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a b s t r a c t

Transferring distribution models between different geographical areas may be problematic, as the per-
formance of models outside their original scope is hard to predict. A modelling procedure is needed that
gets the gist of the environmental descriptors of a distribution area, without either overfitting to the
training data or overestimating the species’ distribution potential. We tested the transferability power of
the favourability function, a generalized linear model, on the distribution of the Iberian desman (Galemys
pyrenaicus) in the Iberian territories of Portugal and Spain. We also tested the effects of two of the main
potential constraints on model transferability: the analysed ranges of the predictor variables, and the
completeness of the species distribution data. We modelled 10 km × 10 km presence/absence data from
Portugal and Spain separately, extrapolated each model to the other country, and compared predictions
with observations. The Spanish model, despite arguably containing more false absences, showed good
predictive ability in Portugal. The Portuguese model, whose predictors ranged between only a subset of
the values observed in Spain, overestimated desman distribution when transferred. We discuss possible
reasons for this differential model behaviour, and highlight the importance of this kind of models for
prediction and conservation applications.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Species distribution models are a valuable and increasingly used
tool for environmental management and conservation. Predictive
models have a number of interesting potential applications, such as
the forecasting of species occurrence in poorly documented regions,
the definition of the most adequate areas for species protection or
reintroduction, or the prediction of species responses to environ-
mental change (Fielding and Haworth, 1995). These applications
may involve applying models outside the region from where the
data were taken – that is, model transference in space – since
species distribution data are often available from a limited part
of the total distribution range, and conservation measures may be
necessary in areas where the distribution is not well known.

On the other hand, models built using data from a given geo-
graphic area may be less applicable elsewhere, due to local or
regional variations in species’ responses to the environment (Brown
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and Lomolino, 1998; Osborne and Suárez-Seoane, 2002). Bulluck et
al. (2006) found that, if model predictions are to be applied to an
environmentally similar area and the modelled species’ ecological
requirements are not too plastic, distribution models may often be
reliable outside their original scope. This raises the issue that mod-
els may lose applicability in areas where the predictor variables
span outside the range of values the model was built on.

Another potential constraint on the transferability of distribu-
tion models is the extent and quality of the training data. The
extension of a species’ distribution within the modelled territory
may affect model performance, widespread species being the most
difficult to model (Manel et al., 2001; Stockwell and Peterson, 2002;
McPherson et al., 2004), although this can be an artefact of model
evaluation techniques (Lobo et al., 2008; Jiménez-Valverde et al.,
2008). But additionally, models based on a part of the territory
where the species’ range has no clear geographical limits may
not detect important environmental constraints, reducing predic-
tive power when they are extrapolated outside the original area
(Segurado and Araújo, 2004; Arntzen, 2006).

The choice of modelling method is another important issue
when the aim is to predict distribution in non-sampled areas.
Peterson et al. (2007) compared the predictive success of two
“presence-only” modelling algorithms, GARP (genetic algorithm
for rule-set production) and Maxent (maximum entropy), when
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extrapolated in geographic space. Maxent overfitted to the origi-
nal data, while GARP slightly overestimated the modelled species’
distributions. However, Papeş and Gaubert (2007) showed that,
when sample size is small, Maxent can extrapolate more than GARP.
Besides, Phillips (2008) further pointed out that Peterson et al.’s
(2007) work was strongly affected by geographic bias in the occur-
rence data used, and affirmed that this is a much greater problem
for presence-only than for presence–absence models.

We remark that so-called presence-only methods also take
absences into account, in the form of “background data”, and are
affected by false absences, which are simply true presences that
they miss. Besides, models that do explicitly account for absences
have a number of advantages, namely computing valuable infor-
mation on conditions that are in fact unfavourable for the species,
and modelling the realized rather than the theoretically potential
distribution (Jiménez-Valverde and Lobo, 2006). Species absences
in a dataset can be of two types: true, and false. False absences
result from insufficient sampling effort given the species’ abun-
dance or detectability. They can hinder good model performance,
although Reese et al. (2005) showed that randomly distributed
false absences, due to randomly biased sampling effort, do not.
True absences can be further subdivided into two classes: “true
environmental” absences, when the species is not present due
to environmental constraints on its physiology; and contingent
absences, when the environment is appropriate but other factors
such as limitations to dispersal, elimination by anthropogenic or
stochastic events, or biotic interactions prevent species occurrence
(Jiménez-Valverde et al., 2008). Contingent absences are an impor-
tant component of species’ realized distributions, and accounting
for them may provide models with better descriptive and predic-
tive potential, provided that contingent factors are similar in the
prediction area.

