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ABSTRACT 
Despite advances in diagnosis and treatment, CNS tumours continue to result in high 
mortality and morbidity. Glioblastoma mutliforme (GBM), the most common primary brain 
tumour, is a recurrent tumour that despite advances in treatment, continues to demonstrate  
a median time of survival of 14.6 months. While GBM has a higher incidence in adults, 
medulloblastoma (MB) is more frequent in children. In this pediatric tumour, more recent 
therapeutic advances have improved the survival rate, however current treatments result in 
long lasting effects on cognitive development, subsequently leading to a poor quality of life 
for the patient. This emphasizes the need to better understand tumour mechanisms in this 
disease in order to design better treatments that will not only lead to destruction of the 
tumour, but also will not impact patient quality of life in the long term.  

The heterogeneity of GBM cells is a huge drawback in current treatment, and can be 
attributed to the existence of a population of cancer stem cells (CSC). CSC share similar 
features with stem cells in that they can self renew and proliferate. In paper I, we describe the 
design and use of a novel system for detection of cancer stem cells involving fluorescent 
probes called luminescent conjugated oligothiophenes (LCO). We show that pHTMI, an 
LCO, is an improved cancer stem cell marker compared to existing markers. The role of the 
cytoskeleton in tumour malignancy is being explored as the cytoskeleton governs physical 
cellular features such as size, shape and regulates migration and invasiveness. In paper II we 
explore the cytoskeletal regulators of GBM cells and the effect on these regulators after 
oncology drugs. We identify a strong correlation between the cytoskeletal regulators and 
tumour malignancy that can help improve current GBM therapy.  

Besides regulators of the cytoskeleton in the cytoplasm, the shape of the cell nucleus is 
affected by chromatin modifiers such as histone deacetylases (HDACs) and histone 
demethylases (HDMs) In paper III we elucidate the role of histone deacetylases specifically 
HDAC2 and HDAC3 in controlling differentiation of progenitor cells and the role of 
transcriptional regulators in overseeing these pathways. Previous studies have also identified 
the role of histone demethylases in regulating differentiation in progenitor cells. Since 
medulloblastoma is a developmental tumour, we explored this approach in medulloblastoma 
cells. In paper IV, we demonstrate the role of retinoic acid (RA) in regulating the expression 
of the histone demethylase KDM6B/JMJD3 and neuronal genes. Further, we show that there 
is a cross-talk with KDM6B/JMJD3 and the TGFβ signaling mediator SMAD3 in 
medulloblastoma cells. A better molecular understanding of the mechanisms of these tumours 
could ensure improved diagnosis and treating molecular subtypes specifically. 

  



 

POPULAR SCIENCE SUMMARY 
Central nervous system tumours are one of the most well studied tumour types but continue 
to have a poor prognosis and can result in poor quality of life due to the effect of the 
treatment regimens currently applied that include surgery, radiation and chemotherapy. 
Subsequently, a deeper understanding of the components of these tumours, the environment 
that supports them and mechanisms of their progression and control, may aid in the 
development of better treatment regimens that not only improve the prognosis of the disease, 
but also help to decrease long-term treatment effects. This thesis discusses the heterogeneous 
components of tumours that include a small population of cells that can self renew and 
multiply, similar to so called stem cells. These cells have the potential to contribute to tumour 
recurrence, contributing to poor prognosis. We therefore suggest more selective treatment 
methods to detect and eliminate these cells, which could possibly be used in clinical 
intervention during surgery. Further, this study demonstrates the importance of understanding 
the structural framework of tumours in designing better chemotherapeutic agents. We suggest 
that existing chemotherapeutic regimens could be boosted with use of a combination of drugs 
specifically targeting different components of the tumour. We also studied pathways and 
components that regulate the development of cell types in the brain to better understand 
developmental CNS tumours and contribute to an improved diagnosis and treatment of these 
tumours.  
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1 INTRODUCTION 

1.1 CNS tumours 
CNS tumours account for some of the most common cancers in children and adolescents 
(Main, et al. 2016; Siegel, et al. 2016). While less common in adults in comparison to other 
tumours, CNS tumours are associated with a high rate of morbidity and mortality (Siegel, et 
al. 2016). These diseases comprise of a diverse group of tumours classified based on their 
histology, demographics and clinical outcome (Louis, et al. 2007). As of 2016, the WHO 
introduced additional parameters to classify CNS tumours, including specific molecular 
patterns (Louis, et al. 2016). The hope is that these additional parameters will aid the 
accuracy of diagnosis and the development of more patient-specific treatment strategies. 

The malignancy of the tumour is also regulated by other tumour components such as 
cytoskeletal properties that control the invasiveness of tumour cells and embryonic signatures 
(Quante, et al. 2011; Yilmaz and Christofori 2009; Yu, et al. 2011). Together with improved 
molecular classification of tumours, these components have the potential to be targets of cell 
therapy and/or drug development for improved treatment of CNS tumours.  

 

1.1.1 Gliomas  

Gliomas are the most common primary brain tumours in adults with a 70% rate of 
malignancy. The origin of these tumours is associated with neural stem cells, progenitor cells 
or de-differentiated mature neural cells that form cancer stem cells (Persson, et al. 2010; 
Singh, et al. 2004a; Stiles and Rowitch 2008). According to the 2016 WHO classification of 
tumours of the CNS, based on both phenotype and genotype, diffuse gliomas can be 
subgrouped into WHO grade II and III astrocytomas, grade II and III oligodendrogliomas and 
grade IV glioblastomas. A group of gliomas including ependymomas and a subgroup of 
astrocytomas exhibit a more restricted growth pattern compared to the diffuse gliomas and 
are grouped as WHO grade I CNS tumours (Louis, et al. 2016). These tumours are further 
grouped based on genetic parameters (Figure 1) such as (isocitrate dehydrogenase) IDH 
status, mutant or wild-type and 1p/19q chromosome arms, intact or co-deleted and grade  
I tumours that lack this mutation are eliminated from the classification (Claes, et al. 2007; 
Louis, et al. 2016). Glioblastoma Multiforme (GBM) is the most frequent and aggressive 
subtype of glioma. With the best possible treatment including surgery, chemotherapy and 
radiation, the prognosis is 14.6 months (Ray, et al. 2014). Some of the characteristics that 
contribute to recurrence of these tumours are the highly invasive and heterogenetic nature of 
the cells that makes it difficult to understand the origin of tumour cells and therefore it is 
difficult to develop therapies (Bayin, et al. 2014; Hoelzinger, et al. 2005; Louis, et al. 2007). 
Thus emphasizing the need to further understand the heterogeneity associated with GBM, 
which will in turn result in more specific and efficient treatment strategies.  
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Figure1. Classification of diffuse gliomas based on genetic features. Figure adapted from (Louis, et al. 2016). 

1.1.2 Medulloblastoma 

Medulloblastoma is the most common malignant brain tumour in children, representing about 
20% of CNS tumours with a higher incidence rate in males (Massimino, et al. 2016). With 
current treatment forms the 5-year survival rate is over 70% (Massimino, et al. 2016). 
Removal of medullablastoma tumours leads to developmental and cognitive deficits due to 
the cerebellar location of these tumours resulting in a poor quality of life. This creates a need 
to understand the molecular basis of these tumours with embryonic origin (Giordana, et al. 
1999) in addition to the histological classification, to assist in specific diagnosis and 
personalized treatment. The histological classification includes, variants with 
desmoplastic/nodular, medulloblastoma with extensive nodularity, larger cell and anaplastic 
features (Louis, et al. 2007). This need for a molecular classification led to four subgroups of 
MB tumours: WNT-activated, sonic hedgehog (SHH)-activated, Group 3 and Group 4 
(Figure 2) (Jones, et al. 2012). The 2016 WHO classification of CNS tumours narrowed 
down the subgroups further, adding subtypes such as SHH-activated and TP53-mutant and 
SHH-activated and TP53-wildtype (Louis, et al. 2016). While some of these subgroups have 
defined signaling pathways that are drivers of the mutation, other subgroups have a less 
certain molecular signature and epigenetic mechanisms have been suggested (Jones, et al. 
2012; Robinson, et al. 2012). It is important to understand these molecular classifications 
with regards to mutations to assist in diagnosis and treating these tumours. 

