 = e2ϕ1 , f2 = e2ϕ2 . (7)

Obviously, we convention all these functions to be composed with π on the right hand side when

used on the manifold TM .

Remark. With the canonical vector field ξ we may produce other symmetric bilinear forms over

TM : first the 1-forms η = ξ♭ and θ = ξ♭ ◦ B = (Badξ)♭ and then the three symmetric products of

these. Actually one may see that θ does not depend on a chosen connection which is metric; cf. last

remark in section 3.1. The classification of all g-induced natural metrics on TM may be found e.g.

in [1, 2].
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2.3 Metric connections

Let us assume from now on that the connection on M is metric, which implies ∇∗gS = 0. It is

well-known that ∇f1 = ∇+ C1, with

C1(X,Y ) = X(ϕ1)Y + Y (ϕ1)X − 〈X,Y 〉gradϕ1, (8)

is a metric connection for f1g on M , with the same torsion as ∇ since C is symmetric.

For any function ϕ, recall the usual identities X(ϕ) = dϕ(X) = 〈gradϕ,X〉, adopted throughout.

On TM we shall use the functions ∂ϕ(u) = dϕπ(u)(u), ∀u. In other words,

∂ϕ = 〈Bπ∗gradϕ, ξ〉 (9)

where B is the mirror map (5). And we agree on lifting gradient vector fields only to H.

We have that ∇∗,f1 = ∇∗+π∗C1 makes f1π
∗g parallel on H. On the vertical side, ∇∗,f2 , defined

by

∇∗,f2
X Y = ∇∗

XY +Bπ∗C2(X,B
adY ) (10)

∀X,Y vector fields on TM , makes f2π
∗g parallel. Henceforth, the connection ∇∗,f1 ⊕∇∗,f2 is metric

for G = gf1,f2 .

Proposition 2.1. i) The torsion of ∇∗ ⊕∇∗ is π∗T∇ +Rξ.

ii) The connection ∇∗,f2,′
X Y = ∇∗

XY +X(ϕ2)Y is metric on (V, f2π
∗g).

The proof of this result is immediate. The vertical part in i) is defined via the curvature,

Rξ(X,Y ) = π∗R∇(X,Y )ξ. We remark it is ∇∗,f1 and the connection in ii) which enter in the

Levi-Civita connection ∇G of G. Formulas for the curvature are well-known, cf. [2, 7, 9, 11].

2.4 Homotheties of TM

Suppose we have a conformal change of the metric g on the base M . With λ = e2ϕ and ϕ ∈ C∞
M we

pass to the metric

g′ = λg = λ〈 , 〉. (11)

Let us distinguish by T ′M the tangent manifold of M with the metric g′, when necessary. For the

rest of the section we restrict to the Levi-Civita connection

∇ = ∇g. (12)

Notice TTM = H ⊕ V = H ′ ⊕ V and we conform to our previous remarks on notation.

Let also t :M → R\{0} be a smooth function. Then we may consider the isomorphism (letting

ĥ = e−ϕt)
h : TM −→ T ′M, h(u) = e−ϕtu = ĥu =: u′ . (13)

We treat all given scalar functions like ϕ or t, depending on the context, as functions composed with

π. This implies, for example,

X(ϕ) = dϕ(X) = Xh(ϕ) . (14)

Recall the 1-form θ on TM given by θ(X) = 〈BX, ξ〉.
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Proposition 2.2. Let X be any vector field on TM and consider the differential map h∗ : TTM →
h∗TT ′M . It satisfies the identities h∗(Xv) = ĥXv and, more generally,

h∗X = Xh′ + ĥ
(X(t)

t
ξ +Xv + ∂ϕ.BX − θ(X)Bgradϕ

)

(15)

where B refers to the decomposition H ⊕ V .