Furthermore, Meynard and Quinn (2007) showed that general-
ized linear models (GLM) and generalized additive models (GAM),
two presence–absence modelling methods, outperform more com-
plex techniques such as classification trees and GARP, providing
a good trade-off between model complexity and performance.
Randin et al. (2006) showed that GLM were slightly but significantly
more robust to transferability than GAM, suggesting that overfit-
ting may reduce transferability. We too use GLM, widely employed
in species distribution modelling (e.g. Teixeira and Arntzen, 2002;
Osborne and Suárez-Seoane, 2002; Barbosa et al., 2003; Arntzen
and Alexandrino, 2004; Real et al., 2008), as they produce robust
models, explicit enough to illustrate which and how predictors
are involved, but complex enough to detect subtle spatial patterns
within the distribution range.

We also chose a species with marked distribution limits inside
a study area, the Iberian Peninsula, divided among two countries,
Portugal and Spain. The Iberian desman (Galemys pyrenaicus Geof-
froy, 1811) is an endangered insectivore mammal that inhabits
lakes, small streams, and rivers in cold mountain environments. It
is endemic to the Pyrenees and the Iberian northern half. Its main
conservation problems derive from habitat destruction or fragmen-
tation and from predation by an invasive carnivore, the American
mink Mustela vison (Gisbert and García-Perea, 2005; Palazón et al.,
2005). The Iberian desman is presently considered vulnerable in
Portugal (Cabral et al., 2006) and in Spain (Palomo et al., 2007).

We aimed to test the effects of two of the main potential
constraints on the success of model transference in space: the
completeness of the distribution data, and the analysed range of
the predictors. Portugal provides comprehensive desman pres-
ence/absence data, derived from a specific survey in which every
10 km × 10 km UTM grid cell within the species’ range was sys-
tematically searched for occurrence signs (Queiroz et al., 1998),
minimising false absences in the dataset. The Spanish distribution
data were taken from a national mammal atlas in which survey

effort was not as thorough as in Portugal. The Spanish dataset is
thus likely to include more false absences, which we are naturally
unable to distinguish reliably from contingent absences. We have,
however, reason to believe that false absences are neither numer-
ous nor spatially biased, as this particular species was fairly well
studied throughout Spain (Nores et al., 2002).

On the other hand, the range of environmental conditions
observed in Portugal is only a subset of those available in Spain,
which has a larger surface area and more diverse climate and topog-
raphy. A model built from Spanish data can, therefore, take into
account a wider range of environmental features and be applied to
Portugal with practically no limitations in this respect. Conversely,
the extrapolation of the Portuguese model to Spain would entail a
few predictions outside the function’s domain.

We built a model of environmental favourability based on the
complete Iberian desman distribution dataset, and one separate
model for each of the two countries. We compared the perfor-
mances of these models to test two alternative hypotheses: (1) Data
completeness is more important than the analysed range of predic-
tor variables; in this case, the Portuguese model should be more
transferable than the Spanish one and (2) the analysed range of
the predictors is more important than a thorough sampling effort;
in this case, the Spanish model would have the best results when
transferred.