WNT subgroup tumours are the least common tumours amongst the medulloblastoma 
subgroups and have the best prognosis. The diagnosis of these tumours is well-established 
using immunohistochemistry (Massimino, et al. 2016). This subgroup involves disregulation 
in the WNT signaling pathway due to a mutation leading to overexpression of β-catenin 
resulting in increased cell proliferation (Gilbertson 2004; Massimino, et al. 2016). SHH 
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subgroup tumours account for about 30% of cases with an intermediate diagnosis 
(Massimino, et al. 2016). SHH pathway is crucial in the development of the cerebellum 
where the SHH ligand induces proliferation of neural precursor cells (Wechsler-Reya and 
Scott 1999). Inhibition of the SHH signaling pathway as a form of treatment has been 
explored and SHH inhibitors are in different stages of development (Taipale, et al. 2000). 
Initial studies using SHH inhibitors have shown signs of skeletal and CNS developmental 
toxicities (Samkari, et al. 2015). Since SHH-medulloblastomas are more prevalent in infants, 
using these SHH inhibitors can result in developmental toxicity (Kimura, et al. 2008). 
Another challenge with treatment of SHH subtype tumours is the molecular hetererogeneity 
observed. Different gene mutations have been associated with different age groups hence it is 
essential to understand the signaling pathways better to develop specifically targeted 
therapies towards these tumours (Kool, et al. 2014) Group 3 and Group 4 tumours are less 
well characterized with regards to underlying mutations and thus the pathogenesis as a result 
of the mutations (Massimino, et al. 2016). Group 3 subgroup accounts for 25-28 % of 
tumours and is known to have the poorest patient prognosis of the medulloblastoma subtypes 
(Massimino, et al. 2016). Pre-clinical studies using chemotherapeutic targets and inhibitors of 
the PI3 kinase pathway are being assessed for possible treatment of these tumours (Pei, et al. 
2012; Petronis, et al. 2003). Group 4 tumours are the most commonly occurring subtype, and 
patients with these tumours have an intermediate prognosis with conventional chemotherapy 
and radiation therapy (Massimino, et al. 2016).  

 
Figure 2. Molecular classification of Medulloblastoma (Taylor, et al. 2012). 
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1.2 MECHANISTIC CONTROL OF NEURAL PROGENITOR CELLS 
Neural stem cells (NSCs) are multipotent cells with the potential to self- renew and are 
capable of developing into major CNS cell types (Figure 3). Neural stem and progenitor cells 
share similar cellular processes with CNS tumour cells including cell proliferation, 
expression of certain genes and signaling pathways. (Reya, et al. 2001). The knowledge of 
molecular mechanisms involved in the regulation of these cells is critical to the understanding 
of CNS cancers. Transcription factors are key regulators in the maintenance of cells or 
differentiation into specific cell types. In the maintenance of stem and progenitor cell fate, the 
Sox family of transcription factors is well studied and continues to draw interest. Sox2 is  
a well-established transcription factor in the development of the CNS due to its role in 
controlling stem cell state and fate (Masui, et al. 2007). The formation of neurons is disrupted 
in cultures of neural progenitor cells that are depleted of Sox2 and the absence of Sox2 in 
mice brain resulted in loss of GFAP and nestin expression (Ferri, et al. 2004). In the context 
of gliomas, expression of Sox2 in association with TGFβ, a cytokine involved in regulating 
cellular functions, was shown to maintain tumour-initiating cells in glioma (Ikushima, et al. 
2009). Sox proteins are mainly involved in transcriptional activation however Sox9 and 
Sox10, other members of the same Sox family of transcription factors can function as 
transcriptional repressors (Lee, et al. 2012).  

 

Figure 3. NSCs can develop into different cell types in vitro in the presence of media supplemented with factors 
(Teixeira, et al. 2007). 

A signaling pathway that plays a prominent role in CNS development is the Shh pathway that 
mediates proliferation of progenitor cells. This signaling pathway includes players such as 
Smoothened (Smo) and Patched (Ptc) that mediate Gli-related genes (Figure 4). Knockdown 
of Gli2 inhibited the expression of Sox2 and other genes maintaining stemness in NSCs 
(Takanaga, et al. 2009). Genetic alterations in genes associated with the Shh-Gli pathway are 
implicated in CNS tumours. (Samkari, et al. 2015; Xie, et al. 2013). These studies provide 
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evidence that neural progenitor cells share control mechanisms with tumour cells highlighting 
the importance of an improved understanding of these mechanisms. Epigenetic mechanisms 
have also shown to play a role in the control of neural progenitors and this will be discussed 
further in this thesis.  

 

Figure 4. Shh inhibits the repression of Smo by Ptc leading to the regulation of Gli proteins mediating 
transcription. Figure adapted from (Ruiz i Altaba, et al. 2002) Figure illustrated by Jakub Lewicki. 

 
1.3 CANCER STEM CELLS 
One of the reasons for the poor prognosis of glioblastoma is the recurrence of this disease. 
This recurrence can be due to the heterogeneity of the tumour cells making complete 
resection difficult to estimate, or the resistance of a population of tumour cells to radiation 
and chemotherapy (Cho, et al. 2013). These heterogeneous and highly resistant populations 
of cells have been identified as cancer stem cells (CSC). According to these findings, two 
existing models to understand tumour expansion have been identified: the clonal expansion 
model and the cancer stem cell model. According to the clonal expansion model, the tumour 
consists of a heterogeneous population of cells that have the potential to proliferate 
extensively whereas in the CSC model, the tumour cells have limited proliferative capacity 
and only a small subset of the the tumour population, the CSC, can self renew and proliferate 
(Reya, et al. 2001) . The percentage of CSCs varies between tumour types and is 
controversial between studies (Bao, et al. 2013; Cho and Clarke 2008). Failure to treat 
tumours given the basis of the clonal expansion model suggests that the cancer stem cell 
model may be more accurate in understanding the heterogeneity of the tumor (Figure 5). 

Normal stem cells possess unique properties of self-renewal, proliferation and the ability to 
differentiate into cell types. The cancer stem cell is defined by its stem cell-like properties of 
self-renewal and ability to propagate. These cells can divide indefinitely, producing cell types 
that contribute to tumour growth. The difference between the cancer stem cell in comparison 
to the normal stem cell is the lack of homeostasis in cancer stem cells due to their 
uncontrolled cell proliferation (Tan, et al. 2006). 
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a         b   
 

   
Figure 5. a) Small subset of cells possess the ability to form new tumours, b) Cancer stem cells are less sensitive 
to therapy (Reya, et al. 2001). 

The exact origin of the brain tumour cells is unknown however there are multiple hypotheses. 
Neural stem cells and brain tumours share certain signaling pathways such as Notch, Wnt and 
Shh signaling, suggesting the neuroglial lineage of brain tumour stem cells (BTSCs) (Reya, et 
al. 2001; Singh, et al. 2003). Neurogenic niches have been identified in the subventricular 
zone along the wall of the lateral ventricles and the subgranular zone along the dentate gyrus 
within the hippocampus (Eriksson, et al. 1998; Sanai, et al. 2004). Since NSCs and progenitor 
cells from these neurogenic niches continue to exist in adults, they have been suggested as 
candidates for the origin of brain tumour stem cells (Modrek, et al. 2014). The other 
possibility is that differentiated cells dedifferentiate to form brain tumour stem cells (Modrek, 
et al. 2014; Sanai, et al. 2005). A majority of gliomas occur in adults and are thus not 
included in the group of developmental tumours, suggesting that molecular mechanisms 
involving the transformation of adult cells must cause the tumour (Nduom, et al. 2012). The 
dedifferentiation is due to the ability of genetically modified differentiated cells to form more 
progenitor or stem cell-like cells that contribute to gliomagenesis (Friedmann-Morvinski, et 
al. 2012).  

Existence of BTSCs was first observed by Singh et al, where BTSC were isolated from 
tumour samples based on the expression of CD133 (Prominin1/PROM1) (Singh, et al. 2003). 
To be characterized as a BTSC, the cell needs to possess self-renewal properties, must be 
multipotent and be able to initiate tumours in animal models (Bayin, et al. 2014; Singh, et al. 
2003). To ensure self-renewal in vitro, these cells are grown in suspension and their 
consistent sphere-forming ability is an indicator of long-term self renewal (Lee, et al. 2007). 
Self-renewal in vivo is assessed by introducing BTSC in xenograft models and evaluating 
tumour formation (Singh, et al. 2003; Singh, et al. 2004b). Identifying elements of the tumour 
lineage can provide insights on the multipotency potential of BTSCs (Rampazzo, et al. 2013).  
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1.3.1 Putative markers to detect CSC 

In order to better understand cancer stem cells, it is necessary to identify methods to 
specifically detect this population of cells within a tumour and thus develop cancer stem cell-
targeted therapy. Markers currently used to detect CSCs are those that are used to detect 
NSCs. CD133 (also called Prominin-1), is a five transmembrane domain, cell surface 
glycoprotein that was first isolated from neuroepithelial stem cells in mice and later was 
discovered in human hematopoietic stem and progenitor cells (Weigmann, et al. 1997; Yin, et 
al. 1997). The possibility of a small population of CD133+ cells to induce tumours in 
immune-deficient mice suggested the possibility of using CSC markers in therapy (Singh, et 
al. 2004a; Singh, et al. 2004b). This marker has been identified as a CSC marker in various 
cancers including colorectal, gastric, pancreatic, breast, prostate, liver, lung and head and 
neck squamous cell carcinoma (Boman and Wicha 2008). Clinically, the presence of CD133+ 
cells has been negatively associated with patient survival in those suffering from colorectal 
cancer and gliomas (Horst, et al. 2008; Wu, et al. 2015). In a study on patients with 
pancreatic adenocarcinoma, poor prognosis was linked to CD133+ samples, specifically in 
biopsies where the number of CD133+ cells greatly outnumbered the CD133-population 
(Maeda, et al. 2008). Also, the CD133+ population showed a higher level of lymphatic 
invasion, indicating a role in cellular migration (Maeda, et al. 2008). Despite evidence that 
supports CD133 as a CSC marker, there have also been studies that prove the possibility of 
both CD133+ and CD133- cells to be involved in clonogenecity, self- renewal and 
tumorigenic capacity (Joo, et al. 2008; Wang, et al. 2008).  