Proof. We know that ∇′ = ∇ + C where CXY = dϕ(X)Y + dϕ(Y )X − 〈X,Y 〉gradϕ (here X,Y

denote vector fields on M or on TM). Since π ◦ h = π, then (h∗X)h
′

= (dπ)−1(dπ(X)) and this is

the same as Xh′ , the H ′-part of X. Writing ξ′ for the very same canonical vector field ξ on T ′M ,

so that h∗ξ′ = ξ ◦ h = ĥξ, and computing,

π∗∇′
h∗(X)ξ

′ = h∗π∗(∇+ C)Xh
∗ξ′

= π∗∇X(ĥξ) +Bπ∗C(X,Bad(ĥξ))

= dĥ(X)ξ + ĥ∇∗
Xξ + ĥBπ∗C(X,Badξ)

= −X(ϕ)ĥξ + e−ϕX(t)ξ + ĥXv + ĥX(ϕ)ξ +

+ĥ(Badξ)(ϕ).BX − ĥ〈BX, ξ〉Bgradϕ

= ĥ
(X(t)

t
ξ +Xv + ∂ϕ.BX − θ(X)Bgradϕ

)

we find the vertical part. �

Remark. Notice any tangent vector X = Xh+Xv = Xh′ +Xv′ has two decompositions. We have,

cf. figure 1,

Xv′ = ∇′∗
Xξ = ∇Xξ +Bπ∗C(X,Badξ)

= Xv + ∂ϕ.BX +X(ϕ)ξ − θ(X)Bgradϕ,

Xh′ = X −Xv′ = Xh − ∂ϕ.BX −X(ϕ)ξ + θ(X)Bgradϕ .

(16)

Now we suppose TM is endowed with the metric G = gf1,f2 introduced in previous sections and

we let T ′M have the metric G′ = (λg)f
′

1
,f ′

2 (the four weight functions are just smooth, positive and

defined on M).

Theorem 2.1. The map h is a homothety (ie. h∗G′ = ψG for some function ψ) if and only if t

and λ are constants and satisfy
f ′
1

f1
λ = t2

f ′
2

f2
. In this case, the latter is the value of ψ.

Proof. We write h∗X = Xh′ + ĥE(X) defining E from (15). Then solving the equation above with

vertical vector fields X1,X2 we immediately find

h∗G′(X1,X2) = ψG(X1,X2) if and only if λĥ2f ′2 = ψf2 i.e. t2f ′2 = ψf2.

In particular, ψ is only defined on M . Notice we may write

Eau(X
h) = aEu(X

h), ∀a ∈ R,
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Figure 1: The connection induced projections

because ξ is also hidden linearly in ∂ϕ and θ. Picking two horizontal lifts and having in mind that

t and ψ are only defined on M , it is then easy to deduce that a necessary condition for h to be a

homothety is that E(Xh) = 0 for all H-horizontal X. Now

t〈E(Badξ), ξ〉 = t〈∂t
t
ξ + ∂ϕ.ξ − ‖ξ‖2Bgradϕ, ξ〉 = (∂t+ t∂ϕ− t∂ϕ)‖ξ‖2

and hence ∂t = dt(Badξ) = 0. Choosing any X horizontal and orthogonal to Badξ (recall m > 1),

we find 0 = 〈E(X), BX〉 = ∂ϕ‖X‖2 = 0 ⇔ ∂ϕ = 0, as we wished. In particular, ∇ = ∇′. Finally,

solving the equation above for horizontal vector fields X1,X2 we get f ′1λ = ψf1. For generic vectors

the result follows. �

Generalizing the Theorem for the case of two conformal changes we have: the map h from

(λ1g)
f1,f2 to (λ2g)

f ′
1
,f ′

2 is a homothety if and only if

t,
λ2
λ1

are constants and
f ′1λ2
f1λ1

= t2
f ′2
f2
. (17)