2. Methods

2.1. Study area and base maps

The Iberian Peninsula is Europe’s south-western extremity and
covers nearly 600,000 km2, of which 18% belong to Portugal and
82% to Spain. Both countries are topographically and climatically
heterogeneous, but Spain encompasses a wider range of varia-
tion. To define the territorial units we used CartaLinx 1.2 (Clark
Labs, USA) and the digital UTM 10 km × 10 km grid maps obtained,
respectively, from the Macroecology and Conservation Unit (former
Biological Cartography Lab) of the University of Évora, and from
the Area of Protection against Forest Fires of the Spanish Ministry
for the Environment. We re-sampled the Portuguese map, initially
in a Gauss projection, to the UTM-30N reference system originally
adopted for Spain. We appended a digitized perimeter of Portu-
gal to the UTM grid and cut it to eliminate the parts of the UTM
squares not included in Portuguese territory, which was already
done in the Spanish map. We then appended the Portuguese and
Spanish maps and databases, to obtain a third GIS cover with the
UTM 10 km × 10 km squares of the whole Iberian Peninsula.

2.2. Distribution data and predictor variables

We used UTM 10 km × 10 km presence/absence data, obtained
from a thorough specific survey in Portugal (Queiroz et al., 1998)
and from a mammal atlas in Spain (Nores et al., 2002) (Fig. 1).
We recorded 23 predictor variables related to different macroen-
vironmental factors prone to affect desman distribution (Table 1).
According to Austin (1980), predictors can be of three main types:
resource variables, i.e. matter or energy directly consumed by the
species; direct gradients, i.e. variables that affect the species’ phys-
iology; and indirect gradients, which do not affect the species
directly but are strongly correlated to direct or resource gradi-
ents. The latter are more easily measured and usually replace a
combination of different resources and direct gradients in a sim-
ple way (Guisan et al., 1999; Guisan and Zimmermann, 2000).
Our variables were thus chosen on the basis of availability at this
scale and potential predictive power, and are surrogates for more
local causal factors (see also Post and Forchhammer, 2002). The
inclusion of spatial variables such as latitude and longitude helps
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Fig. 1. Location of the study area and Galemys pyrenaicus distribution in Portugal (after Queiroz et al., 1998) and Spain (after Palomo and Gisbert, 2002) on UTM 10 km × 10 km
cells. Black squares represent recorded presences.

model distribution trends not related to the spatial structure in the
environmental conditions (Borcard et al., 1992; Diniz-Filho et al.,
2003; Kühn, 2007), but rather to historical events or to migrations
from favourable areas to those less favourable but within reach
(Legendre, 1993; Barbosa et al., 2001; Real et al., 2003).

We digitized (using CartaLinx 1.2) and interpolated (using
Idrisi32, Clark Labs, USA) these variables on a 1 km × 1 km reso-
lution (except for altitude, which is distributed as a digital coverage
at this resolution by the Land Processes Distributed Active Archive
Center, located at the U.S. Geological Survey’s EROS Data Center,
https://lpdaac.usgs.gov/), and obtained the mean values of the vari-
ables for each UTM 10 km × 10 km square. Details on the digitizing
and interpolation process were explained by Barbosa et al. (2003).

2.3. Statistical analyses

We built three distribution models of G. pyrenaicus using the
data from Portugal, Spain, and the whole Iberian Peninsula, respec-
tively. We used the favourability function of Real et al. (2006), a
GLM that computes local variations in species presence probability
in relation to overall species prevalence. Unlike logistic regression,
it allows using all available data (both presences and absences)
while making models independent of the presence/absence ratio

in the study area (Real et al., 2006; Jiménez-Valverde and Lobo,
2006). With the favourability function, thresholds for all models
are levelled according to the species prevalence in each area. A
favourability value of 0.5 means that presence of the species is
as probable as its prevalence in the corresponding study area, i.e.,
neutral environmental favourability. Consequently, the same envi-
ronmental threshold may be used for all models, with no problem in
using uneven presence/absence datasets (Real et al., 2006; Jiménez-
Valverde and Lobo, 2006). This can enhance the transferability of
models between areas differing in species prevalence.

To avoid a spurious effect of grid cell area on desman pres-
ence probability, we excluded from the analyses any UTM cells
that were cut by the coastline, the unions between longitudinal
UTM zones, or the borders with neighbouring countries, and used
only equal-area 100 km2 squares. The number of analysed cells
was, therefore, 177 presences + 589 absences in Portugal, 448 pres-
ences + 3995 absences in Spain, and 660 presences + 4675 absences
in the whole Iberian Peninsula.