Another marker that has been used in the detection of CSC is CD44. CD44 is  
a transmembrane, cell surface glycoprotein that is involved in several cellular processes 
including proliferation, differentiation, migration and angiogenesis, and is as well  
a co-receptor for cytokines and growth factors (Naor, et al. 2002). CD44 expression was 
shown to distinguish neural stem cells from embryonic stem cells with < 4% positive CD44+ 
population in embryonic stem cells compared to < 95% positive in neural stem cells (Pollard, 
et al. 2008). It has been used as a prognostic marker in several tumours, including lung, 
colorectal, breast, hepatocellular, head, neck and hypopharyngeal squamous cell carcinoma 
(Yan, et al. 2015). The role of CD44 in cell adhesion and migration suggests that it is 
involved in tumour formation (Naor, et al. 2002). In mice with gastric cancer, CD44 
expression was associated with tumorigenesis where CD44+/+ developed larger tumours than 
CD44-/- mice, suggesting a role for CD44 in tumour initiation and progression (Ishimoto, et 
al. 2011). In mice with glioma, CD44+/+ mice developed high-grade gliomas with shorter 
survival time as compared to CD44-/- mice suggesting that CD44 is implicated in glioma 
growth (Pietras, et al. 2014). Downstream CD44 signaling after ligand binding promoted 
stem cell characteristics in glioma cells suggesting this glycoprotein regulates cell stemness. 
(Pietras, et al. 2014).   

CD44 is thus a promising target in many tumours and, due to its properties regulating CSCs, 
can be used to therapeutically target these cells. However, the fact that it is expressed in 
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several different tumour cells and exists on normal cells as well could prove to be a challenge 
in using this marker therapeutically (Yan, et al. 2015). Thus there is a need to identify 
selective and specific CSC markers for effective therapeutic detection of these cells. 

 

1.4 CYTOSKELETON REGULATORS  

Together with the knowledge of specific cells contributing to the tumour as well as 
mechanisms involved in their control, it is important to understand the cytoskeletal 
framework that supports the tumour cells. Cytoskeletal components provide more than just  
a structural framework for the cell; these components are also involved in the regulation of 
growth of normal and transformed cells (Pawlak and Helfman 2001). The cytoskeletal 
framework assists the cell in responding to different environmental stimuli (Fletcher and 
Mullins 2010). Such cytoskeletal components include microtubules, microfilaments and 
intermediate filaments (Figure 6). The protein tubulin is the building block for microtubules, 
actin for microfilaments, and intermediate filaments are formed of several different subunit 
proteins. During the malignant transformation of cells, one of the features observed is the 
alteration of actin filaments in cells due to the influence of oncogenes (Pawlak and Helfman 
2001). PTEN and p53 are common mutations in GBM that are associated with cell migration 
(Muller, et al. 2011; Tamura, et al. 1998). There is evidence that the absence of both PTEN 
and p53 maybe implicated in the cell invasion process seen in GBM (Djuzenova, et al. 2015). 
Cytoskeletal properties are also crucial during metastasis, where cell-cell and cell-matrix 
contact is disrupted (Yilmaz and Christofori 2009). An example of a cytoskeletal modulator 
in GBM is cofilin, a regulator of the actin cytoskeleton (Yamaguchi and Condeelis 2007). 
Control of the expression of cofilin, regulated tumour cell invasion suggesting that 
cytoskeletal activity should be taken into account during GBM therapy. Cytoskeletal 
components are victims of cell stress during therapy as they control signaling pathways 
involved in molecule transport, regulate protein-protein interactions and influence enzyme 
activity. (Parker, et al. 2014). A better understanding of cytoskeleton regulators and functions 
they mediate in cell responses could be useful in developing treatment strategies for GBM.  

 
Figure 6. Cytoskeletal components. Figure illustrated by Jakub Lewicki. 
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One of the drawbacks of therapy against GBM is that the cells often become resistant to the 
chemotherapeutic applied (Lefranc, et al. 2005). One such commonly used example is 
temozolomide (TMZ), an oral alkylating agent that acts by interfering with DNA replication 
forming cytotoxic methyl adducts which trigger apoptosis (Roos, et al. 2007). However, high 
levels of the protein O6-methylguanine-DNA methyltransferase (MGMT) is associated with 
resistance to TMZ leading to tumour progression (Roos, et al. 2007). A study complementing 
TMZ with a modified cytoskeletal regulator showed that this improved tumour cell sensitivity 
to TMZ and increased apoptosis (Kislin, et al. 2009). Various cytoskeletal-targeting agents 
are being explored for GBM therapy. An example is Patupilone, a novel tubulin-binding 
agent, which has proven to act against CNS malignancies when combined with radiation 
(Fogh, et al. 2010; Oehler, et al. 2012). This drug stabilizes the microtubule, has anti-
angiogenic effects and is independent of efflux pumps that are abundant in tumour cells 
(Oehler, et al. 2012). The co-treatment of cytoskeletal regulators with existing drugs such as 
TMZ needs to be explored for future GBM therapies. The success of small molecule probes 
in the enhancement GBM treatment paves the way for the further development of novel 
probes that could improve current GBM treatment strategies.  

 

1.5 LUMINESCENT MOLECULAR PROBES 
 

1.5.1 Properties of conjugated oligomers and polymers 

Monomers are molecular units that can form complex molecules. An oligomer consists of  
a small number of monomers and a polymer can contain an unlimited number of monomers. 
Conjugated oligomers and polymers are characterized by alternating single and double bonds 
on their oligomer and polymer backbones (Figure 7). Unlike polymers such as the commonly 
used polyethylene and polystyrene, which are insulators and are colourless, the conjugated 
polymers are semiconductors and interact with light. Due to their chemical structure, they 
have interesting electronic and optical properties. These oligomers and polymers are used in 
LEDs due to their ability to emit light after induction with electric current, an effect known as 
electroluminescence. They have also been used in solar cells transistors (Strobl 2007).  

One of the important aspects in the design of conjugated polymers are the side chains, which 
play a role in improving the solubility and intermolecular interactions. Due to the large 
structure of polymers, many are insoluble and can be very challenging to study their 
properties (Zade, et al. 2011). The most studied conjugated oligomers and polymers are those 
with the thiophene subunit (Zade, et al. 2011). Luminescent conjugated oligo- and 
polythiophenes (LCOs and LCPs) have proved to be useful thiophene polymers for various 
biological applications. The thiophene-based polymers are capable of identifying protein 
aggregates from a broader spectrum of diseases in comparison to conventionally used protein 
markers (Klingstedt, et al. 2013b). The optical properties of these thiophene-based polymers 
are particularly dependent on the number of thiophene units and the positioning of side chains 
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(Klingstedt, et al. 2013b). LCOs are a smaller group of LCPs consisting of a pentameric 
backbone and a less ionic side chain substitution than LCPs (Aslund, et al. 2009). 

Figure 7. Conjugated polymer 

 

1.5.2 Conjugated oligomers and polymers for biological applications 

Due to their optical properties, conjugated polymers have been used as probes to detect 
peptide conformation (Nilsson, et al. 2003; Nilsson, et al. 2004). A charge specific LCP 
derivative was shown to distinguish between native and fibrillar amyloids in vitro, thus 
providing a fast, non-covalent based interaction method to detect fibrillar proteins (Herland, 
et al. 2005; Nilsson, et al. 2005). The LCPs have also been used in the detection of amyloid 
deposits associated with Alzheimer’s disease in different ex vivo tissue samples, wherein 
these probes emit different coloured light depending on which amyloid deposit it binds to. 
Thus, these probes can be used as a sensitive method to decipher between protein 
conformations based on different wavelengths of light, thus providing a potential method for 
early detection of diseases such as Alzheimer’s (Nilsson, et al. 2006). Although LCPs are 
useful in identifying fibrillar deposits in vitro, their use in vivo has not proven to be as 
successful (Aslund, et al. 2009).  

The shorter backbone and less ionic side chain of LCOs enable these LCOs to overcome 
challenges faced by LCPs. The LCOs exhibited selectivity to protein aggregates and some of 
them were able to cross the BBB (Aslund, et al. 2009). LCPs can only detect fibrillar but not 
pre-fibrillar deposits (Aslund, et al. 2009). One of the LCOs, p-FTAA (penta- 
formlythiophene acetic acid) was able to detect pre-fibrillar deposits, proving these molecules 
can be useful tools in the diagnostics of protein aggregates (Aslund, et al. 2009). Recently, it 
was shown that not only can this particular LCO detect pre-fibrillar structures, but it has the 
potential to induce a structural transformation in the toxic protein aggregates into non-toxic 
and insoluble fibrillar structures that are resistant to proteolytic degradation, suggesting  
a therapeutic use for this LCO (Civitelli, et al. 2016). The specificity of these molecular 
probes extends to detecting protein aggregates in skeletal muscle fibres in patients with 
sporadic inclusion body myositis (s-IBM), with p-FTAA, detecting aggregates in these 
tissues that were shown to be negative with conventional markers (Klingstedt, et al. 2013a).  

