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ABSTRACT

Models based on species distributions are widely used and serve important pur-

poses in ecology, biogeography and conservation. Their continuous predictions

of environmental suitability are commonly converted into a binary classification

of predicted (or potential) presences and absences, whose accuracy is then eval-

uated through a number of measures that have been the subject of recent

reviews. We propose four additional measures that analyse observation-predic-

tion mismatch from a different angle – namely, from the perspective of the

predicted rather than the observed area – and add to the existing toolset of

model evaluation methods. We explain how these measures can complete the

view provided by the existing measures, allowing further insights into distribu-

tion model predictions. We also describe how they can be particularly useful

when using models to forecast the spread of diseases or of invasive species and

to predict modifications in species’ distributions under climate and land-use

change.
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INTRODUCTION

Models based on species distributions are increasingly used

in ecology, conservation and management, serving a number

of important purposes (see e.g. Jim�enez-Valverde & Lobo,

2007 for a brief review). The predictions from such models,

usually continuous values of environmental suitability or

similar, are often converted into a binary classification of

presence or absence, determined by a threshold above which

the model is considered to predict the species to be present

(Jim�enez-Valverde & Lobo, 2007; Nenz�en & Ara�ujo, 2011).

After this binary conversion, a confusion matrix (Fig. 1) can

be generated from the numbers of observed and predicted

presences and absences (e.g. Fielding & Bell, 1997; Manel

et al., 2001; Anderson et al., 2003). From this matrix, several

measures can be calculated to evaluate the capacity of a

model to correctly classify presences and absences, including

measures of match and of mismatch between predictions

and observations; such measures have been recently reviewed

(Liu et al., 2009, 2011). Among the measures of mismatch

are the omission and commission rates (Anderson et al.,

2003), also known as false-negative and false-positive rates

(Fielding & Bell, 1997; Liu et al., 2009, 2011): omission refers

to species’ presences that are missed by the model (i.e. classi-

fied as absences), and commission refers to the presences

that are predicted outside the area where the species was

observed (i.e. absences classified as presences).

We would first like to point out that, although these mea-

sures (especially omission) are commonly referred to as

errors (e.g. Guisan & Zimmermann, 2000; Teixeira et al.,

2001; Anderson et al., 2003; Bulluck et al., 2006; Elith et al.,

2006; Liu et al., 2011; Nenz�en & Ara�ujo, 2011; Peterson

et al., 2011), neither omission nor commission are necessar-

ily shortcomings of a model. Models are meant to infer,
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from the recorded distribution, the environmentally suitable

areas for the species. As we detail below, a species may be

absent from suitable areas, or present in less adequate areas,

without this meaning that the model has made a mistake

(see also Sillero et al., 2010).

Omission (presences not predicted by the model), while

being more likely to reflect prediction error than commis-

sion, may also result from errors of identification or geore-

ferencing of particular species records, as no data set can be

deemed completely error free. Omissions may also reveal

areas where a species is present under suboptimal conditions

(e.g. sinks in the source–sink theory; Pulliam, 1988) due to

spatially contagious processes such as dispersal or immigra-

tion. In the case of generalist or widespread species, it is

common to observe presences in regions below the putative

presence–absence (or suitable–unsuitable) threshold, as well

as absences above this threshold, because generalists can usu-

ally tolerate a wider range of environmental conditions, and

effective thresholds are difficult to define.

Commission (presences predicted outside the observed

occurrence area) can point to areas where the modelled spe-

cies occurs but has not been detected or sufficiently surveyed

(again, no data set is guaranteed to be complete and error

free). Commissions may also represent suitable areas to

where the species has not managed to disperse (due to physi-

cal barriers, insufficient dispersal ability or lack of time), or

where it has become temporarily extinct due to recent dis-

turbance events (e.g. suitable unoccupied patches in meta-

population theory; Levins, 1969); or areas that are suitable

on the basis of the environmental variables that were

included in the model, but that are unsuitable on the basis

of other factors such as biotic interactions (Anderson et al.,

2003; Real et al., 2009; Barbosa et al., 2009, 2010).