Statistical theory predicts an increase of spurious findings
when a large number of variables are under analysis, due to the
increase of type I error under repeated testing (i.e., the familywise
error rate, FWER). García (2003) recommended FWER control
in ecological studies by evaluating Benjamini and Hochberg’s
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Table 1
Factors and their related variables used to model the distribution of Galemys pyrenaicus, and their range of values in Portugal and Spain (average values on UTM 10 km × 10 km
grid cells).

Factor Variable Code Range in Portugal Range in Spain

Topography Mean altitude (m)a Alti 0–1408.6 0–2630.6
Mean slope (degrees) (calculated from Alti) Slop 0.1–11.3 0–19.6

Water availability Mean annual precipitation (mm)b Prec 390.1–2557.4 154–2621.3
Mean relative air humidity in January at 07:00 h (%)b HJan 81.3–94.9 60.7–95.0
Mean relative air humidity in July at 07:00 h (%)b HJul 50.4–86.6 50.6–92.4

Environmental energy Mean annual insolation (h/year)b Inso 1983.3–3112.5 1603.5–3172.0
Mean annual solar radiation (kwh/m2/day)b SRad 352.2–509.3 304.6–507.0
Mean temperature in January (◦C)b TJan 1.5–12.9 3.7 to 13.2
Mean temperature in July (◦C)b TJul 15.7–26.2 13.5–28.8
Mean annual temperature (◦C)b Temp 9.4–17.1 3.9–19.4
Mean annual number of frost days (minimum temperature ≤0 ◦C)b DFro 0–74.0 0–117.7
Mean annual potential evapotranspiration (mm)b PET 619.1–933.6 566.7–1036.4

Productivity Mean annual actual evapotranspiration (mm) (=minimum [PET, Prec]) AET 390.1–862.9 154.6–923.9

Environmental disturbance Maximum precipitation in 24 h (mm)b MP24 76.2–323.4 52.1–474.5
Relative maximum precipitation (=MP24/Prec) RMP 0.1–0.3 0.1–1.0

Climatic variability Mean annual number of days with precipitation ≥0.1 mmb DPre 61.5–148.7 16.1–193.2
Annual temperature range (◦C) (=TJul − TJan) TRan 7.0–19.9 8.2–21.5
Annual relative air humidity range (%) (=|HJan − HJul|) HRan 0.5–41.6 0.1–41.3

Human activity Distance to the nearest highway (km)c DHi 0.9–84.5 0.5–105.2
Distance to the nearest town with more than 100,000 inhabitants (km)c U100 1.0–166.4 0.1–154.0
Distance to the nearest town with more than 500,000 inhabitants (km)c U500 1.6–206.9 0.1–301.9

Spatial situation Latitude (◦N)c Lati 37.0–42.1 36.1–43.7
Longitude (◦E)c Long −9.5 to −6.2 −9.3 to 3.3

Sources: aU.S. Geological Survey (1996); bFont (1983, 2000); cI.G.N. (1999); data on the number of inhabitants of urban centers taken from Enciclopédia Universal
(http://www.universal.pt) for Portugal and from the Instituto Nacional de Estadística (http://www.ine.es) for Spain, both in 1999.

(1995) false discovery rate (FDR). We controlled this error using
the procedure for all forms of dependency among test statistics
(Benjamini and Yekutieli, 2001), and only accepted variables under
a FDR value lower than 0.05.

Regressions were performed using forward–backward stepwise
variable selection (see Pearce and Ferrier, 2000), with a 0.05 sig-
nificance threshold for inclusion and 0.10 for exclusion. Stepwise
selection is commonly used in distribution modelling (e.g. Araújo
et al., 2005; Bulluck et al., 2006; Arntzen, 2006) as it maximizes
predictive efficiency in an objective and reproducible way and
is a useful and effective tool when the individual importance
of each variable is not known a priori (Hosmer and Lemeshow,
2000). Although correlations exist between the variables, the
forward–backward procedure adds at each step only variables with
a significant additional contribution to the model, i.e., significantly
related to the residuals not accounted for by other correlated vari-
ables. It also drops terms that do not degrade the fit by a significant
amount. In addition, correlations between predictors affect coeffi-
cients, but not the predictive ability of the model, which can actually
profit from including the possibility to add correlated variables
(Legendre and Legendre, 1998, p. 519).