Not only are the molecular probes such as LCOs and LCPs highly selective markers, they are 
also non-toxic making them optimal markers for cellular staining (Palama, et al. 2011). LCP 
derivatives were used in non-transformed cells such as fibroblasts, myoblasts, leukocytes and 
macrophages, where they detected lysosome-related acidic vacuoles (Bjork, et al. 2007). This 
specificity, however, was not observed in transformed, malignant cells, indicating selectivity 
of this marker to non-transformed cells (Bjork, et al. 2007). Several LCOs stained different 
cell types with a preference to some cancer cells. The fluorescent intensity was dependent on 
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the side chain group to the thiophene backbone, where LCOs with imidazole moieties were 
preferred over amino acid side chains (Cieslar-Pobuda, et al. 2014). Labeling with two of the 
LCO derivatives in a cancer cell line showed a small population of cells with higher intensity 
of fluorescence, suggesting the presence of a side population of cells that could potentially be 
the cancer stem cell population, however more evidence is needed to confirm the identity of 
this labeled cell type (Cieslar-Pobuda, et al. 2014). Thus LCOs may provide promising 
alternatives to conventional markers in the detection of biological targets besides protein 
aggregates. 

 

1.6 EPIGENETICS 
Epigenetics involves the study of processes that alter gene activity and can be inherited 
without changes in the underlying DNA sequence (Wu and Morris 2001). Epigenetic factors 
function alongside the genome to determine various cellular processes. Epigenetic 
reprogramming can be seen as early as embryonic development and continues throughout the 
cell’s lifespan giving it a unique epigenetic signature (Morgan, et al. 2005). Some of the 
epigenetic modifications include DNA methylation, chromatin modification, RNA silencing 
(Weinhold 2006). These epigenetic mechanisms are implicated in processes regulating 
development and tumour formation.  

Historically according to the histone code hypothesis, transcription of the genome is governed 
by several histone modification patterns (Allis and Jenuwein 2016; Strahl and Allis 2000). 
The N-terminal of histone tails can be modified via post-translational processes, leading to 
epigenetic regulation of transcription. Histone modification results in creating either 
transcriptionally favourable regions, or unfavourable regions that lead to gene repression 
(Jenuwein and Allis 2001). Histone acetylation and methylation are the two major forms of 
histone modifications. The enzymes responsible for these covalent modifications are 
dependent on the position of specific amino acids (Strahl and Allis 2000) (Figure 8).  

 

Figure 8. Histone tail modifications such as ubiquitination on the lysine residue, acetylation on the lysine 
residue, methylation on the lysine or arginine residue, phosphorylation on the serine/threonine residue. Figure 
adapted from (Fullgrabe, et al. 2010). Figure illustrated by Jakub Lewicki. 
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1.6.1 HISTONE DEACETYLASES 

Histone acetylation is one of the most common modifications of histones and is regulated by 
histone acetyltransferases (HATs) and histone deacetylases (HDACs), both of which control 
the acetylation of lysine residues on the N-terminus of histones. Histone acetylation is 
implicated in transcriptional activation and is controlled by the balance of the activity of 
HATs and HDACs (Struhl 1998). HDACs belong to a large superfamily of deacetylases and 
can be further classified into subgroups including class I, IIa, IIb and IV based on the highly 
conserved deacetylase domain. Class I HDACs consist of HDAC1, 2, 3 and 8 and class II 
HDACs include HDAC4, 5, 6, 7, 9 and 10 (de Ruijter, et al. 2003). For the purpose of this 
thesis, the Class 1 HDACs will be discussed in further detail.  

Class I HDACS are known to be ubiquitously expressed and localized to the nucleus, 
however studies have also reported the existence of HDAC3 in the cytoplasm (Yang, et al. 
2002). Wang et al demonstrated that HDACs play a role in gene activation as well as in 
repression. They showed that class I HDACs were enriched at gene promoters and gene 
regions of active genes, in contrast to reports suggesting their sole involvement in repression 
of gene transcription (Wang, et al. 2009; Xu, et al. 1999). HDACs have been shown to 
interact with transcription factors to mediate proliferation and cell fate determination. The 
silencing mediator for retinoid and thyroid receptors (SMRT) and the nuclear receptor 
corepressor (N-CoR) are two corepressors related to HDACs and are involved in 
transcriptional regulation of NSC differentiation as they repress gene expression and are 
required for cell fate determination (Guenther, et al. 2001; Hermanson, et al. 2002; Jepsen, et 
al. 2007; Lilja, et al. 2013; Miller and Gauthier 2007).   

 

1.6.2 HISTONE DEMETHYLASES 

Histone methyltransferases (HMTs) and histone demethylases (HDMs) catalyze the histone 
methylation process, leading to silencing or expression of genes respectively, depending on 
the specific lysine or arginine residues present (Strahl and Allis 2000). Histone methylation is 
a reversible process and has been shown to exist on histones H3, H4 and the linker histone 
H1.1 (Labbe, et al. 2013; Shi, et al. 2004). The lysine residues can be mono-, di- or tri-
methylated. The addition or removal of these methyl groups leads to repression or expression 
of genes. For instance, tri- methylation of lysine 4 on histone H3 (H3K4me3) leads to 
activation of gene expression, whereas di and tri-methylation of lysine 27 residue on histone 
3 (H3K27me2/3) and tri-methylation of lysine 9 on histone 3 (H3K9me3) (Cao, et al. 2002; 
Peters, et al. 2002) results in repression of gene expression (Santos-Rosa, et al. 2002). 

The concept of histone demethylases was developed by the functional characterization of 
LSD1 (lysine-specific demethylase 1), (Shi, et al. 2004) also known as (lysine-specific 
histone demethylase 1 (KDM1) (Allis, et al. 2007). LSD1 (KDM1A) and LSD2 (KDM1B) 
are two classes of histone demethylases that are structurally similar (Karytinos, et al. 2009). 
Both can demethylate mono- and di- methyl groups from lysine residues but not tri-methyl 
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groups (Labbe, et al. 2013; Metzger, et al. 2005; Shi, et al. 2004). With the exception of 
KDM1A and KDM1B, the other KDMs include the Jumonji C (JmjC) protein domain and 
these demethylases have the potential to demethylate mono -, di-, and tri-methyl groups on 
lysine residues with the help of cofactors such as Fe (II), α-ketoglutarate and molecular 
oxygen (Tu, et al. 2007). 

Two such lysine demethylases that contain homologous JmjC domains are the Jumonji 
domain-containing protein D3 (JMJD3) also called KDM6B, and the ubiquitously transcribed 
tetratricopeptide (TPR) gene on the X chromosome (UTX), also known as KDM6A (Swigut 
and Wysocka 2007). These two histone demethylases have been shown to participate in gene 
regulation and development (Agger, et al. 2007; Jepsen, et al. 2007; Lan, et al. 2007). UTY is 
a paralog of UTX and belongs to the KDM6 family of histone demethylases, however its 
demethylase activity is significantly lower than UTX and JMJD3 due to  
a structural change in the JmjC catalytic domain (Shpargel, et al. 2012; Walport, et al. 2014). 
Gene regulation by JMJD3 and UTX is achieved by specifically demethylating the dimethyl 
and trimethyl groups on H3K27 (Hong, et al. 2007; Xiang, et al. 2007). In the di- and tri-
methylated state, H3K27 is associated with gene inactivation, however demethylation to the 
mono-methylated state leads to gene activation (Agger, et al. 2007; Barski, et al. 2007; 
Burgold, et al. 2008).  

These studies provide evidence of the association of HDACs and HDMs in controlling gene 
expression, signaling pathways and cell fate specification, however a better understanding of 
the functions of these factors would enable understanding the mechanisms of diseases that 
involve misregulation of these factors.  

 

1.6.3 MOLECULAR ROLES OF JMJD3 AND UTX 

JMJD3 and UTX are implicated in epigenetic processes, regulation of gene expression and 
cellular reprogramming. The polycomb repressive complex 2 (PRC2) is a prominent player in 
epigenetic regulation of differentiation and cell fate (Ringrose and Paro 2007). A catalytic 
subunit of PRC2 can di- and tri- methylate H3K27, resulting in gene silencing (Schwartz and 
Pirrotta 2007). During embryogenesis however, JMJD3 and UTX play a role in reducing the 
repression by demethylating H3K27, which leads to the activation of HOX genes. These 
genes are important in regulating development (Agger, et al. 2007). Retinoic acid- induced 
differentiation of neural stem cells is controlled by SMRT/NCOR and JMJD3. In this case 
SMRT/NCOR prevents neuronal differentiation by repressing Jmjd3 (Jepsen, et al. 2007) 
(Figure 9a). JMJD3 is also known to mediate development through interaction with SMAD3 
at the transcriptional start site (TSS) of TGFβ-associated genes, and depletion of JMJD3 
affects the expression of TGF-β-induced genes (Estaras, et al. 2012) (Figure 9b). The same 
study also showed the developmental role of JMJD3 in the chick spinal cord, as JMJD3 was 
essential for SMAD3-induced neuronal differentiation.   
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Figure 9. a) SMRT/NCOR interact with retinoic acid receptor and represses JMJD3 leading to self-renewal of 
NSCs. b) JMJD3 and SMAD3 colocalize at the TSS of TGFβ responsive genes in NSC resulting in neuronal 
differentiation. Figure adapted from (Estaras, et al. 2012) Figure illustrated by Jakub Lewicki. 