2.5 Homotheties of SrM

Let r, s ∈ C∞
M (R+) and recall the tangent sphere bundle of radius r

SrM = {u ∈ TM : ‖u‖2g = r2} (18)

submanifold of TM , for which we have

SrM = S′
1M (19)
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using the metric λg to define S′
sM with λ = r−2 = e2ϕ. Consider the smooth function N = r−2‖ξ‖2

on TM , cf. formula (14). Then SrM = N−1(1) = {u ∈ TM : G(ξu, ξu) = 1} where G = gf1,r
−2

with f1 any positive function. Using Proposition 2.1 to differentiate N = G(ξ, ξ), it is easy to deduce

TSrM =
{

X ∈ TTM : 〈X, ξ〉 = rX(r)
}

. (20)

We have to assume ϕ2 = ϕ = − log r. But of course one just applies ∇∗ to ‖ξ‖2 − r2 = 0 to easily

find the same information. Notice X ∈ TSrM ⇔ 〈Xv , ξ〉 = rXh(r).

We shall consider a more general setting: with r and ϕ independent.

Let λg be any conformal change of the given metric, λ = e2ϕ. Let s be another positive function

on M and consider the map h from Proposition 2.2 with an appropriate chosen t. It restricts to a

diffeomorphism

h : SrM −→ S′
sM, h(u) = e−ϕ

s

r
u = ĥu . (21)

When is h a homothety for the induced metrics? For a start, only the metrics G,G′ constructed as

in section 2.4 are relevant, i.e. those induced from ∇ = ∇g the Levi-Civita connection.

Remark. Recall the metric on the right hand side arises fromH ′⊕V . Since h∗ : TuSrM → TĥuS
′
sM ,

it is true that we have

rX(r) = 〈X, ξ〉 ⇔ s (h∗X)(s) = 〈h∗X, ĥξ〉′.

Indeed, we may write h∗X = Xh′ + ĥE(X) where E(X) is given in (15) as

EX =
X(t)

t
ξ +Xv + ∂ϕ.BX − θ(X)Bgradϕ. (22)

but now with the function

t =
s

r
. (23)

Also, on vertical vector fields the metrics agree up to the scale, so we find

〈h∗X, ĥξ〉′ = ĥ2〈EX, ξ〉′

= e2ϕe−2ϕt〈X(t)ξ + tXv + t∂ϕ.BX − tθ(X)Bgradϕ, ξ〉

= t
(X(s)r − sX(r)

r2
‖ξ‖2 + t〈Xv, ξ〉+ t∂ϕ.θ(X) − tθ(X)∂ϕ

)

=
s

r

(

rX(s)− sX(r) +
s

r
rX(r)

)

= sX(s) = s (h∗X)(s)

since on SrM we have ‖ξ‖2 = r2.

In the next Theorem we prove that each tangent sphere bundle SrM with metric G induced from

that of TM is quite unique, independently of any of the metric transformations above and up to the

straightforward coincidences expressed in the corollaries. The reader may notice the impossibility

of adapting the arguments used for Theorem 2.1. We also remark we were not able to prove the

cases of dimM = 1, 2.

We let λ = e2ϕ and r, s, f1, f2, f
′
1, f

′
2 be any positive functions on M .

Until the end of this section we assume M is connected and dimM ≥ 3.
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Theorem 2.2. Let SrM have the induced metric G = gf1,f2 and let S′
sM have the induced metric

G′ = (λg)f
′

1
,f ′

2. Then the following are equivalent:

1. h : SrM → S′
sM is a homothety, ie. h∗G′ = ψG for some function ψ.

2. λ is constant, ψ verifies simultaneously ψ =
f ′
1

f1
λ = s2

r2
f ′
2

f2
and one of the following hold:

(i) s/r is constant

(ii) rs is constant.

For the case of the identity (ĥ = 1), we have that it is a homothety if and only if λ = s2/r2 is a

constant and
f ′
1

f1
=

f ′
2

f2
.

Proof. First we notice

G′(h∗X,h∗Y ) = f ′1〈Xh′ , Y h′〉′ + ĥ2f ′2〈EX,EY 〉′

= f ′1λ〈Xh, Y h〉+ ĥ2λf ′2〈EX,EY 〉.