We checked that the last step produced the most parsimonious
model according to Akaike’s Information Criterion (AIC; Akaike,
1973, see Brotons et al., 2004). This procedure was used with a
predictive rather than explanatory goal, and accuracy of model
predictions was considered more important than significance of
particular ecological terms (see Legendre and Legendre, 1998;
Brotons et al., 2004).

As the utility of models cannot be captured by a single accuracy
measure (Moisen and Frescino, 2002), we compared the perfor-
mance of the models when applied to each of the three territories
using five evaluation measures: the overall correct classification
rate (CCR), sensitivity (i.e., the correct classification rate for pres-
ences), specificity (correct classification rate for absences), Cohen’s
kappa, and the area under the ROC curve (AUC) (see Fielding and
Bell, 1997).

3. Results

The model obtained from the Portuguese distribution data
included six variables, the Spanish model included eight variables,
and the complete Iberian model included thirteen variables. Seven
of the variables were common to at least two of the models (Table 2).
The three models’ predictions on the whole Iberian Peninsula are
shown in Fig. 2, and their evaluation scores in each of the three
territories are shown in Fig. 3.

The Portuguese model achieved the highest scores for descrip-
tive capacity in its own territory for all five evaluation measures

Table 2
Variables and their associated coefficients (ˇ) in the three Galemys pyrenaicus envi-
ronmental favourability models.

Portuguese model Spanish model Iberian model

AET11 (0.0038)
Alti6 (0.0021)

DFro2 (0.10)
DPre6 (0.043) DPre3 (0.027) DPre7 (0.032)

HJul4 (−0.10)
HRan10 (0.039)
Inso12 (0.0014)

Lati1 (2.43) Lati5 (1.13) Lati4 (1.56)
Long2 (−0.35)
MP249 (0.0051)
PET13 (−0.0063)

Prec1 (0.00077)

Slop4 (0.23) Slop3 (0.24)
SRad8 (0.013) SRad6 (0.020)
Temp2 (−0.60) Temp1 (−0.55)
TJan7 (0.43)

TJul5 (0.57) TJul8 (0.36)
U5003 (−0.019) U5005 (−0.0093)
Constant (−117.21) Constant (−44.63) Constant (−80.87)

Numbers in superscript indicate the order of inclusion in the model. All variables
had significant (p < 0.01) Wald test values. Variable codes as in Table 1.
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Fig. 2. Environmental favourability for Galemys pyrenaicus in the Iberian Peninsula
according to the models obtained using the data from Portugal, Spain and the whole
Peninsula. Favourability values are represented with a greyscale ranging from 0
(white) to 1 (black).

(Fig. 3, top). However, and despite relying on comprehensive
distribution data, it scored the lowest predictive scores when
extrapolated (Fig. 3, bottom), clearly overestimating desman dis-
tribution in Spain (cf. Figs. 1 and 2). If we consider only the UTM
cells in which all selected variables are within the Portuguese func-
tion’s domain (i.e., within the range of values observed in Portugal;
Table 1; N = 1738), the Portuguese model evaluation scores improve
in this “Portugal-like” Iberian Peninsula, compared to the model
extrapolated to the whole Peninsula, but they do not when we
consider only the extrapolation to “Portugal-like” Spain (N = 867)
compared to the extrapolation to the whole of Spain (Fig. 3, bottom).

However, this is likely due to the fact that the only four presences in
areas classified as unfavourable by the Portuguese model in Spain
were within the function’s domain, with a strong effect on sensi-
tivity and related measures.