 

1.6.4 EPIGENETICS AND CNS TUMOURS 

Epigenetic control mechanisms have been implicated in glioblastoma and in 
medulloblastoma. In a specific subtype of glioblastoma (classical) methylation of the DNA-
repair-gene O6-methylguanine-DNA methyltransferase (MGMT) results in gene silencing. 
This makes the tumour more prone to damage by chemotherapeutics due to the inability to 
repair DNA damage by the methylated MGMT resulting in better patient response to 
chemotherapy, and subsequently better patient prognosis (Brennan, et al. 2013; Hegi, et al. 
2005). In pediatric gliomas, mutations in the gene coding for the histone H3.3 at K27 and 
G34 residues result in different molecular signatures (Bjerke, et al. 2013; Schwartzentruber, 
et al. 2012). These mutations are located on the histone tail making them accessible to 
epigenetic modifications including methylation and acetylation influencing gene expression 
(Huang and Weiss 2013).  
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In cases where the tumour expresses a G34 mutation, upregulation of MYCN gene, which is 
an oncogene, is observed. This provides a means to therapeutically target patients with this 
mutation by inhibiting effects of MYCN (Bjerke, et al. 2013). A link between histone 
methyltransferase (MLL) genes and medulloblastoma has been suggested (Parsons, et al. 
2011). MLL-family genes are associated with development similar to Wnt and Shh signaling 
pathways, both of which are associated with tumorigenesis in medulloblastoma (Parsons, et 
al. 2011). MLL2/MLL3 are epigenome modifying genes and mutations in these genes were 
seen to occur across all histologic subtypes and molecular subgroups associated with 
medulloblastoma (Dubuc, et al. 2013; Parsons, et al. 2011). The histone demethylase UTX is 
a binding partner of MLL2, and mutations in this gene are observed in the Group 4 
medulloblastoma subgroup (Dubuc, et al. 2013). More than 50% of Group 4 tumours are 
associated with decreased expression of UTX and JMJD3 (Dubuc, et al. 2013). Thus, 
epigenetic regulation is a likely a prominent player in tumorigenesis in CNS-associated 
cancers. 

Due to the involvement of histone demethylases in cancers, the development of histone 
demethylase inhibitors is being explored as a therapeutic strategy. Recently a selective 
inhibitor of UTX and JMJD3, GSK-J4 was developed (Kruidenier, et al. 2012). In CNS 
tumours, particularly in pediatric gliomas with the K27 mutation on histone H3.3, a decrease 
in H3K27me3 was observed (Venneti, et al. 2013). GSK-J4 was used as a treatment in GBM 
with the K27 mutation (Hashizume, et al. 2014). The inhibitory effects on histone 
demethylase function led to increased H3K27 methylation, and inhibited glioma cell growth 
in vitro and in vivo (Hashizume, et al. 2014). This inhibitory effect on the proliferation of 
cells was JMJD3 specific because the effect was no longer observed when JMJD3 was 
depleted (Hashizume, et al. 2014).  

 

1.7 MOLECULAR ROLES OF ALL-TRANS RETINOIC ACID 
All-trans Retinoic acid (ATRA, will be referred to as RA) is a biologically active metabolite 
of vitamin A. Along with other metabolized products including, β-carotene, retinol, retinal, 
isotretinoin, 9-cis retinoic acid, and 13-cis retinoic acid it serves as a ligand triggering several 
molecular pathways as it binds the retinoic acid receptors (RARs) and retinoid X receptors 
(RXRs) (Connolly, et al. 2013; Nakayama, et al. 2001). These receptors function as 
heterodimers, and modulate transcription by binding to RA response elements (RAREs) on 
the DNA (Gillespie and Gudas 2007). RA plays a pivotal role in controlling epigenetic 
processes by modulating histones marks. For instance the presence of RA causes an increase 
in activation marks such as H3K4me3 and H3ac, however it can also cause a decrease in the 
repressive mark H3K27me3 (Kashyap, et al. 2011). The co-existence of both gene activating 
and repressive marks associated with promoters is called the bivalent domain or a poised state 
(Azuara, et al. 2006; Bernstein, et al. 2006). RA-inducible genes have been shown to be 
associated with bivalent domains where they modulate levels of H3K27me3 and H3K4me3, 
thus regulating gene expression (Kashyap, et al. 2011; Kashyap, et al. 2013).  
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The presence of RA ligands dictates the role of these RARs in controlling the differentiated 
state of tissues (Mahony, et al. 2011). In the absence of RA ligand, the corepressor complex 
SMRT or NCOR bind to the ligand-binding domain of RAR and this is crucial in regulating 
the expression of neuronal genes thus controlling developmental pathways (Jepsen, et al. 
2007). Pathways involved in CNS tumour development are similar to pathways regulating 
neuronal genes, suggesting the role of RA in tumour development and maintenance needs to 
be explored. 
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2 AIMS OF THE THESIS 
The overall aim of this thesis was to understand the molecular characterization of 
glioblastoma, medulloblastoma and progenitor cells, and utilize this knowledge to design 
molecular probes and investigate oncogenic drugs to aid in improved treatment options. 

Paper I: To investigate the use of an oligothiophene derivative, to detect human glioma-
derived stem cells and contrast this with other putative CSC markers. 

Paper II: To evaluate the effects of oncogenic drugs on cytoskeletal modulators. 

Paper III: To investigate the role for class I histone deacetylases and associated corepressors 
in neural stem cell differentiation. 

Paper IV: To explore putative roles of the histone demethylase KDM6B/JMJD3 in 
medulloblastoma cells. 
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3 RESULTS AND DISCUSSION 
 

3.1 PAPER I 
Improved detection of stem and cancer stem cells is necessary for better diagnosis and 
treatment of diseases (Sagar, et al. 2007). The use of molecular probes has been successful in 
recording biological events. An example includes the luminescent conjugated 
oligothiophenes and polythiophenes (LCOs and LCPs). These thiophene-based conjugated 
polymers exhibit fluorescence when binding to biological motifs such as protein aggregates 
and cell types (Cieslar-Pobuda, et al. 2014; Herland, et al. 2005; Nilsson, et al. 2003; Nilsson, 
et al. 2004). We explore the possibility of using LCOs for the detection of embryonic neural 
stem cells (NSCs), which could be applied for treatment of various CNS tumours. 

NSCs derived from E15.5 rat embryo cortex were grown on plates coated with poly-L 
ornithine and fibronectin along with medium containing the fibroblast growth factor (FGF2) 
(Teixeira, et al. 2007). Differentiated cell types were derived by exposing the isolated NSCs 
to soluble factors and withdrawing fibroblast growth factor 2 (FGF2). For example, CNTF 
induced astrocytic differentiation, smooth muscle cells were observed in the presence of FBS 
and a combination of BMP4/Wnt3a induced neuronal and astrocytic differentiation. Several 
LCO and LCP variants were screened using both undifferentiated and differentiated cell 
types, and one screen identified the LCO p-HTMI as a potential marker for NSC cultures. In 
this case, 10 minutes after treatment with p-HTMI, the cytoplasm of NSCs fluoresced at  
a wavelength similar to green fluorescence proteins. This fluorescence was unique to NSCs 
as differentiated cells displayed either very low, or no signal. The LCO variant, p-HTE-Ser 
was not selective to undifferentiated cells, but displayed a weak staining in fully 
differentiated smooth muscle cells and mature astrocytes. Since the optical properties of 
thiophene-based poylmers depends on the positioning of side chains (Klingstedt, et al. 
2013b), we thought to investigate whether the methylated imidazole moieties of p-HTMI 
played a role in the specificity to NSCs, pentameric LCOs lacking the methylated imidazole 
moiety were generated and tested on cells, however no fluorescent detection was observed. 
This highlights the role of the methylated imidazole moiety in specific detection of NSCs.  

Flow cytometry is commonly used to quantify fluorescent signals in a population of cells. 
FGF2-treated NSCs were stained with p-HTMI or p-HTE-Ser, and analyzed using flow 
cytometry. Fluorescence was only observed in p-HTMI stained cells and not in p-HTE-Ser 
stained cells. To control for cell-cell leakage of the LCOs, cells were separately stained with 
p-HTMI and p-HTE-Ser, then combined and analyzed using flow cytometry. This identified 
two separate fluorescence peaks eliminating the possibility of cross contamination of the 
LCOs. Thus p-HTMI is a selective marker for undifferentiated NSCs in vitro but not 
differentiated cells. The selectivity of p-HTMI is specific for NSCs only and not embryonic 
stem cells alone. 
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In order to test the application of LCOs in tumour cells, we used the rat C6 glioma as an 
experimental model to study GBM (Grobben, et al. 2002). To explore the differentiation 
potential of C6 glioma cells, these cells were grown with media supplemented with FBS and 
containing soluble factors such as FGF2, CNTF, and valproic acid (VPA). Immunochemistry 
confirmed the lack of differentiation potential of these cells. Previous studies have shown that 
glioma stem cell lines can be obtained from gliomas when these tumour cells were incubated 
with media-supplemented with growth factors including N2, B27, EGF and FGF-2 (Pollard, 
et al. 2009). Thus, we generated C6-derived NSCs using the protocol to culture NSCs.  
C6-derived NSCs treated with FGF2, formed nestin-positive cultures, treatment with CNTF 
resulted in increased astrocytic differentiation and treatment with VPA resulted in TUJ1-
positive cells indicating a neuronal identity. Validation by qPCR demonstrated that mRNA 
levels of Gfap and Tubb3 were increased after treatment with CNTF and VPA respectively. 
These results provided evidence that C6 glioma cells, grown as NSCs in the presence of 
external factors acquire characteristics of neural stem cells.  