Now consider the equation h∗G′(X,Y ) = ψG(X,Y ). Choose one vector X = ξ⊥ vertical and

orthogonal to ξ, and a vector Y = (grad r)⊥ horizontal and orthogonal to grad r. Then both

X,Y ∈ TSrM . Indeed, 〈X, ξ〉 = 0 = rX(r) and 〈Y, ξ〉 = 0 = r〈Y, grad r〉 = rY (r). Then for two

vertical vector fields, like X, we immediately get the necessary condition ĥ2λf ′2 = ψf2 ⇔ ψ = s2

r2
f ′
2

f2
.

For X,Y we have EX = Xv and EY = Y (t)
t ξ + ∂ϕ.BY − θ(Y )Bgradϕ, hence

0 = ψG(X,Y ) = G′(h∗X,h∗Y ) = f ′2λĥ
2
(

∂ϕ〈X,BY 〉 − θ(Y )〈X,Bgradϕ〉
)

.

Now we choose a point u ∈ SrM orthogonal to grad r. Then we may take X = Bgrad r and

Y = u ∈ H. We have 〈BY,X〉 = 0 and θ(Y ) = 〈u, u〉 = r2, so our equation yields 〈X,Bgradϕ〉 = 0.

Equivalently, we must have grad r ⊥ gradϕ.

Now suppose grad r = 0 on all points of M , ie. r is constant. Then H ⊂ TSrM . Take any

non-vanishing Z0 ∈ H. Then we may further1 let Z0 ∈ H ∩ {grad s, gradϕ}⊥. In fact, in dimension

≥ 3, we may find a point u in each fibre of SrM such that (∂ϕ)u = 0 and a vector Z0 ∈ Hu such

that Z0(s) = Z0(ϕ) = 0 and θ(Z0) = 0. Then on the chosen point u we get E(Z0) = 0 and so

h∗Z0 = Zh
′

0 . Hence our main equation yields the necessary condition f ′1λ = ψf1. Going back a

little, we then consider any point u and any Z0 ∈ H perpendicular to u, ie. such that ξu ⊥ BZ0.

Then we deduce

G′(h∗Z0, h∗Z0) = f ′1λ‖Z0‖2 + f ′2λĥ
2
((Z0(s))

2

s2
r2 + (∂ϕ)2‖Z0‖2

)

= ψf1‖Z0‖2

This immediately implies Z0(s) = 0, ∂ϕ = 0. Since Z0 and u may now be put in general position,

we conclude s and ϕ are constant on M , a connected manifold by assumption, and the Theorem

follows.

So now we admit grad r 6= 0 at some point x ∈ M . Recall grad r ⊥ gradϕ and let ǫ = ‖grad r‖
and δ = ‖gradϕ‖.

1This last assumption is not plausible in dimension 2 since we want Z0 6= 0, hence the hypothesis on the dimension;

although here we may assume that gradϕ together with grad s constitute a basis of H and then try to solve the system

of two quadratic equations and 4 unknowns, in the components of u and Z0 in that basis, given by Z0(t)ξ+ t∂ϕ.BZ0−

tθ(Z0)Bgradϕ = 0, for that is all we need - here, because ahead the dimension hypothesis is required again.
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Hence u1 = r
ǫgrad r ∈ SrM . Notice ∂ϕu1 = dϕ(u1) = 0. Consider the vector X0 = grad r and

X = X0 + ǫBX0. It is tangent to our sphere bundle at u1 since

〈X, ξ〉 = ǫ
r

ǫ
ǫ2 = r〈X0,X0〉 = rX(r).

And we have that

h∗X = Xh′ + ĥEX = Xh′ + ĥ
(X(t)

t
ξu1 + ǫBX − θ(X)Bgradϕ

)

= Xh′ + ĥ
(X(t)

t

r

ǫ
+ ǫ

)

BX0 − ĥrǫBgradϕ.