Hence, rather than a drawback, model misclassifications

can allow the extraction of ecological and evolutionary infer-

ences by comparison of the observed and the predicted

(potential) distributions of species (Anderson et al., 2003).

As such, omission and commission should generally be

referred to as rates rather than errors; this may also help in

distinguishing error associated with the accuracy of the field

data.

That said, additional informative measures can be calcu-

lated, regarding under- or over-predicted presences and

absences, that are not included in the published reviews on the

evaluation measures of binary-converted models (Fielding &

Bell, 1997; Liu et al., 2009, 2011). We present four new mea-

sures that can be added to the existing suite of model evalua-

tion metrics and provide useful insights into the potential or

predicted distributions of species.

RATIONALE AND CALCULATION

The omission and commission rates are calculated in relation

to the observed data: omission is the proportion of predicted

absences in the recorded presence area, and commission is

the proportion of predicted presences in the observed (or

assumed) absence area (Fielding & Bell, 1997; Anderson

et al., 2003; Liu et al., 2009, 2011). In other words, omission

and commission measure how many of the observations are

incorrectly classified by the model. Omission is calculated

based on the number of observed presences, and commission

is calculated based on the number of observed/assumed

absences (Fig. 1).

However, this procedure may pose some problems. Firstly,

the omission and commission rates are the complements of

model sensitivity and specificity (i.e. the proportions of cor-

rectly classified presences and absences, respectively), which

are widely used in species distribution modelling. Hence, if

we have sensitivity [Se = a/(a + c)], the omission rate is

redundant (Om = c/(a + c) = 1�Se), and the same goes for

specificity [Sp = d/(b + d)] and the commission rate

(Co = b/(b + d) = 1�Sp; see Fig. 1 for the meanings of a, b,

c and d).

Secondly, calculating omission and commission in this

manner can sometimes lead to unrealistic assessments of

model fit. For example, for a species with a restricted distri-

bution within the studied territory, even a model that pre-

dicts more than twice the number of recorded presences may

exhibit a low commission rate, given the high number of

(assumed) absences relative to which this rate is calculated

(e.g. Teixeira et al., 2001).

Thirdly, as a result of the frequent and generally recom-

mended procedure of optimizing the binary conversion

threshold to maximize both sensitivity and specificity (or to

minimize the difference between the two), generally with a

preference towards sensitivity (Manel et al., 2001; Jim�enez-

Valverde & Lobo, 2007), sensitivity and specificity often

show similar values, with sensitivity being slightly higher.

Therefore, their complements omission and commission also

take similar values, with commission being generally slightly

higher. It is thus difficult to gauge, from omission and com-

mission, whether a model mainly tends to either under- or

over-predict a species’ distribution.

We propose two additional measures, the under-prediction

and over-prediction rates (UPR and OPR, respectively), that

approach the problem from a different angle and are calcu-

lated relative to the predicted rather than the observed data:

OBSERVED

Presence Absence

PREDICTED
Presence a b

Absence c d

Omission Commission

Overprediction 

Underprediction 

Figure 1 Confusion matrix showing match (white background)

and mismatch (grey background) between observed and

predicted presences and absences of a modelled species’

distribution. Encircled are the elements used to calculate the

omission and commission rates (dashed lines; Anderson et al.,

2003) and the proposed under- and over-prediction rates (solid

lines).
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under-prediction refers to the proportion of observed pres-

ences in the predicted absence area, and over-prediction

refers to the proportion of observed/assumed absences in the

predicted presence area:

Under� Prediction RateðUPRÞ ¼ unsuitable & occupied

unsuitable

¼ c

c þ d

Over� PredictionRateðOPRÞ ¼ suitable & unoccupied

suitable

¼ b

aþ b

where a, b, c and d are the elements of the confusion matrix

(Fig. 1). In other words, these rates measure the proportion

of predictions that are not matched by observations, rather

than the proportion of observations that are not correctly

predicted. Under-prediction is calculated based on the num-

ber of predicted presences, while over-prediction is calculated

based on the number of predicted absences (Fig. 1). The

under-prediction rate assesses the probability that the species

occurs at a place where the model predicts it to be absent;

the over-prediction rate assesses the probability that the spe-

cies is not found at a place where the model predicts it to

occur. These measures, which were not included in previous

reviews of model evaluation statistics (Fielding & Bell, 1997;

Liu et al., 2009, 2011), provide additional information on

observation/prediction mismatch, over and above the cus-

tomary measures of sensitivity and specificity (and omission

and commission).