The percentage of cancer stem cells varies between studies and tumour types (Bao, et al. 
2013; Cho and Clarke 2008). The C6 glioma model was shown to have 1-4% of CSC(Kondo, 
et al. 2004). When p-HTMI was introduced to C6 glioma cells, approximately 1-2% of the 
cells stained for p-HTMI, in contrast p-HTE-Ser stained a majority, about >95% of the C6 
glioma cells. The C6-derived NSCs also displayed a distinct green fluorescence when treated 
with p-HTMI, however no staining was observed with p-HTE-Ser treatment. These results 
were confirmed using flow cytometry analysis validating the selectivity of p-HTMI to a 
subset of C6 glioma cells. 

Given the selectivity of p-HTMI to a subpopulation of C6 glioma cells, we sought to 
understand the properties of cells detected by p-HTMI. Previously characterized cells from 
three patients with GBM were used for this study(Xie, et al. 2015). These  
GBM-derived stem cell-like cells, (GSCs) were subject to flow cytometry analysis after 
introduction of p-HTMI. 70-90% of cells in these three cultures showed  
a strong green fluorescence within 10 minutes of application of p-HTMI. To verify the effect 
of p-HTMI on cell survival, cell death was examined by treatment with propidium iodide (PI) 
and Annexin V, but no significant difference was observed between control and  
p-HTMI- treated cells, indicating that this marker does not impact cell survival. Comparison 
with putative markers to detect stem-like cells, such as CD133 and CD44, indicated that 
CD133 stained approximately 20-70% of cells in comparison to the 70-90% p-HTMI stained 
cells. To verify the specificity of p-HTMI over CD133, we compared p-HTMI and  
CD133-treated U87 cells that have previously been shown to contain a very small 
subpopulation of GSCs in culture (Heldring, et al. 2014). CD133 and p-HTMI detected  
a small percentage of cells however CD133 detected more cells than p-HTMI, suggesting that 
p-HTMI is a more sensitive marker for the detection of GSCs. Since CD44 has been 
suggested as a marker for CSC (Pietras, et al. 2014; Yuan, et al. 2011), the three GSC 
cultures were treated with CD44. A majority of the cells were labeled with this marker, 
suggesting lack of specificity for CSCs compared to p-HTMI. CD271, or nerve growth 
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receptor factor has been shown to be a prominent marker for neural progenitor cells (NPCs) 
(van Strien, et al. 2014). To further elucidate the characteristics of these GSCs we co- stained 
the GSC cultures with CD271 and p-HTMI, followed by flow cytometry analysis. The  
p-HTMI and CD271 positive cells overlapped, confirming a neural progenitor origin in these 
cells.  

Besides the ease of use and immediate result advantage that LCOs have over other markers, 
they have been shown to be applicable in vivo for the detection of amyloid aggregates in 
patients with Alzheimer’s disease (Klingstedt and Nilsson 2012). To investigate the 
possibility of using p-HTMI in an in vivo context, we injected human GBM- derived stem 
cell-like cells into the right striatum of mice brains (Heldring, et al. 2014; Kitambi, et al. 
2014; Xie, et al. 2015). The animals were subject to daily observation for neurological 
symptoms. Neurological symptoms such as motor dysfunction, piloerection and behavioural 
symptoms were observed 16-20 weeks after cell transplantation. After a terminal dose of 
avertin,  
p-HTMI was injected into the original site of cell transplantation. Following sectioning of the 
brain, tissue was analyzed and a fluorescent staining was detected in a subpopulation of 
transplanted cells whereas non-injected tumour tissue was unstained although the perfusion 
solution contained p-HTMI. This verified the in vivo applicability of p-HTMI but that it does 
not cross the blood-brain barrier and needs to be applied in the tumour region of interest.  

The use of LCOs as markers for protein aggregates has been well studied (Civitelli, et al. 
2016; Klingstedt, et al. 2013b). More recently LCOs were used in the detection of cell types 
and some of the LCOs showed a preferential staining to a small population of cancer cells 
(Cieslar-Pobuda, et al. 2014). This study introduces a novel marker, pHTMI, for live 
detection of neural stem cells and glioma-derived stem cell-like cells. This marker 
demonstrates a higher selectivity compared to stem cell markers such as CD133 and CD44 to 
detect GSCs (Pietras, et al. 2014; Singh, et al. 2003). Due to the ability of this marker to be 
visualized in vivo, a possible clinical use in the detection of CSC can be suggested during 
surgical resection of GBM along with existing markers currently being used to detect tumour 
cells (Stummer, et al. 2014), but further studies need to be performed to define the clinical 
use of pHTMI. 

 

3.2 PAPER II 
The cellular cytoskeleton is crucial to the regulation of cell morphology and dynamics, 
especially in the transformation of cells during malignancy. Recently, various small 
molecules were identified that are subsequently being investigated for the use in cancer 
therapy in order to increase efficacy of existing treatments(Oehler, et al. 2012). In this study 
we established an overview of GBM cytoskeleton regulators available in the literature. 85 
genes were listed and classified into cytoskeleton subgroups based on their function such as 
actin modulators, cortical cytoskeleton modulators, microtubule modulators, calmodulins and 



21 

calcenurins, G-protein signaling members, cellular projections, cell shape/ size modulators, 
cell motility, cell cycle and cytoskeleton adaptors, kinases and phosphatases. The expression 
of these genes was compared between patient-derived GBM tumour tissue and non-tumour 
tissue from existing transcriptomic data, and the results were depicted as a heat map. 
Comparative transcriptomic analysis revealed that, in most cytoskeletal subgroups, there was 
a significant difference in expression (both increases and decreases) of these genes between 
the two tissues. This suggested that a better understanding of the cell cycle regulators could 
be useful in GBM therapy. Genetic alterations are known to be prevalent in GBM (Parsons, et 
al. 2008). To investigate the extent to which genetic alterations associated with the 
cytoskeletal genes prevailed in GBM cases, 291 GBM patient cases from the Cancer Genome 
Atlas (TCGA) were used, and it was found that nearly all the genes of interest involved in the 
structure and function of the cytoskeleton showed genetic alterations. Fourteen genes were 
identified with 5% or higher gene alteration, and of these fourteen genes; CLIP2 exhibited the 
highest genetic alteration (14%). These results suggest that cytoskeletal modulators are 
indeed affected in GBM and developing therapies targeting these genetic alterations could 
have a significant impact for treating this disease.  

To further elucidate the role of cytoskeleton regulators in GBM, CD133-positive and CD133-
negative cells from GBM tumour and NSCs were analyzed as well as GBM-derived stem-
like cells before and after differentiation were compared. Similar to the expression changes 
discussed previously, microtubule modulators showed the highest difference in expression 
compared to other cytoskeleton regulators studied. To understand if this differential gene 
expression could have an impact on patient survival, survival plots were generated for each 
cytoskeleton regulator studied which in turn led to the identification of twelve genes that 
correlated directly with patient survival. Reduced expression of ARF1P2, ARPC2, ARAP1, 
CLIP2, MID1, WAS, GSN, CLIP1, LIMK1 and MSN correlated with a significant increase 
in patient survival, whereas increased expression of CIT and PPP3CB correlated with 
increased patient survival. Given our in silico analyses of gene expression, gene alteration 
and better patient survival, six genes CLIP1, CLIP2, MID1, ARAP1, ARF1P2 and MSN, 
were chosen for further study. Since these genes are crucial in tumour development, it was 
important to investigate the effect of FDA-approved oncology drugs on these modulators.  

To select the most potent drugs, GBM cells were tested with a consistent concentration of 10 
µM of 125 oncology drugs, and cell viability was measured by quantifying ATP production 
after 4 days of exposure to the drugs. The drugs were classified into 7 groups based on their 
mechanism of action. The screen demonstrated that a majority of the drugs that decreased 
GBM cell viability were kinase inhibitors (>50%), antimetabolite and alkylating agents 
(>40%). One drug from each of the seven groups that severely affected cell viability was 
selected and compared to TMZ. TMZ had little effect on cell viability compared to all the 
FDA-approved oncology drugs tested in this study. This suggests that it may be possible to 
complement other, more potent, drugs with TMZ to increase the efficacy of these drugs and 
obtain a better prognosis for patients. A log-dilution series of concentrations of TMZ ranging 
from 1mM to 100µM was performed in order to understand the cell viability effects of TMZ 
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on GBM cells. It was shown that a high TMZ dose with a half maximal inhibitory 
concentration (IC50 ) value of 269µM at day 4 could be tolerated in these cells. 