Consider also the tangent vector at u1, Z = Bgradϕ. Then h∗Z = ĥZ. And thus ψG(X,Z) =

ψf2ǫ〈BX0, Z〉 = 0; on the other hand

h∗G′(X,Z) = f ′2λĥ
2〈
(X(t)

t

r

ǫ
+ ǫ

)

BX0 − rǫBgradϕ,Bgradϕ〉

= −f ′2λĥ2ǫrδ2.

This implies δ = 0, ie. ϕ and hence λ = e2ϕ are constants.

Therefore the map h verifies h∗X = Xh+ĥ(X(t)
t ξ+Xv), for any vector field X ∈ TSrM . Now we

consider any horizontal vector X ∈ ker dr∩ker ds, in particular also tangent to SrM and orthogonal

to grad t (recall n ≥ 2). Then X(t) = 0 and, just as we had the result ĥ2λf ′2 = ψf2 using vertical

vectors, we have the similar result with horizontal: λf ′1 = ψf1.

Next, we use two generic tangent vectors X,Y ∈ TSrM . It is easy to see the conformality

equation h∗G′ = ψG is finally equivalent to

〈X(t)

t
ξ +Xv,

Y (t)

t
ξ + Y v〉 = 〈Xv , Y v〉,

X(t)Y (t)

t2
r2 +

X(t)rY (r)

t
+
Y (t)rX(r)

t
= 0

or

X(t)Y (t)r +X(t)Y (r)t+X(r)Y (t)t = 0.

Notice this last equation only involves the horizontal part of the vectors, so we assume X,Y as such.

Now if we take X orthogonal to grad t, ie. satisfying X(t) = 0, and take Y = grad t, then we find

that X(r) = 0 or that X is also orthogonal to grad r. Henceforth, grad t and grad r are proportional,

ie. lie on the same line. In other terms,

dt = adr

for some function a on M . Clearly the equation above may be written as

rdt⊗ dt+ tdt⊗ dr + tdt⊗ dr = 0.

Hence we have (ra2 + 2ta)dr ⊗ dr = 0. Recalling r is not constant, we either have t constant or

ra+ 2t = 0. We have both

dt = −2t

r
dr = −2s

r2
dr and dt =

rds− sdr

r2
.

Hence −2sdr = rds− sdr ⇔ rds+ sdr = 0, from which we find sr =constant.

Finally all conditions are fulfilled for h to be the expected homothety of ratio ψ. The identity

map case is trivial. �
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Let gS = g1,1 denote the induced Sasaki metric on the tangent sphere bundle and recall we are

only considering dimM ≥ 3.

Corollary 2.1. The Riemannian manifold (SrM,gS) is homothetic to (S′
sM, (λg)S) via h if and

only if ψ = λ = s2

r2
and this is a constant. In this case, h is the identity and s =

√
λr; in other

words SrM = S′
sM . In particular, two tangent sphere bundles both with the induced Sasaki metric

are homothetic if and only if they have exactly the same radius function, ie., they coincide.

Corollary 2.2. Other particular cases are as follows: the Riemannian manifold (SrM,gf1,f2)

is isometric via h to (S′
rM, (λg)1,f2) if f1 = λ is constant. And (SrM,gf1,f2) is isometric to

(S′
1M, (λg)1,r

2f2) if f1 = λ and both r, f1 are constant. Moreover, (SrM,gS) is isometric to

(S1M,g1,r
2

) if r is constant.

We have used the metric G = gf1,r
−2

on SrM . So we study this case separately.

Corollary 2.3. Let SrM be given the metric G = g1,
1

r2 and let S′
sM be with the metric G′ =

(λg)f
′

1
, 1

s2 . Then the following three conditions are equivalent:

1. the map h : SrM → S′
sM is a homothety.

2. the functions verify: ψ = f ′1λ = 1, λ is a constant and s/r or sr is a constant.