The under- and over-prediction rates are the complements

of the negative and positive predictive power (NPP and PPP;

Fielding & Bell, 1997), also called negative and positive pre-

dictive value (NPV and PPV; Liu et al., 2009, 2011), respec-

tively. However, although NPP and PPP are relatively

popular in fields such as medical diagnostics, they are seldom

used in species distribution modelling (Liu et al., 2009). This

could be because NPP and PPP are measures of goodness of

fit, for which distribution modellers tend to prefer sensitivity

and specificity. Distribution modellers are, however, inter-

ested in counterbalancing sensitivity and specificity with

measures of disagreement between predictions and observa-

tions. While omission and commission are not suitable in

this case, given that they do not add any information to sen-

sitivity and specificity, the under- and over-prediction rates

are useful to assess lack of model fit while completing the

view provided by sensitivity and specificity.

Two further measures can be calculated from elements of

the confusion matrix (Fig. 1) and added to the existing

model evaluation toolset: the potential presence increment

(PPI), that is, the proportional increase (positive values) or

decrease (negative values) in the number of potential (pre-

dicted) relative to observed presences (see also Mu~noz &

Real, 2006; who calculated a similar measure based on the

ratio of predicted to observed presences); and the potential

absence increment (PAI), that is, the proportional increase

(positive values) or decrease (negative values) in the number

of potential relative to observed/assumed absences (a, b, c

and d are the elements of the confusion matrix, Fig. 1):

Potential Presence IncrementðPPIÞ ¼ suitable

occupied
� 1

¼ aþ b

aþ c
� 1

Potential Absence IncrementðPAIÞ ¼ unsuitable

unoccupied
� 1

¼ c þ d

bþ d
� 1

A PPI or PAI of zero would mean no difference between

the total number (irrespective of the location) of observed

and predicted presences or absences, respectively; a positive

or negative value would measure how much the potential

occurrence (or the potential non-occurrence) area exceeds

the actually occupied (or the actually unoccupied) area.

Depending on the ecological and biogeographical characteris-

tics of the species under analysis, these measures may be use-

ful when predicting the spread of diseases or invasive species,

the potential habitat to be occupied by species colonizing

new areas or the evolution of species’ distributions under

climate and land-use change scenarios.

CASE STUDIES AND POTENTIAL APPLICATIONS

We illustrate the use of these measures on the Iberian mole

(Talpa occidentalis), an insectivorous mammal endemic to

the Iberian Peninsula (SW Europe), whose distribution in

Spain was modelled previously (Ribas et al., 2006; Fig. 2).

More details on the data and modelling method are provided

in Appendix S1 (see Supporting Information), where we also

describe a series of additional case studies on species with

varying range sizes (restricted to widespread) and biogeo-

graphical characteristics (native, invasive, metapopulational).

For the Iberian mole, omission and commission (like their

complements sensitivity and specificity) become balanced

near the 0.5 favourability threshold, and their values, which

are calculated relative to the observed occurrence area,

denote high model accuracy. However, from the perspective

of the predicted occurrence area, over-prediction is substan-

tial at the same threshold, with 66% of the predicted occur-

rence area not being actually occupied. The potential

presence increment is also relatively high at this threshold, as

the model predicts more than twice the observed occurrence

area. Equilibrium between observed and predicted occupancy

is not attained until the 0.72 threshold, where the potential

increments in presences and absences approach zero (Fig. 2).

Further insights arise from analysing species with varying

prevalence or relative occurrence area (see Appendix S1).

While omission and commission (following sensitivity and

specificity) had similar values for medium thresholds within

every model, the under- and over-prediction rates were often
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visibly different from each other. Moreover, over-prediction

was higher than under-prediction for some species and lower

than under-prediction for others (Figs S1 and S2) and,

except for the most widespread species, this occurred along

most of the range of possible thresholds separating predicted

presences from predicted absences (Figs S3 and S4).