Despite relying on a less even sampling effort and probably con-
taining more false absences, the Spanish model achieved generally
good descriptive performance (Fig. 3, top) and also showed better
predictive capacity than the Portuguese model when extrapolated
(Fig. 3, bottom). In fact, it achieved nearly the same descriptive
scores as the Iberian model, except for kappa, which was visi-
bly inferior (Fig. 3, top). However, kappa values are known to be
influenced by species prevalence in the territory where predic-
tions are applied (see Thompson and Walter, 1988), so they are not
directly comparable. Desman prevalence in Spain was just under
10%, whereas in the whole Iberian Peninsula it reached 12%. Indeed,
prevalence correlated quite significantly with kappa values across
all models (Pearson’s r = 0.846, p = 0.001, N = 11), whereas it corre-
lated moderately with CCR, specificity, and AUC (p < 0.05) and did
not correlate with sensitivity (p > 0.5).

4. Discussion

The transference of models to predict into broadly unsampled
regions is quite a bigger challenge than simply interpolating or fill-
ing gaps in a generally sampled landscape (Peterson et al., 2007).
All three models analysed here were the best at describing des-
man distribution in their own territory (Fig. 3). These results are
consistent with those of Osborne and Suárez-Seoane (2002), who
attributed them to local variations in the species’ response to the
environment. Regional models can detect these local variations
more effectively than global ones, which have to incorporate in a
single model a greater heterogeneity in environment–species rela-
tionships. However, the Iberian model achieved results comparable
to those of the national models in both territories (Figs. 2 and 3),
indicating that the differences between Portugal and Spain, at
least concerning the environmental factors that affect the Iberian
desman, are not so sharp as to let an Iberian-scale model be
markedly affected by the environmental heterogeneity within this
area.

Vaughan and Ormerod (2003) argued that modelling success
depends on sampling the whole region of environmental space
within which the organism is present. Not including part of this
range in the models may result in computing species response
curves different to the real ones, thus restraining model application
outside its original scope. However, distribution data (and predic-
tor variables) are often available from a limited part of the species’
range, which is why transferable models are needed in the first
place.

On the other hand, Arntzen and Alexandrino (2004) and Arntzen
(2006) argued that a model with a good descriptive ability (i.e., a
good fit to the starting data, evidenced by good intrinsic evaluation
measures) will probably be effective when extrapolated outside its
original scope. Arntzen (2006), in particular, compared several dis-
tribution models obtained from Portugal and found that the best
descriptive models were also the best predictive ones when extrap-
olated to Spain. However, our results show that this conclusion may
not be general, unless we are only comparing models built from
the same base territory. When extrapolated outside their original
geographical area, our two national models behaved in different
ways. Although the Portuguese model scored the highest descrip-
tive evaluation measures, it was the worst when extrapolated to
the neighbouring territory (Fig. 3), visibly overestimating the pre-
diction of favourable areas in Spain (cf. Figs. 1 and 2). The Spanish
model, albeit scoring lower in the intrinsic evaluation measures,
was generally more effective at predicting desman distribution in
Portugal (cf. Figs. 1 and 2).
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Fig. 3. Evaluation scores for each Galemys pyrenaicus distribution model in its own territory (top) and when spatially extrapolated (bottom). For details see text.

Possible causes for this asymmetric transferability may be of
two types: environmental differences between geographic regions,
and biotic factors specific to the modelled species and the regional
species pool it interacts with (Randin et al., 2006). Environmental
differences do exist in this case, as Portugal includes only part of
the variation observed in Spain. Some of the variables take values
in Spain that clearly exceed the domain of a Portuguese function
(Table 1), and models may yield unrealistic predictions outside
this domain. Additionally, as Portugal is clearly smaller than Spain,
with a significantly lower number of grid cells (i.e. observations;
Fig. 1), the Portuguese model includes fewer variables (Table 2),
overlooking details that the Spanish model succeeds to detect and
that are noticeable only when a larger geographical area is anal-
ysed. Furthermore, Spain contains combinations of environmental
factors that do not occur in Portugal, as for example, a combination
of high mean altitude with low mean slope along a vast plateau,
the Meseta, which the Portuguese model cannot take into account.
This can explain the marked differences between observed desman
distribution in the Meseta area (northern-central Peninsula, Fig. 1)
and the favourability predicted for this region by the Portuguese
model (Fig. 2): the Portuguese model predicted the whole area to
be favourable, whereas the species is markedly absent.