3. the map h is an isometry.

In particular, for any s, r positive constants, (SrM,g1,r
−2

) ≃ (SsM,g1,s
−2

) ≃ (S1M,gS).

Proof. Indeed we have ψ = f ′1λ = s2

r2
r2

s2 = 1. �

Corollary 2.4. Let r be any function on M . Then (SrM,gS) is isometric to (S 1

r
M,g1,r

4

).

Proof. This is due to the second particular case found in the Theorem. We are taking λ = 1 and

s = 1
r and indeed ψ =

f ′
1

f1
λ = 1 = r4

r4 = s2

r2
f ′
2

f2
. Also notice we have sr constant. �

2.6 Applications to space-forms

Formulas for the curvature of tangent sphere bundles of space-forms are finally studied here. Let

R > 0 and let

MR =
{

x ∈ R
m+1 : x21 + · · ·+ x2m ± x2m+1 = R2

}

(24)

be an m-dimensional space-form with the induced metric g from Euclidean space. MR has constant

sectional curvature ±1/R2. If we conformally change the metric g  λg by a constant, then clearly

± 1
R2  ± 1

λR2 .

Having another R1 > 0, the map F : MR1
−→ MR defined by x ∈ R

m+1 7−→ F (x) = R
R1
x

induces the following isometry through differentiation. Writing f1 = f2 =
R2

R2

1

and s = R1r
R , we have

F∗ : (SsMR1
, gf1,f2) −→ (SrMR, g

S), F∗(x, u) =
R

R1
(x, u). (25)

Indeed, (F∗)∗gS = gf1,f2 . This isometry and corollaries 2.2,2.3 give us the next quite interesting

result.
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Proposition 2.3. We have the following isometries

(S1MR, g
S) ≃ (S 1

R
M1, g

R2,R2

) ≃ (S′
1

R

M1, (R
2g)1,R

2

) ≃ (S′
1M1, (R

2g)1,1) = (S1M1, (R
2g)S). (26)

Now we apply a general formula from [7, Proposition 1.6] on the scalar curvature Scal of

(SsM,gf1,f2) for any given constants f1, f2:

Scal(SsM,gf1,f2 ) =
1

f1
Scal(M,g) −

f2
4f21

m
∑

i,j,k=1

(Rξ
ijk)

2 +
(n − 1)n

f2s2
. (27)

Since
∑m

i,j,k=1(Rξ
ijk)

2 = s2

R4 2n, where n = m− 1, we have

Scal(SsMR,gf1,f2 )
= ±n(n+ 1)

f1R2
− f2

4f21

s2

R4
2n+

(n− 1)n

f2s2
. (28)

In particular the scalar curvature of (26) is ±n(n+1)
R2 − n

2R4 +(n−1)n. We may say it is rewarding to

see the same value in (28) for any of the forms in (26). Notice we can also write the scalar curvature

of (SrMR, g
S) ≃ (S 1

r
MR, g

1,r4).

Theorem 2.3. For any m ≥ 3 and both cases ±, for any scalars R, f1, f2 > 0, we can always find

a sufficiently small or large radius s in order to have (SsMR, g
f1,f2) with, respectively, positive or

negative scalar curvature.

The proof is clear just by looking at s in (28); the result is partially corroborated by two Theorems

in [11].

We further remark that the formulas in [7] show the Riemannian metrics we are considering are

never Einstein, though Scal(SsMR,gf1,f2)
is constant.

3 Characteristic classes

We know not of any reference for the fundamental questions solved in this section. We extend our

study to problems of topology of the tangent and tangent sphere bundles. The first stems from the

Riemannian structure.

3.1 Almost Hermitian structure on TM

The pair TM, gS admits a compatible almost complex structure, also attributed to Sasaki. It was

first studied in [9, 14] and gave origin in [15] to an almost contact structure on the unit tangent

sphere bundle S1M . For M oriented and dimension 4 we discovered a natural G2-structure always

existing on S1M with the very same metric, cf. [4, 5].