For restricted-range species, although commission rates

were low (following the high specificity), over-prediction

rates were substantial, reflecting the fact that a high propor-

tion of the predicted favourable areas are not actually occu-

pied (Figs S1 and S3). The most widespread species, on the

other hand, have relatively high rates of under-prediction

(unfavourable localities that are actually occupied), despite

the substantially lower omission (Figs S2 and S4). Equilib-

rium between potential and occupied area (i.e. null presence

and absence increment) is achieved at very high favourability

thresholds for restricted species (Fig. S3). This reflects spe-

cialists with low-entropy distributions, requiring excellent

environmental thresholds to occupy the whole suitable area;

under those thresholds, there are always more favourable

than actually occupied sites. As species prevalence increases,

this equilibrium threshold decreases, approaching the

sensitivity–specificity balance threshold. Middle favourability

thresholds thus provide equilibrium between potential and

observed distributions for these widespread species, reflecting

less environmentally demanding occurrence patterns (Fig.

S4). This information is not provided by the omission–

commission (nor by the sensitivity–specificity) plots. The

proposed measures thus allow further insights into the mod-

els’ tendency for either under- or over-predicting species’

occurrence areas, from a novel point of view, independently

of the information provided by omission and commission

(or their complements sensitivity and specificity).

The measures presented here, as well as their variation

across the range of decision thresholds (Fig. 2), can be easily

calculated for analogous data sets (binary observations versus

continuous predictions) with the modEvA package for R

(Barbosa et al., 2013), which is currently in beta version.

Until a stable version is officially released, the package (along

with a set of simple instructions for users inexperienced with

R) is available upon request to the authors.

CONCLUDING COMMENTS

Model performance measures such as sensitivity and specificity

should be complemented with assessments of prediction mis-

match, which does not necessarily indicate model failure and is

useful for understanding species’ distributions, their equilib-

rium with the environment, or their potential for change. While

omission and commission do not add any information to the

widely used sensitivity and specificity, the proposed under- and

over-prediction rates analyse the problem from a different

At all thresholds:

At threshold 0.5:

Figure 2 Observed (black; Palomo &

Gisbert, 2002) and potential presences

(grey; Ribas et al., 2006) of Iberian mole

Talpa occidentalis on UTM 10 9 10-km

grid cells of mainland Spain; species

prevalence and model evaluation

measures at the 0.5 environmental

favourability threshold; and variation of

these measures along the entire range of

possible thresholds.

1336 Diversity and Distributions, 19, 1333–1338, ª 2013 John Wiley & Sons Ltd

A. M�arcia Barbosa et al.



perspective, by assessing prediction mismatch over the poten-

tial rather than the observed occurrence area. They thus allow

more complete assessments of model classification perfor-

mance. In species distribution modelling, where sensitivity and

specificity tend to be optimized, under-prediction and over-

prediction can be particularly useful to assess misclassification

rates without repeating information. The potential increments

in presences and absences, in addition, measure the equilibrium

between the observed and the potential area of occupancy – that

is, between the model and the species’ distribution.

There is an increasing use of models for forecasting modi-

fications in species’ distributions under climate and land-use

changes, especially to inform conservation planning for

threatened species, as well as a growing interest in predicting

and monitoring the spread of diseases and invasive species.

We expect these measures to be particularly useful in such

studies, as they assess how the potential distribution com-

pares with the observed one and may thus provide clues on

how a species’ range may be expected to expand or contract.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the

online version of this article:

Appendix S1 Case studies on species with varying preva-

lence.

Figure S1 Observed (black) and potential (grey) presences of

restricted-range (including an invasive) species on UTM

10 9 10-km grid cells of mainland Spain, their prevalence

and model evaluation measures.

Figure S2 Observed (black) and potential (grey) presences of

relatively widespread species on UTM 10 9 10-km grid cells

of mainland Spain, their prevalence and model evaluation

measures.

Figure S3 Variation of the four analysed evaluation measure

pairs along the range of possible thresholds (at 0.01 intervals)

for the four restricted-range species analysed.

Figure S4 Variation of the four analysed evaluation measure

pairs along the range of possible thresholds (at 0.01 intervals)

for the more widespread species analysed.
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