To analyze the effects of the 7 selected oncology drugs on the cytoskeleton, cells were treated 
with 10µM of each compound and 269 µM of TMZ. Following 2 days of exposure, cells were 
fixed and immunostained for acetylated-tubulin, phalloidin and DAPI to visualize cell 
morphology. Fluorescent imaging identified clear nuclear fragmentation in cells treated with 
mitomycin, ixabepilone, enzalutamide, and cisplatin, while cells treated with topotecan 
hydrochloride, TMZ, mitoxantrone, omacetaxine displayed fewer cells with nuclear 
fragmentation. Cells treated with mitomycin, ixabepilone, mitoxantrone, enzalutamide and 
omacetaxine showed pronounced clumping of the actin cytoskeleton whereas in cells treated 
with topotecan hydrochloride, TMZ, and cisplatin no visible cytoskeleton clumping was 
observed. Treatment with ixabepilone caused the most severe effect on cell morphology 
amongst the drugs tested. TMZ-treated cells displayed little effect on cell morphology 
compared to drugs tested. These drugs target different features of the cells suggesting  
a combination of drugs would be more efficient in treatment. Some compounds used in this 
study such as topotecan hydrochloride, ixabepilone and mitoxantrone are already in the 
testing stages for combination therapy with TMZ for GBM (Boiardi, et al. 2008; Bruce, et al. 
2011; Kaiser, et al. 2013).  

We next assessed gene expression of cytoskeleton regulators (CLIP1, CLIP2, MSN, ARIFP2, 
ARAP2 and MID1) that correlated with longer patient survival when cells were treated with 
both selected oncology drugs and TMZ. GBM cells were treated with the respective 
compounds for 2 days and mRNA expression levels were quantified. The effect of each 
compound on the cytoskeleton regulators differed with some compounds causing an increase, 
while others caused a decrease in the expression of cytoskeleton regulators. One of the more 
pronounced effects was observed when cells were treated with mitoxantrone. Treatment with 
this drug resulted in decreased expression of CLIP1 and ARAP1. In addition, expression of 
CLIP2 was dramatically increased following treatment with omacetaxine. CLIP1 and CLIP2 
are known to play a role in microtubule interaction with membranous organelles 
(Lewkowicz, et al. 2008). High expression of CLIP1 has shown to be a mediator in sensitivity 
of chemotherapeutic agents such as paclitaxel (Sun, et al. 2012). Although all drugs tested led 
to a decreased expression of CLIP1, a few drugs, including toptecan hydrochloride, 
mitomycin, omacetaxine and TMZ displayed less of a dramatic decrease in the expression of 
CLIP1 compared to other drugs. The survival curve data demonstrated that, low expression of 
CLIP2 correlated with increase in patient survival. The compounds tested revealed an 
increased expression of CLIP2 but treatment with drugs such as TMZ, enzalutamide, 
mitoxanthrone and cisplatin resulted in a less prominent increase. TMZ was the common 
drug here with a more favourable outcome in CLIP1 and CLIP2 expression. TCGA-derived 
GBM patient survival curve analysis described earlier revealed that overall survival of GBM 
patients decreased with high expression of cytoskeleton regulators such as MSN, ARFIP2, 
ARAP1 and MID1. Treatment with TMZ decreased expression of these cytoskeleton 
regulators involved in cell migration, membrane ruffling, receptor trafficking and 
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microtubule functioning (Aranda-Orgilles, et al. 2008; Daniele, et al. 2008; Van Aelst, et al. 
1996; Wu, et al. 2013).  

This study highlights the importance of a better understanding of the cytoskeletal regulators 
in GBM. Cytoskeletal regulators respond to environmental cues and control cellular 
dynamics (Fletcher and Mullins 2010). Our results demonstrated that cytoskeletal regulators 
in particular expression of microtubule regulators is increased in tumour tissue suggesting 
that manipulating the microtubule can be utilized for GBM therapy. Patupilone is a tubulin-
binding agent that is being explored in GBM treatment and initial studies with this small 
molecule have been successful when complemented with radiation (Fogh, et al. 2010; Oehler, 
et al. 2012). Genetic alterations in cytoskeletal regulators were identified in our study, 
suggesting that such alterations could be targets for GBM therapy (Fife, et al. 2014). 
Moreover the study elucidates the advantages of using TMZ, in combination with 
cytoskeleton regulators to increase chemosensitivity. Drugs targeting cytoskeletal regulators 
may be candidates for co-administration with TMZ in order to improve GBM therapy. With 
the knowledge of the function of cytoskeleton regulators and compounds influencing them, 
this will enable selection of compounds for combination therapy of GBM.  

 

3.3 PAPER III 
Neural stem cell proliferation and differentiation is an intricately defined process with several 
signaling molecules and transcription factors regulating this process. Some of these regulators 
include the histone HDACs, NCoR/Ncor1 and SMRT/Ncor2. In this study we shed light on 
the specific function of transcriptional repressor checkpoints controlling differentiation using 
genome-wide and single-gene analysis of these regulators. Since HDAC2 and HDAC3 are 
known to be prevalent along with genes involved in the transcriptional regulation of 
differentiation, a chromatin immunoprecipitation-sequencing (ChIP-Seq) and single gene 
ChIP analysis in NSCs was performed in order to understand their functions. A validation of 
the ChIP-Seq results using ChIP-qPCR revealed that HDAC2 and HDAC3 were enriched at 
promoters of the Rhox-family of genes known to be involved in development(Maclean, et al. 
2005). Also, HDAC2 and HDAC3 were also enriched at the promoters of transcription 
factors Pax6 and Sox8, both of which are involved in neuronal differentiation. In this case, 
HDAC3 was significantly enriched at the promoter of Pax6 and Sox8, however HDAC2 
demonstrated an increased enrichment only at the promoter of Sox8.  

To further investigate the specific roles of these HDACs in NSCs, we knocked down Hdac2 
and Hdac3 mRNA in NSCs using specific small interference RNA (siRNA).  
In comparison with a control, knockdown of Hdac2 and both Hdac2 and Hdac3 resulted in a 
global hyperacetylation of H3K9, significant increase of TuJ1-positive cells, and increased 
H3K9 acetylation on the BdnfIV promoter (Koppel and Timmusk 2013). Single knockdown 
of Hdac2 did not have any effect on these genes. qRT-PCR revealed that siHDAC3, but not 
siHDAC2, induced a significant increase in Bdnf expression. This result highlighted the role 
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of HDAC3 alone in H3K9 acetylation, Bdnf expression and neuronal differentiation in 
progenitor cells. Previous studies have shown that the HDAC-associated corepressors NCoR 
and SMRT, contribute to the neuronal differentiation in NSCs where spontaneous neuronal 
differentiation was observed in NSCs from Smrt-deficient mice, but not in Ncor-deficient or 
Ncor and Smrt deficient NSCs. (Hermanson, et al. 2002; Jepsen, et al. 2007). We analyzed 
the expression of Bdnf in Smrt-/- and Ncor-/- NSCs and it was observed that Smrt-/- but not 
Ncor-/- demonstrated a significant (>4 fold) increase in Bdnf mRNA levels compared to the 
control in NSCs.  

Microarray analysis of NCoR-/- NSCs demonstrated a prominent upregulation of 
oligodendrocyte (OL)-associated genes such as myelin-basic protein (Mbp), myelin 
proteolipid protein (Plp), beta tubulin 4 and Nkx2.2 and glial markers such as s100β. This 
upregulation was not, however, observed in neuronal genes. The OL-associated gene 
upregulation was restricted to Ncor-/- NSCs but not Smrt-/- NSCs or NSCs exposed to the 
HDAC inhibitor valproic acid (VPA). Ncor-/--related upregulation of OL-associated genes 
was verified by immunochemistry and qRT-PCR analysis. These results suggest the role of 
NCoR in mediating differentiation of NSCs into oligodendrocytes. Triiodothyronine (T3) is 
known to be important in OL development (Billon, et al. 2002). Due to the influence of T3 
stimulation on NCoR, which then regulates transcription (Astapova, et al. 2008), we decided 
to investigate the effect of T3 on NSCs. When NSCs were treated with T3, this resulted in 
OL differentiation. To further explore the correlation between NCoR and HDACs in 
regulating NSC differentiation, NSCs were treated with T3 and VPA alone as well in in 
combination. VPA treatment alone did not affect OL gene expression but combined treatment 
with T3 and VPA resulted in an increased expression of OL-associated genes. An increase in 
late versus early markers of OL differentiation was also observed. This was confirmed by 
observing morphological features after immunochemistry.  