We continue the study of TM with the metric G = gf1,f2 where f1 = e2ϕ1 and f2 = e2ϕ2 . We let

∇ denote a metric connection on M with torsion T∇. The almost complex structure of Sasaki may

be now written as the bundle endomorphism IS = Bad −B.

Let

ψ = ϕ2 − ϕ1, ψ = ϕ2 + ϕ1. (29)

We then define

IG = eψBad − e−ψB. (30)
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It is easy to see the endomorphism IG is an almost complex structure compatible with the metric

G. We consider also the associated non-degenerate 2-form ωG defined by ωG(X,Y ) = G(IGX,Y ),

∀X,Y ∈ TTM . Since f1e
ψ = f2e

−ψ = eψ, it follows that ωG = eψωS where ωS is the 2-form

associated to the Sasaki structure gS and IS = Bad −B.

The next Theorem is shown for completeness of exposition. For the Cartan classification of

torsions of metric connections see [3]. Notice the presence again of the quotient and product of the

weights f1, f2!

Theorem 3.1 ([6]). i) The almost complex structure IG is integrable if and only if ∇ is flat and

has the vectorial type torsion T∇ = dψ ∧ 1. In particular, if ∇ is torsion free, then IG is integrable

if and only if M is Riemannian flat and f2/f1 =constant.

ii) (TM,ωG) is a symplectic manifold if and only if T∇ = dψ ∧ 1. In particular, with ∇ the

Levi-Civita, dωG = 0 if and only if f2f1 =constant.

We observe that in the strict case of the Sasaki metric we have T∇ = 0 as necessary condition

for both integrability of IS and dωS = 0. In the general case, the two equations are distinguished,

as they should, by ψ and ψ. Clearly we may draw the following conclusion.

Corollary 3.1 ([6]). The almost Hermitian structure (TM,G, IG, ωG) is Kähler if and only if M

is a Riemannian flat manifold (T∇ = 0, R∇ = 0) and f1, f2 are constants. In this case, TM is flat.

The last assertion follows indirectly from Proposition 2.1.

Remark. Recall T ∗M has a natural symplectic structure. It arises as dλ where λ is the Liouville

1-form ([10]): the unique 1-form λ on T ∗M such that on a section α

λα = α ◦ π∗ (31)

When we introduce the metric, the tangent and cotangent (sphere) bundles become isometric

bundles. With a little computation we find that the 1-form θ = ξ♭ ◦B = (Badξ)♭ corresponds with

the Liouville form, so it does not depend on the connection. Knowing the torsion of ∇∗ ⊕ ∇∗ for

any metric connection on M , it is easy to deduce, cf. [4], that for any radius function we have:

dθ = ωS + θ ◦ T∇. (32)

The same is to say ωS corresponds with the pull-back of the Liouville symplectic 2-form if and only

if T∇ = 0. Then a Hamiltonian theory of the geodesic flow is manageable. We also remark that

the geodesic vector field in the sense e.g. of [10], i.e. the vector field Badξ in our setting, is just the

same as the geodesic spray in the sense e.g. of [9, 13].

3.2 Chern and Stiefel-Whitney classes of TM

Let us continue with the structures G, IG on the tangent bundle, induced from any metric connection

∇, and the same notation from above.

By a deformation retract on the fibres of π : TM →M , there is an identification of cohomology

spaces H∗(M) = H∗(TM). This is valid for any coefficient ring. In particular H i(TM) = 0, ∀i > m.