Biotic differences exist as well, as Spain is witnessing a more
widespread expansion of an introduced predator, the American
mink (Mustela vison), which has a negative impact on desman popu-
lations (Palomo and Gisbert, 2002; Palazón et al., 2005). This preda-
tor may be behind a number of the desman’s contingent absences
in Spain, which the Portuguese model is unable to predict. Although
the Spanish model also could not access mink distribution explic-
itly, it may have included environmental proxies (indirect gradi-
ents; Austin, 1980; Guisan et al., 1999) that accounted for its effect.
It would be interesting, though, to obtain up-to-date information
on the distribution of this invasive predator in order to build com-
parative predator–prey distribution models (e.g. Real et al., 2008),
and/or to include it among the predictors of desman distribution.

Despite relying on comprehensive distribution data, the Por-
tuguese model extrapolated worse than the Spanish one (Fig. 3),
showing that a high-quality dataset, with virtually no false

absences, does not warrant extrapolation success. The good trans-
ference results of the Spanish model, on the other hand, indicate
that false absences are not such an important constraint, as long as
they are not too many and not geographically biased, as we believe
to be the case here (Nores et al., 2002). False absences resulted
mainly from lower detectability of the species in some areas, and
thus are probably related to species abundance. Real et al. (2008)
showed that favourability models based on the same distribution
atlas used here correlated significantly with independent abun-
dance data for two other mammal species. Actually, imperfect but
abundance-related detection may even be convenient for obtain-
ing abundance estimates by modelling presence data. A “perfect”
dataset, with all actual presences and absences correctly recorded
regardless of local abundance, could be less useful to model abun-
dance and might actually overpredict species distribution.

We therefore conclude that the analysed range of values of the
predictors is, at least in some cases, more important than a dataset
free of false absences. In any case, comparison of the present results
with other model extrapolations performed over the same area
(Teixeira et al., 2001; Arntzen, 2006) or elsewhere (e.g. Peterson
et al., 2007) proves this method to yield fairly reliable and extrap-
olable models. GLMs are here shown to be a balanced modelling
technique, yielding models complex enough to detect the rele-
vant trends in species distributions but simple enough to let the
modeller understand which and how are the factors involved. Per-
haps more importantly, they produce models flexible enough to
detect non-linear responses of the species to the environment, but
constrained enough to avoid modelling stochastic variation in the
training data, so avoiding modelling the “noise” together with the
“signal”.

The use of geopolitical units allowed us to test the influence
of differences in sampling-effort design on model transferability.
However, models based on this kind of units may be more biased
than those based on natural biogeographical units, which may be
preferred whenever possible, especially if the main aim is to pro-
duce transferable models.

We must bear in mind that the success of predictive models
outside their original scope depends on several factors, not all of
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which can be taken into account by modelling a single species,
as was already pointed out by Randin et al. (2006). Here we have
tested model transferability using a species whose distribution is
fairly well documented, in Spain as well as in Portugal. Besides,
desman distribution has marked limits within both of the studied
territories, which has allowed obtaining models with high descrip-
tive capacity and, consequently, with a fair possibility of predictive
success after extrapolation. The same would probably not occur
with more widespread species, with more gaps in the distribu-
tion data and without clear limits within the study area (Segurado
and Araújo, 2004; Arntzen, 2006). Studies on model transferability
should, therefore, be complemented with others focusing on such
wide-ranging species. Nevertheless, the application of transferred
models in conservation planning is usually needed for species fac-
ing conservation problems, whose distributions are usually not so
wide. Large-scale GIS models can outline the main characteristics
of these species’ distribution areas and be used to predict envi-
ronmental favourability in regions where their distribution is less
documented. Generalized linear models, and the favourability func-
tion in particular, seem a promising and reliable method to perform
such analyses.
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