Since our ChIP-Seq analysis identified that HDAC2 was enriched at the promoter of Sox8,  
a gene involved in oligodendrocyte differentiation, this suggested the influence of HDAC2 in 
the differentiation process of oligodendrocytes. NSCs, both with and without T3 were 
transfected with siHDAC2 and/or siHDAC3. Knockdown of Hdacs resulted in a significant 
increase in OL-associated genes in the cells differentiated with T3. In the cell lines Oli-neu 
(Jung, et al. 1995) and CG4 (Louis, et al. 1992), knockdown of Hdac2 resulted in an 
increased expression of OL-associated genes. These results indicate that the previously 
described effect of VPA on T3 differentiated OL is partially dependent on HDAC2. Gene 
expression profiling of NSCs treated with T3, VPA or VPA and T3, identified an increase in 
the OL-associated transcription factor Sox10 following VPA treatment, but it was unaffected 
by T3. Also Sox10 expression was increased with siHDAC2 and T3 treatment but not with 
siHDAC3. Transfection with siRNA against Sox10 partially prevented the upregulation of 
OL-associated genes and terminal OL differentiation was blocked following treatment with 
VPA and T3. These findings emphasize the role of SOX10 in controlling OL differentiation 
in NSCs when treated with VPA/siHDAC2 and T3.  
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To further understand the role of transcriptional regulators in OL differentiation, the 
enrichment of HDAC2 and HDAC3 was investigated in the Mbp and Sox10 gene regulatory 
regions. This demonstrated that both HDAC2 and HDAC3 were enriched in the regulatory 
regions of Mbp but in Sox10 regulatory regions, only HDAC2 enrichment was observed. 
Since SOX2 has been reported to be a binding partner of HDACs and nuclear co-repressors 
(Engelen, et al. 2011) the relevance of the HDAC2-mediated repression of Sox10 with SOX2 
was questioned. It was found that SOX2 was present in the regulatory regions of Sox10 
suggesting a SOX2-mediated HDAC2 repression of Sox10 influencing OL differentiation. 
Knockdown of Sox10 also resulted in an increase in the expression of stem cell related genes 
such as Sox2 and Sox9. Thus it can be concluded that Sox10 plays a crucial role in OL 
differentiation especially in the late stages of differentiation and also represses stem cell 
related genes. 

 

3.4 PAPER IV 
Medulloblastoma tumours demonstrate significant molecular heterogeneity, and a better 
understanding of the factors that govern this heterogeneity could assist in improved diagnosis 
and tumor-specific treatments. These tumours have been classified into 4 subgroups based on 
genetic alterations and signaling pathways. The subgroups include, WNT, SHH, Group 3 and 
Group 4 (Taylor, et al. 2012). Histone demethylases such as KDM6B/JMJD3 associate with 
the WNT and SHH signaling pathways to regulate developmental processes (Burchfield, et 
al. 2015). Studies have reported the role of KDM6B/JMJD3 in the presence of RA, in 
mediating neuronal differentiation programs (Jepsen, et al. 2007).  

We treated the DAOY medulloblastoma cell line with RA for 6h and 24h and observed  
a transient upregulation of KDM6B/JMJD3 at 6h. Given the role of KDM6B/JMJD3 in 
development, we examined the expression of certain neuronal genes and transcriptional 
regulators after treatment with RA. A slight upregulation of TUBB3 and NIF3L1 was 
observed amongst other developmental genes investigated. To validate whether the transient 
upregulation observed with RA treatment is linked to KDM6B/JMJD3, this gene was 
knockdown using siRNA. However the RA-mediated upregulation of TUBB3 and NIF3L1 
was no longer prevalent. The expression of TUBB3 and NIF3L1 was decreased in the RA-
treated samples in 3 out of 4 experiments, which could suggest a potential role for 
KDM6B/JMJD3 in the maintenance of neuronal gene expression in the presence of RA. 
However, the results did not provide evidence for an essential role for KDM6B/JMJD3 in the 
RA-mediated upregulation of these genes. 

These findings were further validated by performing a gene expression analysis of DAOY 
treated with RA/DMSO for 6h. This experiment identified SMAD3 as a RA target. Previous 
studies have associated the interaction of KDM6B/JMJD3 with SMAD3 in regulation of 
TGFβ- induced neuronal differentiation (Estaras, et al. 2012). Since medulloblastoma is  
a developmental tumour, investigating the association of SMAD3 with KDM6B/JMJD3 
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could be useful in understanding signaling pathways associated with medulloblastoma. Cells 
transfected with siRNA-targeting KDM6B/JMJD3 resulted in a diminished expression of 
SMAD3 in the presence of RA. In the presence of siRNA-targeting SMAD3, the upregulation 
of KDM6B/JMJD3 was affected. This result provides evidence of the association of 
KDM6B/JMJD3 with SMAD3 in this cell line. 

To further investigate the association of KDM6B/JMJD3 and SMAD3, we performed  
a genome-wide sequencing study to identify potential binding sites of SMAD3 and 
KDM6B/JMJD3 in the presence of RA/DMSO. Through this study it was evident that 
SMAD3 and KDM6B/JMJD3 co-occupy genomic loci upstream of the KDM6B/JMJD3 gene 
locus independent of RA. This suggests that the RA-mediated effect of KDM6B/JMJD3 is 
either independent of this site, or that RA could mediate the recruitment of other factors to 
regulate KDM6B/JMJD3. The results also demonstrated that RA regulates the SMAD3 
genomic recruitment as many binding targets were enriched in the presence of RA compared 
to genomic recruitment by SMAD3 in the presence of DMSO or genomic recruitment by 
KDM6B/JMJD3 in the presence of DMSO/RA. The analysis also demonstrated co-
occupancy of SMAD3 and KDM6B/JMJD3 irrespective of treatment, suggesting a cross talk 
between SMAD3 and KDM6B/JMJD3. 

This study describes the molecular interactions in medulloblastoma particularly the regulation 
of KDM6B/JMJD3 by RA. Jepsen et al proposed a model of upregulation of KDM6B/JMJD3 
in the presence of RA, in neural stem cells (Jepsen, et al. 2007). SMAD3 has been identified 
as an indicator of pathogenesis of medulloblastoma (Aref, et al. 2013). Our results identify 
that SMAD3 and KDM6B/JMJD3 co-occupy the genomic loci upstream of the 
KDM6B/JMJD3 gene, and SMAD3 showed highest occupancy after RA treatment. Thus, 
there is a cross talk between SMAD3 and KDM6B/JMJD3 and further experiments are 
needed to characterize the RA-mediated increase in SMAD3 genomic interactions in 
medulloblastoma.  
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4 CONCLUSIONS 
Through the studies outlined in this thesis, we provide evidence leading to a better 
understanding of the molecular characteristics of glioblastoma and medulloblastoma. We 
introduce a novel approach for specific detection of neural stem and cancer stem cells using a 
fluorescent probe. In addition, we have also determined a great deal about mechanisms 
involved in neural progenitor cells, which contribute to tumour formation in these CNS 
tumours.  

The ability to identify specific cell types is useful in understanding the function of these cells 
in pathways implicated in diseases. Current methods of cell detection, such as 
immunochemistry, involve using a combination of markers in order to detect different cell 
types. While this method can offer some level of specificity, immunological markers can still 
detect a range of cell types, indicating the need for a more specific marker. In paper I, we 
introduce a novel molecular probe, p-HTMI that can be used on live cells for quick and easy 
detection of neural stem cells. Further, comparison studies using putative markers of cancer 
stem cells demonstrate increased specificity of this molecular probe compared to existing 
immunological markers. p-HTMI did not impact cell survival, indicating it could be applied 
in vivo, and further work would need be done to determine if the probe could be applied in 
combination with other chemotherapeutics to act as a more efficient GBM therapy. The in 
vivo applicability of this molecular probe suggests a possible use in surgical intervention, 
however further studies need to be performed to validate this use. 

Regulators of the cytoskeleton are important determinants of tumour growth and survival. 
Understanding the impact of chemotherapy on cytoskeletal integrity could aid in the 
development of more efficient GBM therapy. In paper II, we demonstrate the difference in 
expression of cytoskeleton regulators in tumour and non-tumour tissue, and correlate the 
effect of this expression on patient survival. Our findings suggest that cytoskeleton regulators 
could offer attractive targets for GBM in combination with existing chemotherapeutics such 
as TMZ. Since each drug targets different cell characteristics, combination therapy could 
ensure a more effective treatment. 

Differentiation of neural progenitor cells is controlled by several signaling factors and control 
mechanisms. Elucidating the roles of factors involved in the neural differentiation process 
could provide cues as to how these processes are involved in disease. Paper III identifies the 
function of HDACs in controlling differentiation of neuronal and oligodendrocyte-related 
genes in neural stem cells. The function of HDACs is mediated by external factors such as 
T3, RA, as well as transcription factors SMRT and NCOR. These control mechanisms in 
differentiation of neural stem cells highlights the need for various checkpoints controlling 
development of neural progenitors.  

Paper IV provides an insight into the signaling pathways involved in medulloblastoma. We 
show that upregulation of genes involved in neuronal development, such as KDM6B/JMJD3, 
is based on transient treatment with RA. This gene regulation was shown to be associated 
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with a binding partner SMAD3. Genome-wide analysis of binding sites revealed that 
KDM6B/JMJD3 and SMAD3 co-occupy the region upstream of the KDM6B/JMJD3 gene 
locus regardless of RA, and the since SMAD3 showed highest genomic interactions in the 
presence of RA, future studies need to be performed to investigate these genomic interactions 
with SMAD3 mediated by RA and how this may influence the crosstalk between genes 
implicated in medulloblastoma. 
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