Let wj denote the j-th Stiefel-Whitney class of M — which is a Stiefel-Whitney class of TM as a

vector bundle. Let w =
∑

wj denote the total Stiefel-Whitney class.
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Theorem 3.2. For any manifold M of dimension m, the Euler class of the manifold TM vanishes

and the total Stiefel-Whitney class is

w(TTM) = w2 =

[m/2]
∑

j=0

w2
j . (33)

Proof. Being a top degree class, the Euler class must vanish. Since TTM = π∗TM ⊕ π∗TM , the

Whitney product Theorem and the naturality of the characteristic classes ([12]) immediately give

w(TTM) = w(TM)w(TM) = w2. Recall the coefficients are in Z2, hence the second identity in

(33). �

Theorem 3.3. The Chern classes of the manifold TM with almost complex structure IG are the

Chern classes of the complexified tangent bundle, TM ⊗R C →M .

Proof. The complex structure IG in TTM is equivalent to IS . One complex isomorphism is given

by f : X 7→ Xh + eψXv. Indeed, ∀X ∈ TTM ,

IS ◦ f(X) = (Bad −B)(Xh + eψXv) = −BXh + eψBadXv

= eψBadXv − eψe−ψBXh = f ◦ IG(X).

By the functorial properties, we just have to compute the Chern classes of IS . (Another argument:

the homotopy induced by tψ, t ∈ [0, 1], preserves the Chern classes.) Now, the Chern classes of

an almost complex manifold (N,J) are the Chern classes of the C-vector bundle T+N , the +i-

eigenbundle of J where i =
√
−1. In our case,

T+TM = Hc = π∗TM c

where c denotes complexification, because of the C-isomorphism induced from X ∈ H 7→ X+iBX ∈
T+TM . Indeed IS(X + iBX) = −BX + iBadBX = i(X + iBX). Finally, by trivial reasons, we

have cj(T
+TM) = cj(TM

c). �

We recall the Chern classes c2j define the Pontryagin classes of M , cf. [12],

pj(M) = (−1)jc2j(TM ⊗C). (34)

Moreover, the Chern classes of (TM, IG) do not depend on the connection ∇.

3.3 Stiefel-Whitney classes of SrM

Now let m = n+1 and let r > 0 be a scalar function on M . We continue to denote by w =
∑m

j=1wj
the total Stiefel-Whitney class of M .

Theorem 3.4. The total Stiefel-Whitney class of the manifold SrM is

w(SrM) =

n
∑

j=0

π∗w2
j (35)

and in particular its mod 2 Euler class vanishes.
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Proof. First suppose r is constant. Then the n-vector bundle κ := ξ⊥ ⊂ V sits in TSrM = H ⊕ κ

where we assume e.g. the Sasaki metric. We have w(π∗TM) = w(H) = π∗w. Clearly w(π∗TM) =

w(κ⊕ Rξ) = w(κ). Hence

w(TSrM) = w(H ⊕ κ) = w(π∗TM)2 = π∗w2.

Notice wm(κ) = 0 due to rank of κ being just n. Independently, 0 = w2n+1(SrM) = e(SrM) mod 2.

Using the homeomorphism h : S1M −→ SrM, h(u) = ru, we have the result for any function r. �

Remark. 1. The results show that the odd degree Stiefel-Whitney classes of the manifolds TM

and SrM vanish.

2. We observe the independence of (35) from r. Moreover, always w1(SrM) = 0, as expected

because TM is always oriented and ξ induces an orientation on the submanifold.

3. If M has a finite good cover, is oriented, and admits a non-vanishing vector field, then we deduce

H∗(SrM) = H∗(M) ⊗ H∗(Sn) by the Theorem of Leray-Hirsh (cf. [8]). In particular π∗ is an

isomorphism H i(SrM) = H i(M) of cohomology spaces up to degree i ≤ n−1 = m−2. By contrast,

we have proved π∗(wm) = 0.

Since w2(SrM) = w2
1, we have the following conclusion.

Corollary 3.2. For any oriented Riemannian manifold M , the manifold SrM is spin.

Recall w2 is also the obstruction for a closed 7-manifold to admit a G2-structure. We have

explicitly constructed a natural G2-structure on S1M , for any oriented Riemannian 4-manifold M ,

cf. [4, 5] and the references therein.
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